Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.73
      1 /*	$NetBSD: pmap.c,v 1.73 2010/11/10 09:27:23 uebayasi Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.73 2010/11/10 09:27:23 uebayasi Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 #include <sys/atomic.h>
     83 
     84 #include <uvm/uvm.h>
     85 
     86 #include <machine/pcb.h>
     87 #include <machine/powerpc.h>
     88 #include <powerpc/spr.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/stdarg.h>
     91 #include <powerpc/oea/spr.h>
     92 #include <powerpc/oea/sr_601.h>
     93 
     94 #define	VM_PAGE_TO_MD(pg)	(&(pg)->mdpage)
     95 
     96 #ifdef ALTIVEC
     97 int pmap_use_altivec;
     98 #endif
     99 
    100 volatile struct pteg *pmap_pteg_table;
    101 unsigned int pmap_pteg_cnt;
    102 unsigned int pmap_pteg_mask;
    103 #ifdef PMAP_MEMLIMIT
    104 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    105 #else
    106 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    107 #endif
    108 
    109 struct pmap kernel_pmap_;
    110 unsigned int pmap_pages_stolen;
    111 u_long pmap_pte_valid;
    112 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    113 u_long pmap_pvo_enter_depth;
    114 u_long pmap_pvo_remove_depth;
    115 #endif
    116 
    117 #ifndef MSGBUFADDR
    118 extern paddr_t msgbuf_paddr;
    119 #endif
    120 
    121 static struct mem_region *mem, *avail;
    122 static u_int mem_cnt, avail_cnt;
    123 
    124 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    125 # define	PMAP_OEA 1
    126 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    127 #  define	PMAPNAME(name)	pmap_##name
    128 # endif
    129 #endif
    130 
    131 #if defined(PMAP_OEA64)
    132 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    133 #  define	PMAPNAME(name)	pmap_##name
    134 # endif
    135 #endif
    136 
    137 #if defined(PMAP_OEA64_BRIDGE)
    138 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    139 #  define	PMAPNAME(name)	pmap_##name
    140 # endif
    141 #endif
    142 
    143 #if defined(PMAP_OEA)
    144 #define	_PRIxpte	"lx"
    145 #else
    146 #define	_PRIxpte	PRIx64
    147 #endif
    148 #define	_PRIxpa		"lx"
    149 #define	_PRIxva		"lx"
    150 #define	_PRIsr  	"lx"
    151 
    152 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    153 #if defined(PMAP_OEA)
    154 #define	PMAPNAME(name)	pmap32_##name
    155 #elif defined(PMAP_OEA64)
    156 #define	PMAPNAME(name)	pmap64_##name
    157 #elif defined(PMAP_OEA64_BRIDGE)
    158 #define	PMAPNAME(name)	pmap64bridge_##name
    159 #else
    160 #error unknown variant for pmap
    161 #endif
    162 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    163 
    164 #if defined(PMAPNAME)
    165 #define	STATIC			static
    166 #define pmap_pte_spill		PMAPNAME(pte_spill)
    167 #define pmap_real_memory	PMAPNAME(real_memory)
    168 #define pmap_init		PMAPNAME(init)
    169 #define pmap_virtual_space	PMAPNAME(virtual_space)
    170 #define pmap_create		PMAPNAME(create)
    171 #define pmap_reference		PMAPNAME(reference)
    172 #define pmap_destroy		PMAPNAME(destroy)
    173 #define pmap_copy		PMAPNAME(copy)
    174 #define pmap_update		PMAPNAME(update)
    175 #define pmap_enter		PMAPNAME(enter)
    176 #define pmap_remove		PMAPNAME(remove)
    177 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    178 #define pmap_kremove		PMAPNAME(kremove)
    179 #define pmap_extract		PMAPNAME(extract)
    180 #define pmap_protect		PMAPNAME(protect)
    181 #define pmap_unwire		PMAPNAME(unwire)
    182 #define pmap_page_protect	PMAPNAME(page_protect)
    183 #define pmap_query_bit		PMAPNAME(query_bit)
    184 #define pmap_clear_bit		PMAPNAME(clear_bit)
    185 
    186 #define pmap_activate		PMAPNAME(activate)
    187 #define pmap_deactivate		PMAPNAME(deactivate)
    188 
    189 #define pmap_pinit		PMAPNAME(pinit)
    190 #define pmap_procwr		PMAPNAME(procwr)
    191 
    192 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    193 #define pmap_pte_print		PMAPNAME(pte_print)
    194 #define pmap_pteg_check		PMAPNAME(pteg_check)
    195 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    196 #define pmap_print_pte		PMAPNAME(print_pte)
    197 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    198 #endif
    199 #if defined(DEBUG) || defined(PMAPCHECK)
    200 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    201 #define pmapcheck		PMAPNAME(check)
    202 #endif
    203 #if defined(DEBUG) || defined(PMAPDEBUG)
    204 #define pmapdebug		PMAPNAME(debug)
    205 #endif
    206 #define pmap_steal_memory	PMAPNAME(steal_memory)
    207 #define pmap_bootstrap		PMAPNAME(bootstrap)
    208 #else
    209 #define	STATIC			/* nothing */
    210 #endif /* PMAPNAME */
    211 
    212 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    213 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    214 STATIC void pmap_init(void);
    215 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    216 STATIC pmap_t pmap_create(void);
    217 STATIC void pmap_reference(pmap_t);
    218 STATIC void pmap_destroy(pmap_t);
    219 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    220 STATIC void pmap_update(pmap_t);
    221 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    222 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    223 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    224 STATIC void pmap_kremove(vaddr_t, vsize_t);
    225 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    226 
    227 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    228 STATIC void pmap_unwire(pmap_t, vaddr_t);
    229 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    230 STATIC bool pmap_query_bit(struct vm_page *, int);
    231 STATIC bool pmap_clear_bit(struct vm_page *, int);
    232 
    233 STATIC void pmap_activate(struct lwp *);
    234 STATIC void pmap_deactivate(struct lwp *);
    235 
    236 STATIC void pmap_pinit(pmap_t pm);
    237 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    238 
    239 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    240 STATIC void pmap_pte_print(volatile struct pte *);
    241 STATIC void pmap_pteg_check(void);
    242 STATIC void pmap_print_mmuregs(void);
    243 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    244 STATIC void pmap_pteg_dist(void);
    245 #endif
    246 #if defined(DEBUG) || defined(PMAPCHECK)
    247 STATIC void pmap_pvo_verify(void);
    248 #endif
    249 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    250 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    251 
    252 #ifdef PMAPNAME
    253 const struct pmap_ops PMAPNAME(ops) = {
    254 	.pmapop_pte_spill = pmap_pte_spill,
    255 	.pmapop_real_memory = pmap_real_memory,
    256 	.pmapop_init = pmap_init,
    257 	.pmapop_virtual_space = pmap_virtual_space,
    258 	.pmapop_create = pmap_create,
    259 	.pmapop_reference = pmap_reference,
    260 	.pmapop_destroy = pmap_destroy,
    261 	.pmapop_copy = pmap_copy,
    262 	.pmapop_update = pmap_update,
    263 	.pmapop_enter = pmap_enter,
    264 	.pmapop_remove = pmap_remove,
    265 	.pmapop_kenter_pa = pmap_kenter_pa,
    266 	.pmapop_kremove = pmap_kremove,
    267 	.pmapop_extract = pmap_extract,
    268 	.pmapop_protect = pmap_protect,
    269 	.pmapop_unwire = pmap_unwire,
    270 	.pmapop_page_protect = pmap_page_protect,
    271 	.pmapop_query_bit = pmap_query_bit,
    272 	.pmapop_clear_bit = pmap_clear_bit,
    273 	.pmapop_activate = pmap_activate,
    274 	.pmapop_deactivate = pmap_deactivate,
    275 	.pmapop_pinit = pmap_pinit,
    276 	.pmapop_procwr = pmap_procwr,
    277 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    278 	.pmapop_pte_print = pmap_pte_print,
    279 	.pmapop_pteg_check = pmap_pteg_check,
    280 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    281 	.pmapop_print_pte = pmap_print_pte,
    282 	.pmapop_pteg_dist = pmap_pteg_dist,
    283 #else
    284 	.pmapop_pte_print = NULL,
    285 	.pmapop_pteg_check = NULL,
    286 	.pmapop_print_mmuregs = NULL,
    287 	.pmapop_print_pte = NULL,
    288 	.pmapop_pteg_dist = NULL,
    289 #endif
    290 #if defined(DEBUG) || defined(PMAPCHECK)
    291 	.pmapop_pvo_verify = pmap_pvo_verify,
    292 #else
    293 	.pmapop_pvo_verify = NULL,
    294 #endif
    295 	.pmapop_steal_memory = pmap_steal_memory,
    296 	.pmapop_bootstrap = pmap_bootstrap,
    297 };
    298 #endif /* !PMAPNAME */
    299 
    300 /*
    301  * The following structure is aligned to 32 bytes
    302  */
    303 struct pvo_entry {
    304 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    305 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    306 	struct pte pvo_pte;			/* Prebuilt PTE */
    307 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    308 	vaddr_t pvo_vaddr;			/* VA of entry */
    309 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    310 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    311 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    312 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    313 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    314 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    315 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    316 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    317 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    318 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    319 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    320 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    321 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    322 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    323 #define	PVO_REMOVE		6		/* PVO has been removed */
    324 #define	PVO_WHERE_MASK		15
    325 #define	PVO_WHERE_SHFT		8
    326 } __attribute__ ((aligned (32)));
    327 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    328 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    329 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    330 #define	PVO_PTEGIDX_CLR(pvo)	\
    331 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    332 #define	PVO_PTEGIDX_SET(pvo,i)	\
    333 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    334 #define	PVO_WHERE(pvo,w)	\
    335 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    336 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    337 
    338 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    339 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    340 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    341 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    342 
    343 struct pool pmap_pool;		/* pool for pmap structures */
    344 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    345 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    346 
    347 /*
    348  * We keep a cache of unmanaged pages to be used for pvo entries for
    349  * unmanaged pages.
