Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.69
      1 /*	$NetBSD: pmap.c,v 1.69 2009/11/21 17:40:29 rmind Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.69 2009/11/21 17:40:29 rmind Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 #include <sys/atomic.h>
     83 
     84 #include <uvm/uvm.h>
     85 
     86 #include <machine/pcb.h>
     87 #include <machine/powerpc.h>
     88 #include <powerpc/spr.h>
     89 #include <powerpc/oea/sr_601.h>
     90 #include <powerpc/bat.h>
     91 #include <powerpc/stdarg.h>
     92 
     93 #ifdef ALTIVEC
     94 int pmap_use_altivec;
     95 #endif
     96 
     97 volatile struct pteg *pmap_pteg_table;
     98 unsigned int pmap_pteg_cnt;
     99 unsigned int pmap_pteg_mask;
    100 #ifdef PMAP_MEMLIMIT
    101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    102 #else
    103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    104 #endif
    105 
    106 struct pmap kernel_pmap_;
    107 unsigned int pmap_pages_stolen;
    108 u_long pmap_pte_valid;
    109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    110 u_long pmap_pvo_enter_depth;
    111 u_long pmap_pvo_remove_depth;
    112 #endif
    113 
    114 #ifndef MSGBUFADDR
    115 extern paddr_t msgbuf_paddr;
    116 #endif
    117 
    118 static struct mem_region *mem, *avail;
    119 static u_int mem_cnt, avail_cnt;
    120 
    121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    122 # define	PMAP_OEA 1
    123 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    124 #  define	PMAPNAME(name)	pmap_##name
    125 # endif
    126 #endif
    127 
    128 #if defined(PMAP_OEA64)
    129 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    130 #  define	PMAPNAME(name)	pmap_##name
    131 # endif
    132 #endif
    133 
    134 #if defined(PMAP_OEA64_BRIDGE)
    135 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    136 #  define	PMAPNAME(name)	pmap_##name
    137 # endif
    138 #endif
    139 
    140 #if defined(PMAP_OEA)
    141 #define	_PRIxpte	"lx"
    142 #else
    143 #define	_PRIxpte	PRIx64
    144 #endif
    145 #define	_PRIxpa		"lx"
    146 #define	_PRIxva		"lx"
    147 #define	_PRIsr  	"lx"
    148 
    149 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    150 #if defined(PMAP_OEA)
    151 #define	PMAPNAME(name)	pmap32_##name
    152 #elif defined(PMAP_OEA64)
    153 #define	PMAPNAME(name)	pmap64_##name
    154 #elif defined(PMAP_OEA64_BRIDGE)
    155 #define	PMAPNAME(name)	pmap64bridge_##name
    156 #else
    157 #error unknown variant for pmap
    158 #endif
    159 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    160 
    161 #if defined(PMAPNAME)
    162 #define	STATIC			static
    163 #define pmap_pte_spill		PMAPNAME(pte_spill)
    164 #define pmap_real_memory	PMAPNAME(real_memory)
    165 #define pmap_init		PMAPNAME(init)
    166 #define pmap_virtual_space	PMAPNAME(virtual_space)
    167 #define pmap_create		PMAPNAME(create)
    168 #define pmap_reference		PMAPNAME(reference)
    169 #define pmap_destroy		PMAPNAME(destroy)
    170 #define pmap_copy		PMAPNAME(copy)
    171 #define pmap_update		PMAPNAME(update)
    172 #define pmap_enter		PMAPNAME(enter)
    173 #define pmap_remove		PMAPNAME(remove)
    174 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    175 #define pmap_kremove		PMAPNAME(kremove)
    176 #define pmap_extract		PMAPNAME(extract)
    177 #define pmap_protect		PMAPNAME(protect)
    178 #define pmap_unwire		PMAPNAME(unwire)
    179 #define pmap_page_protect	PMAPNAME(page_protect)
    180 #define pmap_query_bit		PMAPNAME(query_bit)
    181 #define pmap_clear_bit		PMAPNAME(clear_bit)
    182 
    183 #define pmap_activate		PMAPNAME(activate)
    184 #define pmap_deactivate		PMAPNAME(deactivate)
    185 
    186 #define pmap_pinit		PMAPNAME(pinit)
    187 #define pmap_procwr		PMAPNAME(procwr)
    188 
    189 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    190 #define pmap_pte_print		PMAPNAME(pte_print)
    191 #define pmap_pteg_check		PMAPNAME(pteg_check)
    192 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    193 #define pmap_print_pte		PMAPNAME(print_pte)
    194 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    195 #endif
    196 #if defined(DEBUG) || defined(PMAPCHECK)
    197 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    198 #define pmapcheck		PMAPNAME(check)
    199 #endif
    200 #if defined(DEBUG) || defined(PMAPDEBUG)
    201 #define pmapdebug		PMAPNAME(debug)
    202 #endif
    203 #define pmap_steal_memory	PMAPNAME(steal_memory)
    204 #define pmap_bootstrap		PMAPNAME(bootstrap)
    205 #else
    206 #define	STATIC			/* nothing */
    207 #endif /* PMAPNAME */
    208 
    209 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    210 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    211 STATIC void pmap_init(void);
    212 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    213 STATIC pmap_t pmap_create(void);
    214 STATIC void pmap_reference(pmap_t);
    215 STATIC void pmap_destroy(pmap_t);
    216 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    217 STATIC void pmap_update(pmap_t);
    218 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    219 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    220 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    221 STATIC void pmap_kremove(vaddr_t, vsize_t);
    222 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    223 
    224 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    225 STATIC void pmap_unwire(pmap_t, vaddr_t);
    226 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    227 STATIC bool pmap_query_bit(struct vm_page *, int);
    228 STATIC bool pmap_clear_bit(struct vm_page *, int);
    229 
    230 STATIC void pmap_activate(struct lwp *);
    231 STATIC void pmap_deactivate(struct lwp *);
    232 
    233 STATIC void pmap_pinit(pmap_t pm);
    234 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    235 
    236 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    237 STATIC void pmap_pte_print(volatile struct pte *);
    238 STATIC void pmap_pteg_check(void);
    239 STATIC void pmap_print_mmuregs(void);
    240 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    241 STATIC void pmap_pteg_dist(void);
    242 #endif
    243 #if defined(DEBUG) || defined(PMAPCHECK)
    244 STATIC void pmap_pvo_verify(void);
    245 #endif
    246 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    247 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    248 
    249 #ifdef PMAPNAME
    250 const struct pmap_ops PMAPNAME(ops) = {
    251 	.pmapop_pte_spill = pmap_pte_spill,
    252 	.pmapop_real_memory = pmap_real_memory,
    253 	.pmapop_init = pmap_init,
    254 	.pmapop_virtual_space = pmap_virtual_space,
    255 	.pmapop_create = pmap_create,
    256 	.pmapop_reference = pmap_reference,
    257 	.pmapop_destroy = pmap_destroy,
    258 	.pmapop_copy = pmap_copy,
    259 	.pmapop_update = pmap_update,
    260 	.pmapop_enter = pmap_enter,
    261 	.pmapop_remove = pmap_remove,
    262 	.pmapop_kenter_pa = pmap_kenter_pa,
    263 	.pmapop_kremove = pmap_kremove,
    264 	.pmapop_extract = pmap_extract,
    265 	.pmapop_protect = pmap_protect,
    266 	.pmapop_unwire = pmap_unwire,
    267 	.pmapop_page_protect = pmap_page_protect,
    268 	.pmapop_query_bit = pmap_query_bit,
    269 	.pmapop_clear_bit = pmap_clear_bit,
    270 	.pmapop_activate = pmap_activate,
    271 	.pmapop_deactivate = pmap_deactivate,
    272 	.pmapop_pinit = pmap_pinit,
    273 	.pmapop_procwr = pmap_procwr,
    274 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    275 	.pmapop_pte_print = pmap_pte_print,
    276 	.pmapop_pteg_check = pmap_pteg_check,
    277 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    278 	.pmapop_print_pte = pmap_print_pte,
    279 	.pmapop_pteg_dist = pmap_pteg_dist,
    280 #else
    281 	.pmapop_pte_print = NULL,
    282 	.pmapop_pteg_check = NULL,
    283 	.pmapop_print_mmuregs = NULL,
    284 	.pmapop_print_pte = NULL,
    285 	.pmapop_pteg_dist = NULL,
    286 #endif
    287 #if defined(DEBUG) || defined(PMAPCHECK)
    288 	.pmapop_pvo_verify = pmap_pvo_verify,
    289 #else
    290 	.pmapop_pvo_verify = NULL,
    291 #endif
    292 	.pmapop_steal_memory = pmap_steal_memory,
    293 	.pmapop_bootstrap = pmap_bootstrap,
    294 };
    295 #endif /* !PMAPNAME */
    296 
    297 /*
    298  * The following structure is aligned to 32 bytes
    299  */
    300 struct pvo_entry {
    301 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    302 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    303 	struct pte pvo_pte;			/* Prebuilt PTE */
    304 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    305 	vaddr_t pvo_vaddr;			/* VA of entry */
    306 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    307 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    308 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    309 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    310 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    311 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    312 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    313 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    314 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    315 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    316 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    317 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    318 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    319 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    320 #define	PVO_REMOVE		6		/* PVO has been removed */
    321 #define	PVO_WHERE_MASK		15
    322 #define	PVO_WHERE_SHFT		8
    323 } __attribute__ ((aligned (32)));
    324 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    325 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    326 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    327 #define	PVO_PTEGIDX_CLR(pvo)	\
    328 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    329 #define	PVO_PTEGIDX_SET(pvo,i)	\
    330 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    331 #define	PVO_WHERE(pvo,w)	\
    332 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    333 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    334 
    335 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    336 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    337 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    338 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    339 
    340 struct pool pmap_pool;		/* pool for pmap structures */
    341 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    342 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    343 
    344 /*
    345  * We keep a cache of unmanaged pages to be used for pvo entries for
    346  * unmanaged pages.
