pmap.c revision 1.66 1 /* $NetBSD: pmap.c,v 1.66 2009/08/11 17:04:19 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.66 2009/08/11 17:04:19 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86
87 #include <machine/pcb.h>
88 #include <machine/powerpc.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/sr_601.h>
91 #include <powerpc/bat.h>
92 #include <powerpc/stdarg.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 #ifndef MSGBUFADDR
116 extern paddr_t msgbuf_paddr;
117 #endif
118
119 static struct mem_region *mem, *avail;
120 static u_int mem_cnt, avail_cnt;
121
122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
123 # define PMAP_OEA 1
124 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
125 # define PMAPNAME(name) pmap_##name
126 # endif
127 #endif
128
129 #if defined(PMAP_OEA64)
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64_BRIDGE)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA)
142 #define _PRIxpte "lx"
143 #else
144 #define _PRIxpte PRIx64
145 #endif
146 #define _PRIxpa "lx"
147 #define _PRIxva "lx"
148 #define _PRIsr "lx"
149
150 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
151 #if defined(PMAP_OEA)
152 #define PMAPNAME(name) pmap32_##name
153 #elif defined(PMAP_OEA64)
154 #define PMAPNAME(name) pmap64_##name
155 #elif defined(PMAP_OEA64_BRIDGE)
156 #define PMAPNAME(name) pmap64bridge_##name
157 #else
158 #error unknown variant for pmap
159 #endif
160 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
161
162 #if defined(PMAPNAME)
163 #define STATIC static
164 #define pmap_pte_spill PMAPNAME(pte_spill)
165 #define pmap_real_memory PMAPNAME(real_memory)
166 #define pmap_init PMAPNAME(init)
167 #define pmap_virtual_space PMAPNAME(virtual_space)
168 #define pmap_create PMAPNAME(create)
169 #define pmap_reference PMAPNAME(reference)
170 #define pmap_destroy PMAPNAME(destroy)
171 #define pmap_copy PMAPNAME(copy)
172 #define pmap_update PMAPNAME(update)
173 #define pmap_collect PMAPNAME(collect)
174 #define pmap_enter PMAPNAME(enter)
175 #define pmap_remove PMAPNAME(remove)
176 #define pmap_kenter_pa PMAPNAME(kenter_pa)
177 #define pmap_kremove PMAPNAME(kremove)
178 #define pmap_extract PMAPNAME(extract)
179 #define pmap_protect PMAPNAME(protect)
180 #define pmap_unwire PMAPNAME(unwire)
181 #define pmap_page_protect PMAPNAME(page_protect)
182 #define pmap_query_bit PMAPNAME(query_bit)
183 #define pmap_clear_bit PMAPNAME(clear_bit)
184
185 #define pmap_activate PMAPNAME(activate)
186 #define pmap_deactivate PMAPNAME(deactivate)
187
188 #define pmap_pinit PMAPNAME(pinit)
189 #define pmap_procwr PMAPNAME(procwr)
190
191 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
192 #define pmap_pte_print PMAPNAME(pte_print)
193 #define pmap_pteg_check PMAPNAME(pteg_check)
194 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
195 #define pmap_print_pte PMAPNAME(print_pte)
196 #define pmap_pteg_dist PMAPNAME(pteg_dist)
197 #endif
198 #if defined(DEBUG) || defined(PMAPCHECK)
199 #define pmap_pvo_verify PMAPNAME(pvo_verify)
200 #define pmapcheck PMAPNAME(check)
201 #endif
202 #if defined(DEBUG) || defined(PMAPDEBUG)
203 #define pmapdebug PMAPNAME(debug)
204 #endif
205 #define pmap_steal_memory PMAPNAME(steal_memory)
206 #define pmap_bootstrap PMAPNAME(bootstrap)
207 #else
208 #define STATIC /* nothing */
209 #endif /* PMAPNAME */
210
211 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
212 STATIC void pmap_real_memory(paddr_t *, psize_t *);
213 STATIC void pmap_init(void);
214 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
215 STATIC pmap_t pmap_create(void);
216 STATIC void pmap_reference(pmap_t);
217 STATIC void pmap_destroy(pmap_t);
218 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
219 STATIC void pmap_update(pmap_t);
220 STATIC void pmap_collect(pmap_t);
221 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
222 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
223 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t);
224 STATIC void pmap_kremove(vaddr_t, vsize_t);
225 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
226
227 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
228 STATIC void pmap_unwire(pmap_t, vaddr_t);
229 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
230 STATIC bool pmap_query_bit(struct vm_page *, int);
231 STATIC bool pmap_clear_bit(struct vm_page *, int);
232
233 STATIC void pmap_activate(struct lwp *);
234 STATIC void pmap_deactivate(struct lwp *);
235
236 STATIC void pmap_pinit(pmap_t pm);
237 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
238
239 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
240 STATIC void pmap_pte_print(volatile struct pte *);
241 STATIC void pmap_pteg_check(void);
242 STATIC void pmap_print_mmuregs(void);
243 STATIC void pmap_print_pte(pmap_t, vaddr_t);
244 STATIC void pmap_pteg_dist(void);
245 #endif
246 #if defined(DEBUG) || defined(PMAPCHECK)
247 STATIC void pmap_pvo_verify(void);
248 #endif
249 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
250 STATIC void pmap_bootstrap(paddr_t, paddr_t);
251
252 #ifdef PMAPNAME
253 const struct pmap_ops PMAPNAME(ops) = {
254 .pmapop_pte_spill = pmap_pte_spill,
255 .pmapop_real_memory = pmap_real_memory,
256 .pmapop_init = pmap_init,
257 .pmapop_virtual_space = pmap_virtual_space,
258 .pmapop_create = pmap_create,
259 .pmapop_reference = pmap_reference,
260 .pmapop_destroy = pmap_destroy,
261 .pmapop_copy = pmap_copy,
262 .pmapop_update = pmap_update,
263 .pmapop_collect = pmap_collect,
264 .pmapop_enter = pmap_enter,
265 .pmapop_remove = pmap_remove,
266 .pmapop_kenter_pa = pmap_kenter_pa,
267 .pmapop_kremove = pmap_kremove,
268 .pmapop_extract = pmap_extract,
269 .pmapop_protect = pmap_protect,
270 .pmapop_unwire = pmap_unwire,
271 .pmapop_page_protect = pmap_page_protect,
272 .pmapop_query_bit = pmap_query_bit,
273 .pmapop_clear_bit = pmap_clear_bit,
274 .pmapop_activate = pmap_activate,
275 .pmapop_deactivate = pmap_deactivate,
276 .pmapop_pinit = pmap_pinit,
277 .pmapop_procwr = pmap_procwr,
278 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
279 .pmapop_pte_print = pmap_pte_print,
280 .pmapop_pteg_check = pmap_pteg_check,
281 .pmapop_print_mmuregs = pmap_print_mmuregs,
282 .pmapop_print_pte = pmap_print_pte,
283 .pmapop_pteg_dist = pmap_pteg_dist,
284 #else
285 .pmapop_pte_print = NULL,
286 .pmapop_pteg_check = NULL,
287 .pmapop_print_mmuregs = NULL,
288 .pmapop_print_pte = NULL,
289 .pmapop_pteg_dist = NULL,
290 #endif
291 #if defined(DEBUG) || defined(PMAPCHECK)
292 .pmapop_pvo_verify = pmap_pvo_verify,
293 #else
294 .pmapop_pvo_verify = NULL,
295 #endif
296 .pmapop_steal_memory = pmap_steal_memory,
297 .pmapop_bootstrap = pmap_bootstrap,
298 };
299 #endif /* !PMAPNAME */
300
301 /*
302 * The following structure is aligned to 32 bytes
303 */
304 struct pvo_entry {
305 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
306 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
307 struct pte pvo_pte; /* Prebuilt PTE */
308 pmap_t pvo_pmap; /* ptr to owning pmap */
309 vaddr_t pvo_vaddr; /* VA of entry */
310 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
311 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
312 #define PVO_WIRED 0x0010 /* PVO entry is wired */
313 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
314 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
315 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
316 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
317 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
318 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
319 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
320 #define PVO_SPILL_SET 2 /* PVO has been spilled */
321 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
322 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
323 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
324 #define PVO_REMOVE 6 /* PVO has been removed */
325 #define PVO_WHERE_MASK 15
326 #define PVO_WHERE_SHFT 8
327 } __attribute__ ((aligned (32)));
328 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
329 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
330 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
331 #define PVO_PTEGIDX_CLR(pvo) \
332 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
333 #define PVO_PTEGIDX_SET(pvo,i) \
334 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
335 #define PVO_WHERE(pvo,w) \
336 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
337 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
338
339 TAILQ_HEAD(pvo_tqhead, pvo_entry);
340 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
341 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
342 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
343
344 struct pool pmap_pool; /* pool for pmap structures */
345 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
346 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
347
348 /*
349 * We keep a cache of unmanaged pages to be used for pvo entries for
350 * unmanaged pages.
