pmap.c revision 1.75 1 /* $NetBSD: pmap.c,v 1.75 2011/01/18 01:02:55 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.75 2011/01/18 01:02:55 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/pcb.h>
87 #include <machine/powerpc.h>
88 #include <powerpc/spr.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/stdarg.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 #ifndef MSGBUFADDR
116 extern paddr_t msgbuf_paddr;
117 #endif
118
119 static struct mem_region *mem, *avail;
120 static u_int mem_cnt, avail_cnt;
121
122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
123 # define PMAP_OEA 1
124 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA64) && !defined(PPC_OEA64_BRIDGE)
125 # define PMAPNAME(name) pmap_##name
126 # endif
127 #endif
128
129 #if defined(PMAP_OEA64)
130 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64_BRIDGE)
131 # define PMAPNAME(name) pmap_##name
132 # endif
133 #endif
134
135 #if defined(PMAP_OEA64_BRIDGE)
136 # if defined(PMAP_EXCLUDE_DECLS) && !defined(PPC_OEA) && !defined(PPC_OEA64)
137 # define PMAPNAME(name) pmap_##name
138 # endif
139 #endif
140
141 #if defined(PMAP_OEA)
142 #define _PRIxpte "lx"
143 #else
144 #define _PRIxpte PRIx64
145 #endif
146 #define _PRIxpa "lx"
147 #define _PRIxva "lx"
148 #define _PRIsr "lx"
149
150 #if defined(PMAP_EXCLUDE_DECLS) && !defined(PMAPNAME)
151 #if defined(PMAP_OEA)
152 #define PMAPNAME(name) pmap32_##name
153 #elif defined(PMAP_OEA64)
154 #define PMAPNAME(name) pmap64_##name
155 #elif defined(PMAP_OEA64_BRIDGE)
156 #define PMAPNAME(name) pmap64bridge_##name
157 #else
158 #error unknown variant for pmap
159 #endif
160 #endif /* PMAP_EXLCUDE_DECLS && !PMAPNAME */
161
162 #if defined(PMAPNAME)
163 #define STATIC static
164 #define pmap_pte_spill PMAPNAME(pte_spill)
165 #define pmap_real_memory PMAPNAME(real_memory)
166 #define pmap_init PMAPNAME(init)
167 #define pmap_virtual_space PMAPNAME(virtual_space)
168 #define pmap_create PMAPNAME(create)
169 #define pmap_reference PMAPNAME(reference)
170 #define pmap_destroy PMAPNAME(destroy)
171 #define pmap_copy PMAPNAME(copy)
172 #define pmap_update PMAPNAME(update)
173 #define pmap_enter PMAPNAME(enter)
174 #define pmap_remove PMAPNAME(remove)
175 #define pmap_kenter_pa PMAPNAME(kenter_pa)
176 #define pmap_kremove PMAPNAME(kremove)
177 #define pmap_extract PMAPNAME(extract)
178 #define pmap_protect PMAPNAME(protect)
179 #define pmap_unwire PMAPNAME(unwire)
180 #define pmap_page_protect PMAPNAME(page_protect)
181 #define pmap_query_bit PMAPNAME(query_bit)
182 #define pmap_clear_bit PMAPNAME(clear_bit)
183
184 #define pmap_activate PMAPNAME(activate)
185 #define pmap_deactivate PMAPNAME(deactivate)
186
187 #define pmap_pinit PMAPNAME(pinit)
188 #define pmap_procwr PMAPNAME(procwr)
189
190 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
191 #define pmap_pte_print PMAPNAME(pte_print)
192 #define pmap_pteg_check PMAPNAME(pteg_check)
193 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
194 #define pmap_print_pte PMAPNAME(print_pte)
195 #define pmap_pteg_dist PMAPNAME(pteg_dist)
196 #endif
197 #if defined(DEBUG) || defined(PMAPCHECK)
198 #define pmap_pvo_verify PMAPNAME(pvo_verify)
199 #define pmapcheck PMAPNAME(check)
200 #endif
201 #if defined(DEBUG) || defined(PMAPDEBUG)
202 #define pmapdebug PMAPNAME(debug)
203 #endif
204 #define pmap_steal_memory PMAPNAME(steal_memory)
205 #define pmap_bootstrap PMAPNAME(bootstrap)
206 #else
207 #define STATIC /* nothing */
208 #endif /* PMAPNAME */
209
210 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
211 STATIC void pmap_real_memory(paddr_t *, psize_t *);
212 STATIC void pmap_init(void);
213 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
214 STATIC pmap_t pmap_create(void);
215 STATIC void pmap_reference(pmap_t);
216 STATIC void pmap_destroy(pmap_t);
217 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
218 STATIC void pmap_update(pmap_t);
219 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
220 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
221 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
222 STATIC void pmap_kremove(vaddr_t, vsize_t);
223 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
224
225 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
226 STATIC void pmap_unwire(pmap_t, vaddr_t);
227 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
228 STATIC bool pmap_query_bit(struct vm_page *, int);
229 STATIC bool pmap_clear_bit(struct vm_page *, int);
230
231 STATIC void pmap_activate(struct lwp *);
232 STATIC void pmap_deactivate(struct lwp *);
233
234 STATIC void pmap_pinit(pmap_t pm);
235 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
236
237 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
238 STATIC void pmap_pte_print(volatile struct pte *);
239 STATIC void pmap_pteg_check(void);
240 STATIC void pmap_print_mmuregs(void);
241 STATIC void pmap_print_pte(pmap_t, vaddr_t);
242 STATIC void pmap_pteg_dist(void);
243 #endif
244 #if defined(DEBUG) || defined(PMAPCHECK)
245 STATIC void pmap_pvo_verify(void);
246 #endif
247 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
248 STATIC void pmap_bootstrap(paddr_t, paddr_t);
249
250 #ifdef PMAPNAME
251 const struct pmap_ops PMAPNAME(ops) = {
252 .pmapop_pte_spill = pmap_pte_spill,
253 .pmapop_real_memory = pmap_real_memory,
254 .pmapop_init = pmap_init,
255 .pmapop_virtual_space = pmap_virtual_space,
256 .pmapop_create = pmap_create,
257 .pmapop_reference = pmap_reference,
258 .pmapop_destroy = pmap_destroy,
259 .pmapop_copy = pmap_copy,
260 .pmapop_update = pmap_update,
261 .pmapop_enter = pmap_enter,
262 .pmapop_remove = pmap_remove,
263 .pmapop_kenter_pa = pmap_kenter_pa,
264 .pmapop_kremove = pmap_kremove,
265 .pmapop_extract = pmap_extract,
266 .pmapop_protect = pmap_protect,
267 .pmapop_unwire = pmap_unwire,
268 .pmapop_page_protect = pmap_page_protect,
269 .pmapop_query_bit = pmap_query_bit,
270 .pmapop_clear_bit = pmap_clear_bit,
271 .pmapop_activate = pmap_activate,
272 .pmapop_deactivate = pmap_deactivate,
273 .pmapop_pinit = pmap_pinit,
274 .pmapop_procwr = pmap_procwr,
275 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
276 .pmapop_pte_print = pmap_pte_print,
277 .pmapop_pteg_check = pmap_pteg_check,
278 .pmapop_print_mmuregs = pmap_print_mmuregs,
279 .pmapop_print_pte = pmap_print_pte,
280 .pmapop_pteg_dist = pmap_pteg_dist,
281 #else
282 .pmapop_pte_print = NULL,
283 .pmapop_pteg_check = NULL,
284 .pmapop_print_mmuregs = NULL,
285 .pmapop_print_pte = NULL,
286 .pmapop_pteg_dist = NULL,
287 #endif
288 #if defined(DEBUG) || defined(PMAPCHECK)
289 .pmapop_pvo_verify = pmap_pvo_verify,
290 #else
291 .pmapop_pvo_verify = NULL,
292 #endif
293 .pmapop_steal_memory = pmap_steal_memory,
294 .pmapop_bootstrap = pmap_bootstrap,
295 };
296 #endif /* !PMAPNAME */
297
298 /*
299 * The following structure is aligned to 32 bytes
300 */
301 struct pvo_entry {
302 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
303 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
304 struct pte pvo_pte; /* Prebuilt PTE */
305 pmap_t pvo_pmap; /* ptr to owning pmap */
306 vaddr_t pvo_vaddr; /* VA of entry */
307 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
308 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
309 #define PVO_WIRED 0x0010 /* PVO entry is wired */
310 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
311 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
312 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
313 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
314 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
315 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
316 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
317 #define PVO_SPILL_SET 2 /* PVO has been spilled */
318 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
319 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
320 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
321 #define PVO_REMOVE 6 /* PVO has been removed */
322 #define PVO_WHERE_MASK 15
323 #define PVO_WHERE_SHFT 8
324 } __attribute__ ((aligned (32)));
325 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
326 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
327 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
328 #define PVO_PTEGIDX_CLR(pvo) \
329 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
330 #define PVO_PTEGIDX_SET(pvo,i) \
331 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
332 #define PVO_WHERE(pvo,w) \
333 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
334 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
335
336 TAILQ_HEAD(pvo_tqhead, pvo_entry);
337 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
338 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
339 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
340
341 struct pool pmap_pool; /* pool for pmap structures */
342 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
343 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
344
345 /*
346 * We keep a cache of unmanaged pages to be used for pvo entries for
347 * unmanaged pages.