    347  */
    348 struct pvo_page {
    349 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    350 };
    351 SIMPLEQ_HEAD(pvop_head, pvo_page);
    352 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    353 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    354 u_long pmap_upvop_free;
    355 u_long pmap_upvop_maxfree;
    356 u_long pmap_mpvop_free;
    357 u_long pmap_mpvop_maxfree;
    358 
    359 static void *pmap_pool_ualloc(struct pool *, int);
    360 static void *pmap_pool_malloc(struct pool *, int);
    361 
    362 static void pmap_pool_ufree(struct pool *, void *);
    363 static void pmap_pool_mfree(struct pool *, void *);
    364 
    365 static struct pool_allocator pmap_pool_mallocator = {
    366 	.pa_alloc = pmap_pool_malloc,
    367 	.pa_free = pmap_pool_mfree,
    368 	.pa_pagesz = 0,
    369 };
    370 
    371 static struct pool_allocator pmap_pool_uallocator = {
    372 	.pa_alloc = pmap_pool_ualloc,
    373 	.pa_free = pmap_pool_ufree,
    374 	.pa_pagesz = 0,
    375 };
    376 
    377 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    378 void pmap_pte_print(volatile struct pte *);
    379 void pmap_pteg_check(void);
    380 void pmap_pteg_dist(void);
    381 void pmap_print_pte(pmap_t, vaddr_t);
    382 void pmap_print_mmuregs(void);
    383 #endif
    384 
    385 #if defined(DEBUG) || defined(PMAPCHECK)
    386 #ifdef PMAPCHECK
    387 int pmapcheck = 1;
    388 #else
    389 int pmapcheck = 0;
    390 #endif
    391 void pmap_pvo_verify(void);
    392 static void pmap_pvo_check(const struct pvo_entry *);
    393 #define	PMAP_PVO_CHECK(pvo)	 		\
    394 	do {					\
    395 		if (pmapcheck)			\
    396 			pmap_pvo_check(pvo);	\
    397 	} while (0)
    398 #else
    399 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    400 #endif
    401 static int pmap_pte_insert(int, struct pte *);
    402 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    403 	vaddr_t, paddr_t, register_t, int);
    404 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    405 static void pmap_pvo_free(struct pvo_entry *);
    406 static void pmap_pvo_free_list(struct pvo_head *);
    407 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    408 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    409 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    410 static void pvo_set_exec(struct pvo_entry *);
    411 static void pvo_clear_exec(struct pvo_entry *);
    412 
    413 static void tlbia(void);
    414 
    415 static void pmap_release(pmap_t);
    416 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    417 
    418 static uint32_t pmap_pvo_reclaim_nextidx;
    419 #ifdef DEBUG
    420 static int pmap_pvo_reclaim_debugctr;
    421 #endif
    422 
    423 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    424 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    425 
    426 static int pmap_initialized;
    427 
    428 #if defined(DEBUG) || defined(PMAPDEBUG)
    429 #define	PMAPDEBUG_BOOT		0x0001
    430 #define	PMAPDEBUG_PTE		0x0002
    431 #define	PMAPDEBUG_EXEC		0x0008
    432 #define	PMAPDEBUG_PVOENTER	0x0010
    433 #define	PMAPDEBUG_PVOREMOVE	0x0020
    434 #define	PMAPDEBUG_ACTIVATE	0x0100
    435 #define	PMAPDEBUG_CREATE	0x0200
    436 #define	PMAPDEBUG_ENTER		0x1000
    437 #define	PMAPDEBUG_KENTER	0x2000
    438 #define	PMAPDEBUG_KREMOVE	0x4000
    439 #define	PMAPDEBUG_REMOVE	0x8000
    440 
    441 unsigned int pmapdebug = 0;
    442 
    443 # define DPRINTF(x)		printf x
    444 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    445 #else
    446 # define DPRINTF(x)
    447 # define DPRINTFN(n, x)
    448 #endif
    449 
    450 
    451 #ifdef PMAPCOUNTERS
    452 /*
    453  * From pmap_subr.c
    454  */
    455 extern struct evcnt pmap_evcnt_mappings;
    456 extern struct evcnt pmap_evcnt_unmappings;
    457 
    458 extern struct evcnt pmap_evcnt_kernel_mappings;
    459 extern struct evcnt pmap_evcnt_kernel_unmappings;
    460 
    461 extern struct evcnt pmap_evcnt_mappings_replaced;
    462 
    463 extern struct evcnt pmap_evcnt_exec_mappings;
    464 extern struct evcnt pmap_evcnt_exec_cached;
    465 
    466 extern struct evcnt pmap_evcnt_exec_synced;
    467 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    468 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    469 
    470 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    471 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    472 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    473 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    474 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    475 
    476 extern struct evcnt pmap_evcnt_updates;
    477 extern struct evcnt pmap_evcnt_collects;
    478 extern struct evcnt pmap_evcnt_copies;
    479 
    480 extern struct evcnt pmap_evcnt_ptes_spilled;
    481 extern struct evcnt pmap_evcnt_ptes_unspilled;
    482 extern struct evcnt pmap_evcnt_ptes_evicted;
    483 
    484 extern struct evcnt pmap_evcnt_ptes_primary[8];
    485 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    486 extern struct evcnt pmap_evcnt_ptes_removed;
    487 extern struct evcnt pmap_evcnt_ptes_changed;
    488 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    489 extern struct evcnt pmap_evcnt_pvos_failed;
    490 
    491 extern struct evcnt pmap_evcnt_zeroed_pages;
    492 extern struct evcnt pmap_evcnt_copied_pages;
    493 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    494 
    495 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    496 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    497 #else
    498 #define	PMAPCOUNT(ev)	((void) 0)
    499 #define	PMAPCOUNT2(ev)	((void) 0)
    500 #endif
    501 
    502 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    503 
    504 /* XXXSL: this needs to be moved to assembler */
    505 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    506 
    507 #define	TLBSYNC()	__asm volatile("tlbsync")
    508 #define	SYNC()		__asm volatile("sync")
    509 #define	EIEIO()		__asm volatile("eieio")
    510 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    511 #define	MFMSR()		mfmsr()
    512 #define	MTMSR(psl)	mtmsr(psl)
    513 #define	MFPVR()		mfpvr()
    514 #define	MFSRIN(va)	mfsrin(va)
    515 #define	MFTB()		mfrtcltbl()
    516 
    517 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    518 static inline register_t
    519 mfsrin(vaddr_t va)
    520 {
    521 	register_t sr;
    522 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    523 	return sr;
    524 }
    525 #endif	/* PMAP_OEA*/
    526 
    527 #if defined (PMAP_OEA64_BRIDGE)
    528 extern void mfmsr64 (register64_t *result);
    529 #endif /* PMAP_OEA64_BRIDGE */
    530 
    531 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    532 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    533 
    534 static inline register_t
    535 pmap_interrupts_off(void)
    536 {
    537 	register_t msr = MFMSR();
    538 	if (msr & PSL_EE)
    539 		MTMSR(msr & ~PSL_EE);
    540 	return msr;
    541 }
    542 
    543 static void
    544 pmap_interrupts_restore(register_t msr)
    545 {
    546 	if (msr & PSL_EE)
    547 		MTMSR(msr);
    548 }
    549 
    550 static inline u_int32_t
    551 mfrtcltbl(void)
    552 {
    553 #ifdef PPC_OEA601
    554 	if ((MFPVR() >> 16) == MPC601)
    555 		return (mfrtcl() >> 7);
    556 	else
    557 #endif
    558 		return (mftbl());
    559 }
    560 
    561 /*
    562  * These small routines may have to be replaced,
    563  * if/when we support processors other that the 604.
    564  */
    565 
    566 void
    567 tlbia(void)
    568 {
    569 	char *i;
    570 
    571 	SYNC();
    572 #if defined(PMAP_OEA)
    573 	/*
    574 	 * Why not use "tlbia"?  Because not all processors implement it.
    575 	 *
    576 	 * This needs to be a per-CPU callback to do the appropriate thing
    577 	 * for the CPU. XXX
    578 	 */
    579 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    580 		TLBIE(i);
    581 		EIEIO();
    582 		SYNC();
    583 	}
    584 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    585 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    586 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    587 		TLBIEL(i);
    588 		EIEIO();
    589 		SYNC();
    590 	}
    591 #endif
    592 	TLBSYNC();
    593 	SYNC();
    594 }
    595 
    596 static inline register_t
    597 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    598 {
    599 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    600 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    601 #else /* PMAP_OEA64 */
    602 #if 0
    603 	const struct ste *ste;
    604 	register_t hash;
    605 	int i;
    606 
    607 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    608 
    609 	/*
    610 	 * Try the primary group first
    611 	 */
    612 	ste = pm->pm_stes[hash].stes;
    613 	for (i = 0; i < 8; i++, ste++) {
    614 		if (ste->ste_hi & STE_V) &&
    615 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    616 			return ste;
    617 	}
    618 
    619 	/*
    620 	 * Then the secondary group.
    621 	 */
    622 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    623 	for (i = 0; i < 8; i++, ste++) {
    624 		if (ste->ste_hi & STE_V) &&
    625 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    626 			return addr;
    627 	}
    628 
    629 	return NULL;
    630 #else
    631 	/*
    632 	 * Rather than searching the STE groups for the VSID, we know
    633 	 * how we generate that from the ESID and so do that.
    634 	 */
    635 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    636 #endif
    637 #endif /* PMAP_OEA */
    638 }
    639 
    640 static inline register_t
    641 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    642 {
    643 	register_t hash;
    644 
    645 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    646 	return hash & pmap_pteg_mask;
    647 }
    648 
    649 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    650 /*
    651  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    652  * The only bit of magic is that the top 4 bits of the address doesn't
    653  * technically exist in the PTE.  But we know we reserved 4 bits of the
    654  * VSID for it so that's how we get it.
    655  */
    656 static vaddr_t
    657 pmap_pte_to_va(volatile const struct pte *pt)
    658 {
    659 	vaddr_t va;
    660 	uintptr_t ptaddr = (uintptr_t) pt;
    661 
    662 	if (pt->pte_hi & PTE_HID)
    663 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    664 
    665 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    666 #if defined(PMAP_OEA)
    667 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    668 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    669 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    670 #endif
    671 	va <<= ADDR_PIDX_SHFT;
    672 
    673 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    674 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    675 
    676 #if defined(PMAP_OEA64)
    677 	/* PPC63 Bits 0-35 */
    678 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    679 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    680 	/* PPC Bits 0-3 */
    681 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    682 #endif
    683 
    684 	return va;
    685 }
    686 #endif
    687 
    688 static inline struct pvo_head *
    689 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    690 {
    691 	struct vm_page *pg;
    692 
    693 	pg = PHYS_TO_VM_PAGE(pa);
    694 	if (pg_p != NULL)
    695 		*pg_p = pg;
    696 	if (pg == NULL)
    697 		return &pmap_pvo_unmanaged;
    698 	return &pg->mdpage.mdpg_pvoh;
    699 }
    700 
    701 static inline struct pvo_head *
    702 vm_page_to_pvoh(struct vm_page *pg)
    703 {
    704 	return &pg->mdpage.mdpg_pvoh;
    705 }
    706 
    707 
    708 static inline void
    709 pmap_attr_clear(struct vm_page *pg, int ptebit)
    710 {
    711 	pg->mdpage.mdpg_attrs &= ~ptebit;
    712 }
    713 
    714 static inline int
    715 pmap_attr_fetch(struct vm_page *pg)
    716 {
    717 	return pg->mdpage.mdpg_attrs;
    718 }
    719 
    720 static inline void
    721 pmap_attr_save(struct vm_page *pg, int ptebit)
    722 {
    723 	pg->mdpage.mdpg_attrs |= ptebit;
    724 }
    725 
    726 static inline int
    727 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    728 {
    729 	if (pt->pte_hi == pvo_pt->pte_hi
    730 #if 0
    731 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    732 	        ~(PTE_REF|PTE_CHG)) == 0
    733 #endif
    734 	    )
    735 		return 1;
    736 	return 0;
    737 }
    738 
    739 static inline void
    740 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    741 {
    742 	/*
    743 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    744 	 * only gets set when the real pte is set in memory.
    745 	 *
    746 	 * Note: Don't set the valid bit for correct operation of tlb update.
    747 	 */
    748 #if defined(PMAP_OEA)
    749 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    750 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    751 	pt->pte_lo = pte_lo;
    752 #elif defined (PMAP_OEA64_BRIDGE)
    753 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    754 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    755 	pt->pte_lo = (u_int64_t) pte_lo;
    756 #elif defined (PMAP_OEA64)
    757 #error PMAP_OEA64 not supported
    758 #endif /* PMAP_OEA */
    759 }
    760 
    761 static inline void
    762 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    763 {
    764 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    765 }
    766 
    767 static inline void
    768 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    769 {
    770 	/*
    771 	 * As shown in Section 7.6.3.2.3
    772 	 */
    773 	pt->pte_lo &= ~ptebit;
    774 	TLBIE(va);
    775 	SYNC();
    776 	EIEIO();
    777 	TLBSYNC();
    778 	SYNC();
    779 #ifdef MULTIPROCESSOR
    780 	DCBST(pt);
    781 #endif
    782 }
    783 
    784 static inline void
    785 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    786 {
    787 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    788 	if (pvo_pt->pte_hi & PTE_VALID)
    789 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    790 #endif
    791 	pvo_pt->pte_hi |= PTE_VALID;
    792 
    793 	/*
    794 	 * Update the PTE as defined in section 7.6.3.1
    795 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    796 	 * have been saved so this routine can restore them (if desired).
    797 	 */
    798 	pt->pte_lo = pvo_pt->pte_lo;
    799 	EIEIO();
    800 	pt->pte_hi = pvo_pt->pte_hi;
    801 	TLBSYNC();
    802 	SYNC();
    803 #ifdef MULTIPROCESSOR
    804 	DCBST(pt);
    805 #endif
    806 	pmap_pte_valid++;
    807 }
    808 
    809 static inline void
    810 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    811 {
    812 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    813 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    814 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    815 	if ((pt->pte_hi & PTE_VALID) == 0)
    816 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    817 #endif
    818 
    819 	pvo_pt->pte_hi &= ~PTE_VALID;
    820 	/*
    821 	 * Force the ref & chg bits back into the PTEs.
    822 	 */
    823 	SYNC();
    824 	/*
    825 	 * Invalidate the pte ... (Section 7.6.3.3)
    826 	 */
    827 	pt->pte_hi &= ~PTE_VALID;
    828 	SYNC();
    829 	TLBIE(va);
    830 	SYNC();
    831 	EIEIO();
    832 	TLBSYNC();
    833 	SYNC();
    834 	/*
    835 	 * Save the ref & chg bits ...
    836 	 */
    837 	pmap_pte_synch(pt, pvo_pt);
    838 	pmap_pte_valid--;
    839 }
    840 
    841 static inline void
    842 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    843 {
    844 	/*
    845 	 * Invalidate the PTE
    846 	 */
    847 	pmap_pte_unset(pt, pvo_pt, va);
    848 	pmap_pte_set(pt, pvo_pt);
    849 }
    850 
    851 /*
    852  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    853  * (either primary or secondary location).
    854  *
    855  * Note: both the destination and source PTEs must not have PTE_VALID set.
    856  */
    857 
    858 static int
    859 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    860 {
    861 	volatile struct pte *pt;
    862 	int i;
    863 
    864 #if defined(DEBUG)
    865 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    866 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    867 #endif
    868 	/*
    869 	 * First try primary hash.
    870 	 */
    871 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    872 		if ((pt->pte_hi & PTE_VALID) == 0) {
    873 			pvo_pt->pte_hi &= ~PTE_HID;
    874 			pmap_pte_set(pt, pvo_pt);
    875 			return i;
    876 		}
    877 	}
    878 
    879 	/*
    880 	 * Now try secondary hash.
    881 	 */
    882 	ptegidx ^= pmap_pteg_mask;
    883 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    884 		if ((pt->pte_hi & PTE_VALID) == 0) {
    885 			pvo_pt->pte_hi |= PTE_HID;
    886 			pmap_pte_set(pt, pvo_pt);
    887 			return i;
    888 		}
    889 	}
    890 	return -1;
    891 }
    892 
    893 /*
    894  * Spill handler.
    895  *
    896  * Tries to spill a page table entry from the overflow area.
    897  * This runs in either real mode (if dealing with a exception spill)
    898  * or virtual mode when dealing with manually spilling one of the
    899  * kernel's pte entries.  In either case, interrupts are already
    900  * disabled.