    350  */
    351 struct pvo_page {
    352 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    353 };
    354 SIMPLEQ_HEAD(pvop_head, pvo_page);
    355 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    356 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    357 u_long pmap_upvop_free;
    358 u_long pmap_upvop_maxfree;
    359 u_long pmap_mpvop_free;
    360 u_long pmap_mpvop_maxfree;
    361 
    362 static void *pmap_pool_ualloc(struct pool *, int);
    363 static void *pmap_pool_malloc(struct pool *, int);
    364 
    365 static void pmap_pool_ufree(struct pool *, void *);
    366 static void pmap_pool_mfree(struct pool *, void *);
    367 
    368 static struct pool_allocator pmap_pool_mallocator = {
    369 	.pa_alloc = pmap_pool_malloc,
    370 	.pa_free = pmap_pool_mfree,
    371 	.pa_pagesz = 0,
    372 };
    373 
    374 static struct pool_allocator pmap_pool_uallocator = {
    375 	.pa_alloc = pmap_pool_ualloc,
    376 	.pa_free = pmap_pool_ufree,
    377 	.pa_pagesz = 0,
    378 };
    379 
    380 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    381 void pmap_pte_print(volatile struct pte *);
    382 void pmap_pteg_check(void);
    383 void pmap_pteg_dist(void);
    384 void pmap_print_pte(pmap_t, vaddr_t);
    385 void pmap_print_mmuregs(void);
    386 #endif
    387 
    388 #if defined(DEBUG) || defined(PMAPCHECK)
    389 #ifdef PMAPCHECK
    390 int pmapcheck = 1;
    391 #else
    392 int pmapcheck = 0;
    393 #endif
    394 void pmap_pvo_verify(void);
    395 static void pmap_pvo_check(const struct pvo_entry *);
    396 #define	PMAP_PVO_CHECK(pvo)	 		\
    397 	do {					\
    398 		if (pmapcheck)			\
    399 			pmap_pvo_check(pvo);	\
    400 	} while (0)
    401 #else
    402 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    403 #endif
    404 static int pmap_pte_insert(int, struct pte *);
    405 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    406 	vaddr_t, paddr_t, register_t, int);
    407 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    408 static void pmap_pvo_free(struct pvo_entry *);
    409 static void pmap_pvo_free_list(struct pvo_head *);
    410 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    411 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    412 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    413 static void pvo_set_exec(struct pvo_entry *);
    414 static void pvo_clear_exec(struct pvo_entry *);
    415 
    416 static void tlbia(void);
    417 
    418 static void pmap_release(pmap_t);
    419 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    420 
    421 static uint32_t pmap_pvo_reclaim_nextidx;
    422 #ifdef DEBUG
    423 static int pmap_pvo_reclaim_debugctr;
    424 #endif
    425 
    426 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    427 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    428 
    429 static int pmap_initialized;
    430 
    431 #if defined(DEBUG) || defined(PMAPDEBUG)
    432 #define	PMAPDEBUG_BOOT		0x0001
    433 #define	PMAPDEBUG_PTE		0x0002
    434 #define	PMAPDEBUG_EXEC		0x0008
    435 #define	PMAPDEBUG_PVOENTER	0x0010
    436 #define	PMAPDEBUG_PVOREMOVE	0x0020
    437 #define	PMAPDEBUG_ACTIVATE	0x0100
    438 #define	PMAPDEBUG_CREATE	0x0200
    439 #define	PMAPDEBUG_ENTER		0x1000
    440 #define	PMAPDEBUG_KENTER	0x2000
    441 #define	PMAPDEBUG_KREMOVE	0x4000
    442 #define	PMAPDEBUG_REMOVE	0x8000
    443 
    444 unsigned int pmapdebug = 0;
    445 
    446 # define DPRINTF(x)		printf x
    447 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    448 #else
    449 # define DPRINTF(x)
    450 # define DPRINTFN(n, x)
    451 #endif
    452 
    453 
    454 #ifdef PMAPCOUNTERS
    455 /*
    456  * From pmap_subr.c
    457  */
    458 extern struct evcnt pmap_evcnt_mappings;
    459 extern struct evcnt pmap_evcnt_unmappings;
    460 
    461 extern struct evcnt pmap_evcnt_kernel_mappings;
    462 extern struct evcnt pmap_evcnt_kernel_unmappings;
    463 
    464 extern struct evcnt pmap_evcnt_mappings_replaced;
    465 
    466 extern struct evcnt pmap_evcnt_exec_mappings;
    467 extern struct evcnt pmap_evcnt_exec_cached;
    468 
    469 extern struct evcnt pmap_evcnt_exec_synced;
    470 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    471 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    472 
    473 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    474 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    475 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    476 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    477 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    478 
    479 extern struct evcnt pmap_evcnt_updates;
    480 extern struct evcnt pmap_evcnt_collects;
    481 extern struct evcnt pmap_evcnt_copies;
    482 
    483 extern struct evcnt pmap_evcnt_ptes_spilled;
    484 extern struct evcnt pmap_evcnt_ptes_unspilled;
    485 extern struct evcnt pmap_evcnt_ptes_evicted;
    486 
    487 extern struct evcnt pmap_evcnt_ptes_primary[8];
    488 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    489 extern struct evcnt pmap_evcnt_ptes_removed;
    490 extern struct evcnt pmap_evcnt_ptes_changed;
    491 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    492 extern struct evcnt pmap_evcnt_pvos_failed;
    493 
    494 extern struct evcnt pmap_evcnt_zeroed_pages;
    495 extern struct evcnt pmap_evcnt_copied_pages;
    496 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    497 
    498 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    499 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    500 #else
    501 #define	PMAPCOUNT(ev)	((void) 0)
    502 #define	PMAPCOUNT2(ev)	((void) 0)
    503 #endif
    504 
    505 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    506 
    507 /* XXXSL: this needs to be moved to assembler */
    508 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    509 
    510 #define	TLBSYNC()	__asm volatile("tlbsync")
    511 #define	SYNC()		__asm volatile("sync")
    512 #define	EIEIO()		__asm volatile("eieio")
    513 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    514 #define	MFMSR()		mfmsr()
    515 #define	MTMSR(psl)	mtmsr(psl)
    516 #define	MFPVR()		mfpvr()
    517 #define	MFSRIN(va)	mfsrin(va)
    518 #define	MFTB()		mfrtcltbl()
    519 
    520 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    521 static inline register_t
    522 mfsrin(vaddr_t va)
    523 {
    524 	register_t sr;
    525 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    526 	return sr;
    527 }
    528 #endif	/* PMAP_OEA*/
    529 
    530 #if defined (PMAP_OEA64_BRIDGE)
    531 extern void mfmsr64 (register64_t *result);
    532 #endif /* PMAP_OEA64_BRIDGE */
    533 
    534 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    535 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    536 
    537 static inline register_t
    538 pmap_interrupts_off(void)
    539 {
    540 	register_t msr = MFMSR();
    541 	if (msr & PSL_EE)
    542 		MTMSR(msr & ~PSL_EE);
    543 	return msr;
    544 }
    545 
    546 static void
    547 pmap_interrupts_restore(register_t msr)
    548 {
    549 	if (msr & PSL_EE)
    550 		MTMSR(msr);
    551 }
    552 
    553 static inline u_int32_t
    554 mfrtcltbl(void)
    555 {
    556 #ifdef PPC_OEA601
    557 	if ((MFPVR() >> 16) == MPC601)
    558 		return (mfrtcl() >> 7);
    559 	else
    560 #endif
    561 		return (mftbl());
    562 }
    563 
    564 /*
    565  * These small routines may have to be replaced,
    566  * if/when we support processors other that the 604.
    567  */
    568 
    569 void
    570 tlbia(void)
    571 {
    572 	char *i;
    573 
    574 	SYNC();
    575 #if defined(PMAP_OEA)
    576 	/*
    577 	 * Why not use "tlbia"?  Because not all processors implement it.
    578 	 *
    579 	 * This needs to be a per-CPU callback to do the appropriate thing
    580 	 * for the CPU. XXX
    581 	 */
    582 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    583 		TLBIE(i);
    584 		EIEIO();
    585 		SYNC();
    586 	}
    587 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    588 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    589 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    590 		TLBIEL(i);
    591 		EIEIO();
    592 		SYNC();
    593 	}
    594 #endif
    595 	TLBSYNC();
    596 	SYNC();
    597 }
    598 
    599 static inline register_t
    600 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    601 {
    602 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    603 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    604 #else /* PMAP_OEA64 */
    605 #if 0
    606 	const struct ste *ste;
    607 	register_t hash;
    608 	int i;
    609 
    610 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    611 
    612 	/*
    613 	 * Try the primary group first
    614 	 */
    615 	ste = pm->pm_stes[hash].stes;
    616 	for (i = 0; i < 8; i++, ste++) {
    617 		if (ste->ste_hi & STE_V) &&
    618 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    619 			return ste;
    620 	}
    621 
    622 	/*
    623 	 * Then the secondary group.
    624 	 */
    625 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    626 	for (i = 0; i < 8; i++, ste++) {
    627 		if (ste->ste_hi & STE_V) &&
    628 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    629 			return addr;
    630 	}
    631 
    632 	return NULL;
    633 #else
    634 	/*
    635 	 * Rather than searching the STE groups for the VSID, we know
    636 	 * how we generate that from the ESID and so do that.
    637 	 */
    638 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    639 #endif
    640 #endif /* PMAP_OEA */
    641 }
    642 
    643 static inline register_t
    644 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    645 {
    646 	register_t hash;
    647 
    648 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    649 	return hash & pmap_pteg_mask;
    650 }
    651 
    652 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    653 /*
    654  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    655  * The only bit of magic is that the top 4 bits of the address doesn't
    656  * technically exist in the PTE.  But we know we reserved 4 bits of the
    657  * VSID for it so that's how we get it.
    658  */
    659 static vaddr_t
    660 pmap_pte_to_va(volatile const struct pte *pt)
    661 {
    662 	vaddr_t va;
    663 	uintptr_t ptaddr = (uintptr_t) pt;
    664 
    665 	if (pt->pte_hi & PTE_HID)
    666 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    667 
    668 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    669 #if defined(PMAP_OEA)
    670 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    671 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    672 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    673 #endif
    674 	va <<= ADDR_PIDX_SHFT;
    675 
    676 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    677 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    678 
    679 #if defined(PMAP_OEA64)
    680 	/* PPC63 Bits 0-35 */
    681 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    682 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    683 	/* PPC Bits 0-3 */
    684 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    685 #endif
    686 
    687 	return va;
    688 }
    689 #endif
    690 
    691 static inline struct pvo_head *
    692 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    693 {
    694 	struct vm_page *pg;
    695 	struct vm_page_md *md;
    696 
    697 	pg = PHYS_TO_VM_PAGE(pa);
    698 	if (pg_p != NULL)
    699 		*pg_p = pg;
    700 	if (pg == NULL)
    701 		return &pmap_pvo_unmanaged;
    702 	md = VM_PAGE_TO_MD(pg);
    703 	return &md->mdpg_pvoh;
    704 }
    705 
    706 static inline struct pvo_head *
    707 vm_page_to_pvoh(struct vm_page *pg)
    708 {
    709 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    710 
    711 	return &md->mdpg_pvoh;
    712 }
    713 
    714 
    715 static inline void
    716 pmap_attr_clear(struct vm_page *pg, int ptebit)
    717 {
    718 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    719 
    720 	md->mdpg_attrs &= ~ptebit;
    721 }
    722 
    723 static inline int
    724 pmap_attr_fetch(struct vm_page *pg)
    725 {
    726 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    727 
    728 	return md->mdpg_attrs;
    729 }
    730 
    731 static inline void
    732 pmap_attr_save(struct vm_page *pg, int ptebit)
    733 {
    734 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    735 
    736 	md->mdpg_attrs |= ptebit;
    737 }
    738 
    739 static inline int
    740 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    741 {
    742 	if (pt->pte_hi == pvo_pt->pte_hi
    743 #if 0
    744 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    745 	        ~(PTE_REF|PTE_CHG)) == 0
    746 #endif
    747 	    )
    748 		return 1;
    749 	return 0;
    750 }
    751 
    752 static inline void
    753 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    754 {
    755 	/*
    756 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    757 	 * only gets set when the real pte is set in memory.
    758 	 *
    759 	 * Note: Don't set the valid bit for correct operation of tlb update.
    760 	 */
    761 #if defined(PMAP_OEA)
    762 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    763 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    764 	pt->pte_lo = pte_lo;
    765 #elif defined (PMAP_OEA64_BRIDGE)
    766 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    767 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    768 	pt->pte_lo = (u_int64_t) pte_lo;
    769 #elif defined (PMAP_OEA64)
    770 #error PMAP_OEA64 not supported
    771 #endif /* PMAP_OEA */
    772 }
    773 
    774 static inline void
    775 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    776 {
    777 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    778 }
    779 
    780 static inline void
    781 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    782 {
    783 	/*
    784 	 * As shown in Section 7.6.3.2.3
    785 	 */
    786 	pt->pte_lo &= ~ptebit;
    787 	TLBIE(va);
    788 	SYNC();
    789 	EIEIO();
    790 	TLBSYNC();
    791 	SYNC();
    792 #ifdef MULTIPROCESSOR
    793 	DCBST(pt);
    794 #endif
    795 }
    796 
    797 static inline void
    798 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    799 {
    800 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    801 	if (pvo_pt->pte_hi & PTE_VALID)
    802 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    803 #endif
    804 	pvo_pt->pte_hi |= PTE_VALID;
    805 
    806 	/*
    807 	 * Update the PTE as defined in section 7.6.3.1
    808 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    809 	 * have been saved so this routine can restore them (if desired).
    810 	 */
    811 	pt->pte_lo = pvo_pt->pte_lo;
    812 	EIEIO();
    813 	pt->pte_hi = pvo_pt->pte_hi;
    814 	TLBSYNC();
    815 	SYNC();
    816 #ifdef MULTIPROCESSOR
    817 	DCBST(pt);
    818 #endif
    819 	pmap_pte_valid++;
    820 }
    821 
    822 static inline void
    823 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    824 {
    825 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    826 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    827 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    828 	if ((pt->pte_hi & PTE_VALID) == 0)
    829 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    830 #endif
    831 
    832 	pvo_pt->pte_hi &= ~PTE_VALID;
    833 	/*
    834 	 * Force the ref & chg bits back into the PTEs.
    835 	 */
    836 	SYNC();
    837 	/*
    838 	 * Invalidate the pte ... (Section 7.6.3.3)
    839 	 */
    840 	pt->pte_hi &= ~PTE_VALID;
    841 	SYNC();
    842 	TLBIE(va);
    843 	SYNC();
    844 	EIEIO();
    845 	TLBSYNC();
    846 	SYNC();
    847 	/*
    848 	 * Save the ref & chg bits ...
    849 	 */
    850 	pmap_pte_synch(pt, pvo_pt);
    851 	pmap_pte_valid--;
    852 }
    853 
    854 static inline void
    855 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    856 {
    857 	/*
    858 	 * Invalidate the PTE
    859 	 */
    860 	pmap_pte_unset(pt, pvo_pt, va);
    861 	pmap_pte_set(pt, pvo_pt);
    862 }
    863 
    864 /*
    865  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    866  * (either primary or secondary location).
    867  *
    868  * Note: both the destination and source PTEs must not have PTE_VALID set.
    869  */
    870 
    871 static int
    872 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    873 {
    874 	volatile struct pte *pt;
    875 	int i;
    876 
    877 #if defined(DEBUG)
    878 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    879 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    880 #endif
    881 	/*
    882 	 * First try primary hash.
    883 	 */
    884 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    885 		if ((pt->pte_hi & PTE_VALID) == 0) {
    886 			pvo_pt->pte_hi &= ~PTE_HID;
    887 			pmap_pte_set(pt, pvo_pt);
    888 			return i;
    889 		}
    890 	}
    891 
    892 	/*
    893 	 * Now try secondary hash.
    894 	 */
    895 	ptegidx ^= pmap_pteg_mask;
    896 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    897 		if ((pt->pte_hi & PTE_VALID) == 0) {
    898 			pvo_pt->pte_hi |= PTE_HID;
    899 			pmap_pte_set(pt, pvo_pt);
    900 			return i;
    901 		}
    902 	}
    903 	return -1;
    904 }
    905 
    906 /*
    907  * Spill handler.
    908  *
    909  * Tries to spill a page table entry from the overflow area.
