pmap.c revision 1.73 1 /* $NetBSD: pmap.c,v 1.73 2010/11/10 09:27:23 uebayasi Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.73 2010/11/10 09:27:23 uebayasi Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/pcb.h>
87 #include <machine/powerpc.h>
88 #include <powerpc/spr.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/stdarg.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #define VM_PAGE_TO_MD(pg) (&(pg)->mdpage)
95
96 #ifdef ALTIVEC
97 int pmap_use_altivec;
98 #endif
99
100 volatile struct pteg *pmap_pteg_table;
101 unsigned int pmap_pteg_cnt;
102 unsigned int pmap_pteg_mask;
103 #ifdef PMAP_MEMLIMIT
104 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
105 #else
106 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
107 #endif
108
109 struct pmap kernel_pmap_;
110 unsigned int pmap_pages_stolen;
111 u_long pmap_pte_valid;
112 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
113 u_long pmap_pvo_enter_depth;
114 u_long pmap_pvo_remove_depth;
115 #endif
116
117 #ifndef MSGBUFADDR
118 extern paddr_t msgbuf_paddr;
119 #endif
120
121 static struct mem_region *mem, *avail;
122 static u_int mem_cnt, avail_cnt;
123
124 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
125 # define PMAP_OEA 1
126 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
127 # define PMAPNAME(name) pmap_##name
128 # endif
129 #endif
130
131 #if defined(PMAP_OEA64)
132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
133 # define PMAPNAME(name) pmap_##name
134 # endif
135 #endif
136
137 #if defined(PMAP_OEA64_BRIDGE)
138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
139 # define PMAPNAME(name) pmap_##name
140 # endif
141 #endif
142
143 #if defined(PMAP_OEA)
144 #define _PRIxpte "lx"
145 #else
146 #define _PRIxpte PRIx64
147 #endif
148 #define _PRIxpa "lx"
149 #define _PRIxva "lx"
150 #define _PRIsr "lx"
151
152 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
153 #if defined(PMAP_OEA)
154 #define PMAPNAME(name) pmap32_##name
155 #elif defined(PMAP_OEA64)
156 #define PMAPNAME(name) pmap64_##name
157 #elif defined(PMAP_OEA64_BRIDGE)
158 #define PMAPNAME(name) pmap64bridge_##name
159 #else
160 #error unknown variant for pmap
161 #endif
162 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
163
164 #if defined(PMAPNAME)
165 #define STATIC static
166 #define pmap_pte_spill PMAPNAME(pte_spill)
167 #define pmap_real_memory PMAPNAME(real_memory)
168 #define pmap_init PMAPNAME(init)
169 #define pmap_virtual_space PMAPNAME(virtual_space)
170 #define pmap_create PMAPNAME(create)
171 #define pmap_reference PMAPNAME(reference)
172 #define pmap_destroy PMAPNAME(destroy)
173 #define pmap_copy PMAPNAME(copy)
174 #define pmap_update PMAPNAME(update)
175 #define pmap_enter PMAPNAME(enter)
176 #define pmap_remove PMAPNAME(remove)
177 #define pmap_kenter_pa PMAPNAME(kenter_pa)
178 #define pmap_kremove PMAPNAME(kremove)
179 #define pmap_extract PMAPNAME(extract)
180 #define pmap_protect PMAPNAME(protect)
181 #define pmap_unwire PMAPNAME(unwire)
182 #define pmap_page_protect PMAPNAME(page_protect)
183 #define pmap_query_bit PMAPNAME(query_bit)
184 #define pmap_clear_bit PMAPNAME(clear_bit)
185
186 #define pmap_activate PMAPNAME(activate)
187 #define pmap_deactivate PMAPNAME(deactivate)
188
189 #define pmap_pinit PMAPNAME(pinit)
190 #define pmap_procwr PMAPNAME(procwr)
191
192 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
193 #define pmap_pte_print PMAPNAME(pte_print)
194 #define pmap_pteg_check PMAPNAME(pteg_check)
195 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
196 #define pmap_print_pte PMAPNAME(print_pte)
197 #define pmap_pteg_dist PMAPNAME(pteg_dist)
198 #endif
199 #if defined(DEBUG) || defined(PMAPCHECK)
200 #define pmap_pvo_verify PMAPNAME(pvo_verify)
201 #define pmapcheck PMAPNAME(check)
202 #endif
203 #if defined(DEBUG) || defined(PMAPDEBUG)
204 #define pmapdebug PMAPNAME(debug)
205 #endif
206 #define pmap_steal_memory PMAPNAME(steal_memory)
207 #define pmap_bootstrap PMAPNAME(bootstrap)
208 #else
209 #define STATIC /* nothing */
210 #endif /* PMAPNAME */
211
212 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
213 STATIC void pmap_real_memory(paddr_t *, psize_t *);
214 STATIC void pmap_init(void);
215 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
216 STATIC pmap_t pmap_create(void);
217 STATIC void pmap_reference(pmap_t);
218 STATIC void pmap_destroy(pmap_t);
219 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
220 STATIC void pmap_update(pmap_t);
221 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
222 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
223 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
224 STATIC void pmap_kremove(vaddr_t, vsize_t);
225 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
226
227 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
228 STATIC void pmap_unwire(pmap_t, vaddr_t);
229 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
230 STATIC bool pmap_query_bit(struct vm_page *, int);
231 STATIC bool pmap_clear_bit(struct vm_page *, int);
232
233 STATIC void pmap_activate(struct lwp *);
234 STATIC void pmap_deactivate(struct lwp *);
235
236 STATIC void pmap_pinit(pmap_t pm);
237 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
238
239 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
240 STATIC void pmap_pte_print(volatile struct pte *);
241 STATIC void pmap_pteg_check(void);
242 STATIC void pmap_print_mmuregs(void);
243 STATIC void pmap_print_pte(pmap_t, vaddr_t);
244 STATIC void pmap_pteg_dist(void);
245 #endif
246 #if defined(DEBUG) || defined(PMAPCHECK)
247 STATIC void pmap_pvo_verify(void);
248 #endif
249 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
250 STATIC void pmap_bootstrap(paddr_t, paddr_t);
251
252 #ifdef PMAPNAME
253 const struct pmap_ops PMAPNAME(ops) = {
254 .pmapop_pte_spill = pmap_pte_spill,
255 .pmapop_real_memory = pmap_real_memory,
256 .pmapop_init = pmap_init,
257 .pmapop_virtual_space = pmap_virtual_space,
258 .pmapop_create = pmap_create,
259 .pmapop_reference = pmap_reference,
260 .pmapop_destroy = pmap_destroy,
261 .pmapop_copy = pmap_copy,
262 .pmapop_update = pmap_update,
263 .pmapop_enter = pmap_enter,
264 .pmapop_remove = pmap_remove,
265 .pmapop_kenter_pa = pmap_kenter_pa,
266 .pmapop_kremove = pmap_kremove,
267 .pmapop_extract = pmap_extract,
268 .pmapop_protect = pmap_protect,
269 .pmapop_unwire = pmap_unwire,
270 .pmapop_page_protect = pmap_page_protect,
271 .pmapop_query_bit = pmap_query_bit,
272 .pmapop_clear_bit = pmap_clear_bit,
273 .pmapop_activate = pmap_activate,
274 .pmapop_deactivate = pmap_deactivate,
275 .pmapop_pinit = pmap_pinit,
276 .pmapop_procwr = pmap_procwr,
277 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
278 .pmapop_pte_print = pmap_pte_print,
279 .pmapop_pteg_check = pmap_pteg_check,
280 .pmapop_print_mmuregs = pmap_print_mmuregs,
281 .pmapop_print_pte = pmap_print_pte,
282 .pmapop_pteg_dist = pmap_pteg_dist,
283 #else
284 .pmapop_pte_print = NULL,
285 .pmapop_pteg_check = NULL,
286 .pmapop_print_mmuregs = NULL,
287 .pmapop_print_pte = NULL,
288 .pmapop_pteg_dist = NULL,
289 #endif
290 #if defined(DEBUG) || defined(PMAPCHECK)
291 .pmapop_pvo_verify = pmap_pvo_verify,
292 #else
293 .pmapop_pvo_verify = NULL,
294 #endif
295 .pmapop_steal_memory = pmap_steal_memory,
296 .pmapop_bootstrap = pmap_bootstrap,
297 };
298 #endif /* !PMAPNAME */
299
300 /*
301 * The following structure is aligned to 32 bytes
302 */
303 struct pvo_entry {
304 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
305 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
306 struct pte pvo_pte; /* Prebuilt PTE */
307 pmap_t pvo_pmap; /* ptr to owning pmap */
308 vaddr_t pvo_vaddr; /* VA of entry */
309 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
310 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
311 #define PVO_WIRED 0x0010 /* PVO entry is wired */
312 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
313 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
314 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
315 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
316 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
317 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
318 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
319 #define PVO_SPILL_SET 2 /* PVO has been spilled */
320 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
321 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
322 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
323 #define PVO_REMOVE 6 /* PVO has been removed */
324 #define PVO_WHERE_MASK 15
325 #define PVO_WHERE_SHFT 8
326 } __attribute__ ((aligned (32)));
327 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
328 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
329 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
330 #define PVO_PTEGIDX_CLR(pvo) \
331 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
332 #define PVO_PTEGIDX_SET(pvo,i) \
333 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
334 #define PVO_WHERE(pvo,w) \
335 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
336 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
337
338 TAILQ_HEAD(pvo_tqhead, pvo_entry);
339 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
340 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
341 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
342
343 struct pool pmap_pool; /* pool for pmap structures */
344 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
345 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
346
347 /*
348 * We keep a cache of unmanaged pages to be used for pvo entries for
349 * unmanaged pages.
