pmap.c revision 1.68 1 /* $NetBSD: pmap.c,v 1.68 2009/11/07 07:27:46 cegger Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.68 2009/11/07 07:27:46 cegger Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/user.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86
87 #include <machine/pcb.h>
88 #include <machine/powerpc.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/sr_601.h>
91 #include <powerpc/bat.h>
92 #include <powerpc/stdarg.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 #ifndef MSGBUFADDR
116 extern paddr_t msgbuf_paddr;
117 #endif
118
119 static struct mem_region *mem, *avail;
120 static u_int mem_cnt, avail_cnt;
121
122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
123 # define PMAP_OEA 1
124 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
125 # define PMAPNAME(name) pmap_##name
126 # endif
127 #endif
128
129 #if defined(PMAP_OEA64)
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64_BRIDGE)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA)
142 #define _PRIxpte "lx"
143 #else
144 #define _PRIxpte PRIx64
145 #endif
146 #define _PRIxpa "lx"
147 #define _PRIxva "lx"
148 #define _PRIsr "lx"
149
150 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
151 #if defined(PMAP_OEA)
152 #define PMAPNAME(name) pmap32_##name
153 #elif defined(PMAP_OEA64)
154 #define PMAPNAME(name) pmap64_##name
155 #elif defined(PMAP_OEA64_BRIDGE)
156 #define PMAPNAME(name) pmap64bridge_##name
157 #else
158 #error unknown variant for pmap
159 #endif
160 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
161
162 #if defined(PMAPNAME)
163 #define STATIC static
164 #define pmap_pte_spill PMAPNAME(pte_spill)
165 #define pmap_real_memory PMAPNAME(real_memory)
166 #define pmap_init PMAPNAME(init)
167 #define pmap_virtual_space PMAPNAME(virtual_space)
168 #define pmap_create PMAPNAME(create)
169 #define pmap_reference PMAPNAME(reference)
170 #define pmap_destroy PMAPNAME(destroy)
171 #define pmap_copy PMAPNAME(copy)
172 #define pmap_update PMAPNAME(update)
173 #define pmap_enter PMAPNAME(enter)
174 #define pmap_remove PMAPNAME(remove)
175 #define pmap_kenter_pa PMAPNAME(kenter_pa)
176 #define pmap_kremove PMAPNAME(kremove)
177 #define pmap_extract PMAPNAME(extract)
178 #define pmap_protect PMAPNAME(protect)
179 #define pmap_unwire PMAPNAME(unwire)
180 #define pmap_page_protect PMAPNAME(page_protect)
181 #define pmap_query_bit PMAPNAME(query_bit)
182 #define pmap_clear_bit PMAPNAME(clear_bit)
183
184 #define pmap_activate PMAPNAME(activate)
185 #define pmap_deactivate PMAPNAME(deactivate)
186
187 #define pmap_pinit PMAPNAME(pinit)
188 #define pmap_procwr PMAPNAME(procwr)
189
190 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
191 #define pmap_pte_print PMAPNAME(pte_print)
192 #define pmap_pteg_check PMAPNAME(pteg_check)
193 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
194 #define pmap_print_pte PMAPNAME(print_pte)
195 #define pmap_pteg_dist PMAPNAME(pteg_dist)
196 #endif
197 #if defined(DEBUG) || defined(PMAPCHECK)
198 #define pmap_pvo_verify PMAPNAME(pvo_verify)
199 #define pmapcheck PMAPNAME(check)
200 #endif
201 #if defined(DEBUG) || defined(PMAPDEBUG)
202 #define pmapdebug PMAPNAME(debug)
203 #endif
204 #define pmap_steal_memory PMAPNAME(steal_memory)
205 #define pmap_bootstrap PMAPNAME(bootstrap)
206 #else
207 #define STATIC /* nothing */
208 #endif /* PMAPNAME */
209
210 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
211 STATIC void pmap_real_memory(paddr_t *, psize_t *);
212 STATIC void pmap_init(void);
213 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
214 STATIC pmap_t pmap_create(void);
215 STATIC void pmap_reference(pmap_t);
216 STATIC void pmap_destroy(pmap_t);
217 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
218 STATIC void pmap_update(pmap_t);
219 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
220 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
221 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
222 STATIC void pmap_kremove(vaddr_t, vsize_t);
223 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
224
225 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
226 STATIC void pmap_unwire(pmap_t, vaddr_t);
227 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
228 STATIC bool pmap_query_bit(struct vm_page *, int);
229 STATIC bool pmap_clear_bit(struct vm_page *, int);
230
231 STATIC void pmap_activate(struct lwp *);
232 STATIC void pmap_deactivate(struct lwp *);
233
234 STATIC void pmap_pinit(pmap_t pm);
235 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
236
237 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
238 STATIC void pmap_pte_print(volatile struct pte *);
239 STATIC void pmap_pteg_check(void);
240 STATIC void pmap_print_mmuregs(void);
241 STATIC void pmap_print_pte(pmap_t, vaddr_t);
242 STATIC void pmap_pteg_dist(void);
243 #endif
244 #if defined(DEBUG) || defined(PMAPCHECK)
245 STATIC void pmap_pvo_verify(void);
246 #endif
247 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
248 STATIC void pmap_bootstrap(paddr_t, paddr_t);
249
250 #ifdef PMAPNAME
251 const struct pmap_ops PMAPNAME(ops) = {
252 .pmapop_pte_spill = pmap_pte_spill,
253 .pmapop_real_memory = pmap_real_memory,
254 .pmapop_init = pmap_init,
255 .pmapop_virtual_space = pmap_virtual_space,
256 .pmapop_create = pmap_create,
257 .pmapop_reference = pmap_reference,
258 .pmapop_destroy = pmap_destroy,
259 .pmapop_copy = pmap_copy,
260 .pmapop_update = pmap_update,
261 .pmapop_enter = pmap_enter,
262 .pmapop_remove = pmap_remove,
263 .pmapop_kenter_pa = pmap_kenter_pa,
264 .pmapop_kremove = pmap_kremove,
265 .pmapop_extract = pmap_extract,
266 .pmapop_protect = pmap_protect,
267 .pmapop_unwire = pmap_unwire,
268 .pmapop_page_protect = pmap_page_protect,
269 .pmapop_query_bit = pmap_query_bit,
270 .pmapop_clear_bit = pmap_clear_bit,
271 .pmapop_activate = pmap_activate,
272 .pmapop_deactivate = pmap_deactivate,
273 .pmapop_pinit = pmap_pinit,
274 .pmapop_procwr = pmap_procwr,
275 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
276 .pmapop_pte_print = pmap_pte_print,
277 .pmapop_pteg_check = pmap_pteg_check,
278 .pmapop_print_mmuregs = pmap_print_mmuregs,
279 .pmapop_print_pte = pmap_print_pte,
280 .pmapop_pteg_dist = pmap_pteg_dist,
281 #else
282 .pmapop_pte_print = NULL,
283 .pmapop_pteg_check = NULL,
284 .pmapop_print_mmuregs = NULL,
285 .pmapop_print_pte = NULL,
286 .pmapop_pteg_dist = NULL,
287 #endif
288 #if defined(DEBUG) || defined(PMAPCHECK)
289 .pmapop_pvo_verify = pmap_pvo_verify,
290 #else
291 .pmapop_pvo_verify = NULL,
292 #endif
293 .pmapop_steal_memory = pmap_steal_memory,
294 .pmapop_bootstrap = pmap_bootstrap,
295 };
296 #endif /* !PMAPNAME */
297
298 /*
299 * The following structure is aligned to 32 bytes
300 */
301 struct pvo_entry {
302 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
303 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
304 struct pte pvo_pte; /* Prebuilt PTE */
305 pmap_t pvo_pmap; /* ptr to owning pmap */
306 vaddr_t pvo_vaddr; /* VA of entry */
307 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
308 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
309 #define PVO_WIRED 0x0010 /* PVO entry is wired */
310 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
311 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
312 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
313 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
314 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
315 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
316 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
317 #define PVO_SPILL_SET 2 /* PVO has been spilled */
318 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
319 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
320 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
321 #define PVO_REMOVE 6 /* PVO has been removed */
322 #define PVO_WHERE_MASK 15
323 #define PVO_WHERE_SHFT 8
324 } __attribute__ ((aligned (32)));
325 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
326 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
327 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
328 #define PVO_PTEGIDX_CLR(pvo) \
329 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
330 #define PVO_PTEGIDX_SET(pvo,i) \
331 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
332 #define PVO_WHERE(pvo,w) \
333 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
334 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
335
336 TAILQ_HEAD(pvo_tqhead, pvo_entry);
337 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
338 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
339 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
340
341 struct pool pmap_pool; /* pool for pmap structures */
342 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
343 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
344
345 /*
346 * We keep a cache of unmanaged pages to be used for pvo entries for
347 * unmanaged pages.
348 */
349 struct pvo_page {
350 SIMPLEQ_ENTRY(pvo_page) pvop_link;
351 };
352 SIMPLEQ_HEAD(pvop_head, pvo_page);
353 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
354 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
355 u_long pmap_upvop_free;
356 u_long pmap_upvop_maxfree;
357 u_long pmap_mpvop_free;
358 u_long pmap_mpvop_maxfree;
359
360 static void *pmap_pool_ualloc(struct pool *, int);
361 static void *pmap_pool_malloc(struct pool *, int);
362
363 static void pmap_pool_ufree(struct pool *, void *);
364 static void pmap_pool_mfree(struct pool *, void *);
365
366 static struct pool_allocator pmap_pool_mallocator = {
367 .pa_alloc = pmap_pool_malloc,
368 .pa_free = pmap_pool_mfree,
369 .pa_pagesz = 0,
370 };
371
372 static struct pool_allocator pmap_pool_uallocator = {
373 .pa_alloc = pmap_pool_ualloc,
374 .pa_free = pmap_pool_ufree,
375 .pa_pagesz = 0,
376 };
377
378 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
379 void pmap_pte_print(volatile struct pte *);
380 void pmap_pteg_check(void);
381 void pmap_pteg_dist(void);
382 void pmap_print_pte(pmap_t, vaddr_t);
383 void pmap_print_mmuregs(void);
384 #endif
385
386 #if defined(DEBUG) || defined(PMAPCHECK)
387 #ifdef PMAPCHECK
388 int pmapcheck = 1;
389 #else
390 int pmapcheck = 0;
391 #endif
392 void pmap_pvo_verify(void);
393 static void pmap_pvo_check(const struct pvo_entry *);
394 #define PMAP_PVO_CHECK(pvo) \
395 do { \
396 if (pmapcheck) \
397 pmap_pvo_check(pvo); \
398 } while (0)
399 #else
400 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
401 #endif
402 static int pmap_pte_insert(int, struct pte *);
403 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
404 vaddr_t, paddr_t, register_t, int);
405 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
406 static void pmap_pvo_free(struct pvo_entry *);
407 static void pmap_pvo_free_list(struct pvo_head *);
408 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
409 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
410 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
411 static void pvo_set_exec(struct pvo_entry *);
412 static void pvo_clear_exec(struct pvo_entry *);
413
414 static void tlbia(void);
415
416 static void pmap_release(pmap_t);
417 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
418
419 static uint32_t pmap_pvo_reclaim_nextidx;
420 #ifdef DEBUG
421 static int pmap_pvo_reclaim_debugctr;
422 #endif
423
424 #define VSID_NBPW (sizeof(uint32_t) * 8)
425 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
426
427 static int pmap_initialized;
428
429 #if defined(DEBUG) || defined(PMAPDEBUG)
430 #define PMAPDEBUG_BOOT 0x0001
431 #define PMAPDEBUG_PTE 0x0002
432 #define PMAPDEBUG_EXEC 0x0008
433 #define PMAPDEBUG_PVOENTER 0x0010
434 #define PMAPDEBUG_PVOREMOVE 0x0020
435 #define PMAPDEBUG_ACTIVATE 0x0100
436 #define PMAPDEBUG_CREATE 0x0200
437 #define PMAPDEBUG_ENTER 0x1000
438 #define PMAPDEBUG_KENTER 0x2000
439 #define PMAPDEBUG_KREMOVE 0x4000
440 #define PMAPDEBUG_REMOVE 0x8000
441
442 unsigned int pmapdebug = 0;
443
444 # define DPRINTF(x) printf x
445 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
446 #else
447 # define DPRINTF(x)
448 # define DPRINTFN(n, x)
449 #endif
450
451
452 #ifdef PMAPCOUNTERS
453 /*
454 * From pmap_subr.c
455 */
456 extern struct evcnt pmap_evcnt_mappings;
457 extern struct evcnt pmap_evcnt_unmappings;
458
459 extern struct evcnt pmap_evcnt_kernel_mappings;
460 extern struct evcnt pmap_evcnt_kernel_unmappings;
461
462 extern struct evcnt pmap_evcnt_mappings_replaced;
463
464 extern struct evcnt pmap_evcnt_exec_mappings;
465 extern struct evcnt pmap_evcnt_exec_cached;
466
467 extern struct evcnt pmap_evcnt_exec_synced;
468 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
469 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
470
471 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
472 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
473 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
474 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
475 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
476
477 extern struct evcnt pmap_evcnt_updates;
478 extern struct evcnt pmap_evcnt_collects;
479 extern struct evcnt pmap_evcnt_copies;
480
481 extern struct evcnt pmap_evcnt_ptes_spilled;
482 extern struct evcnt pmap_evcnt_ptes_unspilled;
483 extern struct evcnt pmap_evcnt_ptes_evicted;
484
485 extern struct evcnt pmap_evcnt_ptes_primary[8];
486 extern struct evcnt pmap_evcnt_ptes_secondary[8];
487 extern struct evcnt pmap_evcnt_ptes_removed;
488 extern struct evcnt pmap_evcnt_ptes_changed;
489 extern struct evcnt pmap_evcnt_pvos_reclaimed;
490 extern struct evcnt pmap_evcnt_pvos_failed;
491
492 extern struct evcnt pmap_evcnt_zeroed_pages;
493 extern struct evcnt pmap_evcnt_copied_pages;
494 extern struct evcnt pmap_evcnt_idlezeroed_pages;
495
496 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
497 #define PMAPCOUNT2(ev) ((ev).ev_count++)
498 #else
499 #define PMAPCOUNT(ev) ((void) 0)
500 #define PMAPCOUNT2(ev) ((void) 0)
501 #endif
502
503 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
504
505 /* XXXSL: this needs to be moved to assembler */
506 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
507
508 #define TLBSYNC() __asm volatile("tlbsync")
509 #define SYNC() __asm volatile("sync")
510 #define EIEIO() __asm volatile("eieio")
511 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
512 #define MFMSR() mfmsr()
513 #define MTMSR(psl) mtmsr(psl)
514 #define MFPVR() mfpvr()
515 #define MFSRIN(va) mfsrin(va)
516 #define MFTB() mfrtcltbl()
517
518 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
519 static inline register_t
520 mfsrin(vaddr_t va)
521 {
522 register_t sr;
523 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
524 return sr;
525 }
526 #endif /* PMAP_OEA*/
527
528 #if defined (PMAP_OEA64_BRIDGE)
529 extern void mfmsr64 (register64_t *result);
530 #endif /* PMAP_OEA64_BRIDGE */
531
532 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
533 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
534
535 static inline register_t
536 pmap_interrupts_off(void)
537 {
538 register_t msr = MFMSR();
539 if (msr & PSL_EE)
540 MTMSR(msr & ~PSL_EE);
541 return msr;
542 }
543
544 static void
545 pmap_interrupts_restore(register_t msr)
546 {
547 if (msr & PSL_EE)
548 MTMSR(msr);
549 }
550
551 static inline u_int32_t
552 mfrtcltbl(void)
553 {
554 #ifdef PPC_OEA601
555 if ((MFPVR() >> 16) == MPC601)
556 return (mfrtcl() >> 7);
557 else
558 #endif
559 return (mftbl());
560 }
561
562 /*
563 * These small routines may have to be replaced,
564 * if/when we support processors other that the 604.