351 */
352 struct pvo_page {
353 SIMPLEQ_ENTRY(pvo_page) pvop_link;
354 };
355 SIMPLEQ_HEAD(pvop_head, pvo_page);
356 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
357 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
358 u_long pmap_upvop_free;
359 u_long pmap_upvop_maxfree;
360 u_long pmap_mpvop_free;
361 u_long pmap_mpvop_maxfree;
362
363 static void *pmap_pool_ualloc(struct pool *, int);
364 static void *pmap_pool_malloc(struct pool *, int);
365
366 static void pmap_pool_ufree(struct pool *, void *);
367 static void pmap_pool_mfree(struct pool *, void *);
368
369 static struct pool_allocator pmap_pool_mallocator = {
370 .pa_alloc = pmap_pool_malloc,
371 .pa_free = pmap_pool_mfree,
372 .pa_pagesz = 0,
373 };
374
375 static struct pool_allocator pmap_pool_uallocator = {
376 .pa_alloc = pmap_pool_ualloc,
377 .pa_free = pmap_pool_ufree,
378 .pa_pagesz = 0,
379 };
380
381 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
382 void pmap_pte_print(volatile struct pte *);
383 void pmap_pteg_check(void);
384 void pmap_pteg_dist(void);
385 void pmap_print_pte(pmap_t, vaddr_t);
386 void pmap_print_mmuregs(void);
387 #endif
388
389 #if defined(DEBUG) || defined(PMAPCHECK)
390 #ifdef PMAPCHECK
391 int pmapcheck = 1;
392 #else
393 int pmapcheck = 0;
394 #endif
395 void pmap_pvo_verify(void);
396 static void pmap_pvo_check(const struct pvo_entry *);
397 #define PMAP_PVO_CHECK(pvo) \
398 do { \
399 if (pmapcheck) \
400 pmap_pvo_check(pvo); \
401 } while (0)
402 #else
403 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
404 #endif
405 static int pmap_pte_insert(int, struct pte *);
406 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
407 vaddr_t, paddr_t, register_t, int);
408 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
409 static void pmap_pvo_free(struct pvo_entry *);
410 static void pmap_pvo_free_list(struct pvo_head *);
411 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
412 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
413 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
414 static void pvo_set_exec(struct pvo_entry *);
415 static void pvo_clear_exec(struct pvo_entry *);
416
417 static void tlbia(void);
418
419 static void pmap_release(pmap_t);
420 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
421
422 static uint32_t pmap_pvo_reclaim_nextidx;
423 #ifdef DEBUG
424 static int pmap_pvo_reclaim_debugctr;
425 #endif
426
427 #define VSID_NBPW (sizeof(uint32_t) * 8)
428 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
429
430 static int pmap_initialized;
431
432 #if defined(DEBUG) || defined(PMAPDEBUG)
433 #define PMAPDEBUG_BOOT 0x0001
434 #define PMAPDEBUG_PTE 0x0002
435 #define PMAPDEBUG_EXEC 0x0008
436 #define PMAPDEBUG_PVOENTER 0x0010
437 #define PMAPDEBUG_PVOREMOVE 0x0020
438 #define PMAPDEBUG_ACTIVATE 0x0100
439 #define PMAPDEBUG_CREATE 0x0200
440 #define PMAPDEBUG_ENTER 0x1000
441 #define PMAPDEBUG_KENTER 0x2000
442 #define PMAPDEBUG_KREMOVE 0x4000
443 #define PMAPDEBUG_REMOVE 0x8000
444
445 unsigned int pmapdebug = 0;
446
447 # define DPRINTF(x) printf x
448 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
449 #else
450 # define DPRINTF(x)
451 # define DPRINTFN(n, x)
452 #endif
453
454
455 #ifdef PMAPCOUNTERS
456 /*
457 * From pmap_subr.c
458 */
459 extern struct evcnt pmap_evcnt_mappings;
460 extern struct evcnt pmap_evcnt_unmappings;
461
462 extern struct evcnt pmap_evcnt_kernel_mappings;
463 extern struct evcnt pmap_evcnt_kernel_unmappings;
464
465 extern struct evcnt pmap_evcnt_mappings_replaced;
466
467 extern struct evcnt pmap_evcnt_exec_mappings;
468 extern struct evcnt pmap_evcnt_exec_cached;
469
470 extern struct evcnt pmap_evcnt_exec_synced;
471 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
472 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
473
474 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
475 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
476 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
477 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
478 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
479
480 extern struct evcnt pmap_evcnt_updates;
481 extern struct evcnt pmap_evcnt_collects;
482 extern struct evcnt pmap_evcnt_copies;
483
484 extern struct evcnt pmap_evcnt_ptes_spilled;
485 extern struct evcnt pmap_evcnt_ptes_unspilled;
486 extern struct evcnt pmap_evcnt_ptes_evicted;
487
488 extern struct evcnt pmap_evcnt_ptes_primary[8];
489 extern struct evcnt pmap_evcnt_ptes_secondary[8];
490 extern struct evcnt pmap_evcnt_ptes_removed;
491 extern struct evcnt pmap_evcnt_ptes_changed;
492 extern struct evcnt pmap_evcnt_pvos_reclaimed;
493 extern struct evcnt pmap_evcnt_pvos_failed;
494
495 extern struct evcnt pmap_evcnt_zeroed_pages;
496 extern struct evcnt pmap_evcnt_copied_pages;
497 extern struct evcnt pmap_evcnt_idlezeroed_pages;
498
499 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
500 #define PMAPCOUNT2(ev) ((ev).ev_count++)
501 #else
502 #define PMAPCOUNT(ev) ((void) 0)
503 #define PMAPCOUNT2(ev) ((void) 0)
504 #endif
505
506 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
507
508 /* XXXSL: this needs to be moved to assembler */
509 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
510
511 #define TLBSYNC() __asm volatile("tlbsync")
512 #define SYNC() __asm volatile("sync")
513 #define EIEIO() __asm volatile("eieio")
514 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
515 #define MFMSR() mfmsr()
516 #define MTMSR(psl) mtmsr(psl)
517 #define MFPVR() mfpvr()
518 #define MFSRIN(va) mfsrin(va)
519 #define MFTB() mfrtcltbl()
520
521 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
522 static inline register_t
523 mfsrin(vaddr_t va)
524 {
525 register_t sr;
526 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
527 return sr;
528 }
529 #endif /* PMAP_OEA*/
530
531 #if defined (PMAP_OEA64_BRIDGE)
532 extern void mfmsr64 (register64_t *result);
533 #endif /* PMAP_OEA64_BRIDGE */
534
535 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
536 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
537
538 static inline register_t
539 pmap_interrupts_off(void)
540 {
541 register_t msr = MFMSR();
542 if (msr & PSL_EE)
543 MTMSR(msr & ~PSL_EE);
544 return msr;
545 }
546
547 static void
548 pmap_interrupts_restore(register_t msr)
549 {
550 if (msr & PSL_EE)
551 MTMSR(msr);
552 }
553
554 static inline u_int32_t
555 mfrtcltbl(void)
556 {
557 #ifdef PPC_OEA601
558 if ((MFPVR() >> 16) == MPC601)
559 return (mfrtcl() >> 7);
560 else
561 #endif
562 return (mftbl());
563 }
564
565 /*
566 * These small routines may have to be replaced,
567 * if/when we support processors other that the 604.
568 */
569
570 void
571 tlbia(void)
572 {
573 char *i;
574
575 SYNC();
576 #if defined(PMAP_OEA)
577 /*
578 * Why not use "tlbia"? Because not all processors implement it.
579 *
580 * This needs to be a per-CPU callback to do the appropriate thing
581 * for the CPU. XXX
582 */
583 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
584 TLBIE(i);
585 EIEIO();
586 SYNC();
587 }
588 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
589 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
590 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
591 TLBIEL(i);
592 EIEIO();
593 SYNC();
594 }
595 #endif
596 TLBSYNC();
597 SYNC();
598 }
599
600 static inline register_t
601 va_to_vsid(const struct pmap *pm, vaddr_t addr)
602 {
603 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
604 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
605 #else /* PMAP_OEA64 */
606 #if 0
607 const struct ste *ste;
608 register_t hash;
609 int i;
610
611 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
612
613 /*
614 * Try the primary group first
615 */
616 ste = pm->pm_stes[hash].stes;
617 for (i = 0; i < 8; i++, ste++) {
618 if (ste->ste_hi & STE_V) &&
619 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
620 return ste;
621 }
622
623 /*
624 * Then the secondary group.
625 */
626 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
627 for (i = 0; i < 8; i++, ste++) {
628 if (ste->ste_hi & STE_V) &&
629 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
630 return addr;
631 }
632
633 return NULL;
634 #else
635 /*
636 * Rather than searching the STE groups for the VSID, we know
637 * how we generate that from the ESID and so do that.
638 */
639 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
640 #endif
641 #endif /* PMAP_OEA */
642 }
643
644 static inline register_t
645 va_to_pteg(const struct pmap *pm, vaddr_t addr)
646 {
647 register_t hash;
648
649 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
650 return hash & pmap_pteg_mask;
651 }
652
653 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
654 /*
655 * Given a PTE in the page table, calculate the VADDR that hashes to it.
656 * The only bit of magic is that the top 4 bits of the address doesn't
657 * technically exist in the PTE. But we know we reserved 4 bits of the
658 * VSID for it so that's how we get it.
659 */
660 static vaddr_t
661 pmap_pte_to_va(volatile const struct pte *pt)
662 {
663 vaddr_t va;
664 uintptr_t ptaddr = (uintptr_t) pt;
665
666 if (pt->pte_hi & PTE_HID)
667 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
668
669 /* PPC Bits 10-19 PPC64 Bits 42-51 */
670 #if defined(PMAP_OEA)
671 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
672 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
673 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
674 #endif
675 va <<= ADDR_PIDX_SHFT;
676
677 /* PPC Bits 4-9 PPC64 Bits 36-41 */
678 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
679
680 #if defined(PMAP_OEA64)
681 /* PPC63 Bits 0-35 */
682 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
683 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
684 /* PPC Bits 0-3 */
685 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
686 #endif
687
688 return va;
689 }
690 #endif
691
692 static inline struct pvo_head *
693 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
694 {
695 struct vm_page *pg;
696
697 pg = PHYS_TO_VM_PAGE(pa);
698 if (pg_p != NULL)
699 *pg_p = pg;
700 if (pg == NULL)
701 return &pmap_pvo_unmanaged;
702 return &pg->mdpage.mdpg_pvoh;
703 }
704
705 static inline struct pvo_head *
706 vm_page_to_pvoh(struct vm_page *pg)
707 {
708 return &pg->mdpage.mdpg_pvoh;
709 }
710
711
712 static inline void
713 pmap_attr_clear(struct vm_page *pg, int ptebit)
714 {
715 pg->mdpage.mdpg_attrs &= ~ptebit;
716 }
717
718 static inline int
719 pmap_attr_fetch(struct vm_page *pg)
720 {
721 return pg->mdpage.mdpg_attrs;
722 }
723
724 static inline void
725 pmap_attr_save(struct vm_page *pg, int ptebit)
726 {
727 pg->mdpage.mdpg_attrs |= ptebit;
728 }
729
730 static inline int
731 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
732 {
733 if (pt->pte_hi == pvo_pt->pte_hi
734 #if 0
735 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
736 ~(PTE_REF|PTE_CHG)) == 0
737 #endif
738 )
739 return 1;
740 return 0;
741 }
742
743 static inline void
744 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
745 {
746 /*
747 * Construct the PTE. Default to IMB initially. Valid bit
748 * only gets set when the real pte is set in memory.
749 *
750 * Note: Don't set the valid bit for correct operation of tlb update.
751 */
752 #if defined(PMAP_OEA)
753 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
754 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
755 pt->pte_lo = pte_lo;
756 #elif defined (PMAP_OEA64_BRIDGE)
757 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
758 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
759 pt->pte_lo = (u_int64_t) pte_lo;
760 #elif defined (PMAP_OEA64)
761 #error PMAP_OEA64 not supported
762 #endif /* PMAP_OEA */
763 }
764
765 static inline void
766 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
767 {
768 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
769 }
770
771 static inline void
772 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
773 {
774 /*
775 * As shown in Section 7.6.3.2.3
776 */
777 pt->pte_lo &= ~ptebit;
778 TLBIE(va);
779 SYNC();
780 EIEIO();
781 TLBSYNC();
782 SYNC();
783 #ifdef MULTIPROCESSOR
784 DCBST(pt);
785 #endif
786 }
787
788 static inline void
789 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
790 {
791 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
792 if (pvo_pt->pte_hi & PTE_VALID)
793 panic("pte_set: setting an already valid pte %p", pvo_pt);
794 #endif
795 pvo_pt->pte_hi |= PTE_VALID;
796
797 /*
798 * Update the PTE as defined in section 7.6.3.1
799 * Note that the REF/CHG bits are from pvo_pt and thus should
800 * have been saved so this routine can restore them (if desired).
801 */
802 pt->pte_lo = pvo_pt->pte_lo;
803 EIEIO();
804 pt->pte_hi = pvo_pt->pte_hi;
805 TLBSYNC();
806 SYNC();
807 #ifdef MULTIPROCESSOR
808 DCBST(pt);
809 #endif
810 pmap_pte_valid++;
811 }
812
813 static inline void
814 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
815 {
816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
817 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
818 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
819 if ((pt->pte_hi & PTE_VALID) == 0)
820 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
821 #endif
822
823 pvo_pt->pte_hi &= ~PTE_VALID;
824 /*
825 * Force the ref & chg bits back into the PTEs.
826 */
827 SYNC();
828 /*
829 * Invalidate the pte ... (Section 7.6.3.3)
830 */
831 pt->pte_hi &= ~PTE_VALID;
832 SYNC();
833 TLBIE(va);
834 SYNC();
835 EIEIO();
836 TLBSYNC();
837 SYNC();
838 /*
839 * Save the ref & chg bits ...
840 */
841 pmap_pte_synch(pt, pvo_pt);
842 pmap_pte_valid--;
843 }
844
845 static inline void
846 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
847 {
848 /*
849 * Invalidate the PTE
850 */
851 pmap_pte_unset(pt, pvo_pt, va);
852 pmap_pte_set(pt, pvo_pt);
853 }
854
855 /*
856 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
857 * (either primary or secondary location).
858 *
859 * Note: both the destination and source PTEs must not have PTE_VALID set.
860 */
861
862 static int
863 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
864 {
865 volatile struct pte *pt;
866 int i;
867
868 #if defined(DEBUG)
869 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
870 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
871 #endif
872 /*
873 * First try primary hash.
874 */
875 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
876 if ((pt->pte_hi & PTE_VALID) == 0) {
877 pvo_pt->pte_hi &= ~PTE_HID;
878 pmap_pte_set(pt, pvo_pt);
879 return i;
880 }
881 }
882
883 /*
884 * Now try secondary hash.
885 */
886 ptegidx ^= pmap_pteg_mask;
887 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
888 if ((pt->pte_hi & PTE_VALID) == 0) {
889 pvo_pt->pte_hi |= PTE_HID;
890 pmap_pte_set(pt, pvo_pt);
891 return i;
892 }
893 }
894 return -1;
895 }
896
897 /*
898 * Spill handler.
899 *
900 * Tries to spill a page table entry from the overflow area.
901 * This runs in either real mode (if dealing with a exception spill)
902 * or virtual mode when dealing with manually spilling one of the
903 * kernel's pte entries. In either case, interrupts are already
904 * disabled.
905 */
906
907 int
908 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
909 {
910 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
911 struct pvo_entry *pvo;
912 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
913 struct pvo_tqhead *pvoh, *vpvoh = NULL;
914 int ptegidx, i, j;
915 volatile struct pteg *pteg;
916 volatile struct pte *pt;
917
918 PMAP_LOCK();
919
920 ptegidx = va_to_pteg(pm, addr);
921
922 /*
923 * Have to substitute some entry. Use the primary hash for this.
924 * Use low bits of timebase as random generator. Make sure we are
925 * not picking a kernel pte for replacement.