350 */
351 struct pvo_page {
352 SIMPLEQ_ENTRY(pvo_page) pvop_link;
353 };
354 SIMPLEQ_HEAD(pvop_head, pvo_page);
355 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
356 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
357 u_long pmap_upvop_free;
358 u_long pmap_upvop_maxfree;
359 u_long pmap_mpvop_free;
360 u_long pmap_mpvop_maxfree;
361
362 static void *pmap_pool_ualloc(struct pool *, int);
363 static void *pmap_pool_malloc(struct pool *, int);
364
365 static void pmap_pool_ufree(struct pool *, void *);
366 static void pmap_pool_mfree(struct pool *, void *);
367
368 static struct pool_allocator pmap_pool_mallocator = {
369 .pa_alloc = pmap_pool_malloc,
370 .pa_free = pmap_pool_mfree,
371 .pa_pagesz = 0,
372 };
373
374 static struct pool_allocator pmap_pool_uallocator = {
375 .pa_alloc = pmap_pool_ualloc,
376 .pa_free = pmap_pool_ufree,
377 .pa_pagesz = 0,
378 };
379
380 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
381 void pmap_pte_print(volatile struct pte *);
382 void pmap_pteg_check(void);
383 void pmap_pteg_dist(void);
384 void pmap_print_pte(pmap_t, vaddr_t);
385 void pmap_print_mmuregs(void);
386 #endif
387
388 #if defined(DEBUG) || defined(PMAPCHECK)
389 #ifdef PMAPCHECK
390 int pmapcheck = 1;
391 #else
392 int pmapcheck = 0;
393 #endif
394 void pmap_pvo_verify(void);
395 static void pmap_pvo_check(const struct pvo_entry *);
396 #define PMAP_PVO_CHECK(pvo) \
397 do { \
398 if (pmapcheck) \
399 pmap_pvo_check(pvo); \
400 } while (0)
401 #else
402 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
403 #endif
404 static int pmap_pte_insert(int, struct pte *);
405 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
406 vaddr_t, paddr_t, register_t, int);
407 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
408 static void pmap_pvo_free(struct pvo_entry *);
409 static void pmap_pvo_free_list(struct pvo_head *);
410 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
411 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
412 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
413 static void pvo_set_exec(struct pvo_entry *);
414 static void pvo_clear_exec(struct pvo_entry *);
415
416 static void tlbia(void);
417
418 static void pmap_release(pmap_t);
419 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
420
421 static uint32_t pmap_pvo_reclaim_nextidx;
422 #ifdef DEBUG
423 static int pmap_pvo_reclaim_debugctr;
424 #endif
425
426 #define VSID_NBPW (sizeof(uint32_t) * 8)
427 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
428
429 static int pmap_initialized;
430
431 #if defined(DEBUG) || defined(PMAPDEBUG)
432 #define PMAPDEBUG_BOOT 0x0001
433 #define PMAPDEBUG_PTE 0x0002
434 #define PMAPDEBUG_EXEC 0x0008
435 #define PMAPDEBUG_PVOENTER 0x0010
436 #define PMAPDEBUG_PVOREMOVE 0x0020
437 #define PMAPDEBUG_ACTIVATE 0x0100
438 #define PMAPDEBUG_CREATE 0x0200
439 #define PMAPDEBUG_ENTER 0x1000
440 #define PMAPDEBUG_KENTER 0x2000
441 #define PMAPDEBUG_KREMOVE 0x4000
442 #define PMAPDEBUG_REMOVE 0x8000
443
444 unsigned int pmapdebug = 0;
445
446 # define DPRINTF(x) printf x
447 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
448 #else
449 # define DPRINTF(x)
450 # define DPRINTFN(n, x)
451 #endif
452
453
454 #ifdef PMAPCOUNTERS
455 /*
456 * From pmap_subr.c
457 */
458 extern struct evcnt pmap_evcnt_mappings;
459 extern struct evcnt pmap_evcnt_unmappings;
460
461 extern struct evcnt pmap_evcnt_kernel_mappings;
462 extern struct evcnt pmap_evcnt_kernel_unmappings;
463
464 extern struct evcnt pmap_evcnt_mappings_replaced;
465
466 extern struct evcnt pmap_evcnt_exec_mappings;
467 extern struct evcnt pmap_evcnt_exec_cached;
468
469 extern struct evcnt pmap_evcnt_exec_synced;
470 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
471 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
472
473 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
474 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
475 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
476 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
477 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
478
479 extern struct evcnt pmap_evcnt_updates;
480 extern struct evcnt pmap_evcnt_collects;
481 extern struct evcnt pmap_evcnt_copies;
482
483 extern struct evcnt pmap_evcnt_ptes_spilled;
484 extern struct evcnt pmap_evcnt_ptes_unspilled;
485 extern struct evcnt pmap_evcnt_ptes_evicted;
486
487 extern struct evcnt pmap_evcnt_ptes_primary[8];
488 extern struct evcnt pmap_evcnt_ptes_secondary[8];
489 extern struct evcnt pmap_evcnt_ptes_removed;
490 extern struct evcnt pmap_evcnt_ptes_changed;
491 extern struct evcnt pmap_evcnt_pvos_reclaimed;
492 extern struct evcnt pmap_evcnt_pvos_failed;
493
494 extern struct evcnt pmap_evcnt_zeroed_pages;
495 extern struct evcnt pmap_evcnt_copied_pages;
496 extern struct evcnt pmap_evcnt_idlezeroed_pages;
497
498 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
499 #define PMAPCOUNT2(ev) ((ev).ev_count++)
500 #else
501 #define PMAPCOUNT(ev) ((void) 0)
502 #define PMAPCOUNT2(ev) ((void) 0)
503 #endif
504
505 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
506
507 /* XXXSL: this needs to be moved to assembler */
508 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
509
510 #define TLBSYNC() __asm volatile("tlbsync")
511 #define SYNC() __asm volatile("sync")
512 #define EIEIO() __asm volatile("eieio")
513 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
514 #define MFMSR() mfmsr()
515 #define MTMSR(psl) mtmsr(psl)
516 #define MFPVR() mfpvr()
517 #define MFSRIN(va) mfsrin(va)
518 #define MFTB() mfrtcltbl()
519
520 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
521 static inline register_t
522 mfsrin(vaddr_t va)
523 {
524 register_t sr;
525 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
526 return sr;
527 }
528 #endif /* PMAP_OEA*/
529
530 #if defined (PMAP_OEA64_BRIDGE)
531 extern void mfmsr64 (register64_t *result);
532 #endif /* PMAP_OEA64_BRIDGE */
533
534 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
535 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
536
537 static inline register_t
538 pmap_interrupts_off(void)
539 {
540 register_t msr = MFMSR();
541 if (msr & PSL_EE)
542 MTMSR(msr & ~PSL_EE);
543 return msr;
544 }
545
546 static void
547 pmap_interrupts_restore(register_t msr)
548 {
549 if (msr & PSL_EE)
550 MTMSR(msr);
551 }
552
553 static inline u_int32_t
554 mfrtcltbl(void)
555 {
556 #ifdef PPC_OEA601
557 if ((MFPVR() >> 16) == MPC601)
558 return (mfrtcl() >> 7);
559 else
560 #endif
561 return (mftbl());
562 }
563
564 /*
565 * These small routines may have to be replaced,
566 * if/when we support processors other that the 604.
567 */
568
569 void
570 tlbia(void)
571 {
572 char *i;
573
574 SYNC();
575 #if defined(PMAP_OEA)
576 /*
577 * Why not use "tlbia"? Because not all processors implement it.
578 *
579 * This needs to be a per-CPU callback to do the appropriate thing
580 * for the CPU. XXX
581 */
582 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
583 TLBIE(i);
584 EIEIO();
585 SYNC();
586 }
587 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
588 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
589 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
590 TLBIEL(i);
591 EIEIO();
592 SYNC();
593 }
594 #endif
595 TLBSYNC();
596 SYNC();
597 }
598
599 static inline register_t
600 va_to_vsid(const struct pmap *pm, vaddr_t addr)
601 {
602 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
603 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
604 #else /* PMAP_OEA64 */
605 #if 0
606 const struct ste *ste;
607 register_t hash;
608 int i;
609
610 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
611
612 /*
613 * Try the primary group first
614 */
615 ste = pm->pm_stes[hash].stes;
616 for (i = 0; i < 8; i++, ste++) {
617 if (ste->ste_hi & STE_V) &&
618 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
619 return ste;
620 }
621
622 /*
623 * Then the secondary group.
624 */
625 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
626 for (i = 0; i < 8; i++, ste++) {
627 if (ste->ste_hi & STE_V) &&
628 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
629 return addr;
630 }
631
632 return NULL;
633 #else
634 /*
635 * Rather than searching the STE groups for the VSID, we know
636 * how we generate that from the ESID and so do that.
637 */
638 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
639 #endif
640 #endif /* PMAP_OEA */
641 }
642
643 static inline register_t
644 va_to_pteg(const struct pmap *pm, vaddr_t addr)
645 {
646 register_t hash;
647
648 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
649 return hash & pmap_pteg_mask;
650 }
651
652 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
653 /*
654 * Given a PTE in the page table, calculate the VADDR that hashes to it.
655 * The only bit of magic is that the top 4 bits of the address doesn't
656 * technically exist in the PTE. But we know we reserved 4 bits of the
657 * VSID for it so that's how we get it.
658 */
659 static vaddr_t
660 pmap_pte_to_va(volatile const struct pte *pt)
661 {
662 vaddr_t va;
663 uintptr_t ptaddr = (uintptr_t) pt;
664
665 if (pt->pte_hi & PTE_HID)
666 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
667
668 /* PPC Bits 10-19 PPC64 Bits 42-51 */
669 #if defined(PMAP_OEA)
670 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
671 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
672 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
673 #endif
674 va <<= ADDR_PIDX_SHFT;
675
676 /* PPC Bits 4-9 PPC64 Bits 36-41 */
677 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
678
679 #if defined(PMAP_OEA64)
680 /* PPC63 Bits 0-35 */
681 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
682 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
683 /* PPC Bits 0-3 */
684 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
685 #endif
686
687 return va;
688 }
689 #endif
690
691 static inline struct pvo_head *
692 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
693 {
694 struct vm_page *pg;
695 struct vm_page_md *md;
696
697 pg = PHYS_TO_VM_PAGE(pa);
698 if (pg_p != NULL)
699 *pg_p = pg;
700 if (pg == NULL)
701 return &pmap_pvo_unmanaged;
702 md = VM_PAGE_TO_MD(pg);
703 return &md->mdpg_pvoh;
704 }
705
706 static inline struct pvo_head *
707 vm_page_to_pvoh(struct vm_page *pg)
708 {
709 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
710
711 return &md->mdpg_pvoh;
712 }
713
714
715 static inline void
716 pmap_attr_clear(struct vm_page *pg, int ptebit)
717 {
718 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
719
720 md->mdpg_attrs &= ~ptebit;
721 }
722
723 static inline int
724 pmap_attr_fetch(struct vm_page *pg)
725 {
726 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
727
728 return md->mdpg_attrs;
729 }
730
731 static inline void
732 pmap_attr_save(struct vm_page *pg, int ptebit)
733 {
734 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
735
736 md->mdpg_attrs |= ptebit;
737 }
738
739 static inline int
740 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
741 {
742 if (pt->pte_hi == pvo_pt->pte_hi
743 #if 0
744 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
745 ~(PTE_REF|PTE_CHG)) == 0
746 #endif
747 )
748 return 1;
749 return 0;
750 }
751
752 static inline void
753 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
754 {
755 /*
756 * Construct the PTE. Default to IMB initially. Valid bit
757 * only gets set when the real pte is set in memory.
758 *
759 * Note: Don't set the valid bit for correct operation of tlb update.
760 */
761 #if defined(PMAP_OEA)
762 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
763 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
764 pt->pte_lo = pte_lo;
765 #elif defined (PMAP_OEA64_BRIDGE)
766 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
767 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
768 pt->pte_lo = (u_int64_t) pte_lo;
769 #elif defined (PMAP_OEA64)
770 #error PMAP_OEA64 not supported
771 #endif /* PMAP_OEA */
772 }
773
774 static inline void
775 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
776 {
777 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
778 }
779
780 static inline void
781 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
782 {
783 /*
784 * As shown in Section 7.6.3.2.3
785 */
786 pt->pte_lo &= ~ptebit;
787 TLBIE(va);
788 SYNC();
789 EIEIO();
790 TLBSYNC();
791 SYNC();
792 #ifdef MULTIPROCESSOR
793 DCBST(pt);
794 #endif
795 }
796
797 static inline void
798 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
799 {
800 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
801 if (pvo_pt->pte_hi & PTE_VALID)
802 panic("pte_set: setting an already valid pte %p", pvo_pt);
803 #endif
804 pvo_pt->pte_hi |= PTE_VALID;
805
806 /*
807 * Update the PTE as defined in section 7.6.3.1
808 * Note that the REF/CHG bits are from pvo_pt and thus should
809 * have been saved so this routine can restore them (if desired).
810 */
811 pt->pte_lo = pvo_pt->pte_lo;
812 EIEIO();
813 pt->pte_hi = pvo_pt->pte_hi;
814 TLBSYNC();
815 SYNC();
816 #ifdef MULTIPROCESSOR
817 DCBST(pt);
818 #endif
819 pmap_pte_valid++;
820 }
821
822 static inline void
823 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
824 {
825 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
826 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
827 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
828 if ((pt->pte_hi & PTE_VALID) == 0)
829 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
830 #endif
831
832 pvo_pt->pte_hi &= ~PTE_VALID;
833 /*
834 * Force the ref & chg bits back into the PTEs.
835 */
836 SYNC();
837 /*
838 * Invalidate the pte ... (Section 7.6.3.3)
839 */
840 pt->pte_hi &= ~PTE_VALID;
841 SYNC();
842 TLBIE(va);
843 SYNC();
844 EIEIO();
845 TLBSYNC();
846 SYNC();
847 /*
848 * Save the ref & chg bits ...
849 */
850 pmap_pte_synch(pt, pvo_pt);
851 pmap_pte_valid--;
852 }
853
854 static inline void
855 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
856 {
857 /*
858 * Invalidate the PTE
859 */
860 pmap_pte_unset(pt, pvo_pt, va);
861 pmap_pte_set(pt, pvo_pt);
862 }
863
864 /*
865 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
866 * (either primary or secondary location).
867 *
868 * Note: both the destination and source PTEs must not have PTE_VALID set.
869 */
870
871 static int
872 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
873 {
874 volatile struct pte *pt;
875 int i;
876
877 #if defined(DEBUG)
878 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
879 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
880 #endif
881 /*
882 * First try primary hash.
883 */
884 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
885 if ((pt->pte_hi & PTE_VALID) == 0) {
886 pvo_pt->pte_hi &= ~PTE_HID;
887 pmap_pte_set(pt, pvo_pt);
888 return i;
889 }
890 }
891
892 /*
893 * Now try secondary hash.
894 */
895 ptegidx ^= pmap_pteg_mask;
896 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
897 if ((pt->pte_hi & PTE_VALID) == 0) {
898 pvo_pt->pte_hi |= PTE_HID;
899 pmap_pte_set(pt, pvo_pt);
900 return i;
901 }
902 }
903 return -1;
904 }
905
906 /*
907 * Spill handler.
908 *
909 * Tries to spill a page table entry from the overflow area.