    910  * This runs in either real mode (if dealing with a exception spill)
    911  * or virtual mode when dealing with manually spilling one of the
    912  * kernel's pte entries.  In either case, interrupts are already
    913  * disabled.
    914  */
    915 
    916 int
    917 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    918 {
    919 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    920 	struct pvo_entry *pvo;
    921 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    922 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    923 	int ptegidx, i, j;
    924 	volatile struct pteg *pteg;
    925 	volatile struct pte *pt;
    926 
    927 	PMAP_LOCK();
    928 
    929 	ptegidx = va_to_pteg(pm, addr);
    930 
    931 	/*
    932 	 * Have to substitute some entry. Use the primary hash for this.
    933 	 * Use low bits of timebase as random generator.  Make sure we are
    934 	 * not picking a kernel pte for replacement.
    935 	 */
    936 	pteg = &pmap_pteg_table[ptegidx];
    937 	i = MFTB() & 7;
    938 	for (j = 0; j < 8; j++) {
    939 		pt = &pteg->pt[i];
    940 		if ((pt->pte_hi & PTE_VALID) == 0)
    941 			break;
    942 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    943 				< PHYSMAP_VSIDBITS)
    944 			break;
    945 		i = (i + 1) & 7;
    946 	}
    947 	KASSERT(j < 8);
    948 
    949 	source_pvo = NULL;
    950 	victim_pvo = NULL;
    951 	pvoh = &pmap_pvo_table[ptegidx];
    952 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    953 
    954 		/*
    955 		 * We need to find pvo entry for this address...
    956 		 */
    957 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    958 
    959 		/*
    960 		 * If we haven't found the source and we come to a PVO with
    961 		 * a valid PTE, then we know we can't find it because all
    962 		 * evicted PVOs always are first in the list.
    963 		 */
    964 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    965 			break;
    966 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    967 		    addr == PVO_VADDR(pvo)) {
    968 
    969 			/*
    970 			 * Now we have found the entry to be spilled into the
    971 			 * pteg.  Attempt to insert it into the page table.
    972 			 */
    973 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    974 			if (j >= 0) {
    975 				PVO_PTEGIDX_SET(pvo, j);
    976 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    977 				PVO_WHERE(pvo, SPILL_INSERT);
    978 				pvo->pvo_pmap->pm_evictions--;
    979 				PMAPCOUNT(ptes_spilled);
    980 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    981 				    ? pmap_evcnt_ptes_secondary
    982 				    : pmap_evcnt_ptes_primary)[j]);
    983 
    984 				/*
    985 				 * Since we keep the evicted entries at the
    986 				 * from of the PVO list, we need move this
    987 				 * (now resident) PVO after the evicted
    988 				 * entries.
    989 				 */
    990 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    991 
    992 				/*
    993 				 * If we don't have to move (either we were the
    994 				 * last entry or the next entry was valid),
    995 				 * don't change our position.  Otherwise
    996 				 * move ourselves to the tail of the queue.
    997 				 */
    998 				if (next_pvo != NULL &&
    999 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
   1000 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
   1001 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1002 				}
   1003 				PMAP_UNLOCK();
   1004 				return 1;
   1005 			}
   1006 			source_pvo = pvo;
   1007 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1008 				return 0;
   1009 			}
   1010 			if (victim_pvo != NULL)
   1011 				break;
   1012 		}
   1013 
   1014 		/*
   1015 		 * We also need the pvo entry of the victim we are replacing
   1016 		 * so save the R & C bits of the PTE.
   1017 		 */
   1018 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1019 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1020 			vpvoh = pvoh;			/* *1* */
   1021 			victim_pvo = pvo;
   1022 			if (source_pvo != NULL)
   1023 				break;
   1024 		}
   1025 	}
   1026 
   1027 	if (source_pvo == NULL) {
   1028 		PMAPCOUNT(ptes_unspilled);
   1029 		PMAP_UNLOCK();
   1030 		return 0;
   1031 	}
   1032 
   1033 	if (victim_pvo == NULL) {
   1034 		if ((pt->pte_hi & PTE_HID) == 0)
   1035 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1036 			    "no pvo entry!", pt);
   1037 
   1038 		/*
   1039 		 * If this is a secondary PTE, we need to search
   1040 		 * its primary pvo bucket for the matching PVO.
   1041 		 */
   1042 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1043 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1044 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1045 
   1046 			/*
   1047 			 * We also need the pvo entry of the victim we are
   1048 			 * replacing so save the R & C bits of the PTE.
   1049 			 */
   1050 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1051 				victim_pvo = pvo;
   1052 				break;
   1053 			}
   1054 		}
   1055 		if (victim_pvo == NULL)
   1056 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1057 			    "no pvo entry!", pt);
   1058 	}
   1059 
   1060 	/*
   1061 	 * The victim should be not be a kernel PVO/PTE entry.
   1062 	 */
   1063 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1064 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1065 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1066 
   1067 	/*
   1068 	 * We are invalidating the TLB entry for the EA for the
   1069 	 * we are replacing even though its valid; If we don't
   1070 	 * we lose any ref/chg bit changes contained in the TLB
   1071 	 * entry.
   1072 	 */
   1073 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1074 
   1075 	/*
   1076 	 * To enforce the PVO list ordering constraint that all
   1077 	 * evicted entries should come before all valid entries,
   1078 	 * move the source PVO to the tail of its list and the
   1079 	 * victim PVO to the head of its list (which might not be
   1080 	 * the same list, if the victim was using the secondary hash).
   1081 	 */
   1082 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1083 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1084 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1085 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1086 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1087 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1088 	victim_pvo->pvo_pmap->pm_evictions++;
   1089 	source_pvo->pvo_pmap->pm_evictions--;
   1090 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1091 	PVO_WHERE(source_pvo, SPILL_SET);
   1092 
   1093 	PVO_PTEGIDX_CLR(victim_pvo);
   1094 	PVO_PTEGIDX_SET(source_pvo, i);
   1095 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1096 	PMAPCOUNT(ptes_spilled);
   1097 	PMAPCOUNT(ptes_evicted);
   1098 	PMAPCOUNT(ptes_removed);
   1099 
   1100 	PMAP_PVO_CHECK(victim_pvo);
   1101 	PMAP_PVO_CHECK(source_pvo);
   1102 
   1103 	PMAP_UNLOCK();
   1104 	return 1;
   1105 }
   1106 
   1107 /*
   1108  * Restrict given range to physical memory
   1109  */
   1110 void
   1111 pmap_real_memory(paddr_t *start, psize_t *size)
   1112 {
   1113 	struct mem_region *mp;
   1114 
   1115 	for (mp = mem; mp->size; mp++) {
   1116 		if (*start + *size > mp->start
   1117 		    && *start < mp->start + mp->size) {
   1118 			if (*start < mp->start) {
   1119 				*size -= mp->start - *start;
   1120 				*start = mp->start;
   1121 			}
   1122 			if (*start + *size > mp->start + mp->size)
   1123 				*size = mp->start + mp->size - *start;
   1124 			return;
   1125 		}
   1126 	}
   1127 	*size = 0;
   1128 }
   1129 
   1130 /*
   1131  * Initialize anything else for pmap handling.
   1132  * Called during vm_init().
   1133  */
   1134 void
   1135 pmap_init(void)
   1136 {
   1137 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1138 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1139 	    &pmap_pool_mallocator, IPL_NONE);
   1140 
   1141 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1142 
   1143 	pmap_initialized = 1;
   1144 
   1145 }
   1146 
   1147 /*
   1148  * How much virtual space does the kernel get?
   1149  */
   1150 void
   1151 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1152 {
   1153 	/*
   1154 	 * For now, reserve one segment (minus some overhead) for kernel
   1155 	 * virtual memory
   1156 	 */
   1157 	*start = VM_MIN_KERNEL_ADDRESS;
   1158 	*end = VM_MAX_KERNEL_ADDRESS;
   1159 }
   1160 
   1161 /*
   1162  * Allocate, initialize, and return a new physical map.
   1163  */
   1164 pmap_t
   1165 pmap_create(void)
   1166 {
   1167 	pmap_t pm;
   1168 
   1169 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1170 	memset((void *)pm, 0, sizeof *pm);
   1171 	pmap_pinit(pm);
   1172 
   1173 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1174 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1175 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1176 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1177 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1178 	    pm,
   1179 	    pm->pm_sr[0], pm->pm_sr[1],
   1180 	    pm->pm_sr[2], pm->pm_sr[3],
   1181 	    pm->pm_sr[4], pm->pm_sr[5],
   1182 	    pm->pm_sr[6], pm->pm_sr[7],
   1183 	    pm->pm_sr[8], pm->pm_sr[9],
   1184 	    pm->pm_sr[10], pm->pm_sr[11],
   1185 	    pm->pm_sr[12], pm->pm_sr[13],
   1186 	    pm->pm_sr[14], pm->pm_sr[15]));
   1187 	return pm;
   1188 }
   1189 
   1190 /*
   1191  * Initialize a preallocated and zeroed pmap structure.
   1192  */
   1193 void
   1194 pmap_pinit(pmap_t pm)
   1195 {
   1196 	register_t entropy = MFTB();
   1197 	register_t mask;
   1198 	int i;
   1199 
   1200 	/*
   1201 	 * Allocate some segment registers for this pmap.
   1202 	 */
   1203 	pm->pm_refs = 1;
   1204 	PMAP_LOCK();
   1205 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1206 		static register_t pmap_vsidcontext;
   1207 		register_t hash;
   1208 		unsigned int n;
   1209 
   1210 		/* Create a new value by multiplying by a prime adding in
   1211 		 * entropy from the timebase register.  This is to make the
   1212 		 * VSID more random so that the PT Hash function collides
   1213 		 * less often. (note that the prime causes gcc to do shifts
   1214 		 * instead of a multiply)
   1215 		 */
   1216 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1217 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1218 		if (hash == 0) {		/* 0 is special, avoid it */
   1219 			entropy += 0xbadf00d;
   1220 			continue;
   1221 		}
   1222 		n = hash >> 5;
   1223 		mask = 1L << (hash & (VSID_NBPW-1));
   1224 		hash = pmap_vsidcontext;
   1225 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1226 			/* anything free in this bucket? */
   1227 			if (~pmap_vsid_bitmap[n] == 0) {
   1228 				entropy = hash ^ (hash >> 16);
   1229 				continue;
   1230 			}
   1231 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1232 			mask = 1L << i;
   1233 			hash &= ~(VSID_NBPW-1);
   1234 			hash |= i;
   1235 		}
   1236 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1237 		pmap_vsid_bitmap[n] |= mask;
   1238 		pm->pm_vsid = hash;
   1239 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1240 		for (i = 0; i < 16; i++)
   1241 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1242 			    SR_NOEXEC;
   1243 #endif
   1244 		PMAP_UNLOCK();
   1245 		return;
   1246 	}
   1247 	PMAP_UNLOCK();
   1248 	panic("pmap_pinit: out of segments");
   1249 }
   1250 
   1251 /*
   1252  * Add a reference to the given pmap.
   1253  */
   1254 void
   1255 pmap_reference(pmap_t pm)
   1256 {
   1257 	atomic_inc_uint(&pm->pm_refs);
   1258 }
   1259 
   1260 /*
   1261  * Retire the given pmap from service.
   1262  * Should only be called if the map contains no valid mappings.
   1263  */
   1264 void
   1265 pmap_destroy(pmap_t pm)
   1266 {
   1267 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1268 		pmap_release(pm);
   1269 		pool_put(&pmap_pool, pm);
   1270 	}
   1271 }
   1272 
   1273 /*
   1274  * Release any resources held by the given physical map.
   1275  * Called when a pmap initialized by pmap_pinit is being released.
   1276  */
   1277 void
   1278 pmap_release(pmap_t pm)
   1279 {
   1280 	int idx, mask;
   1281 
   1282 	KASSERT(pm->pm_stats.resident_count == 0);
   1283 	KASSERT(pm->pm_stats.wired_count == 0);
   1284 
   1285 	PMAP_LOCK();
   1286 	if (pm->pm_sr[0] == 0)
   1287 		panic("pmap_release");
   1288 	idx = pm->pm_vsid & (NPMAPS-1);
   1289 	mask = 1 << (idx % VSID_NBPW);
   1290 	idx /= VSID_NBPW;
   1291 
   1292 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1293 	pmap_vsid_bitmap[idx] &= ~mask;
   1294 	PMAP_UNLOCK();
   1295 }
   1296 
   1297 /*
   1298  * Copy the range specified by src_addr/len
   1299  * from the source map to the range dst_addr/len
   1300  * in the destination map.
   1301  *
   1302  * This routine is only advisory and need not do anything.
   1303  */
   1304 void
   1305 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1306 	vsize_t len, vaddr_t src_addr)
   1307 {
   1308 	PMAPCOUNT(copies);
   1309 }
   1310 
   1311 /*
   1312  * Require that all active physical maps contain no
   1313  * incorrect entries NOW.
   1314  */
   1315 void
   1316 pmap_update(struct pmap *pmap)
   1317 {
   1318 	PMAPCOUNT(updates);
   1319 	TLBSYNC();
   1320 }
   1321 
   1322 static inline int
   1323 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1324 {
   1325 	int pteidx;
   1326 	/*
   1327 	 * We can find the actual pte entry without searching by
   1328 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1329 	 * and by noticing the HID bit.