    901  */
    902 
    903 int
    904 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    905 {
    906 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    907 	struct pvo_entry *pvo;
    908 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    909 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    910 	int ptegidx, i, j;
    911 	volatile struct pteg *pteg;
    912 	volatile struct pte *pt;
    913 
    914 	PMAP_LOCK();
    915 
    916 	ptegidx = va_to_pteg(pm, addr);
    917 
    918 	/*
    919 	 * Have to substitute some entry. Use the primary hash for this.
    920 	 * Use low bits of timebase as random generator.  Make sure we are
    921 	 * not picking a kernel pte for replacement.
    922 	 */
    923 	pteg = &pmap_pteg_table[ptegidx];
    924 	i = MFTB() & 7;
    925 	for (j = 0; j < 8; j++) {
    926 		pt = &pteg->pt[i];
    927 		if ((pt->pte_hi & PTE_VALID) == 0)
    928 			break;
    929 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    930 				< PHYSMAP_VSIDBITS)
    931 			break;
    932 		i = (i + 1) & 7;
    933 	}
    934 	KASSERT(j < 8);
    935 
    936 	source_pvo = NULL;
    937 	victim_pvo = NULL;
    938 	pvoh = &pmap_pvo_table[ptegidx];
    939 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    940 
    941 		/*
    942 		 * We need to find pvo entry for this address...
    943 		 */
    944 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    945 
    946 		/*
    947 		 * If we haven't found the source and we come to a PVO with
    948 		 * a valid PTE, then we know we can't find it because all
    949 		 * evicted PVOs always are first in the list.
    950 		 */
    951 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    952 			break;
    953 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    954 		    addr == PVO_VADDR(pvo)) {
    955 
    956 			/*
    957 			 * Now we have found the entry to be spilled into the
    958 			 * pteg.  Attempt to insert it into the page table.
    959 			 */
    960 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    961 			if (j >= 0) {
    962 				PVO_PTEGIDX_SET(pvo, j);
    963 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    964 				PVO_WHERE(pvo, SPILL_INSERT);
    965 				pvo->pvo_pmap->pm_evictions--;
    966 				PMAPCOUNT(ptes_spilled);
    967 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    968 				    ? pmap_evcnt_ptes_secondary
    969 				    : pmap_evcnt_ptes_primary)[j]);
    970 
    971 				/*
    972 				 * Since we keep the evicted entries at the
    973 				 * from of the PVO list, we need move this
    974 				 * (now resident) PVO after the evicted
    975 				 * entries.
    976 				 */
    977 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    978 
    979 				/*
    980 				 * If we don't have to move (either we were the
    981 				 * last entry or the next entry was valid),
    982 				 * don't change our position.  Otherwise
    983 				 * move ourselves to the tail of the queue.
    984 				 */
    985 				if (next_pvo != NULL &&
    986 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    987 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    988 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    989 				}
    990 				PMAP_UNLOCK();
    991 				return 1;
    992 			}
    993 			source_pvo = pvo;
    994 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    995 				return 0;
    996 			}
    997 			if (victim_pvo != NULL)
    998 				break;
    999 		}
   1000 
   1001 		/*
   1002 		 * We also need the pvo entry of the victim we are replacing
   1003 		 * so save the R & C bits of the PTE.
   1004 		 */
   1005 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1006 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1007 			vpvoh = pvoh;			/* *1* */
   1008 			victim_pvo = pvo;
   1009 			if (source_pvo != NULL)
   1010 				break;
   1011 		}
   1012 	}
   1013 
   1014 	if (source_pvo == NULL) {
   1015 		PMAPCOUNT(ptes_unspilled);
   1016 		PMAP_UNLOCK();
   1017 		return 0;
   1018 	}
   1019 
   1020 	if (victim_pvo == NULL) {
   1021 		if ((pt->pte_hi & PTE_HID) == 0)
   1022 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1023 			    "no pvo entry!", pt);
   1024 
   1025 		/*
   1026 		 * If this is a secondary PTE, we need to search
   1027 		 * its primary pvo bucket for the matching PVO.
   1028 		 */
   1029 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1030 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1031 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1032 
   1033 			/*
   1034 			 * We also need the pvo entry of the victim we are
   1035 			 * replacing so save the R & C bits of the PTE.
   1036 			 */
   1037 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1038 				victim_pvo = pvo;
   1039 				break;
   1040 			}
   1041 		}
   1042 		if (victim_pvo == NULL)
   1043 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1044 			    "no pvo entry!", pt);
   1045 	}
   1046 
   1047 	/*
   1048 	 * The victim should be not be a kernel PVO/PTE entry.
   1049 	 */
   1050 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1051 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1052 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1053 
   1054 	/*
   1055 	 * We are invalidating the TLB entry for the EA for the
   1056 	 * we are replacing even though its valid; If we don't
   1057 	 * we lose any ref/chg bit changes contained in the TLB
   1058 	 * entry.
   1059 	 */
   1060 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1061 
   1062 	/*
   1063 	 * To enforce the PVO list ordering constraint that all
   1064 	 * evicted entries should come before all valid entries,
   1065 	 * move the source PVO to the tail of its list and the
   1066 	 * victim PVO to the head of its list (which might not be
   1067 	 * the same list, if the victim was using the secondary hash).
   1068 	 */
   1069 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1070 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1071 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1072 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1073 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1074 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1075 	victim_pvo->pvo_pmap->pm_evictions++;
   1076 	source_pvo->pvo_pmap->pm_evictions--;
   1077 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1078 	PVO_WHERE(source_pvo, SPILL_SET);
   1079 
   1080 	PVO_PTEGIDX_CLR(victim_pvo);
   1081 	PVO_PTEGIDX_SET(source_pvo, i);
   1082 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1083 	PMAPCOUNT(ptes_spilled);
   1084 	PMAPCOUNT(ptes_evicted);
   1085 	PMAPCOUNT(ptes_removed);
   1086 
   1087 	PMAP_PVO_CHECK(victim_pvo);
   1088 	PMAP_PVO_CHECK(source_pvo);
   1089 
   1090 	PMAP_UNLOCK();
   1091 	return 1;
   1092 }
   1093 
   1094 /*
   1095  * Restrict given range to physical memory
   1096  */
   1097 void
   1098 pmap_real_memory(paddr_t *start, psize_t *size)
   1099 {
   1100 	struct mem_region *mp;
   1101 
   1102 	for (mp = mem; mp->size; mp++) {
   1103 		if (*start + *size > mp->start
   1104 		    && *start < mp->start + mp->size) {
   1105 			if (*start < mp->start) {
   1106 				*size -= mp->start - *start;
   1107 				*start = mp->start;
   1108 			}
   1109 			if (*start + *size > mp->start + mp->size)
   1110 				*size = mp->start + mp->size - *start;
   1111 			return;
   1112 		}
   1113 	}
   1114 	*size = 0;
   1115 }
   1116 
   1117 /*
   1118  * Initialize anything else for pmap handling.
   1119  * Called during vm_init().
   1120  */
   1121 void
   1122 pmap_init(void)
   1123 {
   1124 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1125 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1126 	    &pmap_pool_mallocator, IPL_NONE);
   1127 
   1128 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1129 
   1130 	pmap_initialized = 1;
   1131 
   1132 }
   1133 
   1134 /*
   1135  * How much virtual space does the kernel get?
   1136  */
   1137 void
   1138 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1139 {
   1140 	/*
   1141 	 * For now, reserve one segment (minus some overhead) for kernel
   1142 	 * virtual memory
   1143 	 */
   1144 	*start = VM_MIN_KERNEL_ADDRESS;
   1145 	*end = VM_MAX_KERNEL_ADDRESS;
   1146 }
   1147 
   1148 /*
   1149  * Allocate, initialize, and return a new physical map.
   1150  */
   1151 pmap_t
   1152 pmap_create(void)
   1153 {
   1154 	pmap_t pm;
   1155 
   1156 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1157 	memset((void *)pm, 0, sizeof *pm);
   1158 	pmap_pinit(pm);
   1159 
   1160 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1161 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1162 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1163 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1164 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1165 	    pm,
   1166 	    pm->pm_sr[0], pm->pm_sr[1],
   1167 	    pm->pm_sr[2], pm->pm_sr[3],
   1168 	    pm->pm_sr[4], pm->pm_sr[5],
   1169 	    pm->pm_sr[6], pm->pm_sr[7],
   1170 	    pm->pm_sr[8], pm->pm_sr[9],
   1171 	    pm->pm_sr[10], pm->pm_sr[11],
   1172 	    pm->pm_sr[12], pm->pm_sr[13],
   1173 	    pm->pm_sr[14], pm->pm_sr[15]));
   1174 	return pm;
   1175 }
   1176 
   1177 /*
   1178  * Initialize a preallocated and zeroed pmap structure.
   1179  */
   1180 void
   1181 pmap_pinit(pmap_t pm)
   1182 {
   1183 	register_t entropy = MFTB();
   1184 	register_t mask;
   1185 	int i;
   1186 
   1187 	/*
   1188 	 * Allocate some segment registers for this pmap.
   1189 	 */
   1190 	pm->pm_refs = 1;
   1191 	PMAP_LOCK();
   1192 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1193 		static register_t pmap_vsidcontext;
   1194 		register_t hash;
   1195 		unsigned int n;
   1196 
   1197 		/* Create a new value by multiplying by a prime adding in
   1198 		 * entropy from the timebase register.  This is to make the
   1199 		 * VSID more random so that the PT Hash function collides
   1200 		 * less often. (note that the prime causes gcc to do shifts
   1201 		 * instead of a multiply)
   1202 		 */
   1203 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1204 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1205 		if (hash == 0) {		/* 0 is special, avoid it */
   1206 			entropy += 0xbadf00d;
   1207 			continue;
   1208 		}
   1209 		n = hash >> 5;
   1210 		mask = 1L << (hash & (VSID_NBPW-1));
   1211 		hash = pmap_vsidcontext;
   1212 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1213 			/* anything free in this bucket? */
   1214 			if (~pmap_vsid_bitmap[n] == 0) {
   1215 				entropy = hash ^ (hash >> 16);
   1216 				continue;
   1217 			}
   1218 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1219 			mask = 1L << i;
   1220 			hash &= ~(VSID_NBPW-1);
   1221 			hash |= i;
   1222 		}
   1223 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1224 		pmap_vsid_bitmap[n] |= mask;
   1225 		pm->pm_vsid = hash;
   1226 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1227 		for (i = 0; i < 16; i++)
   1228 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1229 			    SR_NOEXEC;
   1230 #endif
   1231 		PMAP_UNLOCK();
   1232 		return;
   1233 	}
   1234 	PMAP_UNLOCK();
   1235 	panic("pmap_pinit: out of segments");
   1236 }
   1237 
   1238 /*
   1239  * Add a reference to the given pmap.
   1240  */
   1241 void
   1242 pmap_reference(pmap_t pm)
   1243 {
   1244 	atomic_inc_uint(&pm->pm_refs);
   1245 }
   1246 
   1247 /*
   1248  * Retire the given pmap from service.
   1249  * Should only be called if the map contains no valid mappings.
   1250  */
   1251 void
   1252 pmap_destroy(pmap_t pm)
   1253 {
   1254 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1255 		pmap_release(pm);
   1256 		pool_put(&pmap_pool, pm);
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Release any resources held by the given physical map.
   1262  * Called when a pmap initialized by pmap_pinit is being released.
   1263  */
   1264 void
   1265 pmap_release(pmap_t pm)
   1266 {
   1267 	int idx, mask;
   1268 
   1269 	KASSERT(pm->pm_stats.resident_count == 0);
   1270 	KASSERT(pm->pm_stats.wired_count == 0);
   1271 
   1272 	PMAP_LOCK();
   1273 	if (pm->pm_sr[0] == 0)
   1274 		panic("pmap_release");
   1275 	idx = pm->pm_vsid & (NPMAPS-1);
   1276 	mask = 1 << (idx % VSID_NBPW);
   1277 	idx /= VSID_NBPW;
   1278 
   1279 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1280 	pmap_vsid_bitmap[idx] &= ~mask;
   1281 	PMAP_UNLOCK();
   1282 }
   1283 
   1284 /*
   1285  * Copy the range specified by src_addr/len
   1286  * from the source map to the range dst_addr/len
   1287  * in the destination map.
   1288  *
   1289  * This routine is only advisory and need not do anything.
   1290  */
   1291 void
   1292 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1293 	vsize_t len, vaddr_t src_addr)
   1294 {
   1295 	PMAPCOUNT(copies);
   1296 }
   1297 
   1298 /*
   1299  * Require that all active physical maps contain no
   1300  * incorrect entries NOW.
   1301  */
   1302 void
   1303 pmap_update(struct pmap *pmap)
   1304 {
   1305 	PMAPCOUNT(updates);
   1306 	TLBSYNC();
   1307 }
   1308 
   1309 static inline int
   1310 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1311 {
   1312 	int pteidx;
   1313 	/*
   1314 	 * We can find the actual pte entry without searching by
   1315 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1316 	 * and by noticing the HID bit.