910 * This runs in either real mode (if dealing with a exception spill)
911 * or virtual mode when dealing with manually spilling one of the
912 * kernel's pte entries. In either case, interrupts are already
913 * disabled.
914 */
915
916 int
917 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
918 {
919 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
920 struct pvo_entry *pvo;
921 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
922 struct pvo_tqhead *pvoh, *vpvoh = NULL;
923 int ptegidx, i, j;
924 volatile struct pteg *pteg;
925 volatile struct pte *pt;
926
927 PMAP_LOCK();
928
929 ptegidx = va_to_pteg(pm, addr);
930
931 /*
932 * Have to substitute some entry. Use the primary hash for this.
933 * Use low bits of timebase as random generator. Make sure we are
934 * not picking a kernel pte for replacement.
935 */
936 pteg = &pmap_pteg_table[ptegidx];
937 i = MFTB() & 7;
938 for (j = 0; j < 8; j++) {
939 pt = &pteg->pt[i];
940 if ((pt->pte_hi & PTE_VALID) == 0)
941 break;
942 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
943 < PHYSMAP_VSIDBITS)
944 break;
945 i = (i + 1) & 7;
946 }
947 KASSERT(j < 8);
948
949 source_pvo = NULL;
950 victim_pvo = NULL;
951 pvoh = &pmap_pvo_table[ptegidx];
952 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
953
954 /*
955 * We need to find pvo entry for this address...
956 */
957 PMAP_PVO_CHECK(pvo); /* sanity check */
958
959 /*
960 * If we haven't found the source and we come to a PVO with
961 * a valid PTE, then we know we can't find it because all
962 * evicted PVOs always are first in the list.
963 */
964 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
965 break;
966 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
967 addr == PVO_VADDR(pvo)) {
968
969 /*
970 * Now we have found the entry to be spilled into the
971 * pteg. Attempt to insert it into the page table.
972 */
973 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
974 if (j >= 0) {
975 PVO_PTEGIDX_SET(pvo, j);
976 PMAP_PVO_CHECK(pvo); /* sanity check */
977 PVO_WHERE(pvo, SPILL_INSERT);
978 pvo->pvo_pmap->pm_evictions--;
979 PMAPCOUNT(ptes_spilled);
980 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
981 ? pmap_evcnt_ptes_secondary
982 : pmap_evcnt_ptes_primary)[j]);
983
984 /*
985 * Since we keep the evicted entries at the
986 * from of the PVO list, we need move this
987 * (now resident) PVO after the evicted
988 * entries.
989 */
990 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
991
992 /*
993 * If we don't have to move (either we were the
994 * last entry or the next entry was valid),
995 * don't change our position. Otherwise
996 * move ourselves to the tail of the queue.
997 */
998 if (next_pvo != NULL &&
999 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
1000 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
1001 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1002 }
1003 PMAP_UNLOCK();
1004 return 1;
1005 }
1006 source_pvo = pvo;
1007 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1008 return 0;
1009 }
1010 if (victim_pvo != NULL)
1011 break;
1012 }
1013
1014 /*
1015 * We also need the pvo entry of the victim we are replacing
1016 * so save the R & C bits of the PTE.
1017 */
1018 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1019 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1020 vpvoh = pvoh; /* *1* */
1021 victim_pvo = pvo;
1022 if (source_pvo != NULL)
1023 break;
1024 }
1025 }
1026
1027 if (source_pvo == NULL) {
1028 PMAPCOUNT(ptes_unspilled);
1029 PMAP_UNLOCK();
1030 return 0;
1031 }
1032
1033 if (victim_pvo == NULL) {
1034 if ((pt->pte_hi & PTE_HID) == 0)
1035 panic("pmap_pte_spill: victim p-pte (%p) has "
1036 "no pvo entry!", pt);
1037
1038 /*
1039 * If this is a secondary PTE, we need to search
1040 * its primary pvo bucket for the matching PVO.
1041 */
1042 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1043 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1044 PMAP_PVO_CHECK(pvo); /* sanity check */
1045
1046 /*
1047 * We also need the pvo entry of the victim we are
1048 * replacing so save the R & C bits of the PTE.
1049 */
1050 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1051 victim_pvo = pvo;
1052 break;
1053 }
1054 }
1055 if (victim_pvo == NULL)
1056 panic("pmap_pte_spill: victim s-pte (%p) has "
1057 "no pvo entry!", pt);
1058 }
1059
1060 /*
1061 * The victim should be not be a kernel PVO/PTE entry.
1062 */
1063 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1064 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1065 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1066
1067 /*
1068 * We are invalidating the TLB entry for the EA for the
1069 * we are replacing even though its valid; If we don't
1070 * we lose any ref/chg bit changes contained in the TLB
1071 * entry.
1072 */
1073 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1074
1075 /*
1076 * To enforce the PVO list ordering constraint that all
1077 * evicted entries should come before all valid entries,
1078 * move the source PVO to the tail of its list and the
1079 * victim PVO to the head of its list (which might not be
1080 * the same list, if the victim was using the secondary hash).
1081 */
1082 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1083 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1084 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1085 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1086 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1087 pmap_pte_set(pt, &source_pvo->pvo_pte);
1088 victim_pvo->pvo_pmap->pm_evictions++;
1089 source_pvo->pvo_pmap->pm_evictions--;
1090 PVO_WHERE(victim_pvo, SPILL_UNSET);
1091 PVO_WHERE(source_pvo, SPILL_SET);
1092
1093 PVO_PTEGIDX_CLR(victim_pvo);
1094 PVO_PTEGIDX_SET(source_pvo, i);
1095 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1096 PMAPCOUNT(ptes_spilled);
1097 PMAPCOUNT(ptes_evicted);
1098 PMAPCOUNT(ptes_removed);
1099
1100 PMAP_PVO_CHECK(victim_pvo);
1101 PMAP_PVO_CHECK(source_pvo);
1102
1103 PMAP_UNLOCK();
1104 return 1;
1105 }
1106
1107 /*
1108 * Restrict given range to physical memory
1109 */
1110 void
1111 pmap_real_memory(paddr_t *start, psize_t *size)
1112 {
1113 struct mem_region *mp;
1114
1115 for (mp = mem; mp->size; mp++) {
1116 if (*start + *size > mp->start
1117 && *start < mp->start + mp->size) {
1118 if (*start < mp->start) {
1119 *size -= mp->start - *start;
1120 *start = mp->start;
1121 }
1122 if (*start + *size > mp->start + mp->size)
1123 *size = mp->start + mp->size - *start;
1124 return;
1125 }
1126 }
1127 *size = 0;
1128 }
1129
1130 /*
1131 * Initialize anything else for pmap handling.
1132 * Called during vm_init().
1133 */
1134 void
1135 pmap_init(void)
1136 {
1137 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1138 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1139 &pmap_pool_mallocator, IPL_NONE);
1140
1141 pool_setlowat(&pmap_mpvo_pool, 1008);
1142
1143 pmap_initialized = 1;
1144
1145 }
1146
1147 /*
1148 * How much virtual space does the kernel get?
1149 */
1150 void
1151 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1152 {
1153 /*
1154 * For now, reserve one segment (minus some overhead) for kernel
1155 * virtual memory
1156 */
1157 *start = VM_MIN_KERNEL_ADDRESS;
1158 *end = VM_MAX_KERNEL_ADDRESS;
1159 }
1160
1161 /*
1162 * Allocate, initialize, and return a new physical map.
1163 */
1164 pmap_t
1165 pmap_create(void)
1166 {
1167 pmap_t pm;
1168
1169 pm = pool_get(&pmap_pool, PR_WAITOK);
1170 memset((void *)pm, 0, sizeof *pm);
1171 pmap_pinit(pm);
1172
1173 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1174 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1175 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1176 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1177 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1178 pm,
1179 pm->pm_sr[0], pm->pm_sr[1],
1180 pm->pm_sr[2], pm->pm_sr[3],
1181 pm->pm_sr[4], pm->pm_sr[5],
1182 pm->pm_sr[6], pm->pm_sr[7],
1183 pm->pm_sr[8], pm->pm_sr[9],
1184 pm->pm_sr[10], pm->pm_sr[11],
1185 pm->pm_sr[12], pm->pm_sr[13],
1186 pm->pm_sr[14], pm->pm_sr[15]));
1187 return pm;
1188 }
1189
1190 /*
1191 * Initialize a preallocated and zeroed pmap structure.
1192 */
1193 void
1194 pmap_pinit(pmap_t pm)
1195 {
1196 register_t entropy = MFTB();
1197 register_t mask;
1198 int i;
1199
1200 /*
1201 * Allocate some segment registers for this pmap.
1202 */
1203 pm->pm_refs = 1;
1204 PMAP_LOCK();
1205 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1206 static register_t pmap_vsidcontext;
1207 register_t hash;
1208 unsigned int n;
1209
1210 /* Create a new value by multiplying by a prime adding in
1211 * entropy from the timebase register. This is to make the
1212 * VSID more random so that the PT Hash function collides
1213 * less often. (note that the prime causes gcc to do shifts
1214 * instead of a multiply)
1215 */
1216 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1217 hash = pmap_vsidcontext & (NPMAPS - 1);
1218 if (hash == 0) { /* 0 is special, avoid it */
1219 entropy += 0xbadf00d;
1220 continue;
1221 }
1222 n = hash >> 5;
1223 mask = 1L << (hash & (VSID_NBPW-1));
1224 hash = pmap_vsidcontext;
1225 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1226 /* anything free in this bucket? */
1227 if (~pmap_vsid_bitmap[n] == 0) {
1228 entropy = hash ^ (hash >> 16);
1229 continue;
1230 }
1231 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1232 mask = 1L << i;
1233 hash &= ~(VSID_NBPW-1);
1234 hash |= i;
1235 }
1236 hash &= PTE_VSID >> PTE_VSID_SHFT;
1237 pmap_vsid_bitmap[n] |= mask;
1238 pm->pm_vsid = hash;
1239 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1240 for (i = 0; i < 16; i++)
1241 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1242 SR_NOEXEC;
1243 #endif
1244 PMAP_UNLOCK();
1245 return;
1246 }
1247 PMAP_UNLOCK();
1248 panic("pmap_pinit: out of segments");
1249 }
1250
1251 /*
1252 * Add a reference to the given pmap.
1253 */
1254 void
1255 pmap_reference(pmap_t pm)
1256 {
1257 atomic_inc_uint(&pm->pm_refs);
1258 }
1259
1260 /*
1261 * Retire the given pmap from service.
1262 * Should only be called if the map contains no valid mappings.
1263 */
1264 void
1265 pmap_destroy(pmap_t pm)
1266 {
1267 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1268 pmap_release(pm);
1269 pool_put(&pmap_pool, pm);
1270 }
1271 }
1272
1273 /*
1274 * Release any resources held by the given physical map.
1275 * Called when a pmap initialized by pmap_pinit is being released.
1276 */
1277 void
1278 pmap_release(pmap_t pm)
1279 {
1280 int idx, mask;
1281
1282 KASSERT(pm->pm_stats.resident_count == 0);
1283 KASSERT(pm->pm_stats.wired_count == 0);
1284
1285 PMAP_LOCK();
1286 if (pm->pm_sr[0] == 0)
1287 panic("pmap_release");
1288 idx = pm->pm_vsid & (NPMAPS-1);
1289 mask = 1 << (idx % VSID_NBPW);
1290 idx /= VSID_NBPW;
1291
1292 KASSERT(pmap_vsid_bitmap[idx] & mask);
1293 pmap_vsid_bitmap[idx] &= ~mask;
1294 PMAP_UNLOCK();
1295 }
1296
1297 /*
1298 * Copy the range specified by src_addr/len
1299 * from the source map to the range dst_addr/len
1300 * in the destination map.
1301 *
1302 * This routine is only advisory and need not do anything.
1303 */
1304 void
1305 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1306 vsize_t len, vaddr_t src_addr)
1307 {
1308 PMAPCOUNT(copies);
1309 }
1310
1311 /*
1312 * Require that all active physical maps contain no
1313 * incorrect entries NOW.
1314 */
1315 void
1316 pmap_update(struct pmap *pmap)
1317 {
1318 PMAPCOUNT(updates);
1319 TLBSYNC();
1320 }
1321
1322 static inline int
1323 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1324 {
1325 int pteidx;
1326 /*
1327 * We can find the actual pte entry without searching by
1328 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1329 * and by noticing the HID bit.
1330 */
1331 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1332 if (pvo->pvo_pte.pte_hi & PTE_HID)
1333 pteidx ^= pmap_pteg_mask * 8;
1334 return pteidx;
1335 }
1336
1337 volatile struct pte *
1338 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1339 {
1340 volatile struct pte *pt;
1341
1342 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1343 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1344 return NULL;
1345 #endif
1346
1347 /*
1348 * If we haven't been supplied the ptegidx, calculate it.
