Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.75
      1 /*	$NetBSD: pmap.c,v 1.75 2011/01/18 01:02:55 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2011/01/18 01:02:55 matt Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 #include <sys/atomic.h>
     83 
     84 #include <uvm/uvm.h>
     85 
     86 #include <machine/pcb.h>
     87 #include <machine/powerpc.h>
     88 #include <powerpc/spr.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/stdarg.h>
     91 #include <powerpc/oea/spr.h>
     92 #include <powerpc/oea/sr_601.h>
     93 
     94 #ifdef ALTIVEC
     95 int pmap_use_altivec;
     96 #endif
     97 
     98 volatile struct pteg *pmap_pteg_table;
     99 unsigned int pmap_pteg_cnt;
    100 unsigned int pmap_pteg_mask;
    101 #ifdef PMAP_MEMLIMIT
    102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    103 #else
    104 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    105 #endif
    106 
    107 struct pmap kernel_pmap_;
    108 unsigned int pmap_pages_stolen;
    109 u_long pmap_pte_valid;
    110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    111 u_long pmap_pvo_enter_depth;
    112 u_long pmap_pvo_remove_depth;
    113 #endif
    114 
    115 #ifndef MSGBUFADDR
    116 extern paddr_t msgbuf_paddr;
    117 #endif
    118 
    119 static struct mem_region *mem, *avail;
    120 static u_int mem_cnt, avail_cnt;
    121 
    122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    123 # define	PMAP_OEA 1
    124 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
    125 #  define	PMAPNAME(name)	pmap_##name
    126 # endif
    127 #endif
    128 
    129 #if defined(PMAP_OEA64)
    130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
    131 #  define	PMAPNAME(name)	pmap_##name
    132 # endif
    133 #endif
    134 
    135 #if defined(PMAP_OEA64_BRIDGE)
    136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
    137 #  define	PMAPNAME(name)	pmap_##name
    138 # endif
    139 #endif
    140 
    141 #if defined(PMAP_OEA)
    142 #define	_PRIxpte	"lx"
    143 #else
    144 #define	_PRIxpte	PRIx64
    145 #endif
    146 #define	_PRIxpa		"lx"
    147 #define	_PRIxva		"lx"
    148 #define	_PRIsr  	"lx"
    149 
    150 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
    151 #if defined(PMAP_OEA)
    152 #define	PMAPNAME(name)	pmap32_##name
    153 #elif defined(PMAP_OEA64)
    154 #define	PMAPNAME(name)	pmap64_##name
    155 #elif defined(PMAP_OEA64_BRIDGE)
    156 #define	PMAPNAME(name)	pmap64bridge_##name
    157 #else
    158 #error unknown variant for pmap
    159 #endif
    160 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
    161 
    162 #if defined(PMAPNAME)
    163 #define	STATIC			static
    164 #define pmap_pte_spill		PMAPNAME(pte_spill)
    165 #define pmap_real_memory	PMAPNAME(real_memory)
    166 #define pmap_init		PMAPNAME(init)
    167 #define pmap_virtual_space	PMAPNAME(virtual_space)
    168 #define pmap_create		PMAPNAME(create)
    169 #define pmap_reference		PMAPNAME(reference)
    170 #define pmap_destroy		PMAPNAME(destroy)
    171 #define pmap_copy		PMAPNAME(copy)
    172 #define pmap_update		PMAPNAME(update)
    173 #define pmap_enter		PMAPNAME(enter)
    174 #define pmap_remove		PMAPNAME(remove)
    175 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    176 #define pmap_kremove		PMAPNAME(kremove)
    177 #define pmap_extract		PMAPNAME(extract)
    178 #define pmap_protect		PMAPNAME(protect)
    179 #define pmap_unwire		PMAPNAME(unwire)
    180 #define pmap_page_protect	PMAPNAME(page_protect)
    181 #define pmap_query_bit		PMAPNAME(query_bit)
    182 #define pmap_clear_bit		PMAPNAME(clear_bit)
    183 
    184 #define pmap_activate		PMAPNAME(activate)
    185 #define pmap_deactivate		PMAPNAME(deactivate)
    186 
    187 #define pmap_pinit		PMAPNAME(pinit)
    188 #define pmap_procwr		PMAPNAME(procwr)
    189 
    190 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    191 #define pmap_pte_print		PMAPNAME(pte_print)
    192 #define pmap_pteg_check		PMAPNAME(pteg_check)
    193 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    194 #define pmap_print_pte		PMAPNAME(print_pte)
    195 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    196 #endif
    197 #if defined(DEBUG) || defined(PMAPCHECK)
    198 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    199 #define pmapcheck		PMAPNAME(check)
    200 #endif
    201 #if defined(DEBUG) || defined(PMAPDEBUG)
    202 #define pmapdebug		PMAPNAME(debug)
    203 #endif
    204 #define pmap_steal_memory	PMAPNAME(steal_memory)
    205 #define pmap_bootstrap		PMAPNAME(bootstrap)
    206 #else
    207 #define	STATIC			/* nothing */
    208 #endif /* PMAPNAME */
    209 
    210 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    211 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    212 STATIC void pmap_init(void);
    213 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    214 STATIC pmap_t pmap_create(void);
    215 STATIC void pmap_reference(pmap_t);
    216 STATIC void pmap_destroy(pmap_t);
    217 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    218 STATIC void pmap_update(pmap_t);
    219 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    220 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    221 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    222 STATIC void pmap_kremove(vaddr_t, vsize_t);
    223 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    224 
    225 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    226 STATIC void pmap_unwire(pmap_t, vaddr_t);
    227 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    228 STATIC bool pmap_query_bit(struct vm_page *, int);
    229 STATIC bool pmap_clear_bit(struct vm_page *, int);
    230 
    231 STATIC void pmap_activate(struct lwp *);
    232 STATIC void pmap_deactivate(struct lwp *);
    233 
    234 STATIC void pmap_pinit(pmap_t pm);
    235 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    236 
    237 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    238 STATIC void pmap_pte_print(volatile struct pte *);
    239 STATIC void pmap_pteg_check(void);
    240 STATIC void pmap_print_mmuregs(void);
    241 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    242 STATIC void pmap_pteg_dist(void);
    243 #endif
    244 #if defined(DEBUG) || defined(PMAPCHECK)
    245 STATIC void pmap_pvo_verify(void);
    246 #endif
    247 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    248 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    249 
    250 #ifdef PMAPNAME
    251 const struct pmap_ops PMAPNAME(ops) = {
    252 	.pmapop_pte_spill = pmap_pte_spill,
    253 	.pmapop_real_memory = pmap_real_memory,
    254 	.pmapop_init = pmap_init,
    255 	.pmapop_virtual_space = pmap_virtual_space,
    256 	.pmapop_create = pmap_create,
    257 	.pmapop_reference = pmap_reference,
    258 	.pmapop_destroy = pmap_destroy,
    259 	.pmapop_copy = pmap_copy,
    260 	.pmapop_update = pmap_update,
    261 	.pmapop_enter = pmap_enter,
    262 	.pmapop_remove = pmap_remove,
    263 	.pmapop_kenter_pa = pmap_kenter_pa,
    264 	.pmapop_kremove = pmap_kremove,
    265 	.pmapop_extract = pmap_extract,
    266 	.pmapop_protect = pmap_protect,
    267 	.pmapop_unwire = pmap_unwire,
    268 	.pmapop_page_protect = pmap_page_protect,
    269 	.pmapop_query_bit = pmap_query_bit,
    270 	.pmapop_clear_bit = pmap_clear_bit,
    271 	.pmapop_activate = pmap_activate,
    272 	.pmapop_deactivate = pmap_deactivate,
    273 	.pmapop_pinit = pmap_pinit,
    274 	.pmapop_procwr = pmap_procwr,
    275 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    276 	.pmapop_pte_print = pmap_pte_print,
    277 	.pmapop_pteg_check = pmap_pteg_check,
    278 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    279 	.pmapop_print_pte = pmap_print_pte,
    280 	.pmapop_pteg_dist = pmap_pteg_dist,
    281 #else
    282 	.pmapop_pte_print = NULL,
    283 	.pmapop_pteg_check = NULL,
    284 	.pmapop_print_mmuregs = NULL,
    285 	.pmapop_print_pte = NULL,
    286 	.pmapop_pteg_dist = NULL,
    287 #endif
    288 #if defined(DEBUG) || defined(PMAPCHECK)
    289 	.pmapop_pvo_verify = pmap_pvo_verify,
    290 #else
    291 	.pmapop_pvo_verify = NULL,
    292 #endif
    293 	.pmapop_steal_memory = pmap_steal_memory,
    294 	.pmapop_bootstrap = pmap_bootstrap,
    295 };
    296 #endif /* !PMAPNAME */
    297 
    298 /*
    299  * The following structure is aligned to 32 bytes
    300  */
    301 struct pvo_entry {
    302 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    303 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    304 	struct pte pvo_pte;			/* Prebuilt PTE */
    305 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    306 	vaddr_t pvo_vaddr;			/* VA of entry */
    307 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    308 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    309 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    310 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    311 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    312 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    313 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    314 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    315 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    316 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    317 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    318 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    319 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    320 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    321 #define	PVO_REMOVE		6		/* PVO has been removed */
    322 #define	PVO_WHERE_MASK		15
    323 #define	PVO_WHERE_SHFT		8
    324 } __attribute__ ((aligned (32)));
    325 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    326 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    327 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    328 #define	PVO_PTEGIDX_CLR(pvo)	\
    329 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    330 #define	PVO_PTEGIDX_SET(pvo,i)	\
    331 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    332 #define	PVO_WHERE(pvo,w)	\
    333 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    334 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    335 
    336 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    337 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    338 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    339 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    340 
    341 struct pool pmap_pool;		/* pool for pmap structures */
    342 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    343 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    344 
    345 /*
    346  * We keep a cache of unmanaged pages to be used for pvo entries for
    347  * unmanaged pages.