348 */
349 struct pvo_page {
350 SIMPLEQ_ENTRY(pvo_page) pvop_link;
351 };
352 SIMPLEQ_HEAD(pvop_head, pvo_page);
353 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
354 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
355 u_long pmap_upvop_free;
356 u_long pmap_upvop_maxfree;
357 u_long pmap_mpvop_free;
358 u_long pmap_mpvop_maxfree;
359
360 static void *pmap_pool_ualloc(struct pool *, int);
361 static void *pmap_pool_malloc(struct pool *, int);
362
363 static void pmap_pool_ufree(struct pool *, void *);
364 static void pmap_pool_mfree(struct pool *, void *);
365
366 static struct pool_allocator pmap_pool_mallocator = {
367 .pa_alloc = pmap_pool_malloc,
368 .pa_free = pmap_pool_mfree,
369 .pa_pagesz = 0,
370 };
371
372 static struct pool_allocator pmap_pool_uallocator = {
373 .pa_alloc = pmap_pool_ualloc,
374 .pa_free = pmap_pool_ufree,
375 .pa_pagesz = 0,
376 };
377
378 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
379 void pmap_pte_print(volatile struct pte *);
380 void pmap_pteg_check(void);
381 void pmap_pteg_dist(void);
382 void pmap_print_pte(pmap_t, vaddr_t);
383 void pmap_print_mmuregs(void);
384 #endif
385
386 #if defined(DEBUG) || defined(PMAPCHECK)
387 #ifdef PMAPCHECK
388 int pmapcheck = 1;
389 #else
390 int pmapcheck = 0;
391 #endif
392 void pmap_pvo_verify(void);
393 static void pmap_pvo_check(const struct pvo_entry *);
394 #define PMAP_PVO_CHECK(pvo) \
395 do { \
396 if (pmapcheck) \
397 pmap_pvo_check(pvo); \
398 } while (0)
399 #else
400 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
401 #endif
402 static int pmap_pte_insert(int, struct pte *);
403 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
404 vaddr_t, paddr_t, register_t, int);
405 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
406 static void pmap_pvo_free(struct pvo_entry *);
407 static void pmap_pvo_free_list(struct pvo_head *);
408 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
409 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
410 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
411 static void pvo_set_exec(struct pvo_entry *);
412 static void pvo_clear_exec(struct pvo_entry *);
413
414 static void tlbia(void);
415
416 static void pmap_release(pmap_t);
417 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
418
419 static uint32_t pmap_pvo_reclaim_nextidx;
420 #ifdef DEBUG
421 static int pmap_pvo_reclaim_debugctr;
422 #endif
423
424 #define VSID_NBPW (sizeof(uint32_t) * 8)
425 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
426
427 static int pmap_initialized;
428
429 #if defined(DEBUG) || defined(PMAPDEBUG)
430 #define PMAPDEBUG_BOOT 0x0001
431 #define PMAPDEBUG_PTE 0x0002
432 #define PMAPDEBUG_EXEC 0x0008
433 #define PMAPDEBUG_PVOENTER 0x0010
434 #define PMAPDEBUG_PVOREMOVE 0x0020
435 #define PMAPDEBUG_ACTIVATE 0x0100
436 #define PMAPDEBUG_CREATE 0x0200
437 #define PMAPDEBUG_ENTER 0x1000
438 #define PMAPDEBUG_KENTER 0x2000
439 #define PMAPDEBUG_KREMOVE 0x4000
440 #define PMAPDEBUG_REMOVE 0x8000
441
442 unsigned int pmapdebug = 0;
443
444 # define DPRINTF(x) printf x
445 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
446 #else
447 # define DPRINTF(x)
448 # define DPRINTFN(n, x)
449 #endif
450
451
452 #ifdef PMAPCOUNTERS
453 /*
454 * From pmap_subr.c
455 */
456 extern struct evcnt pmap_evcnt_mappings;
457 extern struct evcnt pmap_evcnt_unmappings;
458
459 extern struct evcnt pmap_evcnt_kernel_mappings;
460 extern struct evcnt pmap_evcnt_kernel_unmappings;
461
462 extern struct evcnt pmap_evcnt_mappings_replaced;
463
464 extern struct evcnt pmap_evcnt_exec_mappings;
465 extern struct evcnt pmap_evcnt_exec_cached;
466
467 extern struct evcnt pmap_evcnt_exec_synced;
468 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
469 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
470
471 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
472 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
473 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
474 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
475 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
476
477 extern struct evcnt pmap_evcnt_updates;
478 extern struct evcnt pmap_evcnt_collects;
479 extern struct evcnt pmap_evcnt_copies;
480
481 extern struct evcnt pmap_evcnt_ptes_spilled;
482 extern struct evcnt pmap_evcnt_ptes_unspilled;
483 extern struct evcnt pmap_evcnt_ptes_evicted;
484
485 extern struct evcnt pmap_evcnt_ptes_primary[8];
486 extern struct evcnt pmap_evcnt_ptes_secondary[8];
487 extern struct evcnt pmap_evcnt_ptes_removed;
488 extern struct evcnt pmap_evcnt_ptes_changed;
489 extern struct evcnt pmap_evcnt_pvos_reclaimed;
490 extern struct evcnt pmap_evcnt_pvos_failed;
491
492 extern struct evcnt pmap_evcnt_zeroed_pages;
493 extern struct evcnt pmap_evcnt_copied_pages;
494 extern struct evcnt pmap_evcnt_idlezeroed_pages;
495
496 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
497 #define PMAPCOUNT2(ev) ((ev).ev_count++)
498 #else
499 #define PMAPCOUNT(ev) ((void) 0)
500 #define PMAPCOUNT2(ev) ((void) 0)
501 #endif
502
503 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
504
505 /* XXXSL: this needs to be moved to assembler */
506 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
507
508 #define TLBSYNC() __asm volatile("tlbsync")
509 #define SYNC() __asm volatile("sync")
510 #define EIEIO() __asm volatile("eieio")
511 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
512 #define MFMSR() mfmsr()
513 #define MTMSR(psl) mtmsr(psl)
514 #define MFPVR() mfpvr()
515 #define MFSRIN(va) mfsrin(va)
516 #define MFTB() mfrtcltbl()
517
518 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
519 static inline register_t
520 mfsrin(vaddr_t va)
521 {
522 register_t sr;
523 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
524 return sr;
525 }
526 #endif /* PMAP_OEA*/
527
528 #if defined (PMAP_OEA64_BRIDGE)
529 extern void mfmsr64 (register64_t *result);
530 #endif /* PMAP_OEA64_BRIDGE */
531
532 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
533 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
534
535 static inline register_t
536 pmap_interrupts_off(void)
537 {
538 register_t msr = MFMSR();
539 if (msr & PSL_EE)
540 MTMSR(msr & ~PSL_EE);
541 return msr;
542 }
543
544 static void
545 pmap_interrupts_restore(register_t msr)
546 {
547 if (msr & PSL_EE)
548 MTMSR(msr);
549 }
550
551 static inline u_int32_t
552 mfrtcltbl(void)
553 {
554 #ifdef PPC_OEA601
555 if ((MFPVR() >> 16) == MPC601)
556 return (mfrtcl() >> 7);
557 else
558 #endif
559 return (mftbl());
560 }
561
562 /*
563 * These small routines may have to be replaced,
564 * if/when we support processors other that the 604.