1349 */
1350 if (pteidx == -1) {
1351 int ptegidx;
1352 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1353 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1354 }
1355
1356 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1357
1358 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1359 return pt;
1360 #else
1361 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1362 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1363 "pvo but no valid pte index", pvo);
1364 }
1365 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1366 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1367 "pvo but no valid pte", pvo);
1368 }
1369
1370 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1371 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1372 #if defined(DEBUG) || defined(PMAPCHECK)
1373 pmap_pte_print(pt);
1374 #endif
1375 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1376 "pmap_pteg_table %p but invalid in pvo",
1377 pvo, pt);
1378 }
1379 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1380 #if defined(DEBUG) || defined(PMAPCHECK)
1381 pmap_pte_print(pt);
1382 #endif
1383 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1384 "not match pte %p in pmap_pteg_table",
1385 pvo, pt);
1386 }
1387 return pt;
1388 }
1389
1390 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1391 #if defined(DEBUG) || defined(PMAPCHECK)
1392 pmap_pte_print(pt);
1393 #endif
1394 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1395 "pmap_pteg_table but valid in pvo", pvo, pt);
1396 }
1397 return NULL;
1398 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1399 }
1400
1401 struct pvo_entry *
1402 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1403 {
1404 struct pvo_entry *pvo;
1405 int ptegidx;
1406
1407 va &= ~ADDR_POFF;
1408 ptegidx = va_to_pteg(pm, va);
1409
1410 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1411 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1412 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1413 panic("pmap_pvo_find_va: invalid pvo %p on "
1414 "list %#x (%p)", pvo, ptegidx,
1415 &pmap_pvo_table[ptegidx]);
1416 #endif
1417 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1418 if (pteidx_p)
1419 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1420 return pvo;
1421 }
1422 }
1423 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1424 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1425 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1426 return NULL;
1427 }
1428
1429 #if defined(DEBUG) || defined(PMAPCHECK)
1430 void
1431 pmap_pvo_check(const struct pvo_entry *pvo)
1432 {
1433 struct pvo_head *pvo_head;
1434 struct pvo_entry *pvo0;
1435 volatile struct pte *pt;
1436 int failed = 0;
1437
1438 PMAP_LOCK();
1439
1440 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1441 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1442
1443 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1444 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1445 pvo, pvo->pvo_pmap);
1446 failed = 1;
1447 }
1448
1449 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1450 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1451 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1452 pvo, TAILQ_NEXT(pvo, pvo_olink));
1453 failed = 1;
1454 }
1455
1456 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1457 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1458 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1459 pvo, LIST_NEXT(pvo, pvo_vlink));
1460 failed = 1;
1461 }
1462
1463 if (PVO_MANAGED_P(pvo)) {
1464 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1465 } else {
1466 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1467 printf("pmap_pvo_check: pvo %p: non kernel address "
1468 "on kernel unmanaged list\n", pvo);
1469 failed = 1;
1470 }
1471 pvo_head = &pmap_pvo_kunmanaged;
1472 }
1473 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1474 if (pvo0 == pvo)
1475 break;
1476 }
1477 if (pvo0 == NULL) {
1478 printf("pmap_pvo_check: pvo %p: not present "
1479 "on its vlist head %p\n", pvo, pvo_head);
1480 failed = 1;
1481 }
1482 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1483 printf("pmap_pvo_check: pvo %p: not present "
1484 "on its olist head\n", pvo);
1485 failed = 1;
1486 }
1487 pt = pmap_pvo_to_pte(pvo, -1);
1488 if (pt == NULL) {
1489 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1491 "no PTE\n", pvo);
1492 failed = 1;
1493 }
1494 } else {
1495 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1496 (uintptr_t) pt >=
1497 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1498 printf("pmap_pvo_check: pvo %p: pte %p not in "
1499 "pteg table\n", pvo, pt);
1500 failed = 1;
1501 }
1502 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1503 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1504 "no PTE\n", pvo);
1505 failed = 1;
1506 }
1507 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1508 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1509 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1510 pvo->pvo_pte.pte_hi,
1511 pt->pte_hi);
1512 failed = 1;
1513 }
1514 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1515 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1516 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1517 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1518 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1519 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1520 failed = 1;
1521 }
1522 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1523 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1524 " doesn't not match PVO's VA %#" _PRIxva "\n",
1525 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1526 failed = 1;
1527 }
1528 if (failed)
1529 pmap_pte_print(pt);
1530 }
1531 if (failed)
1532 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1533 pvo->pvo_pmap);
1534
1535 PMAP_UNLOCK();
1536 }
1537 #endif /* DEBUG || PMAPCHECK */
1538
1539 /*
1540 * Search the PVO table looking for a non-wired entry.
1541 * If we find one, remove it and return it.
1542 */
1543
1544 struct pvo_entry *
1545 pmap_pvo_reclaim(struct pmap *pm)
1546 {
1547 struct pvo_tqhead *pvoh;
1548 struct pvo_entry *pvo;
1549 uint32_t idx, endidx;
1550
1551 endidx = pmap_pvo_reclaim_nextidx;
1552 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1553 idx = (idx + 1) & pmap_pteg_mask) {
1554 pvoh = &pmap_pvo_table[idx];
1555 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1556 if (!PVO_WIRED_P(pvo)) {
1557 pmap_pvo_remove(pvo, -1, NULL);
1558 pmap_pvo_reclaim_nextidx = idx;
1559 PMAPCOUNT(pvos_reclaimed);
1560 return pvo;
1561 }
1562 }
1563 }
1564 return NULL;
1565 }
1566
1567 /*
1568 * This returns whether this is the first mapping of a page.
1569 */
1570 int
1571 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1572 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1573 {
1574 struct pvo_entry *pvo;
1575 struct pvo_tqhead *pvoh;
1576 register_t msr;
1577 int ptegidx;
1578 int i;
1579 int poolflags = PR_NOWAIT;
1580
1581 /*
1582 * Compute the PTE Group index.
1583 */
1584 va &= ~ADDR_POFF;
1585 ptegidx = va_to_pteg(pm, va);
1586
1587 msr = pmap_interrupts_off();
1588
1589 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1590 if (pmap_pvo_remove_depth > 0)
1591 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1592 if (++pmap_pvo_enter_depth > 1)
1593 panic("pmap_pvo_enter: called recursively!");
1594 #endif
1595
1596 /*
1597 * Remove any existing mapping for this page. Reuse the
1598 * pvo entry if there a mapping.
1599 */
1600 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1601 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1602 #ifdef DEBUG
1603 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1604 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1605 ~(PTE_REF|PTE_CHG)) == 0 &&
1606 va < VM_MIN_KERNEL_ADDRESS) {
1607 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1608 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1609 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1610 pvo->pvo_pte.pte_hi,
1611 pm->pm_sr[va >> ADDR_SR_SHFT]);
1612 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1613 #ifdef DDBX
1614 Debugger();
1615 #endif
1616 }
1617 #endif
1618 PMAPCOUNT(mappings_replaced);
1619 pmap_pvo_remove(pvo, -1, NULL);
1620 break;
1621 }
1622 }
1623
1624 /*
1625 * If we aren't overwriting an mapping, try to allocate
1626 */
1627 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1628 --pmap_pvo_enter_depth;
1629 #endif
1630 pmap_interrupts_restore(msr);
1631 if (pvo) {
1632 pmap_pvo_free(pvo);
1633 }
1634 pvo = pool_get(pl, poolflags);
1635
1636 #ifdef DEBUG
1637 /*
1638 * Exercise pmap_pvo_reclaim() a little.
1639 */
1640 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1641 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1642 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1643 pool_put(pl, pvo);
1644 pvo = NULL;
1645 }
1646 #endif
1647
1648 msr = pmap_interrupts_off();
1649 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1650 ++pmap_pvo_enter_depth;
1651 #endif
1652 if (pvo == NULL) {
1653 pvo = pmap_pvo_reclaim(pm);
1654 if (pvo == NULL) {
1655 if ((flags & PMAP_CANFAIL) == 0)
1656 panic("pmap_pvo_enter: failed");
1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1658 pmap_pvo_enter_depth--;
1659 #endif
1660 PMAPCOUNT(pvos_failed);
1661 pmap_interrupts_restore(msr);
1662 return ENOMEM;
1663 }
1664 }
1665
1666 pvo->pvo_vaddr = va;
1667 pvo->pvo_pmap = pm;
1668 pvo->pvo_vaddr &= ~ADDR_POFF;
1669 if (flags & VM_PROT_EXECUTE) {
1670 PMAPCOUNT(exec_mappings);
1671 pvo_set_exec(pvo);
1672 }
1673 if (flags & PMAP_WIRED)
1674 pvo->pvo_vaddr |= PVO_WIRED;
1675 if (pvo_head != &pmap_pvo_kunmanaged) {
1676 pvo->pvo_vaddr |= PVO_MANAGED;
1677 PMAPCOUNT(mappings);
1678 } else {
1679 PMAPCOUNT(kernel_mappings);
1680 }
1681 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1682
1683 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1684 if (PVO_WIRED_P(pvo))
1685 pvo->pvo_pmap->pm_stats.wired_count++;
1686 pvo->pvo_pmap->pm_stats.resident_count++;
1687 #if defined(DEBUG)
1688 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1689 DPRINTFN(PVOENTER,
1690 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1691 pvo, pm, va, pa));
1692 #endif
1693
1694 /*
1695 * We hope this succeeds but it isn't required.
1696 */
1697 pvoh = &pmap_pvo_table[ptegidx];
1698 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1699 if (i >= 0) {
1700 PVO_PTEGIDX_SET(pvo, i);
1701 PVO_WHERE(pvo, ENTER_INSERT);
1702 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1703 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1704 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1705
1706 } else {
1707 /*
1708 * Since we didn't have room for this entry (which makes it
1709 * and evicted entry), place it at the head of the list.
1710 */
1711 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1712 PMAPCOUNT(ptes_evicted);
1713 pm->pm_evictions++;
1714 /*
1715 * If this is a kernel page, make sure it's active.
1716 */
1717 if (pm == pmap_kernel()) {
1718 i = pmap_pte_spill(pm, va, false);
1719 KASSERT(i);
1720 }
1721 }
1722 PMAP_PVO_CHECK(pvo); /* sanity check */
1723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1724 pmap_pvo_enter_depth--;
1725 #endif
1726 pmap_interrupts_restore(msr);
1727 return 0;
1728 }
1729
1730 static void
1731 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1732 {
1733 volatile struct pte *pt;
1734 int ptegidx;
1735
1736 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1737 if (++pmap_pvo_remove_depth > 1)
1738 panic("pmap_pvo_remove: called recursively!");
1739 #endif
1740
1741 /*
1742 * If we haven't been supplied the ptegidx, calculate it.
1743 */
1744 if (pteidx == -1) {
1745 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1746 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1747 } else {
1748 ptegidx = pteidx >> 3;
1749 if (pvo->pvo_pte.pte_hi & PTE_HID)
1750 ptegidx ^= pmap_pteg_mask;
1751 }
1752 PMAP_PVO_CHECK(pvo); /* sanity check */
1753
1754 /*
1755 * If there is an active pte entry, we need to deactivate it
1756 * (and save the ref & chg bits).
1757 */
1758 pt = pmap_pvo_to_pte(pvo, pteidx);
1759 if (pt != NULL) {
1760 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1761 PVO_WHERE(pvo, REMOVE);
1762 PVO_PTEGIDX_CLR(pvo);
1763 PMAPCOUNT(ptes_removed);
1764 } else {
1765 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1766 pvo->pvo_pmap->pm_evictions--;
1767 }
1768
1769 /*
1770 * Account for executable mappings.
1771 */
1772 if (PVO_EXECUTABLE_P(pvo))
1773 pvo_clear_exec(pvo);
1774
1775 /*
1776 * Update our statistics.
1777 */
1778 pvo->pvo_pmap->pm_stats.resident_count--;
1779 if (PVO_WIRED_P(pvo))
1780 pvo->pvo_pmap->pm_stats.wired_count--;
1781
1782 /*
1783 * Save the REF/CHG bits into their cache if the page is managed.
1784 */
1785 if (PVO_MANAGED_P(pvo)) {
1786 register_t ptelo = pvo->pvo_pte.pte_lo;
1787 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1788
1789 if (pg != NULL) {
1790 /*
1791 * If this page was changed and it is mapped exec,
1792 * invalidate it.