    348  */
    349 struct pvo_page {
    350 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    351 };
    352 SIMPLEQ_HEAD(pvop_head, pvo_page);
    353 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    354 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    355 u_long pmap_upvop_free;
    356 u_long pmap_upvop_maxfree;
    357 u_long pmap_mpvop_free;
    358 u_long pmap_mpvop_maxfree;
    359 
    360 static void *pmap_pool_ualloc(struct pool *, int);
    361 static void *pmap_pool_malloc(struct pool *, int);
    362 
    363 static void pmap_pool_ufree(struct pool *, void *);
    364 static void pmap_pool_mfree(struct pool *, void *);
    365 
    366 static struct pool_allocator pmap_pool_mallocator = {
    367 	.pa_alloc = pmap_pool_malloc,
    368 	.pa_free = pmap_pool_mfree,
    369 	.pa_pagesz = 0,
    370 };
    371 
    372 static struct pool_allocator pmap_pool_uallocator = {
    373 	.pa_alloc = pmap_pool_ualloc,
    374 	.pa_free = pmap_pool_ufree,
    375 	.pa_pagesz = 0,
    376 };
    377 
    378 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    379 void pmap_pte_print(volatile struct pte *);
    380 void pmap_pteg_check(void);
    381 void pmap_pteg_dist(void);
    382 void pmap_print_pte(pmap_t, vaddr_t);
    383 void pmap_print_mmuregs(void);
    384 #endif
    385 
    386 #if defined(DEBUG) || defined(PMAPCHECK)
    387 #ifdef PMAPCHECK
    388 int pmapcheck = 1;
    389 #else
    390 int pmapcheck = 0;
    391 #endif
    392 void pmap_pvo_verify(void);
    393 static void pmap_pvo_check(const struct pvo_entry *);
    394 #define	PMAP_PVO_CHECK(pvo)	 		\
    395 	do {					\
    396 		if (pmapcheck)			\
    397 			pmap_pvo_check(pvo);	\
    398 	} while (0)
    399 #else
    400 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    401 #endif
    402 static int pmap_pte_insert(int, struct pte *);
    403 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    404 	vaddr_t, paddr_t, register_t, int);
    405 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    406 static void pmap_pvo_free(struct pvo_entry *);
    407 static void pmap_pvo_free_list(struct pvo_head *);
    408 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    409 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    410 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    411 static void pvo_set_exec(struct pvo_entry *);
    412 static void pvo_clear_exec(struct pvo_entry *);
    413 
    414 static void tlbia(void);
    415 
    416 static void pmap_release(pmap_t);
    417 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    418 
    419 static uint32_t pmap_pvo_reclaim_nextidx;
    420 #ifdef DEBUG
    421 static int pmap_pvo_reclaim_debugctr;
    422 #endif
    423 
    424 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    425 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    426 
    427 static int pmap_initialized;
    428 
    429 #if defined(DEBUG) || defined(PMAPDEBUG)
    430 #define	PMAPDEBUG_BOOT		0x0001
    431 #define	PMAPDEBUG_PTE		0x0002
    432 #define	PMAPDEBUG_EXEC		0x0008
    433 #define	PMAPDEBUG_PVOENTER	0x0010
    434 #define	PMAPDEBUG_PVOREMOVE	0x0020
    435 #define	PMAPDEBUG_ACTIVATE	0x0100
    436 #define	PMAPDEBUG_CREATE	0x0200
    437 #define	PMAPDEBUG_ENTER		0x1000
    438 #define	PMAPDEBUG_KENTER	0x2000
    439 #define	PMAPDEBUG_KREMOVE	0x4000
    440 #define	PMAPDEBUG_REMOVE	0x8000
    441 
    442 unsigned int pmapdebug = 0;
    443 
    444 # define DPRINTF(x)		printf x
    445 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    446 #else
    447 # define DPRINTF(x)
    448 # define DPRINTFN(n, x)
    449 #endif
    450 
    451 
    452 #ifdef PMAPCOUNTERS
    453 /*
    454  * From pmap_subr.c
    455  */
    456 extern struct evcnt pmap_evcnt_mappings;
    457 extern struct evcnt pmap_evcnt_unmappings;
    458 
    459 extern struct evcnt pmap_evcnt_kernel_mappings;
    460 extern struct evcnt pmap_evcnt_kernel_unmappings;
    461 
    462 extern struct evcnt pmap_evcnt_mappings_replaced;
    463 
    464 extern struct evcnt pmap_evcnt_exec_mappings;
    465 extern struct evcnt pmap_evcnt_exec_cached;
    466 
    467 extern struct evcnt pmap_evcnt_exec_synced;
    468 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    469 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    470 
    471 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    472 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    473 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    474 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    475 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    476 
    477 extern struct evcnt pmap_evcnt_updates;
    478 extern struct evcnt pmap_evcnt_collects;
    479 extern struct evcnt pmap_evcnt_copies;
    480 
    481 extern struct evcnt pmap_evcnt_ptes_spilled;
    482 extern struct evcnt pmap_evcnt_ptes_unspilled;
    483 extern struct evcnt pmap_evcnt_ptes_evicted;
    484 
    485 extern struct evcnt pmap_evcnt_ptes_primary[8];
    486 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    487 extern struct evcnt pmap_evcnt_ptes_removed;
    488 extern struct evcnt pmap_evcnt_ptes_changed;
    489 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    490 extern struct evcnt pmap_evcnt_pvos_failed;
    491 
    492 extern struct evcnt pmap_evcnt_zeroed_pages;
    493 extern struct evcnt pmap_evcnt_copied_pages;
    494 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    495 
    496 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    497 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    498 #else
    499 #define	PMAPCOUNT(ev)	((void) 0)
    500 #define	PMAPCOUNT2(ev)	((void) 0)
    501 #endif
    502 
    503 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    504 
    505 /* XXXSL: this needs to be moved to assembler */
    506 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    507 
    508 #define	TLBSYNC()	__asm volatile("tlbsync")
    509 #define	SYNC()		__asm volatile("sync")
    510 #define	EIEIO()		__asm volatile("eieio")
    511 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    512 #define	MFMSR()		mfmsr()
    513 #define	MTMSR(psl)	mtmsr(psl)
    514 #define	MFPVR()		mfpvr()
    515 #define	MFSRIN(va)	mfsrin(va)
    516 #define	MFTB()		mfrtcltbl()
    517 
    518 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    519 static inline register_t
    520 mfsrin(vaddr_t va)
    521 {
    522 	register_t sr;
    523 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    524 	return sr;
    525 }
    526 #endif	/* PMAP_OEA*/
    527 
    528 #if defined (PMAP_OEA64_BRIDGE)
    529 extern void mfmsr64 (register64_t *result);
    530 #endif /* PMAP_OEA64_BRIDGE */
    531 
    532 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    533 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    534 
    535 static inline register_t
    536 pmap_interrupts_off(void)
    537 {
    538 	register_t msr = MFMSR();
    539 	if (msr & PSL_EE)
    540 		MTMSR(msr & ~PSL_EE);
    541 	return msr;
    542 }
    543 
    544 static void
    545 pmap_interrupts_restore(register_t msr)
    546 {
    547 	if (msr & PSL_EE)
    548 		MTMSR(msr);
    549 }
    550 
    551 static inline u_int32_t
    552 mfrtcltbl(void)
    553 {
    554 #ifdef PPC_OEA601
    555 	if ((MFPVR() >> 16) == MPC601)
    556 		return (mfrtcl() >> 7);
    557 	else
    558 #endif
    559 		return (mftbl());
    560 }
    561 
    562 /*
    563  * These small routines may have to be replaced,
    564  * if/when we support processors other that the 604.
    565  */
    566 
    567 void
    568 tlbia(void)
    569 {
    570 	char *i;
    571 
    572 	SYNC();
    573 #if defined(PMAP_OEA)
    574 	/*
    575 	 * Why not use "tlbia"?  Because not all processors implement it.
    576 	 *
    577 	 * This needs to be a per-CPU callback to do the appropriate thing
    578 	 * for the CPU. XXX
    579 	 */
    580 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    581 		TLBIE(i);
    582 		EIEIO();
    583 		SYNC();
    584 	}
    585 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    586 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    587 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    588 		TLBIEL(i);
    589 		EIEIO();
    590 		SYNC();
    591 	}
    592 #endif
    593 	TLBSYNC();
    594 	SYNC();
    595 }
    596 
    597 static inline register_t
    598 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    599 {
    600 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    601 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    602 #else /* PMAP_OEA64 */
    603 #if 0
    604 	const struct ste *ste;
    605 	register_t hash;
    606 	int i;
    607 
    608 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    609 
    610 	/*
    611 	 * Try the primary group first
    612 	 */
    613 	ste = pm->pm_stes[hash].stes;
    614 	for (i = 0; i < 8; i++, ste++) {
    615 		if (ste->ste_hi & STE_V) &&
    616 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    617 			return ste;
    618 	}
    619 
    620 	/*
    621 	 * Then the secondary group.
    622 	 */
    623 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    624 	for (i = 0; i < 8; i++, ste++) {
    625 		if (ste->ste_hi & STE_V) &&
    626 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    627 			return addr;
    628 	}
    629 
    630 	return NULL;
    631 #else
    632 	/*
    633 	 * Rather than searching the STE groups for the VSID, we know
    634 	 * how we generate that from the ESID and so do that.
    635 	 */
    636 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    637 #endif
    638 #endif /* PMAP_OEA */
    639 }
    640 
    641 static inline register_t
    642 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    643 {
    644 	register_t hash;
    645 
    646 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    647 	return hash & pmap_pteg_mask;
    648 }
    649 
    650 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    651 /*
    652  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    653  * The only bit of magic is that the top 4 bits of the address doesn't
    654  * technically exist in the PTE.  But we know we reserved 4 bits of the
    655  * VSID for it so that's how we get it.
    656  */
    657 static vaddr_t
    658 pmap_pte_to_va(volatile const struct pte *pt)
    659 {
    660 	vaddr_t va;
    661 	uintptr_t ptaddr = (uintptr_t) pt;
    662 
    663 	if (pt->pte_hi & PTE_HID)
    664 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    665 
    666 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    667 #if defined(PMAP_OEA)
    668 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    669 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    670 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    671 #endif
    672 	va <<= ADDR_PIDX_SHFT;
    673 
    674 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    675 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    676 
    677 #if defined(PMAP_OEA64)
    678 	/* PPC63 Bits 0-35 */
    679 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    680 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    681 	/* PPC Bits 0-3 */
    682 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    683 #endif
    684 
    685 	return va;
    686 }
    687 #endif
    688 
    689 static inline struct pvo_head *
    690 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    691 {
    692 	struct vm_page *pg;
    693 	struct vm_page_md *md;
    694 
    695 	pg = PHYS_TO_VM_PAGE(pa);
    696 	if (pg_p != NULL)
    697 		*pg_p = pg;
    698 	if (pg == NULL)
    699 		return &pmap_pvo_unmanaged;
    700 	md = VM_PAGE_TO_MD(pg);
    701 	return &md->mdpg_pvoh;
    702 }
    703 
    704 static inline struct pvo_head *
    705 vm_page_to_pvoh(struct vm_page *pg)
    706 {
    707 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    708 
    709 	return &md->mdpg_pvoh;
    710 }
    711 
    712 
    713 static inline void
    714 pmap_attr_clear(struct vm_page *pg, int ptebit)
    715 {
    716 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    717 
    718 	md->mdpg_attrs &= ~ptebit;
    719 }
    720 
    721 static inline int
    722 pmap_attr_fetch(struct vm_page *pg)
    723 {
    724 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    725 
    726 	return md->mdpg_attrs;
    727 }
    728 
    729 static inline void
    730 pmap_attr_save(struct vm_page *pg, int ptebit)
    731 {
    732 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    733 
    734 	md->mdpg_attrs |= ptebit;
    735 }
    736 
    737 static inline int
    738 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    739 {
    740 	if (pt->pte_hi == pvo_pt->pte_hi
    741 #if 0
    742 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    743 	        ~(PTE_REF|PTE_CHG)) == 0
    744 #endif
    745 	    )
    746 		return 1;
    747 	return 0;
    748 }
    749 
    750 static inline void
    751 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    752 {
    753 	/*
    754 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    755 	 * only gets set when the real pte is set in memory.
    756 	 *
    757 	 * Note: Don't set the valid bit for correct operation of tlb update.
    758 	 */
    759 #if defined(PMAP_OEA)
    760 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    761 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    762 	pt->pte_lo = pte_lo;
    763 #elif defined (PMAP_OEA64_BRIDGE)
    764 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    765 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    766 	pt->pte_lo = (u_int64_t) pte_lo;
    767 #elif defined (PMAP_OEA64)
    768 #error PMAP_OEA64 not supported
    769 #endif /* PMAP_OEA */
    770 }
    771 
    772 static inline void
    773 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    774 {
    775 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    776 }
    777 
    778 static inline void
    779 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    780 {
    781 	/*
    782 	 * As shown in Section 7.6.3.2.3
    783 	 */
    784 	pt->pte_lo &= ~ptebit;
    785 	TLBIE(va);
    786 	SYNC();
    787 	EIEIO();
    788 	TLBSYNC();
    789 	SYNC();
    790 #ifdef MULTIPROCESSOR
    791 	DCBST(pt);
    792 #endif
    793 }
    794 
    795 static inline void
    796 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    797 {
    798 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    799 	if (pvo_pt->pte_hi & PTE_VALID)
    800 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    801 #endif
    802 	pvo_pt->pte_hi |= PTE_VALID;
    803 
    804 	/*
    805 	 * Update the PTE as defined in section 7.6.3.1
    806 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    807 	 * have been saved so this routine can restore them (if desired).
    808 	 */
    809 	pt->pte_lo = pvo_pt->pte_lo;
    810 	EIEIO();
    811 	pt->pte_hi = pvo_pt->pte_hi;
    812 	TLBSYNC();
    813 	SYNC();
    814 #ifdef MULTIPROCESSOR
    815 	DCBST(pt);
    816 #endif
    817 	pmap_pte_valid++;
    818 }
    819 
    820 static inline void
    821 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    822 {
    823 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    824 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    825 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    826 	if ((pt->pte_hi & PTE_VALID) == 0)
    827 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    828 #endif
    829 
    830 	pvo_pt->pte_hi &= ~PTE_VALID;
    831 	/*
    832 	 * Force the ref & chg bits back into the PTEs.
    833 	 */
    834 	SYNC();
    835 	/*
    836 	 * Invalidate the pte ... (Section 7.6.3.3)
    837 	 */
    838 	pt->pte_hi &= ~PTE_VALID;
    839 	SYNC();
    840 	TLBIE(va);
    841 	SYNC();
    842 	EIEIO();
    843 	TLBSYNC();
    844 	SYNC();
    845 	/*
    846 	 * Save the ref & chg bits ...
    847 	 */
    848 	pmap_pte_synch(pt, pvo_pt);
    849 	pmap_pte_valid--;
    850 }
    851 
    852 static inline void
    853 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    854 {
    855 	/*
    856 	 * Invalidate the PTE
    857 	 */
    858 	pmap_pte_unset(pt, pvo_pt, va);
    859 	pmap_pte_set(pt, pvo_pt);
    860 }
    861 
    862 /*
    863  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    864  * (either primary or secondary location).
    865  *
    866  * Note: both the destination and source PTEs must not have PTE_VALID set.
    867  */
    868 
    869 static int
    870 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    871 {
    872 	volatile struct pte *pt;
    873 	int i;
    874 
    875 #if defined(DEBUG)
    876 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    877 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    878 #endif
    879 	/*
    880 	 * First try primary hash.
    881 	 */
    882 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    883 		if ((pt->pte_hi & PTE_VALID) == 0) {
    884 			pvo_pt->pte_hi &= ~PTE_HID;
    885 			pmap_pte_set(pt, pvo_pt);
    886 			return i;
    887 		}
    888 	}
    889 
    890 	/*
    891 	 * Now try secondary hash.
    892 	 */
    893 	ptegidx ^= pmap_pteg_mask;
    894 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    895 		if ((pt->pte_hi & PTE_VALID) == 0) {
    896 			pvo_pt->pte_hi |= PTE_HID;
    897 			pmap_pte_set(pt, pvo_pt);
    898 			return i;
    899 		}
    900 	}
    901 	return -1;
    902 }
    903 
    904 /*
    905  * Spill handler.
    906  *
    907  * Tries to spill a page table entry from the overflow area.
    908  * This runs in either real mode (if dealing with a exception spill)
    909  * or virtual mode when dealing with manually spilling one of the
    910  * kernel's pte entries.  In either case, interrupts are already
    911  * disabled.