926 */
927 pteg = &pmap_pteg_table[ptegidx];
928 i = MFTB() & 7;
929 for (j = 0; j < 8; j++) {
930 pt = &pteg->pt[i];
931 if ((pt->pte_hi & PTE_VALID) == 0)
932 break;
933 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
934 < PHYSMAP_VSIDBITS)
935 break;
936 i = (i + 1) & 7;
937 }
938 KASSERT(j < 8);
939
940 source_pvo = NULL;
941 victim_pvo = NULL;
942 pvoh = &pmap_pvo_table[ptegidx];
943 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
944
945 /*
946 * We need to find pvo entry for this address...
947 */
948 PMAP_PVO_CHECK(pvo); /* sanity check */
949
950 /*
951 * If we haven't found the source and we come to a PVO with
952 * a valid PTE, then we know we can't find it because all
953 * evicted PVOs always are first in the list.
954 */
955 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
956 break;
957 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
958 addr == PVO_VADDR(pvo)) {
959
960 /*
961 * Now we have found the entry to be spilled into the
962 * pteg. Attempt to insert it into the page table.
963 */
964 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
965 if (j >= 0) {
966 PVO_PTEGIDX_SET(pvo, j);
967 PMAP_PVO_CHECK(pvo); /* sanity check */
968 PVO_WHERE(pvo, SPILL_INSERT);
969 pvo->pvo_pmap->pm_evictions--;
970 PMAPCOUNT(ptes_spilled);
971 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
972 ? pmap_evcnt_ptes_secondary
973 : pmap_evcnt_ptes_primary)[j]);
974
975 /*
976 * Since we keep the evicted entries at the
977 * from of the PVO list, we need move this
978 * (now resident) PVO after the evicted
979 * entries.
980 */
981 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
982
983 /*
984 * If we don't have to move (either we were the
985 * last entry or the next entry was valid),
986 * don't change our position. Otherwise
987 * move ourselves to the tail of the queue.
988 */
989 if (next_pvo != NULL &&
990 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
991 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
992 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
993 }
994 PMAP_UNLOCK();
995 return 1;
996 }
997 source_pvo = pvo;
998 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
999 return 0;
1000 }
1001 if (victim_pvo != NULL)
1002 break;
1003 }
1004
1005 /*
1006 * We also need the pvo entry of the victim we are replacing
1007 * so save the R & C bits of the PTE.
1008 */
1009 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1010 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1011 vpvoh = pvoh; /* *1* */
1012 victim_pvo = pvo;
1013 if (source_pvo != NULL)
1014 break;
1015 }
1016 }
1017
1018 if (source_pvo == NULL) {
1019 PMAPCOUNT(ptes_unspilled);
1020 PMAP_UNLOCK();
1021 return 0;
1022 }
1023
1024 if (victim_pvo == NULL) {
1025 if ((pt->pte_hi & PTE_HID) == 0)
1026 panic("pmap_pte_spill: victim p-pte (%p) has "
1027 "no pvo entry!", pt);
1028
1029 /*
1030 * If this is a secondary PTE, we need to search
1031 * its primary pvo bucket for the matching PVO.
1032 */
1033 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1034 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1035 PMAP_PVO_CHECK(pvo); /* sanity check */
1036
1037 /*
1038 * We also need the pvo entry of the victim we are
1039 * replacing so save the R & C bits of the PTE.
1040 */
1041 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1042 victim_pvo = pvo;
1043 break;
1044 }
1045 }
1046 if (victim_pvo == NULL)
1047 panic("pmap_pte_spill: victim s-pte (%p) has "
1048 "no pvo entry!", pt);
1049 }
1050
1051 /*
1052 * The victim should be not be a kernel PVO/PTE entry.
1053 */
1054 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1055 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1056 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1057
1058 /*
1059 * We are invalidating the TLB entry for the EA for the
1060 * we are replacing even though its valid; If we don't
1061 * we lose any ref/chg bit changes contained in the TLB
1062 * entry.
1063 */
1064 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1065
1066 /*
1067 * To enforce the PVO list ordering constraint that all
1068 * evicted entries should come before all valid entries,
1069 * move the source PVO to the tail of its list and the
1070 * victim PVO to the head of its list (which might not be
1071 * the same list, if the victim was using the secondary hash).
1072 */
1073 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1074 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1075 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1076 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1077 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1078 pmap_pte_set(pt, &source_pvo->pvo_pte);
1079 victim_pvo->pvo_pmap->pm_evictions++;
1080 source_pvo->pvo_pmap->pm_evictions--;
1081 PVO_WHERE(victim_pvo, SPILL_UNSET);
1082 PVO_WHERE(source_pvo, SPILL_SET);
1083
1084 PVO_PTEGIDX_CLR(victim_pvo);
1085 PVO_PTEGIDX_SET(source_pvo, i);
1086 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1087 PMAPCOUNT(ptes_spilled);
1088 PMAPCOUNT(ptes_evicted);
1089 PMAPCOUNT(ptes_removed);
1090
1091 PMAP_PVO_CHECK(victim_pvo);
1092 PMAP_PVO_CHECK(source_pvo);
1093
1094 PMAP_UNLOCK();
1095 return 1;
1096 }
1097
1098 /*
1099 * Restrict given range to physical memory
1100 */
1101 void
1102 pmap_real_memory(paddr_t *start, psize_t *size)
1103 {
1104 struct mem_region *mp;
1105
1106 for (mp = mem; mp->size; mp++) {
1107 if (*start + *size > mp->start
1108 && *start < mp->start + mp->size) {
1109 if (*start < mp->start) {
1110 *size -= mp->start - *start;
1111 *start = mp->start;
1112 }
1113 if (*start + *size > mp->start + mp->size)
1114 *size = mp->start + mp->size - *start;
1115 return;
1116 }
1117 }
1118 *size = 0;
1119 }
1120
1121 /*
1122 * Initialize anything else for pmap handling.
1123 * Called during vm_init().
1124 */
1125 void
1126 pmap_init(void)
1127 {
1128 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1129 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1130 &pmap_pool_mallocator, IPL_NONE);
1131
1132 pool_setlowat(&pmap_mpvo_pool, 1008);
1133
1134 pmap_initialized = 1;
1135
1136 }
1137
1138 /*
1139 * How much virtual space does the kernel get?
1140 */
1141 void
1142 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1143 {
1144 /*
1145 * For now, reserve one segment (minus some overhead) for kernel
1146 * virtual memory
1147 */
1148 *start = VM_MIN_KERNEL_ADDRESS;
1149 *end = VM_MAX_KERNEL_ADDRESS;
1150 }
1151
1152 /*
1153 * Allocate, initialize, and return a new physical map.
1154 */
1155 pmap_t
1156 pmap_create(void)
1157 {
1158 pmap_t pm;
1159
1160 pm = pool_get(&pmap_pool, PR_WAITOK);
1161 memset((void *)pm, 0, sizeof *pm);
1162 pmap_pinit(pm);
1163
1164 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1165 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1166 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1167 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1168 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1169 pm,
1170 pm->pm_sr[0], pm->pm_sr[1],
1171 pm->pm_sr[2], pm->pm_sr[3],
1172 pm->pm_sr[4], pm->pm_sr[5],
1173 pm->pm_sr[6], pm->pm_sr[7],
1174 pm->pm_sr[8], pm->pm_sr[9],
1175 pm->pm_sr[10], pm->pm_sr[11],
1176 pm->pm_sr[12], pm->pm_sr[13],
1177 pm->pm_sr[14], pm->pm_sr[15]));
1178 return pm;
1179 }
1180
1181 /*
1182 * Initialize a preallocated and zeroed pmap structure.
1183 */
1184 void
1185 pmap_pinit(pmap_t pm)
1186 {
1187 register_t entropy = MFTB();
1188 register_t mask;
1189 int i;
1190
1191 /*
1192 * Allocate some segment registers for this pmap.
1193 */
1194 pm->pm_refs = 1;
1195 PMAP_LOCK();
1196 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1197 static register_t pmap_vsidcontext;
1198 register_t hash;
1199 unsigned int n;
1200
1201 /* Create a new value by multiplying by a prime adding in
1202 * entropy from the timebase register. This is to make the
1203 * VSID more random so that the PT Hash function collides
1204 * less often. (note that the prime causes gcc to do shifts
1205 * instead of a multiply)
1206 */
1207 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1208 hash = pmap_vsidcontext & (NPMAPS - 1);
1209 if (hash == 0) { /* 0 is special, avoid it */
1210 entropy += 0xbadf00d;
1211 continue;
1212 }
1213 n = hash >> 5;
1214 mask = 1L << (hash & (VSID_NBPW-1));
1215 hash = pmap_vsidcontext;
1216 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1217 /* anything free in this bucket? */
1218 if (~pmap_vsid_bitmap[n] == 0) {
1219 entropy = hash ^ (hash >> 16);
1220 continue;
1221 }
1222 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1223 mask = 1L << i;
1224 hash &= ~(VSID_NBPW-1);
1225 hash |= i;
1226 }
1227 hash &= PTE_VSID >> PTE_VSID_SHFT;
1228 pmap_vsid_bitmap[n] |= mask;
1229 pm->pm_vsid = hash;
1230 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1231 for (i = 0; i < 16; i++)
1232 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1233 SR_NOEXEC;
1234 #endif
1235 PMAP_UNLOCK();
1236 return;
1237 }
1238 PMAP_UNLOCK();
1239 panic("pmap_pinit: out of segments");
1240 }
1241
1242 /*
1243 * Add a reference to the given pmap.
1244 */
1245 void
1246 pmap_reference(pmap_t pm)
1247 {
1248 atomic_inc_uint(&pm->pm_refs);
1249 }
1250
1251 /*
1252 * Retire the given pmap from service.
1253 * Should only be called if the map contains no valid mappings.
1254 */
1255 void
1256 pmap_destroy(pmap_t pm)
1257 {
1258 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1259 pmap_release(pm);
1260 pool_put(&pmap_pool, pm);
1261 }
1262 }
1263
1264 /*
1265 * Release any resources held by the given physical map.
1266 * Called when a pmap initialized by pmap_pinit is being released.
1267 */
1268 void
1269 pmap_release(pmap_t pm)
1270 {
1271 int idx, mask;
1272
1273 KASSERT(pm->pm_stats.resident_count == 0);
1274 KASSERT(pm->pm_stats.wired_count == 0);
1275
1276 PMAP_LOCK();
1277 if (pm->pm_sr[0] == 0)
1278 panic("pmap_release");
1279 idx = pm->pm_vsid & (NPMAPS-1);
1280 mask = 1 << (idx % VSID_NBPW);
1281 idx /= VSID_NBPW;
1282
1283 KASSERT(pmap_vsid_bitmap[idx] & mask);
1284 pmap_vsid_bitmap[idx] &= ~mask;
1285 PMAP_UNLOCK();
1286 }
1287
1288 /*
1289 * Copy the range specified by src_addr/len
1290 * from the source map to the range dst_addr/len
1291 * in the destination map.
1292 *
1293 * This routine is only advisory and need not do anything.
1294 */
1295 void
1296 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1297 vsize_t len, vaddr_t src_addr)
1298 {
1299 PMAPCOUNT(copies);
1300 }
1301
1302 /*
1303 * Require that all active physical maps contain no
1304 * incorrect entries NOW.
1305 */
1306 void
1307 pmap_update(struct pmap *pmap)
1308 {
1309 PMAPCOUNT(updates);
1310 TLBSYNC();
1311 }
1312
1313 /*
1314 * Garbage collects the physical map system for
1315 * pages which are no longer used.
1316 * Success need not be guaranteed -- that is, there
1317 * may well be pages which are not referenced, but
1318 * others may be collected.
1319 * Called by the pageout daemon when pages are scarce.
1320 */
1321 void
1322 pmap_collect(pmap_t pm)
1323 {
1324 PMAPCOUNT(collects);
1325 }
1326
1327 static inline int
1328 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1329 {
1330 int pteidx;
1331 /*
1332 * We can find the actual pte entry without searching by
1333 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1334 * and by noticing the HID bit.
1335 */
1336 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1337 if (pvo->pvo_pte.pte_hi & PTE_HID)
1338 pteidx ^= pmap_pteg_mask * 8;
1339 return pteidx;
1340 }
1341
1342 volatile struct pte *
1343 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1344 {
1345 volatile struct pte *pt;
1346
1347 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1349 return NULL;
1350 #endif
1351
1352 /*
1353 * If we haven't been supplied the ptegidx, calculate it.