1793 */
1794 if ((ptelo & PTE_CHG) &&
1795 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1796 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1797 if (LIST_EMPTY(pvoh)) {
1798 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1799 "%#" _PRIxpa ": clear-exec]\n",
1800 VM_PAGE_TO_PHYS(pg)));
1801 pmap_attr_clear(pg, PTE_EXEC);
1802 PMAPCOUNT(exec_uncached_pvo_remove);
1803 } else {
1804 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1805 "%#" _PRIxpa ": syncicache]\n",
1806 VM_PAGE_TO_PHYS(pg)));
1807 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1808 PAGE_SIZE);
1809 PMAPCOUNT(exec_synced_pvo_remove);
1810 }
1811 }
1812
1813 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1814 }
1815 PMAPCOUNT(unmappings);
1816 } else {
1817 PMAPCOUNT(kernel_unmappings);
1818 }
1819
1820 /*
1821 * Remove the PVO from its lists and return it to the pool.
1822 */
1823 LIST_REMOVE(pvo, pvo_vlink);
1824 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1825 if (pvol) {
1826 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1827 }
1828 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1829 pmap_pvo_remove_depth--;
1830 #endif
1831 }
1832
1833 void
1834 pmap_pvo_free(struct pvo_entry *pvo)
1835 {
1836
1837 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1838 }
1839
1840 void
1841 pmap_pvo_free_list(struct pvo_head *pvol)
1842 {
1843 struct pvo_entry *pvo, *npvo;
1844
1845 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1846 npvo = LIST_NEXT(pvo, pvo_vlink);
1847 LIST_REMOVE(pvo, pvo_vlink);
1848 pmap_pvo_free(pvo);
1849 }
1850 }
1851
1852 /*
1853 * Mark a mapping as executable.
1854 * If this is the first executable mapping in the segment,
1855 * clear the noexec flag.
1856 */
1857 static void
1858 pvo_set_exec(struct pvo_entry *pvo)
1859 {
1860 struct pmap *pm = pvo->pvo_pmap;
1861
1862 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1863 return;
1864 }
1865 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1866 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1867 {
1868 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1869 if (pm->pm_exec[sr]++ == 0) {
1870 pm->pm_sr[sr] &= ~SR_NOEXEC;
1871 }
1872 }
1873 #endif
1874 }
1875
1876 /*
1877 * Mark a mapping as non-executable.
1878 * If this was the last executable mapping in the segment,
1879 * set the noexec flag.
1880 */
1881 static void
1882 pvo_clear_exec(struct pvo_entry *pvo)
1883 {
1884 struct pmap *pm = pvo->pvo_pmap;
1885
1886 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1887 return;
1888 }
1889 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1890 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1891 {
1892 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1893 if (--pm->pm_exec[sr] == 0) {
1894 pm->pm_sr[sr] |= SR_NOEXEC;
1895 }
1896 }
1897 #endif
1898 }
1899
1900 /*
1901 * Insert physical page at pa into the given pmap at virtual address va.
1902 */
1903 int
1904 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1905 {
1906 struct mem_region *mp;
1907 struct pvo_head *pvo_head;
1908 struct vm_page *pg;
1909 struct pool *pl;
1910 register_t pte_lo;
1911 int error;
1912 u_int pvo_flags;
1913 u_int was_exec = 0;
1914
1915 PMAP_LOCK();
1916
1917 if (__predict_false(!pmap_initialized)) {
1918 pvo_head = &pmap_pvo_kunmanaged;
1919 pl = &pmap_upvo_pool;
1920 pvo_flags = 0;
1921 pg = NULL;
1922 was_exec = PTE_EXEC;
1923 } else {
1924 pvo_head = pa_to_pvoh(pa, &pg);
1925 pl = &pmap_mpvo_pool;
1926 pvo_flags = PVO_MANAGED;
1927 }
1928
1929 DPRINTFN(ENTER,
1930 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1931 pm, va, pa, prot, flags));
1932
1933 /*
1934 * If this is a managed page, and it's the first reference to the
1935 * page clear the execness of the page. Otherwise fetch the execness.
1936 */
1937 if (pg != NULL)
1938 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1939
1940 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1941
1942 /*
1943 * Assume the page is cache inhibited and access is guarded unless
1944 * it's in our available memory array. If it is in the memory array,
1945 * asssume it's in memory coherent memory.
1946 */
1947 pte_lo = PTE_IG;
1948 if ((flags & PMAP_NC) == 0) {
1949 for (mp = mem; mp->size; mp++) {
1950 if (pa >= mp->start && pa < mp->start + mp->size) {
1951 pte_lo = PTE_M;
1952 break;
1953 }
1954 }
1955 }
1956
1957 if (prot & VM_PROT_WRITE)
1958 pte_lo |= PTE_BW;
1959 else
1960 pte_lo |= PTE_BR;
1961
1962 /*
1963 * If this was in response to a fault, "pre-fault" the PTE's
1964 * changed/referenced bit appropriately.
1965 */
1966 if (flags & VM_PROT_WRITE)
1967 pte_lo |= PTE_CHG;
1968 if (flags & VM_PROT_ALL)
1969 pte_lo |= PTE_REF;
1970
1971 /*
1972 * We need to know if this page can be executable
1973 */
1974 flags |= (prot & VM_PROT_EXECUTE);
1975
1976 /*
1977 * Record mapping for later back-translation and pte spilling.
1978 * This will overwrite any existing mapping.
1979 */
1980 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1981
1982 /*
1983 * Flush the real page from the instruction cache if this page is
1984 * mapped executable and cacheable and has not been flushed since
1985 * the last time it was modified.
1986 */
1987 if (error == 0 &&
1988 (flags & VM_PROT_EXECUTE) &&
1989 (pte_lo & PTE_I) == 0 &&
1990 was_exec == 0) {
1991 DPRINTFN(ENTER, (" syncicache"));
1992 PMAPCOUNT(exec_synced);
1993 pmap_syncicache(pa, PAGE_SIZE);
1994 if (pg != NULL) {
1995 pmap_attr_save(pg, PTE_EXEC);
1996 PMAPCOUNT(exec_cached);
1997 #if defined(DEBUG) || defined(PMAPDEBUG)
1998 if (pmapdebug & PMAPDEBUG_ENTER)
1999 printf(" marked-as-exec");
2000 else if (pmapdebug & PMAPDEBUG_EXEC)
2001 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2002 VM_PAGE_TO_PHYS(pg));
2003
2004 #endif
2005 }
2006 }
2007
2008 DPRINTFN(ENTER, (": error=%d\n", error));
2009
2010 PMAP_UNLOCK();
2011
2012 return error;
2013 }
2014
2015 void
2016 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2017 {
2018 struct mem_region *mp;
2019 register_t pte_lo;
2020 int error;
2021
2022 #if defined (PMAP_OEA64_BRIDGE)
2023 if (va < VM_MIN_KERNEL_ADDRESS)
2024 panic("pmap_kenter_pa: attempt to enter "
2025 "non-kernel address %#" _PRIxva "!", va);
2026 #endif
2027
2028 DPRINTFN(KENTER,
2029 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2030
2031 PMAP_LOCK();
2032
2033 /*
2034 * Assume the page is cache inhibited and access is guarded unless
2035 * it's in our available memory array. If it is in the memory array,
2036 * asssume it's in memory coherent memory.
2037 */
2038 pte_lo = PTE_IG;
2039 if ((prot & PMAP_NC) == 0) {
2040 for (mp = mem; mp->size; mp++) {
2041 if (pa >= mp->start && pa < mp->start + mp->size) {
2042 pte_lo = PTE_M;
2043 break;
2044 }
2045 }
2046 }
2047
2048 if (prot & VM_PROT_WRITE)
2049 pte_lo |= PTE_BW;
2050 else
2051 pte_lo |= PTE_BR;
2052
2053 /*
2054 * We don't care about REF/CHG on PVOs on the unmanaged list.
2055 */
2056 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2057 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2058
2059 if (error != 0)
2060 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2061 va, pa, error);
2062
2063 PMAP_UNLOCK();
2064 }
2065
2066 void
2067 pmap_kremove(vaddr_t va, vsize_t len)
2068 {
2069 if (va < VM_MIN_KERNEL_ADDRESS)
2070 panic("pmap_kremove: attempt to remove "
2071 "non-kernel address %#" _PRIxva "!", va);
2072
2073 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2074 pmap_remove(pmap_kernel(), va, va + len);
2075 }
2076
2077 /*
2078 * Remove the given range of mapping entries.
2079 */
2080 void
2081 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2082 {
2083 struct pvo_head pvol;
2084 struct pvo_entry *pvo;
2085 register_t msr;
2086 int pteidx;
2087
2088 PMAP_LOCK();
2089 LIST_INIT(&pvol);
2090 msr = pmap_interrupts_off();
2091 for (; va < endva; va += PAGE_SIZE) {
2092 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2093 if (pvo != NULL) {
2094 pmap_pvo_remove(pvo, pteidx, &pvol);
2095 }
2096 }
2097 pmap_interrupts_restore(msr);
2098 pmap_pvo_free_list(&pvol);
2099 PMAP_UNLOCK();
2100 }
2101
2102 /*
2103 * Get the physical page address for the given pmap/virtual address.
2104 */
2105 bool
2106 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2107 {
2108 struct pvo_entry *pvo;
2109 register_t msr;
2110
2111 PMAP_LOCK();
2112
2113 /*
2114 * If this is a kernel pmap lookup, also check the battable
2115 * and if we get a hit, translate the VA to a PA using the
2116 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2117 * that will wrap back to 0.
2118 */
2119 if (pm == pmap_kernel() &&
2120 (va < VM_MIN_KERNEL_ADDRESS ||
2121 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2122 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2123 #if defined (PMAP_OEA)
2124 #ifdef PPC_OEA601
2125 if ((MFPVR() >> 16) == MPC601) {
2126 register_t batu = battable[va >> 23].batu;
2127 register_t batl = battable[va >> 23].batl;
2128 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2129 if (BAT601_VALID_P(batl) &&
2130 BAT601_VA_MATCH_P(batu, batl, va)) {
2131 register_t mask =
2132 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2133 if (pap)
2134 *pap = (batl & mask) | (va & ~mask);
2135 PMAP_UNLOCK();
2136 return true;
2137 } else if (SR601_VALID_P(sr) &&
2138 SR601_PA_MATCH_P(sr, va)) {
2139 if (pap)
2140 *pap = va;
2141 PMAP_UNLOCK();
2142 return true;
2143 }
2144 } else
2145 #endif /* PPC_OEA601 */
2146 {
2147 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2148 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2149 register_t batl =
2150 battable[va >> ADDR_SR_SHFT].batl;
2151 register_t mask =
2152 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2153 if (pap)
2154 *pap = (batl & mask) | (va & ~mask);
2155 PMAP_UNLOCK();
2156 return true;
2157 }
2158 }
2159 return false;
2160 #elif defined (PMAP_OEA64_BRIDGE)
2161 if (va >= SEGMENT_LENGTH)
2162 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2163 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2164 else {
2165 if (pap)
2166 *pap = va;
2167 PMAP_UNLOCK();
2168 return true;
2169 }
2170 #elif defined (PMAP_OEA64)
2171 #error PPC_OEA64 not supported
2172 #endif /* PPC_OEA */
2173 }
2174
2175 msr = pmap_interrupts_off();
2176 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2177 if (pvo != NULL) {
2178 PMAP_PVO_CHECK(pvo); /* sanity check */
2179 if (pap)
2180 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2181 | (va & ADDR_POFF);
2182 }
2183 pmap_interrupts_restore(msr);
2184 PMAP_UNLOCK();
2185 return pvo != NULL;
2186 }
2187
2188 /*
2189 * Lower the protection on the specified range of this pmap.
2190 */
2191 void
2192 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2193 {
2194 struct pvo_entry *pvo;
2195 volatile struct pte *pt;
2196 register_t msr;
2197 int pteidx;
2198
2199 /*
2200 * Since this routine only downgrades protection, we should
2201 * always be called with at least one bit not set.
2202 */
2203 KASSERT(prot != VM_PROT_ALL);
2204
2205 /*
2206 * If there is no protection, this is equivalent to
2207 * remove the pmap from the pmap.
2208 */
2209 if ((prot & VM_PROT_READ) == 0) {
2210 pmap_remove(pm, va, endva);
2211 return;
2212 }
2213
2214 PMAP_LOCK();
2215
2216 msr = pmap_interrupts_off();
2217 for (; va < endva; va += PAGE_SIZE) {
2218 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2219 if (pvo == NULL)
2220 continue;
2221 PMAP_PVO_CHECK(pvo); /* sanity check */
2222
2223 /*
2224 * Revoke executable if asked to do so.
