pmap.c revision 1.69.2.1 1 /* $NetBSD: pmap.c,v 1.69.2.1 2010/02/26 14:40:23 uebayasi Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.69.2.1 2010/02/26 14:40:23 uebayasi Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/pcb.h>
87 #include <machine/powerpc.h>
88 #include <powerpc/spr.h>
89 #include <powerpc/oea/sr_601.h>
90 #include <powerpc/bat.h>
91 #include <powerpc/stdarg.h>
92
93 #ifdef ALTIVEC
94 int pmap_use_altivec;
95 #endif
96
97 volatile struct pteg *pmap_pteg_table;
98 unsigned int pmap_pteg_cnt;
99 unsigned int pmap_pteg_mask;
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
104 #endif
105
106 struct pmap kernel_pmap_;
107 unsigned int pmap_pages_stolen;
108 u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 u_long pmap_pvo_enter_depth;
111 u_long pmap_pvo_remove_depth;
112 #endif
113
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define PMAP_OEA 1
123 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
124 # define PMAPNAME(name) pmap_##name
125 # endif
126 #endif
127
128 #if defined(PMAP_OEA64)
129 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
130 # define PMAPNAME(name) pmap_##name
131 # endif
132 #endif
133
134 #if defined(PMAP_OEA64_BRIDGE)
135 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
136 # define PMAPNAME(name) pmap_##name
137 # endif
138 #endif
139
140 #if defined(PMAP_OEA)
141 #define _PRIxpte "lx"
142 #else
143 #define _PRIxpte PRIx64
144 #endif
145 #define _PRIxpa "lx"
146 #define _PRIxva "lx"
147 #define _PRIsr "lx"
148
149 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
150 #if defined(PMAP_OEA)
151 #define PMAPNAME(name) pmap32_##name
152 #elif defined(PMAP_OEA64)
153 #define PMAPNAME(name) pmap64_##name
154 #elif defined(PMAP_OEA64_BRIDGE)
155 #define PMAPNAME(name) pmap64bridge_##name
156 #else
157 #error unknown variant for pmap
158 #endif
159 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
160
161 #if defined(PMAPNAME)
162 #define STATIC static
163 #define pmap_pte_spill PMAPNAME(pte_spill)
164 #define pmap_real_memory PMAPNAME(real_memory)
165 #define pmap_init PMAPNAME(init)
166 #define pmap_virtual_space PMAPNAME(virtual_space)
167 #define pmap_create PMAPNAME(create)
168 #define pmap_reference PMAPNAME(reference)
169 #define pmap_destroy PMAPNAME(destroy)
170 #define pmap_copy PMAPNAME(copy)
171 #define pmap_update PMAPNAME(update)
172 #define pmap_enter PMAPNAME(enter)
173 #define pmap_remove PMAPNAME(remove)
174 #define pmap_kenter_pa PMAPNAME(kenter_pa)
175 #define pmap_kremove PMAPNAME(kremove)
176 #define pmap_extract PMAPNAME(extract)
177 #define pmap_protect PMAPNAME(protect)
178 #define pmap_unwire PMAPNAME(unwire)
179 #define pmap_page_protect PMAPNAME(page_protect)
180 #define pmap_query_bit PMAPNAME(query_bit)
181 #define pmap_clear_bit PMAPNAME(clear_bit)
182
183 #define pmap_activate PMAPNAME(activate)
184 #define pmap_deactivate PMAPNAME(deactivate)
185
186 #define pmap_pinit PMAPNAME(pinit)
187 #define pmap_procwr PMAPNAME(procwr)
188
189 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
190 #define pmap_pte_print PMAPNAME(pte_print)
191 #define pmap_pteg_check PMAPNAME(pteg_check)
192 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
193 #define pmap_print_pte PMAPNAME(print_pte)
194 #define pmap_pteg_dist PMAPNAME(pteg_dist)
195 #endif
196 #if defined(DEBUG) || defined(PMAPCHECK)
197 #define pmap_pvo_verify PMAPNAME(pvo_verify)
198 #define pmapcheck PMAPNAME(check)
199 #endif
200 #if defined(DEBUG) || defined(PMAPDEBUG)
201 #define pmapdebug PMAPNAME(debug)
202 #endif
203 #define pmap_steal_memory PMAPNAME(steal_memory)
204 #define pmap_bootstrap PMAPNAME(bootstrap)
205 #else
206 #define STATIC /* nothing */
207 #endif /* PMAPNAME */
208
209 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
210 STATIC void pmap_real_memory(paddr_t *, psize_t *);
211 STATIC void pmap_init(void);
212 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
213 STATIC pmap_t pmap_create(void);
214 STATIC void pmap_reference(pmap_t);
215 STATIC void pmap_destroy(pmap_t);
216 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
217 STATIC void pmap_update(pmap_t);
218 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
219 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
220 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
221 STATIC void pmap_kremove(vaddr_t, vsize_t);
222 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
223
224 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
225 STATIC void pmap_unwire(pmap_t, vaddr_t);
226 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
227 STATIC bool pmap_query_bit(struct vm_page *, int);
228 STATIC bool pmap_clear_bit(struct vm_page *, int);
229
230 STATIC void pmap_activate(struct lwp *);
231 STATIC void pmap_deactivate(struct lwp *);
232
233 STATIC void pmap_pinit(pmap_t pm);
234 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
235
236 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
237 STATIC void pmap_pte_print(volatile struct pte *);
238 STATIC void pmap_pteg_check(void);
239 STATIC void pmap_print_mmuregs(void);
240 STATIC void pmap_print_pte(pmap_t, vaddr_t);
241 STATIC void pmap_pteg_dist(void);
242 #endif
243 #if defined(DEBUG) || defined(PMAPCHECK)
244 STATIC void pmap_pvo_verify(void);
245 #endif
246 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
247 STATIC void pmap_bootstrap(paddr_t, paddr_t);
248
249 #ifdef PMAPNAME
250 const struct pmap_ops PMAPNAME(ops) = {
251 .pmapop_pte_spill = pmap_pte_spill,
252 .pmapop_real_memory = pmap_real_memory,
253 .pmapop_init = pmap_init,
254 .pmapop_virtual_space = pmap_virtual_space,
255 .pmapop_create = pmap_create,
256 .pmapop_reference = pmap_reference,
257 .pmapop_destroy = pmap_destroy,
258 .pmapop_copy = pmap_copy,
259 .pmapop_update = pmap_update,
260 .pmapop_enter = pmap_enter,
261 .pmapop_remove = pmap_remove,
262 .pmapop_kenter_pa = pmap_kenter_pa,
263 .pmapop_kremove = pmap_kremove,
264 .pmapop_extract = pmap_extract,
265 .pmapop_protect = pmap_protect,
266 .pmapop_unwire = pmap_unwire,
267 .pmapop_page_protect = pmap_page_protect,
268 .pmapop_query_bit = pmap_query_bit,
269 .pmapop_clear_bit = pmap_clear_bit,
270 .pmapop_activate = pmap_activate,
271 .pmapop_deactivate = pmap_deactivate,
272 .pmapop_pinit = pmap_pinit,
273 .pmapop_procwr = pmap_procwr,
274 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
275 .pmapop_pte_print = pmap_pte_print,
276 .pmapop_pteg_check = pmap_pteg_check,
277 .pmapop_print_mmuregs = pmap_print_mmuregs,
278 .pmapop_print_pte = pmap_print_pte,
279 .pmapop_pteg_dist = pmap_pteg_dist,
280 #else
281 .pmapop_pte_print = NULL,
282 .pmapop_pteg_check = NULL,
283 .pmapop_print_mmuregs = NULL,
284 .pmapop_print_pte = NULL,
285 .pmapop_pteg_dist = NULL,
286 #endif
287 #if defined(DEBUG) || defined(PMAPCHECK)
288 .pmapop_pvo_verify = pmap_pvo_verify,
289 #else
290 .pmapop_pvo_verify = NULL,
291 #endif
292 .pmapop_steal_memory = pmap_steal_memory,
293 .pmapop_bootstrap = pmap_bootstrap,
294 };
295 #endif /* !PMAPNAME */
296
297 /*
298 * The following structure is aligned to 32 bytes
299 */
300 struct pvo_entry {
301 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
302 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
303 struct pte pvo_pte; /* Prebuilt PTE */
304 pmap_t pvo_pmap; /* ptr to owning pmap */
305 vaddr_t pvo_vaddr; /* VA of entry */
306 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
307 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
308 #define PVO_WIRED 0x0010 /* PVO entry is wired */
309 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
310 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
311 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
312 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
313 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
314 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
315 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
316 #define PVO_SPILL_SET 2 /* PVO has been spilled */
317 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
318 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
319 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
320 #define PVO_REMOVE 6 /* PVO has been removed */
321 #define PVO_WHERE_MASK 15
322 #define PVO_WHERE_SHFT 8
323 } __attribute__ ((aligned (32)));
324 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
325 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
326 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
327 #define PVO_PTEGIDX_CLR(pvo) \
328 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
329 #define PVO_PTEGIDX_SET(pvo,i) \
330 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
331 #define PVO_WHERE(pvo,w) \
332 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
333 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
334
335 TAILQ_HEAD(pvo_tqhead, pvo_entry);
336 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
337 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
338 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
339
340 struct pool pmap_pool; /* pool for pmap structures */
341 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
342 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
343
344 /*
345 * We keep a cache of unmanaged pages to be used for pvo entries for
346 * unmanaged pages.