565 */
566
567 void
568 tlbia(void)
569 {
570 char *i;
571
572 SYNC();
573 #if defined(PMAP_OEA)
574 /*
575 * Why not use "tlbia"? Because not all processors implement it.
576 *
577 * This needs to be a per-CPU callback to do the appropriate thing
578 * for the CPU. XXX
579 */
580 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
581 TLBIE(i);
582 EIEIO();
583 SYNC();
584 }
585 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
586 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
587 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
588 TLBIEL(i);
589 EIEIO();
590 SYNC();
591 }
592 #endif
593 TLBSYNC();
594 SYNC();
595 }
596
597 static inline register_t
598 va_to_vsid(const struct pmap *pm, vaddr_t addr)
599 {
600 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
601 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
602 #else /* PMAP_OEA64 */
603 #if 0
604 const struct ste *ste;
605 register_t hash;
606 int i;
607
608 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
609
610 /*
611 * Try the primary group first
612 */
613 ste = pm->pm_stes[hash].stes;
614 for (i = 0; i < 8; i++, ste++) {
615 if (ste->ste_hi & STE_V) &&
616 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
617 return ste;
618 }
619
620 /*
621 * Then the secondary group.
622 */
623 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
624 for (i = 0; i < 8; i++, ste++) {
625 if (ste->ste_hi & STE_V) &&
626 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
627 return addr;
628 }
629
630 return NULL;
631 #else
632 /*
633 * Rather than searching the STE groups for the VSID, we know
634 * how we generate that from the ESID and so do that.
635 */
636 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
637 #endif
638 #endif /* PMAP_OEA */
639 }
640
641 static inline register_t
642 va_to_pteg(const struct pmap *pm, vaddr_t addr)
643 {
644 register_t hash;
645
646 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
647 return hash & pmap_pteg_mask;
648 }
649
650 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
651 /*
652 * Given a PTE in the page table, calculate the VADDR that hashes to it.
653 * The only bit of magic is that the top 4 bits of the address doesn't
654 * technically exist in the PTE. But we know we reserved 4 bits of the
655 * VSID for it so that's how we get it.
656 */
657 static vaddr_t
658 pmap_pte_to_va(volatile const struct pte *pt)
659 {
660 vaddr_t va;
661 uintptr_t ptaddr = (uintptr_t) pt;
662
663 if (pt->pte_hi & PTE_HID)
664 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
665
666 /* PPC Bits 10-19 PPC64 Bits 42-51 */
667 #if defined(PMAP_OEA)
668 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
669 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
670 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
671 #endif
672 va <<= ADDR_PIDX_SHFT;
673
674 /* PPC Bits 4-9 PPC64 Bits 36-41 */
675 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
676
677 #if defined(PMAP_OEA64)
678 /* PPC63 Bits 0-35 */
679 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
680 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
681 /* PPC Bits 0-3 */
682 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
683 #endif
684
685 return va;
686 }
687 #endif
688
689 static inline struct pvo_head *
690 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
691 {
692 struct vm_page *pg;
693
694 pg = PHYS_TO_VM_PAGE(pa);
695 if (pg_p != NULL)
696 *pg_p = pg;
697 if (pg == NULL)
698 return &pmap_pvo_unmanaged;
699 return &pg->mdpage.mdpg_pvoh;
700 }
701
702 static inline struct pvo_head *
703 vm_page_to_pvoh(struct vm_page *pg)
704 {
705 return &pg->mdpage.mdpg_pvoh;
706 }
707
708
709 static inline void
710 pmap_attr_clear(struct vm_page *pg, int ptebit)
711 {
712 pg->mdpage.mdpg_attrs &= ~ptebit;
713 }
714
715 static inline int
716 pmap_attr_fetch(struct vm_page *pg)
717 {
718 return pg->mdpage.mdpg_attrs;
719 }
720
721 static inline void
722 pmap_attr_save(struct vm_page *pg, int ptebit)
723 {
724 pg->mdpage.mdpg_attrs |= ptebit;
725 }
726
727 static inline int
728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
729 {
730 if (pt->pte_hi == pvo_pt->pte_hi
731 #if 0
732 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
733 ~(PTE_REF|PTE_CHG)) == 0
734 #endif
735 )
736 return 1;
737 return 0;
738 }
739
740 static inline void
741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
742 {
743 /*
744 * Construct the PTE. Default to IMB initially. Valid bit
745 * only gets set when the real pte is set in memory.
746 *
747 * Note: Don't set the valid bit for correct operation of tlb update.
748 */
749 #if defined(PMAP_OEA)
750 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
751 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
752 pt->pte_lo = pte_lo;
753 #elif defined (PMAP_OEA64_BRIDGE)
754 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = (u_int64_t) pte_lo;
757 #elif defined (PMAP_OEA64)
758 #error PMAP_OEA64 not supported
759 #endif /* PMAP_OEA */
760 }
761
762 static inline void
763 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
764 {
765 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
766 }
767
768 static inline void
769 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
770 {
771 /*
772 * As shown in Section 7.6.3.2.3
773 */
774 pt->pte_lo &= ~ptebit;
775 TLBIE(va);
776 SYNC();
777 EIEIO();
778 TLBSYNC();
779 SYNC();
780 #ifdef MULTIPROCESSOR
781 DCBST(pt);
782 #endif
783 }
784
785 static inline void
786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
787 {
788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
789 if (pvo_pt->pte_hi & PTE_VALID)
790 panic("pte_set: setting an already valid pte %p", pvo_pt);
791 #endif
792 pvo_pt->pte_hi |= PTE_VALID;
793
794 /*
795 * Update the PTE as defined in section 7.6.3.1
796 * Note that the REF/CHG bits are from pvo_pt and thus should
797 * have been saved so this routine can restore them (if desired).
798 */
799 pt->pte_lo = pvo_pt->pte_lo;
800 EIEIO();
801 pt->pte_hi = pvo_pt->pte_hi;
802 TLBSYNC();
803 SYNC();
804 #ifdef MULTIPROCESSOR
805 DCBST(pt);
806 #endif
807 pmap_pte_valid++;
808 }
809
810 static inline void
811 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
812 {
813 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
814 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
816 if ((pt->pte_hi & PTE_VALID) == 0)
817 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
818 #endif
819
820 pvo_pt->pte_hi &= ~PTE_VALID;
821 /*
822 * Force the ref & chg bits back into the PTEs.
823 */
824 SYNC();
825 /*
826 * Invalidate the pte ... (Section 7.6.3.3)
827 */
828 pt->pte_hi &= ~PTE_VALID;
829 SYNC();
830 TLBIE(va);
831 SYNC();
832 EIEIO();
833 TLBSYNC();
834 SYNC();
835 /*
836 * Save the ref & chg bits ...
837 */
838 pmap_pte_synch(pt, pvo_pt);
839 pmap_pte_valid--;
840 }
841
842 static inline void
843 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
844 {
845 /*
846 * Invalidate the PTE
847 */
848 pmap_pte_unset(pt, pvo_pt, va);
849 pmap_pte_set(pt, pvo_pt);
850 }
851
852 /*
853 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
854 * (either primary or secondary location).
855 *
856 * Note: both the destination and source PTEs must not have PTE_VALID set.
857 */
858
859 static int
860 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
861 {
862 volatile struct pte *pt;
863 int i;
864
865 #if defined(DEBUG)
866 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
867 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
868 #endif
869 /*
870 * First try primary hash.
871 */
872 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
873 if ((pt->pte_hi & PTE_VALID) == 0) {
874 pvo_pt->pte_hi &= ~PTE_HID;
875 pmap_pte_set(pt, pvo_pt);
876 return i;
877 }
878 }
879
880 /*
881 * Now try secondary hash.
882 */
883 ptegidx ^= pmap_pteg_mask;
884 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
885 if ((pt->pte_hi & PTE_VALID) == 0) {
886 pvo_pt->pte_hi |= PTE_HID;
887 pmap_pte_set(pt, pvo_pt);
888 return i;
889 }
890 }
891 return -1;
892 }
893
894 /*
895 * Spill handler.
896 *
897 * Tries to spill a page table entry from the overflow area.
898 * This runs in either real mode (if dealing with a exception spill)
899 * or virtual mode when dealing with manually spilling one of the
900 * kernel's pte entries. In either case, interrupts are already
901 * disabled.
902 */
903
904 int
905 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
906 {
907 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
908 struct pvo_entry *pvo;
909 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
910 struct pvo_tqhead *pvoh, *vpvoh = NULL;
911 int ptegidx, i, j;
912 volatile struct pteg *pteg;
913 volatile struct pte *pt;
914
915 PMAP_LOCK();
916
917 ptegidx = va_to_pteg(pm, addr);
918
919 /*
920 * Have to substitute some entry. Use the primary hash for this.
921 * Use low bits of timebase as random generator. Make sure we are
922 * not picking a kernel pte for replacement.