565 */
566
567 void
568 tlbia(void)
569 {
570 char *i;
571
572 SYNC();
573 #if defined(PMAP_OEA)
574 /*
575 * Why not use "tlbia"? Because not all processors implement it.
576 *
577 * This needs to be a per-CPU callback to do the appropriate thing
578 * for the CPU. XXX
579 */
580 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
581 TLBIE(i);
582 EIEIO();
583 SYNC();
584 }
585 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
586 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
587 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
588 TLBIEL(i);
589 EIEIO();
590 SYNC();
591 }
592 #endif
593 TLBSYNC();
594 SYNC();
595 }
596
597 static inline register_t
598 va_to_vsid(const struct pmap *pm, vaddr_t addr)
599 {
600 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
601 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
602 #else /* PMAP_OEA64 */
603 #if 0
604 const struct ste *ste;
605 register_t hash;
606 int i;
607
608 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
609
610 /*
611 * Try the primary group first
612 */
613 ste = pm->pm_stes[hash].stes;
614 for (i = 0; i < 8; i++, ste++) {
615 if (ste->ste_hi & STE_V) &&
616 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
617 return ste;
618 }
619
620 /*
621 * Then the secondary group.
622 */
623 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
624 for (i = 0; i < 8; i++, ste++) {
625 if (ste->ste_hi & STE_V) &&
626 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
627 return addr;
628 }
629
630 return NULL;
631 #else
632 /*
633 * Rather than searching the STE groups for the VSID, we know
634 * how we generate that from the ESID and so do that.
635 */
636 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
637 #endif
638 #endif /* PMAP_OEA */
639 }
640
641 static inline register_t
642 va_to_pteg(const struct pmap *pm, vaddr_t addr)
643 {
644 register_t hash;
645
646 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
647 return hash & pmap_pteg_mask;
648 }
649
650 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
651 /*
652 * Given a PTE in the page table, calculate the VADDR that hashes to it.
653 * The only bit of magic is that the top 4 bits of the address doesn't
654 * technically exist in the PTE. But we know we reserved 4 bits of the
655 * VSID for it so that's how we get it.
656 */
657 static vaddr_t
658 pmap_pte_to_va(volatile const struct pte *pt)
659 {
660 vaddr_t va;
661 uintptr_t ptaddr = (uintptr_t) pt;
662
663 if (pt->pte_hi & PTE_HID)
664 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
665
666 /* PPC Bits 10-19 PPC64 Bits 42-51 */
667 #if defined(PMAP_OEA)
668 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
669 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
670 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
671 #endif
672 va <<= ADDR_PIDX_SHFT;
673
674 /* PPC Bits 4-9 PPC64 Bits 36-41 */
675 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
676
677 #if defined(PMAP_OEA64)
678 /* PPC63 Bits 0-35 */
679 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
680 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
681 /* PPC Bits 0-3 */
682 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
683 #endif
684
685 return va;
686 }
687 #endif
688
689 static inline struct pvo_head *
690 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
691 {
692 struct vm_page *pg;
693 struct vm_page_md *md;
694
695 pg = PHYS_TO_VM_PAGE(pa);
696 if (pg_p != NULL)
697 *pg_p = pg;
698 if (pg == NULL)
699 return &pmap_pvo_unmanaged;
700 md = VM_PAGE_TO_MD(pg);
701 return &md->mdpg_pvoh;
702 }
703
704 static inline struct pvo_head *
705 vm_page_to_pvoh(struct vm_page *pg)
706 {
707 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
708
709 return &md->mdpg_pvoh;
710 }
711
712
713 static inline void
714 pmap_attr_clear(struct vm_page *pg, int ptebit)
715 {
716 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
717
718 md->mdpg_attrs &= ~ptebit;
719 }
720
721 static inline int
722 pmap_attr_fetch(struct vm_page *pg)
723 {
724 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
725
726 return md->mdpg_attrs;
727 }
728
729 static inline void
730 pmap_attr_save(struct vm_page *pg, int ptebit)
731 {
732 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
733
734 md->mdpg_attrs |= ptebit;
735 }
736
737 static inline int
738 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
739 {
740 if (pt->pte_hi == pvo_pt->pte_hi
741 #if 0
742 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
743 ~(PTE_REF|PTE_CHG)) == 0
744 #endif
745 )
746 return 1;
747 return 0;
748 }
749
750 static inline void
751 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
752 {
753 /*
754 * Construct the PTE. Default to IMB initially. Valid bit
755 * only gets set when the real pte is set in memory.
756 *
757 * Note: Don't set the valid bit for correct operation of tlb update.
758 */
759 #if defined(PMAP_OEA)
760 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
761 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
762 pt->pte_lo = pte_lo;
763 #elif defined (PMAP_OEA64_BRIDGE)
764 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
765 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
766 pt->pte_lo = (u_int64_t) pte_lo;
767 #elif defined (PMAP_OEA64)
768 #error PMAP_OEA64 not supported
769 #endif /* PMAP_OEA */
770 }
771
772 static inline void
773 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
774 {
775 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
776 }
777
778 static inline void
779 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
780 {
781 /*
782 * As shown in Section 7.6.3.2.3
783 */
784 pt->pte_lo &= ~ptebit;
785 TLBIE(va);
786 SYNC();
787 EIEIO();
788 TLBSYNC();
789 SYNC();
790 #ifdef MULTIPROCESSOR
791 DCBST(pt);
792 #endif
793 }
794
795 static inline void
796 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
797 {
798 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
799 if (pvo_pt->pte_hi & PTE_VALID)
800 panic("pte_set: setting an already valid pte %p", pvo_pt);
801 #endif
802 pvo_pt->pte_hi |= PTE_VALID;
803
804 /*
805 * Update the PTE as defined in section 7.6.3.1
806 * Note that the REF/CHG bits are from pvo_pt and thus should
807 * have been saved so this routine can restore them (if desired).
808 */
809 pt->pte_lo = pvo_pt->pte_lo;
810 EIEIO();
811 pt->pte_hi = pvo_pt->pte_hi;
812 TLBSYNC();
813 SYNC();
814 #ifdef MULTIPROCESSOR
815 DCBST(pt);
816 #endif
817 pmap_pte_valid++;
818 }
819
820 static inline void
821 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
822 {
823 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
824 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
825 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
826 if ((pt->pte_hi & PTE_VALID) == 0)
827 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
828 #endif
829
830 pvo_pt->pte_hi &= ~PTE_VALID;
831 /*
832 * Force the ref & chg bits back into the PTEs.
833 */
834 SYNC();
835 /*
836 * Invalidate the pte ... (Section 7.6.3.3)
837 */
838 pt->pte_hi &= ~PTE_VALID;
839 SYNC();
840 TLBIE(va);
841 SYNC();
842 EIEIO();
843 TLBSYNC();
844 SYNC();
845 /*
846 * Save the ref & chg bits ...
847 */
848 pmap_pte_synch(pt, pvo_pt);
849 pmap_pte_valid--;
850 }
851
852 static inline void
853 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
854 {
855 /*
856 * Invalidate the PTE
857 */
858 pmap_pte_unset(pt, pvo_pt, va);
859 pmap_pte_set(pt, pvo_pt);
860 }
861
862 /*
863 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
864 * (either primary or secondary location).
865 *
866 * Note: both the destination and source PTEs must not have PTE_VALID set.
867 */
868
869 static int
870 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
871 {
872 volatile struct pte *pt;
873 int i;
874
875 #if defined(DEBUG)
876 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
877 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
878 #endif
879 /*
880 * First try primary hash.