347 */
348 struct pvo_page {
349 SIMPLEQ_ENTRY(pvo_page) pvop_link;
350 };
351 SIMPLEQ_HEAD(pvop_head, pvo_page);
352 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
353 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
354 u_long pmap_upvop_free;
355 u_long pmap_upvop_maxfree;
356 u_long pmap_mpvop_free;
357 u_long pmap_mpvop_maxfree;
358
359 static void *pmap_pool_ualloc(struct pool *, int);
360 static void *pmap_pool_malloc(struct pool *, int);
361
362 static void pmap_pool_ufree(struct pool *, void *);
363 static void pmap_pool_mfree(struct pool *, void *);
364
365 static struct pool_allocator pmap_pool_mallocator = {
366 .pa_alloc = pmap_pool_malloc,
367 .pa_free = pmap_pool_mfree,
368 .pa_pagesz = 0,
369 };
370
371 static struct pool_allocator pmap_pool_uallocator = {
372 .pa_alloc = pmap_pool_ualloc,
373 .pa_free = pmap_pool_ufree,
374 .pa_pagesz = 0,
375 };
376
377 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
378 void pmap_pte_print(volatile struct pte *);
379 void pmap_pteg_check(void);
380 void pmap_pteg_dist(void);
381 void pmap_print_pte(pmap_t, vaddr_t);
382 void pmap_print_mmuregs(void);
383 #endif
384
385 #if defined(DEBUG) || defined(PMAPCHECK)
386 #ifdef PMAPCHECK
387 int pmapcheck = 1;
388 #else
389 int pmapcheck = 0;
390 #endif
391 void pmap_pvo_verify(void);
392 static void pmap_pvo_check(const struct pvo_entry *);
393 #define PMAP_PVO_CHECK(pvo) \
394 do { \
395 if (pmapcheck) \
396 pmap_pvo_check(pvo); \
397 } while (0)
398 #else
399 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
400 #endif
401 static int pmap_pte_insert(int, struct pte *);
402 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
403 vaddr_t, paddr_t, register_t, int);
404 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
405 static void pmap_pvo_free(struct pvo_entry *);
406 static void pmap_pvo_free_list(struct pvo_head *);
407 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
408 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
409 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
410 static void pvo_set_exec(struct pvo_entry *);
411 static void pvo_clear_exec(struct pvo_entry *);
412
413 static void tlbia(void);
414
415 static void pmap_release(pmap_t);
416 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
417
418 static uint32_t pmap_pvo_reclaim_nextidx;
419 #ifdef DEBUG
420 static int pmap_pvo_reclaim_debugctr;
421 #endif
422
423 #define VSID_NBPW (sizeof(uint32_t) * 8)
424 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
425
426 static int pmap_initialized;
427
428 #if defined(DEBUG) || defined(PMAPDEBUG)
429 #define PMAPDEBUG_BOOT 0x0001
430 #define PMAPDEBUG_PTE 0x0002
431 #define PMAPDEBUG_EXEC 0x0008
432 #define PMAPDEBUG_PVOENTER 0x0010
433 #define PMAPDEBUG_PVOREMOVE 0x0020
434 #define PMAPDEBUG_ACTIVATE 0x0100
435 #define PMAPDEBUG_CREATE 0x0200
436 #define PMAPDEBUG_ENTER 0x1000
437 #define PMAPDEBUG_KENTER 0x2000
438 #define PMAPDEBUG_KREMOVE 0x4000
439 #define PMAPDEBUG_REMOVE 0x8000
440
441 unsigned int pmapdebug = 0;
442
443 # define DPRINTF(x) printf x
444 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
445 #else
446 # define DPRINTF(x)
447 # define DPRINTFN(n, x)
448 #endif
449
450
451 #ifdef PMAPCOUNTERS
452 /*
453 * From pmap_subr.c
454 */
455 extern struct evcnt pmap_evcnt_mappings;
456 extern struct evcnt pmap_evcnt_unmappings;
457
458 extern struct evcnt pmap_evcnt_kernel_mappings;
459 extern struct evcnt pmap_evcnt_kernel_unmappings;
460
461 extern struct evcnt pmap_evcnt_mappings_replaced;
462
463 extern struct evcnt pmap_evcnt_exec_mappings;
464 extern struct evcnt pmap_evcnt_exec_cached;
465
466 extern struct evcnt pmap_evcnt_exec_synced;
467 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
468 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
469
470 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
471 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
472 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
473 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
474 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
475
476 extern struct evcnt pmap_evcnt_updates;
477 extern struct evcnt pmap_evcnt_collects;
478 extern struct evcnt pmap_evcnt_copies;
479
480 extern struct evcnt pmap_evcnt_ptes_spilled;
481 extern struct evcnt pmap_evcnt_ptes_unspilled;
482 extern struct evcnt pmap_evcnt_ptes_evicted;
483
484 extern struct evcnt pmap_evcnt_ptes_primary[8];
485 extern struct evcnt pmap_evcnt_ptes_secondary[8];
486 extern struct evcnt pmap_evcnt_ptes_removed;
487 extern struct evcnt pmap_evcnt_ptes_changed;
488 extern struct evcnt pmap_evcnt_pvos_reclaimed;
489 extern struct evcnt pmap_evcnt_pvos_failed;
490
491 extern struct evcnt pmap_evcnt_zeroed_pages;
492 extern struct evcnt pmap_evcnt_copied_pages;
493 extern struct evcnt pmap_evcnt_idlezeroed_pages;
494
495 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
496 #define PMAPCOUNT2(ev) ((ev).ev_count++)
497 #else
498 #define PMAPCOUNT(ev) ((void) 0)
499 #define PMAPCOUNT2(ev) ((void) 0)
500 #endif
501
502 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
503
504 /* XXXSL: this needs to be moved to assembler */
505 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
506
507 #define TLBSYNC() __asm volatile("tlbsync")
508 #define SYNC() __asm volatile("sync")
509 #define EIEIO() __asm volatile("eieio")
510 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
511 #define MFMSR() mfmsr()
512 #define MTMSR(psl) mtmsr(psl)
513 #define MFPVR() mfpvr()
514 #define MFSRIN(va) mfsrin(va)
515 #define MFTB() mfrtcltbl()
516
517 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
518 static inline register_t
519 mfsrin(vaddr_t va)
520 {
521 register_t sr;
522 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
523 return sr;
524 }
525 #endif /* PMAP_OEA*/
526
527 #if defined (PMAP_OEA64_BRIDGE)
528 extern void mfmsr64 (register64_t *result);
529 #endif /* PMAP_OEA64_BRIDGE */
530
531 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
532 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
533
534 static inline register_t
535 pmap_interrupts_off(void)
536 {
537 register_t msr = MFMSR();
538 if (msr & PSL_EE)
539 MTMSR(msr & ~PSL_EE);
540 return msr;
541 }
542
543 static void
544 pmap_interrupts_restore(register_t msr)
545 {
546 if (msr & PSL_EE)
547 MTMSR(msr);
548 }
549
550 static inline u_int32_t
551 mfrtcltbl(void)
552 {
553 #ifdef PPC_OEA601
554 if ((MFPVR() >> 16) == MPC601)
555 return (mfrtcl() >> 7);
556 else
557 #endif
558 return (mftbl());
559 }
560
561 /*
562 * These small routines may have to be replaced,
563 * if/when we support processors other that the 604.
564 */
565
566 void
567 tlbia(void)
568 {
569 char *i;
570
571 SYNC();
572 #if defined(PMAP_OEA)
573 /*
574 * Why not use "tlbia"? Because not all processors implement it.
575 *
576 * This needs to be a per-CPU callback to do the appropriate thing
577 * for the CPU. XXX
578 */
579 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
580 TLBIE(i);
581 EIEIO();
582 SYNC();
583 }
584 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
585 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
586 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
587 TLBIEL(i);
588 EIEIO();
589 SYNC();
590 }
591 #endif
592 TLBSYNC();
593 SYNC();
594 }
595
596 static inline register_t
597 va_to_vsid(const struct pmap *pm, vaddr_t addr)
598 {
599 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
600 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
601 #else /* PMAP_OEA64 */
602 #if 0
603 const struct ste *ste;
604 register_t hash;
605 int i;
606
607 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
608
609 /*
610 * Try the primary group first
611 */
612 ste = pm->pm_stes[hash].stes;
613 for (i = 0; i < 8; i++, ste++) {
614 if (ste->ste_hi & STE_V) &&
615 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
616 return ste;
617 }
618
619 /*
620 * Then the secondary group.
621 */
622 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
623 for (i = 0; i < 8; i++, ste++) {
624 if (ste->ste_hi & STE_V) &&
625 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
626 return addr;
627 }
628
629 return NULL;
630 #else
631 /*
632 * Rather than searching the STE groups for the VSID, we know
633 * how we generate that from the ESID and so do that.
634 */
635 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
636 #endif
637 #endif /* PMAP_OEA */
638 }
639
640 static inline register_t
641 va_to_pteg(const struct pmap *pm, vaddr_t addr)
642 {
643 register_t hash;
644
645 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
646 return hash & pmap_pteg_mask;
647 }
648
649 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
650 /*
651 * Given a PTE in the page table, calculate the VADDR that hashes to it.
652 * The only bit of magic is that the top 4 bits of the address doesn't
653 * technically exist in the PTE. But we know we reserved 4 bits of the
654 * VSID for it so that's how we get it.
655 */
656 static vaddr_t
657 pmap_pte_to_va(volatile const struct pte *pt)
658 {
659 vaddr_t va;
660 uintptr_t ptaddr = (uintptr_t) pt;
661
662 if (pt->pte_hi & PTE_HID)
663 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
664
665 /* PPC Bits 10-19 PPC64 Bits 42-51 */
666 #if defined(PMAP_OEA)
667 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
668 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
669 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
670 #endif
671 va <<= ADDR_PIDX_SHFT;
672
673 /* PPC Bits 4-9 PPC64 Bits 36-41 */
674 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
675
676 #if defined(PMAP_OEA64)
677 /* PPC63 Bits 0-35 */
678 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
679 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
680 /* PPC Bits 0-3 */
681 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
682 #endif
683
684 return va;
685 }
686 #endif
687
688 static inline struct pvo_head *
689 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
690 {
691 struct vm_page *pg;
692 struct vm_page_md *md;
693
694 pg = PHYS_TO_VM_PAGE(pa);
695 if (pg_p != NULL)
696 *pg_p = pg;
697 if (pg == NULL)
698 return &pmap_pvo_unmanaged;
699 md = VM_PAGE_TO_MD(pg);
700 return &md->mdpg_pvoh;
701 }
702
703 static inline struct pvo_head *
704 vm_page_to_pvoh(struct vm_page *pg)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 return &md->mdpg_pvoh;
709 }
710
711
712 static inline void
713 pmap_attr_clear(struct vm_page *pg, int ptebit)
714 {
715 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
716
717 md->mdpg_attrs &= ~ptebit;
718 }
719
720 static inline int
721 pmap_attr_fetch(struct vm_page *pg)
722 {
723 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
724
725 return md->mdpg_attrs;
726 }
727
728 static inline void
729 pmap_attr_save(struct vm_page *pg, int ptebit)
730 {
731 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
732
733 md->mdpg_attrs |= ptebit;
734 }
735
736 static inline int
737 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
738 {
739 if (pt->pte_hi == pvo_pt->pte_hi
740 #if 0
741 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
742 ~(PTE_REF|PTE_CHG)) == 0
743 #endif
744 )
745 return 1;
746 return 0;
747 }
748
749 static inline void
750 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
751 {
752 /*
753 * Construct the PTE. Default to IMB initially. Valid bit
754 * only gets set when the real pte is set in memory.
755 *
756 * Note: Don't set the valid bit for correct operation of tlb update.
757 */
758 #if defined(PMAP_OEA)
759 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
760 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
761 pt->pte_lo = pte_lo;
762 #elif defined (PMAP_OEA64_BRIDGE)
763 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
764 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
765 pt->pte_lo = (u_int64_t) pte_lo;
766 #elif defined (PMAP_OEA64)
767 #error PMAP_OEA64 not supported
768 #endif /* PMAP_OEA */
769 }
770
771 static inline void
772 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
773 {
774 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
775 }
776
777 static inline void
778 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
779 {
780 /*
781 * As shown in Section 7.6.3.2.3
782 */
783 pt->pte_lo &= ~ptebit;
784 TLBIE(va);
785 SYNC();
786 EIEIO();
787 TLBSYNC();
788 SYNC();
789 #ifdef MULTIPROCESSOR
790 DCBST(pt);
791 #endif
792 }
793
794 static inline void
795 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
796 {
797 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
798 if (pvo_pt->pte_hi & PTE_VALID)
799 panic("pte_set: setting an already valid pte %p", pvo_pt);
800 #endif
801 pvo_pt->pte_hi |= PTE_VALID;
802
803 /*
804 * Update the PTE as defined in section 7.6.3.1
805 * Note that the REF/CHG bits are from pvo_pt and thus should
806 * have been saved so this routine can restore them (if desired).
807 */
808 pt->pte_lo = pvo_pt->pte_lo;
809 EIEIO();
810 pt->pte_hi = pvo_pt->pte_hi;
811 TLBSYNC();
812 SYNC();
813 #ifdef MULTIPROCESSOR
814 DCBST(pt);
815 #endif
816 pmap_pte_valid++;
817 }
818
819 static inline void
820 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
821 {
822 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
823 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
824 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
825 if ((pt->pte_hi & PTE_VALID) == 0)
826 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
827 #endif
828
829 pvo_pt->pte_hi &= ~PTE_VALID;
830 /*
831 * Force the ref & chg bits back into the PTEs.
832 */
833 SYNC();
834 /*
835 * Invalidate the pte ... (Section 7.6.3.3)
836 */
837 pt->pte_hi &= ~PTE_VALID;
838 SYNC();
839 TLBIE(va);
840 SYNC();
841 EIEIO();
842 TLBSYNC();
843 SYNC();
844 /*
845 * Save the ref & chg bits ...
846 */
847 pmap_pte_synch(pt, pvo_pt);
848 pmap_pte_valid--;
849 }
850
851 static inline void
852 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
853 {
854 /*
855 * Invalidate the PTE
856 */
857 pmap_pte_unset(pt, pvo_pt, va);
858 pmap_pte_set(pt, pvo_pt);
859 }
860
861 /*
862 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
863 * (either primary or secondary location).
864 *
865 * Note: both the destination and source PTEs must not have PTE_VALID set.
866 */
867
868 static int
869 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
870 {
871 volatile struct pte *pt;
872 int i;
873
874 #if defined(DEBUG)
875 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
876 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
877 #endif
878 /*
879 * First try primary hash.
880 */
881 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
882 if ((pt->pte_hi & PTE_VALID) == 0) {
883 pvo_pt->pte_hi &= ~PTE_HID;
884 pmap_pte_set(pt, pvo_pt);
885 return i;
886 }
887 }
888
889 /*
890 * Now try secondary hash.
891 */
892 ptegidx ^= pmap_pteg_mask;
893 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
894 if ((pt->pte_hi & PTE_VALID) == 0) {
895 pvo_pt->pte_hi |= PTE_HID;
896 pmap_pte_set(pt, pvo_pt);
897 return i;
898 }
899 }
900 return -1;
901 }
902
903 /*
904 * Spill handler.
905 *
906 * Tries to spill a page table entry from the overflow area.
907 * This runs in either real mode (if dealing with a exception spill)
908 * or virtual mode when dealing with manually spilling one of the
909 * kernel's pte entries. In either case, interrupts are already
910 * disabled.
