Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.63
      1 /*	$NetBSD: pmap.c,v 1.63 2008/12/10 11:10:19 pooka Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.63 2008/12/10 11:10:19 pooka Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 
     87 #include <machine/pcb.h>
     88 #include <machine/powerpc.h>
     89 #include <powerpc/spr.h>
     90 #include <powerpc/oea/sr_601.h>
     91 #include <powerpc/bat.h>
     92 #include <powerpc/stdarg.h>
     93 
     94 #ifdef ALTIVEC
     95 int pmap_use_altivec;
     96 #endif
     97 
     98 volatile struct pteg *pmap_pteg_table;
     99 unsigned int pmap_pteg_cnt;
    100 unsigned int pmap_pteg_mask;
    101 #ifdef PMAP_MEMLIMIT
    102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    103 #else
    104 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    105 #endif
    106 
    107 struct pmap kernel_pmap_;
    108 struct pmap *const kernel_pmap_ptr = &kernel_pmap_;
    109 unsigned int pmap_pages_stolen;
    110 u_long pmap_pte_valid;
    111 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    112 u_long pmap_pvo_enter_depth;
    113 u_long pmap_pvo_remove_depth;
    114 #endif
    115 
    116 int physmem;
    117 #ifndef MSGBUFADDR
    118 extern paddr_t msgbuf_paddr;
    119 #endif
    120 
    121 static struct mem_region *mem, *avail;
    122 static u_int mem_cnt, avail_cnt;
    123 
    124 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    125 # define	PMAP_OEA 1
    126 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    127 #  define	PMAPNAME(name)	pmap_##name
    128 # endif
    129 #endif
    130 
    131 #if defined(PMAP_OEA64)
    132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    133 #  define	PMAPNAME(name)	pmap_##name
    134 # endif
    135 #endif
    136 
    137 #if defined(PMAP_OEA64_BRIDGE)
    138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    139 #  define	PMAPNAME(name)	pmap_##name
    140 # endif
    141 #endif
    142 
    143 #if defined(PMAP_OEA)
    144 #define	_PRIxpte	"lx"
    145 #else
    146 #define	_PRIxpte	PRIx64
    147 #endif
    148 #define	_PRIxpa		"lx"
    149 #define	_PRIxva		"lx"
    150 #define	_PRIsr  	"lx"
    151 
    152 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    153 #if defined(PMAP_OEA)
    154 #define	PMAPNAME(name)	pmap32_##name
    155 #elif defined(PMAP_OEA64)
    156 #define	PMAPNAME(name)	pmap64_##name
    157 #elif defined(PMAP_OEA64_BRIDGE)
    158 #define	PMAPNAME(name)	pmap64bridge_##name
    159 #else
    160 #error unknown variant for pmap
    161 #endif
    162 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    163 
    164 #if defined(PMAPNAME)
    165 #define	STATIC			static
    166 #define pmap_pte_spill		PMAPNAME(pte_spill)
    167 #define pmap_real_memory	PMAPNAME(real_memory)
    168 #define pmap_init		PMAPNAME(init)
    169 #define pmap_virtual_space	PMAPNAME(virtual_space)
    170 #define pmap_create		PMAPNAME(create)
    171 #define pmap_reference		PMAPNAME(reference)
    172 #define pmap_destroy		PMAPNAME(destroy)
    173 #define pmap_copy		PMAPNAME(copy)
    174 #define pmap_update		PMAPNAME(update)
    175 #define pmap_collect		PMAPNAME(collect)
    176 #define pmap_enter		PMAPNAME(enter)
    177 #define pmap_remove		PMAPNAME(remove)
    178 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    179 #define pmap_kremove		PMAPNAME(kremove)
    180 #define pmap_extract		PMAPNAME(extract)
    181 #define pmap_protect		PMAPNAME(protect)
    182 #define pmap_unwire		PMAPNAME(unwire)
    183 #define pmap_page_protect	PMAPNAME(page_protect)
    184 #define pmap_query_bit		PMAPNAME(query_bit)
    185 #define pmap_clear_bit		PMAPNAME(clear_bit)
    186 
    187 #define pmap_activate		PMAPNAME(activate)
    188 #define pmap_deactivate		PMAPNAME(deactivate)
    189 
    190 #define pmap_pinit		PMAPNAME(pinit)
    191 #define pmap_procwr		PMAPNAME(procwr)
    192 
    193 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    194 #define pmap_pte_print		PMAPNAME(pte_print)
    195 #define pmap_pteg_check		PMAPNAME(pteg_check)
    196 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    197 #define pmap_print_pte		PMAPNAME(print_pte)
    198 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    199 #endif
    200 #if defined(DEBUG) || defined(PMAPCHECK)
    201 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    202 #define pmapcheck		PMAPNAME(check)
    203 #endif
    204 #if defined(DEBUG) || defined(PMAPDEBUG)
    205 #define pmapdebug		PMAPNAME(debug)
    206 #endif
    207 #define pmap_steal_memory	PMAPNAME(steal_memory)
    208 #define pmap_bootstrap		PMAPNAME(bootstrap)
    209 #else
    210 #define	STATIC			/* nothing */
    211 #endif /* PMAPNAME */
    212 
    213 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    214 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    215 STATIC void pmap_init(void);
    216 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    217 STATIC pmap_t pmap_create(void);
    218 STATIC void pmap_reference(pmap_t);
    219 STATIC void pmap_destroy(pmap_t);
    220 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    221 STATIC void pmap_update(pmap_t);
    222 STATIC void pmap_collect(pmap_t);
    223 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, int);
    224 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    225 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
    226 STATIC void pmap_kremove(vaddr_t, vsize_t);
    227 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    228 
    229 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    230 STATIC void pmap_unwire(pmap_t, vaddr_t);
    231 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    232 STATIC bool pmap_query_bit(struct vm_page *, int);
    233 STATIC bool pmap_clear_bit(struct vm_page *, int);
    234 
    235 STATIC void pmap_activate(struct lwp *);
    236 STATIC void pmap_deactivate(struct lwp *);
    237 
    238 STATIC void pmap_pinit(pmap_t pm);
    239 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    240 
    241 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    242 STATIC void pmap_pte_print(volatile struct pte *);
    243 STATIC void pmap_pteg_check(void);
    244 STATIC void pmap_print_mmuregs(void);
    245 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    246 STATIC void pmap_pteg_dist(void);
    247 #endif
    248 #if defined(DEBUG) || defined(PMAPCHECK)
    249 STATIC void pmap_pvo_verify(void);
    250 #endif
    251 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    252 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    253 
    254 #ifdef PMAPNAME
    255 const struct pmap_ops PMAPNAME(ops) = {
    256 	.pmapop_pte_spill = pmap_pte_spill,
    257 	.pmapop_real_memory = pmap_real_memory,
    258 	.pmapop_init = pmap_init,
    259 	.pmapop_virtual_space = pmap_virtual_space,
    260 	.pmapop_create = pmap_create,
    261 	.pmapop_reference = pmap_reference,
    262 	.pmapop_destroy = pmap_destroy,
    263 	.pmapop_copy = pmap_copy,
    264 	.pmapop_update = pmap_update,
    265 	.pmapop_collect = pmap_collect,
    266 	.pmapop_enter = pmap_enter,
    267 	.pmapop_remove = pmap_remove,
    268 	.pmapop_kenter_pa = pmap_kenter_pa,
    269 	.pmapop_kremove = pmap_kremove,
    270 	.pmapop_extract = pmap_extract,
    271 	.pmapop_protect = pmap_protect,
    272 	.pmapop_unwire = pmap_unwire,
    273 	.pmapop_page_protect = pmap_page_protect,
    274 	.pmapop_query_bit = pmap_query_bit,
    275 	.pmapop_clear_bit = pmap_clear_bit,
    276 	.pmapop_activate = pmap_activate,
    277 	.pmapop_deactivate = pmap_deactivate,
    278 	.pmapop_pinit = pmap_pinit,
    279 	.pmapop_procwr = pmap_procwr,
    280 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    281 	.pmapop_pte_print = pmap_pte_print,
    282 	.pmapop_pteg_check = pmap_pteg_check,
    283 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    284 	.pmapop_print_pte = pmap_print_pte,
    285 	.pmapop_pteg_dist = pmap_pteg_dist,
    286 #else
    287 	.pmapop_pte_print = NULL,
    288 	.pmapop_pteg_check = NULL,
    289 	.pmapop_print_mmuregs = NULL,
    290 	.pmapop_print_pte = NULL,
    291 	.pmapop_pteg_dist = NULL,
    292 #endif
    293 #if defined(DEBUG) || defined(PMAPCHECK)
    294 	.pmapop_pvo_verify = pmap_pvo_verify,
    295 #else
    296 	.pmapop_pvo_verify = NULL,
    297 #endif
    298 	.pmapop_steal_memory = pmap_steal_memory,
    299 	.pmapop_bootstrap = pmap_bootstrap,
    300 };
    301 #endif /* !PMAPNAME */
    302 
    303 /*
    304  * The following structure is aligned to 32 bytes
    305  */
    306 struct pvo_entry {
    307 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    308 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    309 	struct pte pvo_pte;			/* Prebuilt PTE */
    310 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    311 	vaddr_t pvo_vaddr;			/* VA of entry */
    312 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    313 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    314 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    315 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    316 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    317 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    318 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    319 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    320 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    321 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    322 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    323 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    324 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    325 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    326 #define	PVO_REMOVE		6		/* PVO has been removed */
    327 #define	PVO_WHERE_MASK		15
    328 #define	PVO_WHERE_SHFT		8
    329 } __attribute__ ((aligned (32)));
    330 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    331 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    332 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    333 #define	PVO_PTEGIDX_CLR(pvo)	\
    334 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    335 #define	PVO_PTEGIDX_SET(pvo,i)	\
    336 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    337 #define	PVO_WHERE(pvo,w)	\
    338 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    339 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    340 
    341 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    342 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    343 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    344 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    345 
    346 struct pool pmap_pool;		/* pool for pmap structures */
    347 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    348 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    349 
    350 /*
    351  * We keep a cache of unmanaged pages to be used for pvo entries for
    352  * unmanaged pages.