881 */
882 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
883 if ((pt->pte_hi & PTE_VALID) == 0) {
884 pvo_pt->pte_hi &= ~PTE_HID;
885 pmap_pte_set(pt, pvo_pt);
886 return i;
887 }
888 }
889
890 /*
891 * Now try secondary hash.
892 */
893 ptegidx ^= pmap_pteg_mask;
894 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
895 if ((pt->pte_hi & PTE_VALID) == 0) {
896 pvo_pt->pte_hi |= PTE_HID;
897 pmap_pte_set(pt, pvo_pt);
898 return i;
899 }
900 }
901 return -1;
902 }
903
904 /*
905 * Spill handler.
906 *
907 * Tries to spill a page table entry from the overflow area.
908 * This runs in either real mode (if dealing with a exception spill)
909 * or virtual mode when dealing with manually spilling one of the
910 * kernel's pte entries. In either case, interrupts are already
911 * disabled.
912 */
913
914 int
915 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
916 {
917 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
918 struct pvo_entry *pvo;
919 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
920 struct pvo_tqhead *pvoh, *vpvoh = NULL;
921 int ptegidx, i, j;
922 volatile struct pteg *pteg;
923 volatile struct pte *pt;
924
925 PMAP_LOCK();
926
927 ptegidx = va_to_pteg(pm, addr);
928
929 /*
930 * Have to substitute some entry. Use the primary hash for this.
931 * Use low bits of timebase as random generator. Make sure we are
932 * not picking a kernel pte for replacement.
933 */
934 pteg = &pmap_pteg_table[ptegidx];
935 i = MFTB() & 7;
936 for (j = 0; j < 8; j++) {
937 pt = &pteg->pt[i];
938 if ((pt->pte_hi & PTE_VALID) == 0)
939 break;
940 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
941 < PHYSMAP_VSIDBITS)
942 break;
943 i = (i + 1) & 7;
944 }
945 KASSERT(j < 8);
946
947 source_pvo = NULL;
948 victim_pvo = NULL;
949 pvoh = &pmap_pvo_table[ptegidx];
950 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
951
952 /*
953 * We need to find pvo entry for this address...
954 */
955 PMAP_PVO_CHECK(pvo); /* sanity check */
956
957 /*
958 * If we haven't found the source and we come to a PVO with
959 * a valid PTE, then we know we can't find it because all
960 * evicted PVOs always are first in the list.
961 */
962 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
963 break;
964 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
965 addr == PVO_VADDR(pvo)) {
966
967 /*
968 * Now we have found the entry to be spilled into the
969 * pteg. Attempt to insert it into the page table.
970 */
971 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
972 if (j >= 0) {
973 PVO_PTEGIDX_SET(pvo, j);
974 PMAP_PVO_CHECK(pvo); /* sanity check */
975 PVO_WHERE(pvo, SPILL_INSERT);
976 pvo->pvo_pmap->pm_evictions--;
977 PMAPCOUNT(ptes_spilled);
978 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
979 ? pmap_evcnt_ptes_secondary
980 : pmap_evcnt_ptes_primary)[j]);
981
982 /*
983 * Since we keep the evicted entries at the
984 * from of the PVO list, we need move this
985 * (now resident) PVO after the evicted
986 * entries.
987 */
988 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
989
990 /*
991 * If we don't have to move (either we were the
992 * last entry or the next entry was valid),
993 * don't change our position. Otherwise
994 * move ourselves to the tail of the queue.
995 */
996 if (next_pvo != NULL &&
997 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
998 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
999 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1000 }
1001 PMAP_UNLOCK();
1002 return 1;
1003 }
1004 source_pvo = pvo;
1005 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
1006 return 0;
1007 }
1008 if (victim_pvo != NULL)
1009 break;
1010 }
1011
1012 /*
1013 * We also need the pvo entry of the victim we are replacing
1014 * so save the R & C bits of the PTE.
1015 */
1016 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1017 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1018 vpvoh = pvoh; /* *1* */
1019 victim_pvo = pvo;
1020 if (source_pvo != NULL)
1021 break;
1022 }
1023 }
1024
1025 if (source_pvo == NULL) {
1026 PMAPCOUNT(ptes_unspilled);
1027 PMAP_UNLOCK();
1028 return 0;
1029 }
1030
1031 if (victim_pvo == NULL) {
1032 if ((pt->pte_hi & PTE_HID) == 0)
1033 panic("pmap_pte_spill: victim p-pte (%p) has "
1034 "no pvo entry!", pt);
1035
1036 /*
1037 * If this is a secondary PTE, we need to search
1038 * its primary pvo bucket for the matching PVO.
1039 */
1040 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1041 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1042 PMAP_PVO_CHECK(pvo); /* sanity check */
1043
1044 /*
1045 * We also need the pvo entry of the victim we are
1046 * replacing so save the R & C bits of the PTE.
1047 */
1048 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1049 victim_pvo = pvo;
1050 break;
1051 }
1052 }
1053 if (victim_pvo == NULL)
1054 panic("pmap_pte_spill: victim s-pte (%p) has "
1055 "no pvo entry!", pt);
1056 }
1057
1058 /*
1059 * The victim should be not be a kernel PVO/PTE entry.
1060 */
1061 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1062 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1063 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1064
1065 /*
1066 * We are invalidating the TLB entry for the EA for the
1067 * we are replacing even though its valid; If we don't
1068 * we lose any ref/chg bit changes contained in the TLB
1069 * entry.
1070 */
1071 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1072
1073 /*
1074 * To enforce the PVO list ordering constraint that all
1075 * evicted entries should come before all valid entries,
1076 * move the source PVO to the tail of its list and the
1077 * victim PVO to the head of its list (which might not be
1078 * the same list, if the victim was using the secondary hash).
1079 */
1080 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1081 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1082 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1083 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1084 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1085 pmap_pte_set(pt, &source_pvo->pvo_pte);
1086 victim_pvo->pvo_pmap->pm_evictions++;
1087 source_pvo->pvo_pmap->pm_evictions--;
1088 PVO_WHERE(victim_pvo, SPILL_UNSET);
1089 PVO_WHERE(source_pvo, SPILL_SET);
1090
1091 PVO_PTEGIDX_CLR(victim_pvo);
1092 PVO_PTEGIDX_SET(source_pvo, i);
1093 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1094 PMAPCOUNT(ptes_spilled);
1095 PMAPCOUNT(ptes_evicted);
1096 PMAPCOUNT(ptes_removed);
1097
1098 PMAP_PVO_CHECK(victim_pvo);
1099 PMAP_PVO_CHECK(source_pvo);
1100
1101 PMAP_UNLOCK();
1102 return 1;
1103 }
1104
1105 /*
1106 * Restrict given range to physical memory
1107 */
1108 void
1109 pmap_real_memory(paddr_t *start, psize_t *size)
1110 {
1111 struct mem_region *mp;
1112
1113 for (mp = mem; mp->size; mp++) {
1114 if (*start + *size > mp->start
1115 && *start < mp->start + mp->size) {
1116 if (*start < mp->start) {
1117 *size -= mp->start - *start;
1118 *start = mp->start;
1119 }
1120 if (*start + *size > mp->start + mp->size)
1121 *size = mp->start + mp->size - *start;
1122 return;
1123 }
1124 }
1125 *size = 0;
1126 }
1127
1128 /*
1129 * Initialize anything else for pmap handling.
1130 * Called during vm_init().
1131 */
1132 void
1133 pmap_init(void)
1134 {
1135 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1136 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1137 &pmap_pool_mallocator, IPL_NONE);
1138
1139 pool_setlowat(&pmap_mpvo_pool, 1008);
1140
1141 pmap_initialized = 1;
1142
1143 }
1144
1145 /*
1146 * How much virtual space does the kernel get?
1147 */
1148 void
1149 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1150 {
1151 /*
1152 * For now, reserve one segment (minus some overhead) for kernel
1153 * virtual memory
1154 */
1155 *start = VM_MIN_KERNEL_ADDRESS;
1156 *end = VM_MAX_KERNEL_ADDRESS;
1157 }
1158
1159 /*
1160 * Allocate, initialize, and return a new physical map.