911 */
912
913 int
914 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
915 {
916 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
917 struct pvo_entry *pvo;
918 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
919 struct pvo_tqhead *pvoh, *vpvoh = NULL;
920 int ptegidx, i, j;
921 volatile struct pteg *pteg;
922 volatile struct pte *pt;
923
924 PMAP_LOCK();
925
926 ptegidx = va_to_pteg(pm, addr);
927
928 /*
929 * Have to substitute some entry. Use the primary hash for this.
930 * Use low bits of timebase as random generator. Make sure we are
931 * not picking a kernel pte for replacement.
932 */
933 pteg = &pmap_pteg_table[ptegidx];
934 i = MFTB() & 7;
935 for (j = 0; j < 8; j++) {
936 pt = &pteg->pt[i];
937 if ((pt->pte_hi & PTE_VALID) == 0)
938 break;
939 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
940 < PHYSMAP_VSIDBITS)
941 break;
942 i = (i + 1) & 7;
943 }
944 KASSERT(j < 8);
945
946 source_pvo = NULL;
947 victim_pvo = NULL;
948 pvoh = &pmap_pvo_table[ptegidx];
949 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
950
951 /*
952 * We need to find pvo entry for this address...
953 */
954 PMAP_PVO_CHECK(pvo); /* sanity check */
955
956 /*
957 * If we haven't found the source and we come to a PVO with
958 * a valid PTE, then we know we can't find it because all
959 * evicted PVOs always are first in the list.
960 */
961 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
962 break;
963 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
964 addr == PVO_VADDR(pvo)) {
965
966 /*
967 * Now we have found the entry to be spilled into the
968 * pteg. Attempt to insert it into the page table.
969 */
970 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
971 if (j >= 0) {
972 PVO_PTEGIDX_SET(pvo, j);
973 PMAP_PVO_CHECK(pvo); /* sanity check */
974 PVO_WHERE(pvo, SPILL_INSERT);
975 pvo->pvo_pmap->pm_evictions--;
976 PMAPCOUNT(ptes_spilled);
977 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
978 ? pmap_evcnt_ptes_secondary
979 : pmap_evcnt_ptes_primary)[j]);
980
981 /*
982 * Since we keep the evicted entries at the
983 * from of the PVO list, we need move this
984 * (now resident) PVO after the evicted
985 * entries.
986 */
987 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
988
989 /*
990 * If we don't have to move (either we were the
991 * last entry or the next entry was valid),
992 * don't change our position. Otherwise
993 * move ourselves to the tail of the queue.
994 */
995 if (next_pvo != NULL &&
996 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
997 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
998 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
999 }
1000 PMAP_UNLOCK();
1001 return 1;
1002 }
1003 source_pvo = pvo;
1004 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1005 return 0;
1006 }
1007 if (victim_pvo != NULL)
1008 break;
1009 }
1010
1011 /*
1012 * We also need the pvo entry of the victim we are replacing
1013 * so save the R & C bits of the PTE.
1014 */
1015 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1016 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1017 vpvoh = pvoh; /* *1* */
1018 victim_pvo = pvo;
1019 if (source_pvo != NULL)
1020 break;
1021 }
1022 }
1023
1024 if (source_pvo == NULL) {
1025 PMAPCOUNT(ptes_unspilled);
1026 PMAP_UNLOCK();
1027 return 0;
1028 }
1029
1030 if (victim_pvo == NULL) {
1031 if ((pt->pte_hi & PTE_HID) == 0)
1032 panic("pmap_pte_spill: victim p-pte (%p) has "
1033 "no pvo entry!", pt);
1034
1035 /*
1036 * If this is a secondary PTE, we need to search
1037 * its primary pvo bucket for the matching PVO.
1038 */
1039 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1040 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1041 PMAP_PVO_CHECK(pvo); /* sanity check */
1042
1043 /*
1044 * We also need the pvo entry of the victim we are
1045 * replacing so save the R & C bits of the PTE.
1046 */
1047 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1048 victim_pvo = pvo;
1049 break;
1050 }
1051 }
1052 if (victim_pvo == NULL)
1053 panic("pmap_pte_spill: victim s-pte (%p) has "
1054 "no pvo entry!", pt);
1055 }
1056
1057 /*
1058 * The victim should be not be a kernel PVO/PTE entry.
1059 */
1060 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1061 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1062 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1063
1064 /*
1065 * We are invalidating the TLB entry for the EA for the
1066 * we are replacing even though its valid; If we don't
1067 * we lose any ref/chg bit changes contained in the TLB
1068 * entry.
1069 */
1070 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1071
1072 /*
1073 * To enforce the PVO list ordering constraint that all
1074 * evicted entries should come before all valid entries,
1075 * move the source PVO to the tail of its list and the
1076 * victim PVO to the head of its list (which might not be
1077 * the same list, if the victim was using the secondary hash).
1078 */
1079 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1080 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1081 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1082 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1083 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1084 pmap_pte_set(pt, &source_pvo->pvo_pte);
1085 victim_pvo->pvo_pmap->pm_evictions++;
1086 source_pvo->pvo_pmap->pm_evictions--;
1087 PVO_WHERE(victim_pvo, SPILL_UNSET);
1088 PVO_WHERE(source_pvo, SPILL_SET);
1089
1090 PVO_PTEGIDX_CLR(victim_pvo);
1091 PVO_PTEGIDX_SET(source_pvo, i);
1092 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1093 PMAPCOUNT(ptes_spilled);
1094 PMAPCOUNT(ptes_evicted);
1095 PMAPCOUNT(ptes_removed);
1096
1097 PMAP_PVO_CHECK(victim_pvo);
1098 PMAP_PVO_CHECK(source_pvo);
1099
1100 PMAP_UNLOCK();
1101 return 1;
1102 }
1103
1104 /*
1105 * Restrict given range to physical memory
1106 */
1107 void
1108 pmap_real_memory(paddr_t *start, psize_t *size)
1109 {
1110 struct mem_region *mp;
1111
1112 for (mp = mem; mp->size; mp++) {
1113 if (*start + *size > mp->start
1114 && *start < mp->start + mp->size) {
1115 if (*start < mp->start) {
1116 *size -= mp->start - *start;
1117 *start = mp->start;
1118 }
1119 if (*start + *size > mp->start + mp->size)
1120 *size = mp->start + mp->size - *start;
1121 return;
1122 }
1123 }
1124 *size = 0;
1125 }
1126
1127 /*
1128 * Initialize anything else for pmap handling.
1129 * Called during vm_init().
1130 */
1131 void
1132 pmap_init(void)
1133 {
1134 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1135 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1136 &pmap_pool_mallocator, IPL_NONE);
1137
1138 pool_setlowat(&pmap_mpvo_pool, 1008);
1139
1140 pmap_initialized = 1;
1141
1142 }
1143
1144 /*
1145 * How much virtual space does the kernel get?
1146 */
1147 void
1148 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1149 {
1150 /*
1151 * For now, reserve one segment (minus some overhead) for kernel
1152 * virtual memory
1153 */
1154 *start = VM_MIN_KERNEL_ADDRESS;
1155 *end = VM_MAX_KERNEL_ADDRESS;
1156 }
1157
1158 /*
1159 * Allocate, initialize, and return a new physical map.
1160 */
1161 pmap_t
1162 pmap_create(void)
1163 {
1164 pmap_t pm;
1165
1166 pm = pool_get(&pmap_pool, PR_WAITOK);
1167 memset((void *)pm, 0, sizeof *pm);
1168 pmap_pinit(pm);
1169
1170 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1171 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1172 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1173 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1174 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1175 pm,
1176 pm->pm_sr[0], pm->pm_sr[1],
1177 pm->pm_sr[2], pm->pm_sr[3],
1178 pm->pm_sr[4], pm->pm_sr[5],
1179 pm->pm_sr[6], pm->pm_sr[7],
1180 pm->pm_sr[8], pm->pm_sr[9],
1181 pm->pm_sr[10], pm->pm_sr[11],
1182 pm->pm_sr[12], pm->pm_sr[13],
1183 pm->pm_sr[14], pm->pm_sr[15]));
1184 return pm;
1185 }
1186
1187 /*
1188 * Initialize a preallocated and zeroed pmap structure.
1189 */
1190 void
1191 pmap_pinit(pmap_t pm)
1192 {
1193 register_t entropy = MFTB();
1194 register_t mask;
1195 int i;
1196
1197 /*
1198 * Allocate some segment registers for this pmap.
1199 */
1200 pm->pm_refs = 1;
1201 PMAP_LOCK();
1202 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1203 static register_t pmap_vsidcontext;
1204 register_t hash;
1205 unsigned int n;
1206
1207 /* Create a new value by multiplying by a prime adding in
1208 * entropy from the timebase register. This is to make the
1209 * VSID more random so that the PT Hash function collides
1210 * less often. (note that the prime causes gcc to do shifts
1211 * instead of a multiply)
1212 */
1213 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1214 hash = pmap_vsidcontext & (NPMAPS - 1);
1215 if (hash == 0) { /* 0 is special, avoid it */
1216 entropy += 0xbadf00d;
1217 continue;
1218 }
1219 n = hash >> 5;
1220 mask = 1L << (hash & (VSID_NBPW-1));
1221 hash = pmap_vsidcontext;
1222 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1223 /* anything free in this bucket? */
1224 if (~pmap_vsid_bitmap[n] == 0) {
1225 entropy = hash ^ (hash >> 16);
1226 continue;
1227 }
1228 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1229 mask = 1L << i;
1230 hash &= ~(VSID_NBPW-1);
1231 hash |= i;
1232 }
1233 hash &= PTE_VSID >> PTE_VSID_SHFT;
1234 pmap_vsid_bitmap[n] |= mask;
1235 pm->pm_vsid = hash;
1236 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1237 for (i = 0; i < 16; i++)
1238 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1239 SR_NOEXEC;
1240 #endif
1241 PMAP_UNLOCK();
1242 return;
1243 }
1244 PMAP_UNLOCK();
1245 panic("pmap_pinit: out of segments");
1246 }
1247
1248 /*
1249 * Add a reference to the given pmap.
1250 */
1251 void
1252 pmap_reference(pmap_t pm)
1253 {
1254 atomic_inc_uint(&pm->pm_refs);
1255 }
1256
1257 /*
1258 * Retire the given pmap from service.
1259 * Should only be called if the map contains no valid mappings.
1260 */
1261 void
1262 pmap_destroy(pmap_t pm)
1263 {
1264 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1265 pmap_release(pm);
1266 pool_put(&pmap_pool, pm);
1267 }
1268 }
1269
1270 /*
1271 * Release any resources held by the given physical map.
1272 * Called when a pmap initialized by pmap_pinit is being released.
1273 */
1274 void
1275 pmap_release(pmap_t pm)
1276 {
1277 int idx, mask;
1278
1279 KASSERT(pm->pm_stats.resident_count == 0);
1280 KASSERT(pm->pm_stats.wired_count == 0);
1281
1282 PMAP_LOCK();
1283 if (pm->pm_sr[0] == 0)
1284 panic("pmap_release");
1285 idx = pm->pm_vsid & (NPMAPS-1);
1286 mask = 1 << (idx % VSID_NBPW);
1287 idx /= VSID_NBPW;
1288
1289 KASSERT(pmap_vsid_bitmap[idx] & mask);
1290 pmap_vsid_bitmap[idx] &= ~mask;
1291 PMAP_UNLOCK();
1292 }
1293
1294 /*
1295 * Copy the range specified by src_addr/len
1296 * from the source map to the range dst_addr/len
1297 * in the destination map.
1298 *
1299 * This routine is only advisory and need not do anything.
1300 */
1301 void
1302 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1303 vsize_t len, vaddr_t src_addr)
1304 {
1305 PMAPCOUNT(copies);
1306 }
1307
1308 /*
1309 * Require that all active physical maps contain no
1310 * incorrect entries NOW.
1311 */
1312 void
1313 pmap_update(struct pmap *pmap)
1314 {
1315 PMAPCOUNT(updates);
1316 TLBSYNC();
1317 }
1318
1319 static inline int
1320 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1321 {
1322 int pteidx;
1323 /*
1324 * We can find the actual pte entry without searching by
1325 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1326 * and by noticing the HID bit.
1327 */
1328 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1329 if (pvo->pvo_pte.pte_hi & PTE_HID)
1330 pteidx ^= pmap_pteg_mask * 8;
1331 return pteidx;
1332 }
1333
1334 volatile struct pte *
1335 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1336 {
1337 volatile struct pte *pt;
1338
1339 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1340 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1341 return NULL;
1342 #endif
1343
1344 /*
1345 * If we haven't been supplied the ptegidx, calculate it.