   1330 	 */
   1331 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1332 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1333 		pteidx ^= pmap_pteg_mask * 8;
   1334 	return pteidx;
   1335 }
   1336 
   1337 volatile struct pte *
   1338 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1339 {
   1340 	volatile struct pte *pt;
   1341 
   1342 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1343 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1344 		return NULL;
   1345 #endif
   1346 
   1347 	/*
   1348 	 * If we haven't been supplied the ptegidx, calculate it.
   1349 	 */
   1350 	if (pteidx == -1) {
   1351 		int ptegidx;
   1352 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1353 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1354 	}
   1355 
   1356 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1357 
   1358 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1359 	return pt;
   1360 #else
   1361 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1362 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1363 		    "pvo but no valid pte index", pvo);
   1364 	}
   1365 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1366 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1367 		    "pvo but no valid pte", pvo);
   1368 	}
   1369 
   1370 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1371 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1372 #if defined(DEBUG) || defined(PMAPCHECK)
   1373 			pmap_pte_print(pt);
   1374 #endif
   1375 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1376 			    "pmap_pteg_table %p but invalid in pvo",
   1377 			    pvo, pt);
   1378 		}
   1379 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1380 #if defined(DEBUG) || defined(PMAPCHECK)
   1381 			pmap_pte_print(pt);
   1382 #endif
   1383 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1384 			    "not match pte %p in pmap_pteg_table",
   1385 			    pvo, pt);
   1386 		}
   1387 		return pt;
   1388 	}
   1389 
   1390 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1391 #if defined(DEBUG) || defined(PMAPCHECK)
   1392 		pmap_pte_print(pt);
   1393 #endif
   1394 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1395 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1396 	}
   1397 	return NULL;
   1398 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1399 }
   1400 
   1401 struct pvo_entry *
   1402 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1403 {
   1404 	struct pvo_entry *pvo;
   1405 	int ptegidx;
   1406 
   1407 	va &= ~ADDR_POFF;
   1408 	ptegidx = va_to_pteg(pm, va);
   1409 
   1410 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1411 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1412 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1413 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1414 			    "list %#x (%p)", pvo, ptegidx,
   1415 			     &pmap_pvo_table[ptegidx]);
   1416 #endif
   1417 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1418 			if (pteidx_p)
   1419 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1420 			return pvo;
   1421 		}
   1422 	}
   1423 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1424 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1425 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1426 	return NULL;
   1427 }
   1428 
   1429 #if defined(DEBUG) || defined(PMAPCHECK)
   1430 void
   1431 pmap_pvo_check(const struct pvo_entry *pvo)
   1432 {
   1433 	struct pvo_head *pvo_head;
   1434 	struct pvo_entry *pvo0;
   1435 	volatile struct pte *pt;
   1436 	int failed = 0;
   1437 
   1438 	PMAP_LOCK();
   1439 
   1440 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1441 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1442 
   1443 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1444 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1445 		    pvo, pvo->pvo_pmap);
   1446 		failed = 1;
   1447 	}
   1448 
   1449 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1450 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1451 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1452 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1453 		failed = 1;
   1454 	}
   1455 
   1456 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1457 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1458 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1459 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1460 		failed = 1;
   1461 	}
   1462 
   1463 	if (PVO_MANAGED_P(pvo)) {
   1464 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1465 	} else {
   1466 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1467 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1468 			    "on kernel unmanaged list\n", pvo);
   1469 			failed = 1;
   1470 		}
   1471 		pvo_head = &pmap_pvo_kunmanaged;
   1472 	}
   1473 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1474 		if (pvo0 == pvo)
   1475 			break;
   1476 	}
   1477 	if (pvo0 == NULL) {
   1478 		printf("pmap_pvo_check: pvo %p: not present "
   1479 		    "on its vlist head %p\n", pvo, pvo_head);
   1480 		failed = 1;
   1481 	}
   1482 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1483 		printf("pmap_pvo_check: pvo %p: not present "
   1484 		    "on its olist head\n", pvo);
   1485 		failed = 1;
   1486 	}
   1487 	pt = pmap_pvo_to_pte(pvo, -1);
   1488 	if (pt == NULL) {
   1489 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1490 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1491 			    "no PTE\n", pvo);
   1492 			failed = 1;
   1493 		}
   1494 	} else {
   1495 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1496 		    (uintptr_t) pt >=
   1497 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1498 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1499 			    "pteg table\n", pvo, pt);
   1500 			failed = 1;
   1501 		}
   1502 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1503 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1504 			    "no PTE\n", pvo);
   1505 			failed = 1;
   1506 		}
   1507 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1508 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1509 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1510 			    pvo->pvo_pte.pte_hi,
   1511 			    pt->pte_hi);
   1512 			failed = 1;
   1513 		}
   1514 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1515 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1516 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1517 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1518 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1519 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1520 			failed = 1;
   1521 		}
   1522 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1523 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1524 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1525 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1526 			failed = 1;
   1527 		}
   1528 		if (failed)
   1529 			pmap_pte_print(pt);
   1530 	}
   1531 	if (failed)
   1532 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1533 		    pvo->pvo_pmap);
   1534 
   1535 	PMAP_UNLOCK();
   1536 }
   1537 #endif /* DEBUG || PMAPCHECK */
   1538 
   1539 /*
   1540  * Search the PVO table looking for a non-wired entry.
   1541  * If we find one, remove it and return it.
   1542  */
   1543 
   1544 struct pvo_entry *
   1545 pmap_pvo_reclaim(struct pmap *pm)
   1546 {
   1547 	struct pvo_tqhead *pvoh;
   1548 	struct pvo_entry *pvo;
   1549 	uint32_t idx, endidx;
   1550 
   1551 	endidx = pmap_pvo_reclaim_nextidx;
   1552 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1553 	     idx = (idx + 1) & pmap_pteg_mask) {
   1554 		pvoh = &pmap_pvo_table[idx];
   1555 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1556 			if (!PVO_WIRED_P(pvo)) {
   1557 				pmap_pvo_remove(pvo, -1, NULL);
   1558 				pmap_pvo_reclaim_nextidx = idx;
   1559 				PMAPCOUNT(pvos_reclaimed);
   1560 				return pvo;
   1561 			}
   1562 		}
   1563 	}
   1564 	return NULL;
   1565 }
   1566 
   1567 /*
   1568  * This returns whether this is the first mapping of a page.
   1569  */
   1570 int
   1571 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1572 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1573 {
   1574 	struct pvo_entry *pvo;
   1575 	struct pvo_tqhead *pvoh;
   1576 	register_t msr;
   1577 	int ptegidx;
   1578 	int i;
   1579 	int poolflags = PR_NOWAIT;
   1580 
   1581 	/*
   1582 	 * Compute the PTE Group index.
   1583 	 */
   1584 	va &= ~ADDR_POFF;
   1585 	ptegidx = va_to_pteg(pm, va);
   1586 
   1587 	msr = pmap_interrupts_off();
   1588 
   1589 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1590 	if (pmap_pvo_remove_depth > 0)
   1591 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1592 	if (++pmap_pvo_enter_depth > 1)
   1593 		panic("pmap_pvo_enter: called recursively!");
   1594 #endif
   1595 
   1596 	/*
   1597 	 * Remove any existing mapping for this page.  Reuse the
   1598 	 * pvo entry if there a mapping.
   1599 	 */
   1600 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1601 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1602 #ifdef DEBUG
   1603 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1604 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1605 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1606 			   va < VM_MIN_KERNEL_ADDRESS) {
   1607 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1608 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1609 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1610 				    pvo->pvo_pte.pte_hi,
   1611 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1612 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1613 #ifdef DDBX
   1614 				Debugger();
   1615 #endif
   1616 			}
   1617 #endif
   1618 			PMAPCOUNT(mappings_replaced);
   1619 			pmap_pvo_remove(pvo, -1, NULL);
   1620 			break;
   1621 		}
   1622 	}
   1623 
   1624 	/*
   1625 	 * If we aren't overwriting an mapping, try to allocate
   1626 	 */
   1627 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1628 	--pmap_pvo_enter_depth;
   1629 #endif
   1630 	pmap_interrupts_restore(msr);
   1631 	if (pvo) {
   1632 		pmap_pvo_free(pvo);
   1633 	}
   1634 	pvo = pool_get(pl, poolflags);
   1635 
   1636 #ifdef DEBUG
   1637 	/*
   1638 	 * Exercise pmap_pvo_reclaim() a little.
   1639 	 */
   1640 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1641 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1642 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1643 		pool_put(pl, pvo);
   1644 		pvo = NULL;
   1645 	}
   1646 #endif
   1647 
   1648 	msr = pmap_interrupts_off();
   1649 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1650 	++pmap_pvo_enter_depth;
   1651 #endif
   1652 	if (pvo == NULL) {
   1653 		pvo = pmap_pvo_reclaim(pm);
   1654 		if (pvo == NULL) {
   1655 			if ((flags & PMAP_CANFAIL) == 0)
   1656 				panic("pmap_pvo_enter: failed");
   1657 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1658 			pmap_pvo_enter_depth--;
   1659 #endif
   1660 			PMAPCOUNT(pvos_failed);
   1661 			pmap_interrupts_restore(msr);
   1662 			return ENOMEM;
   1663 		}
   1664 	}
   1665 
   1666 	pvo->pvo_vaddr = va;
   1667 	pvo->pvo_pmap = pm;
   1668 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1669 	if (flags & VM_PROT_EXECUTE) {
   1670 		PMAPCOUNT(exec_mappings);
   1671 		pvo_set_exec(pvo);
   1672 	}
   1673 	if (flags & PMAP_WIRED)
   1674 		pvo->pvo_vaddr |= PVO_WIRED;
   1675 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1676 		pvo->pvo_vaddr |= PVO_MANAGED;
   1677 		PMAPCOUNT(mappings);
   1678 	} else {
   1679 		PMAPCOUNT(kernel_mappings);
   1680 	}
   1681 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1682 
   1683 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1684 	if (PVO_WIRED_P(pvo))
   1685 		pvo->pvo_pmap->pm_stats.wired_count++;
   1686 	pvo->pvo_pmap->pm_stats.resident_count++;
   1687 #if defined(DEBUG)
   1688 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1689 		DPRINTFN(PVOENTER,
   1690 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1691 		    pvo, pm, va, pa));
   1692 #endif
   1693 
   1694 	/*
   1695 	 * We hope this succeeds but it isn't required.
   1696 	 */
   1697 	pvoh = &pmap_pvo_table[ptegidx];
   1698 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1699 	if (i >= 0) {
   1700 		PVO_PTEGIDX_SET(pvo, i);
   1701 		PVO_WHERE(pvo, ENTER_INSERT);
   1702 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1703 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1704 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1705 
   1706 	} else {
   1707 		/*
   1708 		 * Since we didn't have room for this entry (which makes it
   1709 		 * and evicted entry), place it at the head of the list.
   1710 		 */
   1711 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1712 		PMAPCOUNT(ptes_evicted);
   1713 		pm->pm_evictions++;
   1714 		/*
   1715 		 * If this is a kernel page, make sure it's active.
   1716 		 */
   1717 		if (pm == pmap_kernel()) {
   1718 			i = pmap_pte_spill(pm, va, false);
   1719 			KASSERT(i);
   1720 		}
   1721 	}
   1722 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1724 	pmap_pvo_enter_depth--;
   1725 #endif
   1726 	pmap_interrupts_restore(msr);
   1727 	return 0;
   1728 }
   1729 
   1730 static void
   1731 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1732 {
   1733 	volatile struct pte *pt;
   1734 	int ptegidx;
   1735 
   1736 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1737 	if (++pmap_pvo_remove_depth > 1)
   1738 		panic("pmap_pvo_remove: called recursively!");
   1739 #endif
   1740 
   1741 	/*
   1742 	 * If we haven't been supplied the ptegidx, calculate it.
   1743 	 */
   1744 	if (pteidx == -1) {
   1745 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1746 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1747 	} else {
   1748 		ptegidx = pteidx >> 3;
   1749 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1750 			ptegidx ^= pmap_pteg_mask;
   1751 	}
   1752 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1753 
   1754 	/*
   1755 	 * If there is an active pte entry, we need to deactivate it
   1756 	 * (and save the ref & chg bits).
   1757 	 */
   1758 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1759 	if (pt != NULL) {
   1760 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1761 		PVO_WHERE(pvo, REMOVE);
   1762 		PVO_PTEGIDX_CLR(pvo);
   1763 		PMAPCOUNT(ptes_removed);
   1764 	} else {
   1765 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1766 		pvo->pvo_pmap->pm_evictions--;
   1767 	}
   1768 
   1769 	/*
   1770 	 * Account for executable mappings.
   1771 	 */
   1772 	if (PVO_EXECUTABLE_P(pvo))
   1773 		pvo_clear_exec(pvo);
   1774 
   1775 	/*
   1776 	 * Update our statistics.
   1777 	 */
   1778 	pvo->pvo_pmap->pm_stats.resident_count--;
   1779 	if (PVO_WIRED_P(pvo))
   1780 		pvo->pvo_pmap->pm_stats.wired_count--;
   1781 
   1782 	/*
   1783 	 * Save the REF/CHG bits into their cache if the page is managed.
   1784 	 */
   1785 	if (PVO_MANAGED_P(pvo)) {
   1786 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1787 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1788 
   1789 		if (pg != NULL) {
   1790 			/*
   1791 			 * If this page was changed and it is mapped exec,
   1792 			 * invalidate it.