1161 */
1162 pmap_t
1163 pmap_create(void)
1164 {
1165 pmap_t pm;
1166
1167 pm = pool_get(&pmap_pool, PR_WAITOK);
1168 memset((void *)pm, 0, sizeof *pm);
1169 pmap_pinit(pm);
1170
1171 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1172 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1173 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1174 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1175 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1176 pm,
1177 pm->pm_sr[0], pm->pm_sr[1],
1178 pm->pm_sr[2], pm->pm_sr[3],
1179 pm->pm_sr[4], pm->pm_sr[5],
1180 pm->pm_sr[6], pm->pm_sr[7],
1181 pm->pm_sr[8], pm->pm_sr[9],
1182 pm->pm_sr[10], pm->pm_sr[11],
1183 pm->pm_sr[12], pm->pm_sr[13],
1184 pm->pm_sr[14], pm->pm_sr[15]));
1185 return pm;
1186 }
1187
1188 /*
1189 * Initialize a preallocated and zeroed pmap structure.
1190 */
1191 void
1192 pmap_pinit(pmap_t pm)
1193 {
1194 register_t entropy = MFTB();
1195 register_t mask;
1196 int i;
1197
1198 /*
1199 * Allocate some segment registers for this pmap.
1200 */
1201 pm->pm_refs = 1;
1202 PMAP_LOCK();
1203 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1204 static register_t pmap_vsidcontext;
1205 register_t hash;
1206 unsigned int n;
1207
1208 /* Create a new value by multiplying by a prime adding in
1209 * entropy from the timebase register. This is to make the
1210 * VSID more random so that the PT Hash function collides
1211 * less often. (note that the prime causes gcc to do shifts
1212 * instead of a multiply)
1213 */
1214 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1215 hash = pmap_vsidcontext & (NPMAPS - 1);
1216 if (hash == 0) { /* 0 is special, avoid it */
1217 entropy += 0xbadf00d;
1218 continue;
1219 }
1220 n = hash >> 5;
1221 mask = 1L << (hash & (VSID_NBPW-1));
1222 hash = pmap_vsidcontext;
1223 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1224 /* anything free in this bucket? */
1225 if (~pmap_vsid_bitmap[n] == 0) {
1226 entropy = hash ^ (hash >> 16);
1227 continue;
1228 }
1229 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1230 mask = 1L << i;
1231 hash &= ~(VSID_NBPW-1);
1232 hash |= i;
1233 }
1234 hash &= PTE_VSID >> PTE_VSID_SHFT;
1235 pmap_vsid_bitmap[n] |= mask;
1236 pm->pm_vsid = hash;
1237 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1238 for (i = 0; i < 16; i++)
1239 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1240 SR_NOEXEC;
1241 #endif
1242 PMAP_UNLOCK();
1243 return;
1244 }
1245 PMAP_UNLOCK();
1246 panic("pmap_pinit: out of segments");
1247 }
1248
1249 /*
1250 * Add a reference to the given pmap.
1251 */
1252 void
1253 pmap_reference(pmap_t pm)
1254 {
1255 atomic_inc_uint(&pm->pm_refs);
1256 }
1257
1258 /*
1259 * Retire the given pmap from service.
1260 * Should only be called if the map contains no valid mappings.
1261 */
1262 void
1263 pmap_destroy(pmap_t pm)
1264 {
1265 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1266 pmap_release(pm);
1267 pool_put(&pmap_pool, pm);
1268 }
1269 }
1270
1271 /*
1272 * Release any resources held by the given physical map.
1273 * Called when a pmap initialized by pmap_pinit is being released.
1274 */
1275 void
1276 pmap_release(pmap_t pm)
1277 {
1278 int idx, mask;
1279
1280 KASSERT(pm->pm_stats.resident_count == 0);
1281 KASSERT(pm->pm_stats.wired_count == 0);
1282
1283 PMAP_LOCK();
1284 if (pm->pm_sr[0] == 0)
1285 panic("pmap_release");
1286 idx = pm->pm_vsid & (NPMAPS-1);
1287 mask = 1 << (idx % VSID_NBPW);
1288 idx /= VSID_NBPW;
1289
1290 KASSERT(pmap_vsid_bitmap[idx] & mask);
1291 pmap_vsid_bitmap[idx] &= ~mask;
1292 PMAP_UNLOCK();
1293 }
1294
1295 /*
1296 * Copy the range specified by src_addr/len
1297 * from the source map to the range dst_addr/len
1298 * in the destination map.
1299 *
1300 * This routine is only advisory and need not do anything.
1301 */
1302 void
1303 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1304 vsize_t len, vaddr_t src_addr)
1305 {
1306 PMAPCOUNT(copies);
1307 }
1308
1309 /*
1310 * Require that all active physical maps contain no
1311 * incorrect entries NOW.
1312 */
1313 void
1314 pmap_update(struct pmap *pmap)
1315 {
1316 PMAPCOUNT(updates);
1317 TLBSYNC();
1318 }
1319
1320 static inline int
1321 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1322 {
1323 int pteidx;
1324 /*
1325 * We can find the actual pte entry without searching by
1326 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1327 * and by noticing the HID bit.
1328 */
1329 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1330 if (pvo->pvo_pte.pte_hi & PTE_HID)
1331 pteidx ^= pmap_pteg_mask * 8;
1332 return pteidx;
1333 }
1334
1335 volatile struct pte *
1336 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1337 {
1338 volatile struct pte *pt;
1339
1340 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1341 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1342 return NULL;
1343 #endif
1344
1345 /*
1346 * If we haven't been supplied the ptegidx, calculate it.
1347 */
1348 if (pteidx == -1) {
1349 int ptegidx;
1350 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1351 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1352 }
1353
1354 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1355
1356 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1357 return pt;
1358 #else
1359 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1360 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1361 "pvo but no valid pte index", pvo);
1362 }
1363 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1364 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1365 "pvo but no valid pte", pvo);
1366 }
1367
1368 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1369 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1370 #if defined(DEBUG) || defined(PMAPCHECK)
1371 pmap_pte_print(pt);
1372 #endif
1373 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1374 "pmap_pteg_table %p but invalid in pvo",
1375 pvo, pt);
1376 }
1377 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1378 #if defined(DEBUG) || defined(PMAPCHECK)
1379 pmap_pte_print(pt);
1380 #endif
1381 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1382 "not match pte %p in pmap_pteg_table",
1383 pvo, pt);
1384 }
1385 return pt;
1386 }
1387
1388 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1389 #if defined(DEBUG) || defined(PMAPCHECK)
1390 pmap_pte_print(pt);
1391 #endif
1392 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1393 "pmap_pteg_table but valid in pvo", pvo, pt);
1394 }
1395 return NULL;
1396 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1397 }
1398
1399 struct pvo_entry *
1400 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1401 {
1402 struct pvo_entry *pvo;
1403 int ptegidx;
1404
1405 va &= ~ADDR_POFF;
1406 ptegidx = va_to_pteg(pm, va);
1407
1408 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1409 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1410 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1411 panic("pmap_pvo_find_va: invalid pvo %p on "
1412 "list %#x (%p)", pvo, ptegidx,
1413 &pmap_pvo_table[ptegidx]);
1414 #endif
1415 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1416 if (pteidx_p)
1417 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1418 return pvo;
1419 }
1420 }
1421 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1422 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1423 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1424 return NULL;
1425 }
1426
1427 #if defined(DEBUG) || defined(PMAPCHECK)
1428 void
1429 pmap_pvo_check(const struct pvo_entry *pvo)
1430 {
1431 struct pvo_head *pvo_head;
1432 struct pvo_entry *pvo0;
1433 volatile struct pte *pt;
1434 int failed = 0;
1435
1436 PMAP_LOCK();
1437
1438 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1439 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1440
1441 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1442 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1443 pvo, pvo->pvo_pmap);
1444 failed = 1;
1445 }
1446
1447 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1448 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1449 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1450 pvo, TAILQ_NEXT(pvo, pvo_olink));
1451 failed = 1;
1452 }
1453
1454 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1455 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1456 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1457 pvo, LIST_NEXT(pvo, pvo_vlink));
1458 failed = 1;
1459 }
1460
1461 if (PVO_MANAGED_P(pvo)) {
1462 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1463 } else {
1464 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1465 printf("pmap_pvo_check: pvo %p: non kernel address "
1466 "on kernel unmanaged list\n", pvo);
1467 failed = 1;
1468 }
1469 pvo_head = &pmap_pvo_kunmanaged;
1470 }
1471 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1472 if (pvo0 == pvo)
1473 break;
1474 }
1475 if (pvo0 == NULL) {
1476 printf("pmap_pvo_check: pvo %p: not present "
1477 "on its vlist head %p\n", pvo, pvo_head);
1478 failed = 1;
1479 }
1480 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1481 printf("pmap_pvo_check: pvo %p: not present "
1482 "on its olist head\n", pvo);
1483 failed = 1;
1484 }
1485 pt = pmap_pvo_to_pte(pvo, -1);
1486 if (pt == NULL) {
1487 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1488 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1489 "no PTE\n", pvo);
1490 failed = 1;
1491 }
1492 } else {
1493 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1494 (uintptr_t) pt >=
1495 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1496 printf("pmap_pvo_check: pvo %p: pte %p not in "
1497 "pteg table\n", pvo, pt);
1498 failed = 1;
1499 }
1500 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1501 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1502 "no PTE\n", pvo);
1503 failed = 1;
1504 }
1505 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1506 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1507 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1508 pvo->pvo_pte.pte_hi,
1509 pt->pte_hi);
1510 failed = 1;
1511 }
1512 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1513 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1514 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1515 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1516 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1517 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1518 failed = 1;
1519 }
1520 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1521 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1522 " doesn't not match PVO's VA %#" _PRIxva "\n",
1523 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1524 failed = 1;
1525 }
1526 if (failed)
1527 pmap_pte_print(pt);
1528 }
1529 if (failed)
1530 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1531 pvo->pvo_pmap);
1532
1533 PMAP_UNLOCK();
1534 }
1535 #endif /* DEBUG || PMAPCHECK */
1536
1537 /*
1538 * Search the PVO table looking for a non-wired entry.