1346 */
1347 if (pteidx == -1) {
1348 int ptegidx;
1349 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1350 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1351 }
1352
1353 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1354
1355 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1356 return pt;
1357 #else
1358 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1359 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1360 "pvo but no valid pte index", pvo);
1361 }
1362 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1363 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1364 "pvo but no valid pte", pvo);
1365 }
1366
1367 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1368 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1369 #if defined(DEBUG) || defined(PMAPCHECK)
1370 pmap_pte_print(pt);
1371 #endif
1372 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1373 "pmap_pteg_table %p but invalid in pvo",
1374 pvo, pt);
1375 }
1376 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1377 #if defined(DEBUG) || defined(PMAPCHECK)
1378 pmap_pte_print(pt);
1379 #endif
1380 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1381 "not match pte %p in pmap_pteg_table",
1382 pvo, pt);
1383 }
1384 return pt;
1385 }
1386
1387 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1388 #if defined(DEBUG) || defined(PMAPCHECK)
1389 pmap_pte_print(pt);
1390 #endif
1391 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1392 "pmap_pteg_table but valid in pvo", pvo, pt);
1393 }
1394 return NULL;
1395 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1396 }
1397
1398 struct pvo_entry *
1399 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1400 {
1401 struct pvo_entry *pvo;
1402 int ptegidx;
1403
1404 va &= ~ADDR_POFF;
1405 ptegidx = va_to_pteg(pm, va);
1406
1407 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1408 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1409 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1410 panic("pmap_pvo_find_va: invalid pvo %p on "
1411 "list %#x (%p)", pvo, ptegidx,
1412 &pmap_pvo_table[ptegidx]);
1413 #endif
1414 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1415 if (pteidx_p)
1416 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1417 return pvo;
1418 }
1419 }
1420 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1421 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1422 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1423 return NULL;
1424 }
1425
1426 #if defined(DEBUG) || defined(PMAPCHECK)
1427 void
1428 pmap_pvo_check(const struct pvo_entry *pvo)
1429 {
1430 struct pvo_head *pvo_head;
1431 struct pvo_entry *pvo0;
1432 volatile struct pte *pt;
1433 int failed = 0;
1434
1435 PMAP_LOCK();
1436
1437 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1438 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1439
1440 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1441 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1442 pvo, pvo->pvo_pmap);
1443 failed = 1;
1444 }
1445
1446 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1447 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1448 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1449 pvo, TAILQ_NEXT(pvo, pvo_olink));
1450 failed = 1;
1451 }
1452
1453 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1454 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1455 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1456 pvo, LIST_NEXT(pvo, pvo_vlink));
1457 failed = 1;
1458 }
1459
1460 if (PVO_MANAGED_P(pvo)) {
1461 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1462 } else {
1463 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1464 printf("pmap_pvo_check: pvo %p: non kernel address "
1465 "on kernel unmanaged list\n", pvo);
1466 failed = 1;
1467 }
1468 pvo_head = &pmap_pvo_kunmanaged;
1469 }
1470 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1471 if (pvo0 == pvo)
1472 break;
1473 }
1474 if (pvo0 == NULL) {
1475 printf("pmap_pvo_check: pvo %p: not present "
1476 "on its vlist head %p\n", pvo, pvo_head);
1477 failed = 1;
1478 }
1479 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1480 printf("pmap_pvo_check: pvo %p: not present "
1481 "on its olist head\n", pvo);
1482 failed = 1;
1483 }
1484 pt = pmap_pvo_to_pte(pvo, -1);
1485 if (pt == NULL) {
1486 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1487 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1488 "no PTE\n", pvo);
1489 failed = 1;
1490 }
1491 } else {
1492 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1493 (uintptr_t) pt >=
1494 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1495 printf("pmap_pvo_check: pvo %p: pte %p not in "
1496 "pteg table\n", pvo, pt);
1497 failed = 1;
1498 }
1499 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1500 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1501 "no PTE\n", pvo);
1502 failed = 1;
1503 }
1504 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1505 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1506 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1507 pvo->pvo_pte.pte_hi,
1508 pt->pte_hi);
1509 failed = 1;
1510 }
1511 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1512 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1513 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1514 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1515 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1516 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1517 failed = 1;
1518 }
1519 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1520 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1521 " doesn't not match PVO's VA %#" _PRIxva "\n",
1522 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1523 failed = 1;
1524 }
1525 if (failed)
1526 pmap_pte_print(pt);
1527 }
1528 if (failed)
1529 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1530 pvo->pvo_pmap);
1531
1532 PMAP_UNLOCK();
1533 }
1534 #endif /* DEBUG || PMAPCHECK */
1535
1536 /*
1537 * Search the PVO table looking for a non-wired entry.
1538 * If we find one, remove it and return it.
1539 */
1540
1541 struct pvo_entry *
1542 pmap_pvo_reclaim(struct pmap *pm)
1543 {
1544 struct pvo_tqhead *pvoh;
1545 struct pvo_entry *pvo;
1546 uint32_t idx, endidx;
1547
1548 endidx = pmap_pvo_reclaim_nextidx;
1549 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1550 idx = (idx + 1) & pmap_pteg_mask) {
1551 pvoh = &pmap_pvo_table[idx];
1552 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1553 if (!PVO_WIRED_P(pvo)) {
1554 pmap_pvo_remove(pvo, -1, NULL);
1555 pmap_pvo_reclaim_nextidx = idx;
1556 PMAPCOUNT(pvos_reclaimed);
1557 return pvo;
1558 }
1559 }
1560 }
1561 return NULL;
1562 }
1563
1564 /*
1565 * This returns whether this is the first mapping of a page.
1566 */
1567 int
1568 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1569 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1570 {
1571 struct pvo_entry *pvo;
1572 struct pvo_tqhead *pvoh;
1573 register_t msr;
1574 int ptegidx;
1575 int i;
1576 int poolflags = PR_NOWAIT;
1577
1578 /*
1579 * Compute the PTE Group index.
1580 */
1581 va &= ~ADDR_POFF;
1582 ptegidx = va_to_pteg(pm, va);
1583
1584 msr = pmap_interrupts_off();
1585
1586 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1587 if (pmap_pvo_remove_depth > 0)
1588 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1589 if (++pmap_pvo_enter_depth > 1)
1590 panic("pmap_pvo_enter: called recursively!");
1591 #endif
1592
1593 /*
1594 * Remove any existing mapping for this page. Reuse the
1595 * pvo entry if there a mapping.
1596 */
1597 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1598 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1599 #ifdef DEBUG
1600 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1601 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1602 ~(PTE_REF|PTE_CHG)) == 0 &&
1603 va < VM_MIN_KERNEL_ADDRESS) {
1604 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1605 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1606 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1607 pvo->pvo_pte.pte_hi,
1608 pm->pm_sr[va >> ADDR_SR_SHFT]);
1609 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1610 #ifdef DDBX
1611 Debugger();
1612 #endif
1613 }
1614 #endif
1615 PMAPCOUNT(mappings_replaced);
1616 pmap_pvo_remove(pvo, -1, NULL);
1617 break;
1618 }
1619 }
1620
1621 /*
1622 * If we aren't overwriting an mapping, try to allocate
1623 */
1624 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1625 --pmap_pvo_enter_depth;
1626 #endif
1627 pmap_interrupts_restore(msr);
1628 if (pvo) {
1629 pmap_pvo_free(pvo);
1630 }
1631 pvo = pool_get(pl, poolflags);
1632
1633 #ifdef DEBUG
1634 /*
1635 * Exercise pmap_pvo_reclaim() a little.
1636 */
1637 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1638 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1639 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1640 pool_put(pl, pvo);
1641 pvo = NULL;
1642 }
1643 #endif
1644
1645 msr = pmap_interrupts_off();
1646 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1647 ++pmap_pvo_enter_depth;
1648 #endif
1649 if (pvo == NULL) {
1650 pvo = pmap_pvo_reclaim(pm);
1651 if (pvo == NULL) {
1652 if ((flags & PMAP_CANFAIL) == 0)
1653 panic("pmap_pvo_enter: failed");
1654 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1655 pmap_pvo_enter_depth--;
1656 #endif
1657 PMAPCOUNT(pvos_failed);
1658 pmap_interrupts_restore(msr);
1659 return ENOMEM;
1660 }
1661 }
1662
1663 pvo->pvo_vaddr = va;
1664 pvo->pvo_pmap = pm;
1665 pvo->pvo_vaddr &= ~ADDR_POFF;
1666 if (flags & VM_PROT_EXECUTE) {
1667 PMAPCOUNT(exec_mappings);
1668 pvo_set_exec(pvo);
1669 }
1670 if (flags & PMAP_WIRED)
1671 pvo->pvo_vaddr |= PVO_WIRED;
1672 if (pvo_head != &pmap_pvo_kunmanaged) {
1673 pvo->pvo_vaddr |= PVO_MANAGED;
1674 PMAPCOUNT(mappings);
1675 } else {
1676 PMAPCOUNT(kernel_mappings);
1677 }
1678 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1679
1680 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1681 if (PVO_WIRED_P(pvo))
1682 pvo->pvo_pmap->pm_stats.wired_count++;
1683 pvo->pvo_pmap->pm_stats.resident_count++;
1684 #if defined(DEBUG)
1685 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1686 DPRINTFN(PVOENTER,
1687 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1688 pvo, pm, va, pa));
1689 #endif
1690
1691 /*
1692 * We hope this succeeds but it isn't required.
1693 */
1694 pvoh = &pmap_pvo_table[ptegidx];
1695 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1696 if (i >= 0) {
1697 PVO_PTEGIDX_SET(pvo, i);
1698 PVO_WHERE(pvo, ENTER_INSERT);
1699 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1700 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1701 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1702
1703 } else {
1704 /*
1705 * Since we didn't have room for this entry (which makes it
1706 * and evicted entry), place it at the head of the list.
1707 */
1708 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1709 PMAPCOUNT(ptes_evicted);
1710 pm->pm_evictions++;
1711 /*
1712 * If this is a kernel page, make sure it's active.
1713 */
1714 if (pm == pmap_kernel()) {
1715 i = pmap_pte_spill(pm, va, false);
1716 KASSERT(i);
1717 }
1718 }
1719 PMAP_PVO_CHECK(pvo); /* sanity check */
1720 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1721 pmap_pvo_enter_depth--;
1722 #endif
1723 pmap_interrupts_restore(msr);
1724 return 0;
1725 }
1726
1727 static void
1728 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1729 {
1730 volatile struct pte *pt;
1731 int ptegidx;
1732
1733 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1734 if (++pmap_pvo_remove_depth > 1)
1735 panic("pmap_pvo_remove: called recursively!");
1736 #endif
1737
1738 /*
1739 * If we haven't been supplied the ptegidx, calculate it.
1740 */
1741 if (pteidx == -1) {
1742 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1743 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1744 } else {
1745 ptegidx = pteidx >> 3;
1746 if (pvo->pvo_pte.pte_hi & PTE_HID)
1747 ptegidx ^= pmap_pteg_mask;
1748 }
1749 PMAP_PVO_CHECK(pvo); /* sanity check */
1750
1751 /*
1752 * If there is an active pte entry, we need to deactivate it
1753 * (and save the ref & chg bits).
1754 */
1755 pt = pmap_pvo_to_pte(pvo, pteidx);
1756 if (pt != NULL) {
1757 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1758 PVO_WHERE(pvo, REMOVE);
1759 PVO_PTEGIDX_CLR(pvo);
1760 PMAPCOUNT(ptes_removed);
1761 } else {
1762 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1763 pvo->pvo_pmap->pm_evictions--;
1764 }
1765
1766 /*
1767 * Account for executable mappings.
1768 */
1769 if (PVO_EXECUTABLE_P(pvo))
1770 pvo_clear_exec(pvo);
1771
1772 /*
1773 * Update our statistics.
1774 */
1775 pvo->pvo_pmap->pm_stats.resident_count--;
1776 if (PVO_WIRED_P(pvo))
1777 pvo->pvo_pmap->pm_stats.wired_count--;
1778
1779 /*
1780 * Save the REF/CHG bits into their cache if the page is managed.
1781 */
1782 if (PVO_MANAGED_P(pvo)) {
1783 register_t ptelo = pvo->pvo_pte.pte_lo;
1784 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1785
1786 if (pg != NULL) {
1787 /*
1788 * If this page was changed and it is mapped exec,
1789 * invalidate it.