    353  */
    354 struct pvo_page {
    355 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    356 };
    357 SIMPLEQ_HEAD(pvop_head, pvo_page);
    358 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    359 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    360 u_long pmap_upvop_free;
    361 u_long pmap_upvop_maxfree;
    362 u_long pmap_mpvop_free;
    363 u_long pmap_mpvop_maxfree;
    364 
    365 static void *pmap_pool_ualloc(struct pool *, int);
    366 static void *pmap_pool_malloc(struct pool *, int);
    367 
    368 static void pmap_pool_ufree(struct pool *, void *);
    369 static void pmap_pool_mfree(struct pool *, void *);
    370 
    371 static struct pool_allocator pmap_pool_mallocator = {
    372 	.pa_alloc = pmap_pool_malloc,
    373 	.pa_free = pmap_pool_mfree,
    374 	.pa_pagesz = 0,
    375 };
    376 
    377 static struct pool_allocator pmap_pool_uallocator = {
    378 	.pa_alloc = pmap_pool_ualloc,
    379 	.pa_free = pmap_pool_ufree,
    380 	.pa_pagesz = 0,
    381 };
    382 
    383 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    384 void pmap_pte_print(volatile struct pte *);
    385 void pmap_pteg_check(void);
    386 void pmap_pteg_dist(void);
    387 void pmap_print_pte(pmap_t, vaddr_t);
    388 void pmap_print_mmuregs(void);
    389 #endif
    390 
    391 #if defined(DEBUG) || defined(PMAPCHECK)
    392 #ifdef PMAPCHECK
    393 int pmapcheck = 1;
    394 #else
    395 int pmapcheck = 0;
    396 #endif
    397 void pmap_pvo_verify(void);
    398 static void pmap_pvo_check(const struct pvo_entry *);
    399 #define	PMAP_PVO_CHECK(pvo)	 		\
    400 	do {					\
    401 		if (pmapcheck)			\
    402 			pmap_pvo_check(pvo);	\
    403 	} while (0)
    404 #else
    405 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    406 #endif
    407 static int pmap_pte_insert(int, struct pte *);
    408 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    409 	vaddr_t, paddr_t, register_t, int);
    410 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    411 static void pmap_pvo_free(struct pvo_entry *);
    412 static void pmap_pvo_free_list(struct pvo_head *);
    413 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    414 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    415 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    416 static void pvo_set_exec(struct pvo_entry *);
    417 static void pvo_clear_exec(struct pvo_entry *);
    418 
    419 static void tlbia(void);
    420 
    421 static void pmap_release(pmap_t);
    422 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    423 
    424 static uint32_t pmap_pvo_reclaim_nextidx;
    425 #ifdef DEBUG
    426 static int pmap_pvo_reclaim_debugctr;
    427 #endif
    428 
    429 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    430 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    431 
    432 static int pmap_initialized;
    433 
    434 #if defined(DEBUG) || defined(PMAPDEBUG)
    435 #define	PMAPDEBUG_BOOT		0x0001
    436 #define	PMAPDEBUG_PTE		0x0002
    437 #define	PMAPDEBUG_EXEC		0x0008
    438 #define	PMAPDEBUG_PVOENTER	0x0010
    439 #define	PMAPDEBUG_PVOREMOVE	0x0020
    440 #define	PMAPDEBUG_ACTIVATE	0x0100
    441 #define	PMAPDEBUG_CREATE	0x0200
    442 #define	PMAPDEBUG_ENTER		0x1000
    443 #define	PMAPDEBUG_KENTER	0x2000
    444 #define	PMAPDEBUG_KREMOVE	0x4000
    445 #define	PMAPDEBUG_REMOVE	0x8000
    446 
    447 unsigned int pmapdebug = 0;
    448 
    449 # define DPRINTF(x)		printf x
    450 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    451 #else
    452 # define DPRINTF(x)
    453 # define DPRINTFN(n, x)
    454 #endif
    455 
    456 
    457 #ifdef PMAPCOUNTERS
    458 /*
    459  * From pmap_subr.c
    460  */
    461 extern struct evcnt pmap_evcnt_mappings;
    462 extern struct evcnt pmap_evcnt_unmappings;
    463 
    464 extern struct evcnt pmap_evcnt_kernel_mappings;
    465 extern struct evcnt pmap_evcnt_kernel_unmappings;
    466 
    467 extern struct evcnt pmap_evcnt_mappings_replaced;
    468 
    469 extern struct evcnt pmap_evcnt_exec_mappings;
    470 extern struct evcnt pmap_evcnt_exec_cached;
    471 
    472 extern struct evcnt pmap_evcnt_exec_synced;
    473 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    474 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    475 
    476 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    477 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    478 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    479 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    480 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    481 
    482 extern struct evcnt pmap_evcnt_updates;
    483 extern struct evcnt pmap_evcnt_collects;
    484 extern struct evcnt pmap_evcnt_copies;
    485 
    486 extern struct evcnt pmap_evcnt_ptes_spilled;
    487 extern struct evcnt pmap_evcnt_ptes_unspilled;
    488 extern struct evcnt pmap_evcnt_ptes_evicted;
    489 
    490 extern struct evcnt pmap_evcnt_ptes_primary[8];
    491 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    492 extern struct evcnt pmap_evcnt_ptes_removed;
    493 extern struct evcnt pmap_evcnt_ptes_changed;
    494 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    495 extern struct evcnt pmap_evcnt_pvos_failed;
    496 
    497 extern struct evcnt pmap_evcnt_zeroed_pages;
    498 extern struct evcnt pmap_evcnt_copied_pages;
    499 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    500 
    501 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    502 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    503 #else
    504 #define	PMAPCOUNT(ev)	((void) 0)
    505 #define	PMAPCOUNT2(ev)	((void) 0)
    506 #endif
    507 
    508 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    509 
    510 /* XXXSL: this needs to be moved to assembler */
    511 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    512 
    513 #define	TLBSYNC()	__asm volatile("tlbsync")
    514 #define	SYNC()		__asm volatile("sync")
    515 #define	EIEIO()		__asm volatile("eieio")
    516 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    517 #define	MFMSR()		mfmsr()
    518 #define	MTMSR(psl)	mtmsr(psl)
    519 #define	MFPVR()		mfpvr()
    520 #define	MFSRIN(va)	mfsrin(va)
    521 #define	MFTB()		mfrtcltbl()
    522 
    523 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    524 static inline register_t
    525 mfsrin(vaddr_t va)
    526 {
    527 	register_t sr;
    528 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    529 	return sr;
    530 }
    531 #endif	/* PMAP_OEA*/
    532 
    533 #if defined (PMAP_OEA64_BRIDGE)
    534 extern void mfmsr64 (register64_t *result);
    535 #endif /* PMAP_OEA64_BRIDGE */
    536 
    537 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    538 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    539 
    540 static inline register_t
    541 pmap_interrupts_off(void)
    542 {
    543 	register_t msr = MFMSR();
    544 	if (msr & PSL_EE)
    545 		MTMSR(msr & ~PSL_EE);
    546 	return msr;
    547 }
    548 
    549 static void
    550 pmap_interrupts_restore(register_t msr)
    551 {
    552 	if (msr & PSL_EE)
    553 		MTMSR(msr);
    554 }
    555 
    556 static inline u_int32_t
    557 mfrtcltbl(void)
    558 {
    559 #ifdef PPC_OEA601
    560 	if ((MFPVR() >> 16) == MPC601)
    561 		return (mfrtcl() >> 7);
    562 	else
    563 #endif
    564 		return (mftbl());
    565 }
    566 
    567 /*
    568  * These small routines may have to be replaced,
    569  * if/when we support processors other that the 604.
    570  */
    571 
    572 void
    573 tlbia(void)
    574 {
    575 	char *i;
    576 
    577 	SYNC();
    578 #if defined(PMAP_OEA)
    579 	/*
    580 	 * Why not use "tlbia"?  Because not all processors implement it.
    581 	 *
    582 	 * This needs to be a per-CPU callback to do the appropriate thing
    583 	 * for the CPU. XXX
    584 	 */
    585 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    586 		TLBIE(i);
    587 		EIEIO();
    588 		SYNC();
    589 	}
    590 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    591 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    592 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    593 		TLBIEL(i);
    594 		EIEIO();
    595 		SYNC();
    596 	}
    597 #endif
    598 	TLBSYNC();
    599 	SYNC();
    600 }
    601 
    602 static inline register_t
    603 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    604 {
    605 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    606 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    607 #else /* PMAP_OEA64 */
    608 #if 0
    609 	const struct ste *ste;
    610 	register_t hash;
    611 	int i;
    612 
    613 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    614 
    615 	/*
    616 	 * Try the primary group first
    617 	 */
    618 	ste = pm->pm_stes[hash].stes;
    619 	for (i = 0; i < 8; i++, ste++) {
    620 		if (ste->ste_hi & STE_V) &&
    621 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    622 			return ste;
    623 	}
    624 
    625 	/*
    626 	 * Then the secondary group.
    627 	 */
    628 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    629 	for (i = 0; i < 8; i++, ste++) {
    630 		if (ste->ste_hi & STE_V) &&
    631 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    632 			return addr;
    633 	}
    634 
    635 	return NULL;
    636 #else
    637 	/*
    638 	 * Rather than searching the STE groups for the VSID, we know
    639 	 * how we generate that from the ESID and so do that.
    640 	 */
    641 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    642 #endif
    643 #endif /* PMAP_OEA */
    644 }
    645 
    646 static inline register_t
    647 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    648 {
    649 	register_t hash;
    650 
    651 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    652 	return hash & pmap_pteg_mask;
    653 }
    654 
    655 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    656 /*
    657  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    658  * The only bit of magic is that the top 4 bits of the address doesn't
    659  * technically exist in the PTE.  But we know we reserved 4 bits of the
    660  * VSID for it so that's how we get it.
    661  */
    662 static vaddr_t
    663 pmap_pte_to_va(volatile const struct pte *pt)
    664 {
    665 	vaddr_t va;
    666 	uintptr_t ptaddr = (uintptr_t) pt;
    667 
    668 	if (pt->pte_hi & PTE_HID)
    669 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    670 
    671 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    672 #if defined(PMAP_OEA)
    673 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    674 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    675 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    676 #endif
    677 	va <<= ADDR_PIDX_SHFT;
    678 
    679 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    680 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    681 
    682 #if defined(PMAP_OEA64)
    683 	/* PPC63 Bits 0-35 */
    684 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    685 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    686 	/* PPC Bits 0-3 */
    687 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    688 #endif
    689 
    690 	return va;
    691 }
    692 #endif
    693 
    694 static inline struct pvo_head *
    695 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    696 {
    697 	struct vm_page *pg;
    698 
    699 	pg = PHYS_TO_VM_PAGE(pa);
    700 	if (pg_p != NULL)
    701 		*pg_p = pg;
    702 	if (pg == NULL)
    703 		return &pmap_pvo_unmanaged;
    704 	return &pg->mdpage.mdpg_pvoh;
    705 }
    706 
    707 static inline struct pvo_head *
    708 vm_page_to_pvoh(struct vm_page *pg)
    709 {
    710 	return &pg->mdpage.mdpg_pvoh;
    711 }
    712 
    713 
    714 static inline void
    715 pmap_attr_clear(struct vm_page *pg, int ptebit)
    716 {
    717 	pg->mdpage.mdpg_attrs &= ~ptebit;
    718 }
    719 
    720 static inline int
    721 pmap_attr_fetch(struct vm_page *pg)
    722 {
    723 	return pg->mdpage.mdpg_attrs;
    724 }
    725 
    726 static inline void
    727 pmap_attr_save(struct vm_page *pg, int ptebit)
    728 {
    729 	pg->mdpage.mdpg_attrs |= ptebit;
    730 }
    731 
    732 static inline int
    733 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    734 {
    735 	if (pt->pte_hi == pvo_pt->pte_hi
    736 #if 0
    737 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    738 	        ~(PTE_REF|PTE_CHG)) == 0
    739 #endif
    740 	    )
    741 		return 1;
    742 	return 0;
    743 }
    744 
    745 static inline void
    746 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    747 {
    748 	/*
    749 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    750 	 * only gets set when the real pte is set in memory.
    751 	 *
    752 	 * Note: Don't set the valid bit for correct operation of tlb update.
    753 	 */
    754 #if defined(PMAP_OEA)
    755 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    756 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    757 	pt->pte_lo = pte_lo;
    758 #elif defined (PMAP_OEA64_BRIDGE)
    759 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    760 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    761 	pt->pte_lo = (u_int64_t) pte_lo;
    762 #elif defined (PMAP_OEA64)
    763 #error PMAP_OEA64 not supported
    764 #endif /* PMAP_OEA */
    765 }
    766 
    767 static inline void
    768 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    769 {
    770 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    771 }
    772 
    773 static inline void
    774 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    775 {
    776 	/*
    777 	 * As shown in Section 7.6.3.2.3
    778 	 */
    779 	pt->pte_lo &= ~ptebit;
    780 	TLBIE(va);
    781 	SYNC();
    782 	EIEIO();
    783 	TLBSYNC();
    784 	SYNC();
    785 #ifdef MULTIPROCESSOR
    786 	DCBST(pt);
    787 #endif
    788 }
    789 
    790 static inline void
    791 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    792 {
    793 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    794 	if (pvo_pt->pte_hi & PTE_VALID)
    795 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    796 #endif
    797 	pvo_pt->pte_hi |= PTE_VALID;
    798 
    799 	/*
    800 	 * Update the PTE as defined in section 7.6.3.1
    801 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    802 	 * have been saved so this routine can restore them (if desired).
    803 	 */
    804 	pt->pte_lo = pvo_pt->pte_lo;
    805 	EIEIO();
    806 	pt->pte_hi = pvo_pt->pte_hi;
    807 	TLBSYNC();
    808 	SYNC();
    809 #ifdef MULTIPROCESSOR
    810 	DCBST(pt);
    811 #endif
    812 	pmap_pte_valid++;
    813 }
    814 
    815 static inline void
    816 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    817 {
    818 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    819 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    820 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    821 	if ((pt->pte_hi & PTE_VALID) == 0)
    822 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    823 #endif
    824 
    825 	pvo_pt->pte_hi &= ~PTE_VALID;
    826 	/*
    827 	 * Force the ref & chg bits back into the PTEs.
    828 	 */
    829 	SYNC();
    830 	/*
    831 	 * Invalidate the pte ... (Section 7.6.3.3)
    832 	 */
    833 	pt->pte_hi &= ~PTE_VALID;
    834 	SYNC();
    835 	TLBIE(va);
    836 	SYNC();
    837 	EIEIO();
    838 	TLBSYNC();
    839 	SYNC();
    840 	/*
    841 	 * Save the ref & chg bits ...
    842 	 */
    843 	pmap_pte_synch(pt, pvo_pt);
    844 	pmap_pte_valid--;
    845 }
    846 
    847 static inline void
    848 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    849 {
    850 	/*
    851 	 * Invalidate the PTE
    852 	 */
    853 	pmap_pte_unset(pt, pvo_pt, va);
    854 	pmap_pte_set(pt, pvo_pt);
    855 }
    856 
    857 /*
    858  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    859  * (either primary or secondary location).
    860  *
    861  * Note: both the destination and source PTEs must not have PTE_VALID set.
    862  */
    863 
    864 static int
    865 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    866 {
    867 	volatile struct pte *pt;
    868 	int i;
    869 
    870 #if defined(DEBUG)
    871 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    872 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    873 #endif
    874 	/*
    875 	 * First try primary hash.
    876 	 */
    877 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    878 		if ((pt->pte_hi & PTE_VALID) == 0) {
    879 			pvo_pt->pte_hi &= ~PTE_HID;
    880 			pmap_pte_set(pt, pvo_pt);
    881 			return i;
    882 		}
    883 	}
    884 
    885 	/*
    886 	 * Now try secondary hash.
    887 	 */
    888 	ptegidx ^= pmap_pteg_mask;
    889 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    890 		if ((pt->pte_hi & PTE_VALID) == 0) {
    891 			pvo_pt->pte_hi |= PTE_HID;
    892 			pmap_pte_set(pt, pvo_pt);
    893 			return i;
    894 		}
    895 	}
    896 	return -1;
    897 }
    898 
    899 /*
    900  * Spill handler.
    901  *
    902  * Tries to spill a page table entry from the overflow area.
    903  * This runs in either real mode (if dealing with a exception spill)
    904  * or virtual mode when dealing with manually spilling one of the
    905  * kernel's pte entries.  In either case, interrupts are already
    906  * disabled.