1539 * If we find one, remove it and return it.
1540 */
1541
1542 struct pvo_entry *
1543 pmap_pvo_reclaim(struct pmap *pm)
1544 {
1545 struct pvo_tqhead *pvoh;
1546 struct pvo_entry *pvo;
1547 uint32_t idx, endidx;
1548
1549 endidx = pmap_pvo_reclaim_nextidx;
1550 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1551 idx = (idx + 1) & pmap_pteg_mask) {
1552 pvoh = &pmap_pvo_table[idx];
1553 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1554 if (!PVO_WIRED_P(pvo)) {
1555 pmap_pvo_remove(pvo, -1, NULL);
1556 pmap_pvo_reclaim_nextidx = idx;
1557 PMAPCOUNT(pvos_reclaimed);
1558 return pvo;
1559 }
1560 }
1561 }
1562 return NULL;
1563 }
1564
1565 /*
1566 * This returns whether this is the first mapping of a page.
1567 */
1568 int
1569 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1570 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1571 {
1572 struct pvo_entry *pvo;
1573 struct pvo_tqhead *pvoh;
1574 register_t msr;
1575 int ptegidx;
1576 int i;
1577 int poolflags = PR_NOWAIT;
1578
1579 /*
1580 * Compute the PTE Group index.
1581 */
1582 va &= ~ADDR_POFF;
1583 ptegidx = va_to_pteg(pm, va);
1584
1585 msr = pmap_interrupts_off();
1586
1587 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1588 if (pmap_pvo_remove_depth > 0)
1589 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1590 if (++pmap_pvo_enter_depth > 1)
1591 panic("pmap_pvo_enter: called recursively!");
1592 #endif
1593
1594 /*
1595 * Remove any existing mapping for this page. Reuse the
1596 * pvo entry if there a mapping.
1597 */
1598 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1599 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1600 #ifdef DEBUG
1601 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1602 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1603 ~(PTE_REF|PTE_CHG)) == 0 &&
1604 va < VM_MIN_KERNEL_ADDRESS) {
1605 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1606 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1607 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1608 pvo->pvo_pte.pte_hi,
1609 pm->pm_sr[va >> ADDR_SR_SHFT]);
1610 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1611 #ifdef DDBX
1612 Debugger();
1613 #endif
1614 }
1615 #endif
1616 PMAPCOUNT(mappings_replaced);
1617 pmap_pvo_remove(pvo, -1, NULL);
1618 break;
1619 }
1620 }
1621
1622 /*
1623 * If we aren't overwriting an mapping, try to allocate
1624 */
1625 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1626 --pmap_pvo_enter_depth;
1627 #endif
1628 pmap_interrupts_restore(msr);
1629 if (pvo) {
1630 pmap_pvo_free(pvo);
1631 }
1632 pvo = pool_get(pl, poolflags);
1633
1634 #ifdef DEBUG
1635 /*
1636 * Exercise pmap_pvo_reclaim() a little.
1637 */
1638 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1639 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1640 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1641 pool_put(pl, pvo);
1642 pvo = NULL;
1643 }
1644 #endif
1645
1646 msr = pmap_interrupts_off();
1647 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1648 ++pmap_pvo_enter_depth;
1649 #endif
1650 if (pvo == NULL) {
1651 pvo = pmap_pvo_reclaim(pm);
1652 if (pvo == NULL) {
1653 if ((flags & PMAP_CANFAIL) == 0)
1654 panic("pmap_pvo_enter: failed");
1655 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1656 pmap_pvo_enter_depth--;
1657 #endif
1658 PMAPCOUNT(pvos_failed);
1659 pmap_interrupts_restore(msr);
1660 return ENOMEM;
1661 }
1662 }
1663
1664 pvo->pvo_vaddr = va;
1665 pvo->pvo_pmap = pm;
1666 pvo->pvo_vaddr &= ~ADDR_POFF;
1667 if (flags & VM_PROT_EXECUTE) {
1668 PMAPCOUNT(exec_mappings);
1669 pvo_set_exec(pvo);
1670 }
1671 if (flags & PMAP_WIRED)
1672 pvo->pvo_vaddr |= PVO_WIRED;
1673 if (pvo_head != &pmap_pvo_kunmanaged) {
1674 pvo->pvo_vaddr |= PVO_MANAGED;
1675 PMAPCOUNT(mappings);
1676 } else {
1677 PMAPCOUNT(kernel_mappings);
1678 }
1679 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1680
1681 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1682 if (PVO_WIRED_P(pvo))
1683 pvo->pvo_pmap->pm_stats.wired_count++;
1684 pvo->pvo_pmap->pm_stats.resident_count++;
1685 #if defined(DEBUG)
1686 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1687 DPRINTFN(PVOENTER,
1688 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1689 pvo, pm, va, pa));
1690 #endif
1691
1692 /*
1693 * We hope this succeeds but it isn't required.
1694 */
1695 pvoh = &pmap_pvo_table[ptegidx];
1696 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1697 if (i >= 0) {
1698 PVO_PTEGIDX_SET(pvo, i);
1699 PVO_WHERE(pvo, ENTER_INSERT);
1700 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1701 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1702 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1703
1704 } else {
1705 /*
1706 * Since we didn't have room for this entry (which makes it
1707 * and evicted entry), place it at the head of the list.
1708 */
1709 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1710 PMAPCOUNT(ptes_evicted);
1711 pm->pm_evictions++;
1712 /*
1713 * If this is a kernel page, make sure it's active.
1714 */
1715 if (pm == pmap_kernel()) {
1716 i = pmap_pte_spill(pm, va, false);
1717 KASSERT(i);
1718 }
1719 }
1720 PMAP_PVO_CHECK(pvo); /* sanity check */
1721 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1722 pmap_pvo_enter_depth--;
1723 #endif
1724 pmap_interrupts_restore(msr);
1725 return 0;
1726 }
1727
1728 static void
1729 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1730 {
1731 volatile struct pte *pt;
1732 int ptegidx;
1733
1734 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1735 if (++pmap_pvo_remove_depth > 1)
1736 panic("pmap_pvo_remove: called recursively!");
1737 #endif
1738
1739 /*
1740 * If we haven't been supplied the ptegidx, calculate it.