1790 */
1791 if ((ptelo & PTE_CHG) &&
1792 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1793 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1794 if (LIST_EMPTY(pvoh)) {
1795 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1796 "%#" _PRIxpa ": clear-exec]\n",
1797 VM_PAGE_TO_PHYS(pg)));
1798 pmap_attr_clear(pg, PTE_EXEC);
1799 PMAPCOUNT(exec_uncached_pvo_remove);
1800 } else {
1801 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1802 "%#" _PRIxpa ": syncicache]\n",
1803 VM_PAGE_TO_PHYS(pg)));
1804 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1805 PAGE_SIZE);
1806 PMAPCOUNT(exec_synced_pvo_remove);
1807 }
1808 }
1809
1810 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1811 }
1812 PMAPCOUNT(unmappings);
1813 } else {
1814 PMAPCOUNT(kernel_unmappings);
1815 }
1816
1817 /*
1818 * Remove the PVO from its lists and return it to the pool.
1819 */
1820 LIST_REMOVE(pvo, pvo_vlink);
1821 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1822 if (pvol) {
1823 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1824 }
1825 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1826 pmap_pvo_remove_depth--;
1827 #endif
1828 }
1829
1830 void
1831 pmap_pvo_free(struct pvo_entry *pvo)
1832 {
1833
1834 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1835 }
1836
1837 void
1838 pmap_pvo_free_list(struct pvo_head *pvol)
1839 {
1840 struct pvo_entry *pvo, *npvo;
1841
1842 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1843 npvo = LIST_NEXT(pvo, pvo_vlink);
1844 LIST_REMOVE(pvo, pvo_vlink);
1845 pmap_pvo_free(pvo);
1846 }
1847 }
1848
1849 /*
1850 * Mark a mapping as executable.
1851 * If this is the first executable mapping in the segment,
1852 * clear the noexec flag.
1853 */
1854 static void
1855 pvo_set_exec(struct pvo_entry *pvo)
1856 {
1857 struct pmap *pm = pvo->pvo_pmap;
1858
1859 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1860 return;
1861 }
1862 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1863 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1864 {
1865 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1866 if (pm->pm_exec[sr]++ == 0) {
1867 pm->pm_sr[sr] &= ~SR_NOEXEC;
1868 }
1869 }
1870 #endif
1871 }
1872
1873 /*
1874 * Mark a mapping as non-executable.
1875 * If this was the last executable mapping in the segment,
1876 * set the noexec flag.
1877 */
1878 static void
1879 pvo_clear_exec(struct pvo_entry *pvo)
1880 {
1881 struct pmap *pm = pvo->pvo_pmap;
1882
1883 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1884 return;
1885 }
1886 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1887 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1888 {
1889 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1890 if (--pm->pm_exec[sr] == 0) {
1891 pm->pm_sr[sr] |= SR_NOEXEC;
1892 }
1893 }
1894 #endif
1895 }
1896
1897 /*
1898 * Insert physical page at pa into the given pmap at virtual address va.
1899 */
1900 int
1901 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1902 {
1903 struct mem_region *mp;
1904 struct pvo_head *pvo_head;
1905 struct vm_page *pg;
1906 struct pool *pl;
1907 register_t pte_lo;
1908 int error;
1909 u_int pvo_flags;
1910 u_int was_exec = 0;
1911
1912 PMAP_LOCK();
1913
1914 if (__predict_false(!pmap_initialized)) {
1915 pvo_head = &pmap_pvo_kunmanaged;
1916 pl = &pmap_upvo_pool;
1917 pvo_flags = 0;
1918 pg = NULL;
1919 was_exec = PTE_EXEC;
1920 } else {
1921 pvo_head = pa_to_pvoh(pa, &pg);
1922 pl = &pmap_mpvo_pool;
1923 pvo_flags = PVO_MANAGED;
1924 }
1925
1926 DPRINTFN(ENTER,
1927 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1928 pm, va, pa, prot, flags));
1929
1930 /*
1931 * If this is a managed page, and it's the first reference to the
1932 * page clear the execness of the page. Otherwise fetch the execness.
1933 */
1934 if (pg != NULL)
1935 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1936
1937 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1938
1939 /*
1940 * Assume the page is cache inhibited and access is guarded unless
1941 * it's in our available memory array. If it is in the memory array,
1942 * asssume it's in memory coherent memory.
1943 */
1944 pte_lo = PTE_IG;
1945 if ((flags & PMAP_NC) == 0) {
1946 for (mp = mem; mp->size; mp++) {
1947 if (pa >= mp->start && pa < mp->start + mp->size) {
1948 pte_lo = PTE_M;
1949 break;
1950 }
1951 }
1952 }
1953
1954 if (prot & VM_PROT_WRITE)
1955 pte_lo |= PTE_BW;
1956 else
1957 pte_lo |= PTE_BR;
1958
1959 /*
1960 * If this was in response to a fault, "pre-fault" the PTE's
1961 * changed/referenced bit appropriately.
1962 */
1963 if (flags & VM_PROT_WRITE)
1964 pte_lo |= PTE_CHG;
1965 if (flags & VM_PROT_ALL)
1966 pte_lo |= PTE_REF;
1967
1968 /*
1969 * We need to know if this page can be executable
1970 */
1971 flags |= (prot & VM_PROT_EXECUTE);
1972
1973 /*
1974 * Record mapping for later back-translation and pte spilling.
1975 * This will overwrite any existing mapping.
1976 */
1977 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1978
1979 /*
1980 * Flush the real page from the instruction cache if this page is
1981 * mapped executable and cacheable and has not been flushed since
1982 * the last time it was modified.
1983 */
1984 if (error == 0 &&
1985 (flags & VM_PROT_EXECUTE) &&
1986 (pte_lo & PTE_I) == 0 &&
1987 was_exec == 0) {
1988 DPRINTFN(ENTER, (" syncicache"));
1989 PMAPCOUNT(exec_synced);
1990 pmap_syncicache(pa, PAGE_SIZE);
1991 if (pg != NULL) {
1992 pmap_attr_save(pg, PTE_EXEC);
1993 PMAPCOUNT(exec_cached);
1994 #if defined(DEBUG) || defined(PMAPDEBUG)
1995 if (pmapdebug & PMAPDEBUG_ENTER)
1996 printf(" marked-as-exec");
1997 else if (pmapdebug & PMAPDEBUG_EXEC)
1998 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1999 VM_PAGE_TO_PHYS(pg));
2000
2001 #endif
2002 }
2003 }
2004
2005 DPRINTFN(ENTER, (": error=%d\n", error));
2006
2007 PMAP_UNLOCK();
2008
2009 return error;
2010 }
2011
2012 void
2013 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2014 {
2015 struct mem_region *mp;
2016 register_t pte_lo;
2017 int error;
2018
2019 #if defined (PMAP_OEA64_BRIDGE)
2020 if (va < VM_MIN_KERNEL_ADDRESS)
2021 panic("pmap_kenter_pa: attempt to enter "
2022 "non-kernel address %#" _PRIxva "!", va);
2023 #endif
2024
2025 DPRINTFN(KENTER,
2026 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2027
2028 PMAP_LOCK();
2029
2030 /*
2031 * Assume the page is cache inhibited and access is guarded unless
2032 * it's in our available memory array. If it is in the memory array,
2033 * asssume it's in memory coherent memory.
2034 */
2035 pte_lo = PTE_IG;
2036 if ((prot & PMAP_NC) == 0) {
2037 for (mp = mem; mp->size; mp++) {
2038 if (pa >= mp->start && pa < mp->start + mp->size) {
2039 pte_lo = PTE_M;
2040 break;
2041 }
2042 }
2043 }
2044
2045 if (prot & VM_PROT_WRITE)
2046 pte_lo |= PTE_BW;
2047 else
2048 pte_lo |= PTE_BR;
2049
2050 /*
2051 * We don't care about REF/CHG on PVOs on the unmanaged list.
2052 */
2053 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2054 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2055
2056 if (error != 0)
2057 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2058 va, pa, error);
2059
2060 PMAP_UNLOCK();
2061 }
2062
2063 void
2064 pmap_kremove(vaddr_t va, vsize_t len)
2065 {
2066 if (va < VM_MIN_KERNEL_ADDRESS)
2067 panic("pmap_kremove: attempt to remove "
2068 "non-kernel address %#" _PRIxva "!", va);
2069
2070 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2071 pmap_remove(pmap_kernel(), va, va + len);
2072 }
2073
2074 /*
2075 * Remove the given range of mapping entries.
2076 */
2077 void
2078 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2079 {
2080 struct pvo_head pvol;
2081 struct pvo_entry *pvo;
2082 register_t msr;
2083 int pteidx;
2084
2085 PMAP_LOCK();
2086 LIST_INIT(&pvol);
2087 msr = pmap_interrupts_off();
2088 for (; va < endva; va += PAGE_SIZE) {
2089 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2090 if (pvo != NULL) {
2091 pmap_pvo_remove(pvo, pteidx, &pvol);
2092 }
2093 }
2094 pmap_interrupts_restore(msr);
2095 pmap_pvo_free_list(&pvol);
2096 PMAP_UNLOCK();
2097 }
2098
2099 /*
2100 * Get the physical page address for the given pmap/virtual address.
2101 */
2102 bool
2103 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2104 {
2105 struct pvo_entry *pvo;
2106 register_t msr;
2107
2108 PMAP_LOCK();
2109
2110 /*
2111 * If this is a kernel pmap lookup, also check the battable
2112 * and if we get a hit, translate the VA to a PA using the
2113 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2114 * that will wrap back to 0.
2115 */
2116 if (pm == pmap_kernel() &&
2117 (va < VM_MIN_KERNEL_ADDRESS ||
2118 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2119 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2120 #if defined (PMAP_OEA)
2121 #ifdef PPC_OEA601
2122 if ((MFPVR() >> 16) == MPC601) {
2123 register_t batu = battable[va >> 23].batu;
2124 register_t batl = battable[va >> 23].batl;
2125 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2126 if (BAT601_VALID_P(batl) &&
2127 BAT601_VA_MATCH_P(batu, batl, va)) {
2128 register_t mask =
2129 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2130 if (pap)
2131 *pap = (batl & mask) | (va & ~mask);
2132 PMAP_UNLOCK();
2133 return true;
2134 } else if (SR601_VALID_P(sr) &&
2135 SR601_PA_MATCH_P(sr, va)) {
2136 if (pap)
2137 *pap = va;
2138 PMAP_UNLOCK();
2139 return true;
2140 }
2141 } else
2142 #endif /* PPC_OEA601 */
2143 {
2144 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2145 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2146 register_t batl =
2147 battable[va >> ADDR_SR_SHFT].batl;
2148 register_t mask =
2149 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2150 if (pap)
2151 *pap = (batl & mask) | (va & ~mask);
2152 PMAP_UNLOCK();
2153 return true;
2154 }
2155 }
2156 return false;
2157 #elif defined (PMAP_OEA64_BRIDGE)
2158 if (va >= SEGMENT_LENGTH)
2159 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2160 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2161 else {
2162 if (pap)
2163 *pap = va;
2164 PMAP_UNLOCK();
2165 return true;
2166 }
2167 #elif defined (PMAP_OEA64)
2168 #error PPC_OEA64 not supported
2169 #endif /* PPC_OEA */
2170 }
2171
2172 msr = pmap_interrupts_off();
2173 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2174 if (pvo != NULL) {
2175 PMAP_PVO_CHECK(pvo); /* sanity check */
2176 if (pap)
2177 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2178 | (va & ADDR_POFF);
2179 }
2180 pmap_interrupts_restore(msr);
2181 PMAP_UNLOCK();
2182 return pvo != NULL;
2183 }
2184
2185 /*
2186 * Lower the protection on the specified range of this pmap.
2187 */
2188 void
2189 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2190 {
2191 struct pvo_entry *pvo;
2192 volatile struct pte *pt;
2193 register_t msr;
2194 int pteidx;
2195
2196 /*
2197 * Since this routine only downgrades protection, we should
2198 * always be called with at least one bit not set.
2199 */
2200 KASSERT(prot != VM_PROT_ALL);
2201
2202 /*
2203 * If there is no protection, this is equivalent to
2204 * remove the pmap from the pmap.
2205 */
2206 if ((prot & VM_PROT_READ) == 0) {
2207 pmap_remove(pm, va, endva);
2208 return;
2209 }
2210
2211 PMAP_LOCK();
2212
2213 msr = pmap_interrupts_off();
2214 for (; va < endva; va += PAGE_SIZE) {
2215 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2216 if (pvo == NULL)
2217 continue;
2218 PMAP_PVO_CHECK(pvo); /* sanity check */
2219
2220 /*
2221 * Revoke executable if asked to do so.