    907  */
    908 
    909 int
    910 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    911 {
    912 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    913 	struct pvo_entry *pvo;
    914 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    915 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    916 	int ptegidx, i, j;
    917 	volatile struct pteg *pteg;
    918 	volatile struct pte *pt;
    919 
    920 	PMAP_LOCK();
    921 
    922 	ptegidx = va_to_pteg(pm, addr);
    923 
    924 	/*
    925 	 * Have to substitute some entry. Use the primary hash for this.
    926 	 * Use low bits of timebase as random generator.  Make sure we are
    927 	 * not picking a kernel pte for replacement.
    928 	 */
    929 	pteg = &pmap_pteg_table[ptegidx];
    930 	i = MFTB() & 7;
    931 	for (j = 0; j < 8; j++) {
    932 		pt = &pteg->pt[i];
    933 		if ((pt->pte_hi & PTE_VALID) == 0)
    934 			break;
    935 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    936 				< PHYSMAP_VSIDBITS)
    937 			break;
    938 		i = (i + 1) & 7;
    939 	}
    940 	KASSERT(j < 8);
    941 
    942 	source_pvo = NULL;
    943 	victim_pvo = NULL;
    944 	pvoh = &pmap_pvo_table[ptegidx];
    945 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    946 
    947 		/*
    948 		 * We need to find pvo entry for this address...
    949 		 */
    950 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    951 
    952 		/*
    953 		 * If we haven't found the source and we come to a PVO with
    954 		 * a valid PTE, then we know we can't find it because all
    955 		 * evicted PVOs always are first in the list.
    956 		 */
    957 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    958 			break;
    959 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    960 		    addr == PVO_VADDR(pvo)) {
    961 
    962 			/*
    963 			 * Now we have found the entry to be spilled into the
    964 			 * pteg.  Attempt to insert it into the page table.
    965 			 */
    966 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    967 			if (j >= 0) {
    968 				PVO_PTEGIDX_SET(pvo, j);
    969 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    970 				PVO_WHERE(pvo, SPILL_INSERT);
    971 				pvo->pvo_pmap->pm_evictions--;
    972 				PMAPCOUNT(ptes_spilled);
    973 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    974 				    ? pmap_evcnt_ptes_secondary
    975 				    : pmap_evcnt_ptes_primary)[j]);
    976 
    977 				/*
    978 				 * Since we keep the evicted entries at the
    979 				 * from of the PVO list, we need move this
    980 				 * (now resident) PVO after the evicted
    981 				 * entries.
    982 				 */
    983 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    984 
    985 				/*
    986 				 * If we don't have to move (either we were the
    987 				 * last entry or the next entry was valid),
    988 				 * don't change our position.  Otherwise
    989 				 * move ourselves to the tail of the queue.
    990 				 */
    991 				if (next_pvo != NULL &&
    992 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    993 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    994 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    995 				}
    996 				PMAP_UNLOCK();
    997 				return 1;
    998 			}
    999 			source_pvo = pvo;
   1000 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1001 				return 0;
   1002 			}
   1003 			if (victim_pvo != NULL)
   1004 				break;
   1005 		}
   1006 
   1007 		/*
   1008 		 * We also need the pvo entry of the victim we are replacing
   1009 		 * so save the R & C bits of the PTE.
   1010 		 */
   1011 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1012 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1013 			vpvoh = pvoh;			/* *1* */
   1014 			victim_pvo = pvo;
   1015 			if (source_pvo != NULL)
   1016 				break;
   1017 		}
   1018 	}
   1019 
   1020 	if (source_pvo == NULL) {
   1021 		PMAPCOUNT(ptes_unspilled);
   1022 		PMAP_UNLOCK();
   1023 		return 0;
   1024 	}
   1025 
   1026 	if (victim_pvo == NULL) {
   1027 		if ((pt->pte_hi & PTE_HID) == 0)
   1028 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1029 			    "no pvo entry!", pt);
   1030 
   1031 		/*
   1032 		 * If this is a secondary PTE, we need to search
   1033 		 * its primary pvo bucket for the matching PVO.
   1034 		 */
   1035 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1036 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1037 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1038 
   1039 			/*
   1040 			 * We also need the pvo entry of the victim we are
   1041 			 * replacing so save the R & C bits of the PTE.
   1042 			 */
   1043 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1044 				victim_pvo = pvo;
   1045 				break;
   1046 			}
   1047 		}
   1048 		if (victim_pvo == NULL)
   1049 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1050 			    "no pvo entry!", pt);
   1051 	}
   1052 
   1053 	/*
   1054 	 * The victim should be not be a kernel PVO/PTE entry.
   1055 	 */
   1056 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1057 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1058 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1059 
   1060 	/*
   1061 	 * We are invalidating the TLB entry for the EA for the
   1062 	 * we are replacing even though its valid; If we don't
   1063 	 * we lose any ref/chg bit changes contained in the TLB
   1064 	 * entry.
   1065 	 */
   1066 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1067 
   1068 	/*
   1069 	 * To enforce the PVO list ordering constraint that all
   1070 	 * evicted entries should come before all valid entries,
   1071 	 * move the source PVO to the tail of its list and the
   1072 	 * victim PVO to the head of its list (which might not be
   1073 	 * the same list, if the victim was using the secondary hash).
   1074 	 */
   1075 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1076 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1077 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1078 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1079 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1080 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1081 	victim_pvo->pvo_pmap->pm_evictions++;
   1082 	source_pvo->pvo_pmap->pm_evictions--;
   1083 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1084 	PVO_WHERE(source_pvo, SPILL_SET);
   1085 
   1086 	PVO_PTEGIDX_CLR(victim_pvo);
   1087 	PVO_PTEGIDX_SET(source_pvo, i);
   1088 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1089 	PMAPCOUNT(ptes_spilled);
   1090 	PMAPCOUNT(ptes_evicted);
   1091 	PMAPCOUNT(ptes_removed);
   1092 
   1093 	PMAP_PVO_CHECK(victim_pvo);
   1094 	PMAP_PVO_CHECK(source_pvo);
   1095 
   1096 	PMAP_UNLOCK();
   1097 	return 1;
   1098 }
   1099 
   1100 /*
   1101  * Restrict given range to physical memory
   1102  */
   1103 void
   1104 pmap_real_memory(paddr_t *start, psize_t *size)
   1105 {
   1106 	struct mem_region *mp;
   1107 
   1108 	for (mp = mem; mp->size; mp++) {
   1109 		if (*start + *size > mp->start
   1110 		    && *start < mp->start + mp->size) {
   1111 			if (*start < mp->start) {
   1112 				*size -= mp->start - *start;
   1113 				*start = mp->start;
   1114 			}
   1115 			if (*start + *size > mp->start + mp->size)
   1116 				*size = mp->start + mp->size - *start;
   1117 			return;
   1118 		}
   1119 	}
   1120 	*size = 0;
   1121 }
   1122 
   1123 /*
   1124  * Initialize anything else for pmap handling.
   1125  * Called during vm_init().
   1126  */
   1127 void
   1128 pmap_init(void)
   1129 {
   1130 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1131 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1132 	    &pmap_pool_mallocator, IPL_NONE);
   1133 
   1134 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1135 
   1136 	pmap_initialized = 1;
   1137 
   1138 }
   1139 
   1140 /*
   1141  * How much virtual space does the kernel get?
   1142  */
   1143 void
   1144 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1145 {
   1146 	/*
   1147 	 * For now, reserve one segment (minus some overhead) for kernel
   1148 	 * virtual memory
   1149 	 */
   1150 	*start = VM_MIN_KERNEL_ADDRESS;
   1151 	*end = VM_MAX_KERNEL_ADDRESS;
   1152 }
   1153 
   1154 /*
   1155  * Allocate, initialize, and return a new physical map.
   1156  */
   1157 pmap_t
   1158 pmap_create(void)
   1159 {
   1160 	pmap_t pm;
   1161 
   1162 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1163 	memset((void *)pm, 0, sizeof *pm);
   1164 	pmap_pinit(pm);
   1165 
   1166 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1167 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1168 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1169 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1170 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1171 	    pm,
   1172 	    pm->pm_sr[0], pm->pm_sr[1],
   1173 	    pm->pm_sr[2], pm->pm_sr[3],
   1174 	    pm->pm_sr[4], pm->pm_sr[5],
   1175 	    pm->pm_sr[6], pm->pm_sr[7],
   1176 	    pm->pm_sr[8], pm->pm_sr[9],
   1177 	    pm->pm_sr[10], pm->pm_sr[11],
   1178 	    pm->pm_sr[12], pm->pm_sr[13],
   1179 	    pm->pm_sr[14], pm->pm_sr[15]));
   1180 	return pm;
   1181 }
   1182 
   1183 /*
   1184  * Initialize a preallocated and zeroed pmap structure.
   1185  */
   1186 void
   1187 pmap_pinit(pmap_t pm)
   1188 {
   1189 	register_t entropy = MFTB();
   1190 	register_t mask;
   1191 	int i;
   1192 
   1193 	/*
   1194 	 * Allocate some segment registers for this pmap.
   1195 	 */
   1196 	pm->pm_refs = 1;
   1197 	PMAP_LOCK();
   1198 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1199 		static register_t pmap_vsidcontext;
   1200 		register_t hash;
   1201 		unsigned int n;
   1202 
   1203 		/* Create a new value by multiplying by a prime adding in
   1204 		 * entropy from the timebase register.  This is to make the
   1205 		 * VSID more random so that the PT Hash function collides
   1206 		 * less often. (note that the prime causes gcc to do shifts
   1207 		 * instead of a multiply)
   1208 		 */
   1209 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1210 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1211 		if (hash == 0) {		/* 0 is special, avoid it */
   1212 			entropy += 0xbadf00d;
   1213 			continue;
   1214 		}
   1215 		n = hash >> 5;
   1216 		mask = 1L << (hash & (VSID_NBPW-1));
   1217 		hash = pmap_vsidcontext;
   1218 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1219 			/* anything free in this bucket? */
   1220 			if (~pmap_vsid_bitmap[n] == 0) {
   1221 				entropy = hash ^ (hash >> 16);
   1222 				continue;
   1223 			}
   1224 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1225 			mask = 1L << i;
   1226 			hash &= ~(VSID_NBPW-1);
   1227 			hash |= i;
   1228 		}
   1229 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1230 		pmap_vsid_bitmap[n] |= mask;
   1231 		pm->pm_vsid = hash;
   1232 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1233 		for (i = 0; i < 16; i++)
   1234 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1235 			    SR_NOEXEC;
   1236 #endif
   1237 		PMAP_UNLOCK();
   1238 		return;
   1239 	}
   1240 	PMAP_UNLOCK();
   1241 	panic("pmap_pinit: out of segments");
   1242 }
   1243 
   1244 /*
   1245  * Add a reference to the given pmap.
   1246  */
   1247 void
   1248 pmap_reference(pmap_t pm)
   1249 {
   1250 	atomic_inc_uint(&pm->pm_refs);
   1251 }
   1252 
   1253 /*
   1254  * Retire the given pmap from service.
   1255  * Should only be called if the map contains no valid mappings.
   1256  */
   1257 void
   1258 pmap_destroy(pmap_t pm)
   1259 {
   1260 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1261 		pmap_release(pm);
   1262 		pool_put(&pmap_pool, pm);
   1263 	}
   1264 }
   1265 
   1266 /*
   1267  * Release any resources held by the given physical map.
   1268  * Called when a pmap initialized by pmap_pinit is being released.
   1269  */
   1270 void
   1271 pmap_release(pmap_t pm)
   1272 {
   1273 	int idx, mask;
   1274 
   1275 	KASSERT(pm->pm_stats.resident_count == 0);
   1276 	KASSERT(pm->pm_stats.wired_count == 0);
   1277 
   1278 	PMAP_LOCK();
   1279 	if (pm->pm_sr[0] == 0)
   1280 		panic("pmap_release");
   1281 	idx = pm->pm_vsid & (NPMAPS-1);
   1282 	mask = 1 << (idx % VSID_NBPW);
   1283 	idx /= VSID_NBPW;
   1284 
   1285 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1286 	pmap_vsid_bitmap[idx] &= ~mask;
   1287 	PMAP_UNLOCK();
   1288 }
   1289 
   1290 /*
   1291  * Copy the range specified by src_addr/len
   1292  * from the source map to the range dst_addr/len
   1293  * in the destination map.
   1294  *
   1295  * This routine is only advisory and need not do anything.
   1296  */
   1297 void
   1298 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1299 	vsize_t len, vaddr_t src_addr)
   1300 {
   1301 	PMAPCOUNT(copies);
   1302 }
   1303 
   1304 /*
   1305  * Require that all active physical maps contain no
   1306  * incorrect entries NOW.
   1307  */
   1308 void
   1309 pmap_update(struct pmap *pmap)
   1310 {
   1311 	PMAPCOUNT(updates);
   1312 	TLBSYNC();
   1313 }
   1314 
   1315 /*
   1316  * Garbage collects the physical map system for
   1317  * pages which are no longer used.
   1318  * Success need not be guaranteed -- that is, there
   1319  * may well be pages which are not referenced, but
   1320  * others may be collected.
   1321  * Called by the pageout daemon when pages are scarce.