    912  */
    913 
    914 int
    915 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    916 {
    917 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    918 	struct pvo_entry *pvo;
    919 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    920 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    921 	int ptegidx, i, j;
    922 	volatile struct pteg *pteg;
    923 	volatile struct pte *pt;
    924 
    925 	PMAP_LOCK();
    926 
    927 	ptegidx = va_to_pteg(pm, addr);
    928 
    929 	/*
    930 	 * Have to substitute some entry. Use the primary hash for this.
    931 	 * Use low bits of timebase as random generator.  Make sure we are
    932 	 * not picking a kernel pte for replacement.
    933 	 */
    934 	pteg = &pmap_pteg_table[ptegidx];
    935 	i = MFTB() & 7;
    936 	for (j = 0; j < 8; j++) {
    937 		pt = &pteg->pt[i];
    938 		if ((pt->pte_hi & PTE_VALID) == 0)
    939 			break;
    940 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    941 				< PHYSMAP_VSIDBITS)
    942 			break;
    943 		i = (i + 1) & 7;
    944 	}
    945 	KASSERT(j < 8);
    946 
    947 	source_pvo = NULL;
    948 	victim_pvo = NULL;
    949 	pvoh = &pmap_pvo_table[ptegidx];
    950 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    951 
    952 		/*
    953 		 * We need to find pvo entry for this address...
    954 		 */
    955 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    956 
    957 		/*
    958 		 * If we haven't found the source and we come to a PVO with
    959 		 * a valid PTE, then we know we can't find it because all
    960 		 * evicted PVOs always are first in the list.
    961 		 */
    962 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    963 			break;
    964 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    965 		    addr == PVO_VADDR(pvo)) {
    966 
    967 			/*
    968 			 * Now we have found the entry to be spilled into the
    969 			 * pteg.  Attempt to insert it into the page table.
    970 			 */
    971 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    972 			if (j >= 0) {
    973 				PVO_PTEGIDX_SET(pvo, j);
    974 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    975 				PVO_WHERE(pvo, SPILL_INSERT);
    976 				pvo->pvo_pmap->pm_evictions--;
    977 				PMAPCOUNT(ptes_spilled);
    978 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    979 				    ? pmap_evcnt_ptes_secondary
    980 				    : pmap_evcnt_ptes_primary)[j]);
    981 
    982 				/*
    983 				 * Since we keep the evicted entries at the
    984 				 * from of the PVO list, we need move this
    985 				 * (now resident) PVO after the evicted
    986 				 * entries.
    987 				 */
    988 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    989 
    990 				/*
    991 				 * If we don't have to move (either we were the
    992 				 * last entry or the next entry was valid),
    993 				 * don't change our position.  Otherwise
    994 				 * move ourselves to the tail of the queue.
    995 				 */
    996 				if (next_pvo != NULL &&
    997 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    998 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    999 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1000 				}
   1001 				PMAP_UNLOCK();
   1002 				return 1;
   1003 			}
   1004 			source_pvo = pvo;
   1005 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
   1006 				return 0;
   1007 			}
   1008 			if (victim_pvo != NULL)
   1009 				break;
   1010 		}
   1011 
   1012 		/*
   1013 		 * We also need the pvo entry of the victim we are replacing
   1014 		 * so save the R & C bits of the PTE.
   1015 		 */
   1016 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1017 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1018 			vpvoh = pvoh;			/* *1* */
   1019 			victim_pvo = pvo;
   1020 			if (source_pvo != NULL)
   1021 				break;
   1022 		}
   1023 	}
   1024 
   1025 	if (source_pvo == NULL) {
   1026 		PMAPCOUNT(ptes_unspilled);
   1027 		PMAP_UNLOCK();
   1028 		return 0;
   1029 	}
   1030 
   1031 	if (victim_pvo == NULL) {
   1032 		if ((pt->pte_hi & PTE_HID) == 0)
   1033 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1034 			    "no pvo entry!", pt);
   1035 
   1036 		/*
   1037 		 * If this is a secondary PTE, we need to search
   1038 		 * its primary pvo bucket for the matching PVO.
   1039 		 */
   1040 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1041 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1042 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1043 
   1044 			/*
   1045 			 * We also need the pvo entry of the victim we are
   1046 			 * replacing so save the R & C bits of the PTE.
   1047 			 */
   1048 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1049 				victim_pvo = pvo;
   1050 				break;
   1051 			}
   1052 		}
   1053 		if (victim_pvo == NULL)
   1054 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1055 			    "no pvo entry!", pt);
   1056 	}
   1057 
   1058 	/*
   1059 	 * The victim should be not be a kernel PVO/PTE entry.
   1060 	 */
   1061 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1062 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1063 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1064 
   1065 	/*
   1066 	 * We are invalidating the TLB entry for the EA for the
   1067 	 * we are replacing even though its valid; If we don't
   1068 	 * we lose any ref/chg bit changes contained in the TLB
   1069 	 * entry.
   1070 	 */
   1071 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1072 
   1073 	/*
   1074 	 * To enforce the PVO list ordering constraint that all
   1075 	 * evicted entries should come before all valid entries,
   1076 	 * move the source PVO to the tail of its list and the
   1077 	 * victim PVO to the head of its list (which might not be
   1078 	 * the same list, if the victim was using the secondary hash).
   1079 	 */
   1080 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1081 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1082 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1083 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1084 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1085 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1086 	victim_pvo->pvo_pmap->pm_evictions++;
   1087 	source_pvo->pvo_pmap->pm_evictions--;
   1088 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1089 	PVO_WHERE(source_pvo, SPILL_SET);
   1090 
   1091 	PVO_PTEGIDX_CLR(victim_pvo);
   1092 	PVO_PTEGIDX_SET(source_pvo, i);
   1093 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1094 	PMAPCOUNT(ptes_spilled);
   1095 	PMAPCOUNT(ptes_evicted);
   1096 	PMAPCOUNT(ptes_removed);
   1097 
   1098 	PMAP_PVO_CHECK(victim_pvo);
   1099 	PMAP_PVO_CHECK(source_pvo);
   1100 
   1101 	PMAP_UNLOCK();
   1102 	return 1;
   1103 }
   1104 
   1105 /*
   1106  * Restrict given range to physical memory
   1107  */
   1108 void
   1109 pmap_real_memory(paddr_t *start, psize_t *size)
   1110 {
   1111 	struct mem_region *mp;
   1112 
   1113 	for (mp = mem; mp->size; mp++) {
   1114 		if (*start + *size > mp->start
   1115 		    && *start < mp->start + mp->size) {
   1116 			if (*start < mp->start) {
   1117 				*size -= mp->start - *start;
   1118 				*start = mp->start;
   1119 			}
   1120 			if (*start + *size > mp->start + mp->size)
   1121 				*size = mp->start + mp->size - *start;
   1122 			return;
   1123 		}
   1124 	}
   1125 	*size = 0;
   1126 }
   1127 
   1128 /*
   1129  * Initialize anything else for pmap handling.
   1130  * Called during vm_init().
   1131  */
   1132 void
   1133 pmap_init(void)
   1134 {
   1135 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1136 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1137 	    &pmap_pool_mallocator, IPL_NONE);
   1138 
   1139 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1140 
   1141 	pmap_initialized = 1;
   1142 
   1143 }
   1144 
   1145 /*
   1146  * How much virtual space does the kernel get?
   1147  */
   1148 void
   1149 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1150 {
   1151 	/*
   1152 	 * For now, reserve one segment (minus some overhead) for kernel
   1153 	 * virtual memory
   1154 	 */
   1155 	*start = VM_MIN_KERNEL_ADDRESS;
   1156 	*end = VM_MAX_KERNEL_ADDRESS;
   1157 }
   1158 
   1159 /*
   1160  * Allocate, initialize, and return a new physical map.
   1161  */
   1162 pmap_t
   1163 pmap_create(void)
   1164 {
   1165 	pmap_t pm;
   1166 
   1167 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1168 	memset((void *)pm, 0, sizeof *pm);
   1169 	pmap_pinit(pm);
   1170 
   1171 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1172 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1173 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1174 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1175 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1176 	    pm,
   1177 	    pm->pm_sr[0], pm->pm_sr[1],
   1178 	    pm->pm_sr[2], pm->pm_sr[3],
   1179 	    pm->pm_sr[4], pm->pm_sr[5],
   1180 	    pm->pm_sr[6], pm->pm_sr[7],
   1181 	    pm->pm_sr[8], pm->pm_sr[9],
   1182 	    pm->pm_sr[10], pm->pm_sr[11],
   1183 	    pm->pm_sr[12], pm->pm_sr[13],
   1184 	    pm->pm_sr[14], pm->pm_sr[15]));
   1185 	return pm;
   1186 }
   1187 
   1188 /*
   1189  * Initialize a preallocated and zeroed pmap structure.
   1190  */
   1191 void
   1192 pmap_pinit(pmap_t pm)
   1193 {
   1194 	register_t entropy = MFTB();
   1195 	register_t mask;
   1196 	int i;
   1197 
   1198 	/*
   1199 	 * Allocate some segment registers for this pmap.
   1200 	 */
   1201 	pm->pm_refs = 1;
   1202 	PMAP_LOCK();
   1203 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1204 		static register_t pmap_vsidcontext;
   1205 		register_t hash;
   1206 		unsigned int n;
   1207 
   1208 		/* Create a new value by multiplying by a prime adding in
   1209 		 * entropy from the timebase register.  This is to make the
   1210 		 * VSID more random so that the PT Hash function collides
   1211 		 * less often. (note that the prime causes gcc to do shifts
   1212 		 * instead of a multiply)
   1213 		 */
   1214 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1215 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1216 		if (hash == 0) {		/* 0 is special, avoid it */
   1217 			entropy += 0xbadf00d;
   1218 			continue;
   1219 		}
   1220 		n = hash >> 5;
   1221 		mask = 1L << (hash & (VSID_NBPW-1));
   1222 		hash = pmap_vsidcontext;
   1223 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1224 			/* anything free in this bucket? */
   1225 			if (~pmap_vsid_bitmap[n] == 0) {
   1226 				entropy = hash ^ (hash >> 16);
   1227 				continue;
   1228 			}
   1229 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1230 			mask = 1L << i;
   1231 			hash &= ~(VSID_NBPW-1);
   1232 			hash |= i;
   1233 		}
   1234 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1235 		pmap_vsid_bitmap[n] |= mask;
   1236 		pm->pm_vsid = hash;
   1237 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1238 		for (i = 0; i < 16; i++)
   1239 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1240 			    SR_NOEXEC;
   1241 #endif
   1242 		PMAP_UNLOCK();
   1243 		return;
   1244 	}
   1245 	PMAP_UNLOCK();
   1246 	panic("pmap_pinit: out of segments");
   1247 }
   1248 
   1249 /*
   1250  * Add a reference to the given pmap.
   1251  */
   1252 void
   1253 pmap_reference(pmap_t pm)
   1254 {
   1255 	atomic_inc_uint(&pm->pm_refs);
   1256 }
   1257 
   1258 /*
   1259  * Retire the given pmap from service.
   1260  * Should only be called if the map contains no valid mappings.
   1261  */
   1262 void
   1263 pmap_destroy(pmap_t pm)
   1264 {
   1265 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1266 		pmap_release(pm);
   1267 		pool_put(&pmap_pool, pm);
   1268 	}
   1269 }
   1270 
   1271 /*
   1272  * Release any resources held by the given physical map.
   1273  * Called when a pmap initialized by pmap_pinit is being released.
   1274  */
   1275 void
   1276 pmap_release(pmap_t pm)
   1277 {
   1278 	int idx, mask;
   1279 
   1280 	KASSERT(pm->pm_stats.resident_count == 0);
   1281 	KASSERT(pm->pm_stats.wired_count == 0);
   1282 
   1283 	PMAP_LOCK();
   1284 	if (pm->pm_sr[0] == 0)
   1285 		panic("pmap_release");
   1286 	idx = pm->pm_vsid & (NPMAPS-1);
   1287 	mask = 1 << (idx % VSID_NBPW);
   1288 	idx /= VSID_NBPW;
   1289 
   1290 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1291 	pmap_vsid_bitmap[idx] &= ~mask;
   1292 	PMAP_UNLOCK();
   1293 }
   1294 
   1295 /*
   1296  * Copy the range specified by src_addr/len
   1297  * from the source map to the range dst_addr/len
   1298  * in the destination map.
   1299  *
   1300  * This routine is only advisory and need not do anything.
   1301  */
   1302 void
   1303 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1304 	vsize_t len, vaddr_t src_addr)
   1305 {
   1306 	PMAPCOUNT(copies);
   1307 }
   1308 
   1309 /*
   1310  * Require that all active physical maps contain no
   1311  * incorrect entries NOW.
   1312  */
   1313 void
   1314 pmap_update(struct pmap *pmap)
   1315 {
   1316 	PMAPCOUNT(updates);
   1317 	TLBSYNC();
   1318 }
   1319 
   1320 static inline int
   1321 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1322 {
   1323 	int pteidx;
   1324 	/*
   1325 	 * We can find the actual pte entry without searching by
   1326 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1327 	 * and by noticing the HID bit.
