Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.68
      1 /*	$NetBSD: pmap.c,v 1.68 2009/11/07 07:27:46 cegger Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.68 2009/11/07 07:27:46 cegger Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/user.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 
     87 #include <machine/pcb.h>
     88 #include <machine/powerpc.h>
     89 #include <powerpc/spr.h>
     90 #include <powerpc/oea/sr_601.h>
     91 #include <powerpc/bat.h>
     92 #include <powerpc/stdarg.h>
     93 
     94 #ifdef ALTIVEC
     95 int pmap_use_altivec;
     96 #endif
     97 
     98 volatile struct pteg *pmap_pteg_table;
     99 unsigned int pmap_pteg_cnt;
    100 unsigned int pmap_pteg_mask;
    101 #ifdef PMAP_MEMLIMIT
    102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    103 #else
    104 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    105 #endif
    106 
    107 struct pmap kernel_pmap_;
    108 unsigned int pmap_pages_stolen;
    109 u_long pmap_pte_valid;
    110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    111 u_long pmap_pvo_enter_depth;
    112 u_long pmap_pvo_remove_depth;
    113 #endif
    114 
    115 #ifndef MSGBUFADDR
    116 extern paddr_t msgbuf_paddr;
    117 #endif
    118 
    119 static struct mem_region *mem, *avail;
    120 static u_int mem_cnt, avail_cnt;
    121 
    122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    123 # define	PMAP_OEA 1
    124 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    125 #  define	PMAPNAME(name)	pmap_##name
    126 # endif
    127 #endif
    128 
    129 #if defined(PMAP_OEA64)
    130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    131 #  define	PMAPNAME(name)	pmap_##name
    132 # endif
    133 #endif
    134 
    135 #if defined(PMAP_OEA64_BRIDGE)
    136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    137 #  define	PMAPNAME(name)	pmap_##name
    138 # endif
    139 #endif
    140 
    141 #if defined(PMAP_OEA)
    142 #define	_PRIxpte	"lx"
    143 #else
    144 #define	_PRIxpte	PRIx64
    145 #endif
    146 #define	_PRIxpa		"lx"
    147 #define	_PRIxva		"lx"
    148 #define	_PRIsr  	"lx"
    149 
    150 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    151 #if defined(PMAP_OEA)
    152 #define	PMAPNAME(name)	pmap32_##name
    153 #elif defined(PMAP_OEA64)
    154 #define	PMAPNAME(name)	pmap64_##name
    155 #elif defined(PMAP_OEA64_BRIDGE)
    156 #define	PMAPNAME(name)	pmap64bridge_##name
    157 #else
    158 #error unknown variant for pmap
    159 #endif
    160 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    161 
    162 #if defined(PMAPNAME)
    163 #define	STATIC			static
    164 #define pmap_pte_spill		PMAPNAME(pte_spill)
    165 #define pmap_real_memory	PMAPNAME(real_memory)
    166 #define pmap_init		PMAPNAME(init)
    167 #define pmap_virtual_space	PMAPNAME(virtual_space)
    168 #define pmap_create		PMAPNAME(create)
    169 #define pmap_reference		PMAPNAME(reference)
    170 #define pmap_destroy		PMAPNAME(destroy)
    171 #define pmap_copy		PMAPNAME(copy)
    172 #define pmap_update		PMAPNAME(update)
    173 #define pmap_enter		PMAPNAME(enter)
    174 #define pmap_remove		PMAPNAME(remove)
    175 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    176 #define pmap_kremove		PMAPNAME(kremove)
    177 #define pmap_extract		PMAPNAME(extract)
    178 #define pmap_protect		PMAPNAME(protect)
    179 #define pmap_unwire		PMAPNAME(unwire)
    180 #define pmap_page_protect	PMAPNAME(page_protect)
    181 #define pmap_query_bit		PMAPNAME(query_bit)
    182 #define pmap_clear_bit		PMAPNAME(clear_bit)
    183 
    184 #define pmap_activate		PMAPNAME(activate)
    185 #define pmap_deactivate		PMAPNAME(deactivate)
    186 
    187 #define pmap_pinit		PMAPNAME(pinit)
    188 #define pmap_procwr		PMAPNAME(procwr)
    189 
    190 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    191 #define pmap_pte_print		PMAPNAME(pte_print)
    192 #define pmap_pteg_check		PMAPNAME(pteg_check)
    193 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    194 #define pmap_print_pte		PMAPNAME(print_pte)
    195 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    196 #endif
    197 #if defined(DEBUG) || defined(PMAPCHECK)
    198 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    199 #define pmapcheck		PMAPNAME(check)
    200 #endif
    201 #if defined(DEBUG) || defined(PMAPDEBUG)
    202 #define pmapdebug		PMAPNAME(debug)
    203 #endif
    204 #define pmap_steal_memory	PMAPNAME(steal_memory)
    205 #define pmap_bootstrap		PMAPNAME(bootstrap)
    206 #else
    207 #define	STATIC			/* nothing */
    208 #endif /* PMAPNAME */
    209 
    210 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    211 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    212 STATIC void pmap_init(void);
    213 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    214 STATIC pmap_t pmap_create(void);
    215 STATIC void pmap_reference(pmap_t);
    216 STATIC void pmap_destroy(pmap_t);
    217 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    218 STATIC void pmap_update(pmap_t);
    219 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    220 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    221 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    222 STATIC void pmap_kremove(vaddr_t, vsize_t);
    223 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    224 
    225 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    226 STATIC void pmap_unwire(pmap_t, vaddr_t);
    227 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    228 STATIC bool pmap_query_bit(struct vm_page *, int);
    229 STATIC bool pmap_clear_bit(struct vm_page *, int);
    230 
    231 STATIC void pmap_activate(struct lwp *);
    232 STATIC void pmap_deactivate(struct lwp *);
    233 
    234 STATIC void pmap_pinit(pmap_t pm);
    235 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    236 
    237 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    238 STATIC void pmap_pte_print(volatile struct pte *);
    239 STATIC void pmap_pteg_check(void);
    240 STATIC void pmap_print_mmuregs(void);
    241 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    242 STATIC void pmap_pteg_dist(void);
    243 #endif
    244 #if defined(DEBUG) || defined(PMAPCHECK)
    245 STATIC void pmap_pvo_verify(void);
    246 #endif
    247 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    248 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    249 
    250 #ifdef PMAPNAME
    251 const struct pmap_ops PMAPNAME(ops) = {
    252 	.pmapop_pte_spill = pmap_pte_spill,
    253 	.pmapop_real_memory = pmap_real_memory,
    254 	.pmapop_init = pmap_init,
    255 	.pmapop_virtual_space = pmap_virtual_space,
    256 	.pmapop_create = pmap_create,
    257 	.pmapop_reference = pmap_reference,
    258 	.pmapop_destroy = pmap_destroy,
    259 	.pmapop_copy = pmap_copy,
    260 	.pmapop_update = pmap_update,
    261 	.pmapop_enter = pmap_enter,
    262 	.pmapop_remove = pmap_remove,
    263 	.pmapop_kenter_pa = pmap_kenter_pa,
    264 	.pmapop_kremove = pmap_kremove,
    265 	.pmapop_extract = pmap_extract,
    266 	.pmapop_protect = pmap_protect,
    267 	.pmapop_unwire = pmap_unwire,
    268 	.pmapop_page_protect = pmap_page_protect,
    269 	.pmapop_query_bit = pmap_query_bit,
    270 	.pmapop_clear_bit = pmap_clear_bit,
    271 	.pmapop_activate = pmap_activate,
    272 	.pmapop_deactivate = pmap_deactivate,
    273 	.pmapop_pinit = pmap_pinit,
    274 	.pmapop_procwr = pmap_procwr,
    275 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    276 	.pmapop_pte_print = pmap_pte_print,
    277 	.pmapop_pteg_check = pmap_pteg_check,
    278 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    279 	.pmapop_print_pte = pmap_print_pte,
    280 	.pmapop_pteg_dist = pmap_pteg_dist,
    281 #else
    282 	.pmapop_pte_print = NULL,
    283 	.pmapop_pteg_check = NULL,
    284 	.pmapop_print_mmuregs = NULL,
    285 	.pmapop_print_pte = NULL,
    286 	.pmapop_pteg_dist = NULL,
    287 #endif
    288 #if defined(DEBUG) || defined(PMAPCHECK)
    289 	.pmapop_pvo_verify = pmap_pvo_verify,
    290 #else
    291 	.pmapop_pvo_verify = NULL,
    292 #endif
    293 	.pmapop_steal_memory = pmap_steal_memory,
    294 	.pmapop_bootstrap = pmap_bootstrap,
    295 };
    296 #endif /* !PMAPNAME */
    297 
    298 /*
    299  * The following structure is aligned to 32 bytes
    300  */
    301 struct pvo_entry {
    302 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    303 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    304 	struct pte pvo_pte;			/* Prebuilt PTE */
    305 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    306 	vaddr_t pvo_vaddr;			/* VA of entry */
    307 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    308 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    309 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    310 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    311 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    312 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    313 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    314 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    315 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    316 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    317 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    318 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    319 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    320 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    321 #define	PVO_REMOVE		6		/* PVO has been removed */
    322 #define	PVO_WHERE_MASK		15
    323 #define	PVO_WHERE_SHFT		8
    324 } __attribute__ ((aligned (32)));
    325 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    326 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    327 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    328 #define	PVO_PTEGIDX_CLR(pvo)	\
    329 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    330 #define	PVO_PTEGIDX_SET(pvo,i)	\
    331 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    332 #define	PVO_WHERE(pvo,w)	\
    333 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    334 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    335 
    336 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    337 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    338 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    339 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    340 
    341 struct pool pmap_pool;		/* pool for pmap structures */
    342 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    343 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    344 
    345 /*
    346  * We keep a cache of unmanaged pages to be used for pvo entries for
    347  * unmanaged pages.