923 */
924 pteg = &pmap_pteg_table[ptegidx];
925 i = MFTB() & 7;
926 for (j = 0; j < 8; j++) {
927 pt = &pteg->pt[i];
928 if ((pt->pte_hi & PTE_VALID) == 0)
929 break;
930 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
931 < PHYSMAP_VSIDBITS)
932 break;
933 i = (i + 1) & 7;
934 }
935 KASSERT(j < 8);
936
937 source_pvo = NULL;
938 victim_pvo = NULL;
939 pvoh = &pmap_pvo_table[ptegidx];
940 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
941
942 /*
943 * We need to find pvo entry for this address...
944 */
945 PMAP_PVO_CHECK(pvo); /* sanity check */
946
947 /*
948 * If we haven't found the source and we come to a PVO with
949 * a valid PTE, then we know we can't find it because all
950 * evicted PVOs always are first in the list.
951 */
952 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
953 break;
954 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
955 addr == PVO_VADDR(pvo)) {
956
957 /*
958 * Now we have found the entry to be spilled into the
959 * pteg. Attempt to insert it into the page table.
960 */
961 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
962 if (j >= 0) {
963 PVO_PTEGIDX_SET(pvo, j);
964 PMAP_PVO_CHECK(pvo); /* sanity check */
965 PVO_WHERE(pvo, SPILL_INSERT);
966 pvo->pvo_pmap->pm_evictions--;
967 PMAPCOUNT(ptes_spilled);
968 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
969 ? pmap_evcnt_ptes_secondary
970 : pmap_evcnt_ptes_primary)[j]);
971
972 /*
973 * Since we keep the evicted entries at the
974 * from of the PVO list, we need move this
975 * (now resident) PVO after the evicted
976 * entries.
977 */
978 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
979
980 /*
981 * If we don't have to move (either we were the
982 * last entry or the next entry was valid),
983 * don't change our position. Otherwise
984 * move ourselves to the tail of the queue.
985 */
986 if (next_pvo != NULL &&
987 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
988 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
989 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
990 }
991 PMAP_UNLOCK();
992 return 1;
993 }
994 source_pvo = pvo;
995 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
996 return 0;
997 }
998 if (victim_pvo != NULL)
999 break;
1000 }
1001
1002 /*
1003 * We also need the pvo entry of the victim we are replacing
1004 * so save the R & C bits of the PTE.
1005 */
1006 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1007 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1008 vpvoh = pvoh; /* *1* */
1009 victim_pvo = pvo;
1010 if (source_pvo != NULL)
1011 break;
1012 }
1013 }
1014
1015 if (source_pvo == NULL) {
1016 PMAPCOUNT(ptes_unspilled);
1017 PMAP_UNLOCK();
1018 return 0;
1019 }
1020
1021 if (victim_pvo == NULL) {
1022 if ((pt->pte_hi & PTE_HID) == 0)
1023 panic("pmap_pte_spill: victim p-pte (%p) has "
1024 "no pvo entry!", pt);
1025
1026 /*
1027 * If this is a secondary PTE, we need to search
1028 * its primary pvo bucket for the matching PVO.
1029 */
1030 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1031 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1032 PMAP_PVO_CHECK(pvo); /* sanity check */
1033
1034 /*
1035 * We also need the pvo entry of the victim we are
1036 * replacing so save the R & C bits of the PTE.
1037 */
1038 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1039 victim_pvo = pvo;
1040 break;
1041 }
1042 }
1043 if (victim_pvo == NULL)
1044 panic("pmap_pte_spill: victim s-pte (%p) has "
1045 "no pvo entry!", pt);
1046 }
1047
1048 /*
1049 * The victim should be not be a kernel PVO/PTE entry.
1050 */
1051 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1052 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1053 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1054
1055 /*
1056 * We are invalidating the TLB entry for the EA for the
1057 * we are replacing even though its valid; If we don't
1058 * we lose any ref/chg bit changes contained in the TLB
1059 * entry.
1060 */
1061 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1062
1063 /*
1064 * To enforce the PVO list ordering constraint that all
1065 * evicted entries should come before all valid entries,
1066 * move the source PVO to the tail of its list and the
1067 * victim PVO to the head of its list (which might not be
1068 * the same list, if the victim was using the secondary hash).
1069 */
1070 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1071 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1072 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1073 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1074 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1075 pmap_pte_set(pt, &source_pvo->pvo_pte);
1076 victim_pvo->pvo_pmap->pm_evictions++;
1077 source_pvo->pvo_pmap->pm_evictions--;
1078 PVO_WHERE(victim_pvo, SPILL_UNSET);
1079 PVO_WHERE(source_pvo, SPILL_SET);
1080
1081 PVO_PTEGIDX_CLR(victim_pvo);
1082 PVO_PTEGIDX_SET(source_pvo, i);
1083 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1084 PMAPCOUNT(ptes_spilled);
1085 PMAPCOUNT(ptes_evicted);
1086 PMAPCOUNT(ptes_removed);
1087
1088 PMAP_PVO_CHECK(victim_pvo);
1089 PMAP_PVO_CHECK(source_pvo);
1090
1091 PMAP_UNLOCK();
1092 return 1;
1093 }
1094
1095 /*
1096 * Restrict given range to physical memory
1097 */
1098 void
1099 pmap_real_memory(paddr_t *start, psize_t *size)
1100 {
1101 struct mem_region *mp;
1102
1103 for (mp = mem; mp->size; mp++) {
1104 if (*start + *size > mp->start
1105 && *start < mp->start + mp->size) {
1106 if (*start < mp->start) {
1107 *size -= mp->start - *start;
1108 *start = mp->start;
1109 }
1110 if (*start + *size > mp->start + mp->size)
1111 *size = mp->start + mp->size - *start;
1112 return;
1113 }
1114 }
1115 *size = 0;
1116 }
1117
1118 /*
1119 * Initialize anything else for pmap handling.
1120 * Called during vm_init().
1121 */
1122 void
1123 pmap_init(void)
1124 {
1125 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1126 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1127 &pmap_pool_mallocator, IPL_NONE);
1128
1129 pool_setlowat(&pmap_mpvo_pool, 1008);
1130
1131 pmap_initialized = 1;
1132
1133 }
1134
1135 /*
1136 * How much virtual space does the kernel get?
1137 */
1138 void
1139 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1140 {
1141 /*
1142 * For now, reserve one segment (minus some overhead) for kernel
1143 * virtual memory
1144 */
1145 *start = VM_MIN_KERNEL_ADDRESS;
1146 *end = VM_MAX_KERNEL_ADDRESS;
1147 }
1148
1149 /*
1150 * Allocate, initialize, and return a new physical map.
1151 */
1152 pmap_t
1153 pmap_create(void)
1154 {
1155 pmap_t pm;
1156
1157 pm = pool_get(&pmap_pool, PR_WAITOK);
1158 memset((void *)pm, 0, sizeof *pm);
1159 pmap_pinit(pm);
1160
1161 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1162 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1163 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1164 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1165 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1166 pm,
1167 pm->pm_sr[0], pm->pm_sr[1],
1168 pm->pm_sr[2], pm->pm_sr[3],
1169 pm->pm_sr[4], pm->pm_sr[5],
1170 pm->pm_sr[6], pm->pm_sr[7],
1171 pm->pm_sr[8], pm->pm_sr[9],
1172 pm->pm_sr[10], pm->pm_sr[11],
1173 pm->pm_sr[12], pm->pm_sr[13],
1174 pm->pm_sr[14], pm->pm_sr[15]));
1175 return pm;
1176 }
1177
1178 /*
1179 * Initialize a preallocated and zeroed pmap structure.
1180 */
1181 void
1182 pmap_pinit(pmap_t pm)
1183 {
1184 register_t entropy = MFTB();
1185 register_t mask;
1186 int i;
1187
1188 /*
1189 * Allocate some segment registers for this pmap.
1190 */
1191 pm->pm_refs = 1;
1192 PMAP_LOCK();
1193 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1194 static register_t pmap_vsidcontext;
1195 register_t hash;
1196 unsigned int n;
1197
1198 /* Create a new value by multiplying by a prime adding in
1199 * entropy from the timebase register. This is to make the
1200 * VSID more random so that the PT Hash function collides
1201 * less often. (note that the prime causes gcc to do shifts
1202 * instead of a multiply)
1203 */
1204 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1205 hash = pmap_vsidcontext & (NPMAPS - 1);
1206 if (hash == 0) { /* 0 is special, avoid it */
1207 entropy += 0xbadf00d;
1208 continue;
1209 }
1210 n = hash >> 5;
1211 mask = 1L << (hash & (VSID_NBPW-1));
1212 hash = pmap_vsidcontext;
1213 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1214 /* anything free in this bucket? */
1215 if (~pmap_vsid_bitmap[n] == 0) {
1216 entropy = hash ^ (hash >> 16);
1217 continue;
1218 }
1219 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1220 mask = 1L << i;
1221 hash &= ~(VSID_NBPW-1);
1222 hash |= i;
1223 }
1224 hash &= PTE_VSID >> PTE_VSID_SHFT;
1225 pmap_vsid_bitmap[n] |= mask;
1226 pm->pm_vsid = hash;
1227 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1228 for (i = 0; i < 16; i++)
1229 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1230 SR_NOEXEC;
1231 #endif
1232 PMAP_UNLOCK();
1233 return;
1234 }
1235 PMAP_UNLOCK();
1236 panic("pmap_pinit: out of segments");
1237 }
1238
1239 /*
1240 * Add a reference to the given pmap.
1241 */
1242 void
1243 pmap_reference(pmap_t pm)
1244 {
1245 atomic_inc_uint(&pm->pm_refs);
1246 }
1247
1248 /*
1249 * Retire the given pmap from service.
1250 * Should only be called if the map contains no valid mappings.
1251 */
1252 void
1253 pmap_destroy(pmap_t pm)
1254 {
1255 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1256 pmap_release(pm);
1257 pool_put(&pmap_pool, pm);
1258 }
1259 }
1260
1261 /*
1262 * Release any resources held by the given physical map.
1263 * Called when a pmap initialized by pmap_pinit is being released.
1264 */
1265 void
1266 pmap_release(pmap_t pm)
1267 {
1268 int idx, mask;
1269
1270 KASSERT(pm->pm_stats.resident_count == 0);
1271 KASSERT(pm->pm_stats.wired_count == 0);
1272
1273 PMAP_LOCK();
1274 if (pm->pm_sr[0] == 0)
1275 panic("pmap_release");
1276 idx = pm->pm_vsid & (NPMAPS-1);
1277 mask = 1 << (idx % VSID_NBPW);
1278 idx /= VSID_NBPW;
1279
1280 KASSERT(pmap_vsid_bitmap[idx] & mask);
1281 pmap_vsid_bitmap[idx] &= ~mask;
1282 PMAP_UNLOCK();
1283 }
1284
1285 /*
1286 * Copy the range specified by src_addr/len
1287 * from the source map to the range dst_addr/len
1288 * in the destination map.
1289 *
1290 * This routine is only advisory and need not do anything.
1291 */
1292 void
1293 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1294 vsize_t len, vaddr_t src_addr)
1295 {
1296 PMAPCOUNT(copies);
1297 }
1298
1299 /*
1300 * Require that all active physical maps contain no
1301 * incorrect entries NOW.
1302 */
1303 void
1304 pmap_update(struct pmap *pmap)
1305 {
1306 PMAPCOUNT(updates);
1307 TLBSYNC();
1308 }
1309
1310 static inline int
1311 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1312 {
1313 int pteidx;
1314 /*
1315 * We can find the actual pte entry without searching by
1316 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1317 * and by noticing the HID bit.
1318 */
1319 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1320 if (pvo->pvo_pte.pte_hi & PTE_HID)
1321 pteidx ^= pmap_pteg_mask * 8;
1322 return pteidx;
1323 }
1324
1325 volatile struct pte *
1326 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1327 {
1328 volatile struct pte *pt;
1329
1330 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1331 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1332 return NULL;
1333 #endif
1334
1335 /*
1336 * If we haven't been supplied the ptegidx, calculate it.