1354 */
1355 if (pteidx == -1) {
1356 int ptegidx;
1357 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1358 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1359 }
1360
1361 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1362
1363 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1364 return pt;
1365 #else
1366 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1367 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1368 "pvo but no valid pte index", pvo);
1369 }
1370 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1371 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1372 "pvo but no valid pte", pvo);
1373 }
1374
1375 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1376 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1377 #if defined(DEBUG) || defined(PMAPCHECK)
1378 pmap_pte_print(pt);
1379 #endif
1380 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1381 "pmap_pteg_table %p but invalid in pvo",
1382 pvo, pt);
1383 }
1384 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1385 #if defined(DEBUG) || defined(PMAPCHECK)
1386 pmap_pte_print(pt);
1387 #endif
1388 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1389 "not match pte %p in pmap_pteg_table",
1390 pvo, pt);
1391 }
1392 return pt;
1393 }
1394
1395 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1396 #if defined(DEBUG) || defined(PMAPCHECK)
1397 pmap_pte_print(pt);
1398 #endif
1399 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1400 "pmap_pteg_table but valid in pvo", pvo, pt);
1401 }
1402 return NULL;
1403 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1404 }
1405
1406 struct pvo_entry *
1407 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1408 {
1409 struct pvo_entry *pvo;
1410 int ptegidx;
1411
1412 va &= ~ADDR_POFF;
1413 ptegidx = va_to_pteg(pm, va);
1414
1415 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1416 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1417 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1418 panic("pmap_pvo_find_va: invalid pvo %p on "
1419 "list %#x (%p)", pvo, ptegidx,
1420 &pmap_pvo_table[ptegidx]);
1421 #endif
1422 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1423 if (pteidx_p)
1424 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1425 return pvo;
1426 }
1427 }
1428 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1429 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1430 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1431 return NULL;
1432 }
1433
1434 #if defined(DEBUG) || defined(PMAPCHECK)
1435 void
1436 pmap_pvo_check(const struct pvo_entry *pvo)
1437 {
1438 struct pvo_head *pvo_head;
1439 struct pvo_entry *pvo0;
1440 volatile struct pte *pt;
1441 int failed = 0;
1442
1443 PMAP_LOCK();
1444
1445 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1446 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1447
1448 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1449 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1450 pvo, pvo->pvo_pmap);
1451 failed = 1;
1452 }
1453
1454 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1455 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1456 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1457 pvo, TAILQ_NEXT(pvo, pvo_olink));
1458 failed = 1;
1459 }
1460
1461 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1462 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1463 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1464 pvo, LIST_NEXT(pvo, pvo_vlink));
1465 failed = 1;
1466 }
1467
1468 if (PVO_MANAGED_P(pvo)) {
1469 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1470 } else {
1471 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1472 printf("pmap_pvo_check: pvo %p: non kernel address "
1473 "on kernel unmanaged list\n", pvo);
1474 failed = 1;
1475 }
1476 pvo_head = &pmap_pvo_kunmanaged;
1477 }
1478 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1479 if (pvo0 == pvo)
1480 break;
1481 }
1482 if (pvo0 == NULL) {
1483 printf("pmap_pvo_check: pvo %p: not present "
1484 "on its vlist head %p\n", pvo, pvo_head);
1485 failed = 1;
1486 }
1487 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1488 printf("pmap_pvo_check: pvo %p: not present "
1489 "on its olist head\n", pvo);
1490 failed = 1;
1491 }
1492 pt = pmap_pvo_to_pte(pvo, -1);
1493 if (pt == NULL) {
1494 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1495 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1496 "no PTE\n", pvo);
1497 failed = 1;
1498 }
1499 } else {
1500 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1501 (uintptr_t) pt >=
1502 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1503 printf("pmap_pvo_check: pvo %p: pte %p not in "
1504 "pteg table\n", pvo, pt);
1505 failed = 1;
1506 }
1507 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1508 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1509 "no PTE\n", pvo);
1510 failed = 1;
1511 }
1512 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1513 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1514 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1515 pvo->pvo_pte.pte_hi,
1516 pt->pte_hi);
1517 failed = 1;
1518 }
1519 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1520 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1521 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1522 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1523 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1524 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1525 failed = 1;
1526 }
1527 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1528 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1529 " doesn't not match PVO's VA %#" _PRIxva "\n",
1530 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1531 failed = 1;
1532 }
1533 if (failed)
1534 pmap_pte_print(pt);
1535 }
1536 if (failed)
1537 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1538 pvo->pvo_pmap);
1539
1540 PMAP_UNLOCK();
1541 }
1542 #endif /* DEBUG || PMAPCHECK */
1543
1544 /*
1545 * Search the PVO table looking for a non-wired entry.
1546 * If we find one, remove it and return it.
1547 */
1548
1549 struct pvo_entry *
1550 pmap_pvo_reclaim(struct pmap *pm)
1551 {
1552 struct pvo_tqhead *pvoh;
1553 struct pvo_entry *pvo;
1554 uint32_t idx, endidx;
1555
1556 endidx = pmap_pvo_reclaim_nextidx;
1557 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1558 idx = (idx + 1) & pmap_pteg_mask) {
1559 pvoh = &pmap_pvo_table[idx];
1560 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1561 if (!PVO_WIRED_P(pvo)) {
1562 pmap_pvo_remove(pvo, -1, NULL);
1563 pmap_pvo_reclaim_nextidx = idx;
1564 PMAPCOUNT(pvos_reclaimed);
1565 return pvo;
1566 }
1567 }
1568 }
1569 return NULL;
1570 }
1571
1572 /*
1573 * This returns whether this is the first mapping of a page.
1574 */
1575 int
1576 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1577 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1578 {
1579 struct pvo_entry *pvo;
1580 struct pvo_tqhead *pvoh;
1581 register_t msr;
1582 int ptegidx;
1583 int i;
1584 int poolflags = PR_NOWAIT;
1585
1586 /*
1587 * Compute the PTE Group index.
1588 */
1589 va &= ~ADDR_POFF;
1590 ptegidx = va_to_pteg(pm, va);
1591
1592 msr = pmap_interrupts_off();
1593
1594 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1595 if (pmap_pvo_remove_depth > 0)
1596 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1597 if (++pmap_pvo_enter_depth > 1)
1598 panic("pmap_pvo_enter: called recursively!");
1599 #endif
1600
1601 /*
1602 * Remove any existing mapping for this page. Reuse the
1603 * pvo entry if there a mapping.
1604 */
1605 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1606 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1607 #ifdef DEBUG
1608 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1609 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1610 ~(PTE_REF|PTE_CHG)) == 0 &&
1611 va < VM_MIN_KERNEL_ADDRESS) {
1612 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1613 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1614 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1615 pvo->pvo_pte.pte_hi,
1616 pm->pm_sr[va >> ADDR_SR_SHFT]);
1617 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1618 #ifdef DDBX
1619 Debugger();
1620 #endif
1621 }
1622 #endif
1623 PMAPCOUNT(mappings_replaced);
1624 pmap_pvo_remove(pvo, -1, NULL);
1625 break;
1626 }
1627 }
1628
1629 /*
1630 * If we aren't overwriting an mapping, try to allocate
1631 */
1632 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1633 --pmap_pvo_enter_depth;
1634 #endif
1635 pmap_interrupts_restore(msr);
1636 if (pvo) {
1637 pmap_pvo_free(pvo);
1638 }
1639 pvo = pool_get(pl, poolflags);
1640
1641 #ifdef DEBUG
1642 /*
1643 * Exercise pmap_pvo_reclaim() a little.
1644 */
1645 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1646 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1647 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1648 pool_put(pl, pvo);
1649 pvo = NULL;
1650 }
1651 #endif
1652
1653 msr = pmap_interrupts_off();
1654 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1655 ++pmap_pvo_enter_depth;
1656 #endif
1657 if (pvo == NULL) {
1658 pvo = pmap_pvo_reclaim(pm);
1659 if (pvo == NULL) {
1660 if ((flags & PMAP_CANFAIL) == 0)
1661 panic("pmap_pvo_enter: failed");
1662 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1663 pmap_pvo_enter_depth--;
1664 #endif
1665 PMAPCOUNT(pvos_failed);
1666 pmap_interrupts_restore(msr);
1667 return ENOMEM;
1668 }
1669 }
1670
1671 pvo->pvo_vaddr = va;
1672 pvo->pvo_pmap = pm;
1673 pvo->pvo_vaddr &= ~ADDR_POFF;
1674 if (flags & VM_PROT_EXECUTE) {
1675 PMAPCOUNT(exec_mappings);
1676 pvo_set_exec(pvo);
1677 }
1678 if (flags & PMAP_WIRED)
1679 pvo->pvo_vaddr |= PVO_WIRED;
1680 if (pvo_head != &pmap_pvo_kunmanaged) {
1681 pvo->pvo_vaddr |= PVO_MANAGED;
1682 PMAPCOUNT(mappings);
1683 } else {
1684 PMAPCOUNT(kernel_mappings);
1685 }
1686 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1687
1688 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1689 if (PVO_WIRED_P(pvo))
1690 pvo->pvo_pmap->pm_stats.wired_count++;
1691 pvo->pvo_pmap->pm_stats.resident_count++;
1692 #if defined(DEBUG)
1693 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1694 DPRINTFN(PVOENTER,
1695 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1696 pvo, pm, va, pa));
1697 #endif
1698
1699 /*
1700 * We hope this succeeds but it isn't required.
1701 */
1702 pvoh = &pmap_pvo_table[ptegidx];
1703 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1704 if (i >= 0) {
1705 PVO_PTEGIDX_SET(pvo, i);
1706 PVO_WHERE(pvo, ENTER_INSERT);
1707 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1708 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1709 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1710
1711 } else {
1712 /*
1713 * Since we didn't have room for this entry (which makes it
1714 * and evicted entry), place it at the head of the list.
1715 */
1716 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1717 PMAPCOUNT(ptes_evicted);
1718 pm->pm_evictions++;
1719 /*
1720 * If this is a kernel page, make sure it's active.
1721 */
1722 if (pm == pmap_kernel()) {
1723 i = pmap_pte_spill(pm, va, false);
1724 KASSERT(i);
1725 }
1726 }
1727 PMAP_PVO_CHECK(pvo); /* sanity check */
1728 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1729 pmap_pvo_enter_depth--;
1730 #endif
1731 pmap_interrupts_restore(msr);
1732 return 0;
1733 }
1734
1735 static void
1736 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1737 {
1738 volatile struct pte *pt;
1739 int ptegidx;
1740
1741 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1742 if (++pmap_pvo_remove_depth > 1)
1743 panic("pmap_pvo_remove: called recursively!");
1744 #endif
1745
1746 /*
1747 * If we haven't been supplied the ptegidx, calculate it.
1748 */
1749 if (pteidx == -1) {
1750 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1751 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1752 } else {
1753 ptegidx = pteidx >> 3;
1754 if (pvo->pvo_pte.pte_hi & PTE_HID)
1755 ptegidx ^= pmap_pteg_mask;
1756 }
1757 PMAP_PVO_CHECK(pvo); /* sanity check */
1758
1759 /*
1760 * If there is an active pte entry, we need to deactivate it
1761 * (and save the ref & chg bits).
1762 */
1763 pt = pmap_pvo_to_pte(pvo, pteidx);
1764 if (pt != NULL) {
1765 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1766 PVO_WHERE(pvo, REMOVE);
1767 PVO_PTEGIDX_CLR(pvo);
1768 PMAPCOUNT(ptes_removed);
1769 } else {
1770 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1771 pvo->pvo_pmap->pm_evictions--;
1772 }
1773
1774 /*
1775 * Account for executable mappings.
1776 */
1777 if (PVO_EXECUTABLE_P(pvo))
1778 pvo_clear_exec(pvo);
1779
1780 /*
1781 * Update our statistics.
1782 */
1783 pvo->pvo_pmap->pm_stats.resident_count--;
1784 if (PVO_WIRED_P(pvo))
1785 pvo->pvo_pmap->pm_stats.wired_count--;
1786
1787 /*
1788 * Save the REF/CHG bits into their cache if the page is managed.
1789 */
1790 if (PVO_MANAGED_P(pvo)) {
1791 register_t ptelo = pvo->pvo_pte.pte_lo;
1792 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1793
1794 if (pg != NULL) {
1795 /*
1796 * If this page was changed and it is mapped exec,
1797 * invalidate it.