    348  */
    349 struct pvo_page {
    350 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    351 };
    352 SIMPLEQ_HEAD(pvop_head, pvo_page);
    353 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    354 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    355 u_long pmap_upvop_free;
    356 u_long pmap_upvop_maxfree;
    357 u_long pmap_mpvop_free;
    358 u_long pmap_mpvop_maxfree;
    359 
    360 static void *pmap_pool_ualloc(struct pool *, int);
    361 static void *pmap_pool_malloc(struct pool *, int);
    362 
    363 static void pmap_pool_ufree(struct pool *, void *);
    364 static void pmap_pool_mfree(struct pool *, void *);
    365 
    366 static struct pool_allocator pmap_pool_mallocator = {
    367 	.pa_alloc = pmap_pool_malloc,
    368 	.pa_free = pmap_pool_mfree,
    369 	.pa_pagesz = 0,
    370 };
    371 
    372 static struct pool_allocator pmap_pool_uallocator = {
    373 	.pa_alloc = pmap_pool_ualloc,
    374 	.pa_free = pmap_pool_ufree,
    375 	.pa_pagesz = 0,
    376 };
    377 
    378 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    379 void pmap_pte_print(volatile struct pte *);
    380 void pmap_pteg_check(void);
    381 void pmap_pteg_dist(void);
    382 void pmap_print_pte(pmap_t, vaddr_t);
    383 void pmap_print_mmuregs(void);
    384 #endif
    385 
    386 #if defined(DEBUG) || defined(PMAPCHECK)
    387 #ifdef PMAPCHECK
    388 int pmapcheck = 1;
    389 #else
    390 int pmapcheck = 0;
    391 #endif
    392 void pmap_pvo_verify(void);
    393 static void pmap_pvo_check(const struct pvo_entry *);
    394 #define	PMAP_PVO_CHECK(pvo)	 		\
    395 	do {					\
    396 		if (pmapcheck)			\
    397 			pmap_pvo_check(pvo);	\
    398 	} while (0)
    399 #else
    400 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    401 #endif
    402 static int pmap_pte_insert(int, struct pte *);
    403 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    404 	vaddr_t, paddr_t, register_t, int);
    405 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    406 static void pmap_pvo_free(struct pvo_entry *);
    407 static void pmap_pvo_free_list(struct pvo_head *);
    408 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    409 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    410 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    411 static void pvo_set_exec(struct pvo_entry *);
    412 static void pvo_clear_exec(struct pvo_entry *);
    413 
    414 static void tlbia(void);
    415 
    416 static void pmap_release(pmap_t);
    417 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    418 
    419 static uint32_t pmap_pvo_reclaim_nextidx;
    420 #ifdef DEBUG
    421 static int pmap_pvo_reclaim_debugctr;
    422 #endif
    423 
    424 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    425 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    426 
    427 static int pmap_initialized;
    428 
    429 #if defined(DEBUG) || defined(PMAPDEBUG)
    430 #define	PMAPDEBUG_BOOT		0x0001
    431 #define	PMAPDEBUG_PTE		0x0002
    432 #define	PMAPDEBUG_EXEC		0x0008
    433 #define	PMAPDEBUG_PVOENTER	0x0010
    434 #define	PMAPDEBUG_PVOREMOVE	0x0020
    435 #define	PMAPDEBUG_ACTIVATE	0x0100
    436 #define	PMAPDEBUG_CREATE	0x0200
    437 #define	PMAPDEBUG_ENTER		0x1000
    438 #define	PMAPDEBUG_KENTER	0x2000
    439 #define	PMAPDEBUG_KREMOVE	0x4000
    440 #define	PMAPDEBUG_REMOVE	0x8000
    441 
    442 unsigned int pmapdebug = 0;
    443 
    444 # define DPRINTF(x)		printf x
    445 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    446 #else
    447 # define DPRINTF(x)
    448 # define DPRINTFN(n, x)
    449 #endif
    450 
    451 
    452 #ifdef PMAPCOUNTERS
    453 /*
    454  * From pmap_subr.c
    455  */
    456 extern struct evcnt pmap_evcnt_mappings;
    457 extern struct evcnt pmap_evcnt_unmappings;
    458 
    459 extern struct evcnt pmap_evcnt_kernel_mappings;
    460 extern struct evcnt pmap_evcnt_kernel_unmappings;
    461 
    462 extern struct evcnt pmap_evcnt_mappings_replaced;
    463 
    464 extern struct evcnt pmap_evcnt_exec_mappings;
    465 extern struct evcnt pmap_evcnt_exec_cached;
    466 
    467 extern struct evcnt pmap_evcnt_exec_synced;
    468 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    469 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    470 
    471 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    472 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    473 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    474 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    475 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    476 
    477 extern struct evcnt pmap_evcnt_updates;
    478 extern struct evcnt pmap_evcnt_collects;
    479 extern struct evcnt pmap_evcnt_copies;
    480 
    481 extern struct evcnt pmap_evcnt_ptes_spilled;
    482 extern struct evcnt pmap_evcnt_ptes_unspilled;
    483 extern struct evcnt pmap_evcnt_ptes_evicted;
    484 
    485 extern struct evcnt pmap_evcnt_ptes_primary[8];
    486 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    487 extern struct evcnt pmap_evcnt_ptes_removed;
    488 extern struct evcnt pmap_evcnt_ptes_changed;
    489 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    490 extern struct evcnt pmap_evcnt_pvos_failed;
    491 
    492 extern struct evcnt pmap_evcnt_zeroed_pages;
    493 extern struct evcnt pmap_evcnt_copied_pages;
    494 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    495 
    496 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    497 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    498 #else
    499 #define	PMAPCOUNT(ev)	((void) 0)
    500 #define	PMAPCOUNT2(ev)	((void) 0)
    501 #endif
    502 
    503 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    504 
    505 /* XXXSL: this needs to be moved to assembler */
    506 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    507 
    508 #define	TLBSYNC()	__asm volatile("tlbsync")
    509 #define	SYNC()		__asm volatile("sync")
    510 #define	EIEIO()		__asm volatile("eieio")
    511 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    512 #define	MFMSR()		mfmsr()
    513 #define	MTMSR(psl)	mtmsr(psl)
    514 #define	MFPVR()		mfpvr()
    515 #define	MFSRIN(va)	mfsrin(va)
    516 #define	MFTB()		mfrtcltbl()
    517 
    518 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    519 static inline register_t
    520 mfsrin(vaddr_t va)
    521 {
    522 	register_t sr;
    523 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    524 	return sr;
    525 }
    526 #endif	/* PMAP_OEA*/
    527 
    528 #if defined (PMAP_OEA64_BRIDGE)
    529 extern void mfmsr64 (register64_t *result);
    530 #endif /* PMAP_OEA64_BRIDGE */
    531 
    532 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    533 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    534 
    535 static inline register_t
    536 pmap_interrupts_off(void)
    537 {
    538 	register_t msr = MFMSR();
    539 	if (msr & PSL_EE)
    540 		MTMSR(msr & ~PSL_EE);
    541 	return msr;
    542 }
    543 
    544 static void
    545 pmap_interrupts_restore(register_t msr)
    546 {
    547 	if (msr & PSL_EE)
    548 		MTMSR(msr);
    549 }
    550 
    551 static inline u_int32_t
    552 mfrtcltbl(void)
    553 {
    554 #ifdef PPC_OEA601
    555 	if ((MFPVR() >> 16) == MPC601)
    556 		return (mfrtcl() >> 7);
    557 	else
    558 #endif
    559 		return (mftbl());
    560 }
    561 
    562 /*
    563  * These small routines may have to be replaced,
    564  * if/when we support processors other that the 604.
    565  */
    566 
    567 void
    568 tlbia(void)
    569 {
    570 	char *i;
    571 
    572 	SYNC();
    573 #if defined(PMAP_OEA)
    574 	/*
    575 	 * Why not use "tlbia"?  Because not all processors implement it.
    576 	 *
    577 	 * This needs to be a per-CPU callback to do the appropriate thing
    578 	 * for the CPU. XXX
    579 	 */
    580 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    581 		TLBIE(i);
    582 		EIEIO();
    583 		SYNC();
    584 	}
    585 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    586 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    587 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    588 		TLBIEL(i);
    589 		EIEIO();
    590 		SYNC();
    591 	}
    592 #endif
    593 	TLBSYNC();
    594 	SYNC();
    595 }
    596 
    597 static inline register_t
    598 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    599 {
    600 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    601 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    602 #else /* PMAP_OEA64 */
    603 #if 0
    604 	const struct ste *ste;
    605 	register_t hash;
    606 	int i;
    607 
    608 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    609 
    610 	/*
    611 	 * Try the primary group first
    612 	 */
    613 	ste = pm->pm_stes[hash].stes;
    614 	for (i = 0; i < 8; i++, ste++) {
    615 		if (ste->ste_hi & STE_V) &&
    616 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    617 			return ste;
    618 	}
    619 
    620 	/*
    621 	 * Then the secondary group.
    622 	 */
    623 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    624 	for (i = 0; i < 8; i++, ste++) {
    625 		if (ste->ste_hi & STE_V) &&
    626 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    627 			return addr;
    628 	}
    629 
    630 	return NULL;
    631 #else
    632 	/*
    633 	 * Rather than searching the STE groups for the VSID, we know
    634 	 * how we generate that from the ESID and so do that.
    635 	 */
    636 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    637 #endif
    638 #endif /* PMAP_OEA */
    639 }
    640 
    641 static inline register_t
    642 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    643 {
    644 	register_t hash;
    645 
    646 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    647 	return hash & pmap_pteg_mask;
    648 }
    649 
    650 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    651 /*
    652  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    653  * The only bit of magic is that the top 4 bits of the address doesn't
    654  * technically exist in the PTE.  But we know we reserved 4 bits of the
    655  * VSID for it so that's how we get it.
    656  */
    657 static vaddr_t
    658 pmap_pte_to_va(volatile const struct pte *pt)
    659 {
    660 	vaddr_t va;
    661 	uintptr_t ptaddr = (uintptr_t) pt;
    662 
    663 	if (pt->pte_hi & PTE_HID)
    664 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    665 
    666 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    667 #if defined(PMAP_OEA)
    668 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    669 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    670 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    671 #endif
    672 	va <<= ADDR_PIDX_SHFT;
    673 
    674 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    675 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    676 
    677 #if defined(PMAP_OEA64)
    678 	/* PPC63 Bits 0-35 */
    679 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    680 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    681 	/* PPC Bits 0-3 */
    682 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    683 #endif
    684 
    685 	return va;
    686 }
    687 #endif
    688 
    689 static inline struct pvo_head *
    690 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    691 {
    692 	struct vm_page *pg;
    693 
    694 	pg = PHYS_TO_VM_PAGE(pa);
    695 	if (pg_p != NULL)
    696 		*pg_p = pg;
    697 	if (pg == NULL)
    698 		return &pmap_pvo_unmanaged;
    699 	return &pg->mdpage.mdpg_pvoh;
    700 }
    701 
    702 static inline struct pvo_head *
    703 vm_page_to_pvoh(struct vm_page *pg)
    704 {
    705 	return &pg->mdpage.mdpg_pvoh;
    706 }
    707 
    708 
    709 static inline void
    710 pmap_attr_clear(struct vm_page *pg, int ptebit)
    711 {
    712 	pg->mdpage.mdpg_attrs &= ~ptebit;
    713 }
    714 
    715 static inline int
    716 pmap_attr_fetch(struct vm_page *pg)
    717 {
    718 	return pg->mdpage.mdpg_attrs;
    719 }
    720 
    721 static inline void
    722 pmap_attr_save(struct vm_page *pg, int ptebit)
    723 {
    724 	pg->mdpage.mdpg_attrs |= ptebit;
    725 }
    726 
    727 static inline int
    728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    729 {
    730 	if (pt->pte_hi == pvo_pt->pte_hi
    731 #if 0
    732 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    733 	        ~(PTE_REF|PTE_CHG)) == 0
    734 #endif
    735 	    )
    736 		return 1;
    737 	return 0;
    738 }
    739 
    740 static inline void
    741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    742 {
    743 	/*
    744 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    745 	 * only gets set when the real pte is set in memory.
    746 	 *
    747 	 * Note: Don't set the valid bit for correct operation of tlb update.
    748 	 */
    749 #if defined(PMAP_OEA)
    750 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    751 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    752 	pt->pte_lo = pte_lo;
    753 #elif defined (PMAP_OEA64_BRIDGE)
    754 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    755 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    756 	pt->pte_lo = (u_int64_t) pte_lo;
    757 #elif defined (PMAP_OEA64)
    758 #error PMAP_OEA64 not supported
    759 #endif /* PMAP_OEA */
    760 }
    761 
    762 static inline void
    763 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    764 {
    765 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    766 }
    767 
    768 static inline void
    769 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    770 {
    771 	/*
    772 	 * As shown in Section 7.6.3.2.3
    773 	 */
    774 	pt->pte_lo &= ~ptebit;
    775 	TLBIE(va);
    776 	SYNC();
    777 	EIEIO();
    778 	TLBSYNC();
    779 	SYNC();
    780 #ifdef MULTIPROCESSOR
    781 	DCBST(pt);
    782 #endif
    783 }
    784 
    785 static inline void
    786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    787 {
    788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    789 	if (pvo_pt->pte_hi & PTE_VALID)
    790 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    791 #endif
    792 	pvo_pt->pte_hi |= PTE_VALID;
    793 
    794 	/*
    795 	 * Update the PTE as defined in section 7.6.3.1
    796 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    797 	 * have been saved so this routine can restore them (if desired).
    798 	 */
    799 	pt->pte_lo = pvo_pt->pte_lo;
    800 	EIEIO();
    801 	pt->pte_hi = pvo_pt->pte_hi;
    802 	TLBSYNC();
    803 	SYNC();
    804 #ifdef MULTIPROCESSOR
    805 	DCBST(pt);
    806 #endif
    807 	pmap_pte_valid++;
    808 }
    809 
    810 static inline void
    811 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    812 {
    813 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    814 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    815 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    816 	if ((pt->pte_hi & PTE_VALID) == 0)
    817 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    818 #endif
    819 
    820 	pvo_pt->pte_hi &= ~PTE_VALID;
    821 	/*
    822 	 * Force the ref & chg bits back into the PTEs.
    823 	 */
    824 	SYNC();
    825 	/*
    826 	 * Invalidate the pte ... (Section 7.6.3.3)
    827 	 */
    828 	pt->pte_hi &= ~PTE_VALID;
    829 	SYNC();
    830 	TLBIE(va);
    831 	SYNC();
    832 	EIEIO();
    833 	TLBSYNC();
    834 	SYNC();
    835 	/*
    836 	 * Save the ref & chg bits ...
    837 	 */
    838 	pmap_pte_synch(pt, pvo_pt);
    839 	pmap_pte_valid--;
    840 }
    841 
    842 static inline void
    843 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    844 {
    845 	/*
    846 	 * Invalidate the PTE
    847 	 */
    848 	pmap_pte_unset(pt, pvo_pt, va);
    849 	pmap_pte_set(pt, pvo_pt);
    850 }
    851 
    852 /*
    853  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    854  * (either primary or secondary location).
    855  *
    856  * Note: both the destination and source PTEs must not have PTE_VALID set.
    857  */
    858 
    859 static int
    860 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    861 {
    862 	volatile struct pte *pt;
    863 	int i;
    864 
    865 #if defined(DEBUG)
    866 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    867 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    868 #endif
    869 	/*
    870 	 * First try primary hash.
    871 	 */
    872 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    873 		if ((pt->pte_hi & PTE_VALID) == 0) {
    874 			pvo_pt->pte_hi &= ~PTE_HID;
    875 			pmap_pte_set(pt, pvo_pt);
    876 			return i;
    877 		}
    878 	}
    879 
    880 	/*
    881 	 * Now try secondary hash.
    882 	 */
    883 	ptegidx ^= pmap_pteg_mask;
    884 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    885 		if ((pt->pte_hi & PTE_VALID) == 0) {
    886 			pvo_pt->pte_hi |= PTE_HID;
    887 			pmap_pte_set(pt, pvo_pt);
    888 			return i;
    889 		}
    890 	}
    891 	return -1;
    892 }
    893 
    894 /*
    895  * Spill handler.
    896  *
    897  * Tries to spill a page table entry from the overflow area.
    898  * This runs in either real mode (if dealing with a exception spill)
    899  * or virtual mode when dealing with manually spilling one of the
    900  * kernel's pte entries.  In either case, interrupts are already
    901  * disabled.