   1317 	 */
   1318 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1319 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1320 		pteidx ^= pmap_pteg_mask * 8;
   1321 	return pteidx;
   1322 }
   1323 
   1324 volatile struct pte *
   1325 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1326 {
   1327 	volatile struct pte *pt;
   1328 
   1329 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1330 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1331 		return NULL;
   1332 #endif
   1333 
   1334 	/*
   1335 	 * If we haven't been supplied the ptegidx, calculate it.
   1336 	 */
   1337 	if (pteidx == -1) {
   1338 		int ptegidx;
   1339 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1340 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1341 	}
   1342 
   1343 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1344 
   1345 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1346 	return pt;
   1347 #else
   1348 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1349 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1350 		    "pvo but no valid pte index", pvo);
   1351 	}
   1352 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1353 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1354 		    "pvo but no valid pte", pvo);
   1355 	}
   1356 
   1357 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1358 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1359 #if defined(DEBUG) || defined(PMAPCHECK)
   1360 			pmap_pte_print(pt);
   1361 #endif
   1362 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1363 			    "pmap_pteg_table %p but invalid in pvo",
   1364 			    pvo, pt);
   1365 		}
   1366 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1367 #if defined(DEBUG) || defined(PMAPCHECK)
   1368 			pmap_pte_print(pt);
   1369 #endif
   1370 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1371 			    "not match pte %p in pmap_pteg_table",
   1372 			    pvo, pt);
   1373 		}
   1374 		return pt;
   1375 	}
   1376 
   1377 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1378 #if defined(DEBUG) || defined(PMAPCHECK)
   1379 		pmap_pte_print(pt);
   1380 #endif
   1381 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1382 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1383 	}
   1384 	return NULL;
   1385 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1386 }
   1387 
   1388 struct pvo_entry *
   1389 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1390 {
   1391 	struct pvo_entry *pvo;
   1392 	int ptegidx;
   1393 
   1394 	va &= ~ADDR_POFF;
   1395 	ptegidx = va_to_pteg(pm, va);
   1396 
   1397 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1399 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1400 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1401 			    "list %#x (%p)", pvo, ptegidx,
   1402 			     &pmap_pvo_table[ptegidx]);
   1403 #endif
   1404 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1405 			if (pteidx_p)
   1406 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1407 			return pvo;
   1408 		}
   1409 	}
   1410 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1411 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1412 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1413 	return NULL;
   1414 }
   1415 
   1416 #if defined(DEBUG) || defined(PMAPCHECK)
   1417 void
   1418 pmap_pvo_check(const struct pvo_entry *pvo)
   1419 {
   1420 	struct pvo_head *pvo_head;
   1421 	struct pvo_entry *pvo0;
   1422 	volatile struct pte *pt;
   1423 	int failed = 0;
   1424 
   1425 	PMAP_LOCK();
   1426 
   1427 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1428 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1429 
   1430 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1431 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1432 		    pvo, pvo->pvo_pmap);
   1433 		failed = 1;
   1434 	}
   1435 
   1436 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1437 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1438 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1439 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1440 		failed = 1;
   1441 	}
   1442 
   1443 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1444 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1445 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1446 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1447 		failed = 1;
   1448 	}
   1449 
   1450 	if (PVO_MANAGED_P(pvo)) {
   1451 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1452 	} else {
   1453 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1454 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1455 			    "on kernel unmanaged list\n", pvo);
   1456 			failed = 1;
   1457 		}
   1458 		pvo_head = &pmap_pvo_kunmanaged;
   1459 	}
   1460 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1461 		if (pvo0 == pvo)
   1462 			break;
   1463 	}
   1464 	if (pvo0 == NULL) {
   1465 		printf("pmap_pvo_check: pvo %p: not present "
   1466 		    "on its vlist head %p\n", pvo, pvo_head);
   1467 		failed = 1;
   1468 	}
   1469 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1470 		printf("pmap_pvo_check: pvo %p: not present "
   1471 		    "on its olist head\n", pvo);
   1472 		failed = 1;
   1473 	}
   1474 	pt = pmap_pvo_to_pte(pvo, -1);
   1475 	if (pt == NULL) {
   1476 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1477 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1478 			    "no PTE\n", pvo);
   1479 			failed = 1;
   1480 		}
   1481 	} else {
   1482 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1483 		    (uintptr_t) pt >=
   1484 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1485 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1486 			    "pteg table\n", pvo, pt);
   1487 			failed = 1;
   1488 		}
   1489 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1490 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1491 			    "no PTE\n", pvo);
   1492 			failed = 1;
   1493 		}
   1494 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1495 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1496 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1497 			    pvo->pvo_pte.pte_hi,
   1498 			    pt->pte_hi);
   1499 			failed = 1;
   1500 		}
   1501 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1502 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1503 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1504 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1505 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1506 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1507 			failed = 1;
   1508 		}
   1509 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1510 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1511 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1512 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1513 			failed = 1;
   1514 		}
   1515 		if (failed)
   1516 			pmap_pte_print(pt);
   1517 	}
   1518 	if (failed)
   1519 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1520 		    pvo->pvo_pmap);
   1521 
   1522 	PMAP_UNLOCK();
   1523 }
   1524 #endif /* DEBUG || PMAPCHECK */
   1525 
   1526 /*
   1527  * Search the PVO table looking for a non-wired entry.
   1528  * If we find one, remove it and return it.
   1529  */
   1530 
   1531 struct pvo_entry *
   1532 pmap_pvo_reclaim(struct pmap *pm)
   1533 {
   1534 	struct pvo_tqhead *pvoh;
   1535 	struct pvo_entry *pvo;
   1536 	uint32_t idx, endidx;
   1537 
   1538 	endidx = pmap_pvo_reclaim_nextidx;
   1539 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1540 	     idx = (idx + 1) & pmap_pteg_mask) {
   1541 		pvoh = &pmap_pvo_table[idx];
   1542 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1543 			if (!PVO_WIRED_P(pvo)) {
   1544 				pmap_pvo_remove(pvo, -1, NULL);
   1545 				pmap_pvo_reclaim_nextidx = idx;
   1546 				PMAPCOUNT(pvos_reclaimed);
   1547 				return pvo;
   1548 			}
   1549 		}
   1550 	}
   1551 	return NULL;
   1552 }
   1553 
   1554 /*
   1555  * This returns whether this is the first mapping of a page.
   1556  */
   1557 int
   1558 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1559 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1560 {
   1561 	struct pvo_entry *pvo;
   1562 	struct pvo_tqhead *pvoh;
   1563 	register_t msr;
   1564 	int ptegidx;
   1565 	int i;
   1566 	int poolflags = PR_NOWAIT;
   1567 
   1568 	/*
   1569 	 * Compute the PTE Group index.
   1570 	 */
   1571 	va &= ~ADDR_POFF;
   1572 	ptegidx = va_to_pteg(pm, va);
   1573 
   1574 	msr = pmap_interrupts_off();
   1575 
   1576 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1577 	if (pmap_pvo_remove_depth > 0)
   1578 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1579 	if (++pmap_pvo_enter_depth > 1)
   1580 		panic("pmap_pvo_enter: called recursively!");
   1581 #endif
   1582 
   1583 	/*
   1584 	 * Remove any existing mapping for this page.  Reuse the
   1585 	 * pvo entry if there a mapping.
   1586 	 */
   1587 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1588 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1589 #ifdef DEBUG
   1590 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1591 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1592 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1593 			   va < VM_MIN_KERNEL_ADDRESS) {
   1594 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1595 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1596 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1597 				    pvo->pvo_pte.pte_hi,
   1598 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1599 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1600 #ifdef DDBX
   1601 				Debugger();
   1602 #endif
   1603 			}
   1604 #endif
   1605 			PMAPCOUNT(mappings_replaced);
   1606 			pmap_pvo_remove(pvo, -1, NULL);
   1607 			break;
   1608 		}
   1609 	}
   1610 
   1611 	/*
   1612 	 * If we aren't overwriting an mapping, try to allocate
   1613 	 */
   1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1615 	--pmap_pvo_enter_depth;
   1616 #endif
   1617 	pmap_interrupts_restore(msr);
   1618 	if (pvo) {
   1619 		pmap_pvo_free(pvo);
   1620 	}
   1621 	pvo = pool_get(pl, poolflags);
   1622 
   1623 #ifdef DEBUG
   1624 	/*
   1625 	 * Exercise pmap_pvo_reclaim() a little.
   1626 	 */
   1627 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1628 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1629 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1630 		pool_put(pl, pvo);
   1631 		pvo = NULL;
   1632 	}
   1633 #endif
   1634 
   1635 	msr = pmap_interrupts_off();
   1636 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1637 	++pmap_pvo_enter_depth;
   1638 #endif
   1639 	if (pvo == NULL) {
   1640 		pvo = pmap_pvo_reclaim(pm);
   1641 		if (pvo == NULL) {
   1642 			if ((flags & PMAP_CANFAIL) == 0)
   1643 				panic("pmap_pvo_enter: failed");
   1644 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1645 			pmap_pvo_enter_depth--;
   1646 #endif
   1647 			PMAPCOUNT(pvos_failed);
   1648 			pmap_interrupts_restore(msr);
   1649 			return ENOMEM;
   1650 		}
   1651 	}
   1652 
   1653 	pvo->pvo_vaddr = va;
   1654 	pvo->pvo_pmap = pm;
   1655 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1656 	if (flags & VM_PROT_EXECUTE) {
   1657 		PMAPCOUNT(exec_mappings);
   1658 		pvo_set_exec(pvo);
   1659 	}
   1660 	if (flags & PMAP_WIRED)
   1661 		pvo->pvo_vaddr |= PVO_WIRED;
   1662 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1663 		pvo->pvo_vaddr |= PVO_MANAGED;
   1664 		PMAPCOUNT(mappings);
   1665 	} else {
   1666 		PMAPCOUNT(kernel_mappings);
   1667 	}
   1668 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1669 
   1670 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1671 	if (PVO_WIRED_P(pvo))
   1672 		pvo->pvo_pmap->pm_stats.wired_count++;
   1673 	pvo->pvo_pmap->pm_stats.resident_count++;
   1674 #if defined(DEBUG)
   1675 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1676 		DPRINTFN(PVOENTER,
   1677 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1678 		    pvo, pm, va, pa));
   1679 #endif
   1680 
   1681 	/*
   1682 	 * We hope this succeeds but it isn't required.
   1683 	 */
   1684 	pvoh = &pmap_pvo_table[ptegidx];
   1685 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1686 	if (i >= 0) {
   1687 		PVO_PTEGIDX_SET(pvo, i);
   1688 		PVO_WHERE(pvo, ENTER_INSERT);
   1689 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1690 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1691 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1692 
   1693 	} else {
   1694 		/*
   1695 		 * Since we didn't have room for this entry (which makes it
   1696 		 * and evicted entry), place it at the head of the list.
   1697 		 */
   1698 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1699 		PMAPCOUNT(ptes_evicted);
   1700 		pm->pm_evictions++;
   1701 		/*
   1702 		 * If this is a kernel page, make sure it's active.
   1703 		 */
   1704 		if (pm == pmap_kernel()) {
   1705 			i = pmap_pte_spill(pm, va, false);
   1706 			KASSERT(i);
   1707 		}
   1708 	}
   1709 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1710 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1711 	pmap_pvo_enter_depth--;
   1712 #endif
   1713 	pmap_interrupts_restore(msr);
   1714 	return 0;
   1715 }
   1716 
   1717 static void
   1718 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1719 {
   1720 	volatile struct pte *pt;
   1721 	int ptegidx;
   1722 
   1723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1724 	if (++pmap_pvo_remove_depth > 1)
   1725 		panic("pmap_pvo_remove: called recursively!");
   1726 #endif
   1727 
   1728 	/*
   1729 	 * If we haven't been supplied the ptegidx, calculate it.
   1730 	 */
   1731 	if (pteidx == -1) {
   1732 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1733 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1734 	} else {
   1735 		ptegidx = pteidx >> 3;
   1736 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1737 			ptegidx ^= pmap_pteg_mask;
   1738 	}
   1739 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1740 
   1741 	/*
   1742 	 * If there is an active pte entry, we need to deactivate it
   1743 	 * (and save the ref & chg bits).
   1744 	 */
   1745 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1746 	if (pt != NULL) {
   1747 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1748 		PVO_WHERE(pvo, REMOVE);
   1749 		PVO_PTEGIDX_CLR(pvo);
   1750 		PMAPCOUNT(ptes_removed);
   1751 	} else {
   1752 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1753 		pvo->pvo_pmap->pm_evictions--;
   1754 	}
   1755 
   1756 	/*
   1757 	 * Account for executable mappings.
   1758 	 */
   1759 	if (PVO_EXECUTABLE_P(pvo))
   1760 		pvo_clear_exec(pvo);
   1761 
   1762 	/*
   1763 	 * Update our statistics.
   1764 	 */
   1765 	pvo->pvo_pmap->pm_stats.resident_count--;
   1766 	if (PVO_WIRED_P(pvo))
   1767 		pvo->pvo_pmap->pm_stats.wired_count--;
   1768 
   1769 	/*
   1770 	 * Save the REF/CHG bits into their cache if the page is managed.
   1771 	 */
   1772 	if (PVO_MANAGED_P(pvo)) {
   1773 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1774 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1775 
   1776 		if (pg != NULL) {
   1777 			/*
   1778 			 * If this page was changed and it is mapped exec,
   1779 			 * invalidate it.