   1322  */
   1323 void
   1324 pmap_collect(pmap_t pm)
   1325 {
   1326 	PMAPCOUNT(collects);
   1327 }
   1328 
   1329 static inline int
   1330 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1331 {
   1332 	int pteidx;
   1333 	/*
   1334 	 * We can find the actual pte entry without searching by
   1335 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1336 	 * and by noticing the HID bit.
   1337 	 */
   1338 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1339 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1340 		pteidx ^= pmap_pteg_mask * 8;
   1341 	return pteidx;
   1342 }
   1343 
   1344 volatile struct pte *
   1345 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1346 {
   1347 	volatile struct pte *pt;
   1348 
   1349 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1350 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1351 		return NULL;
   1352 #endif
   1353 
   1354 	/*
   1355 	 * If we haven't been supplied the ptegidx, calculate it.
   1356 	 */
   1357 	if (pteidx == -1) {
   1358 		int ptegidx;
   1359 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1360 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1361 	}
   1362 
   1363 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1364 
   1365 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1366 	return pt;
   1367 #else
   1368 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1369 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1370 		    "pvo but no valid pte index", pvo);
   1371 	}
   1372 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1373 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1374 		    "pvo but no valid pte", pvo);
   1375 	}
   1376 
   1377 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1378 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1379 #if defined(DEBUG) || defined(PMAPCHECK)
   1380 			pmap_pte_print(pt);
   1381 #endif
   1382 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1383 			    "pmap_pteg_table %p but invalid in pvo",
   1384 			    pvo, pt);
   1385 		}
   1386 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1387 #if defined(DEBUG) || defined(PMAPCHECK)
   1388 			pmap_pte_print(pt);
   1389 #endif
   1390 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1391 			    "not match pte %p in pmap_pteg_table",
   1392 			    pvo, pt);
   1393 		}
   1394 		return pt;
   1395 	}
   1396 
   1397 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1398 #if defined(DEBUG) || defined(PMAPCHECK)
   1399 		pmap_pte_print(pt);
   1400 #endif
   1401 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1402 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1403 	}
   1404 	return NULL;
   1405 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1406 }
   1407 
   1408 struct pvo_entry *
   1409 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1410 {
   1411 	struct pvo_entry *pvo;
   1412 	int ptegidx;
   1413 
   1414 	va &= ~ADDR_POFF;
   1415 	ptegidx = va_to_pteg(pm, va);
   1416 
   1417 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1418 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1419 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1420 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1421 			    "list %#x (%p)", pvo, ptegidx,
   1422 			     &pmap_pvo_table[ptegidx]);
   1423 #endif
   1424 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1425 			if (pteidx_p)
   1426 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1427 			return pvo;
   1428 		}
   1429 	}
   1430 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1431 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1432 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1433 	return NULL;
   1434 }
   1435 
   1436 #if defined(DEBUG) || defined(PMAPCHECK)
   1437 void
   1438 pmap_pvo_check(const struct pvo_entry *pvo)
   1439 {
   1440 	struct pvo_head *pvo_head;
   1441 	struct pvo_entry *pvo0;
   1442 	volatile struct pte *pt;
   1443 	int failed = 0;
   1444 
   1445 	PMAP_LOCK();
   1446 
   1447 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1448 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1449 
   1450 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1451 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1452 		    pvo, pvo->pvo_pmap);
   1453 		failed = 1;
   1454 	}
   1455 
   1456 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1457 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1458 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1459 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1460 		failed = 1;
   1461 	}
   1462 
   1463 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1464 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1465 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1466 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1467 		failed = 1;
   1468 	}
   1469 
   1470 	if (PVO_MANAGED_P(pvo)) {
   1471 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1472 	} else {
   1473 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1474 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1475 			    "on kernel unmanaged list\n", pvo);
   1476 			failed = 1;
   1477 		}
   1478 		pvo_head = &pmap_pvo_kunmanaged;
   1479 	}
   1480 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1481 		if (pvo0 == pvo)
   1482 			break;
   1483 	}
   1484 	if (pvo0 == NULL) {
   1485 		printf("pmap_pvo_check: pvo %p: not present "
   1486 		    "on its vlist head %p\n", pvo, pvo_head);
   1487 		failed = 1;
   1488 	}
   1489 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1490 		printf("pmap_pvo_check: pvo %p: not present "
   1491 		    "on its olist head\n", pvo);
   1492 		failed = 1;
   1493 	}
   1494 	pt = pmap_pvo_to_pte(pvo, -1);
   1495 	if (pt == NULL) {
   1496 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1497 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1498 			    "no PTE\n", pvo);
   1499 			failed = 1;
   1500 		}
   1501 	} else {
   1502 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1503 		    (uintptr_t) pt >=
   1504 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1505 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1506 			    "pteg table\n", pvo, pt);
   1507 			failed = 1;
   1508 		}
   1509 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1510 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1511 			    "no PTE\n", pvo);
   1512 			failed = 1;
   1513 		}
   1514 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1515 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1516 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1517 			    pvo->pvo_pte.pte_hi,
   1518 			    pt->pte_hi);
   1519 			failed = 1;
   1520 		}
   1521 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1522 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1523 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1524 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1525 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1526 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1527 			failed = 1;
   1528 		}
   1529 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1530 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1531 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1532 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1533 			failed = 1;
   1534 		}
   1535 		if (failed)
   1536 			pmap_pte_print(pt);
   1537 	}
   1538 	if (failed)
   1539 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1540 		    pvo->pvo_pmap);
   1541 
   1542 	PMAP_UNLOCK();
   1543 }
   1544 #endif /* DEBUG || PMAPCHECK */
   1545 
   1546 /*
   1547  * Search the PVO table looking for a non-wired entry.
   1548  * If we find one, remove it and return it.
   1549  */
   1550 
   1551 struct pvo_entry *
   1552 pmap_pvo_reclaim(struct pmap *pm)
   1553 {
   1554 	struct pvo_tqhead *pvoh;
   1555 	struct pvo_entry *pvo;
   1556 	uint32_t idx, endidx;
   1557 
   1558 	endidx = pmap_pvo_reclaim_nextidx;
   1559 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1560 	     idx = (idx + 1) & pmap_pteg_mask) {
   1561 		pvoh = &pmap_pvo_table[idx];
   1562 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1563 			if (!PVO_WIRED_P(pvo)) {
   1564 				pmap_pvo_remove(pvo, -1, NULL);
   1565 				pmap_pvo_reclaim_nextidx = idx;
   1566 				PMAPCOUNT(pvos_reclaimed);
   1567 				return pvo;
   1568 			}
   1569 		}
   1570 	}
   1571 	return NULL;
   1572 }
   1573 
   1574 /*
   1575  * This returns whether this is the first mapping of a page.
   1576  */
   1577 int
   1578 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1579 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1580 {
   1581 	struct pvo_entry *pvo;
   1582 	struct pvo_tqhead *pvoh;
   1583 	register_t msr;
   1584 	int ptegidx;
   1585 	int i;
   1586 	int poolflags = PR_NOWAIT;
   1587 
   1588 	/*
   1589 	 * Compute the PTE Group index.
   1590 	 */
   1591 	va &= ~ADDR_POFF;
   1592 	ptegidx = va_to_pteg(pm, va);
   1593 
   1594 	msr = pmap_interrupts_off();
   1595 
   1596 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1597 	if (pmap_pvo_remove_depth > 0)
   1598 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1599 	if (++pmap_pvo_enter_depth > 1)
   1600 		panic("pmap_pvo_enter: called recursively!");
   1601 #endif
   1602 
   1603 	/*
   1604 	 * Remove any existing mapping for this page.  Reuse the
   1605 	 * pvo entry if there a mapping.
   1606 	 */
   1607 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1608 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1609 #ifdef DEBUG
   1610 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1611 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1612 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1613 			   va < VM_MIN_KERNEL_ADDRESS) {
   1614 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1615 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1616 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1617 				    pvo->pvo_pte.pte_hi,
   1618 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1619 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1620 #ifdef DDBX
   1621 				Debugger();
   1622 #endif
   1623 			}
   1624 #endif
   1625 			PMAPCOUNT(mappings_replaced);
   1626 			pmap_pvo_remove(pvo, -1, NULL);
   1627 			break;
   1628 		}
   1629 	}
   1630 
   1631 	/*
   1632 	 * If we aren't overwriting an mapping, try to allocate
   1633 	 */
   1634 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1635 	--pmap_pvo_enter_depth;
   1636 #endif
   1637 	pmap_interrupts_restore(msr);
   1638 	if (pvo) {
   1639 		pmap_pvo_free(pvo);
   1640 	}
   1641 	pvo = pool_get(pl, poolflags);
   1642 
   1643 #ifdef DEBUG
   1644 	/*
   1645 	 * Exercise pmap_pvo_reclaim() a little.
   1646 	 */
   1647 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1648 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1649 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1650 		pool_put(pl, pvo);
   1651 		pvo = NULL;
   1652 	}
   1653 #endif
   1654 
   1655 	msr = pmap_interrupts_off();
   1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1657 	++pmap_pvo_enter_depth;
   1658 #endif
   1659 	if (pvo == NULL) {
   1660 		pvo = pmap_pvo_reclaim(pm);
   1661 		if (pvo == NULL) {
   1662 			if ((flags & PMAP_CANFAIL) == 0)
   1663 				panic("pmap_pvo_enter: failed");
   1664 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1665 			pmap_pvo_enter_depth--;
   1666 #endif
   1667 			PMAPCOUNT(pvos_failed);
   1668 			pmap_interrupts_restore(msr);
   1669 			return ENOMEM;
   1670 		}
   1671 	}
   1672 
   1673 	pvo->pvo_vaddr = va;
   1674 	pvo->pvo_pmap = pm;
   1675 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1676 	if (flags & VM_PROT_EXECUTE) {
   1677 		PMAPCOUNT(exec_mappings);
   1678 		pvo_set_exec(pvo);
   1679 	}
   1680 	if (flags & PMAP_WIRED)
   1681 		pvo->pvo_vaddr |= PVO_WIRED;
   1682 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1683 		pvo->pvo_vaddr |= PVO_MANAGED;
   1684 		PMAPCOUNT(mappings);
   1685 	} else {
   1686 		PMAPCOUNT(kernel_mappings);
   1687 	}
   1688 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1689 
   1690 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1691 	if (PVO_WIRED_P(pvo))
   1692 		pvo->pvo_pmap->pm_stats.wired_count++;
   1693 	pvo->pvo_pmap->pm_stats.resident_count++;
   1694 #if defined(DEBUG)
   1695 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1696 		DPRINTFN(PVOENTER,
   1697 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1698 		    pvo, pm, va, pa));
   1699 #endif
   1700 
   1701 	/*
   1702 	 * We hope this succeeds but it isn't required.
   1703 	 */
   1704 	pvoh = &pmap_pvo_table[ptegidx];
   1705 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1706 	if (i >= 0) {
   1707 		PVO_PTEGIDX_SET(pvo, i);
   1708 		PVO_WHERE(pvo, ENTER_INSERT);
   1709 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1710 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1711 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1712 
   1713 	} else {
   1714 		/*
   1715 		 * Since we didn't have room for this entry (which makes it
   1716 		 * and evicted entry), place it at the head of the list.
   1717 		 */
   1718 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1719 		PMAPCOUNT(ptes_evicted);
   1720 		pm->pm_evictions++;
   1721 		/*
   1722 		 * If this is a kernel page, make sure it's active.
   1723 		 */
   1724 		if (pm == pmap_kernel()) {
   1725 			i = pmap_pte_spill(pm, va, false);
   1726 			KASSERT(i);
   1727 		}
   1728 	}
   1729 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1730 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1731 	pmap_pvo_enter_depth--;
   1732 #endif
   1733 	pmap_interrupts_restore(msr);
   1734 	return 0;
   1735 }
   1736 
   1737 static void
   1738 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1739 {
   1740 	volatile struct pte *pt;
   1741 	int ptegidx;
   1742 
   1743 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1744 	if (++pmap_pvo_remove_depth > 1)
   1745 		panic("pmap_pvo_remove: called recursively!");
   1746 #endif
   1747 
   1748 	/*
   1749 	 * If we haven't been supplied the ptegidx, calculate it.
   1750 	 */
   1751 	if (pteidx == -1) {
   1752 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1753 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1754 	} else {
   1755 		ptegidx = pteidx >> 3;
   1756 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1757 			ptegidx ^= pmap_pteg_mask;
   1758 	}
   1759 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1760 
   1761 	/*
   1762 	 * If there is an active pte entry, we need to deactivate it
   1763 	 * (and save the ref & chg bits).
   1764 	 */
   1765 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1766 	if (pt != NULL) {
   1767 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1768 		PVO_WHERE(pvo, REMOVE);
   1769 		PVO_PTEGIDX_CLR(pvo);
   1770 		PMAPCOUNT(ptes_removed);
   1771 	} else {
   1772 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1773 		pvo->pvo_pmap->pm_evictions--;
   1774 	}
   1775 
   1776 	/*
   1777 	 * Account for executable mappings.
   1778 	 */
   1779 	if (PVO_EXECUTABLE_P(pvo))
   1780 		pvo_clear_exec(pvo);
   1781 
   1782 	/*
   1783 	 * Update our statistics.
   1784 	 */
   1785 	pvo->pvo_pmap->pm_stats.resident_count--;
   1786 	if (PVO_WIRED_P(pvo))
   1787 		pvo->pvo_pmap->pm_stats.wired_count--;
   1788 
   1789 	/*
   1790 	 * Save the REF/CHG bits into their cache if the page is managed.