    902  */
    903 
    904 int
    905 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    906 {
    907 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    908 	struct pvo_entry *pvo;
    909 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    910 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    911 	int ptegidx, i, j;
    912 	volatile struct pteg *pteg;
    913 	volatile struct pte *pt;
    914 
    915 	PMAP_LOCK();
    916 
    917 	ptegidx = va_to_pteg(pm, addr);
    918 
    919 	/*
    920 	 * Have to substitute some entry. Use the primary hash for this.
    921 	 * Use low bits of timebase as random generator.  Make sure we are
    922 	 * not picking a kernel pte for replacement.
    923 	 */
    924 	pteg = &pmap_pteg_table[ptegidx];
    925 	i = MFTB() & 7;
    926 	for (j = 0; j < 8; j++) {
    927 		pt = &pteg->pt[i];
    928 		if ((pt->pte_hi & PTE_VALID) == 0)
    929 			break;
    930 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    931 				< PHYSMAP_VSIDBITS)
    932 			break;
    933 		i = (i + 1) & 7;
    934 	}
    935 	KASSERT(j < 8);
    936 
    937 	source_pvo = NULL;
    938 	victim_pvo = NULL;
    939 	pvoh = &pmap_pvo_table[ptegidx];
    940 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    941 
    942 		/*
    943 		 * We need to find pvo entry for this address...
    944 		 */
    945 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    946 
    947 		/*
    948 		 * If we haven't found the source and we come to a PVO with
    949 		 * a valid PTE, then we know we can't find it because all
    950 		 * evicted PVOs always are first in the list.
    951 		 */
    952 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    953 			break;
    954 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    955 		    addr == PVO_VADDR(pvo)) {
    956 
    957 			/*
    958 			 * Now we have found the entry to be spilled into the
    959 			 * pteg.  Attempt to insert it into the page table.
    960 			 */
    961 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    962 			if (j >= 0) {
    963 				PVO_PTEGIDX_SET(pvo, j);
    964 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    965 				PVO_WHERE(pvo, SPILL_INSERT);
    966 				pvo->pvo_pmap->pm_evictions--;
    967 				PMAPCOUNT(ptes_spilled);
    968 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    969 				    ? pmap_evcnt_ptes_secondary
    970 				    : pmap_evcnt_ptes_primary)[j]);
    971 
    972 				/*
    973 				 * Since we keep the evicted entries at the
    974 				 * from of the PVO list, we need move this
    975 				 * (now resident) PVO after the evicted
    976 				 * entries.
    977 				 */
    978 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    979 
    980 				/*
    981 				 * If we don't have to move (either we were the
    982 				 * last entry or the next entry was valid),
    983 				 * don't change our position.  Otherwise
    984 				 * move ourselves to the tail of the queue.
    985 				 */
    986 				if (next_pvo != NULL &&
    987 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    988 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    989 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    990 				}
    991 				PMAP_UNLOCK();
    992 				return 1;
    993 			}
    994 			source_pvo = pvo;
    995 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    996 				return 0;
    997 			}
    998 			if (victim_pvo != NULL)
    999 				break;
   1000 		}
   1001 
   1002 		/*
   1003 		 * We also need the pvo entry of the victim we are replacing
   1004 		 * so save the R & C bits of the PTE.
   1005 		 */
   1006 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1007 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1008 			vpvoh = pvoh;			/* *1* */
   1009 			victim_pvo = pvo;
   1010 			if (source_pvo != NULL)
   1011 				break;
   1012 		}
   1013 	}
   1014 
   1015 	if (source_pvo == NULL) {
   1016 		PMAPCOUNT(ptes_unspilled);
   1017 		PMAP_UNLOCK();
   1018 		return 0;
   1019 	}
   1020 
   1021 	if (victim_pvo == NULL) {
   1022 		if ((pt->pte_hi & PTE_HID) == 0)
   1023 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1024 			    "no pvo entry!", pt);
   1025 
   1026 		/*
   1027 		 * If this is a secondary PTE, we need to search
   1028 		 * its primary pvo bucket for the matching PVO.
   1029 		 */
   1030 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1031 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1032 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1033 
   1034 			/*
   1035 			 * We also need the pvo entry of the victim we are
   1036 			 * replacing so save the R & C bits of the PTE.
   1037 			 */
   1038 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1039 				victim_pvo = pvo;
   1040 				break;
   1041 			}
   1042 		}
   1043 		if (victim_pvo == NULL)
   1044 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1045 			    "no pvo entry!", pt);
   1046 	}
   1047 
   1048 	/*
   1049 	 * The victim should be not be a kernel PVO/PTE entry.
   1050 	 */
   1051 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1052 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1053 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1054 
   1055 	/*
   1056 	 * We are invalidating the TLB entry for the EA for the
   1057 	 * we are replacing even though its valid; If we don't
   1058 	 * we lose any ref/chg bit changes contained in the TLB
   1059 	 * entry.
   1060 	 */
   1061 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1062 
   1063 	/*
   1064 	 * To enforce the PVO list ordering constraint that all
   1065 	 * evicted entries should come before all valid entries,
   1066 	 * move the source PVO to the tail of its list and the
   1067 	 * victim PVO to the head of its list (which might not be
   1068 	 * the same list, if the victim was using the secondary hash).
   1069 	 */
   1070 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1071 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1072 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1073 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1074 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1075 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1076 	victim_pvo->pvo_pmap->pm_evictions++;
   1077 	source_pvo->pvo_pmap->pm_evictions--;
   1078 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1079 	PVO_WHERE(source_pvo, SPILL_SET);
   1080 
   1081 	PVO_PTEGIDX_CLR(victim_pvo);
   1082 	PVO_PTEGIDX_SET(source_pvo, i);
   1083 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1084 	PMAPCOUNT(ptes_spilled);
   1085 	PMAPCOUNT(ptes_evicted);
   1086 	PMAPCOUNT(ptes_removed);
   1087 
   1088 	PMAP_PVO_CHECK(victim_pvo);
   1089 	PMAP_PVO_CHECK(source_pvo);
   1090 
   1091 	PMAP_UNLOCK();
   1092 	return 1;
   1093 }
   1094 
   1095 /*
   1096  * Restrict given range to physical memory
   1097  */
   1098 void
   1099 pmap_real_memory(paddr_t *start, psize_t *size)
   1100 {
   1101 	struct mem_region *mp;
   1102 
   1103 	for (mp = mem; mp->size; mp++) {
   1104 		if (*start + *size > mp->start
   1105 		    && *start < mp->start + mp->size) {
   1106 			if (*start < mp->start) {
   1107 				*size -= mp->start - *start;
   1108 				*start = mp->start;
   1109 			}
   1110 			if (*start + *size > mp->start + mp->size)
   1111 				*size = mp->start + mp->size - *start;
   1112 			return;
   1113 		}
   1114 	}
   1115 	*size = 0;
   1116 }
   1117 
   1118 /*
   1119  * Initialize anything else for pmap handling.
   1120  * Called during vm_init().
   1121  */
   1122 void
   1123 pmap_init(void)
   1124 {
   1125 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1126 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1127 	    &pmap_pool_mallocator, IPL_NONE);
   1128 
   1129 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1130 
   1131 	pmap_initialized = 1;
   1132 
   1133 }
   1134 
   1135 /*
   1136  * How much virtual space does the kernel get?
   1137  */
   1138 void
   1139 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1140 {
   1141 	/*
   1142 	 * For now, reserve one segment (minus some overhead) for kernel
   1143 	 * virtual memory
   1144 	 */
   1145 	*start = VM_MIN_KERNEL_ADDRESS;
   1146 	*end = VM_MAX_KERNEL_ADDRESS;
   1147 }
   1148 
   1149 /*
   1150  * Allocate, initialize, and return a new physical map.
   1151  */
   1152 pmap_t
   1153 pmap_create(void)
   1154 {
   1155 	pmap_t pm;
   1156 
   1157 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1158 	memset((void *)pm, 0, sizeof *pm);
   1159 	pmap_pinit(pm);
   1160 
   1161 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1162 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1163 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1164 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1165 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1166 	    pm,
   1167 	    pm->pm_sr[0], pm->pm_sr[1],
   1168 	    pm->pm_sr[2], pm->pm_sr[3],
   1169 	    pm->pm_sr[4], pm->pm_sr[5],
   1170 	    pm->pm_sr[6], pm->pm_sr[7],
   1171 	    pm->pm_sr[8], pm->pm_sr[9],
   1172 	    pm->pm_sr[10], pm->pm_sr[11],
   1173 	    pm->pm_sr[12], pm->pm_sr[13],
   1174 	    pm->pm_sr[14], pm->pm_sr[15]));
   1175 	return pm;
   1176 }
   1177 
   1178 /*
   1179  * Initialize a preallocated and zeroed pmap structure.
   1180  */
   1181 void
   1182 pmap_pinit(pmap_t pm)
   1183 {
   1184 	register_t entropy = MFTB();
   1185 	register_t mask;
   1186 	int i;
   1187 
   1188 	/*
   1189 	 * Allocate some segment registers for this pmap.
   1190 	 */
   1191 	pm->pm_refs = 1;
   1192 	PMAP_LOCK();
   1193 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1194 		static register_t pmap_vsidcontext;
   1195 		register_t hash;
   1196 		unsigned int n;
   1197 
   1198 		/* Create a new value by multiplying by a prime adding in
   1199 		 * entropy from the timebase register.  This is to make the
   1200 		 * VSID more random so that the PT Hash function collides
   1201 		 * less often. (note that the prime causes gcc to do shifts
   1202 		 * instead of a multiply)
   1203 		 */
   1204 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1205 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1206 		if (hash == 0) {		/* 0 is special, avoid it */
   1207 			entropy += 0xbadf00d;
   1208 			continue;
   1209 		}
   1210 		n = hash >> 5;
   1211 		mask = 1L << (hash & (VSID_NBPW-1));
   1212 		hash = pmap_vsidcontext;
   1213 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1214 			/* anything free in this bucket? */
   1215 			if (~pmap_vsid_bitmap[n] == 0) {
   1216 				entropy = hash ^ (hash >> 16);
   1217 				continue;
   1218 			}
   1219 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1220 			mask = 1L << i;
   1221 			hash &= ~(VSID_NBPW-1);
   1222 			hash |= i;
   1223 		}
   1224 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1225 		pmap_vsid_bitmap[n] |= mask;
   1226 		pm->pm_vsid = hash;
   1227 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1228 		for (i = 0; i < 16; i++)
   1229 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1230 			    SR_NOEXEC;
   1231 #endif
   1232 		PMAP_UNLOCK();
   1233 		return;
   1234 	}
   1235 	PMAP_UNLOCK();
   1236 	panic("pmap_pinit: out of segments");
   1237 }
   1238 
   1239 /*
   1240  * Add a reference to the given pmap.
   1241  */
   1242 void
   1243 pmap_reference(pmap_t pm)
   1244 {
   1245 	atomic_inc_uint(&pm->pm_refs);
   1246 }
   1247 
   1248 /*
   1249  * Retire the given pmap from service.
   1250  * Should only be called if the map contains no valid mappings.
   1251  */
   1252 void
   1253 pmap_destroy(pmap_t pm)
   1254 {
   1255 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1256 		pmap_release(pm);
   1257 		pool_put(&pmap_pool, pm);
   1258 	}
   1259 }
   1260 
   1261 /*
   1262  * Release any resources held by the given physical map.
   1263  * Called when a pmap initialized by pmap_pinit is being released.
   1264  */
   1265 void
   1266 pmap_release(pmap_t pm)
   1267 {
   1268 	int idx, mask;
   1269 
   1270 	KASSERT(pm->pm_stats.resident_count == 0);
   1271 	KASSERT(pm->pm_stats.wired_count == 0);
   1272 
   1273 	PMAP_LOCK();
   1274 	if (pm->pm_sr[0] == 0)
   1275 		panic("pmap_release");
   1276 	idx = pm->pm_vsid & (NPMAPS-1);
   1277 	mask = 1 << (idx % VSID_NBPW);
   1278 	idx /= VSID_NBPW;
   1279 
   1280 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1281 	pmap_vsid_bitmap[idx] &= ~mask;
   1282 	PMAP_UNLOCK();
   1283 }
   1284 
   1285 /*
   1286  * Copy the range specified by src_addr/len
   1287  * from the source map to the range dst_addr/len
   1288  * in the destination map.
   1289  *
   1290  * This routine is only advisory and need not do anything.
   1291  */
   1292 void
   1293 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1294 	vsize_t len, vaddr_t src_addr)
   1295 {
   1296 	PMAPCOUNT(copies);
   1297 }
   1298 
   1299 /*
   1300  * Require that all active physical maps contain no
   1301  * incorrect entries NOW.
   1302  */
   1303 void
   1304 pmap_update(struct pmap *pmap)
   1305 {
   1306 	PMAPCOUNT(updates);
   1307 	TLBSYNC();
   1308 }
   1309 
   1310 static inline int
   1311 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1312 {
   1313 	int pteidx;
   1314 	/*
   1315 	 * We can find the actual pte entry without searching by
   1316 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1317 	 * and by noticing the HID bit.