1337 */
1338 if (pteidx == -1) {
1339 int ptegidx;
1340 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1341 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1342 }
1343
1344 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1345
1346 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1347 return pt;
1348 #else
1349 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1350 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1351 "pvo but no valid pte index", pvo);
1352 }
1353 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1354 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1355 "pvo but no valid pte", pvo);
1356 }
1357
1358 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1359 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1360 #if defined(DEBUG) || defined(PMAPCHECK)
1361 pmap_pte_print(pt);
1362 #endif
1363 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1364 "pmap_pteg_table %p but invalid in pvo",
1365 pvo, pt);
1366 }
1367 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1368 #if defined(DEBUG) || defined(PMAPCHECK)
1369 pmap_pte_print(pt);
1370 #endif
1371 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1372 "not match pte %p in pmap_pteg_table",
1373 pvo, pt);
1374 }
1375 return pt;
1376 }
1377
1378 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1379 #if defined(DEBUG) || defined(PMAPCHECK)
1380 pmap_pte_print(pt);
1381 #endif
1382 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1383 "pmap_pteg_table but valid in pvo", pvo, pt);
1384 }
1385 return NULL;
1386 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1387 }
1388
1389 struct pvo_entry *
1390 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1391 {
1392 struct pvo_entry *pvo;
1393 int ptegidx;
1394
1395 va &= ~ADDR_POFF;
1396 ptegidx = va_to_pteg(pm, va);
1397
1398 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1399 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1400 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1401 panic("pmap_pvo_find_va: invalid pvo %p on "
1402 "list %#x (%p)", pvo, ptegidx,
1403 &pmap_pvo_table[ptegidx]);
1404 #endif
1405 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1406 if (pteidx_p)
1407 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1408 return pvo;
1409 }
1410 }
1411 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1412 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1413 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1414 return NULL;
1415 }
1416
1417 #if defined(DEBUG) || defined(PMAPCHECK)
1418 void
1419 pmap_pvo_check(const struct pvo_entry *pvo)
1420 {
1421 struct pvo_head *pvo_head;
1422 struct pvo_entry *pvo0;
1423 volatile struct pte *pt;
1424 int failed = 0;
1425
1426 PMAP_LOCK();
1427
1428 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1429 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1430
1431 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1432 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1433 pvo, pvo->pvo_pmap);
1434 failed = 1;
1435 }
1436
1437 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1438 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1439 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1440 pvo, TAILQ_NEXT(pvo, pvo_olink));
1441 failed = 1;
1442 }
1443
1444 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1445 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1446 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1447 pvo, LIST_NEXT(pvo, pvo_vlink));
1448 failed = 1;
1449 }
1450
1451 if (PVO_MANAGED_P(pvo)) {
1452 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1453 } else {
1454 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1455 printf("pmap_pvo_check: pvo %p: non kernel address "
1456 "on kernel unmanaged list\n", pvo);
1457 failed = 1;
1458 }
1459 pvo_head = &pmap_pvo_kunmanaged;
1460 }
1461 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1462 if (pvo0 == pvo)
1463 break;
1464 }
1465 if (pvo0 == NULL) {
1466 printf("pmap_pvo_check: pvo %p: not present "
1467 "on its vlist head %p\n", pvo, pvo_head);
1468 failed = 1;
1469 }
1470 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1471 printf("pmap_pvo_check: pvo %p: not present "
1472 "on its olist head\n", pvo);
1473 failed = 1;
1474 }
1475 pt = pmap_pvo_to_pte(pvo, -1);
1476 if (pt == NULL) {
1477 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1478 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1479 "no PTE\n", pvo);
1480 failed = 1;
1481 }
1482 } else {
1483 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1484 (uintptr_t) pt >=
1485 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1486 printf("pmap_pvo_check: pvo %p: pte %p not in "
1487 "pteg table\n", pvo, pt);
1488 failed = 1;
1489 }
1490 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1491 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1492 "no PTE\n", pvo);
1493 failed = 1;
1494 }
1495 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1496 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1497 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1498 pvo->pvo_pte.pte_hi,
1499 pt->pte_hi);
1500 failed = 1;
1501 }
1502 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1503 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1504 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1505 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1506 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1507 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1508 failed = 1;
1509 }
1510 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1511 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1512 " doesn't not match PVO's VA %#" _PRIxva "\n",
1513 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1514 failed = 1;
1515 }
1516 if (failed)
1517 pmap_pte_print(pt);
1518 }
1519 if (failed)
1520 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1521 pvo->pvo_pmap);
1522
1523 PMAP_UNLOCK();
1524 }
1525 #endif /* DEBUG || PMAPCHECK */
1526
1527 /*
1528 * Search the PVO table looking for a non-wired entry.
1529 * If we find one, remove it and return it.
1530 */
1531
1532 struct pvo_entry *
1533 pmap_pvo_reclaim(struct pmap *pm)
1534 {
1535 struct pvo_tqhead *pvoh;
1536 struct pvo_entry *pvo;
1537 uint32_t idx, endidx;
1538
1539 endidx = pmap_pvo_reclaim_nextidx;
1540 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1541 idx = (idx + 1) & pmap_pteg_mask) {
1542 pvoh = &pmap_pvo_table[idx];
1543 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1544 if (!PVO_WIRED_P(pvo)) {
1545 pmap_pvo_remove(pvo, -1, NULL);
1546 pmap_pvo_reclaim_nextidx = idx;
1547 PMAPCOUNT(pvos_reclaimed);
1548 return pvo;
1549 }
1550 }
1551 }
1552 return NULL;
1553 }
1554
1555 /*
1556 * This returns whether this is the first mapping of a page.
1557 */
1558 int
1559 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1560 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1561 {
1562 struct pvo_entry *pvo;
1563 struct pvo_tqhead *pvoh;
1564 register_t msr;
1565 int ptegidx;
1566 int i;
1567 int poolflags = PR_NOWAIT;
1568
1569 /*
1570 * Compute the PTE Group index.
1571 */
1572 va &= ~ADDR_POFF;
1573 ptegidx = va_to_pteg(pm, va);
1574
1575 msr = pmap_interrupts_off();
1576
1577 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1578 if (pmap_pvo_remove_depth > 0)
1579 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1580 if (++pmap_pvo_enter_depth > 1)
1581 panic("pmap_pvo_enter: called recursively!");
1582 #endif
1583
1584 /*
1585 * Remove any existing mapping for this page. Reuse the
1586 * pvo entry if there a mapping.
1587 */
1588 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1589 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1590 #ifdef DEBUG
1591 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1592 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1593 ~(PTE_REF|PTE_CHG)) == 0 &&
1594 va < VM_MIN_KERNEL_ADDRESS) {
1595 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1596 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1597 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1598 pvo->pvo_pte.pte_hi,
1599 pm->pm_sr[va >> ADDR_SR_SHFT]);
1600 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1601 #ifdef DDBX
1602 Debugger();
1603 #endif
1604 }
1605 #endif
1606 PMAPCOUNT(mappings_replaced);
1607 pmap_pvo_remove(pvo, -1, NULL);
1608 break;
1609 }
1610 }
1611
1612 /*
1613 * If we aren't overwriting an mapping, try to allocate
1614 */
1615 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1616 --pmap_pvo_enter_depth;
1617 #endif
1618 pmap_interrupts_restore(msr);
1619 if (pvo) {
1620 pmap_pvo_free(pvo);
1621 }
1622 pvo = pool_get(pl, poolflags);
1623
1624 #ifdef DEBUG
1625 /*
1626 * Exercise pmap_pvo_reclaim() a little.
1627 */
1628 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1629 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1630 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1631 pool_put(pl, pvo);
1632 pvo = NULL;
1633 }
1634 #endif
1635
1636 msr = pmap_interrupts_off();
1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1638 ++pmap_pvo_enter_depth;
1639 #endif
1640 if (pvo == NULL) {
1641 pvo = pmap_pvo_reclaim(pm);
1642 if (pvo == NULL) {
1643 if ((flags & PMAP_CANFAIL) == 0)
1644 panic("pmap_pvo_enter: failed");
1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1646 pmap_pvo_enter_depth--;
1647 #endif
1648 PMAPCOUNT(pvos_failed);
1649 pmap_interrupts_restore(msr);
1650 return ENOMEM;
1651 }
1652 }
1653
1654 pvo->pvo_vaddr = va;
1655 pvo->pvo_pmap = pm;
1656 pvo->pvo_vaddr &= ~ADDR_POFF;
1657 if (flags & VM_PROT_EXECUTE) {
1658 PMAPCOUNT(exec_mappings);
1659 pvo_set_exec(pvo);
1660 }
1661 if (flags & PMAP_WIRED)
1662 pvo->pvo_vaddr |= PVO_WIRED;
1663 if (pvo_head != &pmap_pvo_kunmanaged) {
1664 pvo->pvo_vaddr |= PVO_MANAGED;
1665 PMAPCOUNT(mappings);
1666 } else {
1667 PMAPCOUNT(kernel_mappings);
1668 }
1669 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1670
1671 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1672 if (PVO_WIRED_P(pvo))
1673 pvo->pvo_pmap->pm_stats.wired_count++;
1674 pvo->pvo_pmap->pm_stats.resident_count++;
1675 #if defined(DEBUG)
1676 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1677 DPRINTFN(PVOENTER,
1678 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1679 pvo, pm, va, pa));
1680 #endif
1681
1682 /*
1683 * We hope this succeeds but it isn't required.
1684 */
1685 pvoh = &pmap_pvo_table[ptegidx];
1686 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1687 if (i >= 0) {
1688 PVO_PTEGIDX_SET(pvo, i);
1689 PVO_WHERE(pvo, ENTER_INSERT);
1690 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1691 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1692 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1693
1694 } else {
1695 /*
1696 * Since we didn't have room for this entry (which makes it
1697 * and evicted entry), place it at the head of the list.
1698 */
1699 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1700 PMAPCOUNT(ptes_evicted);
1701 pm->pm_evictions++;
1702 /*
1703 * If this is a kernel page, make sure it's active.
1704 */
1705 if (pm == pmap_kernel()) {
1706 i = pmap_pte_spill(pm, va, false);
1707 KASSERT(i);
1708 }
1709 }
1710 PMAP_PVO_CHECK(pvo); /* sanity check */
1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1712 pmap_pvo_enter_depth--;
1713 #endif
1714 pmap_interrupts_restore(msr);
1715 return 0;
1716 }
1717
1718 static void
1719 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1720 {
1721 volatile struct pte *pt;
1722 int ptegidx;
1723
1724 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1725 if (++pmap_pvo_remove_depth > 1)
1726 panic("pmap_pvo_remove: called recursively!");
1727 #endif
1728
1729 /*
1730 * If we haven't been supplied the ptegidx, calculate it.
1731 */
1732 if (pteidx == -1) {
1733 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1734 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1735 } else {
1736 ptegidx = pteidx >> 3;
1737 if (pvo->pvo_pte.pte_hi & PTE_HID)
1738 ptegidx ^= pmap_pteg_mask;
1739 }
1740 PMAP_PVO_CHECK(pvo); /* sanity check */
1741
1742 /*
1743 * If there is an active pte entry, we need to deactivate it
1744 * (and save the ref & chg bits).
1745 */
1746 pt = pmap_pvo_to_pte(pvo, pteidx);
1747 if (pt != NULL) {
1748 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1749 PVO_WHERE(pvo, REMOVE);
1750 PVO_PTEGIDX_CLR(pvo);
1751 PMAPCOUNT(ptes_removed);
1752 } else {
1753 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1754 pvo->pvo_pmap->pm_evictions--;
1755 }
1756
1757 /*
1758 * Account for executable mappings.
1759 */
1760 if (PVO_EXECUTABLE_P(pvo))
1761 pvo_clear_exec(pvo);
1762
1763 /*
1764 * Update our statistics.
1765 */
1766 pvo->pvo_pmap->pm_stats.resident_count--;
1767 if (PVO_WIRED_P(pvo))
1768 pvo->pvo_pmap->pm_stats.wired_count--;
1769
1770 /*
1771 * Save the REF/CHG bits into their cache if the page is managed.
1772 */
1773 if (PVO_MANAGED_P(pvo)) {
1774 register_t ptelo = pvo->pvo_pte.pte_lo;
1775 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1776
1777 if (pg != NULL) {
1778 /*
1779 * If this page was changed and it is mapped exec,
1780 * invalidate it.
1781 */
1782 if ((ptelo & PTE_CHG) &&
1783 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1784 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1785 if (LIST_EMPTY(pvoh)) {
1786 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1787 "%#" _PRIxpa ": clear-exec]\n",
1788 VM_PAGE_TO_PHYS(pg)));
1789 pmap_attr_clear(pg, PTE_EXEC);
1790 PMAPCOUNT(exec_uncached_pvo_remove);
1791 } else {
1792 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1793 "%#" _PRIxpa ": syncicache]\n",
1794 VM_PAGE_TO_PHYS(pg)));
1795 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1796 PAGE_SIZE);
1797 PMAPCOUNT(exec_synced_pvo_remove);
1798 }
1799 }
1800
1801 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1802 }
1803 PMAPCOUNT(unmappings);
1804 } else {
1805 PMAPCOUNT(kernel_unmappings);
1806 }
1807
1808 /*
1809 * Remove the PVO from its lists and return it to the pool.