1798 */
1799 if ((ptelo & PTE_CHG) &&
1800 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1801 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1802 if (LIST_EMPTY(pvoh)) {
1803 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1804 "%#" _PRIxpa ": clear-exec]\n",
1805 VM_PAGE_TO_PHYS(pg)));
1806 pmap_attr_clear(pg, PTE_EXEC);
1807 PMAPCOUNT(exec_uncached_pvo_remove);
1808 } else {
1809 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1810 "%#" _PRIxpa ": syncicache]\n",
1811 VM_PAGE_TO_PHYS(pg)));
1812 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1813 PAGE_SIZE);
1814 PMAPCOUNT(exec_synced_pvo_remove);
1815 }
1816 }
1817
1818 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1819 }
1820 PMAPCOUNT(unmappings);
1821 } else {
1822 PMAPCOUNT(kernel_unmappings);
1823 }
1824
1825 /*
1826 * Remove the PVO from its lists and return it to the pool.
1827 */
1828 LIST_REMOVE(pvo, pvo_vlink);
1829 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1830 if (pvol) {
1831 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1832 }
1833 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1834 pmap_pvo_remove_depth--;
1835 #endif
1836 }
1837
1838 void
1839 pmap_pvo_free(struct pvo_entry *pvo)
1840 {
1841
1842 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1843 }
1844
1845 void
1846 pmap_pvo_free_list(struct pvo_head *pvol)
1847 {
1848 struct pvo_entry *pvo, *npvo;
1849
1850 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1851 npvo = LIST_NEXT(pvo, pvo_vlink);
1852 LIST_REMOVE(pvo, pvo_vlink);
1853 pmap_pvo_free(pvo);
1854 }
1855 }
1856
1857 /*
1858 * Mark a mapping as executable.
1859 * If this is the first executable mapping in the segment,
1860 * clear the noexec flag.
1861 */
1862 static void
1863 pvo_set_exec(struct pvo_entry *pvo)
1864 {
1865 struct pmap *pm = pvo->pvo_pmap;
1866
1867 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1868 return;
1869 }
1870 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1871 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1872 {
1873 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1874 if (pm->pm_exec[sr]++ == 0) {
1875 pm->pm_sr[sr] &= ~SR_NOEXEC;
1876 }
1877 }
1878 #endif
1879 }
1880
1881 /*
1882 * Mark a mapping as non-executable.
1883 * If this was the last executable mapping in the segment,
1884 * set the noexec flag.
1885 */
1886 static void
1887 pvo_clear_exec(struct pvo_entry *pvo)
1888 {
1889 struct pmap *pm = pvo->pvo_pmap;
1890
1891 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1892 return;
1893 }
1894 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1895 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1896 {
1897 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1898 if (--pm->pm_exec[sr] == 0) {
1899 pm->pm_sr[sr] |= SR_NOEXEC;
1900 }
1901 }
1902 #endif
1903 }
1904
1905 /*
1906 * Insert physical page at pa into the given pmap at virtual address va.
1907 */
1908 int
1909 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1910 {
1911 struct mem_region *mp;
1912 struct pvo_head *pvo_head;
1913 struct vm_page *pg;
1914 struct pool *pl;
1915 register_t pte_lo;
1916 int error;
1917 u_int pvo_flags;
1918 u_int was_exec = 0;
1919
1920 PMAP_LOCK();
1921
1922 if (__predict_false(!pmap_initialized)) {
1923 pvo_head = &pmap_pvo_kunmanaged;
1924 pl = &pmap_upvo_pool;
1925 pvo_flags = 0;
1926 pg = NULL;
1927 was_exec = PTE_EXEC;
1928 } else {
1929 pvo_head = pa_to_pvoh(pa, &pg);
1930 pl = &pmap_mpvo_pool;
1931 pvo_flags = PVO_MANAGED;
1932 }
1933
1934 DPRINTFN(ENTER,
1935 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1936 pm, va, pa, prot, flags));
1937
1938 /*
1939 * If this is a managed page, and it's the first reference to the
1940 * page clear the execness of the page. Otherwise fetch the execness.
1941 */
1942 if (pg != NULL)
1943 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1944
1945 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1946
1947 /*
1948 * Assume the page is cache inhibited and access is guarded unless
1949 * it's in our available memory array. If it is in the memory array,
1950 * asssume it's in memory coherent memory.
1951 */
1952 pte_lo = PTE_IG;
1953 if ((flags & PMAP_NC) == 0) {
1954 for (mp = mem; mp->size; mp++) {
1955 if (pa >= mp->start && pa < mp->start + mp->size) {
1956 pte_lo = PTE_M;
1957 break;
1958 }
1959 }
1960 }
1961
1962 if (prot & VM_PROT_WRITE)
1963 pte_lo |= PTE_BW;
1964 else
1965 pte_lo |= PTE_BR;
1966
1967 /*
1968 * If this was in response to a fault, "pre-fault" the PTE's
1969 * changed/referenced bit appropriately.
1970 */
1971 if (flags & VM_PROT_WRITE)
1972 pte_lo |= PTE_CHG;
1973 if (flags & VM_PROT_ALL)
1974 pte_lo |= PTE_REF;
1975
1976 /*
1977 * We need to know if this page can be executable
1978 */
1979 flags |= (prot & VM_PROT_EXECUTE);
1980
1981 /*
1982 * Record mapping for later back-translation and pte spilling.
1983 * This will overwrite any existing mapping.
1984 */
1985 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1986
1987 /*
1988 * Flush the real page from the instruction cache if this page is
1989 * mapped executable and cacheable and has not been flushed since
1990 * the last time it was modified.
1991 */
1992 if (error == 0 &&
1993 (flags & VM_PROT_EXECUTE) &&
1994 (pte_lo & PTE_I) == 0 &&
1995 was_exec == 0) {
1996 DPRINTFN(ENTER, (" syncicache"));
1997 PMAPCOUNT(exec_synced);
1998 pmap_syncicache(pa, PAGE_SIZE);
1999 if (pg != NULL) {
2000 pmap_attr_save(pg, PTE_EXEC);
2001 PMAPCOUNT(exec_cached);
2002 #if defined(DEBUG) || defined(PMAPDEBUG)
2003 if (pmapdebug & PMAPDEBUG_ENTER)
2004 printf(" marked-as-exec");
2005 else if (pmapdebug & PMAPDEBUG_EXEC)
2006 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2007 VM_PAGE_TO_PHYS(pg));
2008
2009 #endif
2010 }
2011 }
2012
2013 DPRINTFN(ENTER, (": error=%d\n", error));
2014
2015 PMAP_UNLOCK();
2016
2017 return error;
2018 }
2019
2020 void
2021 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2022 {
2023 struct mem_region *mp;
2024 register_t pte_lo;
2025 int error;
2026
2027 #if defined (PMAP_OEA64_BRIDGE)
2028 if (va < VM_MIN_KERNEL_ADDRESS)
2029 panic("pmap_kenter_pa: attempt to enter "
2030 "non-kernel address %#" _PRIxva "!", va);
2031 #endif
2032
2033 DPRINTFN(KENTER,
2034 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2035
2036 PMAP_LOCK();
2037
2038 /*
2039 * Assume the page is cache inhibited and access is guarded unless
2040 * it's in our available memory array. If it is in the memory array,
2041 * asssume it's in memory coherent memory.
2042 */
2043 pte_lo = PTE_IG;
2044 if ((prot & PMAP_NC) == 0) {
2045 for (mp = mem; mp->size; mp++) {
2046 if (pa >= mp->start && pa < mp->start + mp->size) {
2047 pte_lo = PTE_M;
2048 break;
2049 }
2050 }
2051 }
2052
2053 if (prot & VM_PROT_WRITE)
2054 pte_lo |= PTE_BW;
2055 else
2056 pte_lo |= PTE_BR;
2057
2058 /*
2059 * We don't care about REF/CHG on PVOs on the unmanaged list.
2060 */
2061 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2062 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2063
2064 if (error != 0)
2065 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2066 va, pa, error);
2067
2068 PMAP_UNLOCK();
2069 }
2070
2071 void
2072 pmap_kremove(vaddr_t va, vsize_t len)
2073 {
2074 if (va < VM_MIN_KERNEL_ADDRESS)
2075 panic("pmap_kremove: attempt to remove "
2076 "non-kernel address %#" _PRIxva "!", va);
2077
2078 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2079 pmap_remove(pmap_kernel(), va, va + len);
2080 }
2081
2082 /*
2083 * Remove the given range of mapping entries.
2084 */
2085 void
2086 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2087 {
2088 struct pvo_head pvol;
2089 struct pvo_entry *pvo;
2090 register_t msr;
2091 int pteidx;
2092
2093 PMAP_LOCK();
2094 LIST_INIT(&pvol);
2095 msr = pmap_interrupts_off();
2096 for (; va < endva; va += PAGE_SIZE) {
2097 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2098 if (pvo != NULL) {
2099 pmap_pvo_remove(pvo, pteidx, &pvol);
2100 }
2101 }
2102 pmap_interrupts_restore(msr);
2103 pmap_pvo_free_list(&pvol);
2104 PMAP_UNLOCK();
2105 }
2106
2107 /*
2108 * Get the physical page address for the given pmap/virtual address.
2109 */
2110 bool
2111 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2112 {
2113 struct pvo_entry *pvo;
2114 register_t msr;
2115
2116 PMAP_LOCK();
2117
2118 /*
2119 * If this is a kernel pmap lookup, also check the battable
2120 * and if we get a hit, translate the VA to a PA using the
2121 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2122 * that will wrap back to 0.
2123 */
2124 if (pm == pmap_kernel() &&
2125 (va < VM_MIN_KERNEL_ADDRESS ||
2126 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2127 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2128 #if defined (PMAP_OEA)
2129 #ifdef PPC_OEA601
2130 if ((MFPVR() >> 16) == MPC601) {
2131 register_t batu = battable[va >> 23].batu;
2132 register_t batl = battable[va >> 23].batl;
2133 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2134 if (BAT601_VALID_P(batl) &&
2135 BAT601_VA_MATCH_P(batu, batl, va)) {
2136 register_t mask =
2137 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2138 if (pap)
2139 *pap = (batl & mask) | (va & ~mask);
2140 PMAP_UNLOCK();
2141 return true;
2142 } else if (SR601_VALID_P(sr) &&
2143 SR601_PA_MATCH_P(sr, va)) {
2144 if (pap)
2145 *pap = va;
2146 PMAP_UNLOCK();
2147 return true;
2148 }
2149 } else
2150 #endif /* PPC_OEA601 */
2151 {
2152 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2153 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2154 register_t batl =
2155 battable[va >> ADDR_SR_SHFT].batl;
2156 register_t mask =
2157 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2158 if (pap)
2159 *pap = (batl & mask) | (va & ~mask);
2160 PMAP_UNLOCK();
2161 return true;
2162 }
2163 }
2164 return false;
2165 #elif defined (PMAP_OEA64_BRIDGE)
2166 if (va >= SEGMENT_LENGTH)
2167 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2168 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2169 else {
2170 if (pap)
2171 *pap = va;
2172 PMAP_UNLOCK();
2173 return true;
2174 }
2175 #elif defined (PMAP_OEA64)
2176 #error PPC_OEA64 not supported
2177 #endif /* PPC_OEA */
2178 }
2179
2180 msr = pmap_interrupts_off();
2181 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2182 if (pvo != NULL) {
2183 PMAP_PVO_CHECK(pvo); /* sanity check */
2184 if (pap)
2185 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2186 | (va & ADDR_POFF);
2187 }
2188 pmap_interrupts_restore(msr);
2189 PMAP_UNLOCK();
2190 return pvo != NULL;
2191 }
2192
2193 /*
2194 * Lower the protection on the specified range of this pmap.
2195 */
2196 void
2197 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2198 {
2199 struct pvo_entry *pvo;
2200 volatile struct pte *pt;
2201 register_t msr;
2202 int pteidx;
2203
2204 /*
2205 * Since this routine only downgrades protection, we should
2206 * always be called with at least one bit not set.
2207 */
2208 KASSERT(prot != VM_PROT_ALL);
2209
2210 /*
2211 * If there is no protection, this is equivalent to
2212 * remove the pmap from the pmap.
2213 */
2214 if ((prot & VM_PROT_READ) == 0) {
2215 pmap_remove(pm, va, endva);
2216 return;
2217 }
2218
2219 PMAP_LOCK();
2220
2221 msr = pmap_interrupts_off();
2222 for (; va < endva; va += PAGE_SIZE) {
2223 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2224 if (pvo == NULL)
2225 continue;
2226 PMAP_PVO_CHECK(pvo); /* sanity check */
2227
2228 /*
2229 * Revoke executable if asked to do so.