   1318 	 */
   1319 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1320 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1321 		pteidx ^= pmap_pteg_mask * 8;
   1322 	return pteidx;
   1323 }
   1324 
   1325 volatile struct pte *
   1326 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1327 {
   1328 	volatile struct pte *pt;
   1329 
   1330 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1331 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1332 		return NULL;
   1333 #endif
   1334 
   1335 	/*
   1336 	 * If we haven't been supplied the ptegidx, calculate it.
   1337 	 */
   1338 	if (pteidx == -1) {
   1339 		int ptegidx;
   1340 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1341 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1342 	}
   1343 
   1344 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1345 
   1346 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1347 	return pt;
   1348 #else
   1349 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1350 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1351 		    "pvo but no valid pte index", pvo);
   1352 	}
   1353 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1354 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1355 		    "pvo but no valid pte", pvo);
   1356 	}
   1357 
   1358 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1359 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1360 #if defined(DEBUG) || defined(PMAPCHECK)
   1361 			pmap_pte_print(pt);
   1362 #endif
   1363 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1364 			    "pmap_pteg_table %p but invalid in pvo",
   1365 			    pvo, pt);
   1366 		}
   1367 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1368 #if defined(DEBUG) || defined(PMAPCHECK)
   1369 			pmap_pte_print(pt);
   1370 #endif
   1371 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1372 			    "not match pte %p in pmap_pteg_table",
   1373 			    pvo, pt);
   1374 		}
   1375 		return pt;
   1376 	}
   1377 
   1378 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1379 #if defined(DEBUG) || defined(PMAPCHECK)
   1380 		pmap_pte_print(pt);
   1381 #endif
   1382 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1383 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1384 	}
   1385 	return NULL;
   1386 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1387 }
   1388 
   1389 struct pvo_entry *
   1390 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1391 {
   1392 	struct pvo_entry *pvo;
   1393 	int ptegidx;
   1394 
   1395 	va &= ~ADDR_POFF;
   1396 	ptegidx = va_to_pteg(pm, va);
   1397 
   1398 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1399 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1400 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1401 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1402 			    "list %#x (%p)", pvo, ptegidx,
   1403 			     &pmap_pvo_table[ptegidx]);
   1404 #endif
   1405 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1406 			if (pteidx_p)
   1407 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1408 			return pvo;
   1409 		}
   1410 	}
   1411 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1412 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1413 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1414 	return NULL;
   1415 }
   1416 
   1417 #if defined(DEBUG) || defined(PMAPCHECK)
   1418 void
   1419 pmap_pvo_check(const struct pvo_entry *pvo)
   1420 {
   1421 	struct pvo_head *pvo_head;
   1422 	struct pvo_entry *pvo0;
   1423 	volatile struct pte *pt;
   1424 	int failed = 0;
   1425 
   1426 	PMAP_LOCK();
   1427 
   1428 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1429 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1430 
   1431 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1432 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1433 		    pvo, pvo->pvo_pmap);
   1434 		failed = 1;
   1435 	}
   1436 
   1437 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1438 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1439 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1440 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1441 		failed = 1;
   1442 	}
   1443 
   1444 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1445 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1446 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1447 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1448 		failed = 1;
   1449 	}
   1450 
   1451 	if (PVO_MANAGED_P(pvo)) {
   1452 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1453 	} else {
   1454 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1455 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1456 			    "on kernel unmanaged list\n", pvo);
   1457 			failed = 1;
   1458 		}
   1459 		pvo_head = &pmap_pvo_kunmanaged;
   1460 	}
   1461 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1462 		if (pvo0 == pvo)
   1463 			break;
   1464 	}
   1465 	if (pvo0 == NULL) {
   1466 		printf("pmap_pvo_check: pvo %p: not present "
   1467 		    "on its vlist head %p\n", pvo, pvo_head);
   1468 		failed = 1;
   1469 	}
   1470 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1471 		printf("pmap_pvo_check: pvo %p: not present "
   1472 		    "on its olist head\n", pvo);
   1473 		failed = 1;
   1474 	}
   1475 	pt = pmap_pvo_to_pte(pvo, -1);
   1476 	if (pt == NULL) {
   1477 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1478 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1479 			    "no PTE\n", pvo);
   1480 			failed = 1;
   1481 		}
   1482 	} else {
   1483 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1484 		    (uintptr_t) pt >=
   1485 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1486 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1487 			    "pteg table\n", pvo, pt);
   1488 			failed = 1;
   1489 		}
   1490 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1491 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1492 			    "no PTE\n", pvo);
   1493 			failed = 1;
   1494 		}
   1495 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1496 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1497 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1498 			    pvo->pvo_pte.pte_hi,
   1499 			    pt->pte_hi);
   1500 			failed = 1;
   1501 		}
   1502 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1503 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1504 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1505 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1506 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1507 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1508 			failed = 1;
   1509 		}
   1510 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1511 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1512 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1513 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1514 			failed = 1;
   1515 		}
   1516 		if (failed)
   1517 			pmap_pte_print(pt);
   1518 	}
   1519 	if (failed)
   1520 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1521 		    pvo->pvo_pmap);
   1522 
   1523 	PMAP_UNLOCK();
   1524 }
   1525 #endif /* DEBUG || PMAPCHECK */
   1526 
   1527 /*
   1528  * Search the PVO table looking for a non-wired entry.
   1529  * If we find one, remove it and return it.
   1530  */
   1531 
   1532 struct pvo_entry *
   1533 pmap_pvo_reclaim(struct pmap *pm)
   1534 {
   1535 	struct pvo_tqhead *pvoh;
   1536 	struct pvo_entry *pvo;
   1537 	uint32_t idx, endidx;
   1538 
   1539 	endidx = pmap_pvo_reclaim_nextidx;
   1540 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1541 	     idx = (idx + 1) & pmap_pteg_mask) {
   1542 		pvoh = &pmap_pvo_table[idx];
   1543 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1544 			if (!PVO_WIRED_P(pvo)) {
   1545 				pmap_pvo_remove(pvo, -1, NULL);
   1546 				pmap_pvo_reclaim_nextidx = idx;
   1547 				PMAPCOUNT(pvos_reclaimed);
   1548 				return pvo;
   1549 			}
   1550 		}
   1551 	}
   1552 	return NULL;
   1553 }
   1554 
   1555 /*
   1556  * This returns whether this is the first mapping of a page.
   1557  */
   1558 int
   1559 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1560 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1561 {
   1562 	struct pvo_entry *pvo;
   1563 	struct pvo_tqhead *pvoh;
   1564 	register_t msr;
   1565 	int ptegidx;
   1566 	int i;
   1567 	int poolflags = PR_NOWAIT;
   1568 
   1569 	/*
   1570 	 * Compute the PTE Group index.
   1571 	 */
   1572 	va &= ~ADDR_POFF;
   1573 	ptegidx = va_to_pteg(pm, va);
   1574 
   1575 	msr = pmap_interrupts_off();
   1576 
   1577 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1578 	if (pmap_pvo_remove_depth > 0)
   1579 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1580 	if (++pmap_pvo_enter_depth > 1)
   1581 		panic("pmap_pvo_enter: called recursively!");
   1582 #endif
   1583 
   1584 	/*
   1585 	 * Remove any existing mapping for this page.  Reuse the
   1586 	 * pvo entry if there a mapping.
   1587 	 */
   1588 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1589 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1590 #ifdef DEBUG
   1591 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1592 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1593 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1594 			   va < VM_MIN_KERNEL_ADDRESS) {
   1595 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1596 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1597 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1598 				    pvo->pvo_pte.pte_hi,
   1599 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1600 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1601 #ifdef DDBX
   1602 				Debugger();
   1603 #endif
   1604 			}
   1605 #endif
   1606 			PMAPCOUNT(mappings_replaced);
   1607 			pmap_pvo_remove(pvo, -1, NULL);
   1608 			break;
   1609 		}
   1610 	}
   1611 
   1612 	/*
   1613 	 * If we aren't overwriting an mapping, try to allocate
   1614 	 */
   1615 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1616 	--pmap_pvo_enter_depth;
   1617 #endif
   1618 	pmap_interrupts_restore(msr);
   1619 	if (pvo) {
   1620 		pmap_pvo_free(pvo);
   1621 	}
   1622 	pvo = pool_get(pl, poolflags);
   1623 
   1624 #ifdef DEBUG
   1625 	/*
   1626 	 * Exercise pmap_pvo_reclaim() a little.
   1627 	 */
   1628 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1629 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1630 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1631 		pool_put(pl, pvo);
   1632 		pvo = NULL;
   1633 	}
   1634 #endif
   1635 
   1636 	msr = pmap_interrupts_off();
   1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1638 	++pmap_pvo_enter_depth;
   1639 #endif
   1640 	if (pvo == NULL) {
   1641 		pvo = pmap_pvo_reclaim(pm);
   1642 		if (pvo == NULL) {
   1643 			if ((flags & PMAP_CANFAIL) == 0)
   1644 				panic("pmap_pvo_enter: failed");
   1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1646 			pmap_pvo_enter_depth--;
   1647 #endif
   1648 			PMAPCOUNT(pvos_failed);
   1649 			pmap_interrupts_restore(msr);
   1650 			return ENOMEM;
   1651 		}
   1652 	}
   1653 
   1654 	pvo->pvo_vaddr = va;
   1655 	pvo->pvo_pmap = pm;
   1656 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1657 	if (flags & VM_PROT_EXECUTE) {
   1658 		PMAPCOUNT(exec_mappings);
   1659 		pvo_set_exec(pvo);
   1660 	}
   1661 	if (flags & PMAP_WIRED)
   1662 		pvo->pvo_vaddr |= PVO_WIRED;
   1663 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1664 		pvo->pvo_vaddr |= PVO_MANAGED;
   1665 		PMAPCOUNT(mappings);
   1666 	} else {
   1667 		PMAPCOUNT(kernel_mappings);
   1668 	}
   1669 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1670 
   1671 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1672 	if (PVO_WIRED_P(pvo))
   1673 		pvo->pvo_pmap->pm_stats.wired_count++;
   1674 	pvo->pvo_pmap->pm_stats.resident_count++;
   1675 #if defined(DEBUG)
   1676 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1677 		DPRINTFN(PVOENTER,
   1678 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1679 		    pvo, pm, va, pa));
   1680 #endif
   1681 
   1682 	/*
   1683 	 * We hope this succeeds but it isn't required.
   1684 	 */
   1685 	pvoh = &pmap_pvo_table[ptegidx];
   1686 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1687 	if (i >= 0) {
   1688 		PVO_PTEGIDX_SET(pvo, i);
   1689 		PVO_WHERE(pvo, ENTER_INSERT);
   1690 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1691 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1692 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1693 
   1694 	} else {
   1695 		/*
   1696 		 * Since we didn't have room for this entry (which makes it
   1697 		 * and evicted entry), place it at the head of the list.
   1698 		 */
   1699 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1700 		PMAPCOUNT(ptes_evicted);
   1701 		pm->pm_evictions++;
   1702 		/*
   1703 		 * If this is a kernel page, make sure it's active.
   1704 		 */
   1705 		if (pm == pmap_kernel()) {
   1706 			i = pmap_pte_spill(pm, va, false);
   1707 			KASSERT(i);
   1708 		}
   1709 	}
   1710 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1712 	pmap_pvo_enter_depth--;
   1713 #endif
   1714 	pmap_interrupts_restore(msr);
   1715 	return 0;
   1716 }
   1717 
   1718 static void
   1719 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1720 {
   1721 	volatile struct pte *pt;
   1722 	int ptegidx;
   1723 
   1724 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1725 	if (++pmap_pvo_remove_depth > 1)
   1726 		panic("pmap_pvo_remove: called recursively!");
   1727 #endif
   1728 
   1729 	/*
   1730 	 * If we haven't been supplied the ptegidx, calculate it.
   1731 	 */
   1732 	if (pteidx == -1) {
   1733 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1734 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1735 	} else {
   1736 		ptegidx = pteidx >> 3;
   1737 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1738 			ptegidx ^= pmap_pteg_mask;
   1739 	}
   1740 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1741 
   1742 	/*
   1743 	 * If there is an active pte entry, we need to deactivate it
   1744 	 * (and save the ref & chg bits).
   1745 	 */
   1746 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1747 	if (pt != NULL) {
   1748 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1749 		PVO_WHERE(pvo, REMOVE);
   1750 		PVO_PTEGIDX_CLR(pvo);
   1751 		PMAPCOUNT(ptes_removed);
   1752 	} else {
   1753 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1754 		pvo->pvo_pmap->pm_evictions--;
   1755 	}
   1756 
   1757 	/*
   1758 	 * Account for executable mappings.
   1759 	 */
   1760 	if (PVO_EXECUTABLE_P(pvo))
   1761 		pvo_clear_exec(pvo);
   1762 
   1763 	/*
   1764 	 * Update our statistics.
   1765 	 */
   1766 	pvo->pvo_pmap->pm_stats.resident_count--;
   1767 	if (PVO_WIRED_P(pvo))
   1768 		pvo->pvo_pmap->pm_stats.wired_count--;
   1769 
   1770 	/*
   1771 	 * Save the REF/CHG bits into their cache if the page is managed.
   1772 	 */
   1773 	if (PVO_MANAGED_P(pvo)) {
   1774 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1775 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1776 
   1777 		if (pg != NULL) {
   1778 			/*
   1779 			 * If this page was changed and it is mapped exec,
   1780 			 * invalidate it.