1741 */
1742 if (pteidx == -1) {
1743 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1744 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1745 } else {
1746 ptegidx = pteidx >> 3;
1747 if (pvo->pvo_pte.pte_hi & PTE_HID)
1748 ptegidx ^= pmap_pteg_mask;
1749 }
1750 PMAP_PVO_CHECK(pvo); /* sanity check */
1751
1752 /*
1753 * If there is an active pte entry, we need to deactivate it
1754 * (and save the ref & chg bits).
1755 */
1756 pt = pmap_pvo_to_pte(pvo, pteidx);
1757 if (pt != NULL) {
1758 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1759 PVO_WHERE(pvo, REMOVE);
1760 PVO_PTEGIDX_CLR(pvo);
1761 PMAPCOUNT(ptes_removed);
1762 } else {
1763 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1764 pvo->pvo_pmap->pm_evictions--;
1765 }
1766
1767 /*
1768 * Account for executable mappings.
1769 */
1770 if (PVO_EXECUTABLE_P(pvo))
1771 pvo_clear_exec(pvo);
1772
1773 /*
1774 * Update our statistics.
1775 */
1776 pvo->pvo_pmap->pm_stats.resident_count--;
1777 if (PVO_WIRED_P(pvo))
1778 pvo->pvo_pmap->pm_stats.wired_count--;
1779
1780 /*
1781 * Save the REF/CHG bits into their cache if the page is managed.
1782 */
1783 if (PVO_MANAGED_P(pvo)) {
1784 register_t ptelo = pvo->pvo_pte.pte_lo;
1785 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1786
1787 if (pg != NULL) {
1788 /*
1789 * If this page was changed and it is mapped exec,
1790 * invalidate it.
1791 */
1792 if ((ptelo & PTE_CHG) &&
1793 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1794 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1795 if (LIST_EMPTY(pvoh)) {
1796 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1797 "%#" _PRIxpa ": clear-exec]\n",
1798 VM_PAGE_TO_PHYS(pg)));
1799 pmap_attr_clear(pg, PTE_EXEC);
1800 PMAPCOUNT(exec_uncached_pvo_remove);
1801 } else {
1802 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1803 "%#" _PRIxpa ": syncicache]\n",
1804 VM_PAGE_TO_PHYS(pg)));
1805 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1806 PAGE_SIZE);
1807 PMAPCOUNT(exec_synced_pvo_remove);
1808 }
1809 }
1810
1811 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1812 }
1813 PMAPCOUNT(unmappings);
1814 } else {
1815 PMAPCOUNT(kernel_unmappings);
1816 }
1817
1818 /*
1819 * Remove the PVO from its lists and return it to the pool.
1820 */
1821 LIST_REMOVE(pvo, pvo_vlink);
1822 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1823 if (pvol) {
1824 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1825 }
1826 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1827 pmap_pvo_remove_depth--;
1828 #endif
1829 }
1830
1831 void
1832 pmap_pvo_free(struct pvo_entry *pvo)
1833 {
1834
1835 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1836 }
1837
1838 void
1839 pmap_pvo_free_list(struct pvo_head *pvol)
1840 {
1841 struct pvo_entry *pvo, *npvo;
1842
1843 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1844 npvo = LIST_NEXT(pvo, pvo_vlink);
1845 LIST_REMOVE(pvo, pvo_vlink);
1846 pmap_pvo_free(pvo);
1847 }
1848 }
1849
1850 /*
1851 * Mark a mapping as executable.
1852 * If this is the first executable mapping in the segment,
1853 * clear the noexec flag.
1854 */
1855 static void
1856 pvo_set_exec(struct pvo_entry *pvo)
1857 {
1858 struct pmap *pm = pvo->pvo_pmap;
1859
1860 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1861 return;
1862 }
1863 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1864 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1865 {
1866 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1867 if (pm->pm_exec[sr]++ == 0) {
1868 pm->pm_sr[sr] &= ~SR_NOEXEC;
1869 }
1870 }
1871 #endif
1872 }
1873
1874 /*
1875 * Mark a mapping as non-executable.
1876 * If this was the last executable mapping in the segment,
1877 * set the noexec flag.
1878 */
1879 static void
1880 pvo_clear_exec(struct pvo_entry *pvo)
1881 {
1882 struct pmap *pm = pvo->pvo_pmap;
1883
1884 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1885 return;
1886 }
1887 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1888 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1889 {
1890 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1891 if (--pm->pm_exec[sr] == 0) {
1892 pm->pm_sr[sr] |= SR_NOEXEC;
1893 }
1894 }
1895 #endif
1896 }
1897
1898 /*
1899 * Insert physical page at pa into the given pmap at virtual address va.
1900 */
1901 int
1902 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1903 {
1904 struct mem_region *mp;
1905 struct pvo_head *pvo_head;
1906 struct vm_page *pg;
1907 struct pool *pl;
1908 register_t pte_lo;
1909 int error;
1910 u_int pvo_flags;
1911 u_int was_exec = 0;
1912
1913 PMAP_LOCK();
1914
1915 if (__predict_false(!pmap_initialized)) {
1916 pvo_head = &pmap_pvo_kunmanaged;
1917 pl = &pmap_upvo_pool;
1918 pvo_flags = 0;
1919 pg = NULL;
1920 was_exec = PTE_EXEC;
1921 } else {
1922 pvo_head = pa_to_pvoh(pa, &pg);
1923 pl = &pmap_mpvo_pool;
1924 pvo_flags = PVO_MANAGED;
1925 }
1926
1927 DPRINTFN(ENTER,
1928 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1929 pm, va, pa, prot, flags));
1930
1931 /*
1932 * If this is a managed page, and it's the first reference to the
1933 * page clear the execness of the page. Otherwise fetch the execness.
1934 */
1935 if (pg != NULL)
1936 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1937
1938 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1939
1940 /*
1941 * Assume the page is cache inhibited and access is guarded unless
1942 * it's in our available memory array. If it is in the memory array,
1943 * asssume it's in memory coherent memory.
1944 */
1945 pte_lo = PTE_IG;
1946 if ((flags & PMAP_MD_NOCACHE) == 0) {
1947 for (mp = mem; mp->size; mp++) {
1948 if (pa >= mp->start && pa < mp->start + mp->size) {
1949 pte_lo = PTE_M;
1950 break;
1951 }
1952 }
1953 }
1954
1955 if (prot & VM_PROT_WRITE)
1956 pte_lo |= PTE_BW;
1957 else
1958 pte_lo |= PTE_BR;
1959
1960 /*
1961 * If this was in response to a fault, "pre-fault" the PTE's
1962 * changed/referenced bit appropriately.
1963 */
1964 if (flags & VM_PROT_WRITE)
1965 pte_lo |= PTE_CHG;
1966 if (flags & VM_PROT_ALL)
1967 pte_lo |= PTE_REF;
1968
1969 /*
1970 * We need to know if this page can be executable
1971 */
1972 flags |= (prot & VM_PROT_EXECUTE);
1973
1974 /*
1975 * Record mapping for later back-translation and pte spilling.
1976 * This will overwrite any existing mapping.
1977 */
1978 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1979
1980 /*
1981 * Flush the real page from the instruction cache if this page is
1982 * mapped executable and cacheable and has not been flushed since
1983 * the last time it was modified.