   1793 			 */
   1794 			if ((ptelo & PTE_CHG) &&
   1795 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1796 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1797 				if (LIST_EMPTY(pvoh)) {
   1798 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1799 					    "%#" _PRIxpa ": clear-exec]\n",
   1800 					    VM_PAGE_TO_PHYS(pg)));
   1801 					pmap_attr_clear(pg, PTE_EXEC);
   1802 					PMAPCOUNT(exec_uncached_pvo_remove);
   1803 				} else {
   1804 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1805 					    "%#" _PRIxpa ": syncicache]\n",
   1806 					    VM_PAGE_TO_PHYS(pg)));
   1807 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1808 					    PAGE_SIZE);
   1809 					PMAPCOUNT(exec_synced_pvo_remove);
   1810 				}
   1811 			}
   1812 
   1813 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1814 		}
   1815 		PMAPCOUNT(unmappings);
   1816 	} else {
   1817 		PMAPCOUNT(kernel_unmappings);
   1818 	}
   1819 
   1820 	/*
   1821 	 * Remove the PVO from its lists and return it to the pool.
   1822 	 */
   1823 	LIST_REMOVE(pvo, pvo_vlink);
   1824 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1825 	if (pvol) {
   1826 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1827 	}
   1828 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1829 	pmap_pvo_remove_depth--;
   1830 #endif
   1831 }
   1832 
   1833 void
   1834 pmap_pvo_free(struct pvo_entry *pvo)
   1835 {
   1836 
   1837 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1838 }
   1839 
   1840 void
   1841 pmap_pvo_free_list(struct pvo_head *pvol)
   1842 {
   1843 	struct pvo_entry *pvo, *npvo;
   1844 
   1845 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1846 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1847 		LIST_REMOVE(pvo, pvo_vlink);
   1848 		pmap_pvo_free(pvo);
   1849 	}
   1850 }
   1851 
   1852 /*
   1853  * Mark a mapping as executable.
   1854  * If this is the first executable mapping in the segment,
   1855  * clear the noexec flag.
   1856  */
   1857 static void
   1858 pvo_set_exec(struct pvo_entry *pvo)
   1859 {
   1860 	struct pmap *pm = pvo->pvo_pmap;
   1861 
   1862 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1863 		return;
   1864 	}
   1865 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1866 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1867 	{
   1868 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1869 		if (pm->pm_exec[sr]++ == 0) {
   1870 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1871 		}
   1872 	}
   1873 #endif
   1874 }
   1875 
   1876 /*
   1877  * Mark a mapping as non-executable.
   1878  * If this was the last executable mapping in the segment,
   1879  * set the noexec flag.
   1880  */
   1881 static void
   1882 pvo_clear_exec(struct pvo_entry *pvo)
   1883 {
   1884 	struct pmap *pm = pvo->pvo_pmap;
   1885 
   1886 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1887 		return;
   1888 	}
   1889 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1890 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1891 	{
   1892 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1893 		if (--pm->pm_exec[sr] == 0) {
   1894 			pm->pm_sr[sr] |= SR_NOEXEC;
   1895 		}
   1896 	}
   1897 #endif
   1898 }
   1899 
   1900 /*
   1901  * Insert physical page at pa into the given pmap at virtual address va.
   1902  */
   1903 int
   1904 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1905 {
   1906 	struct mem_region *mp;
   1907 	struct pvo_head *pvo_head;
   1908 	struct vm_page *pg;
   1909 	struct pool *pl;
   1910 	register_t pte_lo;
   1911 	int error;
   1912 	u_int pvo_flags;
   1913 	u_int was_exec = 0;
   1914 
   1915 	PMAP_LOCK();
   1916 
   1917 	if (__predict_false(!pmap_initialized)) {
   1918 		pvo_head = &pmap_pvo_kunmanaged;
   1919 		pl = &pmap_upvo_pool;
   1920 		pvo_flags = 0;
   1921 		pg = NULL;
   1922 		was_exec = PTE_EXEC;
   1923 	} else {
   1924 		pvo_head = pa_to_pvoh(pa, &pg);
   1925 		pl = &pmap_mpvo_pool;
   1926 		pvo_flags = PVO_MANAGED;
   1927 	}
   1928 
   1929 	DPRINTFN(ENTER,
   1930 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1931 	    pm, va, pa, prot, flags));
   1932 
   1933 	/*
   1934 	 * If this is a managed page, and it's the first reference to the
   1935 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1936 	 */
   1937 	if (pg != NULL)
   1938 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1939 
   1940 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1941 
   1942 	/*
   1943 	 * Assume the page is cache inhibited and access is guarded unless
   1944 	 * it's in our available memory array.  If it is in the memory array,
   1945 	 * asssume it's in memory coherent memory.
   1946 	 */
   1947 	pte_lo = PTE_IG;
   1948 	if ((flags & PMAP_NC) == 0) {
   1949 		for (mp = mem; mp->size; mp++) {
   1950 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1951 				pte_lo = PTE_M;
   1952 				break;
   1953 			}
   1954 		}
   1955 	}
   1956 
   1957 	if (prot & VM_PROT_WRITE)
   1958 		pte_lo |= PTE_BW;
   1959 	else
   1960 		pte_lo |= PTE_BR;
   1961 
   1962 	/*
   1963 	 * If this was in response to a fault, "pre-fault" the PTE's
   1964 	 * changed/referenced bit appropriately.
   1965 	 */
   1966 	if (flags & VM_PROT_WRITE)
   1967 		pte_lo |= PTE_CHG;
   1968 	if (flags & VM_PROT_ALL)
   1969 		pte_lo |= PTE_REF;
   1970 
   1971 	/*
   1972 	 * We need to know if this page can be executable
   1973 	 */
   1974 	flags |= (prot & VM_PROT_EXECUTE);
   1975 
   1976 	/*
   1977 	 * Record mapping for later back-translation and pte spilling.
   1978 	 * This will overwrite any existing mapping.
   1979 	 */
   1980 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1981 
   1982 	/*
   1983 	 * Flush the real page from the instruction cache if this page is
   1984 	 * mapped executable and cacheable and has not been flushed since
   1985 	 * the last time it was modified.
   1986 	 */
   1987 	if (error == 0 &&
   1988             (flags & VM_PROT_EXECUTE) &&
   1989             (pte_lo & PTE_I) == 0 &&
   1990 	    was_exec == 0) {
   1991 		DPRINTFN(ENTER, (" syncicache"));
   1992 		PMAPCOUNT(exec_synced);
   1993 		pmap_syncicache(pa, PAGE_SIZE);
   1994 		if (pg != NULL) {
   1995 			pmap_attr_save(pg, PTE_EXEC);
   1996 			PMAPCOUNT(exec_cached);
   1997 #if defined(DEBUG) || defined(PMAPDEBUG)
   1998 			if (pmapdebug & PMAPDEBUG_ENTER)
   1999 				printf(" marked-as-exec");
   2000 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2001 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2002 				    VM_PAGE_TO_PHYS(pg));
   2003 
   2004 #endif
   2005 		}
   2006 	}
   2007 
   2008 	DPRINTFN(ENTER, (": error=%d\n", error));
   2009 
   2010 	PMAP_UNLOCK();
   2011 
   2012 	return error;
   2013 }
   2014 
   2015 void
   2016 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2017 {
   2018 	struct mem_region *mp;
   2019 	register_t pte_lo;
   2020 	int error;
   2021 
   2022 #if defined (PMAP_OEA64_BRIDGE)
   2023 	if (va < VM_MIN_KERNEL_ADDRESS)
   2024 		panic("pmap_kenter_pa: attempt to enter "
   2025 		    "non-kernel address %#" _PRIxva "!", va);
   2026 #endif
   2027 
   2028 	DPRINTFN(KENTER,
   2029 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2030 
   2031 	PMAP_LOCK();
   2032 
   2033 	/*
   2034 	 * Assume the page is cache inhibited and access is guarded unless
   2035 	 * it's in our available memory array.  If it is in the memory array,
   2036 	 * asssume it's in memory coherent memory.
   2037 	 */
   2038 	pte_lo = PTE_IG;
   2039 	if ((prot & PMAP_NC) == 0) {
   2040 		for (mp = mem; mp->size; mp++) {
   2041 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2042 				pte_lo = PTE_M;
   2043 				break;
   2044 			}
   2045 		}
   2046 	}
   2047 
   2048 	if (prot & VM_PROT_WRITE)
   2049 		pte_lo |= PTE_BW;
   2050 	else
   2051 		pte_lo |= PTE_BR;
   2052 
   2053 	/*
   2054 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2055 	 */
   2056 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2057 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2058 
   2059 	if (error != 0)
   2060 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2061 		      va, pa, error);
   2062 
   2063 	PMAP_UNLOCK();
   2064 }
   2065 
   2066 void
   2067 pmap_kremove(vaddr_t va, vsize_t len)
   2068 {
   2069 	if (va < VM_MIN_KERNEL_ADDRESS)
   2070 		panic("pmap_kremove: attempt to remove "
   2071 		    "non-kernel address %#" _PRIxva "!", va);
   2072 
   2073 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2074 	pmap_remove(pmap_kernel(), va, va + len);
   2075 }
   2076 
   2077 /*
   2078  * Remove the given range of mapping entries.
   2079  */
   2080 void
   2081 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2082 {
   2083 	struct pvo_head pvol;
   2084 	struct pvo_entry *pvo;
   2085 	register_t msr;
   2086 	int pteidx;
   2087 
   2088 	PMAP_LOCK();
   2089 	LIST_INIT(&pvol);
   2090 	msr = pmap_interrupts_off();
   2091 	for (; va < endva; va += PAGE_SIZE) {
   2092 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2093 		if (pvo != NULL) {
   2094 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2095 		}
   2096 	}
   2097 	pmap_interrupts_restore(msr);
   2098 	pmap_pvo_free_list(&pvol);
   2099 	PMAP_UNLOCK();
   2100 }
   2101 
   2102 /*
   2103  * Get the physical page address for the given pmap/virtual address.
   2104  */
   2105 bool
   2106 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2107 {
   2108 	struct pvo_entry *pvo;
   2109 	register_t msr;
   2110 
   2111 	PMAP_LOCK();
   2112 
   2113 	/*
   2114 	 * If this is a kernel pmap lookup, also check the battable
   2115 	 * and if we get a hit, translate the VA to a PA using the
   2116 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2117 	 * that will wrap back to 0.
   2118 	 */
   2119 	if (pm == pmap_kernel() &&
   2120 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2121 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2122 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2123 #if defined (PMAP_OEA)
   2124 #ifdef PPC_OEA601
   2125 		if ((MFPVR() >> 16) == MPC601) {
   2126 			register_t batu = battable[va >> 23].batu;
   2127 			register_t batl = battable[va >> 23].batl;
   2128 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2129 			if (BAT601_VALID_P(batl) &&
   2130 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2131 				register_t mask =
   2132 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2133 				if (pap)
   2134 					*pap = (batl & mask) | (va & ~mask);
   2135 				PMAP_UNLOCK();
   2136 				return true;
   2137 			} else if (SR601_VALID_P(sr) &&
   2138 				   SR601_PA_MATCH_P(sr, va)) {
   2139 				if (pap)
   2140 					*pap = va;
   2141 				PMAP_UNLOCK();
   2142 				return true;
   2143 			}
   2144 		} else
   2145 #endif /* PPC_OEA601 */
   2146 		{
   2147 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2148 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2149 				register_t batl =
   2150 				    battable[va >> ADDR_SR_SHFT].batl;
   2151 				register_t mask =
   2152 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2153 				if (pap)
   2154 					*pap = (batl & mask) | (va & ~mask);
   2155 				PMAP_UNLOCK();
   2156 				return true;
   2157 			}
   2158 		}
   2159 		return false;
   2160 #elif defined (PMAP_OEA64_BRIDGE)
   2161 	if (va >= SEGMENT_LENGTH)
   2162 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2163 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2164 	else {
   2165 		if (pap)
   2166 			*pap = va;
   2167 			PMAP_UNLOCK();
   2168 			return true;
   2169 	}
   2170 #elif defined (PMAP_OEA64)
   2171 #error PPC_OEA64 not supported
   2172 #endif /* PPC_OEA */
   2173 	}
   2174 
   2175 	msr = pmap_interrupts_off();
   2176 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2177 	if (pvo != NULL) {
   2178 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2179 		if (pap)
   2180 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2181 			    | (va & ADDR_POFF);
   2182 	}
   2183 	pmap_interrupts_restore(msr);
   2184 	PMAP_UNLOCK();
   2185 	return pvo != NULL;
   2186 }
   2187 
   2188 /*
   2189  * Lower the protection on the specified range of this pmap.
   2190  */
   2191 void
   2192 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2193 {
   2194 	struct pvo_entry *pvo;
   2195 	volatile struct pte *pt;
   2196 	register_t msr;
   2197 	int pteidx;
   2198 
   2199 	/*
   2200 	 * Since this routine only downgrades protection, we should
   2201 	 * always be called with at least one bit not set.
   2202 	 */
   2203 	KASSERT(prot != VM_PROT_ALL);
   2204 
   2205 	/*
   2206 	 * If there is no protection, this is equivalent to
   2207 	 * remove the pmap from the pmap.