   1328 	 */
   1329 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1330 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1331 		pteidx ^= pmap_pteg_mask * 8;
   1332 	return pteidx;
   1333 }
   1334 
   1335 volatile struct pte *
   1336 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1337 {
   1338 	volatile struct pte *pt;
   1339 
   1340 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1341 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1342 		return NULL;
   1343 #endif
   1344 
   1345 	/*
   1346 	 * If we haven't been supplied the ptegidx, calculate it.
   1347 	 */
   1348 	if (pteidx == -1) {
   1349 		int ptegidx;
   1350 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1351 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1352 	}
   1353 
   1354 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1355 
   1356 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1357 	return pt;
   1358 #else
   1359 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1360 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1361 		    "pvo but no valid pte index", pvo);
   1362 	}
   1363 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1364 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1365 		    "pvo but no valid pte", pvo);
   1366 	}
   1367 
   1368 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1369 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1370 #if defined(DEBUG) || defined(PMAPCHECK)
   1371 			pmap_pte_print(pt);
   1372 #endif
   1373 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1374 			    "pmap_pteg_table %p but invalid in pvo",
   1375 			    pvo, pt);
   1376 		}
   1377 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1378 #if defined(DEBUG) || defined(PMAPCHECK)
   1379 			pmap_pte_print(pt);
   1380 #endif
   1381 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1382 			    "not match pte %p in pmap_pteg_table",
   1383 			    pvo, pt);
   1384 		}
   1385 		return pt;
   1386 	}
   1387 
   1388 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1389 #if defined(DEBUG) || defined(PMAPCHECK)
   1390 		pmap_pte_print(pt);
   1391 #endif
   1392 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1393 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1394 	}
   1395 	return NULL;
   1396 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1397 }
   1398 
   1399 struct pvo_entry *
   1400 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1401 {
   1402 	struct pvo_entry *pvo;
   1403 	int ptegidx;
   1404 
   1405 	va &= ~ADDR_POFF;
   1406 	ptegidx = va_to_pteg(pm, va);
   1407 
   1408 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1409 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1410 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1411 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1412 			    "list %#x (%p)", pvo, ptegidx,
   1413 			     &pmap_pvo_table[ptegidx]);
   1414 #endif
   1415 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1416 			if (pteidx_p)
   1417 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1418 			return pvo;
   1419 		}
   1420 	}
   1421 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1422 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1423 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1424 	return NULL;
   1425 }
   1426 
   1427 #if defined(DEBUG) || defined(PMAPCHECK)
   1428 void
   1429 pmap_pvo_check(const struct pvo_entry *pvo)
   1430 {
   1431 	struct pvo_head *pvo_head;
   1432 	struct pvo_entry *pvo0;
   1433 	volatile struct pte *pt;
   1434 	int failed = 0;
   1435 
   1436 	PMAP_LOCK();
   1437 
   1438 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1439 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1440 
   1441 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1442 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1443 		    pvo, pvo->pvo_pmap);
   1444 		failed = 1;
   1445 	}
   1446 
   1447 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1448 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1449 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1450 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1451 		failed = 1;
   1452 	}
   1453 
   1454 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1455 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1456 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1457 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1458 		failed = 1;
   1459 	}
   1460 
   1461 	if (PVO_MANAGED_P(pvo)) {
   1462 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1463 	} else {
   1464 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1465 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1466 			    "on kernel unmanaged list\n", pvo);
   1467 			failed = 1;
   1468 		}
   1469 		pvo_head = &pmap_pvo_kunmanaged;
   1470 	}
   1471 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1472 		if (pvo0 == pvo)
   1473 			break;
   1474 	}
   1475 	if (pvo0 == NULL) {
   1476 		printf("pmap_pvo_check: pvo %p: not present "
   1477 		    "on its vlist head %p\n", pvo, pvo_head);
   1478 		failed = 1;
   1479 	}
   1480 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1481 		printf("pmap_pvo_check: pvo %p: not present "
   1482 		    "on its olist head\n", pvo);
   1483 		failed = 1;
   1484 	}
   1485 	pt = pmap_pvo_to_pte(pvo, -1);
   1486 	if (pt == NULL) {
   1487 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1488 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1489 			    "no PTE\n", pvo);
   1490 			failed = 1;
   1491 		}
   1492 	} else {
   1493 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1494 		    (uintptr_t) pt >=
   1495 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1496 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1497 			    "pteg table\n", pvo, pt);
   1498 			failed = 1;
   1499 		}
   1500 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1501 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1502 			    "no PTE\n", pvo);
   1503 			failed = 1;
   1504 		}
   1505 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1506 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1507 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1508 			    pvo->pvo_pte.pte_hi,
   1509 			    pt->pte_hi);
   1510 			failed = 1;
   1511 		}
   1512 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1513 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1514 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1515 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1516 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1517 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1518 			failed = 1;
   1519 		}
   1520 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1521 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1522 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1523 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1524 			failed = 1;
   1525 		}
   1526 		if (failed)
   1527 			pmap_pte_print(pt);
   1528 	}
   1529 	if (failed)
   1530 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1531 		    pvo->pvo_pmap);
   1532 
   1533 	PMAP_UNLOCK();
   1534 }
   1535 #endif /* DEBUG || PMAPCHECK */
   1536 
   1537 /*
   1538  * Search the PVO table looking for a non-wired entry.
   1539  * If we find one, remove it and return it.
   1540  */
   1541 
   1542 struct pvo_entry *
   1543 pmap_pvo_reclaim(struct pmap *pm)
   1544 {
   1545 	struct pvo_tqhead *pvoh;
   1546 	struct pvo_entry *pvo;
   1547 	uint32_t idx, endidx;
   1548 
   1549 	endidx = pmap_pvo_reclaim_nextidx;
   1550 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1551 	     idx = (idx + 1) & pmap_pteg_mask) {
   1552 		pvoh = &pmap_pvo_table[idx];
   1553 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1554 			if (!PVO_WIRED_P(pvo)) {
   1555 				pmap_pvo_remove(pvo, -1, NULL);
   1556 				pmap_pvo_reclaim_nextidx = idx;
   1557 				PMAPCOUNT(pvos_reclaimed);
   1558 				return pvo;
   1559 			}
   1560 		}
   1561 	}
   1562 	return NULL;
   1563 }
   1564 
   1565 /*
   1566  * This returns whether this is the first mapping of a page.
   1567  */
   1568 int
   1569 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1570 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1571 {
   1572 	struct pvo_entry *pvo;
   1573 	struct pvo_tqhead *pvoh;
   1574 	register_t msr;
   1575 	int ptegidx;
   1576 	int i;
   1577 	int poolflags = PR_NOWAIT;
   1578 
   1579 	/*
   1580 	 * Compute the PTE Group index.
   1581 	 */
   1582 	va &= ~ADDR_POFF;
   1583 	ptegidx = va_to_pteg(pm, va);
   1584 
   1585 	msr = pmap_interrupts_off();
   1586 
   1587 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1588 	if (pmap_pvo_remove_depth > 0)
   1589 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1590 	if (++pmap_pvo_enter_depth > 1)
   1591 		panic("pmap_pvo_enter: called recursively!");
   1592 #endif
   1593 
   1594 	/*
   1595 	 * Remove any existing mapping for this page.  Reuse the
   1596 	 * pvo entry if there a mapping.
   1597 	 */
   1598 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1599 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1600 #ifdef DEBUG
   1601 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1602 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1603 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1604 			   va < VM_MIN_KERNEL_ADDRESS) {
   1605 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1606 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1607 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1608 				    pvo->pvo_pte.pte_hi,
   1609 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1610 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1611 #ifdef DDBX
   1612 				Debugger();
   1613 #endif
   1614 			}
   1615 #endif
   1616 			PMAPCOUNT(mappings_replaced);
   1617 			pmap_pvo_remove(pvo, -1, NULL);
   1618 			break;
   1619 		}
   1620 	}
   1621 
   1622 	/*
   1623 	 * If we aren't overwriting an mapping, try to allocate
   1624 	 */
   1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1626 	--pmap_pvo_enter_depth;
   1627 #endif
   1628 	pmap_interrupts_restore(msr);
   1629 	if (pvo) {
   1630 		pmap_pvo_free(pvo);
   1631 	}
   1632 	pvo = pool_get(pl, poolflags);
   1633 
   1634 #ifdef DEBUG
   1635 	/*
   1636 	 * Exercise pmap_pvo_reclaim() a little.
   1637 	 */
   1638 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1639 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1640 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1641 		pool_put(pl, pvo);
   1642 		pvo = NULL;
   1643 	}
   1644 #endif
   1645 
   1646 	msr = pmap_interrupts_off();
   1647 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1648 	++pmap_pvo_enter_depth;
   1649 #endif
   1650 	if (pvo == NULL) {
   1651 		pvo = pmap_pvo_reclaim(pm);
   1652 		if (pvo == NULL) {
   1653 			if ((flags & PMAP_CANFAIL) == 0)
   1654 				panic("pmap_pvo_enter: failed");
   1655 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1656 			pmap_pvo_enter_depth--;
   1657 #endif
   1658 			PMAPCOUNT(pvos_failed);
   1659 			pmap_interrupts_restore(msr);
   1660 			return ENOMEM;
   1661 		}
   1662 	}
   1663 
   1664 	pvo->pvo_vaddr = va;
   1665 	pvo->pvo_pmap = pm;
   1666 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1667 	if (flags & VM_PROT_EXECUTE) {
   1668 		PMAPCOUNT(exec_mappings);
   1669 		pvo_set_exec(pvo);
   1670 	}
   1671 	if (flags & PMAP_WIRED)
   1672 		pvo->pvo_vaddr |= PVO_WIRED;
   1673 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1674 		pvo->pvo_vaddr |= PVO_MANAGED;
   1675 		PMAPCOUNT(mappings);
   1676 	} else {
   1677 		PMAPCOUNT(kernel_mappings);
   1678 	}
   1679 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1680 
   1681 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1682 	if (PVO_WIRED_P(pvo))
   1683 		pvo->pvo_pmap->pm_stats.wired_count++;
   1684 	pvo->pvo_pmap->pm_stats.resident_count++;
   1685 #if defined(DEBUG)
   1686 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1687 		DPRINTFN(PVOENTER,
   1688 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1689 		    pvo, pm, va, pa));
   1690 #endif
   1691 
   1692 	/*
   1693 	 * We hope this succeeds but it isn't required.
   1694 	 */
   1695 	pvoh = &pmap_pvo_table[ptegidx];
   1696 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1697 	if (i >= 0) {
   1698 		PVO_PTEGIDX_SET(pvo, i);
   1699 		PVO_WHERE(pvo, ENTER_INSERT);
   1700 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1701 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1702 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1703 
   1704 	} else {
   1705 		/*
   1706 		 * Since we didn't have room for this entry (which makes it
   1707 		 * and evicted entry), place it at the head of the list.
   1708 		 */
   1709 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1710 		PMAPCOUNT(ptes_evicted);
   1711 		pm->pm_evictions++;
   1712 		/*
   1713 		 * If this is a kernel page, make sure it's active.
   1714 		 */
   1715 		if (pm == pmap_kernel()) {
   1716 			i = pmap_pte_spill(pm, va, false);
   1717 			KASSERT(i);
   1718 		}
   1719 	}
   1720 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1721 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1722 	pmap_pvo_enter_depth--;
   1723 #endif
   1724 	pmap_interrupts_restore(msr);
   1725 	return 0;
   1726 }
   1727 
   1728 static void
   1729 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1730 {
   1731 	volatile struct pte *pt;
   1732 	int ptegidx;
   1733 
   1734 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1735 	if (++pmap_pvo_remove_depth > 1)
   1736 		panic("pmap_pvo_remove: called recursively!");
   1737 #endif
   1738 
   1739 	/*
   1740 	 * If we haven't been supplied the ptegidx, calculate it.
   1741 	 */
   1742 	if (pteidx == -1) {
   1743 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1744 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1745 	} else {
   1746 		ptegidx = pteidx >> 3;
   1747 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1748 			ptegidx ^= pmap_pteg_mask;
   1749 	}
   1750 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1751 
   1752 	/*
   1753 	 * If there is an active pte entry, we need to deactivate it
   1754 	 * (and save the ref & chg bits).
   1755 	 */
   1756 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1757 	if (pt != NULL) {
   1758 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1759 		PVO_WHERE(pvo, REMOVE);
   1760 		PVO_PTEGIDX_CLR(pvo);
   1761 		PMAPCOUNT(ptes_removed);
   1762 	} else {
   1763 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1764 		pvo->pvo_pmap->pm_evictions--;
   1765 	}
   1766 
   1767 	/*
   1768 	 * Account for executable mappings.
   1769 	 */
   1770 	if (PVO_EXECUTABLE_P(pvo))
   1771 		pvo_clear_exec(pvo);
   1772 
   1773 	/*
   1774 	 * Update our statistics.
   1775 	 */
   1776 	pvo->pvo_pmap->pm_stats.resident_count--;
   1777 	if (PVO_WIRED_P(pvo))
   1778 		pvo->pvo_pmap->pm_stats.wired_count--;
   1779 
   1780 	/*
   1781 	 * Save the REF/CHG bits into their cache if the page is managed.
   1782 	 */
   1783 	if (PVO_MANAGED_P(pvo)) {
   1784 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1785 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1786 
   1787 		if (pg != NULL) {
   1788 			/*
   1789 			 * If this page was changed and it is mapped exec,
   1790 			 * invalidate it.