1810 */
1811 LIST_REMOVE(pvo, pvo_vlink);
1812 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1813 if (pvol) {
1814 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1815 }
1816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1817 pmap_pvo_remove_depth--;
1818 #endif
1819 }
1820
1821 void
1822 pmap_pvo_free(struct pvo_entry *pvo)
1823 {
1824
1825 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1826 }
1827
1828 void
1829 pmap_pvo_free_list(struct pvo_head *pvol)
1830 {
1831 struct pvo_entry *pvo, *npvo;
1832
1833 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1834 npvo = LIST_NEXT(pvo, pvo_vlink);
1835 LIST_REMOVE(pvo, pvo_vlink);
1836 pmap_pvo_free(pvo);
1837 }
1838 }
1839
1840 /*
1841 * Mark a mapping as executable.
1842 * If this is the first executable mapping in the segment,
1843 * clear the noexec flag.
1844 */
1845 static void
1846 pvo_set_exec(struct pvo_entry *pvo)
1847 {
1848 struct pmap *pm = pvo->pvo_pmap;
1849
1850 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1851 return;
1852 }
1853 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1854 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1855 {
1856 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1857 if (pm->pm_exec[sr]++ == 0) {
1858 pm->pm_sr[sr] &= ~SR_NOEXEC;
1859 }
1860 }
1861 #endif
1862 }
1863
1864 /*
1865 * Mark a mapping as non-executable.
1866 * If this was the last executable mapping in the segment,
1867 * set the noexec flag.
1868 */
1869 static void
1870 pvo_clear_exec(struct pvo_entry *pvo)
1871 {
1872 struct pmap *pm = pvo->pvo_pmap;
1873
1874 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1875 return;
1876 }
1877 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1878 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1879 {
1880 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1881 if (--pm->pm_exec[sr] == 0) {
1882 pm->pm_sr[sr] |= SR_NOEXEC;
1883 }
1884 }
1885 #endif
1886 }
1887
1888 /*
1889 * Insert physical page at pa into the given pmap at virtual address va.
1890 */
1891 int
1892 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1893 {
1894 struct mem_region *mp;
1895 struct pvo_head *pvo_head;
1896 struct vm_page *pg;
1897 struct pool *pl;
1898 register_t pte_lo;
1899 int error;
1900 u_int pvo_flags;
1901 u_int was_exec = 0;
1902
1903 PMAP_LOCK();
1904
1905 if (__predict_false(!pmap_initialized)) {
1906 pvo_head = &pmap_pvo_kunmanaged;
1907 pl = &pmap_upvo_pool;
1908 pvo_flags = 0;
1909 pg = NULL;
1910 was_exec = PTE_EXEC;
1911 } else {
1912 pvo_head = pa_to_pvoh(pa, &pg);
1913 pl = &pmap_mpvo_pool;
1914 pvo_flags = PVO_MANAGED;
1915 }
1916
1917 DPRINTFN(ENTER,
1918 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1919 pm, va, pa, prot, flags));
1920
1921 /*
1922 * If this is a managed page, and it's the first reference to the
1923 * page clear the execness of the page. Otherwise fetch the execness.
1924 */
1925 if (pg != NULL)
1926 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1927
1928 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1929
1930 /*
1931 * Assume the page is cache inhibited and access is guarded unless
1932 * it's in our available memory array. If it is in the memory array,
1933 * asssume it's in memory coherent memory.
1934 */
1935 pte_lo = PTE_IG;
1936 if ((flags & PMAP_NC) == 0) {
1937 for (mp = mem; mp->size; mp++) {
1938 if (pa >= mp->start && pa < mp->start + mp->size) {
1939 pte_lo = PTE_M;
1940 break;
1941 }
1942 }
1943 }
1944
1945 if (prot & VM_PROT_WRITE)
1946 pte_lo |= PTE_BW;
1947 else
1948 pte_lo |= PTE_BR;
1949
1950 /*
1951 * If this was in response to a fault, "pre-fault" the PTE's
1952 * changed/referenced bit appropriately.
1953 */
1954 if (flags & VM_PROT_WRITE)
1955 pte_lo |= PTE_CHG;
1956 if (flags & VM_PROT_ALL)
1957 pte_lo |= PTE_REF;
1958
1959 /*
1960 * We need to know if this page can be executable
1961 */
1962 flags |= (prot & VM_PROT_EXECUTE);
1963
1964 /*
1965 * Record mapping for later back-translation and pte spilling.
1966 * This will overwrite any existing mapping.
1967 */
1968 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1969
1970 /*
1971 * Flush the real page from the instruction cache if this page is
1972 * mapped executable and cacheable and has not been flushed since
1973 * the last time it was modified.
1974 */
1975 if (error == 0 &&
1976 (flags & VM_PROT_EXECUTE) &&
1977 (pte_lo & PTE_I) == 0 &&
1978 was_exec == 0) {
1979 DPRINTFN(ENTER, (" syncicache"));
1980 PMAPCOUNT(exec_synced);
1981 pmap_syncicache(pa, PAGE_SIZE);
1982 if (pg != NULL) {
1983 pmap_attr_save(pg, PTE_EXEC);
1984 PMAPCOUNT(exec_cached);
1985 #if defined(DEBUG) || defined(PMAPDEBUG)
1986 if (pmapdebug & PMAPDEBUG_ENTER)
1987 printf(" marked-as-exec");
1988 else if (pmapdebug & PMAPDEBUG_EXEC)
1989 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1990 VM_PAGE_TO_PHYS(pg));
1991
1992 #endif
1993 }
1994 }
1995
1996 DPRINTFN(ENTER, (": error=%d\n", error));
1997
1998 PMAP_UNLOCK();
1999
2000 return error;
2001 }
2002
2003 void
2004 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2005 {
2006 struct mem_region *mp;
2007 register_t pte_lo;
2008 int error;
2009
2010 #if defined (PMAP_OEA64_BRIDGE)
2011 if (va < VM_MIN_KERNEL_ADDRESS)
2012 panic("pmap_kenter_pa: attempt to enter "
2013 "non-kernel address %#" _PRIxva "!", va);
2014 #endif
2015
2016 DPRINTFN(KENTER,
2017 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2018
2019 PMAP_LOCK();
2020
2021 /*
2022 * Assume the page is cache inhibited and access is guarded unless
2023 * it's in our available memory array. If it is in the memory array,
2024 * asssume it's in memory coherent memory.
2025 */
2026 pte_lo = PTE_IG;
2027 if ((prot & PMAP_NC) == 0) {
2028 for (mp = mem; mp->size; mp++) {
2029 if (pa >= mp->start && pa < mp->start + mp->size) {
2030 pte_lo = PTE_M;
2031 break;
2032 }
2033 }
2034 }
2035
2036 if (prot & VM_PROT_WRITE)
2037 pte_lo |= PTE_BW;
2038 else
2039 pte_lo |= PTE_BR;
2040
2041 /*
2042 * We don't care about REF/CHG on PVOs on the unmanaged list.
2043 */
2044 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2045 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2046
2047 if (error != 0)
2048 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2049 va, pa, error);
2050
2051 PMAP_UNLOCK();
2052 }
2053
2054 void
2055 pmap_kremove(vaddr_t va, vsize_t len)
2056 {
2057 if (va < VM_MIN_KERNEL_ADDRESS)
2058 panic("pmap_kremove: attempt to remove "
2059 "non-kernel address %#" _PRIxva "!", va);
2060
2061 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2062 pmap_remove(pmap_kernel(), va, va + len);
2063 }
2064
2065 /*
2066 * Remove the given range of mapping entries.
2067 */
2068 void
2069 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2070 {
2071 struct pvo_head pvol;
2072 struct pvo_entry *pvo;
2073 register_t msr;
2074 int pteidx;
2075
2076 PMAP_LOCK();
2077 LIST_INIT(&pvol);
2078 msr = pmap_interrupts_off();
2079 for (; va < endva; va += PAGE_SIZE) {
2080 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2081 if (pvo != NULL) {
2082 pmap_pvo_remove(pvo, pteidx, &pvol);
2083 }
2084 }
2085 pmap_interrupts_restore(msr);
2086 pmap_pvo_free_list(&pvol);
2087 PMAP_UNLOCK();
2088 }
2089
2090 /*
2091 * Get the physical page address for the given pmap/virtual address.
2092 */
2093 bool
2094 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2095 {
2096 struct pvo_entry *pvo;
2097 register_t msr;
2098
2099 PMAP_LOCK();
2100
2101 /*
2102 * If this is a kernel pmap lookup, also check the battable
2103 * and if we get a hit, translate the VA to a PA using the
2104 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2105 * that will wrap back to 0.
2106 */
2107 if (pm == pmap_kernel() &&
2108 (va < VM_MIN_KERNEL_ADDRESS ||
2109 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2110 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2111 #if defined (PMAP_OEA)
2112 #ifdef PPC_OEA601
2113 if ((MFPVR() >> 16) == MPC601) {
2114 register_t batu = battable[va >> 23].batu;
2115 register_t batl = battable[va >> 23].batl;
2116 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2117 if (BAT601_VALID_P(batl) &&
2118 BAT601_VA_MATCH_P(batu, batl, va)) {
2119 register_t mask =
2120 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2121 if (pap)
2122 *pap = (batl & mask) | (va & ~mask);
2123 PMAP_UNLOCK();
2124 return true;
2125 } else if (SR601_VALID_P(sr) &&
2126 SR601_PA_MATCH_P(sr, va)) {
2127 if (pap)
2128 *pap = va;
2129 PMAP_UNLOCK();
2130 return true;
2131 }
2132 } else
2133 #endif /* PPC_OEA601 */
2134 {
2135 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2136 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2137 register_t batl =
2138 battable[va >> ADDR_SR_SHFT].batl;
2139 register_t mask =
2140 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2141 if (pap)
2142 *pap = (batl & mask) | (va & ~mask);
2143 PMAP_UNLOCK();
2144 return true;
2145 }
2146 }
2147 return false;
2148 #elif defined (PMAP_OEA64_BRIDGE)
2149 if (va >= SEGMENT_LENGTH)
2150 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2151 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2152 else {
2153 if (pap)
2154 *pap = va;
2155 PMAP_UNLOCK();
2156 return true;
2157 }
2158 #elif defined (PMAP_OEA64)
2159 #error PPC_OEA64 not supported
2160 #endif /* PPC_OEA */
2161 }
2162
2163 msr = pmap_interrupts_off();
2164 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2165 if (pvo != NULL) {
2166 PMAP_PVO_CHECK(pvo); /* sanity check */
2167 if (pap)
2168 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2169 | (va & ADDR_POFF);
2170 }
2171 pmap_interrupts_restore(msr);
2172 PMAP_UNLOCK();
2173 return pvo != NULL;
2174 }
2175
2176 /*
2177 * Lower the protection on the specified range of this pmap.
2178 */
2179 void
2180 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2181 {
2182 struct pvo_entry *pvo;
2183 volatile struct pte *pt;
2184 register_t msr;
2185 int pteidx;
2186
2187 /*
2188 * Since this routine only downgrades protection, we should
2189 * always be called with at least one bit not set.
2190 */
2191 KASSERT(prot != VM_PROT_ALL);
2192
2193 /*
2194 * If there is no protection, this is equivalent to
2195 * remove the pmap from the pmap.
2196 */
2197 if ((prot & VM_PROT_READ) == 0) {
2198 pmap_remove(pm, va, endva);
2199 return;
2200 }
2201
2202 PMAP_LOCK();
2203
2204 msr = pmap_interrupts_off();
2205 for (; va < endva; va += PAGE_SIZE) {
2206 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2207 if (pvo == NULL)
2208 continue;
2209 PMAP_PVO_CHECK(pvo); /* sanity check */
2210
2211 /*
2212 * Revoke executable if asked to do so.
2213 */
2214 if ((prot & VM_PROT_EXECUTE) == 0)
2215 pvo_clear_exec(pvo);
2216
2217 #if 0
2218 /*
2219 * If the page is already read-only, no change
2220 * needs to be made.
2221 */
2222 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2223 continue;
2224 #endif
2225 /*
2226 * Grab the PTE pointer before we diddle with
2227 * the cached PTE copy.