2222 */
2223 if ((prot & VM_PROT_EXECUTE) == 0)
2224 pvo_clear_exec(pvo);
2225
2226 #if 0
2227 /*
2228 * If the page is already read-only, no change
2229 * needs to be made.
2230 */
2231 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2232 continue;
2233 #endif
2234 /*
2235 * Grab the PTE pointer before we diddle with
2236 * the cached PTE copy.
2237 */
2238 pt = pmap_pvo_to_pte(pvo, pteidx);
2239 /*
2240 * Change the protection of the page.
2241 */
2242 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2243 pvo->pvo_pte.pte_lo |= PTE_BR;
2244
2245 /*
2246 * If the PVO is in the page table, update
2247 * that pte at well.
2248 */
2249 if (pt != NULL) {
2250 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2251 PVO_WHERE(pvo, PMAP_PROTECT);
2252 PMAPCOUNT(ptes_changed);
2253 }
2254
2255 PMAP_PVO_CHECK(pvo); /* sanity check */
2256 }
2257 pmap_interrupts_restore(msr);
2258 PMAP_UNLOCK();
2259 }
2260
2261 void
2262 pmap_unwire(pmap_t pm, vaddr_t va)
2263 {
2264 struct pvo_entry *pvo;
2265 register_t msr;
2266
2267 PMAP_LOCK();
2268 msr = pmap_interrupts_off();
2269 pvo = pmap_pvo_find_va(pm, va, NULL);
2270 if (pvo != NULL) {
2271 if (PVO_WIRED_P(pvo)) {
2272 pvo->pvo_vaddr &= ~PVO_WIRED;
2273 pm->pm_stats.wired_count--;
2274 }
2275 PMAP_PVO_CHECK(pvo); /* sanity check */
2276 }
2277 pmap_interrupts_restore(msr);
2278 PMAP_UNLOCK();
2279 }
2280
2281 /*
2282 * Lower the protection on the specified physical page.
2283 */
2284 void
2285 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2286 {
2287 struct pvo_head *pvo_head, pvol;
2288 struct pvo_entry *pvo, *next_pvo;
2289 volatile struct pte *pt;
2290 register_t msr;
2291
2292 PMAP_LOCK();
2293
2294 KASSERT(prot != VM_PROT_ALL);
2295 LIST_INIT(&pvol);
2296 msr = pmap_interrupts_off();
2297
2298 /*
2299 * When UVM reuses a page, it does a pmap_page_protect with
2300 * VM_PROT_NONE. At that point, we can clear the exec flag
2301 * since we know the page will have different contents.
2302 */
2303 if ((prot & VM_PROT_READ) == 0) {
2304 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2305 VM_PAGE_TO_PHYS(pg)));
2306 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2307 PMAPCOUNT(exec_uncached_page_protect);
2308 pmap_attr_clear(pg, PTE_EXEC);
2309 }
2310 }
2311
2312 pvo_head = vm_page_to_pvoh(pg);
2313 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2314 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2315 PMAP_PVO_CHECK(pvo); /* sanity check */
2316
2317 /*
2318 * Downgrading to no mapping at all, we just remove the entry.
2319 */
2320 if ((prot & VM_PROT_READ) == 0) {
2321 pmap_pvo_remove(pvo, -1, &pvol);
2322 continue;
2323 }
2324
2325 /*
2326 * If EXEC permission is being revoked, just clear the
2327 * flag in the PVO.
2328 */
2329 if ((prot & VM_PROT_EXECUTE) == 0)
2330 pvo_clear_exec(pvo);
2331
2332 /*
2333 * If this entry is already RO, don't diddle with the
2334 * page table.
2335 */
2336 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2337 PMAP_PVO_CHECK(pvo);
2338 continue;
2339 }
2340
2341 /*
2342 * Grab the PTE before the we diddle the bits so
2343 * pvo_to_pte can verify the pte contents are as
2344 * expected.
2345 */
2346 pt = pmap_pvo_to_pte(pvo, -1);
2347 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2348 pvo->pvo_pte.pte_lo |= PTE_BR;
2349 if (pt != NULL) {
2350 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2351 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2352 PMAPCOUNT(ptes_changed);
2353 }
2354 PMAP_PVO_CHECK(pvo); /* sanity check */
2355 }
2356 pmap_interrupts_restore(msr);
2357 pmap_pvo_free_list(&pvol);
2358
2359 PMAP_UNLOCK();
2360 }
2361
2362 /*
2363 * Activate the address space for the specified process. If the process
2364 * is the current process, load the new MMU context.
2365 */
2366 void
2367 pmap_activate(struct lwp *l)
2368 {
2369 struct pcb *pcb = lwp_getpcb(l);
2370 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2371
2372 DPRINTFN(ACTIVATE,
2373 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2374
2375 /*
2376 * XXX Normally performed in cpu_fork().
2377 */
2378 pcb->pcb_pm = pmap;
2379
2380 /*
2381 * In theory, the SR registers need only be valid on return
2382 * to user space wait to do them there.
2383 */
2384 if (l == curlwp) {
2385 /* Store pointer to new current pmap. */
2386 curpm = pmap;
2387 }
2388 }
2389
2390 /*
2391 * Deactivate the specified process's address space.
2392 */
2393 void
2394 pmap_deactivate(struct lwp *l)
2395 {
2396 }
2397
2398 bool
2399 pmap_query_bit(struct vm_page *pg, int ptebit)
2400 {
2401 struct pvo_entry *pvo;
2402 volatile struct pte *pt;
2403 register_t msr;
2404
2405 PMAP_LOCK();
2406
2407 if (pmap_attr_fetch(pg) & ptebit) {
2408 PMAP_UNLOCK();
2409 return true;
2410 }
2411
2412 msr = pmap_interrupts_off();
2413 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2414 PMAP_PVO_CHECK(pvo); /* sanity check */
2415 /*
2416 * See if we saved the bit off. If so cache, it and return
2417 * success.
2418 */
2419 if (pvo->pvo_pte.pte_lo & ptebit) {
2420 pmap_attr_save(pg, ptebit);
2421 PMAP_PVO_CHECK(pvo); /* sanity check */
2422 pmap_interrupts_restore(msr);
2423 PMAP_UNLOCK();
2424 return true;
2425 }
2426 }
2427 /*
2428 * No luck, now go thru the hard part of looking at the ptes
2429 * themselves. Sync so any pending REF/CHG bits are flushed
2430 * to the PTEs.
2431 */
2432 SYNC();
2433 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2434 PMAP_PVO_CHECK(pvo); /* sanity check */
2435 /*
2436 * See if this pvo have a valid PTE. If so, fetch the
2437 * REF/CHG bits from the valid PTE. If the appropriate
2438 * ptebit is set, cache, it and return success.
2439 */
2440 pt = pmap_pvo_to_pte(pvo, -1);
2441 if (pt != NULL) {
2442 pmap_pte_synch(pt, &pvo->pvo_pte);
2443 if (pvo->pvo_pte.pte_lo & ptebit) {
2444 pmap_attr_save(pg, ptebit);
2445 PMAP_PVO_CHECK(pvo); /* sanity check */
2446 pmap_interrupts_restore(msr);
2447 PMAP_UNLOCK();
2448 return true;
2449 }
2450 }
2451 }
2452 pmap_interrupts_restore(msr);
2453 PMAP_UNLOCK();
2454 return false;
2455 }
2456
2457 bool
2458 pmap_clear_bit(struct vm_page *pg, int ptebit)
2459 {
2460 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2461 struct pvo_entry *pvo;
2462 volatile struct pte *pt;
2463 register_t msr;
2464 int rv = 0;
2465
2466 PMAP_LOCK();
2467 msr = pmap_interrupts_off();
2468
2469 /*
2470 * Fetch the cache value
2471 */
2472 rv |= pmap_attr_fetch(pg);
2473
2474 /*
2475 * Clear the cached value.
2476 */
2477 pmap_attr_clear(pg, ptebit);
2478
2479 /*
2480 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2481 * can reset the right ones). Note that since the pvo entries and
2482 * list heads are accessed via BAT0 and are never placed in the
2483 * page table, we don't have to worry about further accesses setting
2484 * the REF/CHG bits.
2485 */
2486 SYNC();
2487
2488 /*
2489 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2490 * valid PTE. If so, clear the ptebit from the valid PTE.
2491 */
2492 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2493 PMAP_PVO_CHECK(pvo); /* sanity check */
2494 pt = pmap_pvo_to_pte(pvo, -1);
2495 if (pt != NULL) {
2496 /*
2497 * Only sync the PTE if the bit we are looking
2498 * for is not already set.
2499 */
2500 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2501 pmap_pte_synch(pt, &pvo->pvo_pte);
2502 /*
2503 * If the bit we are looking for was already set,
2504 * clear that bit in the pte.
2505 */
2506 if (pvo->pvo_pte.pte_lo & ptebit)
2507 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2508 }
2509 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2510 pvo->pvo_pte.pte_lo &= ~ptebit;
2511 PMAP_PVO_CHECK(pvo); /* sanity check */
2512 }
2513 pmap_interrupts_restore(msr);
2514
2515 /*
2516 * If we are clearing the modify bit and this page was marked EXEC
2517 * and the user of the page thinks the page was modified, then we
2518 * need to clean it from the icache if it's mapped or clear the EXEC
2519 * bit if it's not mapped. The page itself might not have the CHG
2520 * bit set if the modification was done via DMA to the page.