   1791 	 */
   1792 	if (PVO_MANAGED_P(pvo)) {
   1793 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1794 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1795 
   1796 		if (pg != NULL) {
   1797 			/*
   1798 			 * If this page was changed and it is mapped exec,
   1799 			 * invalidate it.
   1800 			 */
   1801 			if ((ptelo & PTE_CHG) &&
   1802 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1803 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1804 				if (LIST_EMPTY(pvoh)) {
   1805 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1806 					    "%#" _PRIxpa ": clear-exec]\n",
   1807 					    VM_PAGE_TO_PHYS(pg)));
   1808 					pmap_attr_clear(pg, PTE_EXEC);
   1809 					PMAPCOUNT(exec_uncached_pvo_remove);
   1810 				} else {
   1811 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1812 					    "%#" _PRIxpa ": syncicache]\n",
   1813 					    VM_PAGE_TO_PHYS(pg)));
   1814 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1815 					    PAGE_SIZE);
   1816 					PMAPCOUNT(exec_synced_pvo_remove);
   1817 				}
   1818 			}
   1819 
   1820 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1821 		}
   1822 		PMAPCOUNT(unmappings);
   1823 	} else {
   1824 		PMAPCOUNT(kernel_unmappings);
   1825 	}
   1826 
   1827 	/*
   1828 	 * Remove the PVO from its lists and return it to the pool.
   1829 	 */
   1830 	LIST_REMOVE(pvo, pvo_vlink);
   1831 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1832 	if (pvol) {
   1833 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1834 	}
   1835 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1836 	pmap_pvo_remove_depth--;
   1837 #endif
   1838 }
   1839 
   1840 void
   1841 pmap_pvo_free(struct pvo_entry *pvo)
   1842 {
   1843 
   1844 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1845 }
   1846 
   1847 void
   1848 pmap_pvo_free_list(struct pvo_head *pvol)
   1849 {
   1850 	struct pvo_entry *pvo, *npvo;
   1851 
   1852 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1853 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1854 		LIST_REMOVE(pvo, pvo_vlink);
   1855 		pmap_pvo_free(pvo);
   1856 	}
   1857 }
   1858 
   1859 /*
   1860  * Mark a mapping as executable.
   1861  * If this is the first executable mapping in the segment,
   1862  * clear the noexec flag.
   1863  */
   1864 static void
   1865 pvo_set_exec(struct pvo_entry *pvo)
   1866 {
   1867 	struct pmap *pm = pvo->pvo_pmap;
   1868 
   1869 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1870 		return;
   1871 	}
   1872 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1873 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1874 	{
   1875 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1876 		if (pm->pm_exec[sr]++ == 0) {
   1877 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1878 		}
   1879 	}
   1880 #endif
   1881 }
   1882 
   1883 /*
   1884  * Mark a mapping as non-executable.
   1885  * If this was the last executable mapping in the segment,
   1886  * set the noexec flag.
   1887  */
   1888 static void
   1889 pvo_clear_exec(struct pvo_entry *pvo)
   1890 {
   1891 	struct pmap *pm = pvo->pvo_pmap;
   1892 
   1893 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1894 		return;
   1895 	}
   1896 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1897 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1898 	{
   1899 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1900 		if (--pm->pm_exec[sr] == 0) {
   1901 			pm->pm_sr[sr] |= SR_NOEXEC;
   1902 		}
   1903 	}
   1904 #endif
   1905 }
   1906 
   1907 /*
   1908  * Insert physical page at pa into the given pmap at virtual address va.
   1909  */
   1910 int
   1911 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1912 {
   1913 	struct mem_region *mp;
   1914 	struct pvo_head *pvo_head;
   1915 	struct vm_page *pg;
   1916 	struct pool *pl;
   1917 	register_t pte_lo;
   1918 	int error;
   1919 	u_int pvo_flags;
   1920 	u_int was_exec = 0;
   1921 
   1922 	PMAP_LOCK();
   1923 
   1924 	if (__predict_false(!pmap_initialized)) {
   1925 		pvo_head = &pmap_pvo_kunmanaged;
   1926 		pl = &pmap_upvo_pool;
   1927 		pvo_flags = 0;
   1928 		pg = NULL;
   1929 		was_exec = PTE_EXEC;
   1930 	} else {
   1931 		pvo_head = pa_to_pvoh(pa, &pg);
   1932 		pl = &pmap_mpvo_pool;
   1933 		pvo_flags = PVO_MANAGED;
   1934 	}
   1935 
   1936 	DPRINTFN(ENTER,
   1937 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1938 	    pm, va, pa, prot, flags));
   1939 
   1940 	/*
   1941 	 * If this is a managed page, and it's the first reference to the
   1942 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1943 	 */
   1944 	if (pg != NULL)
   1945 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1946 
   1947 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1948 
   1949 	/*
   1950 	 * Assume the page is cache inhibited and access is guarded unless
   1951 	 * it's in our available memory array.  If it is in the memory array,
   1952 	 * asssume it's in memory coherent memory.
   1953 	 */
   1954 	pte_lo = PTE_IG;
   1955 	if ((flags & PMAP_NC) == 0) {
   1956 		for (mp = mem; mp->size; mp++) {
   1957 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1958 				pte_lo = PTE_M;
   1959 				break;
   1960 			}
   1961 		}
   1962 	}
   1963 
   1964 	if (prot & VM_PROT_WRITE)
   1965 		pte_lo |= PTE_BW;
   1966 	else
   1967 		pte_lo |= PTE_BR;
   1968 
   1969 	/*
   1970 	 * If this was in response to a fault, "pre-fault" the PTE's
   1971 	 * changed/referenced bit appropriately.
   1972 	 */
   1973 	if (flags & VM_PROT_WRITE)
   1974 		pte_lo |= PTE_CHG;
   1975 	if (flags & VM_PROT_ALL)
   1976 		pte_lo |= PTE_REF;
   1977 
   1978 	/*
   1979 	 * We need to know if this page can be executable
   1980 	 */
   1981 	flags |= (prot & VM_PROT_EXECUTE);
   1982 
   1983 	/*
   1984 	 * Record mapping for later back-translation and pte spilling.
   1985 	 * This will overwrite any existing mapping.
   1986 	 */
   1987 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1988 
   1989 	/*
   1990 	 * Flush the real page from the instruction cache if this page is
   1991 	 * mapped executable and cacheable and has not been flushed since
   1992 	 * the last time it was modified.
   1993 	 */
   1994 	if (error == 0 &&
   1995             (flags & VM_PROT_EXECUTE) &&
   1996             (pte_lo & PTE_I) == 0 &&
   1997 	    was_exec == 0) {
   1998 		DPRINTFN(ENTER, (" syncicache"));
   1999 		PMAPCOUNT(exec_synced);
   2000 		pmap_syncicache(pa, PAGE_SIZE);
   2001 		if (pg != NULL) {
   2002 			pmap_attr_save(pg, PTE_EXEC);
   2003 			PMAPCOUNT(exec_cached);
   2004 #if defined(DEBUG) || defined(PMAPDEBUG)
   2005 			if (pmapdebug & PMAPDEBUG_ENTER)
   2006 				printf(" marked-as-exec");
   2007 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2008 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2009 				    VM_PAGE_TO_PHYS(pg));
   2010 
   2011 #endif
   2012 		}
   2013 	}
   2014 
   2015 	DPRINTFN(ENTER, (": error=%d\n", error));
   2016 
   2017 	PMAP_UNLOCK();
   2018 
   2019 	return error;
   2020 }
   2021 
   2022 void
   2023 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2024 {
   2025 	struct mem_region *mp;
   2026 	register_t pte_lo;
   2027 	int error;
   2028 
   2029 #if defined (PMAP_OEA64_BRIDGE)
   2030 	if (va < VM_MIN_KERNEL_ADDRESS)
   2031 		panic("pmap_kenter_pa: attempt to enter "
   2032 		    "non-kernel address %#" _PRIxva "!", va);
   2033 #endif
   2034 
   2035 	DPRINTFN(KENTER,
   2036 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2037 
   2038 	PMAP_LOCK();
   2039 
   2040 	/*
   2041 	 * Assume the page is cache inhibited and access is guarded unless
   2042 	 * it's in our available memory array.  If it is in the memory array,
   2043 	 * asssume it's in memory coherent memory.
   2044 	 */
   2045 	pte_lo = PTE_IG;
   2046 	if ((prot & PMAP_NC) == 0) {
   2047 		for (mp = mem; mp->size; mp++) {
   2048 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2049 				pte_lo = PTE_M;
   2050 				break;
   2051 			}
   2052 		}
   2053 	}
   2054 
   2055 	if (prot & VM_PROT_WRITE)
   2056 		pte_lo |= PTE_BW;
   2057 	else
   2058 		pte_lo |= PTE_BR;
   2059 
   2060 	/*
   2061 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2062 	 */
   2063 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2064 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2065 
   2066 	if (error != 0)
   2067 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2068 		      va, pa, error);
   2069 
   2070 	PMAP_UNLOCK();
   2071 }
   2072 
   2073 void
   2074 pmap_kremove(vaddr_t va, vsize_t len)
   2075 {
   2076 	if (va < VM_MIN_KERNEL_ADDRESS)
   2077 		panic("pmap_kremove: attempt to remove "
   2078 		    "non-kernel address %#" _PRIxva "!", va);
   2079 
   2080 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2081 	pmap_remove(pmap_kernel(), va, va + len);
   2082 }
   2083 
   2084 /*
   2085  * Remove the given range of mapping entries.
   2086  */
   2087 void
   2088 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2089 {
   2090 	struct pvo_head pvol;
   2091 	struct pvo_entry *pvo;
   2092 	register_t msr;
   2093 	int pteidx;
   2094 
   2095 	PMAP_LOCK();
   2096 	LIST_INIT(&pvol);
   2097 	msr = pmap_interrupts_off();
   2098 	for (; va < endva; va += PAGE_SIZE) {
   2099 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2100 		if (pvo != NULL) {
   2101 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2102 		}
   2103 	}
   2104 	pmap_interrupts_restore(msr);
   2105 	pmap_pvo_free_list(&pvol);
   2106 	PMAP_UNLOCK();
   2107 }
   2108 
   2109 /*
   2110  * Get the physical page address for the given pmap/virtual address.
   2111  */
   2112 bool
   2113 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2114 {
   2115 	struct pvo_entry *pvo;
   2116 	register_t msr;
   2117 
   2118 	PMAP_LOCK();
   2119 
   2120 	/*
   2121 	 * If this is a kernel pmap lookup, also check the battable
   2122 	 * and if we get a hit, translate the VA to a PA using the
   2123 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2124 	 * that will wrap back to 0.
   2125 	 */
   2126 	if (pm == pmap_kernel() &&
   2127 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2128 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2129 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2130 #if defined (PMAP_OEA)
   2131 #ifdef PPC_OEA601
   2132 		if ((MFPVR() >> 16) == MPC601) {
   2133 			register_t batu = battable[va >> 23].batu;
   2134 			register_t batl = battable[va >> 23].batl;
   2135 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2136 			if (BAT601_VALID_P(batl) &&
   2137 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2138 				register_t mask =
   2139 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2140 				if (pap)
   2141 					*pap = (batl & mask) | (va & ~mask);
   2142 				PMAP_UNLOCK();
   2143 				return true;
   2144 			} else if (SR601_VALID_P(sr) &&
   2145 				   SR601_PA_MATCH_P(sr, va)) {
   2146 				if (pap)
   2147 					*pap = va;
   2148 				PMAP_UNLOCK();
   2149 				return true;
   2150 			}
   2151 		} else
   2152 #endif /* PPC_OEA601 */
   2153 		{
   2154 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2155 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2156 				register_t batl =
   2157 				    battable[va >> ADDR_SR_SHFT].batl;
   2158 				register_t mask =
   2159 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2160 				if (pap)
   2161 					*pap = (batl & mask) | (va & ~mask);
   2162 				PMAP_UNLOCK();
   2163 				return true;
   2164 			}
   2165 		}
   2166 		return false;
   2167 #elif defined (PMAP_OEA64_BRIDGE)
   2168 	if (va >= SEGMENT_LENGTH)
   2169 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2170 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2171 	else {
   2172 		if (pap)
   2173 			*pap = va;
   2174 			PMAP_UNLOCK();
   2175 			return true;
   2176 	}
   2177 #elif defined (PMAP_OEA64)
   2178 #error PPC_OEA64 not supported
   2179 #endif /* PPC_OEA */
   2180 	}
   2181 
   2182 	msr = pmap_interrupts_off();
   2183 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2184 	if (pvo != NULL) {
   2185 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2186 		if (pap)
   2187 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2188 			    | (va & ADDR_POFF);
   2189 	}
   2190 	pmap_interrupts_restore(msr);
   2191 	PMAP_UNLOCK();
   2192 	return pvo != NULL;
   2193 }
   2194 
   2195 /*
   2196  * Lower the protection on the specified range of this pmap.
   2197  */
   2198 void
   2199 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2200 {
   2201 	struct pvo_entry *pvo;
   2202 	volatile struct pte *pt;
   2203 	register_t msr;
   2204 	int pteidx;
   2205 
   2206 	/*
   2207 	 * Since this routine only downgrades protection, we should
   2208 	 * always be called with at least one bit not set.