   1780 			 */
   1781 			if ((ptelo & PTE_CHG) &&
   1782 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1783 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1784 				if (LIST_EMPTY(pvoh)) {
   1785 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1786 					    "%#" _PRIxpa ": clear-exec]\n",
   1787 					    VM_PAGE_TO_PHYS(pg)));
   1788 					pmap_attr_clear(pg, PTE_EXEC);
   1789 					PMAPCOUNT(exec_uncached_pvo_remove);
   1790 				} else {
   1791 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1792 					    "%#" _PRIxpa ": syncicache]\n",
   1793 					    VM_PAGE_TO_PHYS(pg)));
   1794 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1795 					    PAGE_SIZE);
   1796 					PMAPCOUNT(exec_synced_pvo_remove);
   1797 				}
   1798 			}
   1799 
   1800 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1801 		}
   1802 		PMAPCOUNT(unmappings);
   1803 	} else {
   1804 		PMAPCOUNT(kernel_unmappings);
   1805 	}
   1806 
   1807 	/*
   1808 	 * Remove the PVO from its lists and return it to the pool.
   1809 	 */
   1810 	LIST_REMOVE(pvo, pvo_vlink);
   1811 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1812 	if (pvol) {
   1813 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1814 	}
   1815 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1816 	pmap_pvo_remove_depth--;
   1817 #endif
   1818 }
   1819 
   1820 void
   1821 pmap_pvo_free(struct pvo_entry *pvo)
   1822 {
   1823 
   1824 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1825 }
   1826 
   1827 void
   1828 pmap_pvo_free_list(struct pvo_head *pvol)
   1829 {
   1830 	struct pvo_entry *pvo, *npvo;
   1831 
   1832 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1833 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1834 		LIST_REMOVE(pvo, pvo_vlink);
   1835 		pmap_pvo_free(pvo);
   1836 	}
   1837 }
   1838 
   1839 /*
   1840  * Mark a mapping as executable.
   1841  * If this is the first executable mapping in the segment,
   1842  * clear the noexec flag.
   1843  */
   1844 static void
   1845 pvo_set_exec(struct pvo_entry *pvo)
   1846 {
   1847 	struct pmap *pm = pvo->pvo_pmap;
   1848 
   1849 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1850 		return;
   1851 	}
   1852 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1853 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1854 	{
   1855 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1856 		if (pm->pm_exec[sr]++ == 0) {
   1857 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1858 		}
   1859 	}
   1860 #endif
   1861 }
   1862 
   1863 /*
   1864  * Mark a mapping as non-executable.
   1865  * If this was the last executable mapping in the segment,
   1866  * set the noexec flag.
   1867  */
   1868 static void
   1869 pvo_clear_exec(struct pvo_entry *pvo)
   1870 {
   1871 	struct pmap *pm = pvo->pvo_pmap;
   1872 
   1873 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1874 		return;
   1875 	}
   1876 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1877 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1878 	{
   1879 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1880 		if (--pm->pm_exec[sr] == 0) {
   1881 			pm->pm_sr[sr] |= SR_NOEXEC;
   1882 		}
   1883 	}
   1884 #endif
   1885 }
   1886 
   1887 /*
   1888  * Insert physical page at pa into the given pmap at virtual address va.
   1889  */
   1890 int
   1891 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1892 {
   1893 	struct mem_region *mp;
   1894 	struct pvo_head *pvo_head;
   1895 	struct vm_page *pg;
   1896 	struct pool *pl;
   1897 	register_t pte_lo;
   1898 	int error;
   1899 	u_int pvo_flags;
   1900 	u_int was_exec = 0;
   1901 
   1902 	PMAP_LOCK();
   1903 
   1904 	if (__predict_false(!pmap_initialized)) {
   1905 		pvo_head = &pmap_pvo_kunmanaged;
   1906 		pl = &pmap_upvo_pool;
   1907 		pvo_flags = 0;
   1908 		pg = NULL;
   1909 		was_exec = PTE_EXEC;
   1910 	} else {
   1911 		pvo_head = pa_to_pvoh(pa, &pg);
   1912 		pl = &pmap_mpvo_pool;
   1913 		pvo_flags = PVO_MANAGED;
   1914 	}
   1915 
   1916 	DPRINTFN(ENTER,
   1917 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1918 	    pm, va, pa, prot, flags));
   1919 
   1920 	/*
   1921 	 * If this is a managed page, and it's the first reference to the
   1922 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1923 	 */
   1924 	if (pg != NULL)
   1925 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1926 
   1927 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1928 
   1929 	/*
   1930 	 * Assume the page is cache inhibited and access is guarded unless
   1931 	 * it's in our available memory array.  If it is in the memory array,
   1932 	 * asssume it's in memory coherent memory.
   1933 	 */
   1934 	pte_lo = PTE_IG;
   1935 	if ((flags & PMAP_NC) == 0) {
   1936 		for (mp = mem; mp->size; mp++) {
   1937 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1938 				pte_lo = PTE_M;
   1939 				break;
   1940 			}
   1941 		}
   1942 	}
   1943 
   1944 	if (prot & VM_PROT_WRITE)
   1945 		pte_lo |= PTE_BW;
   1946 	else
   1947 		pte_lo |= PTE_BR;
   1948 
   1949 	/*
   1950 	 * If this was in response to a fault, "pre-fault" the PTE's
   1951 	 * changed/referenced bit appropriately.
   1952 	 */
   1953 	if (flags & VM_PROT_WRITE)
   1954 		pte_lo |= PTE_CHG;
   1955 	if (flags & VM_PROT_ALL)
   1956 		pte_lo |= PTE_REF;
   1957 
   1958 	/*
   1959 	 * We need to know if this page can be executable
   1960 	 */
   1961 	flags |= (prot & VM_PROT_EXECUTE);
   1962 
   1963 	/*
   1964 	 * Record mapping for later back-translation and pte spilling.
   1965 	 * This will overwrite any existing mapping.
   1966 	 */
   1967 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1968 
   1969 	/*
   1970 	 * Flush the real page from the instruction cache if this page is
   1971 	 * mapped executable and cacheable and has not been flushed since
   1972 	 * the last time it was modified.
   1973 	 */
   1974 	if (error == 0 &&
   1975             (flags & VM_PROT_EXECUTE) &&
   1976             (pte_lo & PTE_I) == 0 &&
   1977 	    was_exec == 0) {
   1978 		DPRINTFN(ENTER, (" syncicache"));
   1979 		PMAPCOUNT(exec_synced);
   1980 		pmap_syncicache(pa, PAGE_SIZE);
   1981 		if (pg != NULL) {
   1982 			pmap_attr_save(pg, PTE_EXEC);
   1983 			PMAPCOUNT(exec_cached);
   1984 #if defined(DEBUG) || defined(PMAPDEBUG)
   1985 			if (pmapdebug & PMAPDEBUG_ENTER)
   1986 				printf(" marked-as-exec");
   1987 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1988 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1989 				    VM_PAGE_TO_PHYS(pg));
   1990 
   1991 #endif
   1992 		}
   1993 	}
   1994 
   1995 	DPRINTFN(ENTER, (": error=%d\n", error));
   1996 
   1997 	PMAP_UNLOCK();
   1998 
   1999 	return error;
   2000 }
   2001 
   2002 void
   2003 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2004 {
   2005 	struct mem_region *mp;
   2006 	register_t pte_lo;
   2007 	int error;
   2008 
   2009 #if defined (PMAP_OEA64_BRIDGE)
   2010 	if (va < VM_MIN_KERNEL_ADDRESS)
   2011 		panic("pmap_kenter_pa: attempt to enter "
   2012 		    "non-kernel address %#" _PRIxva "!", va);
   2013 #endif
   2014 
   2015 	DPRINTFN(KENTER,
   2016 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2017 
   2018 	PMAP_LOCK();
   2019 
   2020 	/*
   2021 	 * Assume the page is cache inhibited and access is guarded unless
   2022 	 * it's in our available memory array.  If it is in the memory array,
   2023 	 * asssume it's in memory coherent memory.
   2024 	 */
   2025 	pte_lo = PTE_IG;
   2026 	if ((prot & PMAP_NC) == 0) {
   2027 		for (mp = mem; mp->size; mp++) {
   2028 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2029 				pte_lo = PTE_M;
   2030 				break;
   2031 			}
   2032 		}
   2033 	}
   2034 
   2035 	if (prot & VM_PROT_WRITE)
   2036 		pte_lo |= PTE_BW;
   2037 	else
   2038 		pte_lo |= PTE_BR;
   2039 
   2040 	/*
   2041 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2042 	 */
   2043 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2044 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2045 
   2046 	if (error != 0)
   2047 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2048 		      va, pa, error);
   2049 
   2050 	PMAP_UNLOCK();
   2051 }
   2052 
   2053 void
   2054 pmap_kremove(vaddr_t va, vsize_t len)
   2055 {
   2056 	if (va < VM_MIN_KERNEL_ADDRESS)
   2057 		panic("pmap_kremove: attempt to remove "
   2058 		    "non-kernel address %#" _PRIxva "!", va);
   2059 
   2060 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2061 	pmap_remove(pmap_kernel(), va, va + len);
   2062 }
   2063 
   2064 /*
   2065  * Remove the given range of mapping entries.
   2066  */
   2067 void
   2068 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2069 {
   2070 	struct pvo_head pvol;
   2071 	struct pvo_entry *pvo;
   2072 	register_t msr;
   2073 	int pteidx;
   2074 
   2075 	PMAP_LOCK();
   2076 	LIST_INIT(&pvol);
   2077 	msr = pmap_interrupts_off();
   2078 	for (; va < endva; va += PAGE_SIZE) {
   2079 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2080 		if (pvo != NULL) {
   2081 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2082 		}
   2083 	}
   2084 	pmap_interrupts_restore(msr);
   2085 	pmap_pvo_free_list(&pvol);
   2086 	PMAP_UNLOCK();
   2087 }
   2088 
   2089 /*
   2090  * Get the physical page address for the given pmap/virtual address.
   2091  */
   2092 bool
   2093 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2094 {
   2095 	struct pvo_entry *pvo;
   2096 	register_t msr;
   2097 
   2098 	PMAP_LOCK();
   2099 
   2100 	/*
   2101 	 * If this is a kernel pmap lookup, also check the battable
   2102 	 * and if we get a hit, translate the VA to a PA using the
   2103 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2104 	 * that will wrap back to 0.
   2105 	 */
   2106 	if (pm == pmap_kernel() &&
   2107 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2108 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2109 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2110 #if defined (PMAP_OEA)
   2111 #ifdef PPC_OEA601
   2112 		if ((MFPVR() >> 16) == MPC601) {
   2113 			register_t batu = battable[va >> 23].batu;
   2114 			register_t batl = battable[va >> 23].batl;
   2115 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2116 			if (BAT601_VALID_P(batl) &&
   2117 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2118 				register_t mask =
   2119 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2120 				if (pap)
   2121 					*pap = (batl & mask) | (va & ~mask);
   2122 				PMAP_UNLOCK();
   2123 				return true;
   2124 			} else if (SR601_VALID_P(sr) &&
   2125 				   SR601_PA_MATCH_P(sr, va)) {
   2126 				if (pap)
   2127 					*pap = va;
   2128 				PMAP_UNLOCK();
   2129 				return true;
   2130 			}
   2131 		} else
   2132 #endif /* PPC_OEA601 */
   2133 		{
   2134 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2135 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2136 				register_t batl =
   2137 				    battable[va >> ADDR_SR_SHFT].batl;
   2138 				register_t mask =
   2139 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2140 				if (pap)
   2141 					*pap = (batl & mask) | (va & ~mask);
   2142 				PMAP_UNLOCK();
   2143 				return true;
   2144 			}
   2145 		}
   2146 		return false;
   2147 #elif defined (PMAP_OEA64_BRIDGE)
   2148 	if (va >= SEGMENT_LENGTH)
   2149 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2150 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2151 	else {
   2152 		if (pap)
   2153 			*pap = va;
   2154 			PMAP_UNLOCK();
   2155 			return true;
   2156 	}
   2157 #elif defined (PMAP_OEA64)
   2158 #error PPC_OEA64 not supported
   2159 #endif /* PPC_OEA */
   2160 	}
   2161 
   2162 	msr = pmap_interrupts_off();
   2163 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2164 	if (pvo != NULL) {
   2165 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2166 		if (pap)
   2167 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2168 			    | (va & ADDR_POFF);
   2169 	}
   2170 	pmap_interrupts_restore(msr);
   2171 	PMAP_UNLOCK();
   2172 	return pvo != NULL;
   2173 }
   2174 
   2175 /*
   2176  * Lower the protection on the specified range of this pmap.
   2177  */
   2178 void
   2179 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2180 {
   2181 	struct pvo_entry *pvo;
   2182 	volatile struct pte *pt;
   2183 	register_t msr;
   2184 	int pteidx;
   2185 
   2186 	/*
   2187 	 * Since this routine only downgrades protection, we should
   2188 	 * always be called with at least one bit not set.
   2189 	 */
   2190 	KASSERT(prot != VM_PROT_ALL);
   2191 
   2192 	/*
   2193 	 * If there is no protection, this is equivalent to
   2194 	 * remove the pmap from the pmap.