2225 */
2226 if ((prot & VM_PROT_EXECUTE) == 0)
2227 pvo_clear_exec(pvo);
2228
2229 #if 0
2230 /*
2231 * If the page is already read-only, no change
2232 * needs to be made.
2233 */
2234 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2235 continue;
2236 #endif
2237 /*
2238 * Grab the PTE pointer before we diddle with
2239 * the cached PTE copy.
2240 */
2241 pt = pmap_pvo_to_pte(pvo, pteidx);
2242 /*
2243 * Change the protection of the page.
2244 */
2245 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2246 pvo->pvo_pte.pte_lo |= PTE_BR;
2247
2248 /*
2249 * If the PVO is in the page table, update
2250 * that pte at well.
2251 */
2252 if (pt != NULL) {
2253 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2254 PVO_WHERE(pvo, PMAP_PROTECT);
2255 PMAPCOUNT(ptes_changed);
2256 }
2257
2258 PMAP_PVO_CHECK(pvo); /* sanity check */
2259 }
2260 pmap_interrupts_restore(msr);
2261 PMAP_UNLOCK();
2262 }
2263
2264 void
2265 pmap_unwire(pmap_t pm, vaddr_t va)
2266 {
2267 struct pvo_entry *pvo;
2268 register_t msr;
2269
2270 PMAP_LOCK();
2271 msr = pmap_interrupts_off();
2272 pvo = pmap_pvo_find_va(pm, va, NULL);
2273 if (pvo != NULL) {
2274 if (PVO_WIRED_P(pvo)) {
2275 pvo->pvo_vaddr &= ~PVO_WIRED;
2276 pm->pm_stats.wired_count--;
2277 }
2278 PMAP_PVO_CHECK(pvo); /* sanity check */
2279 }
2280 pmap_interrupts_restore(msr);
2281 PMAP_UNLOCK();
2282 }
2283
2284 /*
2285 * Lower the protection on the specified physical page.
2286 */
2287 void
2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2289 {
2290 struct pvo_head *pvo_head, pvol;
2291 struct pvo_entry *pvo, *next_pvo;
2292 volatile struct pte *pt;
2293 register_t msr;
2294
2295 PMAP_LOCK();
2296
2297 KASSERT(prot != VM_PROT_ALL);
2298 LIST_INIT(&pvol);
2299 msr = pmap_interrupts_off();
2300
2301 /*
2302 * When UVM reuses a page, it does a pmap_page_protect with
2303 * VM_PROT_NONE. At that point, we can clear the exec flag
2304 * since we know the page will have different contents.
2305 */
2306 if ((prot & VM_PROT_READ) == 0) {
2307 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2308 VM_PAGE_TO_PHYS(pg)));
2309 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2310 PMAPCOUNT(exec_uncached_page_protect);
2311 pmap_attr_clear(pg, PTE_EXEC);
2312 }
2313 }
2314
2315 pvo_head = vm_page_to_pvoh(pg);
2316 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2317 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2318 PMAP_PVO_CHECK(pvo); /* sanity check */
2319
2320 /*
2321 * Downgrading to no mapping at all, we just remove the entry.
2322 */
2323 if ((prot & VM_PROT_READ) == 0) {
2324 pmap_pvo_remove(pvo, -1, &pvol);
2325 continue;
2326 }
2327
2328 /*
2329 * If EXEC permission is being revoked, just clear the
2330 * flag in the PVO.
2331 */
2332 if ((prot & VM_PROT_EXECUTE) == 0)
2333 pvo_clear_exec(pvo);
2334
2335 /*
2336 * If this entry is already RO, don't diddle with the
2337 * page table.
2338 */
2339 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2340 PMAP_PVO_CHECK(pvo);
2341 continue;
2342 }
2343
2344 /*
2345 * Grab the PTE before the we diddle the bits so
2346 * pvo_to_pte can verify the pte contents are as
2347 * expected.
2348 */
2349 pt = pmap_pvo_to_pte(pvo, -1);
2350 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2351 pvo->pvo_pte.pte_lo |= PTE_BR;
2352 if (pt != NULL) {
2353 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2354 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2355 PMAPCOUNT(ptes_changed);
2356 }
2357 PMAP_PVO_CHECK(pvo); /* sanity check */
2358 }
2359 pmap_interrupts_restore(msr);
2360 pmap_pvo_free_list(&pvol);
2361
2362 PMAP_UNLOCK();
2363 }
2364
2365 /*
2366 * Activate the address space for the specified process. If the process
2367 * is the current process, load the new MMU context.
2368 */
2369 void
2370 pmap_activate(struct lwp *l)
2371 {
2372 struct pcb *pcb = lwp_getpcb(l);
2373 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2374
2375 DPRINTFN(ACTIVATE,
2376 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2377
2378 /*
2379 * XXX Normally performed in cpu_lwp_fork().
2380 */
2381 pcb->pcb_pm = pmap;
2382
2383 /*
2384 * In theory, the SR registers need only be valid on return
2385 * to user space wait to do them there.
2386 */
2387 if (l == curlwp) {
2388 /* Store pointer to new current pmap. */
2389 curpm = pmap;
2390 }
2391 }
2392
2393 /*
2394 * Deactivate the specified process's address space.
2395 */
2396 void
2397 pmap_deactivate(struct lwp *l)
2398 {
2399 }
2400
2401 bool
2402 pmap_query_bit(struct vm_page *pg, int ptebit)
2403 {
2404 struct pvo_entry *pvo;
2405 volatile struct pte *pt;
2406 register_t msr;
2407
2408 PMAP_LOCK();
2409
2410 if (pmap_attr_fetch(pg) & ptebit) {
2411 PMAP_UNLOCK();
2412 return true;
2413 }
2414
2415 msr = pmap_interrupts_off();
2416 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2417 PMAP_PVO_CHECK(pvo); /* sanity check */
2418 /*
2419 * See if we saved the bit off. If so cache, it and return
2420 * success.
2421 */
2422 if (pvo->pvo_pte.pte_lo & ptebit) {
2423 pmap_attr_save(pg, ptebit);
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 pmap_interrupts_restore(msr);
2426 PMAP_UNLOCK();
2427 return true;
2428 }
2429 }
2430 /*
2431 * No luck, now go thru the hard part of looking at the ptes
2432 * themselves. Sync so any pending REF/CHG bits are flushed
2433 * to the PTEs.
2434 */
2435 SYNC();
2436 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2437 PMAP_PVO_CHECK(pvo); /* sanity check */
2438 /*
2439 * See if this pvo have a valid PTE. If so, fetch the
2440 * REF/CHG bits from the valid PTE. If the appropriate
2441 * ptebit is set, cache, it and return success.
2442 */
2443 pt = pmap_pvo_to_pte(pvo, -1);
2444 if (pt != NULL) {
2445 pmap_pte_synch(pt, &pvo->pvo_pte);
2446 if (pvo->pvo_pte.pte_lo & ptebit) {
2447 pmap_attr_save(pg, ptebit);
2448 PMAP_PVO_CHECK(pvo); /* sanity check */
2449 pmap_interrupts_restore(msr);
2450 PMAP_UNLOCK();
2451 return true;
2452 }
2453 }
2454 }
2455 pmap_interrupts_restore(msr);
2456 PMAP_UNLOCK();
2457 return false;
2458 }
2459
2460 bool
2461 pmap_clear_bit(struct vm_page *pg, int ptebit)
2462 {
2463 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2464 struct pvo_entry *pvo;
2465 volatile struct pte *pt;
2466 register_t msr;
2467 int rv = 0;
2468
2469 PMAP_LOCK();
2470 msr = pmap_interrupts_off();
2471
2472 /*
2473 * Fetch the cache value
2474 */
2475 rv |= pmap_attr_fetch(pg);
2476
2477 /*
2478 * Clear the cached value.
2479 */
2480 pmap_attr_clear(pg, ptebit);
2481
2482 /*
2483 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2484 * can reset the right ones). Note that since the pvo entries and
2485 * list heads are accessed via BAT0 and are never placed in the
2486 * page table, we don't have to worry about further accesses setting
2487 * the REF/CHG bits.
2488 */
2489 SYNC();
2490
2491 /*
2492 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2493 * valid PTE. If so, clear the ptebit from the valid PTE.
2494 */
2495 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2496 PMAP_PVO_CHECK(pvo); /* sanity check */
2497 pt = pmap_pvo_to_pte(pvo, -1);
2498 if (pt != NULL) {
2499 /*
2500 * Only sync the PTE if the bit we are looking
2501 * for is not already set.
2502 */
2503 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2504 pmap_pte_synch(pt, &pvo->pvo_pte);
2505 /*
2506 * If the bit we are looking for was already set,
2507 * clear that bit in the pte.
2508 */
2509 if (pvo->pvo_pte.pte_lo & ptebit)
2510 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2511 }
2512 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2513 pvo->pvo_pte.pte_lo &= ~ptebit;
2514 PMAP_PVO_CHECK(pvo); /* sanity check */
2515 }
2516 pmap_interrupts_restore(msr);
2517
2518 /*
2519 * If we are clearing the modify bit and this page was marked EXEC
2520 * and the user of the page thinks the page was modified, then we
2521 * need to clean it from the icache if it's mapped or clear the EXEC
2522 * bit if it's not mapped. The page itself might not have the CHG
2523 * bit set if the modification was done via DMA to the page.