   1781 			 */
   1782 			if ((ptelo & PTE_CHG) &&
   1783 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1784 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1785 				if (LIST_EMPTY(pvoh)) {
   1786 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1787 					    "%#" _PRIxpa ": clear-exec]\n",
   1788 					    VM_PAGE_TO_PHYS(pg)));
   1789 					pmap_attr_clear(pg, PTE_EXEC);
   1790 					PMAPCOUNT(exec_uncached_pvo_remove);
   1791 				} else {
   1792 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1793 					    "%#" _PRIxpa ": syncicache]\n",
   1794 					    VM_PAGE_TO_PHYS(pg)));
   1795 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1796 					    PAGE_SIZE);
   1797 					PMAPCOUNT(exec_synced_pvo_remove);
   1798 				}
   1799 			}
   1800 
   1801 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1802 		}
   1803 		PMAPCOUNT(unmappings);
   1804 	} else {
   1805 		PMAPCOUNT(kernel_unmappings);
   1806 	}
   1807 
   1808 	/*
   1809 	 * Remove the PVO from its lists and return it to the pool.
   1810 	 */
   1811 	LIST_REMOVE(pvo, pvo_vlink);
   1812 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1813 	if (pvol) {
   1814 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1815 	}
   1816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1817 	pmap_pvo_remove_depth--;
   1818 #endif
   1819 }
   1820 
   1821 void
   1822 pmap_pvo_free(struct pvo_entry *pvo)
   1823 {
   1824 
   1825 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1826 }
   1827 
   1828 void
   1829 pmap_pvo_free_list(struct pvo_head *pvol)
   1830 {
   1831 	struct pvo_entry *pvo, *npvo;
   1832 
   1833 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1834 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1835 		LIST_REMOVE(pvo, pvo_vlink);
   1836 		pmap_pvo_free(pvo);
   1837 	}
   1838 }
   1839 
   1840 /*
   1841  * Mark a mapping as executable.
   1842  * If this is the first executable mapping in the segment,
   1843  * clear the noexec flag.
   1844  */
   1845 static void
   1846 pvo_set_exec(struct pvo_entry *pvo)
   1847 {
   1848 	struct pmap *pm = pvo->pvo_pmap;
   1849 
   1850 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1851 		return;
   1852 	}
   1853 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1854 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1855 	{
   1856 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1857 		if (pm->pm_exec[sr]++ == 0) {
   1858 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1859 		}
   1860 	}
   1861 #endif
   1862 }
   1863 
   1864 /*
   1865  * Mark a mapping as non-executable.
   1866  * If this was the last executable mapping in the segment,
   1867  * set the noexec flag.
   1868  */
   1869 static void
   1870 pvo_clear_exec(struct pvo_entry *pvo)
   1871 {
   1872 	struct pmap *pm = pvo->pvo_pmap;
   1873 
   1874 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1875 		return;
   1876 	}
   1877 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1878 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1879 	{
   1880 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1881 		if (--pm->pm_exec[sr] == 0) {
   1882 			pm->pm_sr[sr] |= SR_NOEXEC;
   1883 		}
   1884 	}
   1885 #endif
   1886 }
   1887 
   1888 /*
   1889  * Insert physical page at pa into the given pmap at virtual address va.
   1890  */
   1891 int
   1892 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1893 {
   1894 	struct mem_region *mp;
   1895 	struct pvo_head *pvo_head;
   1896 	struct vm_page *pg;
   1897 	struct pool *pl;
   1898 	register_t pte_lo;
   1899 	int error;
   1900 	u_int pvo_flags;
   1901 	u_int was_exec = 0;
   1902 
   1903 	PMAP_LOCK();
   1904 
   1905 	if (__predict_false(!pmap_initialized)) {
   1906 		pvo_head = &pmap_pvo_kunmanaged;
   1907 		pl = &pmap_upvo_pool;
   1908 		pvo_flags = 0;
   1909 		pg = NULL;
   1910 		was_exec = PTE_EXEC;
   1911 	} else {
   1912 		pvo_head = pa_to_pvoh(pa, &pg);
   1913 		pl = &pmap_mpvo_pool;
   1914 		pvo_flags = PVO_MANAGED;
   1915 	}
   1916 
   1917 	DPRINTFN(ENTER,
   1918 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1919 	    pm, va, pa, prot, flags));
   1920 
   1921 	/*
   1922 	 * If this is a managed page, and it's the first reference to the
   1923 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1924 	 */
   1925 	if (pg != NULL)
   1926 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1927 
   1928 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1929 
   1930 	/*
   1931 	 * Assume the page is cache inhibited and access is guarded unless
   1932 	 * it's in our available memory array.  If it is in the memory array,
   1933 	 * asssume it's in memory coherent memory.
   1934 	 */
   1935 	pte_lo = PTE_IG;
   1936 	if ((flags & PMAP_NC) == 0) {
   1937 		for (mp = mem; mp->size; mp++) {
   1938 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1939 				pte_lo = PTE_M;
   1940 				break;
   1941 			}
   1942 		}
   1943 	}
   1944 
   1945 	if (prot & VM_PROT_WRITE)
   1946 		pte_lo |= PTE_BW;
   1947 	else
   1948 		pte_lo |= PTE_BR;
   1949 
   1950 	/*
   1951 	 * If this was in response to a fault, "pre-fault" the PTE's
   1952 	 * changed/referenced bit appropriately.
   1953 	 */
   1954 	if (flags & VM_PROT_WRITE)
   1955 		pte_lo |= PTE_CHG;
   1956 	if (flags & VM_PROT_ALL)
   1957 		pte_lo |= PTE_REF;
   1958 
   1959 	/*
   1960 	 * We need to know if this page can be executable
   1961 	 */
   1962 	flags |= (prot & VM_PROT_EXECUTE);
   1963 
   1964 	/*
   1965 	 * Record mapping for later back-translation and pte spilling.
   1966 	 * This will overwrite any existing mapping.
   1967 	 */
   1968 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1969 
   1970 	/*
   1971 	 * Flush the real page from the instruction cache if this page is
   1972 	 * mapped executable and cacheable and has not been flushed since
   1973 	 * the last time it was modified.
   1974 	 */
   1975 	if (error == 0 &&
   1976             (flags & VM_PROT_EXECUTE) &&
   1977             (pte_lo & PTE_I) == 0 &&
   1978 	    was_exec == 0) {
   1979 		DPRINTFN(ENTER, (" syncicache"));
   1980 		PMAPCOUNT(exec_synced);
   1981 		pmap_syncicache(pa, PAGE_SIZE);
   1982 		if (pg != NULL) {
   1983 			pmap_attr_save(pg, PTE_EXEC);
   1984 			PMAPCOUNT(exec_cached);
   1985 #if defined(DEBUG) || defined(PMAPDEBUG)
   1986 			if (pmapdebug & PMAPDEBUG_ENTER)
   1987 				printf(" marked-as-exec");
   1988 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1989 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1990 				    VM_PAGE_TO_PHYS(pg));
   1991 
   1992 #endif
   1993 		}
   1994 	}
   1995 
   1996 	DPRINTFN(ENTER, (": error=%d\n", error));
   1997 
   1998 	PMAP_UNLOCK();
   1999 
   2000 	return error;
   2001 }
   2002 
   2003 void
   2004 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2005 {
   2006 	struct mem_region *mp;
   2007 	register_t pte_lo;
   2008 	int error;
   2009 
   2010 #if defined (PMAP_OEA64_BRIDGE)
   2011 	if (va < VM_MIN_KERNEL_ADDRESS)
   2012 		panic("pmap_kenter_pa: attempt to enter "
   2013 		    "non-kernel address %#" _PRIxva "!", va);
   2014 #endif
   2015 
   2016 	DPRINTFN(KENTER,
   2017 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2018 
   2019 	PMAP_LOCK();
   2020 
   2021 	/*
   2022 	 * Assume the page is cache inhibited and access is guarded unless
   2023 	 * it's in our available memory array.  If it is in the memory array,
   2024 	 * asssume it's in memory coherent memory.
   2025 	 */
   2026 	pte_lo = PTE_IG;
   2027 	if ((prot & PMAP_NC) == 0) {
   2028 		for (mp = mem; mp->size; mp++) {
   2029 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2030 				pte_lo = PTE_M;
   2031 				break;
   2032 			}
   2033 		}
   2034 	}
   2035 
   2036 	if (prot & VM_PROT_WRITE)
   2037 		pte_lo |= PTE_BW;
   2038 	else
   2039 		pte_lo |= PTE_BR;
   2040 
   2041 	/*
   2042 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2043 	 */
   2044 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2045 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2046 
   2047 	if (error != 0)
   2048 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2049 		      va, pa, error);
   2050 
   2051 	PMAP_UNLOCK();
   2052 }
   2053 
   2054 void
   2055 pmap_kremove(vaddr_t va, vsize_t len)
   2056 {
   2057 	if (va < VM_MIN_KERNEL_ADDRESS)
   2058 		panic("pmap_kremove: attempt to remove "
   2059 		    "non-kernel address %#" _PRIxva "!", va);
   2060 
   2061 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2062 	pmap_remove(pmap_kernel(), va, va + len);
   2063 }
   2064 
   2065 /*
   2066  * Remove the given range of mapping entries.
   2067  */
   2068 void
   2069 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2070 {
   2071 	struct pvo_head pvol;
   2072 	struct pvo_entry *pvo;
   2073 	register_t msr;
   2074 	int pteidx;
   2075 
   2076 	PMAP_LOCK();
   2077 	LIST_INIT(&pvol);
   2078 	msr = pmap_interrupts_off();
   2079 	for (; va < endva; va += PAGE_SIZE) {
   2080 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2081 		if (pvo != NULL) {
   2082 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2083 		}
   2084 	}
   2085 	pmap_interrupts_restore(msr);
   2086 	pmap_pvo_free_list(&pvol);
   2087 	PMAP_UNLOCK();
   2088 }
   2089 
   2090 /*
   2091  * Get the physical page address for the given pmap/virtual address.
   2092  */
   2093 bool
   2094 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2095 {
   2096 	struct pvo_entry *pvo;
   2097 	register_t msr;
   2098 
   2099 	PMAP_LOCK();
   2100 
   2101 	/*
   2102 	 * If this is a kernel pmap lookup, also check the battable
   2103 	 * and if we get a hit, translate the VA to a PA using the
   2104 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2105 	 * that will wrap back to 0.
   2106 	 */
   2107 	if (pm == pmap_kernel() &&
   2108 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2109 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2110 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2111 #if defined (PMAP_OEA)
   2112 #ifdef PPC_OEA601
   2113 		if ((MFPVR() >> 16) == MPC601) {
   2114 			register_t batu = battable[va >> 23].batu;
   2115 			register_t batl = battable[va >> 23].batl;
   2116 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2117 			if (BAT601_VALID_P(batl) &&
   2118 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2119 				register_t mask =
   2120 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2121 				if (pap)
   2122 					*pap = (batl & mask) | (va & ~mask);
   2123 				PMAP_UNLOCK();
   2124 				return true;
   2125 			} else if (SR601_VALID_P(sr) &&
   2126 				   SR601_PA_MATCH_P(sr, va)) {
   2127 				if (pap)
   2128 					*pap = va;
   2129 				PMAP_UNLOCK();
   2130 				return true;
   2131 			}
   2132 		} else
   2133 #endif /* PPC_OEA601 */
   2134 		{
   2135 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2136 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2137 				register_t batl =
   2138 				    battable[va >> ADDR_SR_SHFT].batl;
   2139 				register_t mask =
   2140 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2141 				if (pap)
   2142 					*pap = (batl & mask) | (va & ~mask);
   2143 				PMAP_UNLOCK();
   2144 				return true;
   2145 			}
   2146 		}
   2147 		return false;
   2148 #elif defined (PMAP_OEA64_BRIDGE)
   2149 	if (va >= SEGMENT_LENGTH)
   2150 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2151 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2152 	else {
   2153 		if (pap)
   2154 			*pap = va;
   2155 			PMAP_UNLOCK();
   2156 			return true;
   2157 	}
   2158 #elif defined (PMAP_OEA64)
   2159 #error PPC_OEA64 not supported
   2160 #endif /* PPC_OEA */
   2161 	}
   2162 
   2163 	msr = pmap_interrupts_off();
   2164 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2165 	if (pvo != NULL) {
   2166 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2167 		if (pap)
   2168 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2169 			    | (va & ADDR_POFF);
   2170 	}
   2171 	pmap_interrupts_restore(msr);
   2172 	PMAP_UNLOCK();
   2173 	return pvo != NULL;
   2174 }
   2175 
   2176 /*
   2177  * Lower the protection on the specified range of this pmap.
   2178  */
   2179 void
   2180 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2181 {
   2182 	struct pvo_entry *pvo;
   2183 	volatile struct pte *pt;
   2184 	register_t msr;
   2185 	int pteidx;
   2186 
   2187 	/*
   2188 	 * Since this routine only downgrades protection, we should
   2189 	 * always be called with at least one bit not set.
   2190 	 */
   2191 	KASSERT(prot != VM_PROT_ALL);
   2192 
   2193 	/*
   2194 	 * If there is no protection, this is equivalent to
   2195 	 * remove the pmap from the pmap.