   1791 			 */
   1792 			if ((ptelo & PTE_CHG) &&
   1793 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1794 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1795 				if (LIST_EMPTY(pvoh)) {
   1796 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1797 					    "%#" _PRIxpa ": clear-exec]\n",
   1798 					    VM_PAGE_TO_PHYS(pg)));
   1799 					pmap_attr_clear(pg, PTE_EXEC);
   1800 					PMAPCOUNT(exec_uncached_pvo_remove);
   1801 				} else {
   1802 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1803 					    "%#" _PRIxpa ": syncicache]\n",
   1804 					    VM_PAGE_TO_PHYS(pg)));
   1805 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1806 					    PAGE_SIZE);
   1807 					PMAPCOUNT(exec_synced_pvo_remove);
   1808 				}
   1809 			}
   1810 
   1811 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1812 		}
   1813 		PMAPCOUNT(unmappings);
   1814 	} else {
   1815 		PMAPCOUNT(kernel_unmappings);
   1816 	}
   1817 
   1818 	/*
   1819 	 * Remove the PVO from its lists and return it to the pool.
   1820 	 */
   1821 	LIST_REMOVE(pvo, pvo_vlink);
   1822 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1823 	if (pvol) {
   1824 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1825 	}
   1826 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1827 	pmap_pvo_remove_depth--;
   1828 #endif
   1829 }
   1830 
   1831 void
   1832 pmap_pvo_free(struct pvo_entry *pvo)
   1833 {
   1834 
   1835 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1836 }
   1837 
   1838 void
   1839 pmap_pvo_free_list(struct pvo_head *pvol)
   1840 {
   1841 	struct pvo_entry *pvo, *npvo;
   1842 
   1843 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1844 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1845 		LIST_REMOVE(pvo, pvo_vlink);
   1846 		pmap_pvo_free(pvo);
   1847 	}
   1848 }
   1849 
   1850 /*
   1851  * Mark a mapping as executable.
   1852  * If this is the first executable mapping in the segment,
   1853  * clear the noexec flag.
   1854  */
   1855 static void
   1856 pvo_set_exec(struct pvo_entry *pvo)
   1857 {
   1858 	struct pmap *pm = pvo->pvo_pmap;
   1859 
   1860 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1861 		return;
   1862 	}
   1863 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1864 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1865 	{
   1866 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1867 		if (pm->pm_exec[sr]++ == 0) {
   1868 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1869 		}
   1870 	}
   1871 #endif
   1872 }
   1873 
   1874 /*
   1875  * Mark a mapping as non-executable.
   1876  * If this was the last executable mapping in the segment,
   1877  * set the noexec flag.
   1878  */
   1879 static void
   1880 pvo_clear_exec(struct pvo_entry *pvo)
   1881 {
   1882 	struct pmap *pm = pvo->pvo_pmap;
   1883 
   1884 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1885 		return;
   1886 	}
   1887 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1888 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1889 	{
   1890 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1891 		if (--pm->pm_exec[sr] == 0) {
   1892 			pm->pm_sr[sr] |= SR_NOEXEC;
   1893 		}
   1894 	}
   1895 #endif
   1896 }
   1897 
   1898 /*
   1899  * Insert physical page at pa into the given pmap at virtual address va.
   1900  */
   1901 int
   1902 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1903 {
   1904 	struct mem_region *mp;
   1905 	struct pvo_head *pvo_head;
   1906 	struct vm_page *pg;
   1907 	struct pool *pl;
   1908 	register_t pte_lo;
   1909 	int error;
   1910 	u_int pvo_flags;
   1911 	u_int was_exec = 0;
   1912 
   1913 	PMAP_LOCK();
   1914 
   1915 	if (__predict_false(!pmap_initialized)) {
   1916 		pvo_head = &pmap_pvo_kunmanaged;
   1917 		pl = &pmap_upvo_pool;
   1918 		pvo_flags = 0;
   1919 		pg = NULL;
   1920 		was_exec = PTE_EXEC;
   1921 	} else {
   1922 		pvo_head = pa_to_pvoh(pa, &pg);
   1923 		pl = &pmap_mpvo_pool;
   1924 		pvo_flags = PVO_MANAGED;
   1925 	}
   1926 
   1927 	DPRINTFN(ENTER,
   1928 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1929 	    pm, va, pa, prot, flags));
   1930 
   1931 	/*
   1932 	 * If this is a managed page, and it's the first reference to the
   1933 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1934 	 */
   1935 	if (pg != NULL)
   1936 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1937 
   1938 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1939 
   1940 	/*
   1941 	 * Assume the page is cache inhibited and access is guarded unless
   1942 	 * it's in our available memory array.  If it is in the memory array,
   1943 	 * asssume it's in memory coherent memory.
   1944 	 */
   1945 	pte_lo = PTE_IG;
   1946 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   1947 		for (mp = mem; mp->size; mp++) {
   1948 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1949 				pte_lo = PTE_M;
   1950 				break;
   1951 			}
   1952 		}
   1953 	}
   1954 
   1955 	if (prot & VM_PROT_WRITE)
   1956 		pte_lo |= PTE_BW;
   1957 	else
   1958 		pte_lo |= PTE_BR;
   1959 
   1960 	/*
   1961 	 * If this was in response to a fault, "pre-fault" the PTE's
   1962 	 * changed/referenced bit appropriately.
   1963 	 */
   1964 	if (flags & VM_PROT_WRITE)
   1965 		pte_lo |= PTE_CHG;
   1966 	if (flags & VM_PROT_ALL)
   1967 		pte_lo |= PTE_REF;
   1968 
   1969 	/*
   1970 	 * We need to know if this page can be executable
   1971 	 */
   1972 	flags |= (prot & VM_PROT_EXECUTE);
   1973 
   1974 	/*
   1975 	 * Record mapping for later back-translation and pte spilling.
   1976 	 * This will overwrite any existing mapping.
   1977 	 */
   1978 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1979 
   1980 	/*
   1981 	 * Flush the real page from the instruction cache if this page is
   1982 	 * mapped executable and cacheable and has not been flushed since
   1983 	 * the last time it was modified.
   1984 	 */
   1985 	if (error == 0 &&
   1986             (flags & VM_PROT_EXECUTE) &&
   1987             (pte_lo & PTE_I) == 0 &&
   1988 	    was_exec == 0) {
   1989 		DPRINTFN(ENTER, (" syncicache"));
   1990 		PMAPCOUNT(exec_synced);
   1991 		pmap_syncicache(pa, PAGE_SIZE);
   1992 		if (pg != NULL) {
   1993 			pmap_attr_save(pg, PTE_EXEC);
   1994 			PMAPCOUNT(exec_cached);
   1995 #if defined(DEBUG) || defined(PMAPDEBUG)
   1996 			if (pmapdebug & PMAPDEBUG_ENTER)
   1997 				printf(" marked-as-exec");
   1998 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1999 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2000 				    VM_PAGE_TO_PHYS(pg));
   2001 
   2002 #endif
   2003 		}
   2004 	}
   2005 
   2006 	DPRINTFN(ENTER, (": error=%d\n", error));
   2007 
   2008 	PMAP_UNLOCK();
   2009 
   2010 	return error;
   2011 }
   2012 
   2013 void
   2014 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2015 {
   2016 	struct mem_region *mp;
   2017 	register_t pte_lo;
   2018 	int error;
   2019 
   2020 #if defined (PMAP_OEA64_BRIDGE)
   2021 	if (va < VM_MIN_KERNEL_ADDRESS)
   2022 		panic("pmap_kenter_pa: attempt to enter "
   2023 		    "non-kernel address %#" _PRIxva "!", va);
   2024 #endif
   2025 
   2026 	DPRINTFN(KENTER,
   2027 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2028 
   2029 	PMAP_LOCK();
   2030 
   2031 	/*
   2032 	 * Assume the page is cache inhibited and access is guarded unless
   2033 	 * it's in our available memory array.  If it is in the memory array,
   2034 	 * asssume it's in memory coherent memory.
   2035 	 */
   2036 	pte_lo = PTE_IG;
   2037 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   2038 		for (mp = mem; mp->size; mp++) {
   2039 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2040 				pte_lo = PTE_M;
   2041 				break;
   2042 			}
   2043 		}
   2044 	}
   2045 
   2046 	if (prot & VM_PROT_WRITE)
   2047 		pte_lo |= PTE_BW;
   2048 	else
   2049 		pte_lo |= PTE_BR;
   2050 
   2051 	/*
   2052 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2053 	 */
   2054 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2055 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2056 
   2057 	if (error != 0)
   2058 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2059 		      va, pa, error);
   2060 
   2061 	PMAP_UNLOCK();
   2062 }
   2063 
   2064 void
   2065 pmap_kremove(vaddr_t va, vsize_t len)
   2066 {
   2067 	if (va < VM_MIN_KERNEL_ADDRESS)
   2068 		panic("pmap_kremove: attempt to remove "
   2069 		    "non-kernel address %#" _PRIxva "!", va);
   2070 
   2071 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2072 	pmap_remove(pmap_kernel(), va, va + len);
   2073 }
   2074 
   2075 /*
   2076  * Remove the given range of mapping entries.
   2077  */
   2078 void
   2079 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2080 {
   2081 	struct pvo_head pvol;
   2082 	struct pvo_entry *pvo;
   2083 	register_t msr;
   2084 	int pteidx;
   2085 
   2086 	PMAP_LOCK();
   2087 	LIST_INIT(&pvol);
   2088 	msr = pmap_interrupts_off();
   2089 	for (; va < endva; va += PAGE_SIZE) {
   2090 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2091 		if (pvo != NULL) {
   2092 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2093 		}
   2094 	}
   2095 	pmap_interrupts_restore(msr);
   2096 	pmap_pvo_free_list(&pvol);
   2097 	PMAP_UNLOCK();
   2098 }
   2099 
   2100 /*
   2101  * Get the physical page address for the given pmap/virtual address.
   2102  */
   2103 bool
   2104 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2105 {
   2106 	struct pvo_entry *pvo;
   2107 	register_t msr;
   2108 
   2109 	PMAP_LOCK();
   2110 
   2111 	/*
   2112 	 * If this is a kernel pmap lookup, also check the battable
   2113 	 * and if we get a hit, translate the VA to a PA using the
   2114 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2115 	 * that will wrap back to 0.
   2116 	 */
   2117 	if (pm == pmap_kernel() &&
   2118 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2119 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2120 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2121 #if defined (PMAP_OEA)
   2122 #ifdef PPC_OEA601
   2123 		if ((MFPVR() >> 16) == MPC601) {
   2124 			register_t batu = battable[va >> 23].batu;
   2125 			register_t batl = battable[va >> 23].batl;
   2126 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2127 			if (BAT601_VALID_P(batl) &&
   2128 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2129 				register_t mask =
   2130 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2131 				if (pap)
   2132 					*pap = (batl & mask) | (va & ~mask);
   2133 				PMAP_UNLOCK();
   2134 				return true;
   2135 			} else if (SR601_VALID_P(sr) &&
   2136 				   SR601_PA_MATCH_P(sr, va)) {
   2137 				if (pap)
   2138 					*pap = va;
   2139 				PMAP_UNLOCK();
   2140 				return true;
   2141 			}
   2142 		} else
   2143 #endif /* PPC_OEA601 */
   2144 		{
   2145 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2146 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2147 				register_t batl =
   2148 				    battable[va >> ADDR_SR_SHFT].batl;
   2149 				register_t mask =
   2150 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2151 				if (pap)
   2152 					*pap = (batl & mask) | (va & ~mask);
   2153 				PMAP_UNLOCK();
   2154 				return true;
   2155 			}
   2156 		}
   2157 		return false;
   2158 #elif defined (PMAP_OEA64_BRIDGE)
   2159 	if (va >= SEGMENT_LENGTH)
   2160 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2161 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2162 	else {
   2163 		if (pap)
   2164 			*pap = va;
   2165 			PMAP_UNLOCK();
   2166 			return true;
   2167 	}
   2168 #elif defined (PMAP_OEA64)
   2169 #error PPC_OEA64 not supported
   2170 #endif /* PPC_OEA */
   2171 	}
   2172 
   2173 	msr = pmap_interrupts_off();
   2174 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2175 	if (pvo != NULL) {
   2176 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2177 		if (pap)
   2178 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2179 			    | (va & ADDR_POFF);
   2180 	}
   2181 	pmap_interrupts_restore(msr);
   2182 	PMAP_UNLOCK();
   2183 	return pvo != NULL;
   2184 }
   2185 
   2186 /*
   2187  * Lower the protection on the specified range of this pmap.
   2188  */
   2189 void
   2190 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2191 {
   2192 	struct pvo_entry *pvo;
   2193 	volatile struct pte *pt;
   2194 	register_t msr;
   2195 	int pteidx;
   2196 
   2197 	/*
   2198 	 * Since this routine only downgrades protection, we should
   2199 	 * always be called with at least one bit not set.
   2200 	 */
   2201 	KASSERT(prot != VM_PROT_ALL);
   2202 
   2203 	/*
   2204 	 * If there is no protection, this is equivalent to
   2205 	 * remove the pmap from the pmap.