2524 */
2525 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2526 if (LIST_EMPTY(pvoh)) {
2527 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2528 VM_PAGE_TO_PHYS(pg)));
2529 pmap_attr_clear(pg, PTE_EXEC);
2530 PMAPCOUNT(exec_uncached_clear_modify);
2531 } else {
2532 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2533 VM_PAGE_TO_PHYS(pg)));
2534 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2535 PMAPCOUNT(exec_synced_clear_modify);
2536 }
2537 }
2538 PMAP_UNLOCK();
2539 return (rv & ptebit) != 0;
2540 }
2541
2542 void
2543 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2544 {
2545 struct pvo_entry *pvo;
2546 size_t offset = va & ADDR_POFF;
2547 int s;
2548
2549 PMAP_LOCK();
2550 s = splvm();
2551 while (len > 0) {
2552 size_t seglen = PAGE_SIZE - offset;
2553 if (seglen > len)
2554 seglen = len;
2555 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2556 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2557 pmap_syncicache(
2558 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2559 PMAP_PVO_CHECK(pvo);
2560 }
2561 va += seglen;
2562 len -= seglen;
2563 offset = 0;
2564 }
2565 splx(s);
2566 PMAP_UNLOCK();
2567 }
2568
2569 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2570 void
2571 pmap_pte_print(volatile struct pte *pt)
2572 {
2573 printf("PTE %p: ", pt);
2574
2575 #if defined(PMAP_OEA)
2576 /* High word: */
2577 printf("%#" _PRIxpte ": [", pt->pte_hi);
2578 #else
2579 printf("%#" _PRIxpte ": [", pt->pte_hi);
2580 #endif /* PMAP_OEA */
2581
2582 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2583 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2584
2585 printf("%#" _PRIxpte " %#" _PRIxpte "",
2586 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2587 pt->pte_hi & PTE_API);
2588 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2589 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2590 #else
2591 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2592 #endif /* PMAP_OEA */
2593
2594 /* Low word: */
2595 #if defined (PMAP_OEA)
2596 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2597 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2598 #else
2599 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2600 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2601 #endif
2602 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2603 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2604 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2605 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2606 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2607 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2608 switch (pt->pte_lo & PTE_PP) {
2609 case PTE_BR: printf("br]\n"); break;
2610 case PTE_BW: printf("bw]\n"); break;
2611 case PTE_SO: printf("so]\n"); break;
2612 case PTE_SW: printf("sw]\n"); break;
2613 }
2614 }
2615 #endif
2616
2617 #if defined(DDB)
2618 void
2619 pmap_pteg_check(void)
2620 {
2621 volatile struct pte *pt;
2622 int i;
2623 int ptegidx;
2624 u_int p_valid = 0;
2625 u_int s_valid = 0;
2626 u_int invalid = 0;
2627
2628 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2629 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2630 if (pt->pte_hi & PTE_VALID) {
2631 if (pt->pte_hi & PTE_HID)
2632 s_valid++;
2633 else
2634 {
2635 p_valid++;
2636 }
2637 } else
2638 invalid++;
2639 }
2640 }
2641 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2642 p_valid, p_valid, s_valid, s_valid,
2643 invalid, invalid);
2644 }
2645
2646 void
2647 pmap_print_mmuregs(void)
2648 {
2649 int i;
2650 u_int cpuvers;
2651 #ifndef PMAP_OEA64
2652 vaddr_t addr;
2653 register_t soft_sr[16];
2654 #endif
2655 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2656 struct bat soft_ibat[4];
2657 struct bat soft_dbat[4];
2658 #endif
2659 paddr_t sdr1;
2660
2661 cpuvers = MFPVR() >> 16;
2662 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2663 #ifndef PMAP_OEA64
2664 addr = 0;
2665 for (i = 0; i < 16; i++) {
2666 soft_sr[i] = MFSRIN(addr);
2667 addr += (1 << ADDR_SR_SHFT);
2668 }
2669 #endif
2670
2671 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2672 /* read iBAT (601: uBAT) registers */
2673 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2674 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2675 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2676 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2677 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2678 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2679 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2680 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2681
2682
2683 if (cpuvers != MPC601) {
2684 /* read dBAT registers */
2685 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2686 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2687 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2688 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2689 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2690 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2691 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2692 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2693 }
2694 #endif
2695
2696 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2697 #ifndef PMAP_OEA64
2698 printf("SR[]:\t");
2699 for (i = 0; i < 4; i++)
2700 printf("0x%08lx, ", soft_sr[i]);
2701 printf("\n\t");
2702 for ( ; i < 8; i++)
2703 printf("0x%08lx, ", soft_sr[i]);
2704 printf("\n\t");
2705 for ( ; i < 12; i++)
2706 printf("0x%08lx, ", soft_sr[i]);
2707 printf("\n\t");
2708 for ( ; i < 16; i++)
2709 printf("0x%08lx, ", soft_sr[i]);
2710 printf("\n");
2711 #endif
2712
2713 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2714 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2715 for (i = 0; i < 4; i++) {
2716 printf("0x%08lx 0x%08lx, ",
2717 soft_ibat[i].batu, soft_ibat[i].batl);
2718 if (i == 1)
2719 printf("\n\t");
2720 }
2721 if (cpuvers != MPC601) {
2722 printf("\ndBAT[]:\t");
2723 for (i = 0; i < 4; i++) {
2724 printf("0x%08lx 0x%08lx, ",
2725 soft_dbat[i].batu, soft_dbat[i].batl);
2726 if (i == 1)
2727 printf("\n\t");
2728 }
2729 }
2730 printf("\n");
2731 #endif /* PMAP_OEA... */
2732 }
2733
2734 void
2735 pmap_print_pte(pmap_t pm, vaddr_t va)
2736 {
2737 struct pvo_entry *pvo;
2738 volatile struct pte *pt;
2739 int pteidx;
2740
2741 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2742 if (pvo != NULL) {
2743 pt = pmap_pvo_to_pte(pvo, pteidx);
2744 if (pt != NULL) {
2745 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2746 va, pt,
2747 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2748 pt->pte_hi, pt->pte_lo);
2749 } else {
2750 printf("No valid PTE found\n");
2751 }
2752 } else {
2753 printf("Address not in pmap\n");
2754 }
2755 }
2756
2757 void
2758 pmap_pteg_dist(void)
2759 {
2760 struct pvo_entry *pvo;
2761 int ptegidx;
2762 int depth;
2763 int max_depth = 0;
2764 unsigned int depths[64];
2765
2766 memset(depths, 0, sizeof(depths));
2767 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2768 depth = 0;
2769 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2770 depth++;
2771 }
2772 if (depth > max_depth)
2773 max_depth = depth;
2774 if (depth > 63)
2775 depth = 63;
2776 depths[depth]++;
2777 }
2778
2779 for (depth = 0; depth < 64; depth++) {
2780 printf(" [%2d]: %8u", depth, depths[depth]);
2781 if ((depth & 3) == 3)
2782 printf("\n");
2783 if (depth == max_depth)
2784 break;
2785 }
2786 if ((depth & 3) != 3)
2787 printf("\n");
2788 printf("Max depth found was %d\n", max_depth);
2789 }
2790 #endif /* DEBUG */
2791
2792 #if defined(PMAPCHECK) || defined(DEBUG)
2793 void
2794 pmap_pvo_verify(void)
2795 {
2796 int ptegidx;
2797 int s;
2798
2799 s = splvm();
2800 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2801 struct pvo_entry *pvo;
2802 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2803 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2804 panic("pmap_pvo_verify: invalid pvo %p "
2805 "on list %#x", pvo, ptegidx);
2806 pmap_pvo_check(pvo);
2807 }
2808 }
2809 splx(s);
2810 }
2811 #endif /* PMAPCHECK */
2812
2813
2814 void *
2815 pmap_pool_ualloc(struct pool *pp, int flags)
2816 {
2817 struct pvo_page *pvop;
2818
2819 if (uvm.page_init_done != true) {
2820 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2821 }
2822
2823 PMAP_LOCK();
2824 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2825 if (pvop != NULL) {
2826 pmap_upvop_free--;
2827 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2828 PMAP_UNLOCK();
2829 return pvop;
2830 }
2831 PMAP_UNLOCK();
2832 return pmap_pool_malloc(pp, flags);
2833 }
2834
2835 void *
2836 pmap_pool_malloc(struct pool *pp, int flags)
2837 {
2838 struct pvo_page *pvop;
2839 struct vm_page *pg;
2840
2841 PMAP_LOCK();
2842 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2843 if (pvop != NULL) {
2844 pmap_mpvop_free--;
2845 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2846 PMAP_UNLOCK();
2847 return pvop;
2848 }
2849 PMAP_UNLOCK();
2850 again:
2851 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2852 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2853 if (__predict_false(pg == NULL)) {
2854 if (flags & PR_WAITOK) {
2855 uvm_wait("plpg");
2856 goto again;
2857 } else {
2858 return (0);
2859 }
2860 }
2861 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2862 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2863 }
2864
2865 void
2866 pmap_pool_ufree(struct pool *pp, void *va)
2867 {
2868 struct pvo_page *pvop;
2869 #if 0
2870 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2871 pmap_pool_mfree(va, size, tag);
2872 return;
2873 }
2874 #endif
2875 PMAP_LOCK();
2876 pvop = va;
2877 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2878 pmap_upvop_free++;
2879 if (pmap_upvop_free > pmap_upvop_maxfree)
2880 pmap_upvop_maxfree = pmap_upvop_free;
2881 PMAP_UNLOCK();
2882 }
2883
2884 void
2885 pmap_pool_mfree(struct pool *pp, void *va)
2886 {
2887 struct pvo_page *pvop;
2888
2889 PMAP_LOCK();
2890 pvop = va;
2891 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2892 pmap_mpvop_free++;
2893 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2894 pmap_mpvop_maxfree = pmap_mpvop_free;
2895 PMAP_UNLOCK();
2896 #if 0
2897 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2898 #endif
2899 }
2900
2901 /*
2902 * This routine in bootstraping to steal to-be-managed memory (which will
2903 * then be unmanaged). We use it to grab from the first 256MB for our
2904 * pmap needs and above 256MB for other stuff.
2905 */
2906 vaddr_t
2907 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2908 {
2909 vsize_t size;
2910 vaddr_t va;
2911 paddr_t pa = 0;
2912 int npgs, bank;
2913 struct vm_physseg *ps;
2914
2915 if (uvm.page_init_done == true)
2916 panic("pmap_steal_memory: called _after_ bootstrap");
2917
2918 *vstartp = VM_MIN_KERNEL_ADDRESS;
2919 *vendp = VM_MAX_KERNEL_ADDRESS;
2920
2921 size = round_page(vsize);
2922 npgs = atop(size);
2923
2924 /*
2925 * PA 0 will never be among those given to UVM so we can use it
2926 * to indicate we couldn't steal any memory.
2927 */
2928 for (bank = 0; bank < vm_nphysseg; bank++) {
2929 ps = VM_PHYSMEM_PTR(bank);
2930 if (ps->free_list == VM_FREELIST_FIRST256 &&
2931 ps->avail_end - ps->avail_start >= npgs) {
2932 pa = ptoa(ps->avail_start);
2933 break;
2934 }
2935 }
2936
2937 if (pa == 0)
2938 panic("pmap_steal_memory: no approriate memory to steal!");
2939
2940 ps->avail_start += npgs;
2941 ps->start += npgs;
2942
2943 /*
2944 * If we've used up all the pages in the segment, remove it and
2945 * compact the list.
2946 */
2947 if (ps->avail_start == ps->end) {
2948 /*
2949 * If this was the last one, then a very bad thing has occurred
2950 */
2951 if (--vm_nphysseg == 0)
2952 panic("pmap_steal_memory: out of memory!");
2953
2954 printf("pmap_steal_memory: consumed bank %d\n", bank);
2955 for (; bank < vm_nphysseg; bank++, ps++) {
2956 ps[0] = ps[1];
2957 }
2958 }
2959
2960 va = (vaddr_t) pa;
2961 memset((void *) va, 0, size);
2962 pmap_pages_stolen += npgs;
2963 #ifdef DEBUG
2964 if (pmapdebug && npgs > 1) {
2965 u_int cnt = 0;
2966 for (bank = 0; bank < vm_nphysseg; bank++) {
2967 ps = VM_PHYSMEM_PTR(bank);
2968 cnt += ps->avail_end - ps->avail_start;
2969 }
2970 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2971 npgs, pmap_pages_stolen, cnt);
2972 }
2973 #endif
2974
2975 return va;
2976 }
2977
2978 /*
2979 * Find a chuck of memory with right size and alignment.
2980 */
2981 paddr_t
2982 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2983 {
2984 struct mem_region *mp;
2985 paddr_t s, e;
2986 int i, j;
2987
2988 size = round_page(size);
2989
2990 DPRINTFN(BOOT,
2991 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2992 size, alignment, at_end));
2993
2994 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2995 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2996 alignment);
2997
2998 if (at_end) {
2999 if (alignment != PAGE_SIZE)
3000 panic("pmap_boot_find_memory: invalid ending "
3001 "alignment %#" _PRIxpa, alignment);
3002
3003 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3004 s = mp->start + mp->size - size;
3005 if (s >= mp->start && mp->size >= size) {
3006 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3007 DPRINTFN(BOOT,
3008 ("pmap_boot_find_memory: b-avail[%d] start "
3009 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3010 mp->start, mp->size));
3011 mp->size -= size;
3012 DPRINTFN(BOOT,
3013 ("pmap_boot_find_memory: a-avail[%d] start "
3014 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3015 mp->start, mp->size));
3016 return s;
3017 }
3018 }
3019 panic("pmap_boot_find_memory: no available memory");
3020 }
3021
3022 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3023 s = (mp->start + alignment - 1) & ~(alignment-1);
3024 e = s + size;
3025
3026 /*
3027 * Is the calculated region entirely within the region?
3028 */
3029 if (s < mp->start || e > mp->start + mp->size)
3030 continue;
3031
3032 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3033 if (s == mp->start) {
3034 /*
3035 * If the block starts at the beginning of region,
3036 * adjust the size & start. (the region may now be
3037 * zero in length)
3038 */
3039 DPRINTFN(BOOT,
3040 ("pmap_boot_find_memory: b-avail[%d] start "
3041 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3042 mp->start += size;
3043 mp->size -= size;
3044 DPRINTFN(BOOT,
3045 ("pmap_boot_find_memory: a-avail[%d] start "
3046 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3047 } else if (e == mp->start + mp->size) {
3048 /*
3049 * If the block starts at the beginning of region,
3050 * adjust only the size.
3051 */
3052 DPRINTFN(BOOT,
3053 ("pmap_boot_find_memory: b-avail[%d] start "
3054 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3055 mp->size -= size;
3056 DPRINTFN(BOOT,
3057 ("pmap_boot_find_memory: a-avail[%d] start "
3058 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3059 } else {
3060 /*
3061 * Block is in the middle of the region, so we
3062 * have to split it in two.
3063 */
3064 for (j = avail_cnt; j > i + 1; j--) {
3065 avail[j] = avail[j-1];
3066 }
3067 DPRINTFN(BOOT,
3068 ("pmap_boot_find_memory: b-avail[%d] start "
3069 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3070 mp[1].start = e;
3071 mp[1].size = mp[0].start + mp[0].size - e;
3072 mp[0].size = s - mp[0].start;
3073 avail_cnt++;
3074 for (; i < avail_cnt; i++) {
3075 DPRINTFN(BOOT,
3076 ("pmap_boot_find_memory: a-avail[%d] "
3077 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3078 avail[i].start, avail[i].size));
3079 }
3080 }
3081 KASSERT(s == (uintptr_t) s);
3082 return s;
3083 }
3084 panic("pmap_boot_find_memory: not enough memory for "
3085 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3086 }
3087
3088 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3089 #if defined (PMAP_OEA64_BRIDGE)
3090 int
3091 pmap_setup_segment0_map(int use_large_pages, ...)