   2195 	 */
   2196 	if ((prot & VM_PROT_READ) == 0) {
   2197 		pmap_remove(pm, va, endva);
   2198 		return;
   2199 	}
   2200 
   2201 	PMAP_LOCK();
   2202 
   2203 	msr = pmap_interrupts_off();
   2204 	for (; va < endva; va += PAGE_SIZE) {
   2205 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2206 		if (pvo == NULL)
   2207 			continue;
   2208 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2209 
   2210 		/*
   2211 		 * Revoke executable if asked to do so.
   2212 		 */
   2213 		if ((prot & VM_PROT_EXECUTE) == 0)
   2214 			pvo_clear_exec(pvo);
   2215 
   2216 #if 0
   2217 		/*
   2218 		 * If the page is already read-only, no change
   2219 		 * needs to be made.
   2220 		 */
   2221 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2222 			continue;
   2223 #endif
   2224 		/*
   2225 		 * Grab the PTE pointer before we diddle with
   2226 		 * the cached PTE copy.
   2227 		 */
   2228 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2229 		/*
   2230 		 * Change the protection of the page.
   2231 		 */
   2232 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2233 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2234 
   2235 		/*
   2236 		 * If the PVO is in the page table, update
   2237 		 * that pte at well.
   2238 		 */
   2239 		if (pt != NULL) {
   2240 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2241 			PVO_WHERE(pvo, PMAP_PROTECT);
   2242 			PMAPCOUNT(ptes_changed);
   2243 		}
   2244 
   2245 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2246 	}
   2247 	pmap_interrupts_restore(msr);
   2248 	PMAP_UNLOCK();
   2249 }
   2250 
   2251 void
   2252 pmap_unwire(pmap_t pm, vaddr_t va)
   2253 {
   2254 	struct pvo_entry *pvo;
   2255 	register_t msr;
   2256 
   2257 	PMAP_LOCK();
   2258 	msr = pmap_interrupts_off();
   2259 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2260 	if (pvo != NULL) {
   2261 		if (PVO_WIRED_P(pvo)) {
   2262 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2263 			pm->pm_stats.wired_count--;
   2264 		}
   2265 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2266 	}
   2267 	pmap_interrupts_restore(msr);
   2268 	PMAP_UNLOCK();
   2269 }
   2270 
   2271 /*
   2272  * Lower the protection on the specified physical page.
   2273  */
   2274 void
   2275 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2276 {
   2277 	struct pvo_head *pvo_head, pvol;
   2278 	struct pvo_entry *pvo, *next_pvo;
   2279 	volatile struct pte *pt;
   2280 	register_t msr;
   2281 
   2282 	PMAP_LOCK();
   2283 
   2284 	KASSERT(prot != VM_PROT_ALL);
   2285 	LIST_INIT(&pvol);
   2286 	msr = pmap_interrupts_off();
   2287 
   2288 	/*
   2289 	 * When UVM reuses a page, it does a pmap_page_protect with
   2290 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2291 	 * since we know the page will have different contents.
   2292 	 */
   2293 	if ((prot & VM_PROT_READ) == 0) {
   2294 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2295 		    VM_PAGE_TO_PHYS(pg)));
   2296 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2297 			PMAPCOUNT(exec_uncached_page_protect);
   2298 			pmap_attr_clear(pg, PTE_EXEC);
   2299 		}
   2300 	}
   2301 
   2302 	pvo_head = vm_page_to_pvoh(pg);
   2303 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2304 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2305 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2306 
   2307 		/*
   2308 		 * Downgrading to no mapping at all, we just remove the entry.
   2309 		 */
   2310 		if ((prot & VM_PROT_READ) == 0) {
   2311 			pmap_pvo_remove(pvo, -1, &pvol);
   2312 			continue;
   2313 		}
   2314 
   2315 		/*
   2316 		 * If EXEC permission is being revoked, just clear the
   2317 		 * flag in the PVO.
   2318 		 */
   2319 		if ((prot & VM_PROT_EXECUTE) == 0)
   2320 			pvo_clear_exec(pvo);
   2321 
   2322 		/*
   2323 		 * If this entry is already RO, don't diddle with the
   2324 		 * page table.
   2325 		 */
   2326 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2327 			PMAP_PVO_CHECK(pvo);
   2328 			continue;
   2329 		}
   2330 
   2331 		/*
   2332 		 * Grab the PTE before the we diddle the bits so
   2333 		 * pvo_to_pte can verify the pte contents are as
   2334 		 * expected.
   2335 		 */
   2336 		pt = pmap_pvo_to_pte(pvo, -1);
   2337 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2338 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2339 		if (pt != NULL) {
   2340 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2341 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2342 			PMAPCOUNT(ptes_changed);
   2343 		}
   2344 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2345 	}
   2346 	pmap_interrupts_restore(msr);
   2347 	pmap_pvo_free_list(&pvol);
   2348 
   2349 	PMAP_UNLOCK();
   2350 }
   2351 
   2352 /*
   2353  * Activate the address space for the specified process.  If the process
   2354  * is the current process, load the new MMU context.
   2355  */
   2356 void
   2357 pmap_activate(struct lwp *l)
   2358 {
   2359 	struct pcb *pcb = lwp_getpcb(l);
   2360 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2361 
   2362 	DPRINTFN(ACTIVATE,
   2363 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2364 
   2365 	/*
   2366 	 * XXX Normally performed in cpu_fork().
   2367 	 */
   2368 	pcb->pcb_pm = pmap;
   2369 
   2370 	/*
   2371 	* In theory, the SR registers need only be valid on return
   2372 	* to user space wait to do them there.
   2373 	*/
   2374 	if (l == curlwp) {
   2375 		/* Store pointer to new current pmap. */
   2376 		curpm = pmap;
   2377 	}
   2378 }
   2379 
   2380 /*
   2381  * Deactivate the specified process's address space.
   2382  */
   2383 void
   2384 pmap_deactivate(struct lwp *l)
   2385 {
   2386 }
   2387 
   2388 bool
   2389 pmap_query_bit(struct vm_page *pg, int ptebit)
   2390 {
   2391 	struct pvo_entry *pvo;
   2392 	volatile struct pte *pt;
   2393 	register_t msr;
   2394 
   2395 	PMAP_LOCK();
   2396 
   2397 	if (pmap_attr_fetch(pg) & ptebit) {
   2398 		PMAP_UNLOCK();
   2399 		return true;
   2400 	}
   2401 
   2402 	msr = pmap_interrupts_off();
   2403 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2404 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2405 		/*
   2406 		 * See if we saved the bit off.  If so cache, it and return
   2407 		 * success.
   2408 		 */
   2409 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2410 			pmap_attr_save(pg, ptebit);
   2411 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2412 			pmap_interrupts_restore(msr);
   2413 			PMAP_UNLOCK();
   2414 			return true;
   2415 		}
   2416 	}
   2417 	/*
   2418 	 * No luck, now go thru the hard part of looking at the ptes
   2419 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2420 	 * to the PTEs.
   2421 	 */
   2422 	SYNC();
   2423 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2424 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2425 		/*
   2426 		 * See if this pvo have a valid PTE.  If so, fetch the
   2427 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2428 		 * ptebit is set, cache, it and return success.
   2429 		 */
   2430 		pt = pmap_pvo_to_pte(pvo, -1);
   2431 		if (pt != NULL) {
   2432 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2433 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2434 				pmap_attr_save(pg, ptebit);
   2435 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2436 				pmap_interrupts_restore(msr);
   2437 				PMAP_UNLOCK();
   2438 				return true;
   2439 			}
   2440 		}
   2441 	}
   2442 	pmap_interrupts_restore(msr);
   2443 	PMAP_UNLOCK();
   2444 	return false;
   2445 }
   2446 
   2447 bool
   2448 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2449 {
   2450 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2451 	struct pvo_entry *pvo;
   2452 	volatile struct pte *pt;
   2453 	register_t msr;
   2454 	int rv = 0;
   2455 
   2456 	PMAP_LOCK();
   2457 	msr = pmap_interrupts_off();
   2458 
   2459 	/*
   2460 	 * Fetch the cache value
   2461 	 */
   2462 	rv |= pmap_attr_fetch(pg);
   2463 
   2464 	/*
   2465 	 * Clear the cached value.
   2466 	 */
   2467 	pmap_attr_clear(pg, ptebit);
   2468 
   2469 	/*
   2470 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2471 	 * can reset the right ones).  Note that since the pvo entries and
   2472 	 * list heads are accessed via BAT0 and are never placed in the
   2473 	 * page table, we don't have to worry about further accesses setting
   2474 	 * the REF/CHG bits.
   2475 	 */
   2476 	SYNC();
   2477 
   2478 	/*
   2479 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2480 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2481 	 */
   2482 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2483 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2484 		pt = pmap_pvo_to_pte(pvo, -1);
   2485 		if (pt != NULL) {
   2486 			/*
   2487 			 * Only sync the PTE if the bit we are looking
   2488 			 * for is not already set.
   2489 			 */
   2490 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2491 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2492 			/*
   2493 			 * If the bit we are looking for was already set,
   2494 			 * clear that bit in the pte.
   2495 			 */
   2496 			if (pvo->pvo_pte.pte_lo & ptebit)
   2497 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2498 		}
   2499 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2500 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2501 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2502 	}
   2503 	pmap_interrupts_restore(msr);
   2504 
   2505 	/*
   2506 	 * If we are clearing the modify bit and this page was marked EXEC
   2507 	 * and the user of the page thinks the page was modified, then we
   2508 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2509 	 * bit if it's not mapped.  The page itself might not have the CHG
   2510 	 * bit set if the modification was done via DMA to the page.