2521 */
2522 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2523 if (LIST_EMPTY(pvoh)) {
2524 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2525 VM_PAGE_TO_PHYS(pg)));
2526 pmap_attr_clear(pg, PTE_EXEC);
2527 PMAPCOUNT(exec_uncached_clear_modify);
2528 } else {
2529 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2530 VM_PAGE_TO_PHYS(pg)));
2531 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2532 PMAPCOUNT(exec_synced_clear_modify);
2533 }
2534 }
2535 PMAP_UNLOCK();
2536 return (rv & ptebit) != 0;
2537 }
2538
2539 void
2540 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2541 {
2542 struct pvo_entry *pvo;
2543 size_t offset = va & ADDR_POFF;
2544 int s;
2545
2546 PMAP_LOCK();
2547 s = splvm();
2548 while (len > 0) {
2549 size_t seglen = PAGE_SIZE - offset;
2550 if (seglen > len)
2551 seglen = len;
2552 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2553 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2554 pmap_syncicache(
2555 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2556 PMAP_PVO_CHECK(pvo);
2557 }
2558 va += seglen;
2559 len -= seglen;
2560 offset = 0;
2561 }
2562 splx(s);
2563 PMAP_UNLOCK();
2564 }
2565
2566 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2567 void
2568 pmap_pte_print(volatile struct pte *pt)
2569 {
2570 printf("PTE %p: ", pt);
2571
2572 #if defined(PMAP_OEA)
2573 /* High word: */
2574 printf("%#" _PRIxpte ": [", pt->pte_hi);
2575 #else
2576 printf("%#" _PRIxpte ": [", pt->pte_hi);
2577 #endif /* PMAP_OEA */
2578
2579 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2580 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2581
2582 printf("%#" _PRIxpte " %#" _PRIxpte "",
2583 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2584 pt->pte_hi & PTE_API);
2585 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2586 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2587 #else
2588 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2589 #endif /* PMAP_OEA */
2590
2591 /* Low word: */
2592 #if defined (PMAP_OEA)
2593 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2594 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2595 #else
2596 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2597 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2598 #endif
2599 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2600 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2601 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2602 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2603 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2604 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2605 switch (pt->pte_lo & PTE_PP) {
2606 case PTE_BR: printf("br]\n"); break;
2607 case PTE_BW: printf("bw]\n"); break;
2608 case PTE_SO: printf("so]\n"); break;
2609 case PTE_SW: printf("sw]\n"); break;
2610 }
2611 }
2612 #endif
2613
2614 #if defined(DDB)
2615 void
2616 pmap_pteg_check(void)
2617 {
2618 volatile struct pte *pt;
2619 int i;
2620 int ptegidx;
2621 u_int p_valid = 0;
2622 u_int s_valid = 0;
2623 u_int invalid = 0;
2624
2625 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2626 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2627 if (pt->pte_hi & PTE_VALID) {
2628 if (pt->pte_hi & PTE_HID)
2629 s_valid++;
2630 else
2631 {
2632 p_valid++;
2633 }
2634 } else
2635 invalid++;
2636 }
2637 }
2638 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2639 p_valid, p_valid, s_valid, s_valid,
2640 invalid, invalid);
2641 }
2642
2643 void
2644 pmap_print_mmuregs(void)
2645 {
2646 int i;
2647 u_int cpuvers;
2648 #ifndef PMAP_OEA64
2649 vaddr_t addr;
2650 register_t soft_sr[16];
2651 #endif
2652 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2653 struct bat soft_ibat[4];
2654 struct bat soft_dbat[4];
2655 #endif
2656 paddr_t sdr1;
2657
2658 cpuvers = MFPVR() >> 16;
2659 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2660 #ifndef PMAP_OEA64
2661 addr = 0;
2662 for (i = 0; i < 16; i++) {
2663 soft_sr[i] = MFSRIN(addr);
2664 addr += (1 << ADDR_SR_SHFT);
2665 }
2666 #endif
2667
2668 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2669 /* read iBAT (601: uBAT) registers */
2670 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2671 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2672 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2673 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2674 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2675 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2676 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2677 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2678
2679
2680 if (cpuvers != MPC601) {
2681 /* read dBAT registers */
2682 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2683 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2684 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2685 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2686 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2687 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2688 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2689 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2690 }
2691 #endif
2692
2693 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2694 #ifndef PMAP_OEA64
2695 printf("SR[]:\t");
2696 for (i = 0; i < 4; i++)
2697 printf("0x%08lx, ", soft_sr[i]);
2698 printf("\n\t");
2699 for ( ; i < 8; i++)
2700 printf("0x%08lx, ", soft_sr[i]);
2701 printf("\n\t");
2702 for ( ; i < 12; i++)
2703 printf("0x%08lx, ", soft_sr[i]);
2704 printf("\n\t");
2705 for ( ; i < 16; i++)
2706 printf("0x%08lx, ", soft_sr[i]);
2707 printf("\n");
2708 #endif
2709
2710 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2711 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2712 for (i = 0; i < 4; i++) {
2713 printf("0x%08lx 0x%08lx, ",
2714 soft_ibat[i].batu, soft_ibat[i].batl);
2715 if (i == 1)
2716 printf("\n\t");
2717 }
2718 if (cpuvers != MPC601) {
2719 printf("\ndBAT[]:\t");
2720 for (i = 0; i < 4; i++) {
2721 printf("0x%08lx 0x%08lx, ",
2722 soft_dbat[i].batu, soft_dbat[i].batl);
2723 if (i == 1)
2724 printf("\n\t");
2725 }
2726 }
2727 printf("\n");
2728 #endif /* PMAP_OEA... */
2729 }
2730
2731 void
2732 pmap_print_pte(pmap_t pm, vaddr_t va)
2733 {
2734 struct pvo_entry *pvo;
2735 volatile struct pte *pt;
2736 int pteidx;
2737
2738 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2739 if (pvo != NULL) {
2740 pt = pmap_pvo_to_pte(pvo, pteidx);
2741 if (pt != NULL) {
2742 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2743 va, pt,
2744 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2745 pt->pte_hi, pt->pte_lo);
2746 } else {
2747 printf("No valid PTE found\n");
2748 }
2749 } else {
2750 printf("Address not in pmap\n");
2751 }
2752 }
2753
2754 void
2755 pmap_pteg_dist(void)
2756 {
2757 struct pvo_entry *pvo;
2758 int ptegidx;
2759 int depth;
2760 int max_depth = 0;
2761 unsigned int depths[64];
2762
2763 memset(depths, 0, sizeof(depths));
2764 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2765 depth = 0;
2766 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2767 depth++;
2768 }
2769 if (depth > max_depth)
2770 max_depth = depth;
2771 if (depth > 63)
2772 depth = 63;
2773 depths[depth]++;
2774 }
2775
2776 for (depth = 0; depth < 64; depth++) {
2777 printf(" [%2d]: %8u", depth, depths[depth]);
2778 if ((depth & 3) == 3)
2779 printf("\n");
2780 if (depth == max_depth)
2781 break;
2782 }
2783 if ((depth & 3) != 3)
2784 printf("\n");
2785 printf("Max depth found was %d\n", max_depth);
2786 }
2787 #endif /* DEBUG */
2788
2789 #if defined(PMAPCHECK) || defined(DEBUG)
2790 void
2791 pmap_pvo_verify(void)
2792 {
2793 int ptegidx;
2794 int s;
2795
2796 s = splvm();
2797 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2798 struct pvo_entry *pvo;
2799 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2800 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2801 panic("pmap_pvo_verify: invalid pvo %p "
2802 "on list %#x", pvo, ptegidx);
2803 pmap_pvo_check(pvo);
2804 }
2805 }
2806 splx(s);
2807 }
2808 #endif /* PMAPCHECK */
2809
2810
2811 void *
2812 pmap_pool_ualloc(struct pool *pp, int flags)
2813 {
2814 struct pvo_page *pvop;
2815
2816 if (uvm.page_init_done != true) {
2817 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2818 }
2819
2820 PMAP_LOCK();
2821 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2822 if (pvop != NULL) {
2823 pmap_upvop_free--;
2824 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2825 PMAP_UNLOCK();
2826 return pvop;
2827 }
2828 PMAP_UNLOCK();
2829 return pmap_pool_malloc(pp, flags);
2830 }
2831
2832 void *
2833 pmap_pool_malloc(struct pool *pp, int flags)
2834 {
2835 struct pvo_page *pvop;
2836 struct vm_page *pg;
2837
2838 PMAP_LOCK();
2839 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2840 if (pvop != NULL) {
2841 pmap_mpvop_free--;
2842 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2843 PMAP_UNLOCK();
2844 return pvop;
2845 }
2846 PMAP_UNLOCK();
2847 again:
2848 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2849 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2850 if (__predict_false(pg == NULL)) {
2851 if (flags & PR_WAITOK) {
2852 uvm_wait("plpg");
2853 goto again;
2854 } else {
2855 return (0);
2856 }
2857 }
2858 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2859 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2860 }
2861
2862 void
2863 pmap_pool_ufree(struct pool *pp, void *va)
2864 {
2865 struct pvo_page *pvop;
2866 #if 0
2867 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2868 pmap_pool_mfree(va, size, tag);
2869 return;
2870 }
2871 #endif
2872 PMAP_LOCK();
2873 pvop = va;
2874 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2875 pmap_upvop_free++;
2876 if (pmap_upvop_free > pmap_upvop_maxfree)
2877 pmap_upvop_maxfree = pmap_upvop_free;
2878 PMAP_UNLOCK();
2879 }
2880
2881 void
2882 pmap_pool_mfree(struct pool *pp, void *va)
2883 {
2884 struct pvo_page *pvop;
2885
2886 PMAP_LOCK();
2887 pvop = va;
2888 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2889 pmap_mpvop_free++;
2890 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2891 pmap_mpvop_maxfree = pmap_mpvop_free;
2892 PMAP_UNLOCK();
2893 #if 0
2894 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2895 #endif
2896 }
2897
2898 /*
2899 * This routine in bootstraping to steal to-be-managed memory (which will
2900 * then be unmanaged). We use it to grab from the first 256MB for our
2901 * pmap needs and above 256MB for other stuff.
2902 */
2903 vaddr_t
2904 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2905 {
2906 vsize_t size;
2907 vaddr_t va;
2908 paddr_t pa = 0;
2909 int npgs, bank;
2910 struct vm_physseg *ps;
2911
2912 if (uvm.page_init_done == true)
2913 panic("pmap_steal_memory: called _after_ bootstrap");
2914
2915 *vstartp = VM_MIN_KERNEL_ADDRESS;
2916 *vendp = VM_MAX_KERNEL_ADDRESS;
2917
2918 size = round_page(vsize);
2919 npgs = atop(size);
2920
2921 /*
2922 * PA 0 will never be among those given to UVM so we can use it
2923 * to indicate we couldn't steal any memory.
2924 */
2925 for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
2926 if (ps->free_list == VM_FREELIST_FIRST256 &&
2927 ps->avail_end - ps->avail_start >= npgs) {
2928 pa = ptoa(ps->avail_start);
2929 break;
2930 }
2931 }
2932
2933 if (pa == 0)
2934 panic("pmap_steal_memory: no approriate memory to steal!");
2935
2936 ps->avail_start += npgs;
2937 ps->start += npgs;
2938
2939 /*
2940 * If we've used up all the pages in the segment, remove it and
2941 * compact the list.
2942 */
2943 if (ps->avail_start == ps->end) {
2944 /*
2945 * If this was the last one, then a very bad thing has occurred
2946 */
2947 if (--vm_nphysseg == 0)
2948 panic("pmap_steal_memory: out of memory!");
2949
2950 printf("pmap_steal_memory: consumed bank %d\n", bank);
2951 for (; bank < vm_nphysseg; bank++, ps++) {
2952 ps[0] = ps[1];
2953 }
2954 }
2955
2956 va = (vaddr_t) pa;
2957 memset((void *) va, 0, size);
2958 pmap_pages_stolen += npgs;
2959 #ifdef DEBUG
2960 if (pmapdebug && npgs > 1) {
2961 u_int cnt = 0;
2962 for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
2963 cnt += ps->avail_end - ps->avail_start;
2964 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2965 npgs, pmap_pages_stolen, cnt);
2966 }
2967 #endif
2968
2969 return va;
2970 }
2971
2972 /*
2973 * Find a chuck of memory with right size and alignment.
2974 */
2975 paddr_t
2976 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2977 {
2978 struct mem_region *mp;
2979 paddr_t s, e;
2980 int i, j;
2981
2982 size = round_page(size);
2983
2984 DPRINTFN(BOOT,
2985 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2986 size, alignment, at_end));
2987
2988 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2989 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2990 alignment);
2991
2992 if (at_end) {
2993 if (alignment != PAGE_SIZE)
2994 panic("pmap_boot_find_memory: invalid ending "
2995 "alignment %#" _PRIxpa, alignment);
2996
2997 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2998 s = mp->start + mp->size - size;
2999 if (s >= mp->start && mp->size >= size) {
3000 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3001 DPRINTFN(BOOT,
3002 ("pmap_boot_find_memory: b-avail[%d] start "
3003 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3004 mp->start, mp->size));
3005 mp->size -= size;
3006 DPRINTFN(BOOT,
3007 ("pmap_boot_find_memory: a-avail[%d] start "
3008 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3009 mp->start, mp->size));
3010 return s;
3011 }
3012 }
3013 panic("pmap_boot_find_memory: no available memory");
3014 }
3015
3016 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3017 s = (mp->start + alignment - 1) & ~(alignment-1);
3018 e = s + size;
3019
3020 /*
3021 * Is the calculated region entirely within the region?
3022 */
3023 if (s < mp->start || e > mp->start + mp->size)
3024 continue;
3025
3026 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3027 if (s == mp->start) {
3028 /*
3029 * If the block starts at the beginning of region,
3030 * adjust the size & start. (the region may now be
3031 * zero in length)
3032 */
3033 DPRINTFN(BOOT,
3034 ("pmap_boot_find_memory: b-avail[%d] start "
3035 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3036 mp->start += size;
3037 mp->size -= size;
3038 DPRINTFN(BOOT,
3039 ("pmap_boot_find_memory: a-avail[%d] start "
3040 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3041 } else if (e == mp->start + mp->size) {
3042 /*
3043 * If the block starts at the beginning of region,
3044 * adjust only the size.
3045 */
3046 DPRINTFN(BOOT,
3047 ("pmap_boot_find_memory: b-avail[%d] start "
3048 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3049 mp->size -= size;
3050 DPRINTFN(BOOT,
3051 ("pmap_boot_find_memory: a-avail[%d] start "
3052 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3053 } else {
3054 /*
3055 * Block is in the middle of the region, so we
3056 * have to split it in two.
3057 */
3058 for (j = avail_cnt; j > i + 1; j--) {
3059 avail[j] = avail[j-1];
3060 }
3061 DPRINTFN(BOOT,
3062 ("pmap_boot_find_memory: b-avail[%d] start "
3063 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3064 mp[1].start = e;
3065 mp[1].size = mp[0].start + mp[0].size - e;
3066 mp[0].size = s - mp[0].start;
3067 avail_cnt++;
3068 for (; i < avail_cnt; i++) {
3069 DPRINTFN(BOOT,
3070 ("pmap_boot_find_memory: a-avail[%d] "
3071 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3072 avail[i].start, avail[i].size));
3073 }
3074 }
3075 KASSERT(s == (uintptr_t) s);
3076 return s;
3077 }
3078 panic("pmap_boot_find_memory: not enough memory for "
3079 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3080 }
3081
3082 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3083 #if defined (PMAP_OEA64_BRIDGE)
3084 int
3085 pmap_setup_segment0_map(int use_large_pages, ...)