2230 */
2231 if ((prot & VM_PROT_EXECUTE) == 0)
2232 pvo_clear_exec(pvo);
2233
2234 #if 0
2235 /*
2236 * If the page is already read-only, no change
2237 * needs to be made.
2238 */
2239 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2240 continue;
2241 #endif
2242 /*
2243 * Grab the PTE pointer before we diddle with
2244 * the cached PTE copy.
2245 */
2246 pt = pmap_pvo_to_pte(pvo, pteidx);
2247 /*
2248 * Change the protection of the page.
2249 */
2250 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2251 pvo->pvo_pte.pte_lo |= PTE_BR;
2252
2253 /*
2254 * If the PVO is in the page table, update
2255 * that pte at well.
2256 */
2257 if (pt != NULL) {
2258 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2259 PVO_WHERE(pvo, PMAP_PROTECT);
2260 PMAPCOUNT(ptes_changed);
2261 }
2262
2263 PMAP_PVO_CHECK(pvo); /* sanity check */
2264 }
2265 pmap_interrupts_restore(msr);
2266 PMAP_UNLOCK();
2267 }
2268
2269 void
2270 pmap_unwire(pmap_t pm, vaddr_t va)
2271 {
2272 struct pvo_entry *pvo;
2273 register_t msr;
2274
2275 PMAP_LOCK();
2276 msr = pmap_interrupts_off();
2277 pvo = pmap_pvo_find_va(pm, va, NULL);
2278 if (pvo != NULL) {
2279 if (PVO_WIRED_P(pvo)) {
2280 pvo->pvo_vaddr &= ~PVO_WIRED;
2281 pm->pm_stats.wired_count--;
2282 }
2283 PMAP_PVO_CHECK(pvo); /* sanity check */
2284 }
2285 pmap_interrupts_restore(msr);
2286 PMAP_UNLOCK();
2287 }
2288
2289 /*
2290 * Lower the protection on the specified physical page.
2291 */
2292 void
2293 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2294 {
2295 struct pvo_head *pvo_head, pvol;
2296 struct pvo_entry *pvo, *next_pvo;
2297 volatile struct pte *pt;
2298 register_t msr;
2299
2300 PMAP_LOCK();
2301
2302 KASSERT(prot != VM_PROT_ALL);
2303 LIST_INIT(&pvol);
2304 msr = pmap_interrupts_off();
2305
2306 /*
2307 * When UVM reuses a page, it does a pmap_page_protect with
2308 * VM_PROT_NONE. At that point, we can clear the exec flag
2309 * since we know the page will have different contents.
2310 */
2311 if ((prot & VM_PROT_READ) == 0) {
2312 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2313 VM_PAGE_TO_PHYS(pg)));
2314 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2315 PMAPCOUNT(exec_uncached_page_protect);
2316 pmap_attr_clear(pg, PTE_EXEC);
2317 }
2318 }
2319
2320 pvo_head = vm_page_to_pvoh(pg);
2321 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2322 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2323 PMAP_PVO_CHECK(pvo); /* sanity check */
2324
2325 /*
2326 * Downgrading to no mapping at all, we just remove the entry.
2327 */
2328 if ((prot & VM_PROT_READ) == 0) {
2329 pmap_pvo_remove(pvo, -1, &pvol);
2330 continue;
2331 }
2332
2333 /*
2334 * If EXEC permission is being revoked, just clear the
2335 * flag in the PVO.
2336 */
2337 if ((prot & VM_PROT_EXECUTE) == 0)
2338 pvo_clear_exec(pvo);
2339
2340 /*
2341 * If this entry is already RO, don't diddle with the
2342 * page table.
2343 */
2344 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2345 PMAP_PVO_CHECK(pvo);
2346 continue;
2347 }
2348
2349 /*
2350 * Grab the PTE before the we diddle the bits so
2351 * pvo_to_pte can verify the pte contents are as
2352 * expected.
2353 */
2354 pt = pmap_pvo_to_pte(pvo, -1);
2355 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2356 pvo->pvo_pte.pte_lo |= PTE_BR;
2357 if (pt != NULL) {
2358 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2359 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2360 PMAPCOUNT(ptes_changed);
2361 }
2362 PMAP_PVO_CHECK(pvo); /* sanity check */
2363 }
2364 pmap_interrupts_restore(msr);
2365 pmap_pvo_free_list(&pvol);
2366
2367 PMAP_UNLOCK();
2368 }
2369
2370 /*
2371 * Activate the address space for the specified process. If the process
2372 * is the current process, load the new MMU context.
2373 */
2374 void
2375 pmap_activate(struct lwp *l)
2376 {
2377 struct pcb *pcb = &l->l_addr->u_pcb;
2378 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2379
2380 DPRINTFN(ACTIVATE,
2381 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2382
2383 /*
2384 * XXX Normally performed in cpu_fork().
2385 */
2386 pcb->pcb_pm = pmap;
2387
2388 /*
2389 * In theory, the SR registers need only be valid on return
2390 * to user space wait to do them there.
2391 */
2392 if (l == curlwp) {
2393 /* Store pointer to new current pmap. */
2394 curpm = pmap;
2395 }
2396 }
2397
2398 /*
2399 * Deactivate the specified process's address space.
2400 */
2401 void
2402 pmap_deactivate(struct lwp *l)
2403 {
2404 }
2405
2406 bool
2407 pmap_query_bit(struct vm_page *pg, int ptebit)
2408 {
2409 struct pvo_entry *pvo;
2410 volatile struct pte *pt;
2411 register_t msr;
2412
2413 PMAP_LOCK();
2414
2415 if (pmap_attr_fetch(pg) & ptebit) {
2416 PMAP_UNLOCK();
2417 return true;
2418 }
2419
2420 msr = pmap_interrupts_off();
2421 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2422 PMAP_PVO_CHECK(pvo); /* sanity check */
2423 /*
2424 * See if we saved the bit off. If so cache, it and return
2425 * success.
2426 */
2427 if (pvo->pvo_pte.pte_lo & ptebit) {
2428 pmap_attr_save(pg, ptebit);
2429 PMAP_PVO_CHECK(pvo); /* sanity check */
2430 pmap_interrupts_restore(msr);
2431 PMAP_UNLOCK();
2432 return true;
2433 }
2434 }
2435 /*
2436 * No luck, now go thru the hard part of looking at the ptes
2437 * themselves. Sync so any pending REF/CHG bits are flushed
2438 * to the PTEs.
2439 */
2440 SYNC();
2441 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2442 PMAP_PVO_CHECK(pvo); /* sanity check */
2443 /*
2444 * See if this pvo have a valid PTE. If so, fetch the
2445 * REF/CHG bits from the valid PTE. If the appropriate
2446 * ptebit is set, cache, it and return success.
2447 */
2448 pt = pmap_pvo_to_pte(pvo, -1);
2449 if (pt != NULL) {
2450 pmap_pte_synch(pt, &pvo->pvo_pte);
2451 if (pvo->pvo_pte.pte_lo & ptebit) {
2452 pmap_attr_save(pg, ptebit);
2453 PMAP_PVO_CHECK(pvo); /* sanity check */
2454 pmap_interrupts_restore(msr);
2455 PMAP_UNLOCK();
2456 return true;
2457 }
2458 }
2459 }
2460 pmap_interrupts_restore(msr);
2461 PMAP_UNLOCK();
2462 return false;
2463 }
2464
2465 bool
2466 pmap_clear_bit(struct vm_page *pg, int ptebit)
2467 {
2468 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2469 struct pvo_entry *pvo;
2470 volatile struct pte *pt;
2471 register_t msr;
2472 int rv = 0;
2473
2474 PMAP_LOCK();
2475 msr = pmap_interrupts_off();
2476
2477 /*
2478 * Fetch the cache value
2479 */
2480 rv |= pmap_attr_fetch(pg);
2481
2482 /*
2483 * Clear the cached value.
2484 */
2485 pmap_attr_clear(pg, ptebit);
2486
2487 /*
2488 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2489 * can reset the right ones). Note that since the pvo entries and
2490 * list heads are accessed via BAT0 and are never placed in the
2491 * page table, we don't have to worry about further accesses setting
2492 * the REF/CHG bits.
2493 */
2494 SYNC();
2495
2496 /*
2497 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2498 * valid PTE. If so, clear the ptebit from the valid PTE.
2499 */
2500 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2501 PMAP_PVO_CHECK(pvo); /* sanity check */
2502 pt = pmap_pvo_to_pte(pvo, -1);
2503 if (pt != NULL) {
2504 /*
2505 * Only sync the PTE if the bit we are looking
2506 * for is not already set.
2507 */
2508 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2509 pmap_pte_synch(pt, &pvo->pvo_pte);
2510 /*
2511 * If the bit we are looking for was already set,
2512 * clear that bit in the pte.
2513 */
2514 if (pvo->pvo_pte.pte_lo & ptebit)
2515 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2516 }
2517 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2518 pvo->pvo_pte.pte_lo &= ~ptebit;
2519 PMAP_PVO_CHECK(pvo); /* sanity check */
2520 }
2521 pmap_interrupts_restore(msr);
2522
2523 /*
2524 * If we are clearing the modify bit and this page was marked EXEC
2525 * and the user of the page thinks the page was modified, then we
2526 * need to clean it from the icache if it's mapped or clear the EXEC
2527 * bit if it's not mapped. The page itself might not have the CHG
2528 * bit set if the modification was done via DMA to the page.