   2511 	 */
   2512 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2513 		if (LIST_EMPTY(pvoh)) {
   2514 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2515 			    VM_PAGE_TO_PHYS(pg)));
   2516 			pmap_attr_clear(pg, PTE_EXEC);
   2517 			PMAPCOUNT(exec_uncached_clear_modify);
   2518 		} else {
   2519 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2520 			    VM_PAGE_TO_PHYS(pg)));
   2521 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2522 			PMAPCOUNT(exec_synced_clear_modify);
   2523 		}
   2524 	}
   2525 	PMAP_UNLOCK();
   2526 	return (rv & ptebit) != 0;
   2527 }
   2528 
   2529 void
   2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2531 {
   2532 	struct pvo_entry *pvo;
   2533 	size_t offset = va & ADDR_POFF;
   2534 	int s;
   2535 
   2536 	PMAP_LOCK();
   2537 	s = splvm();
   2538 	while (len > 0) {
   2539 		size_t seglen = PAGE_SIZE - offset;
   2540 		if (seglen > len)
   2541 			seglen = len;
   2542 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2543 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2544 			pmap_syncicache(
   2545 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2546 			PMAP_PVO_CHECK(pvo);
   2547 		}
   2548 		va += seglen;
   2549 		len -= seglen;
   2550 		offset = 0;
   2551 	}
   2552 	splx(s);
   2553 	PMAP_UNLOCK();
   2554 }
   2555 
   2556 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2557 void
   2558 pmap_pte_print(volatile struct pte *pt)
   2559 {
   2560 	printf("PTE %p: ", pt);
   2561 
   2562 #if defined(PMAP_OEA)
   2563 	/* High word: */
   2564 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2565 #else
   2566 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2567 #endif /* PMAP_OEA */
   2568 
   2569 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2570 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2571 
   2572 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2573 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2574 	    pt->pte_hi & PTE_API);
   2575 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2576 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2577 #else
   2578 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2579 #endif /* PMAP_OEA */
   2580 
   2581 	/* Low word: */
   2582 #if defined (PMAP_OEA)
   2583 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2584 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2585 #else
   2586 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2587 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2588 #endif
   2589 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2590 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2591 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2592 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2593 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2594 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2595 	switch (pt->pte_lo & PTE_PP) {
   2596 	case PTE_BR: printf("br]\n"); break;
   2597 	case PTE_BW: printf("bw]\n"); break;
   2598 	case PTE_SO: printf("so]\n"); break;
   2599 	case PTE_SW: printf("sw]\n"); break;
   2600 	}
   2601 }
   2602 #endif
   2603 
   2604 #if defined(DDB)
   2605 void
   2606 pmap_pteg_check(void)
   2607 {
   2608 	volatile struct pte *pt;
   2609 	int i;
   2610 	int ptegidx;
   2611 	u_int p_valid = 0;
   2612 	u_int s_valid = 0;
   2613 	u_int invalid = 0;
   2614 
   2615 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2616 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2617 			if (pt->pte_hi & PTE_VALID) {
   2618 				if (pt->pte_hi & PTE_HID)
   2619 					s_valid++;
   2620 				else
   2621 				{
   2622 					p_valid++;
   2623 				}
   2624 			} else
   2625 				invalid++;
   2626 		}
   2627 	}
   2628 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2629 		p_valid, p_valid, s_valid, s_valid,
   2630 		invalid, invalid);
   2631 }
   2632 
   2633 void
   2634 pmap_print_mmuregs(void)
   2635 {
   2636 	int i;
   2637 	u_int cpuvers;
   2638 #ifndef PMAP_OEA64
   2639 	vaddr_t addr;
   2640 	register_t soft_sr[16];
   2641 #endif
   2642 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2643 	struct bat soft_ibat[4];
   2644 	struct bat soft_dbat[4];
   2645 #endif
   2646 	paddr_t sdr1;
   2647 
   2648 	cpuvers = MFPVR() >> 16;
   2649 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2650 #ifndef PMAP_OEA64
   2651 	addr = 0;
   2652 	for (i = 0; i < 16; i++) {
   2653 		soft_sr[i] = MFSRIN(addr);
   2654 		addr += (1 << ADDR_SR_SHFT);
   2655 	}
   2656 #endif
   2657 
   2658 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2659 	/* read iBAT (601: uBAT) registers */
   2660 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2661 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2662 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2663 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2664 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2665 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2666 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2667 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2668 
   2669 
   2670 	if (cpuvers != MPC601) {
   2671 		/* read dBAT registers */
   2672 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2673 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2674 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2675 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2676 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2677 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2678 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2679 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2680 	}
   2681 #endif
   2682 
   2683 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2684 #ifndef PMAP_OEA64
   2685 	printf("SR[]:\t");
   2686 	for (i = 0; i < 4; i++)
   2687 		printf("0x%08lx,   ", soft_sr[i]);
   2688 	printf("\n\t");
   2689 	for ( ; i < 8; i++)
   2690 		printf("0x%08lx,   ", soft_sr[i]);
   2691 	printf("\n\t");
   2692 	for ( ; i < 12; i++)
   2693 		printf("0x%08lx,   ", soft_sr[i]);
   2694 	printf("\n\t");
   2695 	for ( ; i < 16; i++)
   2696 		printf("0x%08lx,   ", soft_sr[i]);
   2697 	printf("\n");
   2698 #endif
   2699 
   2700 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2701 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2702 	for (i = 0; i < 4; i++) {
   2703 		printf("0x%08lx 0x%08lx, ",
   2704 			soft_ibat[i].batu, soft_ibat[i].batl);
   2705 		if (i == 1)
   2706 			printf("\n\t");
   2707 	}
   2708 	if (cpuvers != MPC601) {
   2709 		printf("\ndBAT[]:\t");
   2710 		for (i = 0; i < 4; i++) {
   2711 			printf("0x%08lx 0x%08lx, ",
   2712 				soft_dbat[i].batu, soft_dbat[i].batl);
   2713 			if (i == 1)
   2714 				printf("\n\t");
   2715 		}
   2716 	}
   2717 	printf("\n");
   2718 #endif /* PMAP_OEA... */
   2719 }
   2720 
   2721 void
   2722 pmap_print_pte(pmap_t pm, vaddr_t va)
   2723 {
   2724 	struct pvo_entry *pvo;
   2725 	volatile struct pte *pt;
   2726 	int pteidx;
   2727 
   2728 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2729 	if (pvo != NULL) {
   2730 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2731 		if (pt != NULL) {
   2732 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2733 				va, pt,
   2734 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2735 				pt->pte_hi, pt->pte_lo);
   2736 		} else {
   2737 			printf("No valid PTE found\n");
   2738 		}
   2739 	} else {
   2740 		printf("Address not in pmap\n");
   2741 	}
   2742 }
   2743 
   2744 void
   2745 pmap_pteg_dist(void)
   2746 {
   2747 	struct pvo_entry *pvo;
   2748 	int ptegidx;
   2749 	int depth;
   2750 	int max_depth = 0;
   2751 	unsigned int depths[64];
   2752 
   2753 	memset(depths, 0, sizeof(depths));
   2754 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2755 		depth = 0;
   2756 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2757 			depth++;
   2758 		}
   2759 		if (depth > max_depth)
   2760 			max_depth = depth;
   2761 		if (depth > 63)
   2762 			depth = 63;
   2763 		depths[depth]++;
   2764 	}
   2765 
   2766 	for (depth = 0; depth < 64; depth++) {
   2767 		printf("  [%2d]: %8u", depth, depths[depth]);
   2768 		if ((depth & 3) == 3)
   2769 			printf("\n");
   2770 		if (depth == max_depth)
   2771 			break;
   2772 	}
   2773 	if ((depth & 3) != 3)
   2774 		printf("\n");
   2775 	printf("Max depth found was %d\n", max_depth);
   2776 }
   2777 #endif /* DEBUG */
   2778 
   2779 #if defined(PMAPCHECK) || defined(DEBUG)
   2780 void
   2781 pmap_pvo_verify(void)
   2782 {
   2783 	int ptegidx;
   2784 	int s;
   2785 
   2786 	s = splvm();
   2787 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2788 		struct pvo_entry *pvo;
   2789 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2790 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2791 				panic("pmap_pvo_verify: invalid pvo %p "
   2792 				    "on list %#x", pvo, ptegidx);
   2793 			pmap_pvo_check(pvo);
   2794 		}
   2795 	}
   2796 	splx(s);
   2797 }
   2798 #endif /* PMAPCHECK */
   2799 
   2800 
   2801 void *
   2802 pmap_pool_ualloc(struct pool *pp, int flags)
   2803 {
   2804 	struct pvo_page *pvop;
   2805 
   2806 	if (uvm.page_init_done != true) {
   2807 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2808 	}
   2809 
   2810 	PMAP_LOCK();
   2811 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2812 	if (pvop != NULL) {
   2813 		pmap_upvop_free--;
   2814 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2815 		PMAP_UNLOCK();
   2816 		return pvop;
   2817 	}
   2818 	PMAP_UNLOCK();
   2819 	return pmap_pool_malloc(pp, flags);
   2820 }
   2821 
   2822 void *
   2823 pmap_pool_malloc(struct pool *pp, int flags)
   2824 {
   2825 	struct pvo_page *pvop;
   2826 	struct vm_page *pg;
   2827 
   2828 	PMAP_LOCK();
   2829 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2830 	if (pvop != NULL) {
   2831 		pmap_mpvop_free--;
   2832 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2833 		PMAP_UNLOCK();
   2834 		return pvop;
   2835 	}
   2836 	PMAP_UNLOCK();
   2837  again:
   2838 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2839 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2840 	if (__predict_false(pg == NULL)) {
   2841 		if (flags & PR_WAITOK) {
   2842 			uvm_wait("plpg");
   2843 			goto again;
   2844 		} else {
   2845 			return (0);
   2846 		}
   2847 	}
   2848 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2849 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2850 }
   2851 
   2852 void
   2853 pmap_pool_ufree(struct pool *pp, void *va)
   2854 {
   2855 	struct pvo_page *pvop;
   2856 #if 0
   2857 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2858 		pmap_pool_mfree(va, size, tag);
   2859 		return;
   2860 	}
   2861 #endif
   2862 	PMAP_LOCK();
   2863 	pvop = va;
   2864 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2865 	pmap_upvop_free++;
   2866 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2867 		pmap_upvop_maxfree = pmap_upvop_free;
   2868 	PMAP_UNLOCK();
   2869 }
   2870 
   2871 void
   2872 pmap_pool_mfree(struct pool *pp, void *va)
   2873 {
   2874 	struct pvo_page *pvop;
   2875 
   2876 	PMAP_LOCK();
   2877 	pvop = va;
   2878 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2879 	pmap_mpvop_free++;
   2880 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2881 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2882 	PMAP_UNLOCK();
   2883 #if 0
   2884 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2885 #endif
   2886 }
   2887 
   2888 /*
   2889  * This routine in bootstraping to steal to-be-managed memory (which will
   2890  * then be unmanaged).  We use it to grab from the first 256MB for our
   2891  * pmap needs and above 256MB for other stuff.
   2892  */
   2893 vaddr_t
   2894 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2895 {
   2896 	vsize_t size;
   2897 	vaddr_t va;
   2898 	paddr_t pa = 0;
   2899 	int npgs, bank;
   2900 	struct vm_physseg *ps;
   2901 
   2902 	if (uvm.page_init_done == true)
   2903 		panic("pmap_steal_memory: called _after_ bootstrap");
   2904 
   2905 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2906 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2907 
   2908 	size = round_page(vsize);
   2909 	npgs = atop(size);
   2910 
   2911 	/*
   2912 	 * PA 0 will never be among those given to UVM so we can use it
   2913 	 * to indicate we couldn't steal any memory.
   2914 	 */
   2915 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2916 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2917 		    ps->avail_end - ps->avail_start >= npgs) {
   2918 			pa = ptoa(ps->avail_start);
   2919 			break;
   2920 		}
   2921 	}
   2922 
   2923 	if (pa == 0)
   2924 		panic("pmap_steal_memory: no approriate memory to steal!");
   2925 
   2926 	ps->avail_start += npgs;
   2927 	ps->start += npgs;
   2928 
   2929 	/*
   2930 	 * If we've used up all the pages in the segment, remove it and
   2931 	 * compact the list.
   2932 	 */
   2933 	if (ps->avail_start == ps->end) {
   2934 		/*
   2935 		 * If this was the last one, then a very bad thing has occurred
   2936 		 */
   2937 		if (--vm_nphysseg == 0)
   2938 			panic("pmap_steal_memory: out of memory!");
   2939 
   2940 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2941 		for (; bank < vm_nphysseg; bank++, ps++) {
   2942 			ps[0] = ps[1];
   2943 		}
   2944 	}
   2945 
   2946 	va = (vaddr_t) pa;
   2947 	memset((void *) va, 0, size);
   2948 	pmap_pages_stolen += npgs;
   2949 #ifdef DEBUG
   2950 	if (pmapdebug && npgs > 1) {
   2951 		u_int cnt = 0;
   2952 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2953 			cnt += ps->avail_end - ps->avail_start;
   2954 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2955 		    npgs, pmap_pages_stolen, cnt);
   2956 	}
   2957 #endif
   2958 
   2959 	return va;
   2960 }
   2961 
   2962 /*
   2963  * Find a chuck of memory with right size and alignment.
   2964  */
   2965 paddr_t
   2966 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2967 {
   2968 	struct mem_region *mp;
   2969 	paddr_t s, e;
   2970 	int i, j;
   2971 
   2972 	size = round_page(size);
   2973 
   2974 	DPRINTFN(BOOT,
   2975 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2976 	    size, alignment, at_end));
   2977 
   2978 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2979 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2980 		    alignment);
   2981 
   2982 	if (at_end) {
   2983 		if (alignment != PAGE_SIZE)
   2984 			panic("pmap_boot_find_memory: invalid ending "
   2985 			    "alignment %#" _PRIxpa, alignment);
   2986 
   2987 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2988 			s = mp->start + mp->size - size;
   2989 			if (s >= mp->start && mp->size >= size) {
   2990 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   2991 				DPRINTFN(BOOT,
   2992 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2993 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   2994 				     mp->start, mp->size));
   2995 				mp->size -= size;
   2996 				DPRINTFN(BOOT,
   2997 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2998 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   2999 				     mp->start, mp->size));
   3000 				return s;
   3001 			}
   3002 		}
   3003 		panic("pmap_boot_find_memory: no available memory");
   3004 	}
   3005 
   3006 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3007 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3008 		e = s + size;
   3009 
   3010 		/*
   3011 		 * Is the calculated region entirely within the region?
   3012 		 */
   3013 		if (s < mp->start || e > mp->start + mp->size)
   3014 			continue;
   3015 
   3016 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3017 		if (s == mp->start) {
   3018 			/*
   3019 			 * If the block starts at the beginning of region,
   3020 			 * adjust the size & start. (the region may now be
   3021 			 * zero in length)
   3022 			 */
   3023 			DPRINTFN(BOOT,
   3024 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3025 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3026 			mp->start += size;
   3027 			mp->size -= size;
   3028 			DPRINTFN(BOOT,
   3029 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3030 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3031 		} else if (e == mp->start + mp->size) {
   3032 			/*
   3033 			 * If the block starts at the beginning of region,
   3034 			 * adjust only the size.
   3035 			 */
   3036 			DPRINTFN(BOOT,
   3037 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3038 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3039 			mp->size -= size;
   3040 			DPRINTFN(BOOT,
   3041 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3042 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3043 		} else {
   3044 			/*
   3045 			 * Block is in the middle of the region, so we
   3046 			 * have to split it in two.
   3047 			 */
   3048 			for (j = avail_cnt; j > i + 1; j--) {
   3049 				avail[j] = avail[j-1];
   3050 			}
   3051 			DPRINTFN(BOOT,
   3052 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3053 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3054 			mp[1].start = e;
   3055 			mp[1].size = mp[0].start + mp[0].size - e;
   3056 			mp[0].size = s - mp[0].start;
   3057 			avail_cnt++;
   3058 			for (; i < avail_cnt; i++) {
   3059 				DPRINTFN(BOOT,
   3060 				    ("pmap_boot_find_memory: a-avail[%d] "
   3061 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3062 				     avail[i].start, avail[i].size));
   3063 			}
   3064 		}
   3065 		KASSERT(s == (uintptr_t) s);
   3066 		return s;
   3067 	}
   3068 	panic("pmap_boot_find_memory: not enough memory for "
   3069 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3070 }
   3071 
   3072 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3073 #if defined (PMAP_OEA64_BRIDGE)
   3074 int
   3075 pmap_setup_segment0_map(int use_large_pages, ...)
   3076 {
   3077     vaddr_t va;
   3078 
   3079     register_t pte_lo = 0x0;
   3080     int ptegidx = 0, i = 0;
   3081     struct pte pte;
   3082     va_list ap;
   3083 
   3084     /* Coherent + Supervisor RW, no user access */
   3085     pte_lo = PTE_M;
   3086 
   3087     /* XXXSL
   3088      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3089      * these have to take priority.