3092 {
3093 vaddr_t va;
3094
3095 register_t pte_lo = 0x0;
3096 int ptegidx = 0, i = 0;
3097 struct pte pte;
3098 va_list ap;
3099
3100 /* Coherent + Supervisor RW, no user access */
3101 pte_lo = PTE_M;
3102
3103 /* XXXSL
3104 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3105 * these have to take priority.
3106 */
3107 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3108 ptegidx = va_to_pteg(pmap_kernel(), va);
3109 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3110 i = pmap_pte_insert(ptegidx, &pte);
3111 }
3112
3113 va_start(ap, use_large_pages);
3114 while (1) {
3115 paddr_t pa;
3116 size_t size;
3117
3118 va = va_arg(ap, vaddr_t);
3119
3120 if (va == 0)
3121 break;
3122
3123 pa = va_arg(ap, paddr_t);
3124 size = va_arg(ap, size_t);
3125
3126 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3127 #if 0
3128 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3129 #endif
3130 ptegidx = va_to_pteg(pmap_kernel(), va);
3131 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3132 i = pmap_pte_insert(ptegidx, &pte);
3133 }
3134 }
3135
3136 TLBSYNC();
3137 SYNC();
3138 return (0);
3139 }
3140 #endif /* PMAP_OEA64_BRIDGE */
3141
3142 /*
3143 * This is not part of the defined PMAP interface and is specific to the
3144 * PowerPC architecture. This is called during initppc, before the system
3145 * is really initialized.
3146 */
3147 void
3148 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3149 {
3150 struct mem_region *mp, tmp;
3151 paddr_t s, e;
3152 psize_t size;
3153 int i, j;
3154
3155 /*
3156 * Get memory.
3157 */
3158 mem_regions(&mem, &avail);
3159 #if defined(DEBUG)
3160 if (pmapdebug & PMAPDEBUG_BOOT) {
3161 printf("pmap_bootstrap: memory configuration:\n");
3162 for (mp = mem; mp->size; mp++) {
3163 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3164 mp->start, mp->size);
3165 }
3166 for (mp = avail; mp->size; mp++) {
3167 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3168 mp->start, mp->size);
3169 }
3170 }
3171 #endif
3172
3173 /*
3174 * Find out how much physical memory we have and in how many chunks.
3175 */
3176 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3177 if (mp->start >= pmap_memlimit)
3178 continue;
3179 if (mp->start + mp->size > pmap_memlimit) {
3180 size = pmap_memlimit - mp->start;
3181 physmem += btoc(size);
3182 } else {
3183 physmem += btoc(mp->size);
3184 }
3185 mem_cnt++;
3186 }
3187
3188 /*
3189 * Count the number of available entries.
3190 */
3191 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3192 avail_cnt++;
3193
3194 /*
3195 * Page align all regions.
3196 */
3197 kernelstart = trunc_page(kernelstart);
3198 kernelend = round_page(kernelend);
3199 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3200 s = round_page(mp->start);
3201 mp->size -= (s - mp->start);
3202 mp->size = trunc_page(mp->size);
3203 mp->start = s;
3204 e = mp->start + mp->size;
3205
3206 DPRINTFN(BOOT,
3207 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3208 i, mp->start, mp->size));
3209
3210 /*
3211 * Don't allow the end to run beyond our artificial limit
3212 */
3213 if (e > pmap_memlimit)
3214 e = pmap_memlimit;
3215
3216 /*
3217 * Is this region empty or strange? skip it.
3218 */
3219 if (e <= s) {
3220 mp->start = 0;
3221 mp->size = 0;
3222 continue;
3223 }
3224
3225 /*
3226 * Does this overlap the beginning of kernel?
3227 * Does extend past the end of the kernel?
3228 */
3229 else if (s < kernelstart && e > kernelstart) {
3230 if (e > kernelend) {
3231 avail[avail_cnt].start = kernelend;
3232 avail[avail_cnt].size = e - kernelend;
3233 avail_cnt++;
3234 }
3235 mp->size = kernelstart - s;
3236 }
3237 /*
3238 * Check whether this region overlaps the end of the kernel.
3239 */
3240 else if (s < kernelend && e > kernelend) {
3241 mp->start = kernelend;
3242 mp->size = e - kernelend;
3243 }
3244 /*
3245 * Look whether this regions is completely inside the kernel.
3246 * Nuke it if it does.
3247 */
3248 else if (s >= kernelstart && e <= kernelend) {
3249 mp->start = 0;
3250 mp->size = 0;
3251 }
3252 /*
3253 * If the user imposed a memory limit, enforce it.
3254 */
3255 else if (s >= pmap_memlimit) {
3256 mp->start = -PAGE_SIZE; /* let's know why */
3257 mp->size = 0;
3258 }
3259 else {
3260 mp->start = s;
3261 mp->size = e - s;
3262 }
3263 DPRINTFN(BOOT,
3264 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3265 i, mp->start, mp->size));
3266 }
3267
3268 /*
3269 * Move (and uncount) all the null return to the end.
3270 */
3271 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3272 if (mp->size == 0) {
3273 tmp = avail[i];
3274 avail[i] = avail[--avail_cnt];
3275 avail[avail_cnt] = avail[i];
3276 }
3277 }
3278
3279 /*
3280 * (Bubble)sort them into ascending order.
3281 */
3282 for (i = 0; i < avail_cnt; i++) {
3283 for (j = i + 1; j < avail_cnt; j++) {
3284 if (avail[i].start > avail[j].start) {
3285 tmp = avail[i];
3286 avail[i] = avail[j];
3287 avail[j] = tmp;
3288 }
3289 }
3290 }
3291
3292 /*
3293 * Make sure they don't overlap.
3294 */
3295 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3296 if (mp[0].start + mp[0].size > mp[1].start) {
3297 mp[0].size = mp[1].start - mp[0].start;
3298 }
3299 DPRINTFN(BOOT,
3300 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3301 i, mp->start, mp->size));
3302 }
3303 DPRINTFN(BOOT,
3304 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3305 i, mp->start, mp->size));
3306
3307 #ifdef PTEGCOUNT
3308 pmap_pteg_cnt = PTEGCOUNT;
3309 #else /* PTEGCOUNT */
3310
3311 pmap_pteg_cnt = 0x1000;
3312
3313 while (pmap_pteg_cnt < physmem)
3314 pmap_pteg_cnt <<= 1;
3315
3316 pmap_pteg_cnt >>= 1;
3317 #endif /* PTEGCOUNT */
3318
3319 #ifdef DEBUG
3320 DPRINTFN(BOOT,
3321 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3322 #endif
3323
3324 /*
3325 * Find suitably aligned memory for PTEG hash table.
3326 */
3327 size = pmap_pteg_cnt * sizeof(struct pteg);
3328 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3329
3330 #ifdef DEBUG
3331 DPRINTFN(BOOT,
3332 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3333 #endif
3334
3335
3336 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3337 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3338 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3339 pmap_pteg_table, size);
3340 #endif
3341
3342 memset(__UNVOLATILE(pmap_pteg_table), 0,
3343 pmap_pteg_cnt * sizeof(struct pteg));
3344 pmap_pteg_mask = pmap_pteg_cnt - 1;
3345
3346 /*
3347 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3348 * with pages. So we just steal them before giving them to UVM.
3349 */
3350 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3351 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3352 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3353 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3354 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3355 pmap_pvo_table, size);
3356 #endif
3357
3358 for (i = 0; i < pmap_pteg_cnt; i++)
3359 TAILQ_INIT(&pmap_pvo_table[i]);
3360
3361 #ifndef MSGBUFADDR
3362 /*
3363 * Allocate msgbuf in high memory.
3364 */
3365 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3366 #endif
3367
3368 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3369 paddr_t pfstart = atop(mp->start);
3370 paddr_t pfend = atop(mp->start + mp->size);
3371 if (mp->size == 0)
3372 continue;
3373 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_FIRST256);
3376 } else if (mp->start >= SEGMENT_LENGTH) {
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_DEFAULT);
3379 } else {
3380 pfend = atop(SEGMENT_LENGTH);
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_FIRST256);
3383 pfstart = atop(SEGMENT_LENGTH);
3384 pfend = atop(mp->start + mp->size);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_DEFAULT);
3387 }
3388 }
3389
3390 /*
3391 * Make sure kernel vsid is allocated as well as VSID 0.
3392 */
3393 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3394 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3395 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3396 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3397 pmap_vsid_bitmap[0] |= 1;
3398
3399 /*
3400 * Initialize kernel pmap and hardware.
3401 */
3402
3403 /* PMAP_OEA64_BRIDGE does support these instructions */
3404 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3405 for (i = 0; i < 16; i++) {
3406 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3407 __asm volatile ("mtsrin %0,%1"
3408 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3409 }
3410
3411 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3412 __asm volatile ("mtsr %0,%1"
3413 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3414 #ifdef KERNEL2_SR
3415 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3416 __asm volatile ("mtsr %0,%1"
3417 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3418 #endif
3419 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3420 #if defined (PMAP_OEA)
3421 for (i = 0; i < 16; i++) {
3422 if (iosrtable[i] & SR601_T) {
3423 pmap_kernel()->pm_sr[i] = iosrtable[i];
3424 __asm volatile ("mtsrin %0,%1"
3425 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3426 }
3427 }
3428 __asm volatile ("sync; mtsdr1 %0; isync"
3429 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3430 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3431 __asm __volatile ("sync; mtsdr1 %0; isync"
3432 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3433 #endif
3434 tlbia();
3435
3436 #ifdef ALTIVEC
3437 pmap_use_altivec = cpu_altivec;
3438 #endif
3439
3440 #ifdef DEBUG
3441 if (pmapdebug & PMAPDEBUG_BOOT) {
3442 u_int cnt;
3443 int bank;
3444 char pbuf[9];
3445 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3446 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3447 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3448 bank,
3449 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3450 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3451 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3452 }
3453 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3454 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3455 pbuf, cnt);
3456 }
3457 #endif
3458
3459 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3460 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3461 &pmap_pool_uallocator, IPL_VM);
3462
3463 pool_setlowat(&pmap_upvo_pool, 252);
3464
3465 pool_init(&pmap_pool, sizeof(struct pmap),
3466 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3467 IPL_NONE);
3468
3469 #if defined(PMAP_NEED_MAPKERNEL) || 1
3470 {
3471 struct pmap *pm = pmap_kernel();
3472 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3473 extern int etext[], kernel_text[];
3474 vaddr_t va, va_etext = (paddr_t) etext;
3475 #endif
3476 paddr_t pa, pa_end;
3477 register_t sr;
3478 struct pte pt;
3479 unsigned int ptegidx;
3480 int bank;
3481
3482 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3483 pm->pm_sr[0] = sr;
3484
3485 for (bank = 0; bank < vm_nphysseg; bank++) {
3486 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3487 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3488 for (; pa < pa_end; pa += PAGE_SIZE) {
3489 ptegidx = va_to_pteg(pm, pa);
3490 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3491 pmap_pte_insert(ptegidx, &pt);
3492 }
3493 }
3494
3495 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3496 va = (vaddr_t) kernel_text;
3497
3498 for (pa = kernelstart; va < va_etext;
3499 pa += PAGE_SIZE, va += PAGE_SIZE) {
3500 ptegidx = va_to_pteg(pm, va);
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3502 pmap_pte_insert(ptegidx, &pt);
3503 }
3504
3505 for (; pa < kernelend;
3506 pa += PAGE_SIZE, va += PAGE_SIZE) {
3507 ptegidx = va_to_pteg(pm, va);
3508 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3509 pmap_pte_insert(ptegidx, &pt);
3510 }
3511
3512 for (va = 0, pa = 0; va < kernelstart;
3513 pa += PAGE_SIZE, va += PAGE_SIZE) {
3514 ptegidx = va_to_pteg(pm, va);
3515 if (va < 0x3000)
3516 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3517 else
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3519 pmap_pte_insert(ptegidx, &pt);
3520 }
3521 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3522 pa += PAGE_SIZE, va += PAGE_SIZE) {
3523 ptegidx = va_to_pteg(pm, va);
3524 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3525 pmap_pte_insert(ptegidx, &pt);
3526 }
3527 #endif
3528
3529 __asm volatile ("mtsrin %0,%1"
3530 :: "r"(sr), "r"(kernelstart));
3531 }
3532 #endif
3533 }
3534