   2208 	 */
   2209 	if ((prot & VM_PROT_READ) == 0) {
   2210 		pmap_remove(pm, va, endva);
   2211 		return;
   2212 	}
   2213 
   2214 	PMAP_LOCK();
   2215 
   2216 	msr = pmap_interrupts_off();
   2217 	for (; va < endva; va += PAGE_SIZE) {
   2218 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2219 		if (pvo == NULL)
   2220 			continue;
   2221 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2222 
   2223 		/*
   2224 		 * Revoke executable if asked to do so.
   2225 		 */
   2226 		if ((prot & VM_PROT_EXECUTE) == 0)
   2227 			pvo_clear_exec(pvo);
   2228 
   2229 #if 0
   2230 		/*
   2231 		 * If the page is already read-only, no change
   2232 		 * needs to be made.
   2233 		 */
   2234 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2235 			continue;
   2236 #endif
   2237 		/*
   2238 		 * Grab the PTE pointer before we diddle with
   2239 		 * the cached PTE copy.
   2240 		 */
   2241 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2242 		/*
   2243 		 * Change the protection of the page.
   2244 		 */
   2245 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2246 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2247 
   2248 		/*
   2249 		 * If the PVO is in the page table, update
   2250 		 * that pte at well.
   2251 		 */
   2252 		if (pt != NULL) {
   2253 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2254 			PVO_WHERE(pvo, PMAP_PROTECT);
   2255 			PMAPCOUNT(ptes_changed);
   2256 		}
   2257 
   2258 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2259 	}
   2260 	pmap_interrupts_restore(msr);
   2261 	PMAP_UNLOCK();
   2262 }
   2263 
   2264 void
   2265 pmap_unwire(pmap_t pm, vaddr_t va)
   2266 {
   2267 	struct pvo_entry *pvo;
   2268 	register_t msr;
   2269 
   2270 	PMAP_LOCK();
   2271 	msr = pmap_interrupts_off();
   2272 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2273 	if (pvo != NULL) {
   2274 		if (PVO_WIRED_P(pvo)) {
   2275 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2276 			pm->pm_stats.wired_count--;
   2277 		}
   2278 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2279 	}
   2280 	pmap_interrupts_restore(msr);
   2281 	PMAP_UNLOCK();
   2282 }
   2283 
   2284 /*
   2285  * Lower the protection on the specified physical page.
   2286  */
   2287 void
   2288 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2289 {
   2290 	struct pvo_head *pvo_head, pvol;
   2291 	struct pvo_entry *pvo, *next_pvo;
   2292 	volatile struct pte *pt;
   2293 	register_t msr;
   2294 
   2295 	PMAP_LOCK();
   2296 
   2297 	KASSERT(prot != VM_PROT_ALL);
   2298 	LIST_INIT(&pvol);
   2299 	msr = pmap_interrupts_off();
   2300 
   2301 	/*
   2302 	 * When UVM reuses a page, it does a pmap_page_protect with
   2303 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2304 	 * since we know the page will have different contents.
   2305 	 */
   2306 	if ((prot & VM_PROT_READ) == 0) {
   2307 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2308 		    VM_PAGE_TO_PHYS(pg)));
   2309 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2310 			PMAPCOUNT(exec_uncached_page_protect);
   2311 			pmap_attr_clear(pg, PTE_EXEC);
   2312 		}
   2313 	}
   2314 
   2315 	pvo_head = vm_page_to_pvoh(pg);
   2316 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2317 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2318 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2319 
   2320 		/*
   2321 		 * Downgrading to no mapping at all, we just remove the entry.
   2322 		 */
   2323 		if ((prot & VM_PROT_READ) == 0) {
   2324 			pmap_pvo_remove(pvo, -1, &pvol);
   2325 			continue;
   2326 		}
   2327 
   2328 		/*
   2329 		 * If EXEC permission is being revoked, just clear the
   2330 		 * flag in the PVO.
   2331 		 */
   2332 		if ((prot & VM_PROT_EXECUTE) == 0)
   2333 			pvo_clear_exec(pvo);
   2334 
   2335 		/*
   2336 		 * If this entry is already RO, don't diddle with the
   2337 		 * page table.
   2338 		 */
   2339 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2340 			PMAP_PVO_CHECK(pvo);
   2341 			continue;
   2342 		}
   2343 
   2344 		/*
   2345 		 * Grab the PTE before the we diddle the bits so
   2346 		 * pvo_to_pte can verify the pte contents are as
   2347 		 * expected.
   2348 		 */
   2349 		pt = pmap_pvo_to_pte(pvo, -1);
   2350 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2351 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2352 		if (pt != NULL) {
   2353 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2354 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2355 			PMAPCOUNT(ptes_changed);
   2356 		}
   2357 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2358 	}
   2359 	pmap_interrupts_restore(msr);
   2360 	pmap_pvo_free_list(&pvol);
   2361 
   2362 	PMAP_UNLOCK();
   2363 }
   2364 
   2365 /*
   2366  * Activate the address space for the specified process.  If the process
   2367  * is the current process, load the new MMU context.
   2368  */
   2369 void
   2370 pmap_activate(struct lwp *l)
   2371 {
   2372 	struct pcb *pcb = lwp_getpcb(l);
   2373 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2374 
   2375 	DPRINTFN(ACTIVATE,
   2376 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2377 
   2378 	/*
   2379 	 * XXX Normally performed in cpu_lwp_fork().
   2380 	 */
   2381 	pcb->pcb_pm = pmap;
   2382 
   2383 	/*
   2384 	* In theory, the SR registers need only be valid on return
   2385 	* to user space wait to do them there.
   2386 	*/
   2387 	if (l == curlwp) {
   2388 		/* Store pointer to new current pmap. */
   2389 		curpm = pmap;
   2390 	}
   2391 }
   2392 
   2393 /*
   2394  * Deactivate the specified process's address space.
   2395  */
   2396 void
   2397 pmap_deactivate(struct lwp *l)
   2398 {
   2399 }
   2400 
   2401 bool
   2402 pmap_query_bit(struct vm_page *pg, int ptebit)
   2403 {
   2404 	struct pvo_entry *pvo;
   2405 	volatile struct pte *pt;
   2406 	register_t msr;
   2407 
   2408 	PMAP_LOCK();
   2409 
   2410 	if (pmap_attr_fetch(pg) & ptebit) {
   2411 		PMAP_UNLOCK();
   2412 		return true;
   2413 	}
   2414 
   2415 	msr = pmap_interrupts_off();
   2416 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2417 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2418 		/*
   2419 		 * See if we saved the bit off.  If so cache, it and return
   2420 		 * success.
   2421 		 */
   2422 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2423 			pmap_attr_save(pg, ptebit);
   2424 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2425 			pmap_interrupts_restore(msr);
   2426 			PMAP_UNLOCK();
   2427 			return true;
   2428 		}
   2429 	}
   2430 	/*
   2431 	 * No luck, now go thru the hard part of looking at the ptes
   2432 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2433 	 * to the PTEs.
   2434 	 */
   2435 	SYNC();
   2436 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2437 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2438 		/*
   2439 		 * See if this pvo have a valid PTE.  If so, fetch the
   2440 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2441 		 * ptebit is set, cache, it and return success.
   2442 		 */
   2443 		pt = pmap_pvo_to_pte(pvo, -1);
   2444 		if (pt != NULL) {
   2445 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2446 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2447 				pmap_attr_save(pg, ptebit);
   2448 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2449 				pmap_interrupts_restore(msr);
   2450 				PMAP_UNLOCK();
   2451 				return true;
   2452 			}
   2453 		}
   2454 	}
   2455 	pmap_interrupts_restore(msr);
   2456 	PMAP_UNLOCK();
   2457 	return false;
   2458 }
   2459 
   2460 bool
   2461 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2462 {
   2463 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2464 	struct pvo_entry *pvo;
   2465 	volatile struct pte *pt;
   2466 	register_t msr;
   2467 	int rv = 0;
   2468 
   2469 	PMAP_LOCK();
   2470 	msr = pmap_interrupts_off();
   2471 
   2472 	/*
   2473 	 * Fetch the cache value
   2474 	 */
   2475 	rv |= pmap_attr_fetch(pg);
   2476 
   2477 	/*
   2478 	 * Clear the cached value.
   2479 	 */
   2480 	pmap_attr_clear(pg, ptebit);
   2481 
   2482 	/*
   2483 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2484 	 * can reset the right ones).  Note that since the pvo entries and
   2485 	 * list heads are accessed via BAT0 and are never placed in the
   2486 	 * page table, we don't have to worry about further accesses setting
   2487 	 * the REF/CHG bits.
   2488 	 */
   2489 	SYNC();
   2490 
   2491 	/*
   2492 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2493 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2494 	 */
   2495 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2496 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2497 		pt = pmap_pvo_to_pte(pvo, -1);
   2498 		if (pt != NULL) {
   2499 			/*
   2500 			 * Only sync the PTE if the bit we are looking
   2501 			 * for is not already set.
   2502 			 */
   2503 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2504 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2505 			/*
   2506 			 * If the bit we are looking for was already set,
   2507 			 * clear that bit in the pte.
   2508 			 */
   2509 			if (pvo->pvo_pte.pte_lo & ptebit)
   2510 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2511 		}
   2512 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2513 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2514 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2515 	}
   2516 	pmap_interrupts_restore(msr);
   2517 
   2518 	/*
   2519 	 * If we are clearing the modify bit and this page was marked EXEC
   2520 	 * and the user of the page thinks the page was modified, then we
   2521 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2522 	 * bit if it's not mapped.  The page itself might not have the CHG
   2523 	 * bit set if the modification was done via DMA to the page.