2228 */
2229 pt = pmap_pvo_to_pte(pvo, pteidx);
2230 /*
2231 * Change the protection of the page.
2232 */
2233 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2234 pvo->pvo_pte.pte_lo |= PTE_BR;
2235
2236 /*
2237 * If the PVO is in the page table, update
2238 * that pte at well.
2239 */
2240 if (pt != NULL) {
2241 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2242 PVO_WHERE(pvo, PMAP_PROTECT);
2243 PMAPCOUNT(ptes_changed);
2244 }
2245
2246 PMAP_PVO_CHECK(pvo); /* sanity check */
2247 }
2248 pmap_interrupts_restore(msr);
2249 PMAP_UNLOCK();
2250 }
2251
2252 void
2253 pmap_unwire(pmap_t pm, vaddr_t va)
2254 {
2255 struct pvo_entry *pvo;
2256 register_t msr;
2257
2258 PMAP_LOCK();
2259 msr = pmap_interrupts_off();
2260 pvo = pmap_pvo_find_va(pm, va, NULL);
2261 if (pvo != NULL) {
2262 if (PVO_WIRED_P(pvo)) {
2263 pvo->pvo_vaddr &= ~PVO_WIRED;
2264 pm->pm_stats.wired_count--;
2265 }
2266 PMAP_PVO_CHECK(pvo); /* sanity check */
2267 }
2268 pmap_interrupts_restore(msr);
2269 PMAP_UNLOCK();
2270 }
2271
2272 /*
2273 * Lower the protection on the specified physical page.
2274 */
2275 void
2276 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2277 {
2278 struct pvo_head *pvo_head, pvol;
2279 struct pvo_entry *pvo, *next_pvo;
2280 volatile struct pte *pt;
2281 register_t msr;
2282
2283 PMAP_LOCK();
2284
2285 KASSERT(prot != VM_PROT_ALL);
2286 LIST_INIT(&pvol);
2287 msr = pmap_interrupts_off();
2288
2289 /*
2290 * When UVM reuses a page, it does a pmap_page_protect with
2291 * VM_PROT_NONE. At that point, we can clear the exec flag
2292 * since we know the page will have different contents.
2293 */
2294 if ((prot & VM_PROT_READ) == 0) {
2295 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2296 VM_PAGE_TO_PHYS(pg)));
2297 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2298 PMAPCOUNT(exec_uncached_page_protect);
2299 pmap_attr_clear(pg, PTE_EXEC);
2300 }
2301 }
2302
2303 pvo_head = vm_page_to_pvoh(pg);
2304 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2305 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2306 PMAP_PVO_CHECK(pvo); /* sanity check */
2307
2308 /*
2309 * Downgrading to no mapping at all, we just remove the entry.
2310 */
2311 if ((prot & VM_PROT_READ) == 0) {
2312 pmap_pvo_remove(pvo, -1, &pvol);
2313 continue;
2314 }
2315
2316 /*
2317 * If EXEC permission is being revoked, just clear the
2318 * flag in the PVO.
2319 */
2320 if ((prot & VM_PROT_EXECUTE) == 0)
2321 pvo_clear_exec(pvo);
2322
2323 /*
2324 * If this entry is already RO, don't diddle with the
2325 * page table.
2326 */
2327 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2328 PMAP_PVO_CHECK(pvo);
2329 continue;
2330 }
2331
2332 /*
2333 * Grab the PTE before the we diddle the bits so
2334 * pvo_to_pte can verify the pte contents are as
2335 * expected.
2336 */
2337 pt = pmap_pvo_to_pte(pvo, -1);
2338 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2339 pvo->pvo_pte.pte_lo |= PTE_BR;
2340 if (pt != NULL) {
2341 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2342 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2343 PMAPCOUNT(ptes_changed);
2344 }
2345 PMAP_PVO_CHECK(pvo); /* sanity check */
2346 }
2347 pmap_interrupts_restore(msr);
2348 pmap_pvo_free_list(&pvol);
2349
2350 PMAP_UNLOCK();
2351 }
2352
2353 /*
2354 * Activate the address space for the specified process. If the process
2355 * is the current process, load the new MMU context.
2356 */
2357 void
2358 pmap_activate(struct lwp *l)
2359 {
2360 struct pcb *pcb = &l->l_addr->u_pcb;
2361 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2362
2363 DPRINTFN(ACTIVATE,
2364 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2365
2366 /*
2367 * XXX Normally performed in cpu_fork().
2368 */
2369 pcb->pcb_pm = pmap;
2370
2371 /*
2372 * In theory, the SR registers need only be valid on return
2373 * to user space wait to do them there.
2374 */
2375 if (l == curlwp) {
2376 /* Store pointer to new current pmap. */
2377 curpm = pmap;
2378 }
2379 }
2380
2381 /*
2382 * Deactivate the specified process's address space.
2383 */
2384 void
2385 pmap_deactivate(struct lwp *l)
2386 {
2387 }
2388
2389 bool
2390 pmap_query_bit(struct vm_page *pg, int ptebit)
2391 {
2392 struct pvo_entry *pvo;
2393 volatile struct pte *pt;
2394 register_t msr;
2395
2396 PMAP_LOCK();
2397
2398 if (pmap_attr_fetch(pg) & ptebit) {
2399 PMAP_UNLOCK();
2400 return true;
2401 }
2402
2403 msr = pmap_interrupts_off();
2404 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2405 PMAP_PVO_CHECK(pvo); /* sanity check */
2406 /*
2407 * See if we saved the bit off. If so cache, it and return
2408 * success.
2409 */
2410 if (pvo->pvo_pte.pte_lo & ptebit) {
2411 pmap_attr_save(pg, ptebit);
2412 PMAP_PVO_CHECK(pvo); /* sanity check */
2413 pmap_interrupts_restore(msr);
2414 PMAP_UNLOCK();
2415 return true;
2416 }
2417 }
2418 /*
2419 * No luck, now go thru the hard part of looking at the ptes
2420 * themselves. Sync so any pending REF/CHG bits are flushed
2421 * to the PTEs.
2422 */
2423 SYNC();
2424 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2425 PMAP_PVO_CHECK(pvo); /* sanity check */
2426 /*
2427 * See if this pvo have a valid PTE. If so, fetch the
2428 * REF/CHG bits from the valid PTE. If the appropriate
2429 * ptebit is set, cache, it and return success.
2430 */
2431 pt = pmap_pvo_to_pte(pvo, -1);
2432 if (pt != NULL) {
2433 pmap_pte_synch(pt, &pvo->pvo_pte);
2434 if (pvo->pvo_pte.pte_lo & ptebit) {
2435 pmap_attr_save(pg, ptebit);
2436 PMAP_PVO_CHECK(pvo); /* sanity check */
2437 pmap_interrupts_restore(msr);
2438 PMAP_UNLOCK();
2439 return true;
2440 }
2441 }
2442 }
2443 pmap_interrupts_restore(msr);
2444 PMAP_UNLOCK();
2445 return false;
2446 }
2447
2448 bool
2449 pmap_clear_bit(struct vm_page *pg, int ptebit)
2450 {
2451 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2452 struct pvo_entry *pvo;
2453 volatile struct pte *pt;
2454 register_t msr;
2455 int rv = 0;
2456
2457 PMAP_LOCK();
2458 msr = pmap_interrupts_off();
2459
2460 /*
2461 * Fetch the cache value
2462 */
2463 rv |= pmap_attr_fetch(pg);
2464
2465 /*
2466 * Clear the cached value.
2467 */
2468 pmap_attr_clear(pg, ptebit);
2469
2470 /*
2471 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2472 * can reset the right ones). Note that since the pvo entries and
2473 * list heads are accessed via BAT0 and are never placed in the
2474 * page table, we don't have to worry about further accesses setting
2475 * the REF/CHG bits.
2476 */
2477 SYNC();
2478
2479 /*
2480 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2481 * valid PTE. If so, clear the ptebit from the valid PTE.
2482 */
2483 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2484 PMAP_PVO_CHECK(pvo); /* sanity check */
2485 pt = pmap_pvo_to_pte(pvo, -1);
2486 if (pt != NULL) {
2487 /*
2488 * Only sync the PTE if the bit we are looking
2489 * for is not already set.
2490 */
2491 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2492 pmap_pte_synch(pt, &pvo->pvo_pte);
2493 /*
2494 * If the bit we are looking for was already set,
2495 * clear that bit in the pte.
2496 */
2497 if (pvo->pvo_pte.pte_lo & ptebit)
2498 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2499 }
2500 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2501 pvo->pvo_pte.pte_lo &= ~ptebit;
2502 PMAP_PVO_CHECK(pvo); /* sanity check */
2503 }
2504 pmap_interrupts_restore(msr);
2505
2506 /*
2507 * If we are clearing the modify bit and this page was marked EXEC
2508 * and the user of the page thinks the page was modified, then we
2509 * need to clean it from the icache if it's mapped or clear the EXEC
2510 * bit if it's not mapped. The page itself might not have the CHG
2511 * bit set if the modification was done via DMA to the page.