   2209 	 */
   2210 	KASSERT(prot != VM_PROT_ALL);
   2211 
   2212 	/*
   2213 	 * If there is no protection, this is equivalent to
   2214 	 * remove the pmap from the pmap.
   2215 	 */
   2216 	if ((prot & VM_PROT_READ) == 0) {
   2217 		pmap_remove(pm, va, endva);
   2218 		return;
   2219 	}
   2220 
   2221 	PMAP_LOCK();
   2222 
   2223 	msr = pmap_interrupts_off();
   2224 	for (; va < endva; va += PAGE_SIZE) {
   2225 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2226 		if (pvo == NULL)
   2227 			continue;
   2228 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2229 
   2230 		/*
   2231 		 * Revoke executable if asked to do so.
   2232 		 */
   2233 		if ((prot & VM_PROT_EXECUTE) == 0)
   2234 			pvo_clear_exec(pvo);
   2235 
   2236 #if 0
   2237 		/*
   2238 		 * If the page is already read-only, no change
   2239 		 * needs to be made.
   2240 		 */
   2241 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2242 			continue;
   2243 #endif
   2244 		/*
   2245 		 * Grab the PTE pointer before we diddle with
   2246 		 * the cached PTE copy.
   2247 		 */
   2248 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2249 		/*
   2250 		 * Change the protection of the page.
   2251 		 */
   2252 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2253 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2254 
   2255 		/*
   2256 		 * If the PVO is in the page table, update
   2257 		 * that pte at well.
   2258 		 */
   2259 		if (pt != NULL) {
   2260 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2261 			PVO_WHERE(pvo, PMAP_PROTECT);
   2262 			PMAPCOUNT(ptes_changed);
   2263 		}
   2264 
   2265 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2266 	}
   2267 	pmap_interrupts_restore(msr);
   2268 	PMAP_UNLOCK();
   2269 }
   2270 
   2271 void
   2272 pmap_unwire(pmap_t pm, vaddr_t va)
   2273 {
   2274 	struct pvo_entry *pvo;
   2275 	register_t msr;
   2276 
   2277 	PMAP_LOCK();
   2278 	msr = pmap_interrupts_off();
   2279 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2280 	if (pvo != NULL) {
   2281 		if (PVO_WIRED_P(pvo)) {
   2282 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2283 			pm->pm_stats.wired_count--;
   2284 		}
   2285 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2286 	}
   2287 	pmap_interrupts_restore(msr);
   2288 	PMAP_UNLOCK();
   2289 }
   2290 
   2291 /*
   2292  * Lower the protection on the specified physical page.
   2293  */
   2294 void
   2295 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2296 {
   2297 	struct pvo_head *pvo_head, pvol;
   2298 	struct pvo_entry *pvo, *next_pvo;
   2299 	volatile struct pte *pt;
   2300 	register_t msr;
   2301 
   2302 	PMAP_LOCK();
   2303 
   2304 	KASSERT(prot != VM_PROT_ALL);
   2305 	LIST_INIT(&pvol);
   2306 	msr = pmap_interrupts_off();
   2307 
   2308 	/*
   2309 	 * When UVM reuses a page, it does a pmap_page_protect with
   2310 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2311 	 * since we know the page will have different contents.
   2312 	 */
   2313 	if ((prot & VM_PROT_READ) == 0) {
   2314 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2315 		    VM_PAGE_TO_PHYS(pg)));
   2316 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2317 			PMAPCOUNT(exec_uncached_page_protect);
   2318 			pmap_attr_clear(pg, PTE_EXEC);
   2319 		}
   2320 	}
   2321 
   2322 	pvo_head = vm_page_to_pvoh(pg);
   2323 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2324 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2325 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2326 
   2327 		/*
   2328 		 * Downgrading to no mapping at all, we just remove the entry.
   2329 		 */
   2330 		if ((prot & VM_PROT_READ) == 0) {
   2331 			pmap_pvo_remove(pvo, -1, &pvol);
   2332 			continue;
   2333 		}
   2334 
   2335 		/*
   2336 		 * If EXEC permission is being revoked, just clear the
   2337 		 * flag in the PVO.
   2338 		 */
   2339 		if ((prot & VM_PROT_EXECUTE) == 0)
   2340 			pvo_clear_exec(pvo);
   2341 
   2342 		/*
   2343 		 * If this entry is already RO, don't diddle with the
   2344 		 * page table.
   2345 		 */
   2346 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2347 			PMAP_PVO_CHECK(pvo);
   2348 			continue;
   2349 		}
   2350 
   2351 		/*
   2352 		 * Grab the PTE before the we diddle the bits so
   2353 		 * pvo_to_pte can verify the pte contents are as
   2354 		 * expected.
   2355 		 */
   2356 		pt = pmap_pvo_to_pte(pvo, -1);
   2357 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2358 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2359 		if (pt != NULL) {
   2360 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2361 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2362 			PMAPCOUNT(ptes_changed);
   2363 		}
   2364 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2365 	}
   2366 	pmap_interrupts_restore(msr);
   2367 	pmap_pvo_free_list(&pvol);
   2368 
   2369 	PMAP_UNLOCK();
   2370 }
   2371 
   2372 /*
   2373  * Activate the address space for the specified process.  If the process
   2374  * is the current process, load the new MMU context.
   2375  */
   2376 void
   2377 pmap_activate(struct lwp *l)
   2378 {
   2379 	struct pcb *pcb = &l->l_addr->u_pcb;
   2380 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2381 
   2382 	DPRINTFN(ACTIVATE,
   2383 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2384 
   2385 	/*
   2386 	 * XXX Normally performed in cpu_fork().
   2387 	 */
   2388 	pcb->pcb_pm = pmap;
   2389 
   2390 	/*
   2391 	* In theory, the SR registers need only be valid on return
   2392 	* to user space wait to do them there.
   2393 	*/
   2394 	if (l == curlwp) {
   2395 		/* Store pointer to new current pmap. */
   2396 		curpm = pmap;
   2397 	}
   2398 }
   2399 
   2400 /*
   2401  * Deactivate the specified process's address space.
   2402  */
   2403 void
   2404 pmap_deactivate(struct lwp *l)
   2405 {
   2406 }
   2407 
   2408 bool
   2409 pmap_query_bit(struct vm_page *pg, int ptebit)
   2410 {
   2411 	struct pvo_entry *pvo;
   2412 	volatile struct pte *pt;
   2413 	register_t msr;
   2414 
   2415 	PMAP_LOCK();
   2416 
   2417 	if (pmap_attr_fetch(pg) & ptebit) {
   2418 		PMAP_UNLOCK();
   2419 		return true;
   2420 	}
   2421 
   2422 	msr = pmap_interrupts_off();
   2423 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2424 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2425 		/*
   2426 		 * See if we saved the bit off.  If so cache, it and return
   2427 		 * success.
   2428 		 */
   2429 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2430 			pmap_attr_save(pg, ptebit);
   2431 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2432 			pmap_interrupts_restore(msr);
   2433 			PMAP_UNLOCK();
   2434 			return true;
   2435 		}
   2436 	}
   2437 	/*
   2438 	 * No luck, now go thru the hard part of looking at the ptes
   2439 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2440 	 * to the PTEs.
   2441 	 */
   2442 	SYNC();
   2443 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2444 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2445 		/*
   2446 		 * See if this pvo have a valid PTE.  If so, fetch the
   2447 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2448 		 * ptebit is set, cache, it and return success.
   2449 		 */
   2450 		pt = pmap_pvo_to_pte(pvo, -1);
   2451 		if (pt != NULL) {
   2452 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2453 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2454 				pmap_attr_save(pg, ptebit);
   2455 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2456 				pmap_interrupts_restore(msr);
   2457 				PMAP_UNLOCK();
   2458 				return true;
   2459 			}
   2460 		}
   2461 	}
   2462 	pmap_interrupts_restore(msr);
   2463 	PMAP_UNLOCK();
   2464 	return false;
   2465 }
   2466 
   2467 bool
   2468 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2469 {
   2470 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2471 	struct pvo_entry *pvo;
   2472 	volatile struct pte *pt;
   2473 	register_t msr;
   2474 	int rv = 0;
   2475 
   2476 	PMAP_LOCK();
   2477 	msr = pmap_interrupts_off();
   2478 
   2479 	/*
   2480 	 * Fetch the cache value
   2481 	 */
   2482 	rv |= pmap_attr_fetch(pg);
   2483 
   2484 	/*
   2485 	 * Clear the cached value.
   2486 	 */
   2487 	pmap_attr_clear(pg, ptebit);
   2488 
   2489 	/*
   2490 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2491 	 * can reset the right ones).  Note that since the pvo entries and
   2492 	 * list heads are accessed via BAT0 and are never placed in the
   2493 	 * page table, we don't have to worry about further accesses setting
   2494 	 * the REF/CHG bits.
   2495 	 */
   2496 	SYNC();
   2497 
   2498 	/*
   2499 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2500 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2501 	 */
   2502 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2503 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2504 		pt = pmap_pvo_to_pte(pvo, -1);
   2505 		if (pt != NULL) {
   2506 			/*
   2507 			 * Only sync the PTE if the bit we are looking
   2508 			 * for is not already set.
   2509 			 */
   2510 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2511 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2512 			/*
   2513 			 * If the bit we are looking for was already set,
   2514 			 * clear that bit in the pte.
   2515 			 */
   2516 			if (pvo->pvo_pte.pte_lo & ptebit)
   2517 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2518 		}
   2519 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2520 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2521 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2522 	}
   2523 	pmap_interrupts_restore(msr);
   2524 
   2525 	/*
   2526 	 * If we are clearing the modify bit and this page was marked EXEC
   2527 	 * and the user of the page thinks the page was modified, then we
   2528 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2529 	 * bit if it's not mapped.  The page itself might not have the CHG
   2530 	 * bit set if the modification was done via DMA to the page.