   2524 	 */
   2525 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2526 		if (LIST_EMPTY(pvoh)) {
   2527 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2528 			    VM_PAGE_TO_PHYS(pg)));
   2529 			pmap_attr_clear(pg, PTE_EXEC);
   2530 			PMAPCOUNT(exec_uncached_clear_modify);
   2531 		} else {
   2532 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2533 			    VM_PAGE_TO_PHYS(pg)));
   2534 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2535 			PMAPCOUNT(exec_synced_clear_modify);
   2536 		}
   2537 	}
   2538 	PMAP_UNLOCK();
   2539 	return (rv & ptebit) != 0;
   2540 }
   2541 
   2542 void
   2543 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2544 {
   2545 	struct pvo_entry *pvo;
   2546 	size_t offset = va & ADDR_POFF;
   2547 	int s;
   2548 
   2549 	PMAP_LOCK();
   2550 	s = splvm();
   2551 	while (len > 0) {
   2552 		size_t seglen = PAGE_SIZE - offset;
   2553 		if (seglen > len)
   2554 			seglen = len;
   2555 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2556 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2557 			pmap_syncicache(
   2558 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2559 			PMAP_PVO_CHECK(pvo);
   2560 		}
   2561 		va += seglen;
   2562 		len -= seglen;
   2563 		offset = 0;
   2564 	}
   2565 	splx(s);
   2566 	PMAP_UNLOCK();
   2567 }
   2568 
   2569 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2570 void
   2571 pmap_pte_print(volatile struct pte *pt)
   2572 {
   2573 	printf("PTE %p: ", pt);
   2574 
   2575 #if defined(PMAP_OEA)
   2576 	/* High word: */
   2577 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2578 #else
   2579 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2580 #endif /* PMAP_OEA */
   2581 
   2582 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2583 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2584 
   2585 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2586 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2587 	    pt->pte_hi & PTE_API);
   2588 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2589 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2590 #else
   2591 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2592 #endif /* PMAP_OEA */
   2593 
   2594 	/* Low word: */
   2595 #if defined (PMAP_OEA)
   2596 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2597 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2598 #else
   2599 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2600 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2601 #endif
   2602 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2603 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2604 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2605 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2606 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2607 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2608 	switch (pt->pte_lo & PTE_PP) {
   2609 	case PTE_BR: printf("br]\n"); break;
   2610 	case PTE_BW: printf("bw]\n"); break;
   2611 	case PTE_SO: printf("so]\n"); break;
   2612 	case PTE_SW: printf("sw]\n"); break;
   2613 	}
   2614 }
   2615 #endif
   2616 
   2617 #if defined(DDB)
   2618 void
   2619 pmap_pteg_check(void)
   2620 {
   2621 	volatile struct pte *pt;
   2622 	int i;
   2623 	int ptegidx;
   2624 	u_int p_valid = 0;
   2625 	u_int s_valid = 0;
   2626 	u_int invalid = 0;
   2627 
   2628 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2629 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2630 			if (pt->pte_hi & PTE_VALID) {
   2631 				if (pt->pte_hi & PTE_HID)
   2632 					s_valid++;
   2633 				else
   2634 				{
   2635 					p_valid++;
   2636 				}
   2637 			} else
   2638 				invalid++;
   2639 		}
   2640 	}
   2641 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2642 		p_valid, p_valid, s_valid, s_valid,
   2643 		invalid, invalid);
   2644 }
   2645 
   2646 void
   2647 pmap_print_mmuregs(void)
   2648 {
   2649 	int i;
   2650 	u_int cpuvers;
   2651 #ifndef PMAP_OEA64
   2652 	vaddr_t addr;
   2653 	register_t soft_sr[16];
   2654 #endif
   2655 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2656 	struct bat soft_ibat[4];
   2657 	struct bat soft_dbat[4];
   2658 #endif
   2659 	paddr_t sdr1;
   2660 
   2661 	cpuvers = MFPVR() >> 16;
   2662 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2663 #ifndef PMAP_OEA64
   2664 	addr = 0;
   2665 	for (i = 0; i < 16; i++) {
   2666 		soft_sr[i] = MFSRIN(addr);
   2667 		addr += (1 << ADDR_SR_SHFT);
   2668 	}
   2669 #endif
   2670 
   2671 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2672 	/* read iBAT (601: uBAT) registers */
   2673 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2674 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2675 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2676 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2677 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2678 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2679 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2680 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2681 
   2682 
   2683 	if (cpuvers != MPC601) {
   2684 		/* read dBAT registers */
   2685 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2686 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2687 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2688 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2689 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2690 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2691 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2692 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2693 	}
   2694 #endif
   2695 
   2696 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2697 #ifndef PMAP_OEA64
   2698 	printf("SR[]:\t");
   2699 	for (i = 0; i < 4; i++)
   2700 		printf("0x%08lx,   ", soft_sr[i]);
   2701 	printf("\n\t");
   2702 	for ( ; i < 8; i++)
   2703 		printf("0x%08lx,   ", soft_sr[i]);
   2704 	printf("\n\t");
   2705 	for ( ; i < 12; i++)
   2706 		printf("0x%08lx,   ", soft_sr[i]);
   2707 	printf("\n\t");
   2708 	for ( ; i < 16; i++)
   2709 		printf("0x%08lx,   ", soft_sr[i]);
   2710 	printf("\n");
   2711 #endif
   2712 
   2713 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2714 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2715 	for (i = 0; i < 4; i++) {
   2716 		printf("0x%08lx 0x%08lx, ",
   2717 			soft_ibat[i].batu, soft_ibat[i].batl);
   2718 		if (i == 1)
   2719 			printf("\n\t");
   2720 	}
   2721 	if (cpuvers != MPC601) {
   2722 		printf("\ndBAT[]:\t");
   2723 		for (i = 0; i < 4; i++) {
   2724 			printf("0x%08lx 0x%08lx, ",
   2725 				soft_dbat[i].batu, soft_dbat[i].batl);
   2726 			if (i == 1)
   2727 				printf("\n\t");
   2728 		}
   2729 	}
   2730 	printf("\n");
   2731 #endif /* PMAP_OEA... */
   2732 }
   2733 
   2734 void
   2735 pmap_print_pte(pmap_t pm, vaddr_t va)
   2736 {
   2737 	struct pvo_entry *pvo;
   2738 	volatile struct pte *pt;
   2739 	int pteidx;
   2740 
   2741 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2742 	if (pvo != NULL) {
   2743 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2744 		if (pt != NULL) {
   2745 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2746 				va, pt,
   2747 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2748 				pt->pte_hi, pt->pte_lo);
   2749 		} else {
   2750 			printf("No valid PTE found\n");
   2751 		}
   2752 	} else {
   2753 		printf("Address not in pmap\n");
   2754 	}
   2755 }
   2756 
   2757 void
   2758 pmap_pteg_dist(void)
   2759 {
   2760 	struct pvo_entry *pvo;
   2761 	int ptegidx;
   2762 	int depth;
   2763 	int max_depth = 0;
   2764 	unsigned int depths[64];
   2765 
   2766 	memset(depths, 0, sizeof(depths));
   2767 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2768 		depth = 0;
   2769 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2770 			depth++;
   2771 		}
   2772 		if (depth > max_depth)
   2773 			max_depth = depth;
   2774 		if (depth > 63)
   2775 			depth = 63;
   2776 		depths[depth]++;
   2777 	}
   2778 
   2779 	for (depth = 0; depth < 64; depth++) {
   2780 		printf("  [%2d]: %8u", depth, depths[depth]);
   2781 		if ((depth & 3) == 3)
   2782 			printf("\n");
   2783 		if (depth == max_depth)
   2784 			break;
   2785 	}
   2786 	if ((depth & 3) != 3)
   2787 		printf("\n");
   2788 	printf("Max depth found was %d\n", max_depth);
   2789 }
   2790 #endif /* DEBUG */
   2791 
   2792 #if defined(PMAPCHECK) || defined(DEBUG)
   2793 void
   2794 pmap_pvo_verify(void)
   2795 {
   2796 	int ptegidx;
   2797 	int s;
   2798 
   2799 	s = splvm();
   2800 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2801 		struct pvo_entry *pvo;
   2802 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2803 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2804 				panic("pmap_pvo_verify: invalid pvo %p "
   2805 				    "on list %#x", pvo, ptegidx);
   2806 			pmap_pvo_check(pvo);
   2807 		}
   2808 	}
   2809 	splx(s);
   2810 }
   2811 #endif /* PMAPCHECK */
   2812 
   2813 
   2814 void *
   2815 pmap_pool_ualloc(struct pool *pp, int flags)
   2816 {
   2817 	struct pvo_page *pvop;
   2818 
   2819 	if (uvm.page_init_done != true) {
   2820 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2821 	}
   2822 
   2823 	PMAP_LOCK();
   2824 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2825 	if (pvop != NULL) {
   2826 		pmap_upvop_free--;
   2827 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2828 		PMAP_UNLOCK();
   2829 		return pvop;
   2830 	}
   2831 	PMAP_UNLOCK();
   2832 	return pmap_pool_malloc(pp, flags);
   2833 }
   2834 
   2835 void *
   2836 pmap_pool_malloc(struct pool *pp, int flags)
   2837 {
   2838 	struct pvo_page *pvop;
   2839 	struct vm_page *pg;
   2840 
   2841 	PMAP_LOCK();
   2842 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2843 	if (pvop != NULL) {
   2844 		pmap_mpvop_free--;
   2845 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2846 		PMAP_UNLOCK();
   2847 		return pvop;
   2848 	}
   2849 	PMAP_UNLOCK();
   2850  again:
   2851 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2852 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2853 	if (__predict_false(pg == NULL)) {
   2854 		if (flags & PR_WAITOK) {
   2855 			uvm_wait("plpg");
   2856 			goto again;
   2857 		} else {
   2858 			return (0);
   2859 		}
   2860 	}
   2861 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2862 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2863 }
   2864 
   2865 void
   2866 pmap_pool_ufree(struct pool *pp, void *va)
   2867 {
   2868 	struct pvo_page *pvop;
   2869 #if 0
   2870 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2871 		pmap_pool_mfree(va, size, tag);
   2872 		return;
   2873 	}
   2874 #endif
   2875 	PMAP_LOCK();
   2876 	pvop = va;
   2877 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2878 	pmap_upvop_free++;
   2879 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2880 		pmap_upvop_maxfree = pmap_upvop_free;
   2881 	PMAP_UNLOCK();
   2882 }
   2883 
   2884 void
   2885 pmap_pool_mfree(struct pool *pp, void *va)
   2886 {
   2887 	struct pvo_page *pvop;
   2888 
   2889 	PMAP_LOCK();
   2890 	pvop = va;
   2891 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2892 	pmap_mpvop_free++;
   2893 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2894 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2895 	PMAP_UNLOCK();
   2896 #if 0
   2897 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2898 #endif
   2899 }
   2900 
   2901 /*
   2902  * This routine in bootstraping to steal to-be-managed memory (which will
   2903  * then be unmanaged).  We use it to grab from the first 256MB for our
   2904  * pmap needs and above 256MB for other stuff.
   2905  */
   2906 vaddr_t
   2907 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2908 {
   2909 	vsize_t size;
   2910 	vaddr_t va;
   2911 	paddr_t pa = 0;
   2912 	int npgs, bank;
   2913 	struct vm_physseg *ps;
   2914 
   2915 	if (uvm.page_init_done == true)
   2916 		panic("pmap_steal_memory: called _after_ bootstrap");
   2917 
   2918 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2919 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2920 
   2921 	size = round_page(vsize);
   2922 	npgs = atop(size);
   2923 
   2924 	/*
   2925 	 * PA 0 will never be among those given to UVM so we can use it
   2926 	 * to indicate we couldn't steal any memory.
   2927 	 */
   2928 	for (bank = 0; bank < vm_nphysseg; bank++) {
   2929 		ps = VM_PHYSMEM_PTR(bank);
   2930 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2931 		    ps->avail_end - ps->avail_start >= npgs) {
   2932 			pa = ptoa(ps->avail_start);
   2933 			break;
   2934 		}
   2935 	}
   2936 
   2937 	if (pa == 0)
   2938 		panic("pmap_steal_memory: no approriate memory to steal!");
   2939 
   2940 	ps->avail_start += npgs;
   2941 	ps->start += npgs;
   2942 
   2943 	/*
   2944 	 * If we've used up all the pages in the segment, remove it and
   2945 	 * compact the list.
   2946 	 */
   2947 	if (ps->avail_start == ps->end) {
   2948 		/*
   2949 		 * If this was the last one, then a very bad thing has occurred
   2950 		 */
   2951 		if (--vm_nphysseg == 0)
   2952 			panic("pmap_steal_memory: out of memory!");
   2953 
   2954 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2955 		for (; bank < vm_nphysseg; bank++, ps++) {
   2956 			ps[0] = ps[1];
   2957 		}
   2958 	}
   2959 
   2960 	va = (vaddr_t) pa;
   2961 	memset((void *) va, 0, size);
   2962 	pmap_pages_stolen += npgs;
   2963 #ifdef DEBUG
   2964 	if (pmapdebug && npgs > 1) {
   2965 		u_int cnt = 0;
   2966 		for (bank = 0; bank < vm_nphysseg; bank++) {
   2967 			ps = VM_PHYSMEM_PTR(bank);
   2968 			cnt += ps->avail_end - ps->avail_start;
   2969 		}
   2970 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2971 		    npgs, pmap_pages_stolen, cnt);
   2972 	}
   2973 #endif
   2974 
   2975 	return va;
   2976 }
   2977 
   2978 /*
   2979  * Find a chuck of memory with right size and alignment.
   2980  */
   2981 paddr_t
   2982 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2983 {
   2984 	struct mem_region *mp;
   2985 	paddr_t s, e;
   2986 	int i, j;
   2987 
   2988 	size = round_page(size);
   2989 
   2990 	DPRINTFN(BOOT,
   2991 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2992 	    size, alignment, at_end));
   2993 
   2994 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2995 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2996 		    alignment);
   2997 
   2998 	if (at_end) {
   2999 		if (alignment != PAGE_SIZE)
   3000 			panic("pmap_boot_find_memory: invalid ending "
   3001 			    "alignment %#" _PRIxpa, alignment);
   3002 
   3003 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3004 			s = mp->start + mp->size - size;
   3005 			if (s >= mp->start && mp->size >= size) {
   3006 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3007 				DPRINTFN(BOOT,
   3008 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3009 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3010 				     mp->start, mp->size));
   3011 				mp->size -= size;
   3012 				DPRINTFN(BOOT,
   3013 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3014 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3015 				     mp->start, mp->size));
   3016 				return s;
   3017 			}
   3018 		}
   3019 		panic("pmap_boot_find_memory: no available memory");
   3020 	}
   3021 
   3022 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3023 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3024 		e = s + size;
   3025 
   3026 		/*
   3027 		 * Is the calculated region entirely within the region?
   3028 		 */
   3029 		if (s < mp->start || e > mp->start + mp->size)
   3030 			continue;
   3031 
   3032 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3033 		if (s == mp->start) {
   3034 			/*
   3035 			 * If the block starts at the beginning of region,
   3036 			 * adjust the size & start. (the region may now be
   3037 			 * zero in length)
   3038 			 */
   3039 			DPRINTFN(BOOT,
   3040 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3041 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3042 			mp->start += size;
   3043 			mp->size -= size;
   3044 			DPRINTFN(BOOT,
   3045 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3046 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3047 		} else if (e == mp->start + mp->size) {
   3048 			/*
   3049 			 * If the block starts at the beginning of region,
   3050 			 * adjust only the size.
   3051 			 */
   3052 			DPRINTFN(BOOT,
   3053 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3054 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3055 			mp->size -= size;
   3056 			DPRINTFN(BOOT,
   3057 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3058 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3059 		} else {
   3060 			/*
   3061 			 * Block is in the middle of the region, so we
   3062 			 * have to split it in two.
   3063 			 */
   3064 			for (j = avail_cnt; j > i + 1; j--) {
   3065 				avail[j] = avail[j-1];
   3066 			}
   3067 			DPRINTFN(BOOT,
   3068 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3069 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3070 			mp[1].start = e;
   3071 			mp[1].size = mp[0].start + mp[0].size - e;
   3072 			mp[0].size = s - mp[0].start;
   3073 			avail_cnt++;
   3074 			for (; i < avail_cnt; i++) {
   3075 				DPRINTFN(BOOT,
   3076 				    ("pmap_boot_find_memory: a-avail[%d] "
   3077 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3078 				     avail[i].start, avail[i].size));
   3079 			}
   3080 		}
   3081 		KASSERT(s == (uintptr_t) s);
   3082 		return s;
   3083 	}
   3084 	panic("pmap_boot_find_memory: not enough memory for "
   3085 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3086 }
   3087 
   3088 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3089 #if defined (PMAP_OEA64_BRIDGE)
   3090 int
   3091 pmap_setup_segment0_map(int use_large_pages, ...)