2529 */
2530 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2531 if (LIST_EMPTY(pvoh)) {
2532 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2533 VM_PAGE_TO_PHYS(pg)));
2534 pmap_attr_clear(pg, PTE_EXEC);
2535 PMAPCOUNT(exec_uncached_clear_modify);
2536 } else {
2537 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2538 VM_PAGE_TO_PHYS(pg)));
2539 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2540 PMAPCOUNT(exec_synced_clear_modify);
2541 }
2542 }
2543 PMAP_UNLOCK();
2544 return (rv & ptebit) != 0;
2545 }
2546
2547 void
2548 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2549 {
2550 struct pvo_entry *pvo;
2551 size_t offset = va & ADDR_POFF;
2552 int s;
2553
2554 PMAP_LOCK();
2555 s = splvm();
2556 while (len > 0) {
2557 size_t seglen = PAGE_SIZE - offset;
2558 if (seglen > len)
2559 seglen = len;
2560 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2561 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2562 pmap_syncicache(
2563 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2564 PMAP_PVO_CHECK(pvo);
2565 }
2566 va += seglen;
2567 len -= seglen;
2568 offset = 0;
2569 }
2570 splx(s);
2571 PMAP_UNLOCK();
2572 }
2573
2574 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2575 void
2576 pmap_pte_print(volatile struct pte *pt)
2577 {
2578 printf("PTE %p: ", pt);
2579
2580 #if defined(PMAP_OEA)
2581 /* High word: */
2582 printf("%#" _PRIxpte ": [", pt->pte_hi);
2583 #else
2584 printf("%#" _PRIxpte ": [", pt->pte_hi);
2585 #endif /* PMAP_OEA */
2586
2587 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2588 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2589
2590 printf("%#" _PRIxpte " %#" _PRIxpte "",
2591 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2592 pt->pte_hi & PTE_API);
2593 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2594 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2595 #else
2596 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2597 #endif /* PMAP_OEA */
2598
2599 /* Low word: */
2600 #if defined (PMAP_OEA)
2601 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2602 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2603 #else
2604 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2605 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2606 #endif
2607 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2608 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2609 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2610 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2611 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2612 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2613 switch (pt->pte_lo & PTE_PP) {
2614 case PTE_BR: printf("br]\n"); break;
2615 case PTE_BW: printf("bw]\n"); break;
2616 case PTE_SO: printf("so]\n"); break;
2617 case PTE_SW: printf("sw]\n"); break;
2618 }
2619 }
2620 #endif
2621
2622 #if defined(DDB)
2623 void
2624 pmap_pteg_check(void)
2625 {
2626 volatile struct pte *pt;
2627 int i;
2628 int ptegidx;
2629 u_int p_valid = 0;
2630 u_int s_valid = 0;
2631 u_int invalid = 0;
2632
2633 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2634 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2635 if (pt->pte_hi & PTE_VALID) {
2636 if (pt->pte_hi & PTE_HID)
2637 s_valid++;
2638 else
2639 {
2640 p_valid++;
2641 }
2642 } else
2643 invalid++;
2644 }
2645 }
2646 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2647 p_valid, p_valid, s_valid, s_valid,
2648 invalid, invalid);
2649 }
2650
2651 void
2652 pmap_print_mmuregs(void)
2653 {
2654 int i;
2655 u_int cpuvers;
2656 #ifndef PMAP_OEA64
2657 vaddr_t addr;
2658 register_t soft_sr[16];
2659 #endif
2660 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2661 struct bat soft_ibat[4];
2662 struct bat soft_dbat[4];
2663 #endif
2664 paddr_t sdr1;
2665
2666 cpuvers = MFPVR() >> 16;
2667 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2668 #ifndef PMAP_OEA64
2669 addr = 0;
2670 for (i = 0; i < 16; i++) {
2671 soft_sr[i] = MFSRIN(addr);
2672 addr += (1 << ADDR_SR_SHFT);
2673 }
2674 #endif
2675
2676 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2677 /* read iBAT (601: uBAT) registers */
2678 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2679 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2680 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2681 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2682 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2683 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2684 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2685 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2686
2687
2688 if (cpuvers != MPC601) {
2689 /* read dBAT registers */
2690 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2691 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2692 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2693 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2694 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2695 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2696 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2697 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2698 }
2699 #endif
2700
2701 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2702 #ifndef PMAP_OEA64
2703 printf("SR[]:\t");
2704 for (i = 0; i < 4; i++)
2705 printf("0x%08lx, ", soft_sr[i]);
2706 printf("\n\t");
2707 for ( ; i < 8; i++)
2708 printf("0x%08lx, ", soft_sr[i]);
2709 printf("\n\t");
2710 for ( ; i < 12; i++)
2711 printf("0x%08lx, ", soft_sr[i]);
2712 printf("\n\t");
2713 for ( ; i < 16; i++)
2714 printf("0x%08lx, ", soft_sr[i]);
2715 printf("\n");
2716 #endif
2717
2718 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2719 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2720 for (i = 0; i < 4; i++) {
2721 printf("0x%08lx 0x%08lx, ",
2722 soft_ibat[i].batu, soft_ibat[i].batl);
2723 if (i == 1)
2724 printf("\n\t");
2725 }
2726 if (cpuvers != MPC601) {
2727 printf("\ndBAT[]:\t");
2728 for (i = 0; i < 4; i++) {
2729 printf("0x%08lx 0x%08lx, ",
2730 soft_dbat[i].batu, soft_dbat[i].batl);
2731 if (i == 1)
2732 printf("\n\t");
2733 }
2734 }
2735 printf("\n");
2736 #endif /* PMAP_OEA... */
2737 }
2738
2739 void
2740 pmap_print_pte(pmap_t pm, vaddr_t va)
2741 {
2742 struct pvo_entry *pvo;
2743 volatile struct pte *pt;
2744 int pteidx;
2745
2746 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2747 if (pvo != NULL) {
2748 pt = pmap_pvo_to_pte(pvo, pteidx);
2749 if (pt != NULL) {
2750 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2751 va, pt,
2752 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2753 pt->pte_hi, pt->pte_lo);
2754 } else {
2755 printf("No valid PTE found\n");
2756 }
2757 } else {
2758 printf("Address not in pmap\n");
2759 }
2760 }
2761
2762 void
2763 pmap_pteg_dist(void)
2764 {
2765 struct pvo_entry *pvo;
2766 int ptegidx;
2767 int depth;
2768 int max_depth = 0;
2769 unsigned int depths[64];
2770
2771 memset(depths, 0, sizeof(depths));
2772 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2773 depth = 0;
2774 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2775 depth++;
2776 }
2777 if (depth > max_depth)
2778 max_depth = depth;
2779 if (depth > 63)
2780 depth = 63;
2781 depths[depth]++;
2782 }
2783
2784 for (depth = 0; depth < 64; depth++) {
2785 printf(" [%2d]: %8u", depth, depths[depth]);
2786 if ((depth & 3) == 3)
2787 printf("\n");
2788 if (depth == max_depth)
2789 break;
2790 }
2791 if ((depth & 3) != 3)
2792 printf("\n");
2793 printf("Max depth found was %d\n", max_depth);
2794 }
2795 #endif /* DEBUG */
2796
2797 #if defined(PMAPCHECK) || defined(DEBUG)
2798 void
2799 pmap_pvo_verify(void)
2800 {
2801 int ptegidx;
2802 int s;
2803
2804 s = splvm();
2805 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2806 struct pvo_entry *pvo;
2807 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2808 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2809 panic("pmap_pvo_verify: invalid pvo %p "
2810 "on list %#x", pvo, ptegidx);
2811 pmap_pvo_check(pvo);
2812 }
2813 }
2814 splx(s);
2815 }
2816 #endif /* PMAPCHECK */
2817
2818
2819 void *
2820 pmap_pool_ualloc(struct pool *pp, int flags)
2821 {
2822 struct pvo_page *pvop;
2823
2824 if (uvm.page_init_done != true) {
2825 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2826 }
2827
2828 PMAP_LOCK();
2829 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2830 if (pvop != NULL) {
2831 pmap_upvop_free--;
2832 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2833 PMAP_UNLOCK();
2834 return pvop;
2835 }
2836 PMAP_UNLOCK();
2837 return pmap_pool_malloc(pp, flags);
2838 }
2839
2840 void *
2841 pmap_pool_malloc(struct pool *pp, int flags)
2842 {
2843 struct pvo_page *pvop;
2844 struct vm_page *pg;
2845
2846 PMAP_LOCK();
2847 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2848 if (pvop != NULL) {
2849 pmap_mpvop_free--;
2850 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2851 PMAP_UNLOCK();
2852 return pvop;
2853 }
2854 PMAP_UNLOCK();
2855 again:
2856 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2857 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2858 if (__predict_false(pg == NULL)) {
2859 if (flags & PR_WAITOK) {
2860 uvm_wait("plpg");
2861 goto again;
2862 } else {
2863 return (0);
2864 }
2865 }
2866 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2867 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2868 }
2869
2870 void
2871 pmap_pool_ufree(struct pool *pp, void *va)
2872 {
2873 struct pvo_page *pvop;
2874 #if 0
2875 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2876 pmap_pool_mfree(va, size, tag);
2877 return;
2878 }
2879 #endif
2880 PMAP_LOCK();
2881 pvop = va;
2882 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2883 pmap_upvop_free++;
2884 if (pmap_upvop_free > pmap_upvop_maxfree)
2885 pmap_upvop_maxfree = pmap_upvop_free;
2886 PMAP_UNLOCK();
2887 }
2888
2889 void
2890 pmap_pool_mfree(struct pool *pp, void *va)
2891 {
2892 struct pvo_page *pvop;
2893
2894 PMAP_LOCK();
2895 pvop = va;
2896 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2897 pmap_mpvop_free++;
2898 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2899 pmap_mpvop_maxfree = pmap_mpvop_free;
2900 PMAP_UNLOCK();
2901 #if 0
2902 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2903 #endif
2904 }
2905
2906 /*
2907 * This routine in bootstraping to steal to-be-managed memory (which will
2908 * then be unmanaged). We use it to grab from the first 256MB for our
2909 * pmap needs and above 256MB for other stuff.
2910 */
2911 vaddr_t
2912 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2913 {
2914 vsize_t size;
2915 vaddr_t va;
2916 paddr_t pa = 0;
2917 int npgs, bank;
2918 struct vm_physseg *ps;
2919
2920 if (uvm.page_init_done == true)
2921 panic("pmap_steal_memory: called _after_ bootstrap");
2922
2923 *vstartp = VM_MIN_KERNEL_ADDRESS;
2924 *vendp = VM_MAX_KERNEL_ADDRESS;
2925
2926 size = round_page(vsize);
2927 npgs = atop(size);
2928
2929 /*
2930 * PA 0 will never be among those given to UVM so we can use it
2931 * to indicate we couldn't steal any memory.
2932 */
2933 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2934 if (ps->free_list == VM_FREELIST_FIRST256 &&
2935 ps->avail_end - ps->avail_start >= npgs) {
2936 pa = ptoa(ps->avail_start);
2937 break;
2938 }
2939 }
2940
2941 if (pa == 0)
2942 panic("pmap_steal_memory: no approriate memory to steal!");
2943
2944 ps->avail_start += npgs;
2945 ps->start += npgs;
2946
2947 /*
2948 * If we've used up all the pages in the segment, remove it and
2949 * compact the list.
2950 */
2951 if (ps->avail_start == ps->end) {
2952 /*
2953 * If this was the last one, then a very bad thing has occurred
2954 */
2955 if (--vm_nphysseg == 0)
2956 panic("pmap_steal_memory: out of memory!");
2957
2958 printf("pmap_steal_memory: consumed bank %d\n", bank);
2959 for (; bank < vm_nphysseg; bank++, ps++) {
2960 ps[0] = ps[1];
2961 }
2962 }
2963
2964 va = (vaddr_t) pa;
2965 memset((void *) va, 0, size);
2966 pmap_pages_stolen += npgs;
2967 #ifdef DEBUG
2968 if (pmapdebug && npgs > 1) {
2969 u_int cnt = 0;
2970 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2971 cnt += ps->avail_end - ps->avail_start;
2972 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2973 npgs, pmap_pages_stolen, cnt);
2974 }
2975 #endif
2976
2977 return va;
2978 }
2979
2980 /*
2981 * Find a chuck of memory with right size and alignment.
2982 */
2983 paddr_t
2984 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2985 {
2986 struct mem_region *mp;
2987 paddr_t s, e;
2988 int i, j;
2989
2990 size = round_page(size);
2991
2992 DPRINTFN(BOOT,
2993 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2994 size, alignment, at_end));
2995
2996 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2997 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2998 alignment);
2999
3000 if (at_end) {
3001 if (alignment != PAGE_SIZE)
3002 panic("pmap_boot_find_memory: invalid ending "
3003 "alignment %#" _PRIxpa, alignment);
3004
3005 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3006 s = mp->start + mp->size - size;
3007 if (s >= mp->start && mp->size >= size) {
3008 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3009 DPRINTFN(BOOT,
3010 ("pmap_boot_find_memory: b-avail[%d] start "
3011 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3012 mp->start, mp->size));
3013 mp->size -= size;
3014 DPRINTFN(BOOT,
3015 ("pmap_boot_find_memory: a-avail[%d] start "
3016 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3017 mp->start, mp->size));
3018 return s;
3019 }
3020 }
3021 panic("pmap_boot_find_memory: no available memory");
3022 }
3023
3024 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3025 s = (mp->start + alignment - 1) & ~(alignment-1);
3026 e = s + size;
3027
3028 /*
3029 * Is the calculated region entirely within the region?
3030 */
3031 if (s < mp->start || e > mp->start + mp->size)
3032 continue;
3033
3034 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3035 if (s == mp->start) {
3036 /*
3037 * If the block starts at the beginning of region,
3038 * adjust the size & start. (the region may now be
3039 * zero in length)
3040 */
3041 DPRINTFN(BOOT,
3042 ("pmap_boot_find_memory: b-avail[%d] start "
3043 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3044 mp->start += size;
3045 mp->size -= size;
3046 DPRINTFN(BOOT,
3047 ("pmap_boot_find_memory: a-avail[%d] start "
3048 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3049 } else if (e == mp->start + mp->size) {
3050 /*
3051 * If the block starts at the beginning of region,
3052 * adjust only the size.
3053 */
3054 DPRINTFN(BOOT,
3055 ("pmap_boot_find_memory: b-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3057 mp->size -= size;
3058 DPRINTFN(BOOT,
3059 ("pmap_boot_find_memory: a-avail[%d] start "
3060 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3061 } else {
3062 /*
3063 * Block is in the middle of the region, so we
3064 * have to split it in two.
3065 */
3066 for (j = avail_cnt; j > i + 1; j--) {
3067 avail[j] = avail[j-1];
3068 }
3069 DPRINTFN(BOOT,
3070 ("pmap_boot_find_memory: b-avail[%d] start "
3071 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3072 mp[1].start = e;
3073 mp[1].size = mp[0].start + mp[0].size - e;
3074 mp[0].size = s - mp[0].start;
3075 avail_cnt++;
3076 for (; i < avail_cnt; i++) {
3077 DPRINTFN(BOOT,
3078 ("pmap_boot_find_memory: a-avail[%d] "
3079 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3080 avail[i].start, avail[i].size));
3081 }
3082 }
3083 KASSERT(s == (uintptr_t) s);
3084 return s;
3085 }
3086 panic("pmap_boot_find_memory: not enough memory for "
3087 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3088 }
3089
3090 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3091 #if defined (PMAP_OEA64_BRIDGE)
3092 int
3093 pmap_setup_segment0_map(int use_large_pages, ...)