   2206 	 */
   2207 	if ((prot & VM_PROT_READ) == 0) {
   2208 		pmap_remove(pm, va, endva);
   2209 		return;
   2210 	}
   2211 
   2212 	PMAP_LOCK();
   2213 
   2214 	msr = pmap_interrupts_off();
   2215 	for (; va < endva; va += PAGE_SIZE) {
   2216 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2217 		if (pvo == NULL)
   2218 			continue;
   2219 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2220 
   2221 		/*
   2222 		 * Revoke executable if asked to do so.
   2223 		 */
   2224 		if ((prot & VM_PROT_EXECUTE) == 0)
   2225 			pvo_clear_exec(pvo);
   2226 
   2227 #if 0
   2228 		/*
   2229 		 * If the page is already read-only, no change
   2230 		 * needs to be made.
   2231 		 */
   2232 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2233 			continue;
   2234 #endif
   2235 		/*
   2236 		 * Grab the PTE pointer before we diddle with
   2237 		 * the cached PTE copy.
   2238 		 */
   2239 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2240 		/*
   2241 		 * Change the protection of the page.
   2242 		 */
   2243 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2244 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2245 
   2246 		/*
   2247 		 * If the PVO is in the page table, update
   2248 		 * that pte at well.
   2249 		 */
   2250 		if (pt != NULL) {
   2251 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2252 			PVO_WHERE(pvo, PMAP_PROTECT);
   2253 			PMAPCOUNT(ptes_changed);
   2254 		}
   2255 
   2256 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2257 	}
   2258 	pmap_interrupts_restore(msr);
   2259 	PMAP_UNLOCK();
   2260 }
   2261 
   2262 void
   2263 pmap_unwire(pmap_t pm, vaddr_t va)
   2264 {
   2265 	struct pvo_entry *pvo;
   2266 	register_t msr;
   2267 
   2268 	PMAP_LOCK();
   2269 	msr = pmap_interrupts_off();
   2270 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2271 	if (pvo != NULL) {
   2272 		if (PVO_WIRED_P(pvo)) {
   2273 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2274 			pm->pm_stats.wired_count--;
   2275 		}
   2276 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2277 	}
   2278 	pmap_interrupts_restore(msr);
   2279 	PMAP_UNLOCK();
   2280 }
   2281 
   2282 /*
   2283  * Lower the protection on the specified physical page.
   2284  */
   2285 void
   2286 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2287 {
   2288 	struct pvo_head *pvo_head, pvol;
   2289 	struct pvo_entry *pvo, *next_pvo;
   2290 	volatile struct pte *pt;
   2291 	register_t msr;
   2292 
   2293 	PMAP_LOCK();
   2294 
   2295 	KASSERT(prot != VM_PROT_ALL);
   2296 	LIST_INIT(&pvol);
   2297 	msr = pmap_interrupts_off();
   2298 
   2299 	/*
   2300 	 * When UVM reuses a page, it does a pmap_page_protect with
   2301 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2302 	 * since we know the page will have different contents.
   2303 	 */
   2304 	if ((prot & VM_PROT_READ) == 0) {
   2305 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2306 		    VM_PAGE_TO_PHYS(pg)));
   2307 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2308 			PMAPCOUNT(exec_uncached_page_protect);
   2309 			pmap_attr_clear(pg, PTE_EXEC);
   2310 		}
   2311 	}
   2312 
   2313 	pvo_head = vm_page_to_pvoh(pg);
   2314 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2315 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2316 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2317 
   2318 		/*
   2319 		 * Downgrading to no mapping at all, we just remove the entry.
   2320 		 */
   2321 		if ((prot & VM_PROT_READ) == 0) {
   2322 			pmap_pvo_remove(pvo, -1, &pvol);
   2323 			continue;
   2324 		}
   2325 
   2326 		/*
   2327 		 * If EXEC permission is being revoked, just clear the
   2328 		 * flag in the PVO.
   2329 		 */
   2330 		if ((prot & VM_PROT_EXECUTE) == 0)
   2331 			pvo_clear_exec(pvo);
   2332 
   2333 		/*
   2334 		 * If this entry is already RO, don't diddle with the
   2335 		 * page table.
   2336 		 */
   2337 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2338 			PMAP_PVO_CHECK(pvo);
   2339 			continue;
   2340 		}
   2341 
   2342 		/*
   2343 		 * Grab the PTE before the we diddle the bits so
   2344 		 * pvo_to_pte can verify the pte contents are as
   2345 		 * expected.
   2346 		 */
   2347 		pt = pmap_pvo_to_pte(pvo, -1);
   2348 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2349 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2350 		if (pt != NULL) {
   2351 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2352 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2353 			PMAPCOUNT(ptes_changed);
   2354 		}
   2355 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2356 	}
   2357 	pmap_interrupts_restore(msr);
   2358 	pmap_pvo_free_list(&pvol);
   2359 
   2360 	PMAP_UNLOCK();
   2361 }
   2362 
   2363 /*
   2364  * Activate the address space for the specified process.  If the process
   2365  * is the current process, load the new MMU context.
   2366  */
   2367 void
   2368 pmap_activate(struct lwp *l)
   2369 {
   2370 	struct pcb *pcb = lwp_getpcb(l);
   2371 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2372 
   2373 	DPRINTFN(ACTIVATE,
   2374 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2375 
   2376 	/*
   2377 	 * XXX Normally performed in cpu_lwp_fork().
   2378 	 */
   2379 	pcb->pcb_pm = pmap;
   2380 
   2381 	/*
   2382 	* In theory, the SR registers need only be valid on return
   2383 	* to user space wait to do them there.
   2384 	*/
   2385 	if (l == curlwp) {
   2386 		/* Store pointer to new current pmap. */
   2387 		curpm = pmap;
   2388 	}
   2389 }
   2390 
   2391 /*
   2392  * Deactivate the specified process's address space.
   2393  */
   2394 void
   2395 pmap_deactivate(struct lwp *l)
   2396 {
   2397 }
   2398 
   2399 bool
   2400 pmap_query_bit(struct vm_page *pg, int ptebit)
   2401 {
   2402 	struct pvo_entry *pvo;
   2403 	volatile struct pte *pt;
   2404 	register_t msr;
   2405 
   2406 	PMAP_LOCK();
   2407 
   2408 	if (pmap_attr_fetch(pg) & ptebit) {
   2409 		PMAP_UNLOCK();
   2410 		return true;
   2411 	}
   2412 
   2413 	msr = pmap_interrupts_off();
   2414 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2415 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2416 		/*
   2417 		 * See if we saved the bit off.  If so cache, it and return
   2418 		 * success.
   2419 		 */
   2420 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2421 			pmap_attr_save(pg, ptebit);
   2422 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2423 			pmap_interrupts_restore(msr);
   2424 			PMAP_UNLOCK();
   2425 			return true;
   2426 		}
   2427 	}
   2428 	/*
   2429 	 * No luck, now go thru the hard part of looking at the ptes
   2430 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2431 	 * to the PTEs.
   2432 	 */
   2433 	SYNC();
   2434 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2435 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2436 		/*
   2437 		 * See if this pvo have a valid PTE.  If so, fetch the
   2438 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2439 		 * ptebit is set, cache, it and return success.
   2440 		 */
   2441 		pt = pmap_pvo_to_pte(pvo, -1);
   2442 		if (pt != NULL) {
   2443 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2444 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2445 				pmap_attr_save(pg, ptebit);
   2446 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2447 				pmap_interrupts_restore(msr);
   2448 				PMAP_UNLOCK();
   2449 				return true;
   2450 			}
   2451 		}
   2452 	}
   2453 	pmap_interrupts_restore(msr);
   2454 	PMAP_UNLOCK();
   2455 	return false;
   2456 }
   2457 
   2458 bool
   2459 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2460 {
   2461 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2462 	struct pvo_entry *pvo;
   2463 	volatile struct pte *pt;
   2464 	register_t msr;
   2465 	int rv = 0;
   2466 
   2467 	PMAP_LOCK();
   2468 	msr = pmap_interrupts_off();
   2469 
   2470 	/*
   2471 	 * Fetch the cache value
   2472 	 */
   2473 	rv |= pmap_attr_fetch(pg);
   2474 
   2475 	/*
   2476 	 * Clear the cached value.
   2477 	 */
   2478 	pmap_attr_clear(pg, ptebit);
   2479 
   2480 	/*
   2481 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2482 	 * can reset the right ones).  Note that since the pvo entries and
   2483 	 * list heads are accessed via BAT0 and are never placed in the
   2484 	 * page table, we don't have to worry about further accesses setting
   2485 	 * the REF/CHG bits.
   2486 	 */
   2487 	SYNC();
   2488 
   2489 	/*
   2490 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2491 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2492 	 */
   2493 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2494 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2495 		pt = pmap_pvo_to_pte(pvo, -1);
   2496 		if (pt != NULL) {
   2497 			/*
   2498 			 * Only sync the PTE if the bit we are looking
   2499 			 * for is not already set.
   2500 			 */
   2501 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2502 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2503 			/*
   2504 			 * If the bit we are looking for was already set,
   2505 			 * clear that bit in the pte.
   2506 			 */
   2507 			if (pvo->pvo_pte.pte_lo & ptebit)
   2508 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2509 		}
   2510 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2511 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2512 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2513 	}
   2514 	pmap_interrupts_restore(msr);
   2515 
   2516 	/*
   2517 	 * If we are clearing the modify bit and this page was marked EXEC
   2518 	 * and the user of the page thinks the page was modified, then we
   2519 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2520 	 * bit if it's not mapped.  The page itself might not have the CHG
   2521 	 * bit set if the modification was done via DMA to the page.