   3092 {
   3093     vaddr_t va;
   3094 
   3095     register_t pte_lo = 0x0;
   3096     int ptegidx = 0, i = 0;
   3097     struct pte pte;
   3098     va_list ap;
   3099 
   3100     /* Coherent + Supervisor RW, no user access */
   3101     pte_lo = PTE_M;
   3102 
   3103     /* XXXSL
   3104      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3105      * these have to take priority.
   3106      */
   3107     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3108         ptegidx = va_to_pteg(pmap_kernel(), va);
   3109         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3110         i = pmap_pte_insert(ptegidx, &pte);
   3111     }
   3112 
   3113     va_start(ap, use_large_pages);
   3114     while (1) {
   3115         paddr_t pa;
   3116         size_t size;
   3117 
   3118         va = va_arg(ap, vaddr_t);
   3119 
   3120         if (va == 0)
   3121             break;
   3122 
   3123         pa = va_arg(ap, paddr_t);
   3124         size = va_arg(ap, size_t);
   3125 
   3126         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3127 #if 0
   3128 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3129 #endif
   3130             ptegidx = va_to_pteg(pmap_kernel(), va);
   3131             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3132             i = pmap_pte_insert(ptegidx, &pte);
   3133         }
   3134     }
   3135 
   3136     TLBSYNC();
   3137     SYNC();
   3138     return (0);
   3139 }
   3140 #endif /* PMAP_OEA64_BRIDGE */
   3141 
   3142 /*
   3143  * This is not part of the defined PMAP interface and is specific to the
   3144  * PowerPC architecture.  This is called during initppc, before the system
   3145  * is really initialized.
   3146  */
   3147 void
   3148 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3149 {
   3150 	struct mem_region *mp, tmp;
   3151 	paddr_t s, e;
   3152 	psize_t size;
   3153 	int i, j;
   3154 
   3155 	/*
   3156 	 * Get memory.
   3157 	 */
   3158 	mem_regions(&mem, &avail);
   3159 #if defined(DEBUG)
   3160 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3161 		printf("pmap_bootstrap: memory configuration:\n");
   3162 		for (mp = mem; mp->size; mp++) {
   3163 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3164 				mp->start, mp->size);
   3165 		}
   3166 		for (mp = avail; mp->size; mp++) {
   3167 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3168 				mp->start, mp->size);
   3169 		}
   3170 	}
   3171 #endif
   3172 
   3173 	/*
   3174 	 * Find out how much physical memory we have and in how many chunks.
   3175 	 */
   3176 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3177 		if (mp->start >= pmap_memlimit)
   3178 			continue;
   3179 		if (mp->start + mp->size > pmap_memlimit) {
   3180 			size = pmap_memlimit - mp->start;
   3181 			physmem += btoc(size);
   3182 		} else {
   3183 			physmem += btoc(mp->size);
   3184 		}
   3185 		mem_cnt++;
   3186 	}
   3187 
   3188 	/*
   3189 	 * Count the number of available entries.
   3190 	 */
   3191 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3192 		avail_cnt++;
   3193 
   3194 	/*
   3195 	 * Page align all regions.
   3196 	 */
   3197 	kernelstart = trunc_page(kernelstart);
   3198 	kernelend = round_page(kernelend);
   3199 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3200 		s = round_page(mp->start);
   3201 		mp->size -= (s - mp->start);
   3202 		mp->size = trunc_page(mp->size);
   3203 		mp->start = s;
   3204 		e = mp->start + mp->size;
   3205 
   3206 		DPRINTFN(BOOT,
   3207 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3208 		    i, mp->start, mp->size));
   3209 
   3210 		/*
   3211 		 * Don't allow the end to run beyond our artificial limit
   3212 		 */
   3213 		if (e > pmap_memlimit)
   3214 			e = pmap_memlimit;
   3215 
   3216 		/*
   3217 		 * Is this region empty or strange?  skip it.
   3218 		 */
   3219 		if (e <= s) {
   3220 			mp->start = 0;
   3221 			mp->size = 0;
   3222 			continue;
   3223 		}
   3224 
   3225 		/*
   3226 		 * Does this overlap the beginning of kernel?
   3227 		 *   Does extend past the end of the kernel?
   3228 		 */
   3229 		else if (s < kernelstart && e > kernelstart) {
   3230 			if (e > kernelend) {
   3231 				avail[avail_cnt].start = kernelend;
   3232 				avail[avail_cnt].size = e - kernelend;
   3233 				avail_cnt++;
   3234 			}
   3235 			mp->size = kernelstart - s;
   3236 		}
   3237 		/*
   3238 		 * Check whether this region overlaps the end of the kernel.
   3239 		 */
   3240 		else if (s < kernelend && e > kernelend) {
   3241 			mp->start = kernelend;
   3242 			mp->size = e - kernelend;
   3243 		}
   3244 		/*
   3245 		 * Look whether this regions is completely inside the kernel.
   3246 		 * Nuke it if it does.
   3247 		 */
   3248 		else if (s >= kernelstart && e <= kernelend) {
   3249 			mp->start = 0;
   3250 			mp->size = 0;
   3251 		}
   3252 		/*
   3253 		 * If the user imposed a memory limit, enforce it.
   3254 		 */
   3255 		else if (s >= pmap_memlimit) {
   3256 			mp->start = -PAGE_SIZE;	/* let's know why */
   3257 			mp->size = 0;
   3258 		}
   3259 		else {
   3260 			mp->start = s;
   3261 			mp->size = e - s;
   3262 		}
   3263 		DPRINTFN(BOOT,
   3264 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3265 		    i, mp->start, mp->size));
   3266 	}
   3267 
   3268 	/*
   3269 	 * Move (and uncount) all the null return to the end.
   3270 	 */
   3271 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3272 		if (mp->size == 0) {
   3273 			tmp = avail[i];
   3274 			avail[i] = avail[--avail_cnt];
   3275 			avail[avail_cnt] = avail[i];
   3276 		}
   3277 	}
   3278 
   3279 	/*
   3280 	 * (Bubble)sort them into ascending order.
   3281 	 */
   3282 	for (i = 0; i < avail_cnt; i++) {
   3283 		for (j = i + 1; j < avail_cnt; j++) {
   3284 			if (avail[i].start > avail[j].start) {
   3285 				tmp = avail[i];
   3286 				avail[i] = avail[j];
   3287 				avail[j] = tmp;
   3288 			}
   3289 		}
   3290 	}
   3291 
   3292 	/*
   3293 	 * Make sure they don't overlap.
   3294 	 */
   3295 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3296 		if (mp[0].start + mp[0].size > mp[1].start) {
   3297 			mp[0].size = mp[1].start - mp[0].start;
   3298 		}
   3299 		DPRINTFN(BOOT,
   3300 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3301 		    i, mp->start, mp->size));
   3302 	}
   3303 	DPRINTFN(BOOT,
   3304 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3305 	    i, mp->start, mp->size));
   3306 
   3307 #ifdef	PTEGCOUNT
   3308 	pmap_pteg_cnt = PTEGCOUNT;
   3309 #else /* PTEGCOUNT */
   3310 
   3311 	pmap_pteg_cnt = 0x1000;
   3312 
   3313 	while (pmap_pteg_cnt < physmem)
   3314 		pmap_pteg_cnt <<= 1;
   3315 
   3316 	pmap_pteg_cnt >>= 1;
   3317 #endif /* PTEGCOUNT */
   3318 
   3319 #ifdef DEBUG
   3320 	DPRINTFN(BOOT,
   3321 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3322 #endif
   3323 
   3324 	/*
   3325 	 * Find suitably aligned memory for PTEG hash table.
   3326 	 */
   3327 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3328 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3329 
   3330 #ifdef DEBUG
   3331 	DPRINTFN(BOOT,
   3332 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3333 #endif
   3334 
   3335 
   3336 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3337 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3338 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3339 		    pmap_pteg_table, size);
   3340 #endif
   3341 
   3342 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3343 		pmap_pteg_cnt * sizeof(struct pteg));
   3344 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3345 
   3346 	/*
   3347 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3348 	 * with pages.  So we just steal them before giving them to UVM.
   3349 	 */
   3350 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3351 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3352 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3353 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3354 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3355 		    pmap_pvo_table, size);
   3356 #endif
   3357 
   3358 	for (i = 0; i < pmap_pteg_cnt; i++)
   3359 		TAILQ_INIT(&pmap_pvo_table[i]);
   3360 
   3361 #ifndef MSGBUFADDR
   3362 	/*
   3363 	 * Allocate msgbuf in high memory.
   3364 	 */
   3365 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3366 #endif
   3367 
   3368 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3369 		paddr_t pfstart = atop(mp->start);
   3370 		paddr_t pfend = atop(mp->start + mp->size);
   3371 		if (mp->size == 0)
   3372 			continue;
   3373 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3374 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3375 				VM_FREELIST_FIRST256);
   3376 		} else if (mp->start >= SEGMENT_LENGTH) {
   3377 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3378 				VM_FREELIST_DEFAULT);
   3379 		} else {
   3380 			pfend = atop(SEGMENT_LENGTH);
   3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3382 				VM_FREELIST_FIRST256);
   3383 			pfstart = atop(SEGMENT_LENGTH);
   3384 			pfend = atop(mp->start + mp->size);
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_DEFAULT);
   3387 		}
   3388 	}
   3389 
   3390 	/*
   3391 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3392 	 */
   3393 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3394 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3395 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3396 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3397 	pmap_vsid_bitmap[0] |= 1;
   3398 
   3399 	/*
   3400 	 * Initialize kernel pmap and hardware.
   3401 	 */
   3402 
   3403 /* PMAP_OEA64_BRIDGE does support these instructions */
   3404 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3405 	for (i = 0; i < 16; i++) {
   3406  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3407 		__asm volatile ("mtsrin %0,%1"
   3408  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3409 	}
   3410 
   3411 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3412 	__asm volatile ("mtsr %0,%1"
   3413 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3414 #ifdef KERNEL2_SR
   3415 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3416 	__asm volatile ("mtsr %0,%1"
   3417 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3418 #endif
   3419 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3420 #if defined (PMAP_OEA)
   3421 	for (i = 0; i < 16; i++) {
   3422 		if (iosrtable[i] & SR601_T) {
   3423 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3424 			__asm volatile ("mtsrin %0,%1"
   3425 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3426 		}
   3427 	}
   3428 	__asm volatile ("sync; mtsdr1 %0; isync"
   3429 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3430 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3431  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3432  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3433 #endif
   3434 	tlbia();
   3435 
   3436 #ifdef ALTIVEC
   3437 	pmap_use_altivec = cpu_altivec;
   3438 #endif
   3439 
   3440 #ifdef DEBUG
   3441 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3442 		u_int cnt;
   3443 		int bank;
   3444 		char pbuf[9];
   3445 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3446 			cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
   3447 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3448 			    bank,
   3449 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
   3450 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
   3451 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
   3452 		}
   3453 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3454 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3455 		    pbuf, cnt);
   3456 	}
   3457 #endif
   3458 
   3459 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3460 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3461 	    &pmap_pool_uallocator, IPL_VM);
   3462 
   3463 	pool_setlowat(&pmap_upvo_pool, 252);
   3464 
   3465 	pool_init(&pmap_pool, sizeof(struct pmap),
   3466 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3467 	    IPL_NONE);
   3468 
   3469 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3470 	{
   3471 		struct pmap *pm = pmap_kernel();
   3472 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3473 		extern int etext[], kernel_text[];
   3474 		vaddr_t va, va_etext = (paddr_t) etext;
   3475 #endif
   3476 		paddr_t pa, pa_end;
   3477 		register_t sr;
   3478 		struct pte pt;
   3479 		unsigned int ptegidx;
   3480 		int bank;
   3481 
   3482 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3483 		pm->pm_sr[0] = sr;
   3484 
   3485 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3486 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3487 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3488 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3489 				ptegidx = va_to_pteg(pm, pa);
   3490 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3491 				pmap_pte_insert(ptegidx, &pt);
   3492 			}
   3493 		}
   3494 
   3495 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3496 		va = (vaddr_t) kernel_text;
   3497 
   3498 		for (pa = kernelstart; va < va_etext;
   3499 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3500 			ptegidx = va_to_pteg(pm, va);
   3501 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3502 			pmap_pte_insert(ptegidx, &pt);
   3503 		}
   3504 
   3505 		for (; pa < kernelend;
   3506 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3507 			ptegidx = va_to_pteg(pm, va);
   3508 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3509 			pmap_pte_insert(ptegidx, &pt);
   3510 		}
   3511 
   3512 		for (va = 0, pa = 0; va < kernelstart;
   3513 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3514 			ptegidx = va_to_pteg(pm, va);
   3515 			if (va < 0x3000)
   3516 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3517 			else
   3518 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3519 			pmap_pte_insert(ptegidx, &pt);
   3520 		}
   3521 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3522 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3523 			ptegidx = va_to_pteg(pm, va);
   3524 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3525 			pmap_pte_insert(ptegidx, &pt);
   3526 		}
   3527 #endif
   3528 
   3529 		__asm volatile ("mtsrin %0,%1"
   3530  			      :: "r"(sr), "r"(kernelstart));
   3531 	}
   3532 #endif
   3533 }
   3534