   2196 	 */
   2197 	if ((prot & VM_PROT_READ) == 0) {
   2198 		pmap_remove(pm, va, endva);
   2199 		return;
   2200 	}
   2201 
   2202 	PMAP_LOCK();
   2203 
   2204 	msr = pmap_interrupts_off();
   2205 	for (; va < endva; va += PAGE_SIZE) {
   2206 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2207 		if (pvo == NULL)
   2208 			continue;
   2209 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2210 
   2211 		/*
   2212 		 * Revoke executable if asked to do so.
   2213 		 */
   2214 		if ((prot & VM_PROT_EXECUTE) == 0)
   2215 			pvo_clear_exec(pvo);
   2216 
   2217 #if 0
   2218 		/*
   2219 		 * If the page is already read-only, no change
   2220 		 * needs to be made.
   2221 		 */
   2222 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2223 			continue;
   2224 #endif
   2225 		/*
   2226 		 * Grab the PTE pointer before we diddle with
   2227 		 * the cached PTE copy.
   2228 		 */
   2229 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2230 		/*
   2231 		 * Change the protection of the page.
   2232 		 */
   2233 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2234 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2235 
   2236 		/*
   2237 		 * If the PVO is in the page table, update
   2238 		 * that pte at well.
   2239 		 */
   2240 		if (pt != NULL) {
   2241 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2242 			PVO_WHERE(pvo, PMAP_PROTECT);
   2243 			PMAPCOUNT(ptes_changed);
   2244 		}
   2245 
   2246 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2247 	}
   2248 	pmap_interrupts_restore(msr);
   2249 	PMAP_UNLOCK();
   2250 }
   2251 
   2252 void
   2253 pmap_unwire(pmap_t pm, vaddr_t va)
   2254 {
   2255 	struct pvo_entry *pvo;
   2256 	register_t msr;
   2257 
   2258 	PMAP_LOCK();
   2259 	msr = pmap_interrupts_off();
   2260 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2261 	if (pvo != NULL) {
   2262 		if (PVO_WIRED_P(pvo)) {
   2263 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2264 			pm->pm_stats.wired_count--;
   2265 		}
   2266 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2267 	}
   2268 	pmap_interrupts_restore(msr);
   2269 	PMAP_UNLOCK();
   2270 }
   2271 
   2272 /*
   2273  * Lower the protection on the specified physical page.
   2274  */
   2275 void
   2276 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2277 {
   2278 	struct pvo_head *pvo_head, pvol;
   2279 	struct pvo_entry *pvo, *next_pvo;
   2280 	volatile struct pte *pt;
   2281 	register_t msr;
   2282 
   2283 	PMAP_LOCK();
   2284 
   2285 	KASSERT(prot != VM_PROT_ALL);
   2286 	LIST_INIT(&pvol);
   2287 	msr = pmap_interrupts_off();
   2288 
   2289 	/*
   2290 	 * When UVM reuses a page, it does a pmap_page_protect with
   2291 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2292 	 * since we know the page will have different contents.
   2293 	 */
   2294 	if ((prot & VM_PROT_READ) == 0) {
   2295 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2296 		    VM_PAGE_TO_PHYS(pg)));
   2297 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2298 			PMAPCOUNT(exec_uncached_page_protect);
   2299 			pmap_attr_clear(pg, PTE_EXEC);
   2300 		}
   2301 	}
   2302 
   2303 	pvo_head = vm_page_to_pvoh(pg);
   2304 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2305 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2306 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2307 
   2308 		/*
   2309 		 * Downgrading to no mapping at all, we just remove the entry.
   2310 		 */
   2311 		if ((prot & VM_PROT_READ) == 0) {
   2312 			pmap_pvo_remove(pvo, -1, &pvol);
   2313 			continue;
   2314 		}
   2315 
   2316 		/*
   2317 		 * If EXEC permission is being revoked, just clear the
   2318 		 * flag in the PVO.
   2319 		 */
   2320 		if ((prot & VM_PROT_EXECUTE) == 0)
   2321 			pvo_clear_exec(pvo);
   2322 
   2323 		/*
   2324 		 * If this entry is already RO, don't diddle with the
   2325 		 * page table.
   2326 		 */
   2327 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2328 			PMAP_PVO_CHECK(pvo);
   2329 			continue;
   2330 		}
   2331 
   2332 		/*
   2333 		 * Grab the PTE before the we diddle the bits so
   2334 		 * pvo_to_pte can verify the pte contents are as
   2335 		 * expected.
   2336 		 */
   2337 		pt = pmap_pvo_to_pte(pvo, -1);
   2338 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2339 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2340 		if (pt != NULL) {
   2341 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2342 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2343 			PMAPCOUNT(ptes_changed);
   2344 		}
   2345 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2346 	}
   2347 	pmap_interrupts_restore(msr);
   2348 	pmap_pvo_free_list(&pvol);
   2349 
   2350 	PMAP_UNLOCK();
   2351 }
   2352 
   2353 /*
   2354  * Activate the address space for the specified process.  If the process
   2355  * is the current process, load the new MMU context.
   2356  */
   2357 void
   2358 pmap_activate(struct lwp *l)
   2359 {
   2360 	struct pcb *pcb = &l->l_addr->u_pcb;
   2361 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2362 
   2363 	DPRINTFN(ACTIVATE,
   2364 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2365 
   2366 	/*
   2367 	 * XXX Normally performed in cpu_fork().
   2368 	 */
   2369 	pcb->pcb_pm = pmap;
   2370 
   2371 	/*
   2372 	* In theory, the SR registers need only be valid on return
   2373 	* to user space wait to do them there.
   2374 	*/
   2375 	if (l == curlwp) {
   2376 		/* Store pointer to new current pmap. */
   2377 		curpm = pmap;
   2378 	}
   2379 }
   2380 
   2381 /*
   2382  * Deactivate the specified process's address space.
   2383  */
   2384 void
   2385 pmap_deactivate(struct lwp *l)
   2386 {
   2387 }
   2388 
   2389 bool
   2390 pmap_query_bit(struct vm_page *pg, int ptebit)
   2391 {
   2392 	struct pvo_entry *pvo;
   2393 	volatile struct pte *pt;
   2394 	register_t msr;
   2395 
   2396 	PMAP_LOCK();
   2397 
   2398 	if (pmap_attr_fetch(pg) & ptebit) {
   2399 		PMAP_UNLOCK();
   2400 		return true;
   2401 	}
   2402 
   2403 	msr = pmap_interrupts_off();
   2404 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2405 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2406 		/*
   2407 		 * See if we saved the bit off.  If so cache, it and return
   2408 		 * success.
   2409 		 */
   2410 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2411 			pmap_attr_save(pg, ptebit);
   2412 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2413 			pmap_interrupts_restore(msr);
   2414 			PMAP_UNLOCK();
   2415 			return true;
   2416 		}
   2417 	}
   2418 	/*
   2419 	 * No luck, now go thru the hard part of looking at the ptes
   2420 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2421 	 * to the PTEs.
   2422 	 */
   2423 	SYNC();
   2424 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2425 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2426 		/*
   2427 		 * See if this pvo have a valid PTE.  If so, fetch the
   2428 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2429 		 * ptebit is set, cache, it and return success.
   2430 		 */
   2431 		pt = pmap_pvo_to_pte(pvo, -1);
   2432 		if (pt != NULL) {
   2433 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2434 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2435 				pmap_attr_save(pg, ptebit);
   2436 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2437 				pmap_interrupts_restore(msr);
   2438 				PMAP_UNLOCK();
   2439 				return true;
   2440 			}
   2441 		}
   2442 	}
   2443 	pmap_interrupts_restore(msr);
   2444 	PMAP_UNLOCK();
   2445 	return false;
   2446 }
   2447 
   2448 bool
   2449 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2450 {
   2451 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2452 	struct pvo_entry *pvo;
   2453 	volatile struct pte *pt;
   2454 	register_t msr;
   2455 	int rv = 0;
   2456 
   2457 	PMAP_LOCK();
   2458 	msr = pmap_interrupts_off();
   2459 
   2460 	/*
   2461 	 * Fetch the cache value
   2462 	 */
   2463 	rv |= pmap_attr_fetch(pg);
   2464 
   2465 	/*
   2466 	 * Clear the cached value.
   2467 	 */
   2468 	pmap_attr_clear(pg, ptebit);
   2469 
   2470 	/*
   2471 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2472 	 * can reset the right ones).  Note that since the pvo entries and
   2473 	 * list heads are accessed via BAT0 and are never placed in the
   2474 	 * page table, we don't have to worry about further accesses setting
   2475 	 * the REF/CHG bits.
   2476 	 */
   2477 	SYNC();
   2478 
   2479 	/*
   2480 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2481 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2482 	 */
   2483 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2484 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2485 		pt = pmap_pvo_to_pte(pvo, -1);
   2486 		if (pt != NULL) {
   2487 			/*
   2488 			 * Only sync the PTE if the bit we are looking
   2489 			 * for is not already set.
   2490 			 */
   2491 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2492 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2493 			/*
   2494 			 * If the bit we are looking for was already set,
   2495 			 * clear that bit in the pte.
   2496 			 */
   2497 			if (pvo->pvo_pte.pte_lo & ptebit)
   2498 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2499 		}
   2500 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2501 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2502 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2503 	}
   2504 	pmap_interrupts_restore(msr);
   2505 
   2506 	/*
   2507 	 * If we are clearing the modify bit and this page was marked EXEC
   2508 	 * and the user of the page thinks the page was modified, then we
   2509 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2510 	 * bit if it's not mapped.  The page itself might not have the CHG
   2511 	 * bit set if the modification was done via DMA to the page.