3094 {
3095 vaddr_t va;
3096
3097 register_t pte_lo = 0x0;
3098 int ptegidx = 0, i = 0;
3099 struct pte pte;
3100 va_list ap;
3101
3102 /* Coherent + Supervisor RW, no user access */
3103 pte_lo = PTE_M;
3104
3105 /* XXXSL
3106 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3107 * these have to take priority.
3108 */
3109 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3110 ptegidx = va_to_pteg(pmap_kernel(), va);
3111 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3112 i = pmap_pte_insert(ptegidx, &pte);
3113 }
3114
3115 va_start(ap, use_large_pages);
3116 while (1) {
3117 paddr_t pa;
3118 size_t size;
3119
3120 va = va_arg(ap, vaddr_t);
3121
3122 if (va == 0)
3123 break;
3124
3125 pa = va_arg(ap, paddr_t);
3126 size = va_arg(ap, size_t);
3127
3128 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3129 #if 0
3130 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3131 #endif
3132 ptegidx = va_to_pteg(pmap_kernel(), va);
3133 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3134 i = pmap_pte_insert(ptegidx, &pte);
3135 }
3136 }
3137
3138 TLBSYNC();
3139 SYNC();
3140 return (0);
3141 }
3142 #endif /* PMAP_OEA64_BRIDGE */
3143
3144 /*
3145 * This is not part of the defined PMAP interface and is specific to the
3146 * PowerPC architecture. This is called during initppc, before the system
3147 * is really initialized.
3148 */
3149 void
3150 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3151 {
3152 struct mem_region *mp, tmp;
3153 paddr_t s, e;
3154 psize_t size;
3155 int i, j;
3156
3157 /*
3158 * Get memory.
3159 */
3160 mem_regions(&mem, &avail);
3161 #if defined(DEBUG)
3162 if (pmapdebug & PMAPDEBUG_BOOT) {
3163 printf("pmap_bootstrap: memory configuration:\n");
3164 for (mp = mem; mp->size; mp++) {
3165 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3166 mp->start, mp->size);
3167 }
3168 for (mp = avail; mp->size; mp++) {
3169 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3170 mp->start, mp->size);
3171 }
3172 }
3173 #endif
3174
3175 /*
3176 * Find out how much physical memory we have and in how many chunks.
3177 */
3178 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3179 if (mp->start >= pmap_memlimit)
3180 continue;
3181 if (mp->start + mp->size > pmap_memlimit) {
3182 size = pmap_memlimit - mp->start;
3183 physmem += btoc(size);
3184 } else {
3185 physmem += btoc(mp->size);
3186 }
3187 mem_cnt++;
3188 }
3189
3190 /*
3191 * Count the number of available entries.
3192 */
3193 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3194 avail_cnt++;
3195
3196 /*
3197 * Page align all regions.
3198 */
3199 kernelstart = trunc_page(kernelstart);
3200 kernelend = round_page(kernelend);
3201 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3202 s = round_page(mp->start);
3203 mp->size -= (s - mp->start);
3204 mp->size = trunc_page(mp->size);
3205 mp->start = s;
3206 e = mp->start + mp->size;
3207
3208 DPRINTFN(BOOT,
3209 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3210 i, mp->start, mp->size));
3211
3212 /*
3213 * Don't allow the end to run beyond our artificial limit
3214 */
3215 if (e > pmap_memlimit)
3216 e = pmap_memlimit;
3217
3218 /*
3219 * Is this region empty or strange? skip it.
3220 */
3221 if (e <= s) {
3222 mp->start = 0;
3223 mp->size = 0;
3224 continue;
3225 }
3226
3227 /*
3228 * Does this overlap the beginning of kernel?
3229 * Does extend past the end of the kernel?
3230 */
3231 else if (s < kernelstart && e > kernelstart) {
3232 if (e > kernelend) {
3233 avail[avail_cnt].start = kernelend;
3234 avail[avail_cnt].size = e - kernelend;
3235 avail_cnt++;
3236 }
3237 mp->size = kernelstart - s;
3238 }
3239 /*
3240 * Check whether this region overlaps the end of the kernel.
3241 */
3242 else if (s < kernelend && e > kernelend) {
3243 mp->start = kernelend;
3244 mp->size = e - kernelend;
3245 }
3246 /*
3247 * Look whether this regions is completely inside the kernel.
3248 * Nuke it if it does.
3249 */
3250 else if (s >= kernelstart && e <= kernelend) {
3251 mp->start = 0;
3252 mp->size = 0;
3253 }
3254 /*
3255 * If the user imposed a memory limit, enforce it.
3256 */
3257 else if (s >= pmap_memlimit) {
3258 mp->start = -PAGE_SIZE; /* let's know why */
3259 mp->size = 0;
3260 }
3261 else {
3262 mp->start = s;
3263 mp->size = e - s;
3264 }
3265 DPRINTFN(BOOT,
3266 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3267 i, mp->start, mp->size));
3268 }
3269
3270 /*
3271 * Move (and uncount) all the null return to the end.
3272 */
3273 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3274 if (mp->size == 0) {
3275 tmp = avail[i];
3276 avail[i] = avail[--avail_cnt];
3277 avail[avail_cnt] = avail[i];
3278 }
3279 }
3280
3281 /*
3282 * (Bubble)sort them into ascending order.
3283 */
3284 for (i = 0; i < avail_cnt; i++) {
3285 for (j = i + 1; j < avail_cnt; j++) {
3286 if (avail[i].start > avail[j].start) {
3287 tmp = avail[i];
3288 avail[i] = avail[j];
3289 avail[j] = tmp;
3290 }
3291 }
3292 }
3293
3294 /*
3295 * Make sure they don't overlap.
3296 */
3297 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3298 if (mp[0].start + mp[0].size > mp[1].start) {
3299 mp[0].size = mp[1].start - mp[0].start;
3300 }
3301 DPRINTFN(BOOT,
3302 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3303 i, mp->start, mp->size));
3304 }
3305 DPRINTFN(BOOT,
3306 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3307 i, mp->start, mp->size));
3308
3309 #ifdef PTEGCOUNT
3310 pmap_pteg_cnt = PTEGCOUNT;
3311 #else /* PTEGCOUNT */
3312
3313 pmap_pteg_cnt = 0x1000;
3314
3315 while (pmap_pteg_cnt < physmem)
3316 pmap_pteg_cnt <<= 1;
3317
3318 pmap_pteg_cnt >>= 1;
3319 #endif /* PTEGCOUNT */
3320
3321 #ifdef DEBUG
3322 DPRINTFN(BOOT,
3323 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3324 #endif
3325
3326 /*
3327 * Find suitably aligned memory for PTEG hash table.
3328 */
3329 size = pmap_pteg_cnt * sizeof(struct pteg);
3330 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3331
3332 #ifdef DEBUG
3333 DPRINTFN(BOOT,
3334 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3335 #endif
3336
3337
3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3339 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3340 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3341 pmap_pteg_table, size);
3342 #endif
3343
3344 memset(__UNVOLATILE(pmap_pteg_table), 0,
3345 pmap_pteg_cnt * sizeof(struct pteg));
3346 pmap_pteg_mask = pmap_pteg_cnt - 1;
3347
3348 /*
3349 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3350 * with pages. So we just steal them before giving them to UVM.
3351 */
3352 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3353 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3354 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3355 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3356 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3357 pmap_pvo_table, size);
3358 #endif
3359
3360 for (i = 0; i < pmap_pteg_cnt; i++)
3361 TAILQ_INIT(&pmap_pvo_table[i]);
3362
3363 #ifndef MSGBUFADDR
3364 /*
3365 * Allocate msgbuf in high memory.
3366 */
3367 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3368 #endif
3369
3370 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3371 paddr_t pfstart = atop(mp->start);
3372 paddr_t pfend = atop(mp->start + mp->size);
3373 if (mp->size == 0)
3374 continue;
3375 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3376 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3377 VM_FREELIST_FIRST256);
3378 } else if (mp->start >= SEGMENT_LENGTH) {
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_DEFAULT);
3381 } else {
3382 pfend = atop(SEGMENT_LENGTH);
3383 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3384 VM_FREELIST_FIRST256);
3385 pfstart = atop(SEGMENT_LENGTH);
3386 pfend = atop(mp->start + mp->size);
3387 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3388 VM_FREELIST_DEFAULT);
3389 }
3390 }
3391
3392 /*
3393 * Make sure kernel vsid is allocated as well as VSID 0.
3394 */
3395 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3396 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3397 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[0] |= 1;
3400
3401 /*
3402 * Initialize kernel pmap and hardware.
3403 */
3404
3405 /* PMAP_OEA64_BRIDGE does support these instructions */
3406 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3407 for (i = 0; i < 16; i++) {
3408 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3409 __asm volatile ("mtsrin %0,%1"
3410 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3411 }
3412
3413 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3414 __asm volatile ("mtsr %0,%1"
3415 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3416 #ifdef KERNEL2_SR
3417 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3418 __asm volatile ("mtsr %0,%1"
3419 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3420 #endif
3421 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3422 #if defined (PMAP_OEA)
3423 for (i = 0; i < 16; i++) {
3424 if (iosrtable[i] & SR601_T) {
3425 pmap_kernel()->pm_sr[i] = iosrtable[i];
3426 __asm volatile ("mtsrin %0,%1"
3427 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3428 }
3429 }
3430 __asm volatile ("sync; mtsdr1 %0; isync"
3431 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3432 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3433 __asm __volatile ("sync; mtsdr1 %0; isync"
3434 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3435 #endif
3436 tlbia();
3437
3438 #ifdef ALTIVEC
3439 pmap_use_altivec = cpu_altivec;
3440 #endif
3441
3442 #ifdef DEBUG
3443 if (pmapdebug & PMAPDEBUG_BOOT) {
3444 u_int cnt;
3445 int bank;
3446 char pbuf[9];
3447 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3448 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3449 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3450 bank,
3451 ptoa(vm_physmem[bank].avail_start),
3452 ptoa(vm_physmem[bank].avail_end),
3453 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3454 }
3455 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3456 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3457 pbuf, cnt);
3458 }
3459 #endif
3460
3461 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3462 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3463 &pmap_pool_uallocator, IPL_VM);
3464
3465 pool_setlowat(&pmap_upvo_pool, 252);
3466
3467 pool_init(&pmap_pool, sizeof(struct pmap),
3468 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3469 IPL_NONE);
3470
3471 #if defined(PMAP_NEED_MAPKERNEL) || 1
3472 {
3473 struct pmap *pm = pmap_kernel();
3474 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3475 extern int etext[], kernel_text[];
3476 vaddr_t va, va_etext = (paddr_t) etext;
3477 #endif
3478 paddr_t pa, pa_end;
3479 register_t sr;
3480 struct pte pt;
3481 unsigned int ptegidx;
3482 int bank;
3483
3484 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3485 pm->pm_sr[0] = sr;
3486
3487 for (bank = 0; bank < vm_nphysseg; bank++) {
3488 pa_end = ptoa(vm_physmem[bank].avail_end);
3489 pa = ptoa(vm_physmem[bank].avail_start);
3490 for (; pa < pa_end; pa += PAGE_SIZE) {
3491 ptegidx = va_to_pteg(pm, pa);
3492 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3493 pmap_pte_insert(ptegidx, &pt);
3494 }
3495 }
3496
3497 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3498 va = (vaddr_t) kernel_text;
3499
3500 for (pa = kernelstart; va < va_etext;
3501 pa += PAGE_SIZE, va += PAGE_SIZE) {
3502 ptegidx = va_to_pteg(pm, va);
3503 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3504 pmap_pte_insert(ptegidx, &pt);
3505 }
3506
3507 for (; pa < kernelend;
3508 pa += PAGE_SIZE, va += PAGE_SIZE) {
3509 ptegidx = va_to_pteg(pm, va);
3510 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3511 pmap_pte_insert(ptegidx, &pt);
3512 }
3513
3514 for (va = 0, pa = 0; va < kernelstart;
3515 pa += PAGE_SIZE, va += PAGE_SIZE) {
3516 ptegidx = va_to_pteg(pm, va);
3517 if (va < 0x3000)
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3519 else
3520 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3521 pmap_pte_insert(ptegidx, &pt);
3522 }
3523 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3524 pa += PAGE_SIZE, va += PAGE_SIZE) {
3525 ptegidx = va_to_pteg(pm, va);
3526 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3527 pmap_pte_insert(ptegidx, &pt);
3528 }
3529 #endif
3530
3531 __asm volatile ("mtsrin %0,%1"
3532 :: "r"(sr), "r"(kernelstart));
3533 }
3534 #endif
3535 }
3536