   2531 	 */
   2532 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2533 		if (LIST_EMPTY(pvoh)) {
   2534 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2535 			    VM_PAGE_TO_PHYS(pg)));
   2536 			pmap_attr_clear(pg, PTE_EXEC);
   2537 			PMAPCOUNT(exec_uncached_clear_modify);
   2538 		} else {
   2539 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2540 			    VM_PAGE_TO_PHYS(pg)));
   2541 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2542 			PMAPCOUNT(exec_synced_clear_modify);
   2543 		}
   2544 	}
   2545 	PMAP_UNLOCK();
   2546 	return (rv & ptebit) != 0;
   2547 }
   2548 
   2549 void
   2550 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2551 {
   2552 	struct pvo_entry *pvo;
   2553 	size_t offset = va & ADDR_POFF;
   2554 	int s;
   2555 
   2556 	PMAP_LOCK();
   2557 	s = splvm();
   2558 	while (len > 0) {
   2559 		size_t seglen = PAGE_SIZE - offset;
   2560 		if (seglen > len)
   2561 			seglen = len;
   2562 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2563 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2564 			pmap_syncicache(
   2565 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2566 			PMAP_PVO_CHECK(pvo);
   2567 		}
   2568 		va += seglen;
   2569 		len -= seglen;
   2570 		offset = 0;
   2571 	}
   2572 	splx(s);
   2573 	PMAP_UNLOCK();
   2574 }
   2575 
   2576 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2577 void
   2578 pmap_pte_print(volatile struct pte *pt)
   2579 {
   2580 	printf("PTE %p: ", pt);
   2581 
   2582 #if defined(PMAP_OEA)
   2583 	/* High word: */
   2584 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2585 #else
   2586 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2587 #endif /* PMAP_OEA */
   2588 
   2589 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2590 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2591 
   2592 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2593 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2594 	    pt->pte_hi & PTE_API);
   2595 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2596 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2597 #else
   2598 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2599 #endif /* PMAP_OEA */
   2600 
   2601 	/* Low word: */
   2602 #if defined (PMAP_OEA)
   2603 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2604 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2605 #else
   2606 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2607 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2608 #endif
   2609 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2610 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2611 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2612 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2613 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2614 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2615 	switch (pt->pte_lo & PTE_PP) {
   2616 	case PTE_BR: printf("br]\n"); break;
   2617 	case PTE_BW: printf("bw]\n"); break;
   2618 	case PTE_SO: printf("so]\n"); break;
   2619 	case PTE_SW: printf("sw]\n"); break;
   2620 	}
   2621 }
   2622 #endif
   2623 
   2624 #if defined(DDB)
   2625 void
   2626 pmap_pteg_check(void)
   2627 {
   2628 	volatile struct pte *pt;
   2629 	int i;
   2630 	int ptegidx;
   2631 	u_int p_valid = 0;
   2632 	u_int s_valid = 0;
   2633 	u_int invalid = 0;
   2634 
   2635 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2636 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2637 			if (pt->pte_hi & PTE_VALID) {
   2638 				if (pt->pte_hi & PTE_HID)
   2639 					s_valid++;
   2640 				else
   2641 				{
   2642 					p_valid++;
   2643 				}
   2644 			} else
   2645 				invalid++;
   2646 		}
   2647 	}
   2648 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2649 		p_valid, p_valid, s_valid, s_valid,
   2650 		invalid, invalid);
   2651 }
   2652 
   2653 void
   2654 pmap_print_mmuregs(void)
   2655 {
   2656 	int i;
   2657 	u_int cpuvers;
   2658 #ifndef PMAP_OEA64
   2659 	vaddr_t addr;
   2660 	register_t soft_sr[16];
   2661 #endif
   2662 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2663 	struct bat soft_ibat[4];
   2664 	struct bat soft_dbat[4];
   2665 #endif
   2666 	paddr_t sdr1;
   2667 
   2668 	cpuvers = MFPVR() >> 16;
   2669 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2670 #ifndef PMAP_OEA64
   2671 	addr = 0;
   2672 	for (i = 0; i < 16; i++) {
   2673 		soft_sr[i] = MFSRIN(addr);
   2674 		addr += (1 << ADDR_SR_SHFT);
   2675 	}
   2676 #endif
   2677 
   2678 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2679 	/* read iBAT (601: uBAT) registers */
   2680 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2681 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2682 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2683 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2684 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2685 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2686 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2687 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2688 
   2689 
   2690 	if (cpuvers != MPC601) {
   2691 		/* read dBAT registers */
   2692 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2693 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2694 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2695 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2696 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2697 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2698 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2699 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2700 	}
   2701 #endif
   2702 
   2703 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2704 #ifndef PMAP_OEA64
   2705 	printf("SR[]:\t");
   2706 	for (i = 0; i < 4; i++)
   2707 		printf("0x%08lx,   ", soft_sr[i]);
   2708 	printf("\n\t");
   2709 	for ( ; i < 8; i++)
   2710 		printf("0x%08lx,   ", soft_sr[i]);
   2711 	printf("\n\t");
   2712 	for ( ; i < 12; i++)
   2713 		printf("0x%08lx,   ", soft_sr[i]);
   2714 	printf("\n\t");
   2715 	for ( ; i < 16; i++)
   2716 		printf("0x%08lx,   ", soft_sr[i]);
   2717 	printf("\n");
   2718 #endif
   2719 
   2720 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2721 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2722 	for (i = 0; i < 4; i++) {
   2723 		printf("0x%08lx 0x%08lx, ",
   2724 			soft_ibat[i].batu, soft_ibat[i].batl);
   2725 		if (i == 1)
   2726 			printf("\n\t");
   2727 	}
   2728 	if (cpuvers != MPC601) {
   2729 		printf("\ndBAT[]:\t");
   2730 		for (i = 0; i < 4; i++) {
   2731 			printf("0x%08lx 0x%08lx, ",
   2732 				soft_dbat[i].batu, soft_dbat[i].batl);
   2733 			if (i == 1)
   2734 				printf("\n\t");
   2735 		}
   2736 	}
   2737 	printf("\n");
   2738 #endif /* PMAP_OEA... */
   2739 }
   2740 
   2741 void
   2742 pmap_print_pte(pmap_t pm, vaddr_t va)
   2743 {
   2744 	struct pvo_entry *pvo;
   2745 	volatile struct pte *pt;
   2746 	int pteidx;
   2747 
   2748 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2749 	if (pvo != NULL) {
   2750 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2751 		if (pt != NULL) {
   2752 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2753 				va, pt,
   2754 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2755 				pt->pte_hi, pt->pte_lo);
   2756 		} else {
   2757 			printf("No valid PTE found\n");
   2758 		}
   2759 	} else {
   2760 		printf("Address not in pmap\n");
   2761 	}
   2762 }
   2763 
   2764 void
   2765 pmap_pteg_dist(void)
   2766 {
   2767 	struct pvo_entry *pvo;
   2768 	int ptegidx;
   2769 	int depth;
   2770 	int max_depth = 0;
   2771 	unsigned int depths[64];
   2772 
   2773 	memset(depths, 0, sizeof(depths));
   2774 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2775 		depth = 0;
   2776 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2777 			depth++;
   2778 		}
   2779 		if (depth > max_depth)
   2780 			max_depth = depth;
   2781 		if (depth > 63)
   2782 			depth = 63;
   2783 		depths[depth]++;
   2784 	}
   2785 
   2786 	for (depth = 0; depth < 64; depth++) {
   2787 		printf("  [%2d]: %8u", depth, depths[depth]);
   2788 		if ((depth & 3) == 3)
   2789 			printf("\n");
   2790 		if (depth == max_depth)
   2791 			break;
   2792 	}
   2793 	if ((depth & 3) != 3)
   2794 		printf("\n");
   2795 	printf("Max depth found was %d\n", max_depth);
   2796 }
   2797 #endif /* DEBUG */
   2798 
   2799 #if defined(PMAPCHECK) || defined(DEBUG)
   2800 void
   2801 pmap_pvo_verify(void)
   2802 {
   2803 	int ptegidx;
   2804 	int s;
   2805 
   2806 	s = splvm();
   2807 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2808 		struct pvo_entry *pvo;
   2809 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2810 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2811 				panic("pmap_pvo_verify: invalid pvo %p "
   2812 				    "on list %#x", pvo, ptegidx);
   2813 			pmap_pvo_check(pvo);
   2814 		}
   2815 	}
   2816 	splx(s);
   2817 }
   2818 #endif /* PMAPCHECK */
   2819 
   2820 
   2821 void *
   2822 pmap_pool_ualloc(struct pool *pp, int flags)
   2823 {
   2824 	struct pvo_page *pvop;
   2825 
   2826 	if (uvm.page_init_done != true) {
   2827 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2828 	}
   2829 
   2830 	PMAP_LOCK();
   2831 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2832 	if (pvop != NULL) {
   2833 		pmap_upvop_free--;
   2834 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2835 		PMAP_UNLOCK();
   2836 		return pvop;
   2837 	}
   2838 	PMAP_UNLOCK();
   2839 	return pmap_pool_malloc(pp, flags);
   2840 }
   2841 
   2842 void *
   2843 pmap_pool_malloc(struct pool *pp, int flags)
   2844 {
   2845 	struct pvo_page *pvop;
   2846 	struct vm_page *pg;
   2847 
   2848 	PMAP_LOCK();
   2849 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2850 	if (pvop != NULL) {
   2851 		pmap_mpvop_free--;
   2852 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2853 		PMAP_UNLOCK();
   2854 		return pvop;
   2855 	}
   2856 	PMAP_UNLOCK();
   2857  again:
   2858 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2859 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2860 	if (__predict_false(pg == NULL)) {
   2861 		if (flags & PR_WAITOK) {
   2862 			uvm_wait("plpg");
   2863 			goto again;
   2864 		} else {
   2865 			return (0);
   2866 		}
   2867 	}
   2868 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2869 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2870 }
   2871 
   2872 void
   2873 pmap_pool_ufree(struct pool *pp, void *va)
   2874 {
   2875 	struct pvo_page *pvop;
   2876 #if 0
   2877 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2878 		pmap_pool_mfree(va, size, tag);
   2879 		return;
   2880 	}
   2881 #endif
   2882 	PMAP_LOCK();
   2883 	pvop = va;
   2884 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2885 	pmap_upvop_free++;
   2886 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2887 		pmap_upvop_maxfree = pmap_upvop_free;
   2888 	PMAP_UNLOCK();
   2889 }
   2890 
   2891 void
   2892 pmap_pool_mfree(struct pool *pp, void *va)
   2893 {
   2894 	struct pvo_page *pvop;
   2895 
   2896 	PMAP_LOCK();
   2897 	pvop = va;
   2898 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2899 	pmap_mpvop_free++;
   2900 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2901 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2902 	PMAP_UNLOCK();
   2903 #if 0
   2904 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2905 #endif
   2906 }
   2907 
   2908 /*
   2909  * This routine in bootstraping to steal to-be-managed memory (which will
   2910  * then be unmanaged).  We use it to grab from the first 256MB for our
   2911  * pmap needs and above 256MB for other stuff.
   2912  */
   2913 vaddr_t
   2914 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2915 {
   2916 	vsize_t size;
   2917 	vaddr_t va;
   2918 	paddr_t pa = 0;
   2919 	int npgs, bank;
   2920 	struct vm_physseg *ps;
   2921 
   2922 	if (uvm.page_init_done == true)
   2923 		panic("pmap_steal_memory: called _after_ bootstrap");
   2924 
   2925 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2926 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2927 
   2928 	size = round_page(vsize);
   2929 	npgs = atop(size);
   2930 
   2931 	/*
   2932 	 * PA 0 will never be among those given to UVM so we can use it
   2933 	 * to indicate we couldn't steal any memory.
   2934 	 */
   2935 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2936 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2937 		    ps->avail_end - ps->avail_start >= npgs) {
   2938 			pa = ptoa(ps->avail_start);
   2939 			break;
   2940 		}
   2941 	}
   2942 
   2943 	if (pa == 0)
   2944 		panic("pmap_steal_memory: no approriate memory to steal!");
   2945 
   2946 	ps->avail_start += npgs;
   2947 	ps->start += npgs;
   2948 
   2949 	/*
   2950 	 * If we've used up all the pages in the segment, remove it and
   2951 	 * compact the list.
   2952 	 */
   2953 	if (ps->avail_start == ps->end) {
   2954 		/*
   2955 		 * If this was the last one, then a very bad thing has occurred
   2956 		 */
   2957 		if (--vm_nphysseg == 0)
   2958 			panic("pmap_steal_memory: out of memory!");
   2959 
   2960 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2961 		for (; bank < vm_nphysseg; bank++, ps++) {
   2962 			ps[0] = ps[1];
   2963 		}
   2964 	}
   2965 
   2966 	va = (vaddr_t) pa;
   2967 	memset((void *) va, 0, size);
   2968 	pmap_pages_stolen += npgs;
   2969 #ifdef DEBUG
   2970 	if (pmapdebug && npgs > 1) {
   2971 		u_int cnt = 0;
   2972 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2973 			cnt += ps->avail_end - ps->avail_start;
   2974 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2975 		    npgs, pmap_pages_stolen, cnt);
   2976 	}
   2977 #endif
   2978 
   2979 	return va;
   2980 }
   2981 
   2982 /*
   2983  * Find a chuck of memory with right size and alignment.
   2984  */
   2985 paddr_t
   2986 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2987 {
   2988 	struct mem_region *mp;
   2989 	paddr_t s, e;
   2990 	int i, j;
   2991 
   2992 	size = round_page(size);
   2993 
   2994 	DPRINTFN(BOOT,
   2995 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2996 	    size, alignment, at_end));
   2997 
   2998 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2999 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   3000 		    alignment);
   3001 
   3002 	if (at_end) {
   3003 		if (alignment != PAGE_SIZE)
   3004 			panic("pmap_boot_find_memory: invalid ending "
   3005 			    "alignment %#" _PRIxpa, alignment);
   3006 
   3007 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3008 			s = mp->start + mp->size - size;
   3009 			if (s >= mp->start && mp->size >= size) {
   3010 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3011 				DPRINTFN(BOOT,
   3012 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3013 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3014 				     mp->start, mp->size));
   3015 				mp->size -= size;
   3016 				DPRINTFN(BOOT,
   3017 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3018 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3019 				     mp->start, mp->size));
   3020 				return s;
   3021 			}
   3022 		}
   3023 		panic("pmap_boot_find_memory: no available memory");
   3024 	}
   3025 
   3026 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3027 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3028 		e = s + size;
   3029 
   3030 		/*
   3031 		 * Is the calculated region entirely within the region?
   3032 		 */
   3033 		if (s < mp->start || e > mp->start + mp->size)
   3034 			continue;
   3035 
   3036 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3037 		if (s == mp->start) {
   3038 			/*
   3039 			 * If the block starts at the beginning of region,
   3040 			 * adjust the size & start. (the region may now be
   3041 			 * zero in length)
   3042 			 */
   3043 			DPRINTFN(BOOT,
   3044 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3045 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3046 			mp->start += size;
   3047 			mp->size -= size;
   3048 			DPRINTFN(BOOT,
   3049 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3050 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3051 		} else if (e == mp->start + mp->size) {
   3052 			/*
   3053 			 * If the block starts at the beginning of region,
   3054 			 * adjust only the size.
   3055 			 */
   3056 			DPRINTFN(BOOT,
   3057 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3058 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3059 			mp->size -= size;
   3060 			DPRINTFN(BOOT,
   3061 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3062 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3063 		} else {
   3064 			/*
   3065 			 * Block is in the middle of the region, so we
   3066 			 * have to split it in two.
   3067 			 */
   3068 			for (j = avail_cnt; j > i + 1; j--) {
   3069 				avail[j] = avail[j-1];
   3070 			}
   3071 			DPRINTFN(BOOT,
   3072 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3073 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3074 			mp[1].start = e;
   3075 			mp[1].size = mp[0].start + mp[0].size - e;
   3076 			mp[0].size = s - mp[0].start;
   3077 			avail_cnt++;
   3078 			for (; i < avail_cnt; i++) {
   3079 				DPRINTFN(BOOT,
   3080 				    ("pmap_boot_find_memory: a-avail[%d] "
   3081 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3082 				     avail[i].start, avail[i].size));
   3083 			}
   3084 		}
   3085 		KASSERT(s == (uintptr_t) s);
   3086 		return s;
   3087 	}
   3088 	panic("pmap_boot_find_memory: not enough memory for "
   3089 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3090 }
   3091 
   3092 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3093 #if defined (PMAP_OEA64_BRIDGE)
   3094 int
   3095 pmap_setup_segment0_map(int use_large_pages, ...)