   2512 	 */
   2513 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2514 		if (LIST_EMPTY(pvoh)) {
   2515 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2516 			    VM_PAGE_TO_PHYS(pg)));
   2517 			pmap_attr_clear(pg, PTE_EXEC);
   2518 			PMAPCOUNT(exec_uncached_clear_modify);
   2519 		} else {
   2520 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2521 			    VM_PAGE_TO_PHYS(pg)));
   2522 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2523 			PMAPCOUNT(exec_synced_clear_modify);
   2524 		}
   2525 	}
   2526 	PMAP_UNLOCK();
   2527 	return (rv & ptebit) != 0;
   2528 }
   2529 
   2530 void
   2531 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2532 {
   2533 	struct pvo_entry *pvo;
   2534 	size_t offset = va & ADDR_POFF;
   2535 	int s;
   2536 
   2537 	PMAP_LOCK();
   2538 	s = splvm();
   2539 	while (len > 0) {
   2540 		size_t seglen = PAGE_SIZE - offset;
   2541 		if (seglen > len)
   2542 			seglen = len;
   2543 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2544 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2545 			pmap_syncicache(
   2546 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2547 			PMAP_PVO_CHECK(pvo);
   2548 		}
   2549 		va += seglen;
   2550 		len -= seglen;
   2551 		offset = 0;
   2552 	}
   2553 	splx(s);
   2554 	PMAP_UNLOCK();
   2555 }
   2556 
   2557 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2558 void
   2559 pmap_pte_print(volatile struct pte *pt)
   2560 {
   2561 	printf("PTE %p: ", pt);
   2562 
   2563 #if defined(PMAP_OEA)
   2564 	/* High word: */
   2565 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2566 #else
   2567 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2568 #endif /* PMAP_OEA */
   2569 
   2570 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2571 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2572 
   2573 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2574 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2575 	    pt->pte_hi & PTE_API);
   2576 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2577 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2578 #else
   2579 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2580 #endif /* PMAP_OEA */
   2581 
   2582 	/* Low word: */
   2583 #if defined (PMAP_OEA)
   2584 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2585 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2586 #else
   2587 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2588 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2589 #endif
   2590 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2591 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2592 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2593 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2594 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2595 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2596 	switch (pt->pte_lo & PTE_PP) {
   2597 	case PTE_BR: printf("br]\n"); break;
   2598 	case PTE_BW: printf("bw]\n"); break;
   2599 	case PTE_SO: printf("so]\n"); break;
   2600 	case PTE_SW: printf("sw]\n"); break;
   2601 	}
   2602 }
   2603 #endif
   2604 
   2605 #if defined(DDB)
   2606 void
   2607 pmap_pteg_check(void)
   2608 {
   2609 	volatile struct pte *pt;
   2610 	int i;
   2611 	int ptegidx;
   2612 	u_int p_valid = 0;
   2613 	u_int s_valid = 0;
   2614 	u_int invalid = 0;
   2615 
   2616 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2617 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2618 			if (pt->pte_hi & PTE_VALID) {
   2619 				if (pt->pte_hi & PTE_HID)
   2620 					s_valid++;
   2621 				else
   2622 				{
   2623 					p_valid++;
   2624 				}
   2625 			} else
   2626 				invalid++;
   2627 		}
   2628 	}
   2629 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2630 		p_valid, p_valid, s_valid, s_valid,
   2631 		invalid, invalid);
   2632 }
   2633 
   2634 void
   2635 pmap_print_mmuregs(void)
   2636 {
   2637 	int i;
   2638 	u_int cpuvers;
   2639 #ifndef PMAP_OEA64
   2640 	vaddr_t addr;
   2641 	register_t soft_sr[16];
   2642 #endif
   2643 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2644 	struct bat soft_ibat[4];
   2645 	struct bat soft_dbat[4];
   2646 #endif
   2647 	paddr_t sdr1;
   2648 
   2649 	cpuvers = MFPVR() >> 16;
   2650 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2651 #ifndef PMAP_OEA64
   2652 	addr = 0;
   2653 	for (i = 0; i < 16; i++) {
   2654 		soft_sr[i] = MFSRIN(addr);
   2655 		addr += (1 << ADDR_SR_SHFT);
   2656 	}
   2657 #endif
   2658 
   2659 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2660 	/* read iBAT (601: uBAT) registers */
   2661 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2662 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2663 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2664 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2665 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2666 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2667 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2668 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2669 
   2670 
   2671 	if (cpuvers != MPC601) {
   2672 		/* read dBAT registers */
   2673 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2674 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2675 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2676 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2677 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2678 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2679 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2680 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2681 	}
   2682 #endif
   2683 
   2684 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2685 #ifndef PMAP_OEA64
   2686 	printf("SR[]:\t");
   2687 	for (i = 0; i < 4; i++)
   2688 		printf("0x%08lx,   ", soft_sr[i]);
   2689 	printf("\n\t");
   2690 	for ( ; i < 8; i++)
   2691 		printf("0x%08lx,   ", soft_sr[i]);
   2692 	printf("\n\t");
   2693 	for ( ; i < 12; i++)
   2694 		printf("0x%08lx,   ", soft_sr[i]);
   2695 	printf("\n\t");
   2696 	for ( ; i < 16; i++)
   2697 		printf("0x%08lx,   ", soft_sr[i]);
   2698 	printf("\n");
   2699 #endif
   2700 
   2701 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2702 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2703 	for (i = 0; i < 4; i++) {
   2704 		printf("0x%08lx 0x%08lx, ",
   2705 			soft_ibat[i].batu, soft_ibat[i].batl);
   2706 		if (i == 1)
   2707 			printf("\n\t");
   2708 	}
   2709 	if (cpuvers != MPC601) {
   2710 		printf("\ndBAT[]:\t");
   2711 		for (i = 0; i < 4; i++) {
   2712 			printf("0x%08lx 0x%08lx, ",
   2713 				soft_dbat[i].batu, soft_dbat[i].batl);
   2714 			if (i == 1)
   2715 				printf("\n\t");
   2716 		}
   2717 	}
   2718 	printf("\n");
   2719 #endif /* PMAP_OEA... */
   2720 }
   2721 
   2722 void
   2723 pmap_print_pte(pmap_t pm, vaddr_t va)
   2724 {
   2725 	struct pvo_entry *pvo;
   2726 	volatile struct pte *pt;
   2727 	int pteidx;
   2728 
   2729 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2730 	if (pvo != NULL) {
   2731 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2732 		if (pt != NULL) {
   2733 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2734 				va, pt,
   2735 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2736 				pt->pte_hi, pt->pte_lo);
   2737 		} else {
   2738 			printf("No valid PTE found\n");
   2739 		}
   2740 	} else {
   2741 		printf("Address not in pmap\n");
   2742 	}
   2743 }
   2744 
   2745 void
   2746 pmap_pteg_dist(void)
   2747 {
   2748 	struct pvo_entry *pvo;
   2749 	int ptegidx;
   2750 	int depth;
   2751 	int max_depth = 0;
   2752 	unsigned int depths[64];
   2753 
   2754 	memset(depths, 0, sizeof(depths));
   2755 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2756 		depth = 0;
   2757 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2758 			depth++;
   2759 		}
   2760 		if (depth > max_depth)
   2761 			max_depth = depth;
   2762 		if (depth > 63)
   2763 			depth = 63;
   2764 		depths[depth]++;
   2765 	}
   2766 
   2767 	for (depth = 0; depth < 64; depth++) {
   2768 		printf("  [%2d]: %8u", depth, depths[depth]);
   2769 		if ((depth & 3) == 3)
   2770 			printf("\n");
   2771 		if (depth == max_depth)
   2772 			break;
   2773 	}
   2774 	if ((depth & 3) != 3)
   2775 		printf("\n");
   2776 	printf("Max depth found was %d\n", max_depth);
   2777 }
   2778 #endif /* DEBUG */
   2779 
   2780 #if defined(PMAPCHECK) || defined(DEBUG)
   2781 void
   2782 pmap_pvo_verify(void)
   2783 {
   2784 	int ptegidx;
   2785 	int s;
   2786 
   2787 	s = splvm();
   2788 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2789 		struct pvo_entry *pvo;
   2790 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2791 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2792 				panic("pmap_pvo_verify: invalid pvo %p "
   2793 				    "on list %#x", pvo, ptegidx);
   2794 			pmap_pvo_check(pvo);
   2795 		}
   2796 	}
   2797 	splx(s);
   2798 }
   2799 #endif /* PMAPCHECK */
   2800 
   2801 
   2802 void *
   2803 pmap_pool_ualloc(struct pool *pp, int flags)
   2804 {
   2805 	struct pvo_page *pvop;
   2806 
   2807 	if (uvm.page_init_done != true) {
   2808 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2809 	}
   2810 
   2811 	PMAP_LOCK();
   2812 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2813 	if (pvop != NULL) {
   2814 		pmap_upvop_free--;
   2815 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2816 		PMAP_UNLOCK();
   2817 		return pvop;
   2818 	}
   2819 	PMAP_UNLOCK();
   2820 	return pmap_pool_malloc(pp, flags);
   2821 }
   2822 
   2823 void *
   2824 pmap_pool_malloc(struct pool *pp, int flags)
   2825 {
   2826 	struct pvo_page *pvop;
   2827 	struct vm_page *pg;
   2828 
   2829 	PMAP_LOCK();
   2830 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2831 	if (pvop != NULL) {
   2832 		pmap_mpvop_free--;
   2833 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2834 		PMAP_UNLOCK();
   2835 		return pvop;
   2836 	}
   2837 	PMAP_UNLOCK();
   2838  again:
   2839 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2840 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2841 	if (__predict_false(pg == NULL)) {
   2842 		if (flags & PR_WAITOK) {
   2843 			uvm_wait("plpg");
   2844 			goto again;
   2845 		} else {
   2846 			return (0);
   2847 		}
   2848 	}
   2849 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2850 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2851 }
   2852 
   2853 void
   2854 pmap_pool_ufree(struct pool *pp, void *va)
   2855 {
   2856 	struct pvo_page *pvop;
   2857 #if 0
   2858 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2859 		pmap_pool_mfree(va, size, tag);
   2860 		return;
   2861 	}
   2862 #endif
   2863 	PMAP_LOCK();
   2864 	pvop = va;
   2865 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2866 	pmap_upvop_free++;
   2867 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2868 		pmap_upvop_maxfree = pmap_upvop_free;
   2869 	PMAP_UNLOCK();
   2870 }
   2871 
   2872 void
   2873 pmap_pool_mfree(struct pool *pp, void *va)
   2874 {
   2875 	struct pvo_page *pvop;
   2876 
   2877 	PMAP_LOCK();
   2878 	pvop = va;
   2879 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2880 	pmap_mpvop_free++;
   2881 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2882 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2883 	PMAP_UNLOCK();
   2884 #if 0
   2885 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2886 #endif
   2887 }
   2888 
   2889 /*
   2890  * This routine in bootstraping to steal to-be-managed memory (which will
   2891  * then be unmanaged).  We use it to grab from the first 256MB for our
   2892  * pmap needs and above 256MB for other stuff.
   2893  */
   2894 vaddr_t
   2895 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2896 {
   2897 	vsize_t size;
   2898 	vaddr_t va;
   2899 	paddr_t pa = 0;
   2900 	int npgs, bank;
   2901 	struct vm_physseg *ps;
   2902 
   2903 	if (uvm.page_init_done == true)
   2904 		panic("pmap_steal_memory: called _after_ bootstrap");
   2905 
   2906 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2907 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2908 
   2909 	size = round_page(vsize);
   2910 	npgs = atop(size);
   2911 
   2912 	/*
   2913 	 * PA 0 will never be among those given to UVM so we can use it
   2914 	 * to indicate we couldn't steal any memory.
   2915 	 */
   2916 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2917 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2918 		    ps->avail_end - ps->avail_start >= npgs) {
   2919 			pa = ptoa(ps->avail_start);
   2920 			break;
   2921 		}
   2922 	}
   2923 
   2924 	if (pa == 0)
   2925 		panic("pmap_steal_memory: no approriate memory to steal!");
   2926 
   2927 	ps->avail_start += npgs;
   2928 	ps->start += npgs;
   2929 
   2930 	/*
   2931 	 * If we've used up all the pages in the segment, remove it and
   2932 	 * compact the list.
   2933 	 */
   2934 	if (ps->avail_start == ps->end) {
   2935 		/*
   2936 		 * If this was the last one, then a very bad thing has occurred
   2937 		 */
   2938 		if (--vm_nphysseg == 0)
   2939 			panic("pmap_steal_memory: out of memory!");
   2940 
   2941 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2942 		for (; bank < vm_nphysseg; bank++, ps++) {
   2943 			ps[0] = ps[1];
   2944 		}
   2945 	}
   2946 
   2947 	va = (vaddr_t) pa;
   2948 	memset((void *) va, 0, size);
   2949 	pmap_pages_stolen += npgs;
   2950 #ifdef DEBUG
   2951 	if (pmapdebug && npgs > 1) {
   2952 		u_int cnt = 0;
   2953 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2954 			cnt += ps->avail_end - ps->avail_start;
   2955 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2956 		    npgs, pmap_pages_stolen, cnt);
   2957 	}
   2958 #endif
   2959 
   2960 	return va;
   2961 }
   2962 
   2963 /*
   2964  * Find a chuck of memory with right size and alignment.
   2965  */
   2966 paddr_t
   2967 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2968 {
   2969 	struct mem_region *mp;
   2970 	paddr_t s, e;
   2971 	int i, j;
   2972 
   2973 	size = round_page(size);
   2974 
   2975 	DPRINTFN(BOOT,
   2976 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2977 	    size, alignment, at_end));
   2978 
   2979 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2980 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2981 		    alignment);
   2982 
   2983 	if (at_end) {
   2984 		if (alignment != PAGE_SIZE)
   2985 			panic("pmap_boot_find_memory: invalid ending "
   2986 			    "alignment %#" _PRIxpa, alignment);
   2987 
   2988 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2989 			s = mp->start + mp->size - size;
   2990 			if (s >= mp->start && mp->size >= size) {
   2991 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   2992 				DPRINTFN(BOOT,
   2993 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2994 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   2995 				     mp->start, mp->size));
   2996 				mp->size -= size;
   2997 				DPRINTFN(BOOT,
   2998 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2999 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3000 				     mp->start, mp->size));
   3001 				return s;
   3002 			}
   3003 		}
   3004 		panic("pmap_boot_find_memory: no available memory");
   3005 	}
   3006 
   3007 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3008 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3009 		e = s + size;
   3010 
   3011 		/*
   3012 		 * Is the calculated region entirely within the region?
   3013 		 */
   3014 		if (s < mp->start || e > mp->start + mp->size)
   3015 			continue;
   3016 
   3017 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3018 		if (s == mp->start) {
   3019 			/*
   3020 			 * If the block starts at the beginning of region,
   3021 			 * adjust the size & start. (the region may now be
   3022 			 * zero in length)
   3023 			 */
   3024 			DPRINTFN(BOOT,
   3025 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3026 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3027 			mp->start += size;
   3028 			mp->size -= size;
   3029 			DPRINTFN(BOOT,
   3030 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3031 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3032 		} else if (e == mp->start + mp->size) {
   3033 			/*
   3034 			 * If the block starts at the beginning of region,
   3035 			 * adjust only the size.
   3036 			 */
   3037 			DPRINTFN(BOOT,
   3038 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3039 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3040 			mp->size -= size;
   3041 			DPRINTFN(BOOT,
   3042 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3043 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3044 		} else {
   3045 			/*
   3046 			 * Block is in the middle of the region, so we
   3047 			 * have to split it in two.
   3048 			 */
   3049 			for (j = avail_cnt; j > i + 1; j--) {
   3050 				avail[j] = avail[j-1];
   3051 			}
   3052 			DPRINTFN(BOOT,
   3053 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3054 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3055 			mp[1].start = e;
   3056 			mp[1].size = mp[0].start + mp[0].size - e;
   3057 			mp[0].size = s - mp[0].start;
   3058 			avail_cnt++;
   3059 			for (; i < avail_cnt; i++) {
   3060 				DPRINTFN(BOOT,
   3061 				    ("pmap_boot_find_memory: a-avail[%d] "
   3062 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3063 				     avail[i].start, avail[i].size));
   3064 			}
   3065 		}
   3066 		KASSERT(s == (uintptr_t) s);
   3067 		return s;
   3068 	}
   3069 	panic("pmap_boot_find_memory: not enough memory for "
   3070 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3071 }
   3072 
   3073 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3074 #if defined (PMAP_OEA64_BRIDGE)
   3075 int
   3076 pmap_setup_segment0_map(int use_large_pages, ...)