   3090      */
   3091     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3092         ptegidx = va_to_pteg(pmap_kernel(), va);
   3093         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3094         i = pmap_pte_insert(ptegidx, &pte);
   3095     }
   3096 
   3097     va_start(ap, use_large_pages);
   3098     while (1) {
   3099         paddr_t pa;
   3100         size_t size;
   3101 
   3102         va = va_arg(ap, vaddr_t);
   3103 
   3104         if (va == 0)
   3105             break;
   3106 
   3107         pa = va_arg(ap, paddr_t);
   3108         size = va_arg(ap, size_t);
   3109 
   3110         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3111 #if 0
   3112 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3113 #endif
   3114             ptegidx = va_to_pteg(pmap_kernel(), va);
   3115             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3116             i = pmap_pte_insert(ptegidx, &pte);
   3117         }
   3118     }
   3119 
   3120     TLBSYNC();
   3121     SYNC();
   3122     return (0);
   3123 }
   3124 #endif /* PMAP_OEA64_BRIDGE */
   3125 
   3126 /*
   3127  * This is not part of the defined PMAP interface and is specific to the
   3128  * PowerPC architecture.  This is called during initppc, before the system
   3129  * is really initialized.
   3130  */
   3131 void
   3132 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3133 {
   3134 	struct mem_region *mp, tmp;
   3135 	paddr_t s, e;
   3136 	psize_t size;
   3137 	int i, j;
   3138 
   3139 	/*
   3140 	 * Get memory.
   3141 	 */
   3142 	mem_regions(&mem, &avail);
   3143 #if defined(DEBUG)
   3144 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3145 		printf("pmap_bootstrap: memory configuration:\n");
   3146 		for (mp = mem; mp->size; mp++) {
   3147 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3148 				mp->start, mp->size);
   3149 		}
   3150 		for (mp = avail; mp->size; mp++) {
   3151 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3152 				mp->start, mp->size);
   3153 		}
   3154 	}
   3155 #endif
   3156 
   3157 	/*
   3158 	 * Find out how much physical memory we have and in how many chunks.
   3159 	 */
   3160 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3161 		if (mp->start >= pmap_memlimit)
   3162 			continue;
   3163 		if (mp->start + mp->size > pmap_memlimit) {
   3164 			size = pmap_memlimit - mp->start;
   3165 			physmem += btoc(size);
   3166 		} else {
   3167 			physmem += btoc(mp->size);
   3168 		}
   3169 		mem_cnt++;
   3170 	}
   3171 
   3172 	/*
   3173 	 * Count the number of available entries.
   3174 	 */
   3175 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3176 		avail_cnt++;
   3177 
   3178 	/*
   3179 	 * Page align all regions.
   3180 	 */
   3181 	kernelstart = trunc_page(kernelstart);
   3182 	kernelend = round_page(kernelend);
   3183 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3184 		s = round_page(mp->start);
   3185 		mp->size -= (s - mp->start);
   3186 		mp->size = trunc_page(mp->size);
   3187 		mp->start = s;
   3188 		e = mp->start + mp->size;
   3189 
   3190 		DPRINTFN(BOOT,
   3191 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3192 		    i, mp->start, mp->size));
   3193 
   3194 		/*
   3195 		 * Don't allow the end to run beyond our artificial limit
   3196 		 */
   3197 		if (e > pmap_memlimit)
   3198 			e = pmap_memlimit;
   3199 
   3200 		/*
   3201 		 * Is this region empty or strange?  skip it.
   3202 		 */
   3203 		if (e <= s) {
   3204 			mp->start = 0;
   3205 			mp->size = 0;
   3206 			continue;
   3207 		}
   3208 
   3209 		/*
   3210 		 * Does this overlap the beginning of kernel?
   3211 		 *   Does extend past the end of the kernel?
   3212 		 */
   3213 		else if (s < kernelstart && e > kernelstart) {
   3214 			if (e > kernelend) {
   3215 				avail[avail_cnt].start = kernelend;
   3216 				avail[avail_cnt].size = e - kernelend;
   3217 				avail_cnt++;
   3218 			}
   3219 			mp->size = kernelstart - s;
   3220 		}
   3221 		/*
   3222 		 * Check whether this region overlaps the end of the kernel.
   3223 		 */
   3224 		else if (s < kernelend && e > kernelend) {
   3225 			mp->start = kernelend;
   3226 			mp->size = e - kernelend;
   3227 		}
   3228 		/*
   3229 		 * Look whether this regions is completely inside the kernel.
   3230 		 * Nuke it if it does.
   3231 		 */
   3232 		else if (s >= kernelstart && e <= kernelend) {
   3233 			mp->start = 0;
   3234 			mp->size = 0;
   3235 		}
   3236 		/*
   3237 		 * If the user imposed a memory limit, enforce it.
   3238 		 */
   3239 		else if (s >= pmap_memlimit) {
   3240 			mp->start = -PAGE_SIZE;	/* let's know why */
   3241 			mp->size = 0;
   3242 		}
   3243 		else {
   3244 			mp->start = s;
   3245 			mp->size = e - s;
   3246 		}
   3247 		DPRINTFN(BOOT,
   3248 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3249 		    i, mp->start, mp->size));
   3250 	}
   3251 
   3252 	/*
   3253 	 * Move (and uncount) all the null return to the end.
   3254 	 */
   3255 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3256 		if (mp->size == 0) {
   3257 			tmp = avail[i];
   3258 			avail[i] = avail[--avail_cnt];
   3259 			avail[avail_cnt] = avail[i];
   3260 		}
   3261 	}
   3262 
   3263 	/*
   3264 	 * (Bubble)sort them into ascending order.
   3265 	 */
   3266 	for (i = 0; i < avail_cnt; i++) {
   3267 		for (j = i + 1; j < avail_cnt; j++) {
   3268 			if (avail[i].start > avail[j].start) {
   3269 				tmp = avail[i];
   3270 				avail[i] = avail[j];
   3271 				avail[j] = tmp;
   3272 			}
   3273 		}
   3274 	}
   3275 
   3276 	/*
   3277 	 * Make sure they don't overlap.
   3278 	 */
   3279 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3280 		if (mp[0].start + mp[0].size > mp[1].start) {
   3281 			mp[0].size = mp[1].start - mp[0].start;
   3282 		}
   3283 		DPRINTFN(BOOT,
   3284 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3285 		    i, mp->start, mp->size));
   3286 	}
   3287 	DPRINTFN(BOOT,
   3288 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3289 	    i, mp->start, mp->size));
   3290 
   3291 #ifdef	PTEGCOUNT
   3292 	pmap_pteg_cnt = PTEGCOUNT;
   3293 #else /* PTEGCOUNT */
   3294 
   3295 	pmap_pteg_cnt = 0x1000;
   3296 
   3297 	while (pmap_pteg_cnt < physmem)
   3298 		pmap_pteg_cnt <<= 1;
   3299 
   3300 	pmap_pteg_cnt >>= 1;
   3301 #endif /* PTEGCOUNT */
   3302 
   3303 #ifdef DEBUG
   3304 	DPRINTFN(BOOT,
   3305 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3306 #endif
   3307 
   3308 	/*
   3309 	 * Find suitably aligned memory for PTEG hash table.
   3310 	 */
   3311 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3312 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3313 
   3314 #ifdef DEBUG
   3315 	DPRINTFN(BOOT,
   3316 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3317 #endif
   3318 
   3319 
   3320 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3321 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3322 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3323 		    pmap_pteg_table, size);
   3324 #endif
   3325 
   3326 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3327 		pmap_pteg_cnt * sizeof(struct pteg));
   3328 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3329 
   3330 	/*
   3331 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3332 	 * with pages.  So we just steal them before giving them to UVM.
   3333 	 */
   3334 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3335 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3336 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3337 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3338 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3339 		    pmap_pvo_table, size);
   3340 #endif
   3341 
   3342 	for (i = 0; i < pmap_pteg_cnt; i++)
   3343 		TAILQ_INIT(&pmap_pvo_table[i]);
   3344 
   3345 #ifndef MSGBUFADDR
   3346 	/*
   3347 	 * Allocate msgbuf in high memory.
   3348 	 */
   3349 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3350 #endif
   3351 
   3352 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3353 		paddr_t pfstart = atop(mp->start);
   3354 		paddr_t pfend = atop(mp->start + mp->size);
   3355 		if (mp->size == 0)
   3356 			continue;
   3357 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3358 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3359 				VM_FREELIST_FIRST256);
   3360 		} else if (mp->start >= SEGMENT_LENGTH) {
   3361 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3362 				VM_FREELIST_DEFAULT);
   3363 		} else {
   3364 			pfend = atop(SEGMENT_LENGTH);
   3365 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3366 				VM_FREELIST_FIRST256);
   3367 			pfstart = atop(SEGMENT_LENGTH);
   3368 			pfend = atop(mp->start + mp->size);
   3369 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3370 				VM_FREELIST_DEFAULT);
   3371 		}
   3372 	}
   3373 
   3374 	/*
   3375 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3376 	 */
   3377 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3378 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3379 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3380 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3381 	pmap_vsid_bitmap[0] |= 1;
   3382 
   3383 	/*
   3384 	 * Initialize kernel pmap and hardware.
   3385 	 */
   3386 
   3387 /* PMAP_OEA64_BRIDGE does support these instructions */
   3388 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3389 	for (i = 0; i < 16; i++) {
   3390  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3391 		__asm volatile ("mtsrin %0,%1"
   3392  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3393 	}
   3394 
   3395 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3396 	__asm volatile ("mtsr %0,%1"
   3397 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3398 #ifdef KERNEL2_SR
   3399 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3400 	__asm volatile ("mtsr %0,%1"
   3401 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3402 #endif
   3403 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3404 #if defined (PMAP_OEA)
   3405 	for (i = 0; i < 16; i++) {
   3406 		if (iosrtable[i] & SR601_T) {
   3407 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3408 			__asm volatile ("mtsrin %0,%1"
   3409 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3410 		}
   3411 	}
   3412 	__asm volatile ("sync; mtsdr1 %0; isync"
   3413 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3414 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3415  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3416  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3417 #endif
   3418 	tlbia();
   3419 
   3420 #ifdef ALTIVEC
   3421 	pmap_use_altivec = cpu_altivec;
   3422 #endif
   3423 
   3424 #ifdef DEBUG
   3425 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3426 		u_int cnt;
   3427 		int bank;
   3428 		char pbuf[9];
   3429 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3430 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3431 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3432 			    bank,
   3433 			    ptoa(vm_physmem[bank].avail_start),
   3434 			    ptoa(vm_physmem[bank].avail_end),
   3435 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3436 		}
   3437 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3438 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3439 		    pbuf, cnt);
   3440 	}
   3441 #endif
   3442 
   3443 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3444 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3445 	    &pmap_pool_uallocator, IPL_VM);
   3446 
   3447 	pool_setlowat(&pmap_upvo_pool, 252);
   3448 
   3449 	pool_init(&pmap_pool, sizeof(struct pmap),
   3450 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3451 	    IPL_NONE);
   3452 
   3453 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3454 	{
   3455 		struct pmap *pm = pmap_kernel();
   3456 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3457 		extern int etext[], kernel_text[];
   3458 		vaddr_t va, va_etext = (paddr_t) etext;
   3459 #endif
   3460 		paddr_t pa, pa_end;
   3461 		register_t sr;
   3462 		struct pte pt;
   3463 		unsigned int ptegidx;
   3464 		int bank;
   3465 
   3466 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3467 		pm->pm_sr[0] = sr;
   3468 
   3469 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3470 			pa_end = ptoa(vm_physmem[bank].avail_end);
   3471 			pa = ptoa(vm_physmem[bank].avail_start);
   3472 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3473 				ptegidx = va_to_pteg(pm, pa);
   3474 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3475 				pmap_pte_insert(ptegidx, &pt);
   3476 			}
   3477 		}
   3478 
   3479 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3480 		va = (vaddr_t) kernel_text;
   3481 
   3482 		for (pa = kernelstart; va < va_etext;
   3483 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3484 			ptegidx = va_to_pteg(pm, va);
   3485 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3486 			pmap_pte_insert(ptegidx, &pt);
   3487 		}
   3488 
   3489 		for (; pa < kernelend;
   3490 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3491 			ptegidx = va_to_pteg(pm, va);
   3492 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3493 			pmap_pte_insert(ptegidx, &pt);
   3494 		}
   3495 
   3496 		for (va = 0, pa = 0; va < kernelstart;
   3497 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3498 			ptegidx = va_to_pteg(pm, va);
   3499 			if (va < 0x3000)
   3500 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3501 			else
   3502 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3503 			pmap_pte_insert(ptegidx, &pt);
   3504 		}
   3505 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3506 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3507 			ptegidx = va_to_pteg(pm, va);
   3508 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3509 			pmap_pte_insert(ptegidx, &pt);
   3510 		}
   3511 #endif
   3512 
   3513 		__asm volatile ("mtsrin %0,%1"
   3514  			      :: "r"(sr), "r"(kernelstart));
   3515 	}
   3516 #endif
   3517 }
   3518