   3096 {
   3097     vaddr_t va;
   3098 
   3099     register_t pte_lo = 0x0;
   3100     int ptegidx = 0, i = 0;
   3101     struct pte pte;
   3102     va_list ap;
   3103 
   3104     /* Coherent + Supervisor RW, no user access */
   3105     pte_lo = PTE_M;
   3106 
   3107     /* XXXSL
   3108      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3109      * these have to take priority.
   3110      */
   3111     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3112         ptegidx = va_to_pteg(pmap_kernel(), va);
   3113         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3114         i = pmap_pte_insert(ptegidx, &pte);
   3115     }
   3116 
   3117     va_start(ap, use_large_pages);
   3118     while (1) {
   3119         paddr_t pa;
   3120         size_t size;
   3121 
   3122         va = va_arg(ap, vaddr_t);
   3123 
   3124         if (va == 0)
   3125             break;
   3126 
   3127         pa = va_arg(ap, paddr_t);
   3128         size = va_arg(ap, size_t);
   3129 
   3130         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3131 #if 0
   3132 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3133 #endif
   3134             ptegidx = va_to_pteg(pmap_kernel(), va);
   3135             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3136             i = pmap_pte_insert(ptegidx, &pte);
   3137         }
   3138     }
   3139 
   3140     TLBSYNC();
   3141     SYNC();
   3142     return (0);
   3143 }
   3144 #endif /* PMAP_OEA64_BRIDGE */
   3145 
   3146 /*
   3147  * This is not part of the defined PMAP interface and is specific to the
   3148  * PowerPC architecture.  This is called during initppc, before the system
   3149  * is really initialized.
   3150  */
   3151 void
   3152 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3153 {
   3154 	struct mem_region *mp, tmp;
   3155 	paddr_t s, e;
   3156 	psize_t size;
   3157 	int i, j;
   3158 
   3159 	/*
   3160 	 * Get memory.
   3161 	 */
   3162 	mem_regions(&mem, &avail);
   3163 #if defined(DEBUG)
   3164 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3165 		printf("pmap_bootstrap: memory configuration:\n");
   3166 		for (mp = mem; mp->size; mp++) {
   3167 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3168 				mp->start, mp->size);
   3169 		}
   3170 		for (mp = avail; mp->size; mp++) {
   3171 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3172 				mp->start, mp->size);
   3173 		}
   3174 	}
   3175 #endif
   3176 
   3177 	/*
   3178 	 * Find out how much physical memory we have and in how many chunks.
   3179 	 */
   3180 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3181 		if (mp->start >= pmap_memlimit)
   3182 			continue;
   3183 		if (mp->start + mp->size > pmap_memlimit) {
   3184 			size = pmap_memlimit - mp->start;
   3185 			physmem += btoc(size);
   3186 		} else {
   3187 			physmem += btoc(mp->size);
   3188 		}
   3189 		mem_cnt++;
   3190 	}
   3191 
   3192 	/*
   3193 	 * Count the number of available entries.
   3194 	 */
   3195 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3196 		avail_cnt++;
   3197 
   3198 	/*
   3199 	 * Page align all regions.
   3200 	 */
   3201 	kernelstart = trunc_page(kernelstart);
   3202 	kernelend = round_page(kernelend);
   3203 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3204 		s = round_page(mp->start);
   3205 		mp->size -= (s - mp->start);
   3206 		mp->size = trunc_page(mp->size);
   3207 		mp->start = s;
   3208 		e = mp->start + mp->size;
   3209 
   3210 		DPRINTFN(BOOT,
   3211 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3212 		    i, mp->start, mp->size));
   3213 
   3214 		/*
   3215 		 * Don't allow the end to run beyond our artificial limit
   3216 		 */
   3217 		if (e > pmap_memlimit)
   3218 			e = pmap_memlimit;
   3219 
   3220 		/*
   3221 		 * Is this region empty or strange?  skip it.
   3222 		 */
   3223 		if (e <= s) {
   3224 			mp->start = 0;
   3225 			mp->size = 0;
   3226 			continue;
   3227 		}
   3228 
   3229 		/*
   3230 		 * Does this overlap the beginning of kernel?
   3231 		 *   Does extend past the end of the kernel?
   3232 		 */
   3233 		else if (s < kernelstart && e > kernelstart) {
   3234 			if (e > kernelend) {
   3235 				avail[avail_cnt].start = kernelend;
   3236 				avail[avail_cnt].size = e - kernelend;
   3237 				avail_cnt++;
   3238 			}
   3239 			mp->size = kernelstart - s;
   3240 		}
   3241 		/*
   3242 		 * Check whether this region overlaps the end of the kernel.
   3243 		 */
   3244 		else if (s < kernelend && e > kernelend) {
   3245 			mp->start = kernelend;
   3246 			mp->size = e - kernelend;
   3247 		}
   3248 		/*
   3249 		 * Look whether this regions is completely inside the kernel.
   3250 		 * Nuke it if it does.
   3251 		 */
   3252 		else if (s >= kernelstart && e <= kernelend) {
   3253 			mp->start = 0;
   3254 			mp->size = 0;
   3255 		}
   3256 		/*
   3257 		 * If the user imposed a memory limit, enforce it.
   3258 		 */
   3259 		else if (s >= pmap_memlimit) {
   3260 			mp->start = -PAGE_SIZE;	/* let's know why */
   3261 			mp->size = 0;
   3262 		}
   3263 		else {
   3264 			mp->start = s;
   3265 			mp->size = e - s;
   3266 		}
   3267 		DPRINTFN(BOOT,
   3268 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3269 		    i, mp->start, mp->size));
   3270 	}
   3271 
   3272 	/*
   3273 	 * Move (and uncount) all the null return to the end.
   3274 	 */
   3275 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3276 		if (mp->size == 0) {
   3277 			tmp = avail[i];
   3278 			avail[i] = avail[--avail_cnt];
   3279 			avail[avail_cnt] = avail[i];
   3280 		}
   3281 	}
   3282 
   3283 	/*
   3284 	 * (Bubble)sort them into ascending order.
   3285 	 */
   3286 	for (i = 0; i < avail_cnt; i++) {
   3287 		for (j = i + 1; j < avail_cnt; j++) {
   3288 			if (avail[i].start > avail[j].start) {
   3289 				tmp = avail[i];
   3290 				avail[i] = avail[j];
   3291 				avail[j] = tmp;
   3292 			}
   3293 		}
   3294 	}
   3295 
   3296 	/*
   3297 	 * Make sure they don't overlap.
   3298 	 */
   3299 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3300 		if (mp[0].start + mp[0].size > mp[1].start) {
   3301 			mp[0].size = mp[1].start - mp[0].start;
   3302 		}
   3303 		DPRINTFN(BOOT,
   3304 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3305 		    i, mp->start, mp->size));
   3306 	}
   3307 	DPRINTFN(BOOT,
   3308 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3309 	    i, mp->start, mp->size));
   3310 
   3311 #ifdef	PTEGCOUNT
   3312 	pmap_pteg_cnt = PTEGCOUNT;
   3313 #else /* PTEGCOUNT */
   3314 
   3315 	pmap_pteg_cnt = 0x1000;
   3316 
   3317 	while (pmap_pteg_cnt < physmem)
   3318 		pmap_pteg_cnt <<= 1;
   3319 
   3320 	pmap_pteg_cnt >>= 1;
   3321 #endif /* PTEGCOUNT */
   3322 
   3323 #ifdef DEBUG
   3324 	DPRINTFN(BOOT,
   3325 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3326 #endif
   3327 
   3328 	/*
   3329 	 * Find suitably aligned memory for PTEG hash table.
   3330 	 */
   3331 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3332 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3333 
   3334 #ifdef DEBUG
   3335 	DPRINTFN(BOOT,
   3336 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3337 #endif
   3338 
   3339 
   3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3341 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3342 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3343 		    pmap_pteg_table, size);
   3344 #endif
   3345 
   3346 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3347 		pmap_pteg_cnt * sizeof(struct pteg));
   3348 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3349 
   3350 	/*
   3351 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3352 	 * with pages.  So we just steal them before giving them to UVM.
   3353 	 */
   3354 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3355 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3357 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3358 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3359 		    pmap_pvo_table, size);
   3360 #endif
   3361 
   3362 	for (i = 0; i < pmap_pteg_cnt; i++)
   3363 		TAILQ_INIT(&pmap_pvo_table[i]);
   3364 
   3365 #ifndef MSGBUFADDR
   3366 	/*
   3367 	 * Allocate msgbuf in high memory.
   3368 	 */
   3369 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3370 #endif
   3371 
   3372 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3373 		paddr_t pfstart = atop(mp->start);
   3374 		paddr_t pfend = atop(mp->start + mp->size);
   3375 		if (mp->size == 0)
   3376 			continue;
   3377 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3379 				VM_FREELIST_FIRST256);
   3380 		} else if (mp->start >= SEGMENT_LENGTH) {
   3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3382 				VM_FREELIST_DEFAULT);
   3383 		} else {
   3384 			pfend = atop(SEGMENT_LENGTH);
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_FIRST256);
   3387 			pfstart = atop(SEGMENT_LENGTH);
   3388 			pfend = atop(mp->start + mp->size);
   3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3390 				VM_FREELIST_DEFAULT);
   3391 		}
   3392 	}
   3393 
   3394 	/*
   3395 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3396 	 */
   3397 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3398 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3399 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3400 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3401 	pmap_vsid_bitmap[0] |= 1;
   3402 
   3403 	/*
   3404 	 * Initialize kernel pmap and hardware.
   3405 	 */
   3406 
   3407 /* PMAP_OEA64_BRIDGE does support these instructions */
   3408 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3409 	for (i = 0; i < 16; i++) {
   3410  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3411 		__asm volatile ("mtsrin %0,%1"
   3412  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3413 	}
   3414 
   3415 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3416 	__asm volatile ("mtsr %0,%1"
   3417 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3418 #ifdef KERNEL2_SR
   3419 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3420 	__asm volatile ("mtsr %0,%1"
   3421 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3422 #endif
   3423 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3424 #if defined (PMAP_OEA)
   3425 	for (i = 0; i < 16; i++) {
   3426 		if (iosrtable[i] & SR601_T) {
   3427 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3428 			__asm volatile ("mtsrin %0,%1"
   3429 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3430 		}
   3431 	}
   3432 	__asm volatile ("sync; mtsdr1 %0; isync"
   3433 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3434 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3435  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3436  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3437 #endif
   3438 	tlbia();
   3439 
   3440 #ifdef ALTIVEC
   3441 	pmap_use_altivec = cpu_altivec;
   3442 #endif
   3443 
   3444 #ifdef DEBUG
   3445 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3446 		u_int cnt;
   3447 		int bank;
   3448 		char pbuf[9];
   3449 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3450 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3451 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3452 			    bank,
   3453 			    ptoa(vm_physmem[bank].avail_start),
   3454 			    ptoa(vm_physmem[bank].avail_end),
   3455 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3456 		}
   3457 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3458 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3459 		    pbuf, cnt);
   3460 	}
   3461 #endif
   3462 
   3463 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3464 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3465 	    &pmap_pool_uallocator, IPL_VM);
   3466 
   3467 	pool_setlowat(&pmap_upvo_pool, 252);
   3468 
   3469 	pool_init(&pmap_pool, sizeof(struct pmap),
   3470 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3471 	    IPL_NONE);
   3472 
   3473 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3474 	{
   3475 		struct pmap *pm = pmap_kernel();
   3476 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3477 		extern int etext[], kernel_text[];
   3478 		vaddr_t va, va_etext = (paddr_t) etext;
   3479 #endif
   3480 		paddr_t pa, pa_end;
   3481 		register_t sr;
   3482 		struct pte pt;
   3483 		unsigned int ptegidx;
   3484 		int bank;
   3485 
   3486 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3487 		pm->pm_sr[0] = sr;
   3488 
   3489 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3490 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3491 			pa = ptoa(vm_physmem[bank].avail_start);
   3492 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3493 				ptegidx = va_to_pteg(pm, pa);
   3494 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3495 				pmap_pte_insert(ptegidx, &pt);
   3496 			}
   3497 		}
   3498 
   3499 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3500 		va = (vaddr_t) kernel_text;
   3501 
   3502 		for (pa = kernelstart; va < va_etext;
   3503 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3504 			ptegidx = va_to_pteg(pm, va);
   3505 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3506 			pmap_pte_insert(ptegidx, &pt);
   3507 		}
   3508 
   3509 		for (; pa < kernelend;
   3510 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3511 			ptegidx = va_to_pteg(pm, va);
   3512 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3513 			pmap_pte_insert(ptegidx, &pt);
   3514 		}
   3515 
   3516 		for (va = 0, pa = 0; va < kernelstart;
   3517 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3518 			ptegidx = va_to_pteg(pm, va);
   3519 			if (va < 0x3000)
   3520 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3521 			else
   3522 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3523 			pmap_pte_insert(ptegidx, &pt);
   3524 		}
   3525 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3526 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3527 			ptegidx = va_to_pteg(pm, va);
   3528 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3529 			pmap_pte_insert(ptegidx, &pt);
   3530 		}
   3531 #endif
   3532 
   3533 		__asm volatile ("mtsrin %0,%1"
   3534  			      :: "r"(sr), "r"(kernelstart));
   3535 	}
   3536 #endif
   3537 }
   3538