   2522 	 */
   2523 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2524 		if (LIST_EMPTY(pvoh)) {
   2525 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2526 			    VM_PAGE_TO_PHYS(pg)));
   2527 			pmap_attr_clear(pg, PTE_EXEC);
   2528 			PMAPCOUNT(exec_uncached_clear_modify);
   2529 		} else {
   2530 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2531 			    VM_PAGE_TO_PHYS(pg)));
   2532 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2533 			PMAPCOUNT(exec_synced_clear_modify);
   2534 		}
   2535 	}
   2536 	PMAP_UNLOCK();
   2537 	return (rv & ptebit) != 0;
   2538 }
   2539 
   2540 void
   2541 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2542 {
   2543 	struct pvo_entry *pvo;
   2544 	size_t offset = va & ADDR_POFF;
   2545 	int s;
   2546 
   2547 	PMAP_LOCK();
   2548 	s = splvm();
   2549 	while (len > 0) {
   2550 		size_t seglen = PAGE_SIZE - offset;
   2551 		if (seglen > len)
   2552 			seglen = len;
   2553 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2554 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2555 			pmap_syncicache(
   2556 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2557 			PMAP_PVO_CHECK(pvo);
   2558 		}
   2559 		va += seglen;
   2560 		len -= seglen;
   2561 		offset = 0;
   2562 	}
   2563 	splx(s);
   2564 	PMAP_UNLOCK();
   2565 }
   2566 
   2567 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2568 void
   2569 pmap_pte_print(volatile struct pte *pt)
   2570 {
   2571 	printf("PTE %p: ", pt);
   2572 
   2573 #if defined(PMAP_OEA)
   2574 	/* High word: */
   2575 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2576 #else
   2577 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2578 #endif /* PMAP_OEA */
   2579 
   2580 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2581 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2582 
   2583 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2584 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2585 	    pt->pte_hi & PTE_API);
   2586 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2587 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2588 #else
   2589 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2590 #endif /* PMAP_OEA */
   2591 
   2592 	/* Low word: */
   2593 #if defined (PMAP_OEA)
   2594 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2595 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2596 #else
   2597 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2598 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2599 #endif
   2600 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2601 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2602 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2603 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2604 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2605 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2606 	switch (pt->pte_lo & PTE_PP) {
   2607 	case PTE_BR: printf("br]\n"); break;
   2608 	case PTE_BW: printf("bw]\n"); break;
   2609 	case PTE_SO: printf("so]\n"); break;
   2610 	case PTE_SW: printf("sw]\n"); break;
   2611 	}
   2612 }
   2613 #endif
   2614 
   2615 #if defined(DDB)
   2616 void
   2617 pmap_pteg_check(void)
   2618 {
   2619 	volatile struct pte *pt;
   2620 	int i;
   2621 	int ptegidx;
   2622 	u_int p_valid = 0;
   2623 	u_int s_valid = 0;
   2624 	u_int invalid = 0;
   2625 
   2626 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2627 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2628 			if (pt->pte_hi & PTE_VALID) {
   2629 				if (pt->pte_hi & PTE_HID)
   2630 					s_valid++;
   2631 				else
   2632 				{
   2633 					p_valid++;
   2634 				}
   2635 			} else
   2636 				invalid++;
   2637 		}
   2638 	}
   2639 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2640 		p_valid, p_valid, s_valid, s_valid,
   2641 		invalid, invalid);
   2642 }
   2643 
   2644 void
   2645 pmap_print_mmuregs(void)
   2646 {
   2647 	int i;
   2648 	u_int cpuvers;
   2649 #ifndef PMAP_OEA64
   2650 	vaddr_t addr;
   2651 	register_t soft_sr[16];
   2652 #endif
   2653 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2654 	struct bat soft_ibat[4];
   2655 	struct bat soft_dbat[4];
   2656 #endif
   2657 	paddr_t sdr1;
   2658 
   2659 	cpuvers = MFPVR() >> 16;
   2660 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2661 #ifndef PMAP_OEA64
   2662 	addr = 0;
   2663 	for (i = 0; i < 16; i++) {
   2664 		soft_sr[i] = MFSRIN(addr);
   2665 		addr += (1 << ADDR_SR_SHFT);
   2666 	}
   2667 #endif
   2668 
   2669 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2670 	/* read iBAT (601: uBAT) registers */
   2671 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2672 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2673 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2674 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2675 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2676 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2677 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2678 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2679 
   2680 
   2681 	if (cpuvers != MPC601) {
   2682 		/* read dBAT registers */
   2683 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2684 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2685 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2686 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2687 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2688 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2689 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2690 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2691 	}
   2692 #endif
   2693 
   2694 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2695 #ifndef PMAP_OEA64
   2696 	printf("SR[]:\t");
   2697 	for (i = 0; i < 4; i++)
   2698 		printf("0x%08lx,   ", soft_sr[i]);
   2699 	printf("\n\t");
   2700 	for ( ; i < 8; i++)
   2701 		printf("0x%08lx,   ", soft_sr[i]);
   2702 	printf("\n\t");
   2703 	for ( ; i < 12; i++)
   2704 		printf("0x%08lx,   ", soft_sr[i]);
   2705 	printf("\n\t");
   2706 	for ( ; i < 16; i++)
   2707 		printf("0x%08lx,   ", soft_sr[i]);
   2708 	printf("\n");
   2709 #endif
   2710 
   2711 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2712 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2713 	for (i = 0; i < 4; i++) {
   2714 		printf("0x%08lx 0x%08lx, ",
   2715 			soft_ibat[i].batu, soft_ibat[i].batl);
   2716 		if (i == 1)
   2717 			printf("\n\t");
   2718 	}
   2719 	if (cpuvers != MPC601) {
   2720 		printf("\ndBAT[]:\t");
   2721 		for (i = 0; i < 4; i++) {
   2722 			printf("0x%08lx 0x%08lx, ",
   2723 				soft_dbat[i].batu, soft_dbat[i].batl);
   2724 			if (i == 1)
   2725 				printf("\n\t");
   2726 		}
   2727 	}
   2728 	printf("\n");
   2729 #endif /* PMAP_OEA... */
   2730 }
   2731 
   2732 void
   2733 pmap_print_pte(pmap_t pm, vaddr_t va)
   2734 {
   2735 	struct pvo_entry *pvo;
   2736 	volatile struct pte *pt;
   2737 	int pteidx;
   2738 
   2739 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2740 	if (pvo != NULL) {
   2741 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2742 		if (pt != NULL) {
   2743 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2744 				va, pt,
   2745 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2746 				pt->pte_hi, pt->pte_lo);
   2747 		} else {
   2748 			printf("No valid PTE found\n");
   2749 		}
   2750 	} else {
   2751 		printf("Address not in pmap\n");
   2752 	}
   2753 }
   2754 
   2755 void
   2756 pmap_pteg_dist(void)
   2757 {
   2758 	struct pvo_entry *pvo;
   2759 	int ptegidx;
   2760 	int depth;
   2761 	int max_depth = 0;
   2762 	unsigned int depths[64];
   2763 
   2764 	memset(depths, 0, sizeof(depths));
   2765 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2766 		depth = 0;
   2767 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2768 			depth++;
   2769 		}
   2770 		if (depth > max_depth)
   2771 			max_depth = depth;
   2772 		if (depth > 63)
   2773 			depth = 63;
   2774 		depths[depth]++;
   2775 	}
   2776 
   2777 	for (depth = 0; depth < 64; depth++) {
   2778 		printf("  [%2d]: %8u", depth, depths[depth]);
   2779 		if ((depth & 3) == 3)
   2780 			printf("\n");
   2781 		if (depth == max_depth)
   2782 			break;
   2783 	}
   2784 	if ((depth & 3) != 3)
   2785 		printf("\n");
   2786 	printf("Max depth found was %d\n", max_depth);
   2787 }
   2788 #endif /* DEBUG */
   2789 
   2790 #if defined(PMAPCHECK) || defined(DEBUG)
   2791 void
   2792 pmap_pvo_verify(void)
   2793 {
   2794 	int ptegidx;
   2795 	int s;
   2796 
   2797 	s = splvm();
   2798 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2799 		struct pvo_entry *pvo;
   2800 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2801 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2802 				panic("pmap_pvo_verify: invalid pvo %p "
   2803 				    "on list %#x", pvo, ptegidx);
   2804 			pmap_pvo_check(pvo);
   2805 		}
   2806 	}
   2807 	splx(s);
   2808 }
   2809 #endif /* PMAPCHECK */
   2810 
   2811 
   2812 void *
   2813 pmap_pool_ualloc(struct pool *pp, int flags)
   2814 {
   2815 	struct pvo_page *pvop;
   2816 
   2817 	if (uvm.page_init_done != true) {
   2818 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2819 	}
   2820 
   2821 	PMAP_LOCK();
   2822 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2823 	if (pvop != NULL) {
   2824 		pmap_upvop_free--;
   2825 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2826 		PMAP_UNLOCK();
   2827 		return pvop;
   2828 	}
   2829 	PMAP_UNLOCK();
   2830 	return pmap_pool_malloc(pp, flags);
   2831 }
   2832 
   2833 void *
   2834 pmap_pool_malloc(struct pool *pp, int flags)
   2835 {
   2836 	struct pvo_page *pvop;
   2837 	struct vm_page *pg;
   2838 
   2839 	PMAP_LOCK();
   2840 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2841 	if (pvop != NULL) {
   2842 		pmap_mpvop_free--;
   2843 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2844 		PMAP_UNLOCK();
   2845 		return pvop;
   2846 	}
   2847 	PMAP_UNLOCK();
   2848  again:
   2849 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2850 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2851 	if (__predict_false(pg == NULL)) {
   2852 		if (flags & PR_WAITOK) {
   2853 			uvm_wait("plpg");
   2854 			goto again;
   2855 		} else {
   2856 			return (0);
   2857 		}
   2858 	}
   2859 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2860 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2861 }
   2862 
   2863 void
   2864 pmap_pool_ufree(struct pool *pp, void *va)
   2865 {
   2866 	struct pvo_page *pvop;
   2867 #if 0
   2868 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2869 		pmap_pool_mfree(va, size, tag);
   2870 		return;
   2871 	}
   2872 #endif
   2873 	PMAP_LOCK();
   2874 	pvop = va;
   2875 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2876 	pmap_upvop_free++;
   2877 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2878 		pmap_upvop_maxfree = pmap_upvop_free;
   2879 	PMAP_UNLOCK();
   2880 }
   2881 
   2882 void
   2883 pmap_pool_mfree(struct pool *pp, void *va)
   2884 {
   2885 	struct pvo_page *pvop;
   2886 
   2887 	PMAP_LOCK();
   2888 	pvop = va;
   2889 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2890 	pmap_mpvop_free++;
   2891 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2892 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2893 	PMAP_UNLOCK();
   2894 #if 0
   2895 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2896 #endif
   2897 }
   2898 
   2899 /*
   2900  * This routine in bootstraping to steal to-be-managed memory (which will
   2901  * then be unmanaged).  We use it to grab from the first 256MB for our
   2902  * pmap needs and above 256MB for other stuff.
   2903  */
   2904 vaddr_t
   2905 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2906 {
   2907 	vsize_t size;
   2908 	vaddr_t va;
   2909 	paddr_t pa = 0;
   2910 	int npgs, bank;
   2911 	struct vm_physseg *ps;
   2912 
   2913 	if (uvm.page_init_done == true)
   2914 		panic("pmap_steal_memory: called _after_ bootstrap");
   2915 
   2916 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2917 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2918 
   2919 	size = round_page(vsize);
   2920 	npgs = atop(size);
   2921 
   2922 	/*
   2923 	 * PA 0 will never be among those given to UVM so we can use it
   2924 	 * to indicate we couldn't steal any memory.
   2925 	 */
   2926 	for (bank = 0; bank < vm_nphysseg; bank++) {
   2927 		ps = VM_PHYSMEM_PTR(bank);
   2928 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2929 		    ps->avail_end - ps->avail_start >= npgs) {
   2930 			pa = ptoa(ps->avail_start);
   2931 			break;
   2932 		}
   2933 	}
   2934 
   2935 	if (pa == 0)
   2936 		panic("pmap_steal_memory: no approriate memory to steal!");
   2937 
   2938 	ps->avail_start += npgs;
   2939 	ps->start += npgs;
   2940 
   2941 	/*
   2942 	 * If we've used up all the pages in the segment, remove it and
   2943 	 * compact the list.
   2944 	 */
   2945 	if (ps->avail_start == ps->end) {
   2946 		/*
   2947 		 * If this was the last one, then a very bad thing has occurred
   2948 		 */
   2949 		if (--vm_nphysseg == 0)
   2950 			panic("pmap_steal_memory: out of memory!");
   2951 
   2952 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2953 		for (; bank < vm_nphysseg; bank++, ps++) {
   2954 			ps[0] = ps[1];
   2955 		}
   2956 	}
   2957 
   2958 	va = (vaddr_t) pa;
   2959 	memset((void *) va, 0, size);
   2960 	pmap_pages_stolen += npgs;
   2961 #ifdef DEBUG
   2962 	if (pmapdebug && npgs > 1) {
   2963 		u_int cnt = 0;
   2964 		for (bank = 0; bank < vm_nphysseg; bank++) {
   2965 			ps = VM_PHYSMEM_PTR(bank);
   2966 			cnt += ps->avail_end - ps->avail_start;
   2967 		}
   2968 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2969 		    npgs, pmap_pages_stolen, cnt);
   2970 	}
   2971 #endif
   2972 
   2973 	return va;
   2974 }
   2975 
   2976 /*
   2977  * Find a chuck of memory with right size and alignment.
   2978  */
   2979 paddr_t
   2980 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2981 {
   2982 	struct mem_region *mp;
   2983 	paddr_t s, e;
   2984 	int i, j;
   2985 
   2986 	size = round_page(size);
   2987 
   2988 	DPRINTFN(BOOT,
   2989 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2990 	    size, alignment, at_end));
   2991 
   2992 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2993 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2994 		    alignment);
   2995 
   2996 	if (at_end) {
   2997 		if (alignment != PAGE_SIZE)
   2998 			panic("pmap_boot_find_memory: invalid ending "
   2999 			    "alignment %#" _PRIxpa, alignment);
   3000 
   3001 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3002 			s = mp->start + mp->size - size;
   3003 			if (s >= mp->start && mp->size >= size) {
   3004 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3005 				DPRINTFN(BOOT,
   3006 				    ("pmap_boot_find_memory: b-avail[%d] start "
   3007 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3008 				     mp->start, mp->size));
   3009 				mp->size -= size;
   3010 				DPRINTFN(BOOT,
   3011 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3012 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3013 				     mp->start, mp->size));
   3014 				return s;
   3015 			}
   3016 		}
   3017 		panic("pmap_boot_find_memory: no available memory");
   3018 	}
   3019 
   3020 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3021 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3022 		e = s + size;
   3023 
   3024 		/*
   3025 		 * Is the calculated region entirely within the region?
   3026 		 */
   3027 		if (s < mp->start || e > mp->start + mp->size)
   3028 			continue;
   3029 
   3030 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3031 		if (s == mp->start) {
   3032 			/*
   3033 			 * If the block starts at the beginning of region,
   3034 			 * adjust the size & start. (the region may now be
   3035 			 * zero in length)
   3036 			 */
   3037 			DPRINTFN(BOOT,
   3038 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3039 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3040 			mp->start += size;
   3041 			mp->size -= size;
   3042 			DPRINTFN(BOOT,
   3043 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3044 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3045 		} else if (e == mp->start + mp->size) {
   3046 			/*
   3047 			 * If the block starts at the beginning of region,
   3048 			 * adjust only the size.
   3049 			 */
   3050 			DPRINTFN(BOOT,
   3051 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3052 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3053 			mp->size -= size;
   3054 			DPRINTFN(BOOT,
   3055 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3056 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3057 		} else {
   3058 			/*
   3059 			 * Block is in the middle of the region, so we
   3060 			 * have to split it in two.
   3061 			 */
   3062 			for (j = avail_cnt; j > i + 1; j--) {
   3063 				avail[j] = avail[j-1];
   3064 			}
   3065 			DPRINTFN(BOOT,
   3066 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3067 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3068 			mp[1].start = e;
   3069 			mp[1].size = mp[0].start + mp[0].size - e;
   3070 			mp[0].size = s - mp[0].start;
   3071 			avail_cnt++;
   3072 			for (; i < avail_cnt; i++) {
   3073 				DPRINTFN(BOOT,
   3074 				    ("pmap_boot_find_memory: a-avail[%d] "
   3075 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3076 				     avail[i].start, avail[i].size));
   3077 			}
   3078 		}
   3079 		KASSERT(s == (uintptr_t) s);
   3080 		return s;
   3081 	}
   3082 	panic("pmap_boot_find_memory: not enough memory for "
   3083 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3084 }
   3085 
   3086 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3087 #if defined (PMAP_OEA64_BRIDGE)
   3088 int
   3089 pmap_setup_segment0_map(int use_large_pages, ...)