2512 */
2513 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2514 if (LIST_EMPTY(pvoh)) {
2515 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2516 VM_PAGE_TO_PHYS(pg)));
2517 pmap_attr_clear(pg, PTE_EXEC);
2518 PMAPCOUNT(exec_uncached_clear_modify);
2519 } else {
2520 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2521 VM_PAGE_TO_PHYS(pg)));
2522 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2523 PMAPCOUNT(exec_synced_clear_modify);
2524 }
2525 }
2526 PMAP_UNLOCK();
2527 return (rv & ptebit) != 0;
2528 }
2529
2530 void
2531 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2532 {
2533 struct pvo_entry *pvo;
2534 size_t offset = va & ADDR_POFF;
2535 int s;
2536
2537 PMAP_LOCK();
2538 s = splvm();
2539 while (len > 0) {
2540 size_t seglen = PAGE_SIZE - offset;
2541 if (seglen > len)
2542 seglen = len;
2543 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2544 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2545 pmap_syncicache(
2546 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2547 PMAP_PVO_CHECK(pvo);
2548 }
2549 va += seglen;
2550 len -= seglen;
2551 offset = 0;
2552 }
2553 splx(s);
2554 PMAP_UNLOCK();
2555 }
2556
2557 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2558 void
2559 pmap_pte_print(volatile struct pte *pt)
2560 {
2561 printf("PTE %p: ", pt);
2562
2563 #if defined(PMAP_OEA)
2564 /* High word: */
2565 printf("%#" _PRIxpte ": [", pt->pte_hi);
2566 #else
2567 printf("%#" _PRIxpte ": [", pt->pte_hi);
2568 #endif /* PMAP_OEA */
2569
2570 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2571 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2572
2573 printf("%#" _PRIxpte " %#" _PRIxpte "",
2574 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2575 pt->pte_hi & PTE_API);
2576 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2577 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2578 #else
2579 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2580 #endif /* PMAP_OEA */
2581
2582 /* Low word: */
2583 #if defined (PMAP_OEA)
2584 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2585 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2586 #else
2587 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2588 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2589 #endif
2590 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2591 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2592 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2593 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2594 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2595 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2596 switch (pt->pte_lo & PTE_PP) {
2597 case PTE_BR: printf("br]\n"); break;
2598 case PTE_BW: printf("bw]\n"); break;
2599 case PTE_SO: printf("so]\n"); break;
2600 case PTE_SW: printf("sw]\n"); break;
2601 }
2602 }
2603 #endif
2604
2605 #if defined(DDB)
2606 void
2607 pmap_pteg_check(void)
2608 {
2609 volatile struct pte *pt;
2610 int i;
2611 int ptegidx;
2612 u_int p_valid = 0;
2613 u_int s_valid = 0;
2614 u_int invalid = 0;
2615
2616 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2617 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2618 if (pt->pte_hi & PTE_VALID) {
2619 if (pt->pte_hi & PTE_HID)
2620 s_valid++;
2621 else
2622 {
2623 p_valid++;
2624 }
2625 } else
2626 invalid++;
2627 }
2628 }
2629 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2630 p_valid, p_valid, s_valid, s_valid,
2631 invalid, invalid);
2632 }
2633
2634 void
2635 pmap_print_mmuregs(void)
2636 {
2637 int i;
2638 u_int cpuvers;
2639 #ifndef PMAP_OEA64
2640 vaddr_t addr;
2641 register_t soft_sr[16];
2642 #endif
2643 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2644 struct bat soft_ibat[4];
2645 struct bat soft_dbat[4];
2646 #endif
2647 paddr_t sdr1;
2648
2649 cpuvers = MFPVR() >> 16;
2650 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2651 #ifndef PMAP_OEA64
2652 addr = 0;
2653 for (i = 0; i < 16; i++) {
2654 soft_sr[i] = MFSRIN(addr);
2655 addr += (1 << ADDR_SR_SHFT);
2656 }
2657 #endif
2658
2659 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2660 /* read iBAT (601: uBAT) registers */
2661 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2662 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2663 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2664 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2665 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2666 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2667 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2668 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2669
2670
2671 if (cpuvers != MPC601) {
2672 /* read dBAT registers */
2673 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2674 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2675 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2676 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2677 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2678 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2679 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2680 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2681 }
2682 #endif
2683
2684 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2685 #ifndef PMAP_OEA64
2686 printf("SR[]:\t");
2687 for (i = 0; i < 4; i++)
2688 printf("0x%08lx, ", soft_sr[i]);
2689 printf("\n\t");
2690 for ( ; i < 8; i++)
2691 printf("0x%08lx, ", soft_sr[i]);
2692 printf("\n\t");
2693 for ( ; i < 12; i++)
2694 printf("0x%08lx, ", soft_sr[i]);
2695 printf("\n\t");
2696 for ( ; i < 16; i++)
2697 printf("0x%08lx, ", soft_sr[i]);
2698 printf("\n");
2699 #endif
2700
2701 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2702 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2703 for (i = 0; i < 4; i++) {
2704 printf("0x%08lx 0x%08lx, ",
2705 soft_ibat[i].batu, soft_ibat[i].batl);
2706 if (i == 1)
2707 printf("\n\t");
2708 }
2709 if (cpuvers != MPC601) {
2710 printf("\ndBAT[]:\t");
2711 for (i = 0; i < 4; i++) {
2712 printf("0x%08lx 0x%08lx, ",
2713 soft_dbat[i].batu, soft_dbat[i].batl);
2714 if (i == 1)
2715 printf("\n\t");
2716 }
2717 }
2718 printf("\n");
2719 #endif /* PMAP_OEA... */
2720 }
2721
2722 void
2723 pmap_print_pte(pmap_t pm, vaddr_t va)
2724 {
2725 struct pvo_entry *pvo;
2726 volatile struct pte *pt;
2727 int pteidx;
2728
2729 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2730 if (pvo != NULL) {
2731 pt = pmap_pvo_to_pte(pvo, pteidx);
2732 if (pt != NULL) {
2733 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2734 va, pt,
2735 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2736 pt->pte_hi, pt->pte_lo);
2737 } else {
2738 printf("No valid PTE found\n");
2739 }
2740 } else {
2741 printf("Address not in pmap\n");
2742 }
2743 }
2744
2745 void
2746 pmap_pteg_dist(void)
2747 {
2748 struct pvo_entry *pvo;
2749 int ptegidx;
2750 int depth;
2751 int max_depth = 0;
2752 unsigned int depths[64];
2753
2754 memset(depths, 0, sizeof(depths));
2755 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2756 depth = 0;
2757 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2758 depth++;
2759 }
2760 if (depth > max_depth)
2761 max_depth = depth;
2762 if (depth > 63)
2763 depth = 63;
2764 depths[depth]++;
2765 }
2766
2767 for (depth = 0; depth < 64; depth++) {
2768 printf(" [%2d]: %8u", depth, depths[depth]);
2769 if ((depth & 3) == 3)
2770 printf("\n");
2771 if (depth == max_depth)
2772 break;
2773 }
2774 if ((depth & 3) != 3)
2775 printf("\n");
2776 printf("Max depth found was %d\n", max_depth);
2777 }
2778 #endif /* DEBUG */
2779
2780 #if defined(PMAPCHECK) || defined(DEBUG)
2781 void
2782 pmap_pvo_verify(void)
2783 {
2784 int ptegidx;
2785 int s;
2786
2787 s = splvm();
2788 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2789 struct pvo_entry *pvo;
2790 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2791 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2792 panic("pmap_pvo_verify: invalid pvo %p "
2793 "on list %#x", pvo, ptegidx);
2794 pmap_pvo_check(pvo);
2795 }
2796 }
2797 splx(s);
2798 }
2799 #endif /* PMAPCHECK */
2800
2801
2802 void *
2803 pmap_pool_ualloc(struct pool *pp, int flags)
2804 {
2805 struct pvo_page *pvop;
2806
2807 if (uvm.page_init_done != true) {
2808 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2809 }
2810
2811 PMAP_LOCK();
2812 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2813 if (pvop != NULL) {
2814 pmap_upvop_free--;
2815 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2816 PMAP_UNLOCK();
2817 return pvop;
2818 }
2819 PMAP_UNLOCK();
2820 return pmap_pool_malloc(pp, flags);
2821 }
2822
2823 void *
2824 pmap_pool_malloc(struct pool *pp, int flags)
2825 {
2826 struct pvo_page *pvop;
2827 struct vm_page *pg;
2828
2829 PMAP_LOCK();
2830 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2831 if (pvop != NULL) {
2832 pmap_mpvop_free--;
2833 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2834 PMAP_UNLOCK();
2835 return pvop;
2836 }
2837 PMAP_UNLOCK();
2838 again:
2839 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2840 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2841 if (__predict_false(pg == NULL)) {
2842 if (flags & PR_WAITOK) {
2843 uvm_wait("plpg");
2844 goto again;
2845 } else {
2846 return (0);
2847 }
2848 }
2849 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2850 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2851 }
2852
2853 void
2854 pmap_pool_ufree(struct pool *pp, void *va)
2855 {
2856 struct pvo_page *pvop;
2857 #if 0
2858 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2859 pmap_pool_mfree(va, size, tag);
2860 return;
2861 }
2862 #endif
2863 PMAP_LOCK();
2864 pvop = va;
2865 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2866 pmap_upvop_free++;
2867 if (pmap_upvop_free > pmap_upvop_maxfree)
2868 pmap_upvop_maxfree = pmap_upvop_free;
2869 PMAP_UNLOCK();
2870 }
2871
2872 void
2873 pmap_pool_mfree(struct pool *pp, void *va)
2874 {
2875 struct pvo_page *pvop;
2876
2877 PMAP_LOCK();
2878 pvop = va;
2879 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2880 pmap_mpvop_free++;
2881 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2882 pmap_mpvop_maxfree = pmap_mpvop_free;
2883 PMAP_UNLOCK();
2884 #if 0
2885 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2886 #endif
2887 }
2888
2889 /*
2890 * This routine in bootstraping to steal to-be-managed memory (which will
2891 * then be unmanaged). We use it to grab from the first 256MB for our
2892 * pmap needs and above 256MB for other stuff.
2893 */
2894 vaddr_t
2895 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2896 {
2897 vsize_t size;
2898 vaddr_t va;
2899 paddr_t pa = 0;
2900 int npgs, bank;
2901 struct vm_physseg *ps;
2902
2903 if (uvm.page_init_done == true)
2904 panic("pmap_steal_memory: called _after_ bootstrap");
2905
2906 *vstartp = VM_MIN_KERNEL_ADDRESS;
2907 *vendp = VM_MAX_KERNEL_ADDRESS;
2908
2909 size = round_page(vsize);
2910 npgs = atop(size);
2911
2912 /*
2913 * PA 0 will never be among those given to UVM so we can use it
2914 * to indicate we couldn't steal any memory.
2915 */
2916 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2917 if (ps->free_list == VM_FREELIST_FIRST256 &&
2918 ps->avail_end - ps->avail_start >= npgs) {
2919 pa = ptoa(ps->avail_start);
2920 break;
2921 }
2922 }
2923
2924 if (pa == 0)
2925 panic("pmap_steal_memory: no approriate memory to steal!");
2926
2927 ps->avail_start += npgs;
2928 ps->start += npgs;
2929
2930 /*
2931 * If we've used up all the pages in the segment, remove it and
2932 * compact the list.
2933 */
2934 if (ps->avail_start == ps->end) {
2935 /*
2936 * If this was the last one, then a very bad thing has occurred
2937 */
2938 if (--vm_nphysseg == 0)
2939 panic("pmap_steal_memory: out of memory!");
2940
2941 printf("pmap_steal_memory: consumed bank %d\n", bank);
2942 for (; bank < vm_nphysseg; bank++, ps++) {
2943 ps[0] = ps[1];
2944 }
2945 }
2946
2947 va = (vaddr_t) pa;
2948 memset((void *) va, 0, size);
2949 pmap_pages_stolen += npgs;
2950 #ifdef DEBUG
2951 if (pmapdebug && npgs > 1) {
2952 u_int cnt = 0;
2953 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2954 cnt += ps->avail_end - ps->avail_start;
2955 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2956 npgs, pmap_pages_stolen, cnt);
2957 }
2958 #endif
2959
2960 return va;
2961 }
2962
2963 /*
2964 * Find a chuck of memory with right size and alignment.
2965 */
2966 paddr_t
2967 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2968 {
2969 struct mem_region *mp;
2970 paddr_t s, e;
2971 int i, j;
2972
2973 size = round_page(size);
2974
2975 DPRINTFN(BOOT,
2976 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2977 size, alignment, at_end));
2978
2979 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2980 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2981 alignment);
2982
2983 if (at_end) {
2984 if (alignment != PAGE_SIZE)
2985 panic("pmap_boot_find_memory: invalid ending "
2986 "alignment %#" _PRIxpa, alignment);
2987
2988 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2989 s = mp->start + mp->size - size;
2990 if (s >= mp->start && mp->size >= size) {
2991 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
2992 DPRINTFN(BOOT,
2993 ("pmap_boot_find_memory: b-avail[%d] start "
2994 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
2995 mp->start, mp->size));
2996 mp->size -= size;
2997 DPRINTFN(BOOT,
2998 ("pmap_boot_find_memory: a-avail[%d] start "
2999 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3000 mp->start, mp->size));
3001 return s;
3002 }
3003 }
3004 panic("pmap_boot_find_memory: no available memory");
3005 }
3006
3007 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3008 s = (mp->start + alignment - 1) & ~(alignment-1);
3009 e = s + size;
3010
3011 /*
3012 * Is the calculated region entirely within the region?
3013 */
3014 if (s < mp->start || e > mp->start + mp->size)
3015 continue;
3016
3017 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3018 if (s == mp->start) {
3019 /*
3020 * If the block starts at the beginning of region,
3021 * adjust the size & start. (the region may now be
3022 * zero in length)
3023 */
3024 DPRINTFN(BOOT,
3025 ("pmap_boot_find_memory: b-avail[%d] start "
3026 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3027 mp->start += size;
3028 mp->size -= size;
3029 DPRINTFN(BOOT,
3030 ("pmap_boot_find_memory: a-avail[%d] start "
3031 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3032 } else if (e == mp->start + mp->size) {
3033 /*
3034 * If the block starts at the beginning of region,
3035 * adjust only the size.
3036 */
3037 DPRINTFN(BOOT,
3038 ("pmap_boot_find_memory: b-avail[%d] start "
3039 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3040 mp->size -= size;
3041 DPRINTFN(BOOT,
3042 ("pmap_boot_find_memory: a-avail[%d] start "
3043 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3044 } else {
3045 /*
3046 * Block is in the middle of the region, so we
3047 * have to split it in two.
3048 */
3049 for (j = avail_cnt; j > i + 1; j--) {
3050 avail[j] = avail[j-1];
3051 }
3052 DPRINTFN(BOOT,
3053 ("pmap_boot_find_memory: b-avail[%d] start "
3054 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3055 mp[1].start = e;
3056 mp[1].size = mp[0].start + mp[0].size - e;
3057 mp[0].size = s - mp[0].start;
3058 avail_cnt++;
3059 for (; i < avail_cnt; i++) {
3060 DPRINTFN(BOOT,
3061 ("pmap_boot_find_memory: a-avail[%d] "
3062 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3063 avail[i].start, avail[i].size));
3064 }
3065 }
3066 KASSERT(s == (uintptr_t) s);
3067 return s;
3068 }
3069 panic("pmap_boot_find_memory: not enough memory for "
3070 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3071 }
3072
3073 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3074 #if defined (PMAP_OEA64_BRIDGE)
3075 int
3076 pmap_setup_segment0_map(int use_large_pages, ...)
3077 {
3078 vaddr_t va;
3079
3080 register_t pte_lo = 0x0;
3081 int ptegidx = 0, i = 0;
3082 struct pte pte;
3083 va_list ap;
3084
3085 /* Coherent + Supervisor RW, no user access */
3086 pte_lo = PTE_M;
3087
3088 /* XXXSL
3089 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3090 * these have to take priority.