   3077 {
   3078     vaddr_t va;
   3079 
   3080     register_t pte_lo = 0x0;
   3081     int ptegidx = 0, i = 0;
   3082     struct pte pte;
   3083     va_list ap;
   3084 
   3085     /* Coherent + Supervisor RW, no user access */
   3086     pte_lo = PTE_M;
   3087 
   3088     /* XXXSL
   3089      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3090      * these have to take priority.
   3091      */
   3092     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3093         ptegidx = va_to_pteg(pmap_kernel(), va);
   3094         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3095         i = pmap_pte_insert(ptegidx, &pte);
   3096     }
   3097 
   3098     va_start(ap, use_large_pages);
   3099     while (1) {
   3100         paddr_t pa;
   3101         size_t size;
   3102 
   3103         va = va_arg(ap, vaddr_t);
   3104 
   3105         if (va == 0)
   3106             break;
   3107 
   3108         pa = va_arg(ap, paddr_t);
   3109         size = va_arg(ap, size_t);
   3110 
   3111         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3112 #if 0
   3113 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3114 #endif
   3115             ptegidx = va_to_pteg(pmap_kernel(), va);
   3116             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3117             i = pmap_pte_insert(ptegidx, &pte);
   3118         }
   3119     }
   3120 
   3121     TLBSYNC();
   3122     SYNC();
   3123     return (0);
   3124 }
   3125 #endif /* PMAP_OEA64_BRIDGE */
   3126 
   3127 /*
   3128  * This is not part of the defined PMAP interface and is specific to the
   3129  * PowerPC architecture.  This is called during initppc, before the system
   3130  * is really initialized.
   3131  */
   3132 void
   3133 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3134 {
   3135 	struct mem_region *mp, tmp;
   3136 	paddr_t s, e;
   3137 	psize_t size;
   3138 	int i, j;
   3139 
   3140 	/*
   3141 	 * Get memory.
   3142 	 */
   3143 	mem_regions(&mem, &avail);
   3144 #if defined(DEBUG)
   3145 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3146 		printf("pmap_bootstrap: memory configuration:\n");
   3147 		for (mp = mem; mp->size; mp++) {
   3148 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3149 				mp->start, mp->size);
   3150 		}
   3151 		for (mp = avail; mp->size; mp++) {
   3152 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3153 				mp->start, mp->size);
   3154 		}
   3155 	}
   3156 #endif
   3157 
   3158 	/*
   3159 	 * Find out how much physical memory we have and in how many chunks.
   3160 	 */
   3161 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3162 		if (mp->start >= pmap_memlimit)
   3163 			continue;
   3164 		if (mp->start + mp->size > pmap_memlimit) {
   3165 			size = pmap_memlimit - mp->start;
   3166 			physmem += btoc(size);
   3167 		} else {
   3168 			physmem += btoc(mp->size);
   3169 		}
   3170 		mem_cnt++;
   3171 	}
   3172 
   3173 	/*
   3174 	 * Count the number of available entries.
   3175 	 */
   3176 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3177 		avail_cnt++;
   3178 
   3179 	/*
   3180 	 * Page align all regions.
   3181 	 */
   3182 	kernelstart = trunc_page(kernelstart);
   3183 	kernelend = round_page(kernelend);
   3184 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3185 		s = round_page(mp->start);
   3186 		mp->size -= (s - mp->start);
   3187 		mp->size = trunc_page(mp->size);
   3188 		mp->start = s;
   3189 		e = mp->start + mp->size;
   3190 
   3191 		DPRINTFN(BOOT,
   3192 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3193 		    i, mp->start, mp->size));
   3194 
   3195 		/*
   3196 		 * Don't allow the end to run beyond our artificial limit
   3197 		 */
   3198 		if (e > pmap_memlimit)
   3199 			e = pmap_memlimit;
   3200 
   3201 		/*
   3202 		 * Is this region empty or strange?  skip it.
   3203 		 */
   3204 		if (e <= s) {
   3205 			mp->start = 0;
   3206 			mp->size = 0;
   3207 			continue;
   3208 		}
   3209 
   3210 		/*
   3211 		 * Does this overlap the beginning of kernel?
   3212 		 *   Does extend past the end of the kernel?
   3213 		 */
   3214 		else if (s < kernelstart && e > kernelstart) {
   3215 			if (e > kernelend) {
   3216 				avail[avail_cnt].start = kernelend;
   3217 				avail[avail_cnt].size = e - kernelend;
   3218 				avail_cnt++;
   3219 			}
   3220 			mp->size = kernelstart - s;
   3221 		}
   3222 		/*
   3223 		 * Check whether this region overlaps the end of the kernel.
   3224 		 */
   3225 		else if (s < kernelend && e > kernelend) {
   3226 			mp->start = kernelend;
   3227 			mp->size = e - kernelend;
   3228 		}
   3229 		/*
   3230 		 * Look whether this regions is completely inside the kernel.
   3231 		 * Nuke it if it does.
   3232 		 */
   3233 		else if (s >= kernelstart && e <= kernelend) {
   3234 			mp->start = 0;
   3235 			mp->size = 0;
   3236 		}
   3237 		/*
   3238 		 * If the user imposed a memory limit, enforce it.
   3239 		 */
   3240 		else if (s >= pmap_memlimit) {
   3241 			mp->start = -PAGE_SIZE;	/* let's know why */
   3242 			mp->size = 0;
   3243 		}
   3244 		else {
   3245 			mp->start = s;
   3246 			mp->size = e - s;
   3247 		}
   3248 		DPRINTFN(BOOT,
   3249 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3250 		    i, mp->start, mp->size));
   3251 	}
   3252 
   3253 	/*
   3254 	 * Move (and uncount) all the null return to the end.
   3255 	 */
   3256 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3257 		if (mp->size == 0) {
   3258 			tmp = avail[i];
   3259 			avail[i] = avail[--avail_cnt];
   3260 			avail[avail_cnt] = avail[i];
   3261 		}
   3262 	}
   3263 
   3264 	/*
   3265 	 * (Bubble)sort them into ascending order.
   3266 	 */
   3267 	for (i = 0; i < avail_cnt; i++) {
   3268 		for (j = i + 1; j < avail_cnt; j++) {
   3269 			if (avail[i].start > avail[j].start) {
   3270 				tmp = avail[i];
   3271 				avail[i] = avail[j];
   3272 				avail[j] = tmp;
   3273 			}
   3274 		}
   3275 	}
   3276 
   3277 	/*
   3278 	 * Make sure they don't overlap.
   3279 	 */
   3280 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3281 		if (mp[0].start + mp[0].size > mp[1].start) {
   3282 			mp[0].size = mp[1].start - mp[0].start;
   3283 		}
   3284 		DPRINTFN(BOOT,
   3285 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3286 		    i, mp->start, mp->size));
   3287 	}
   3288 	DPRINTFN(BOOT,
   3289 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3290 	    i, mp->start, mp->size));
   3291 
   3292 #ifdef	PTEGCOUNT
   3293 	pmap_pteg_cnt = PTEGCOUNT;
   3294 #else /* PTEGCOUNT */
   3295 
   3296 	pmap_pteg_cnt = 0x1000;
   3297 
   3298 	while (pmap_pteg_cnt < physmem)
   3299 		pmap_pteg_cnt <<= 1;
   3300 
   3301 	pmap_pteg_cnt >>= 1;
   3302 #endif /* PTEGCOUNT */
   3303 
   3304 #ifdef DEBUG
   3305 	DPRINTFN(BOOT,
   3306 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3307 #endif
   3308 
   3309 	/*
   3310 	 * Find suitably aligned memory for PTEG hash table.
   3311 	 */
   3312 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3313 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3314 
   3315 #ifdef DEBUG
   3316 	DPRINTFN(BOOT,
   3317 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3318 #endif
   3319 
   3320 
   3321 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3322 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3323 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3324 		    pmap_pteg_table, size);
   3325 #endif
   3326 
   3327 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3328 		pmap_pteg_cnt * sizeof(struct pteg));
   3329 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3330 
   3331 	/*
   3332 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3333 	 * with pages.  So we just steal them before giving them to UVM.
   3334 	 */
   3335 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3336 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3337 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3338 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3339 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3340 		    pmap_pvo_table, size);
   3341 #endif
   3342 
   3343 	for (i = 0; i < pmap_pteg_cnt; i++)
   3344 		TAILQ_INIT(&pmap_pvo_table[i]);
   3345 
   3346 #ifndef MSGBUFADDR
   3347 	/*
   3348 	 * Allocate msgbuf in high memory.
   3349 	 */
   3350 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3351 #endif
   3352 
   3353 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3354 		paddr_t pfstart = atop(mp->start);
   3355 		paddr_t pfend = atop(mp->start + mp->size);
   3356 		if (mp->size == 0)
   3357 			continue;
   3358 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3359 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3360 				VM_FREELIST_FIRST256);
   3361 		} else if (mp->start >= SEGMENT_LENGTH) {
   3362 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3363 				VM_FREELIST_DEFAULT);
   3364 		} else {
   3365 			pfend = atop(SEGMENT_LENGTH);
   3366 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3367 				VM_FREELIST_FIRST256);
   3368 			pfstart = atop(SEGMENT_LENGTH);
   3369 			pfend = atop(mp->start + mp->size);
   3370 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3371 				VM_FREELIST_DEFAULT);
   3372 		}
   3373 	}
   3374 
   3375 	/*
   3376 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3377 	 */
   3378 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3379 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3380 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3381 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3382 	pmap_vsid_bitmap[0] |= 1;
   3383 
   3384 	/*
   3385 	 * Initialize kernel pmap and hardware.
   3386 	 */
   3387 
   3388 /* PMAP_OEA64_BRIDGE does support these instructions */
   3389 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3390 	for (i = 0; i < 16; i++) {
   3391  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3392 		__asm volatile ("mtsrin %0,%1"
   3393  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3394 	}
   3395 
   3396 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3397 	__asm volatile ("mtsr %0,%1"
   3398 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3399 #ifdef KERNEL2_SR
   3400 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3401 	__asm volatile ("mtsr %0,%1"
   3402 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3403 #endif
   3404 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3405 #if defined (PMAP_OEA)
   3406 	for (i = 0; i < 16; i++) {
   3407 		if (iosrtable[i] & SR601_T) {
   3408 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3409 			__asm volatile ("mtsrin %0,%1"
   3410 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3411 		}
   3412 	}
   3413 	__asm volatile ("sync; mtsdr1 %0; isync"
   3414 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3415 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3416  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3417  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3418 #endif
   3419 	tlbia();
   3420 
   3421 #ifdef ALTIVEC
   3422 	pmap_use_altivec = cpu_altivec;
   3423 #endif
   3424 
   3425 #ifdef DEBUG
   3426 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3427 		u_int cnt;
   3428 		int bank;
   3429 		char pbuf[9];
   3430 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3431 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3432 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3433 			    bank,
   3434 			    ptoa(vm_physmem[bank].avail_start),
   3435 			    ptoa(vm_physmem[bank].avail_end),
   3436 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3437 		}
   3438 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3439 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3440 		    pbuf, cnt);
   3441 	}
   3442 #endif
   3443 
   3444 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3445 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3446 	    &pmap_pool_uallocator, IPL_VM);
   3447 
   3448 	pool_setlowat(&pmap_upvo_pool, 252);
   3449 
   3450 	pool_init(&pmap_pool, sizeof(struct pmap),
   3451 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3452 	    IPL_NONE);
   3453 
   3454 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3455 	{
   3456 		struct pmap *pm = pmap_kernel();
   3457 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3458 		extern int etext[], kernel_text[];
   3459 		vaddr_t va, va_etext = (paddr_t) etext;
   3460 #endif
   3461 		paddr_t pa, pa_end;
   3462 		register_t sr;
   3463 		struct pte pt;
   3464 		unsigned int ptegidx;
   3465 		int bank;
   3466 
   3467 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3468 		pm->pm_sr[0] = sr;
   3469 
   3470 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3471 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3472 			pa = ptoa(vm_physmem[bank].avail_start);
   3473 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3474 				ptegidx = va_to_pteg(pm, pa);
   3475 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3476 				pmap_pte_insert(ptegidx, &pt);
   3477 			}
   3478 		}
   3479 
   3480 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3481 		va = (vaddr_t) kernel_text;
   3482 
   3483 		for (pa = kernelstart; va < va_etext;
   3484 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3485 			ptegidx = va_to_pteg(pm, va);
   3486 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3487 			pmap_pte_insert(ptegidx, &pt);
   3488 		}
   3489 
   3490 		for (; pa < kernelend;
   3491 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3492 			ptegidx = va_to_pteg(pm, va);
   3493 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3494 			pmap_pte_insert(ptegidx, &pt);
   3495 		}
   3496 
   3497 		for (va = 0, pa = 0; va < kernelstart;
   3498 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3499 			ptegidx = va_to_pteg(pm, va);
   3500 			if (va < 0x3000)
   3501 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3502 			else
   3503 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3504 			pmap_pte_insert(ptegidx, &pt);
   3505 		}
   3506 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3507 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3508 			ptegidx = va_to_pteg(pm, va);
   3509 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3510 			pmap_pte_insert(ptegidx, &pt);
   3511 		}
   3512 #endif
   3513 
   3514 		__asm volatile ("mtsrin %0,%1"
   3515  			      :: "r"(sr), "r"(kernelstart));
   3516 	}
   3517 #endif
   3518 }
   3519