   3090 {
   3091     vaddr_t va;
   3092 
   3093     register_t pte_lo = 0x0;
   3094     int ptegidx = 0, i = 0;
   3095     struct pte pte;
   3096     va_list ap;
   3097 
   3098     /* Coherent + Supervisor RW, no user access */
   3099     pte_lo = PTE_M;
   3100 
   3101     /* XXXSL
   3102      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3103      * these have to take priority.
   3104      */
   3105     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3106         ptegidx = va_to_pteg(pmap_kernel(), va);
   3107         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3108         i = pmap_pte_insert(ptegidx, &pte);
   3109     }
   3110 
   3111     va_start(ap, use_large_pages);
   3112     while (1) {
   3113         paddr_t pa;
   3114         size_t size;
   3115 
   3116         va = va_arg(ap, vaddr_t);
   3117 
   3118         if (va == 0)
   3119             break;
   3120 
   3121         pa = va_arg(ap, paddr_t);
   3122         size = va_arg(ap, size_t);
   3123 
   3124         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3125 #if 0
   3126 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3127 #endif
   3128             ptegidx = va_to_pteg(pmap_kernel(), va);
   3129             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3130             i = pmap_pte_insert(ptegidx, &pte);
   3131         }
   3132     }
   3133 
   3134     TLBSYNC();
   3135     SYNC();
   3136     return (0);
   3137 }
   3138 #endif /* PMAP_OEA64_BRIDGE */
   3139 
   3140 /*
   3141  * This is not part of the defined PMAP interface and is specific to the
   3142  * PowerPC architecture.  This is called during initppc, before the system
   3143  * is really initialized.
   3144  */
   3145 void
   3146 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3147 {
   3148 	struct mem_region *mp, tmp;
   3149 	paddr_t s, e;
   3150 	psize_t size;
   3151 	int i, j;
   3152 
   3153 	/*
   3154 	 * Get memory.
   3155 	 */
   3156 	mem_regions(&mem, &avail);
   3157 #if defined(DEBUG)
   3158 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3159 		printf("pmap_bootstrap: memory configuration:\n");
   3160 		for (mp = mem; mp->size; mp++) {
   3161 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3162 				mp->start, mp->size);
   3163 		}
   3164 		for (mp = avail; mp->size; mp++) {
   3165 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3166 				mp->start, mp->size);
   3167 		}
   3168 	}
   3169 #endif
   3170 
   3171 	/*
   3172 	 * Find out how much physical memory we have and in how many chunks.
   3173 	 */
   3174 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3175 		if (mp->start >= pmap_memlimit)
   3176 			continue;
   3177 		if (mp->start + mp->size > pmap_memlimit) {
   3178 			size = pmap_memlimit - mp->start;
   3179 			physmem += btoc(size);
   3180 		} else {
   3181 			physmem += btoc(mp->size);
   3182 		}
   3183 		mem_cnt++;
   3184 	}
   3185 
   3186 	/*
   3187 	 * Count the number of available entries.
   3188 	 */
   3189 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3190 		avail_cnt++;
   3191 
   3192 	/*
   3193 	 * Page align all regions.
   3194 	 */
   3195 	kernelstart = trunc_page(kernelstart);
   3196 	kernelend = round_page(kernelend);
   3197 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3198 		s = round_page(mp->start);
   3199 		mp->size -= (s - mp->start);
   3200 		mp->size = trunc_page(mp->size);
   3201 		mp->start = s;
   3202 		e = mp->start + mp->size;
   3203 
   3204 		DPRINTFN(BOOT,
   3205 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3206 		    i, mp->start, mp->size));
   3207 
   3208 		/*
   3209 		 * Don't allow the end to run beyond our artificial limit
   3210 		 */
   3211 		if (e > pmap_memlimit)
   3212 			e = pmap_memlimit;
   3213 
   3214 		/*
   3215 		 * Is this region empty or strange?  skip it.
   3216 		 */
   3217 		if (e <= s) {
   3218 			mp->start = 0;
   3219 			mp->size = 0;
   3220 			continue;
   3221 		}
   3222 
   3223 		/*
   3224 		 * Does this overlap the beginning of kernel?
   3225 		 *   Does extend past the end of the kernel?
   3226 		 */
   3227 		else if (s < kernelstart && e > kernelstart) {
   3228 			if (e > kernelend) {
   3229 				avail[avail_cnt].start = kernelend;
   3230 				avail[avail_cnt].size = e - kernelend;
   3231 				avail_cnt++;
   3232 			}
   3233 			mp->size = kernelstart - s;
   3234 		}
   3235 		/*
   3236 		 * Check whether this region overlaps the end of the kernel.
   3237 		 */
   3238 		else if (s < kernelend && e > kernelend) {
   3239 			mp->start = kernelend;
   3240 			mp->size = e - kernelend;
   3241 		}
   3242 		/*
   3243 		 * Look whether this regions is completely inside the kernel.
   3244 		 * Nuke it if it does.
   3245 		 */
   3246 		else if (s >= kernelstart && e <= kernelend) {
   3247 			mp->start = 0;
   3248 			mp->size = 0;
   3249 		}
   3250 		/*
   3251 		 * If the user imposed a memory limit, enforce it.
   3252 		 */
   3253 		else if (s >= pmap_memlimit) {
   3254 			mp->start = -PAGE_SIZE;	/* let's know why */
   3255 			mp->size = 0;
   3256 		}
   3257 		else {
   3258 			mp->start = s;
   3259 			mp->size = e - s;
   3260 		}
   3261 		DPRINTFN(BOOT,
   3262 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3263 		    i, mp->start, mp->size));
   3264 	}
   3265 
   3266 	/*
   3267 	 * Move (and uncount) all the null return to the end.
   3268 	 */
   3269 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3270 		if (mp->size == 0) {
   3271 			tmp = avail[i];
   3272 			avail[i] = avail[--avail_cnt];
   3273 			avail[avail_cnt] = avail[i];
   3274 		}
   3275 	}
   3276 
   3277 	/*
   3278 	 * (Bubble)sort them into ascending order.
   3279 	 */
   3280 	for (i = 0; i < avail_cnt; i++) {
   3281 		for (j = i + 1; j < avail_cnt; j++) {
   3282 			if (avail[i].start > avail[j].start) {
   3283 				tmp = avail[i];
   3284 				avail[i] = avail[j];
   3285 				avail[j] = tmp;
   3286 			}
   3287 		}
   3288 	}
   3289 
   3290 	/*
   3291 	 * Make sure they don't overlap.
   3292 	 */
   3293 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3294 		if (mp[0].start + mp[0].size > mp[1].start) {
   3295 			mp[0].size = mp[1].start - mp[0].start;
   3296 		}
   3297 		DPRINTFN(BOOT,
   3298 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3299 		    i, mp->start, mp->size));
   3300 	}
   3301 	DPRINTFN(BOOT,
   3302 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3303 	    i, mp->start, mp->size));
   3304 
   3305 #ifdef	PTEGCOUNT
   3306 	pmap_pteg_cnt = PTEGCOUNT;
   3307 #else /* PTEGCOUNT */
   3308 
   3309 	pmap_pteg_cnt = 0x1000;
   3310 
   3311 	while (pmap_pteg_cnt < physmem)
   3312 		pmap_pteg_cnt <<= 1;
   3313 
   3314 	pmap_pteg_cnt >>= 1;
   3315 #endif /* PTEGCOUNT */
   3316 
   3317 #ifdef DEBUG
   3318 	DPRINTFN(BOOT,
   3319 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3320 #endif
   3321 
   3322 	/*
   3323 	 * Find suitably aligned memory for PTEG hash table.
   3324 	 */
   3325 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3326 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3327 
   3328 #ifdef DEBUG
   3329 	DPRINTFN(BOOT,
   3330 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3331 #endif
   3332 
   3333 
   3334 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3335 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3336 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3337 		    pmap_pteg_table, size);
   3338 #endif
   3339 
   3340 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3341 		pmap_pteg_cnt * sizeof(struct pteg));
   3342 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3343 
   3344 	/*
   3345 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3346 	 * with pages.  So we just steal them before giving them to UVM.
   3347 	 */
   3348 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3349 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3350 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3351 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3352 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3353 		    pmap_pvo_table, size);
   3354 #endif
   3355 
   3356 	for (i = 0; i < pmap_pteg_cnt; i++)
   3357 		TAILQ_INIT(&pmap_pvo_table[i]);
   3358 
   3359 #ifndef MSGBUFADDR
   3360 	/*
   3361 	 * Allocate msgbuf in high memory.
   3362 	 */
   3363 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3364 #endif
   3365 
   3366 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3367 		paddr_t pfstart = atop(mp->start);
   3368 		paddr_t pfend = atop(mp->start + mp->size);
   3369 		if (mp->size == 0)
   3370 			continue;
   3371 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3372 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3373 				VM_FREELIST_FIRST256);
   3374 		} else if (mp->start >= SEGMENT_LENGTH) {
   3375 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3376 				VM_FREELIST_DEFAULT);
   3377 		} else {
   3378 			pfend = atop(SEGMENT_LENGTH);
   3379 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3380 				VM_FREELIST_FIRST256);
   3381 			pfstart = atop(SEGMENT_LENGTH);
   3382 			pfend = atop(mp->start + mp->size);
   3383 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3384 				VM_FREELIST_DEFAULT);
   3385 		}
   3386 	}
   3387 
   3388 	/*
   3389 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3390 	 */
   3391 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3392 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3393 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3394 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3395 	pmap_vsid_bitmap[0] |= 1;
   3396 
   3397 	/*
   3398 	 * Initialize kernel pmap and hardware.
   3399 	 */
   3400 
   3401 /* PMAP_OEA64_BRIDGE does support these instructions */
   3402 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3403 	for (i = 0; i < 16; i++) {
   3404  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3405 		__asm volatile ("mtsrin %0,%1"
   3406  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3407 	}
   3408 
   3409 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3410 	__asm volatile ("mtsr %0,%1"
   3411 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3412 #ifdef KERNEL2_SR
   3413 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3414 	__asm volatile ("mtsr %0,%1"
   3415 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3416 #endif
   3417 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3418 #if defined (PMAP_OEA)
   3419 	for (i = 0; i < 16; i++) {
   3420 		if (iosrtable[i] & SR601_T) {
   3421 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3422 			__asm volatile ("mtsrin %0,%1"
   3423 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3424 		}
   3425 	}
   3426 	__asm volatile ("sync; mtsdr1 %0; isync"
   3427 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3428 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3429  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3430  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3431 #endif
   3432 	tlbia();
   3433 
   3434 #ifdef ALTIVEC
   3435 	pmap_use_altivec = cpu_altivec;
   3436 #endif
   3437 
   3438 #ifdef DEBUG
   3439 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3440 		u_int cnt;
   3441 		int bank;
   3442 		char pbuf[9];
   3443 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3444 			cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
   3445 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3446 			    bank,
   3447 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
   3448 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
   3449 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
   3450 		}
   3451 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3452 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3453 		    pbuf, cnt);
   3454 	}
   3455 #endif
   3456 
   3457 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3458 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3459 	    &pmap_pool_uallocator, IPL_VM);
   3460 
   3461 	pool_setlowat(&pmap_upvo_pool, 252);
   3462 
   3463 	pool_init(&pmap_pool, sizeof(struct pmap),
   3464 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3465 	    IPL_NONE);
   3466 
   3467 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3468 	{
   3469 		struct pmap *pm = pmap_kernel();
   3470 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3471 		extern int etext[], kernel_text[];
   3472 		vaddr_t va, va_etext = (paddr_t) etext;
   3473 #endif
   3474 		paddr_t pa, pa_end;
   3475 		register_t sr;
   3476 		struct pte pt;
   3477 		unsigned int ptegidx;
   3478 		int bank;
   3479 
   3480 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3481 		pm->pm_sr[0] = sr;
   3482 
   3483 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3484 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3485 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3486 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3487 				ptegidx = va_to_pteg(pm, pa);
   3488 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3489 				pmap_pte_insert(ptegidx, &pt);
   3490 			}
   3491 		}
   3492 
   3493 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3494 		va = (vaddr_t) kernel_text;
   3495 
   3496 		for (pa = kernelstart; va < va_etext;
   3497 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3498 			ptegidx = va_to_pteg(pm, va);
   3499 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3500 			pmap_pte_insert(ptegidx, &pt);
   3501 		}
   3502 
   3503 		for (; pa < kernelend;
   3504 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3505 			ptegidx = va_to_pteg(pm, va);
   3506 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3507 			pmap_pte_insert(ptegidx, &pt);
   3508 		}
   3509 
   3510 		for (va = 0, pa = 0; va < kernelstart;
   3511 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3512 			ptegidx = va_to_pteg(pm, va);
   3513 			if (va < 0x3000)
   3514 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3515 			else
   3516 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3517 			pmap_pte_insert(ptegidx, &pt);
   3518 		}
   3519 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3520 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3521 			ptegidx = va_to_pteg(pm, va);
   3522 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3523 			pmap_pte_insert(ptegidx, &pt);
   3524 		}
   3525 #endif
   3526 
   3527 		__asm volatile ("mtsrin %0,%1"
   3528  			      :: "r"(sr), "r"(kernelstart));
   3529 	}
   3530 #endif
   3531 }
   3532