3091 */
3092 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3093 ptegidx = va_to_pteg(pmap_kernel(), va);
3094 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3095 i = pmap_pte_insert(ptegidx, &pte);
3096 }
3097
3098 va_start(ap, use_large_pages);
3099 while (1) {
3100 paddr_t pa;
3101 size_t size;
3102
3103 va = va_arg(ap, vaddr_t);
3104
3105 if (va == 0)
3106 break;
3107
3108 pa = va_arg(ap, paddr_t);
3109 size = va_arg(ap, size_t);
3110
3111 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3112 #if 0
3113 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3114 #endif
3115 ptegidx = va_to_pteg(pmap_kernel(), va);
3116 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3117 i = pmap_pte_insert(ptegidx, &pte);
3118 }
3119 }
3120
3121 TLBSYNC();
3122 SYNC();
3123 return (0);
3124 }
3125 #endif /* PMAP_OEA64_BRIDGE */
3126
3127 /*
3128 * This is not part of the defined PMAP interface and is specific to the
3129 * PowerPC architecture. This is called during initppc, before the system
3130 * is really initialized.
3131 */
3132 void
3133 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3134 {
3135 struct mem_region *mp, tmp;
3136 paddr_t s, e;
3137 psize_t size;
3138 int i, j;
3139
3140 /*
3141 * Get memory.
3142 */
3143 mem_regions(&mem, &avail);
3144 #if defined(DEBUG)
3145 if (pmapdebug & PMAPDEBUG_BOOT) {
3146 printf("pmap_bootstrap: memory configuration:\n");
3147 for (mp = mem; mp->size; mp++) {
3148 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3149 mp->start, mp->size);
3150 }
3151 for (mp = avail; mp->size; mp++) {
3152 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3153 mp->start, mp->size);
3154 }
3155 }
3156 #endif
3157
3158 /*
3159 * Find out how much physical memory we have and in how many chunks.
3160 */
3161 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3162 if (mp->start >= pmap_memlimit)
3163 continue;
3164 if (mp->start + mp->size > pmap_memlimit) {
3165 size = pmap_memlimit - mp->start;
3166 physmem += btoc(size);
3167 } else {
3168 physmem += btoc(mp->size);
3169 }
3170 mem_cnt++;
3171 }
3172
3173 /*
3174 * Count the number of available entries.
3175 */
3176 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3177 avail_cnt++;
3178
3179 /*
3180 * Page align all regions.
3181 */
3182 kernelstart = trunc_page(kernelstart);
3183 kernelend = round_page(kernelend);
3184 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3185 s = round_page(mp->start);
3186 mp->size -= (s - mp->start);
3187 mp->size = trunc_page(mp->size);
3188 mp->start = s;
3189 e = mp->start + mp->size;
3190
3191 DPRINTFN(BOOT,
3192 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3193 i, mp->start, mp->size));
3194
3195 /*
3196 * Don't allow the end to run beyond our artificial limit
3197 */
3198 if (e > pmap_memlimit)
3199 e = pmap_memlimit;
3200
3201 /*
3202 * Is this region empty or strange? skip it.
3203 */
3204 if (e <= s) {
3205 mp->start = 0;
3206 mp->size = 0;
3207 continue;
3208 }
3209
3210 /*
3211 * Does this overlap the beginning of kernel?
3212 * Does extend past the end of the kernel?
3213 */
3214 else if (s < kernelstart && e > kernelstart) {
3215 if (e > kernelend) {
3216 avail[avail_cnt].start = kernelend;
3217 avail[avail_cnt].size = e - kernelend;
3218 avail_cnt++;
3219 }
3220 mp->size = kernelstart - s;
3221 }
3222 /*
3223 * Check whether this region overlaps the end of the kernel.
3224 */
3225 else if (s < kernelend && e > kernelend) {
3226 mp->start = kernelend;
3227 mp->size = e - kernelend;
3228 }
3229 /*
3230 * Look whether this regions is completely inside the kernel.
3231 * Nuke it if it does.
3232 */
3233 else if (s >= kernelstart && e <= kernelend) {
3234 mp->start = 0;
3235 mp->size = 0;
3236 }
3237 /*
3238 * If the user imposed a memory limit, enforce it.
3239 */
3240 else if (s >= pmap_memlimit) {
3241 mp->start = -PAGE_SIZE; /* let's know why */
3242 mp->size = 0;
3243 }
3244 else {
3245 mp->start = s;
3246 mp->size = e - s;
3247 }
3248 DPRINTFN(BOOT,
3249 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3250 i, mp->start, mp->size));
3251 }
3252
3253 /*
3254 * Move (and uncount) all the null return to the end.
3255 */
3256 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3257 if (mp->size == 0) {
3258 tmp = avail[i];
3259 avail[i] = avail[--avail_cnt];
3260 avail[avail_cnt] = avail[i];
3261 }
3262 }
3263
3264 /*
3265 * (Bubble)sort them into ascending order.
3266 */
3267 for (i = 0; i < avail_cnt; i++) {
3268 for (j = i + 1; j < avail_cnt; j++) {
3269 if (avail[i].start > avail[j].start) {
3270 tmp = avail[i];
3271 avail[i] = avail[j];
3272 avail[j] = tmp;
3273 }
3274 }
3275 }
3276
3277 /*
3278 * Make sure they don't overlap.
3279 */
3280 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3281 if (mp[0].start + mp[0].size > mp[1].start) {
3282 mp[0].size = mp[1].start - mp[0].start;
3283 }
3284 DPRINTFN(BOOT,
3285 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3286 i, mp->start, mp->size));
3287 }
3288 DPRINTFN(BOOT,
3289 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3290 i, mp->start, mp->size));
3291
3292 #ifdef PTEGCOUNT
3293 pmap_pteg_cnt = PTEGCOUNT;
3294 #else /* PTEGCOUNT */
3295
3296 pmap_pteg_cnt = 0x1000;
3297
3298 while (pmap_pteg_cnt < physmem)
3299 pmap_pteg_cnt <<= 1;
3300
3301 pmap_pteg_cnt >>= 1;
3302 #endif /* PTEGCOUNT */
3303
3304 #ifdef DEBUG
3305 DPRINTFN(BOOT,
3306 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3307 #endif
3308
3309 /*
3310 * Find suitably aligned memory for PTEG hash table.
3311 */
3312 size = pmap_pteg_cnt * sizeof(struct pteg);
3313 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3314
3315 #ifdef DEBUG
3316 DPRINTFN(BOOT,
3317 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3318 #endif
3319
3320
3321 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3322 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3323 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3324 pmap_pteg_table, size);
3325 #endif
3326
3327 memset(__UNVOLATILE(pmap_pteg_table), 0,
3328 pmap_pteg_cnt * sizeof(struct pteg));
3329 pmap_pteg_mask = pmap_pteg_cnt - 1;
3330
3331 /*
3332 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3333 * with pages. So we just steal them before giving them to UVM.
3334 */
3335 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3336 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3337 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3338 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3339 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3340 pmap_pvo_table, size);
3341 #endif
3342
3343 for (i = 0; i < pmap_pteg_cnt; i++)
3344 TAILQ_INIT(&pmap_pvo_table[i]);
3345
3346 #ifndef MSGBUFADDR
3347 /*
3348 * Allocate msgbuf in high memory.
3349 */
3350 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3351 #endif
3352
3353 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3354 paddr_t pfstart = atop(mp->start);
3355 paddr_t pfend = atop(mp->start + mp->size);
3356 if (mp->size == 0)
3357 continue;
3358 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3359 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3360 VM_FREELIST_FIRST256);
3361 } else if (mp->start >= SEGMENT_LENGTH) {
3362 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3363 VM_FREELIST_DEFAULT);
3364 } else {
3365 pfend = atop(SEGMENT_LENGTH);
3366 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3367 VM_FREELIST_FIRST256);
3368 pfstart = atop(SEGMENT_LENGTH);
3369 pfend = atop(mp->start + mp->size);
3370 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3371 VM_FREELIST_DEFAULT);
3372 }
3373 }
3374
3375 /*
3376 * Make sure kernel vsid is allocated as well as VSID 0.
3377 */
3378 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3379 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3380 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3381 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3382 pmap_vsid_bitmap[0] |= 1;
3383
3384 /*
3385 * Initialize kernel pmap and hardware.
3386 */
3387
3388 /* PMAP_OEA64_BRIDGE does support these instructions */
3389 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3390 for (i = 0; i < 16; i++) {
3391 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3392 __asm volatile ("mtsrin %0,%1"
3393 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3394 }
3395
3396 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3397 __asm volatile ("mtsr %0,%1"
3398 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3399 #ifdef KERNEL2_SR
3400 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3401 __asm volatile ("mtsr %0,%1"
3402 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3403 #endif
3404 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3405 #if defined (PMAP_OEA)
3406 for (i = 0; i < 16; i++) {
3407 if (iosrtable[i] & SR601_T) {
3408 pmap_kernel()->pm_sr[i] = iosrtable[i];
3409 __asm volatile ("mtsrin %0,%1"
3410 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3411 }
3412 }
3413 __asm volatile ("sync; mtsdr1 %0; isync"
3414 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3415 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3416 __asm __volatile ("sync; mtsdr1 %0; isync"
3417 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3418 #endif
3419 tlbia();
3420
3421 #ifdef ALTIVEC
3422 pmap_use_altivec = cpu_altivec;
3423 #endif
3424
3425 #ifdef DEBUG
3426 if (pmapdebug & PMAPDEBUG_BOOT) {
3427 u_int cnt;
3428 int bank;
3429 char pbuf[9];
3430 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3431 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3432 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3433 bank,
3434 ptoa(vm_physmem[bank].avail_start),
3435 ptoa(vm_physmem[bank].avail_end),
3436 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3437 }
3438 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3439 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3440 pbuf, cnt);
3441 }
3442 #endif
3443
3444 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3445 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3446 &pmap_pool_uallocator, IPL_VM);
3447
3448 pool_setlowat(&pmap_upvo_pool, 252);
3449
3450 pool_init(&pmap_pool, sizeof(struct pmap),
3451 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3452 IPL_NONE);
3453
3454 #if defined(PMAP_NEED_MAPKERNEL) || 1
3455 {
3456 struct pmap *pm = pmap_kernel();
3457 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3458 extern int etext[], kernel_text[];
3459 vaddr_t va, va_etext = (paddr_t) etext;
3460 #endif
3461 paddr_t pa, pa_end;
3462 register_t sr;
3463 struct pte pt;
3464 unsigned int ptegidx;
3465 int bank;
3466
3467 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3468 pm->pm_sr[0] = sr;
3469
3470 for (bank = 0; bank < vm_nphysseg; bank++) {
3471 pa_end = ptoa(vm_physmem[bank].avail_end);
3472 pa = ptoa(vm_physmem[bank].avail_start);
3473 for (; pa < pa_end; pa += PAGE_SIZE) {
3474 ptegidx = va_to_pteg(pm, pa);
3475 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3476 pmap_pte_insert(ptegidx, &pt);
3477 }
3478 }
3479
3480 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3481 va = (vaddr_t) kernel_text;
3482
3483 for (pa = kernelstart; va < va_etext;
3484 pa += PAGE_SIZE, va += PAGE_SIZE) {
3485 ptegidx = va_to_pteg(pm, va);
3486 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3487 pmap_pte_insert(ptegidx, &pt);
3488 }
3489
3490 for (; pa < kernelend;
3491 pa += PAGE_SIZE, va += PAGE_SIZE) {
3492 ptegidx = va_to_pteg(pm, va);
3493 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3494 pmap_pte_insert(ptegidx, &pt);
3495 }
3496
3497 for (va = 0, pa = 0; va < kernelstart;
3498 pa += PAGE_SIZE, va += PAGE_SIZE) {
3499 ptegidx = va_to_pteg(pm, va);
3500 if (va < 0x3000)
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3502 else
3503 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3504 pmap_pte_insert(ptegidx, &pt);
3505 }
3506 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3507 pa += PAGE_SIZE, va += PAGE_SIZE) {
3508 ptegidx = va_to_pteg(pm, va);
3509 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3510 pmap_pte_insert(ptegidx, &pt);
3511 }
3512 #endif
3513
3514 __asm volatile ("mtsrin %0,%1"
3515 :: "r"(sr), "r"(kernelstart));
3516 }
3517 #endif
3518 }
3519