3086 {
3087 vaddr_t va;
3088
3089 register_t pte_lo = 0x0;
3090 int ptegidx = 0, i = 0;
3091 struct pte pte;
3092 va_list ap;
3093
3094 /* Coherent + Supervisor RW, no user access */
3095 pte_lo = PTE_M;
3096
3097 /* XXXSL
3098 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3099 * these have to take priority.
3100 */
3101 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3102 ptegidx = va_to_pteg(pmap_kernel(), va);
3103 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3104 i = pmap_pte_insert(ptegidx, &pte);
3105 }
3106
3107 va_start(ap, use_large_pages);
3108 while (1) {
3109 paddr_t pa;
3110 size_t size;
3111
3112 va = va_arg(ap, vaddr_t);
3113
3114 if (va == 0)
3115 break;
3116
3117 pa = va_arg(ap, paddr_t);
3118 size = va_arg(ap, size_t);
3119
3120 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3121 #if 0
3122 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3123 #endif
3124 ptegidx = va_to_pteg(pmap_kernel(), va);
3125 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3126 i = pmap_pte_insert(ptegidx, &pte);
3127 }
3128 }
3129
3130 TLBSYNC();
3131 SYNC();
3132 return (0);
3133 }
3134 #endif /* PMAP_OEA64_BRIDGE */
3135
3136 /*
3137 * This is not part of the defined PMAP interface and is specific to the
3138 * PowerPC architecture. This is called during initppc, before the system
3139 * is really initialized.
3140 */
3141 void
3142 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3143 {
3144 struct mem_region *mp, tmp;
3145 paddr_t s, e;
3146 psize_t size;
3147 int i, j;
3148
3149 /*
3150 * Get memory.
3151 */
3152 mem_regions(&mem, &avail);
3153 #if defined(DEBUG)
3154 if (pmapdebug & PMAPDEBUG_BOOT) {
3155 printf("pmap_bootstrap: memory configuration:\n");
3156 for (mp = mem; mp->size; mp++) {
3157 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3158 mp->start, mp->size);
3159 }
3160 for (mp = avail; mp->size; mp++) {
3161 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3162 mp->start, mp->size);
3163 }
3164 }
3165 #endif
3166
3167 /*
3168 * Find out how much physical memory we have and in how many chunks.
3169 */
3170 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3171 if (mp->start >= pmap_memlimit)
3172 continue;
3173 if (mp->start + mp->size > pmap_memlimit) {
3174 size = pmap_memlimit - mp->start;
3175 physmem += btoc(size);
3176 } else {
3177 physmem += btoc(mp->size);
3178 }
3179 mem_cnt++;
3180 }
3181
3182 /*
3183 * Count the number of available entries.
3184 */
3185 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3186 avail_cnt++;
3187
3188 /*
3189 * Page align all regions.
3190 */
3191 kernelstart = trunc_page(kernelstart);
3192 kernelend = round_page(kernelend);
3193 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3194 s = round_page(mp->start);
3195 mp->size -= (s - mp->start);
3196 mp->size = trunc_page(mp->size);
3197 mp->start = s;
3198 e = mp->start + mp->size;
3199
3200 DPRINTFN(BOOT,
3201 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3202 i, mp->start, mp->size));
3203
3204 /*
3205 * Don't allow the end to run beyond our artificial limit
3206 */
3207 if (e > pmap_memlimit)
3208 e = pmap_memlimit;
3209
3210 /*
3211 * Is this region empty or strange? skip it.
3212 */
3213 if (e <= s) {
3214 mp->start = 0;
3215 mp->size = 0;
3216 continue;
3217 }
3218
3219 /*
3220 * Does this overlap the beginning of kernel?
3221 * Does extend past the end of the kernel?
3222 */
3223 else if (s < kernelstart && e > kernelstart) {
3224 if (e > kernelend) {
3225 avail[avail_cnt].start = kernelend;
3226 avail[avail_cnt].size = e - kernelend;
3227 avail_cnt++;
3228 }
3229 mp->size = kernelstart - s;
3230 }
3231 /*
3232 * Check whether this region overlaps the end of the kernel.
3233 */
3234 else if (s < kernelend && e > kernelend) {
3235 mp->start = kernelend;
3236 mp->size = e - kernelend;
3237 }
3238 /*
3239 * Look whether this regions is completely inside the kernel.
3240 * Nuke it if it does.
3241 */
3242 else if (s >= kernelstart && e <= kernelend) {
3243 mp->start = 0;
3244 mp->size = 0;
3245 }
3246 /*
3247 * If the user imposed a memory limit, enforce it.
3248 */
3249 else if (s >= pmap_memlimit) {
3250 mp->start = -PAGE_SIZE; /* let's know why */
3251 mp->size = 0;
3252 }
3253 else {
3254 mp->start = s;
3255 mp->size = e - s;
3256 }
3257 DPRINTFN(BOOT,
3258 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3259 i, mp->start, mp->size));
3260 }
3261
3262 /*
3263 * Move (and uncount) all the null return to the end.
3264 */
3265 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3266 if (mp->size == 0) {
3267 tmp = avail[i];
3268 avail[i] = avail[--avail_cnt];
3269 avail[avail_cnt] = avail[i];
3270 }
3271 }
3272
3273 /*
3274 * (Bubble)sort them into ascending order.
3275 */
3276 for (i = 0; i < avail_cnt; i++) {
3277 for (j = i + 1; j < avail_cnt; j++) {
3278 if (avail[i].start > avail[j].start) {
3279 tmp = avail[i];
3280 avail[i] = avail[j];
3281 avail[j] = tmp;
3282 }
3283 }
3284 }
3285
3286 /*
3287 * Make sure they don't overlap.
3288 */
3289 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3290 if (mp[0].start + mp[0].size > mp[1].start) {
3291 mp[0].size = mp[1].start - mp[0].start;
3292 }
3293 DPRINTFN(BOOT,
3294 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3295 i, mp->start, mp->size));
3296 }
3297 DPRINTFN(BOOT,
3298 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3299 i, mp->start, mp->size));
3300
3301 #ifdef PTEGCOUNT
3302 pmap_pteg_cnt = PTEGCOUNT;
3303 #else /* PTEGCOUNT */
3304
3305 pmap_pteg_cnt = 0x1000;
3306
3307 while (pmap_pteg_cnt < physmem)
3308 pmap_pteg_cnt <<= 1;
3309
3310 pmap_pteg_cnt >>= 1;
3311 #endif /* PTEGCOUNT */
3312
3313 #ifdef DEBUG
3314 DPRINTFN(BOOT,
3315 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3316 #endif
3317
3318 /*
3319 * Find suitably aligned memory for PTEG hash table.
3320 */
3321 size = pmap_pteg_cnt * sizeof(struct pteg);
3322 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3323
3324 #ifdef DEBUG
3325 DPRINTFN(BOOT,
3326 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3327 #endif
3328
3329
3330 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3331 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3332 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3333 pmap_pteg_table, size);
3334 #endif
3335
3336 memset(__UNVOLATILE(pmap_pteg_table), 0,
3337 pmap_pteg_cnt * sizeof(struct pteg));
3338 pmap_pteg_mask = pmap_pteg_cnt - 1;
3339
3340 /*
3341 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3342 * with pages. So we just steal them before giving them to UVM.
3343 */
3344 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3345 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3346 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3347 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3348 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3349 pmap_pvo_table, size);
3350 #endif
3351
3352 for (i = 0; i < pmap_pteg_cnt; i++)
3353 TAILQ_INIT(&pmap_pvo_table[i]);
3354
3355 #ifndef MSGBUFADDR
3356 /*
3357 * Allocate msgbuf in high memory.
3358 */
3359 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3360 #endif
3361
3362 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3363 paddr_t pfstart = atop(mp->start);
3364 paddr_t pfend = atop(mp->start + mp->size);
3365 if (mp->size == 0)
3366 continue;
3367 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3368 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3369 VM_FREELIST_FIRST256);
3370 } else if (mp->start >= SEGMENT_LENGTH) {
3371 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3372 VM_FREELIST_DEFAULT);
3373 } else {
3374 pfend = atop(SEGMENT_LENGTH);
3375 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3376 VM_FREELIST_FIRST256);
3377 pfstart = atop(SEGMENT_LENGTH);
3378 pfend = atop(mp->start + mp->size);
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_DEFAULT);
3381 }
3382 }
3383
3384 /*
3385 * Make sure kernel vsid is allocated as well as VSID 0.
3386 */
3387 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3388 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3389 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3390 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3391 pmap_vsid_bitmap[0] |= 1;
3392
3393 /*
3394 * Initialize kernel pmap and hardware.
3395 */
3396
3397 /* PMAP_OEA64_BRIDGE does support these instructions */
3398 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3399 for (i = 0; i < 16; i++) {
3400 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3401 __asm volatile ("mtsrin %0,%1"
3402 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3403 }
3404
3405 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3406 __asm volatile ("mtsr %0,%1"
3407 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3408 #ifdef KERNEL2_SR
3409 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3410 __asm volatile ("mtsr %0,%1"
3411 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3412 #endif
3413 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3414 #if defined (PMAP_OEA)
3415 for (i = 0; i < 16; i++) {
3416 if (iosrtable[i] & SR601_T) {
3417 pmap_kernel()->pm_sr[i] = iosrtable[i];
3418 __asm volatile ("mtsrin %0,%1"
3419 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3420 }
3421 }
3422 __asm volatile ("sync; mtsdr1 %0; isync"
3423 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3424 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3425 __asm __volatile ("sync; mtsdr1 %0; isync"
3426 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3427 #endif
3428 tlbia();
3429
3430 #ifdef ALTIVEC
3431 pmap_use_altivec = cpu_altivec;
3432 #endif
3433
3434 #ifdef DEBUG
3435 if (pmapdebug & PMAPDEBUG_BOOT) {
3436 u_int cnt;
3437 int bank;
3438 char pbuf[9];
3439 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3440 cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
3441 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3442 bank,
3443 ptoa(vm_physmem[bank].avail_start),
3444 ptoa(vm_physmem[bank].avail_end),
3445 ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
3446 }
3447 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3448 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3449 pbuf, cnt);
3450 }
3451 #endif
3452
3453 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3454 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3455 &pmap_pool_uallocator, IPL_VM);
3456
3457 pool_setlowat(&pmap_upvo_pool, 252);
3458
3459 pool_init(&pmap_pool, sizeof(struct pmap),
3460 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3461 IPL_NONE);
3462
3463 #if defined(PMAP_NEED_MAPKERNEL) || 1
3464 {
3465 struct pmap *pm = pmap_kernel();
3466 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3467 extern int etext[], kernel_text[];
3468 vaddr_t va, va_etext = (paddr_t) etext;
3469 #endif
3470 paddr_t pa, pa_end;
3471 register_t sr;
3472 struct pte pt;
3473 unsigned int ptegidx;
3474 int bank;
3475
3476 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3477 pm->pm_sr[0] = sr;
3478
3479 for (bank = 0; bank < vm_nphysseg; bank++) {
3480 pa_end = ptoa(vm_physmem[bank].avail_end);
3481 pa = ptoa(vm_physmem[bank].avail_start);
3482 for (; pa < pa_end; pa += PAGE_SIZE) {
3483 ptegidx = va_to_pteg(pm, pa);
3484 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3485 pmap_pte_insert(ptegidx, &pt);
3486 }
3487 }
3488
3489 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3490 va = (vaddr_t) kernel_text;
3491
3492 for (pa = kernelstart; va < va_etext;
3493 pa += PAGE_SIZE, va += PAGE_SIZE) {
3494 ptegidx = va_to_pteg(pm, va);
3495 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3496 pmap_pte_insert(ptegidx, &pt);
3497 }
3498
3499 for (; pa < kernelend;
3500 pa += PAGE_SIZE, va += PAGE_SIZE) {
3501 ptegidx = va_to_pteg(pm, va);
3502 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3503 pmap_pte_insert(ptegidx, &pt);
3504 }
3505
3506 for (va = 0, pa = 0; va < kernelstart;
3507 pa += PAGE_SIZE, va += PAGE_SIZE) {
3508 ptegidx = va_to_pteg(pm, va);
3509 if (va < 0x3000)
3510 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3511 else
3512 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3513 pmap_pte_insert(ptegidx, &pt);
3514 }
3515 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3516 pa += PAGE_SIZE, va += PAGE_SIZE) {
3517 ptegidx = va_to_pteg(pm, va);
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3519 pmap_pte_insert(ptegidx, &pt);
3520 }
3521 #endif
3522
3523 __asm volatile ("mtsrin %0,%1"
3524 :: "r"(sr), "r"(kernelstart));
3525 }
3526 #endif
3527 }
3528