1984 */
1985 if (error == 0 &&
1986 (flags & VM_PROT_EXECUTE) &&
1987 (pte_lo & PTE_I) == 0 &&
1988 was_exec == 0) {
1989 DPRINTFN(ENTER, (" syncicache"));
1990 PMAPCOUNT(exec_synced);
1991 pmap_syncicache(pa, PAGE_SIZE);
1992 if (pg != NULL) {
1993 pmap_attr_save(pg, PTE_EXEC);
1994 PMAPCOUNT(exec_cached);
1995 #if defined(DEBUG) || defined(PMAPDEBUG)
1996 if (pmapdebug & PMAPDEBUG_ENTER)
1997 printf(" marked-as-exec");
1998 else if (pmapdebug & PMAPDEBUG_EXEC)
1999 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2000 VM_PAGE_TO_PHYS(pg));
2001
2002 #endif
2003 }
2004 }
2005
2006 DPRINTFN(ENTER, (": error=%d\n", error));
2007
2008 PMAP_UNLOCK();
2009
2010 return error;
2011 }
2012
2013 void
2014 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2015 {
2016 struct mem_region *mp;
2017 register_t pte_lo;
2018 int error;
2019
2020 #if defined (PMAP_OEA64_BRIDGE)
2021 if (va < VM_MIN_KERNEL_ADDRESS)
2022 panic("pmap_kenter_pa: attempt to enter "
2023 "non-kernel address %#" _PRIxva "!", va);
2024 #endif
2025
2026 DPRINTFN(KENTER,
2027 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2028
2029 PMAP_LOCK();
2030
2031 /*
2032 * Assume the page is cache inhibited and access is guarded unless
2033 * it's in our available memory array. If it is in the memory array,
2034 * asssume it's in memory coherent memory.
2035 */
2036 pte_lo = PTE_IG;
2037 if ((flags & PMAP_MD_NOCACHE) == 0) {
2038 for (mp = mem; mp->size; mp++) {
2039 if (pa >= mp->start && pa < mp->start + mp->size) {
2040 pte_lo = PTE_M;
2041 break;
2042 }
2043 }
2044 }
2045
2046 if (prot & VM_PROT_WRITE)
2047 pte_lo |= PTE_BW;
2048 else
2049 pte_lo |= PTE_BR;
2050
2051 /*
2052 * We don't care about REF/CHG on PVOs on the unmanaged list.
2053 */
2054 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2055 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2056
2057 if (error != 0)
2058 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2059 va, pa, error);
2060
2061 PMAP_UNLOCK();
2062 }
2063
2064 void
2065 pmap_kremove(vaddr_t va, vsize_t len)
2066 {
2067 if (va < VM_MIN_KERNEL_ADDRESS)
2068 panic("pmap_kremove: attempt to remove "
2069 "non-kernel address %#" _PRIxva "!", va);
2070
2071 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2072 pmap_remove(pmap_kernel(), va, va + len);
2073 }
2074
2075 /*
2076 * Remove the given range of mapping entries.
2077 */
2078 void
2079 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2080 {
2081 struct pvo_head pvol;
2082 struct pvo_entry *pvo;
2083 register_t msr;
2084 int pteidx;
2085
2086 PMAP_LOCK();
2087 LIST_INIT(&pvol);
2088 msr = pmap_interrupts_off();
2089 for (; va < endva; va += PAGE_SIZE) {
2090 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2091 if (pvo != NULL) {
2092 pmap_pvo_remove(pvo, pteidx, &pvol);
2093 }
2094 }
2095 pmap_interrupts_restore(msr);
2096 pmap_pvo_free_list(&pvol);
2097 PMAP_UNLOCK();
2098 }
2099
2100 /*
2101 * Get the physical page address for the given pmap/virtual address.
2102 */
2103 bool
2104 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2105 {
2106 struct pvo_entry *pvo;
2107 register_t msr;
2108
2109 PMAP_LOCK();
2110
2111 /*
2112 * If this is a kernel pmap lookup, also check the battable
2113 * and if we get a hit, translate the VA to a PA using the
2114 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2115 * that will wrap back to 0.
2116 */
2117 if (pm == pmap_kernel() &&
2118 (va < VM_MIN_KERNEL_ADDRESS ||
2119 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2120 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2121 #if defined (PMAP_OEA)
2122 #ifdef PPC_OEA601
2123 if ((MFPVR() >> 16) == MPC601) {
2124 register_t batu = battable[va >> 23].batu;
2125 register_t batl = battable[va >> 23].batl;
2126 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2127 if (BAT601_VALID_P(batl) &&
2128 BAT601_VA_MATCH_P(batu, batl, va)) {
2129 register_t mask =
2130 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2131 if (pap)
2132 *pap = (batl & mask) | (va & ~mask);
2133 PMAP_UNLOCK();
2134 return true;
2135 } else if (SR601_VALID_P(sr) &&
2136 SR601_PA_MATCH_P(sr, va)) {
2137 if (pap)
2138 *pap = va;
2139 PMAP_UNLOCK();
2140 return true;
2141 }
2142 } else
2143 #endif /* PPC_OEA601 */
2144 {
2145 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2146 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2147 register_t batl =
2148 battable[va >> ADDR_SR_SHFT].batl;
2149 register_t mask =
2150 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2151 if (pap)
2152 *pap = (batl & mask) | (va & ~mask);
2153 PMAP_UNLOCK();
2154 return true;
2155 }
2156 }
2157 return false;
2158 #elif defined (PMAP_OEA64_BRIDGE)
2159 if (va >= SEGMENT_LENGTH)
2160 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2161 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2162 else {
2163 if (pap)
2164 *pap = va;
2165 PMAP_UNLOCK();
2166 return true;
2167 }
2168 #elif defined (PMAP_OEA64)
2169 #error PPC_OEA64 not supported
2170 #endif /* PPC_OEA */
2171 }
2172
2173 msr = pmap_interrupts_off();
2174 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2175 if (pvo != NULL) {
2176 PMAP_PVO_CHECK(pvo); /* sanity check */
2177 if (pap)
2178 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2179 | (va & ADDR_POFF);
2180 }
2181 pmap_interrupts_restore(msr);
2182 PMAP_UNLOCK();
2183 return pvo != NULL;
2184 }
2185
2186 /*
2187 * Lower the protection on the specified range of this pmap.
2188 */
2189 void
2190 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2191 {
2192 struct pvo_entry *pvo;
2193 volatile struct pte *pt;
2194 register_t msr;
2195 int pteidx;
2196
2197 /*
2198 * Since this routine only downgrades protection, we should
2199 * always be called with at least one bit not set.
2200 */
2201 KASSERT(prot != VM_PROT_ALL);
2202
2203 /*
2204 * If there is no protection, this is equivalent to
2205 * remove the pmap from the pmap.
2206 */
2207 if ((prot & VM_PROT_READ) == 0) {
2208 pmap_remove(pm, va, endva);
2209 return;
2210 }
2211
2212 PMAP_LOCK();
2213
2214 msr = pmap_interrupts_off();
2215 for (; va < endva; va += PAGE_SIZE) {
2216 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2217 if (pvo == NULL)
2218 continue;
2219 PMAP_PVO_CHECK(pvo); /* sanity check */
2220
2221 /*
2222 * Revoke executable if asked to do so.
2223 */
2224 if ((prot & VM_PROT_EXECUTE) == 0)
2225 pvo_clear_exec(pvo);
2226
2227 #if 0
2228 /*
2229 * If the page is already read-only, no change
2230 * needs to be made.
2231 */
2232 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2233 continue;
2234 #endif
2235 /*
2236 * Grab the PTE pointer before we diddle with
2237 * the cached PTE copy.
2238 */
2239 pt = pmap_pvo_to_pte(pvo, pteidx);
2240 /*
2241 * Change the protection of the page.
2242 */
2243 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2244 pvo->pvo_pte.pte_lo |= PTE_BR;
2245
2246 /*
2247 * If the PVO is in the page table, update
2248 * that pte at well.
2249 */
2250 if (pt != NULL) {
2251 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2252 PVO_WHERE(pvo, PMAP_PROTECT);
2253 PMAPCOUNT(ptes_changed);
2254 }
2255
2256 PMAP_PVO_CHECK(pvo); /* sanity check */
2257 }
2258 pmap_interrupts_restore(msr);
2259 PMAP_UNLOCK();
2260 }
2261
2262 void
2263 pmap_unwire(pmap_t pm, vaddr_t va)
2264 {
2265 struct pvo_entry *pvo;
2266 register_t msr;
2267
2268 PMAP_LOCK();
2269 msr = pmap_interrupts_off();
2270 pvo = pmap_pvo_find_va(pm, va, NULL);
2271 if (pvo != NULL) {
2272 if (PVO_WIRED_P(pvo)) {
2273 pvo->pvo_vaddr &= ~PVO_WIRED;
2274 pm->pm_stats.wired_count--;
2275 }
2276 PMAP_PVO_CHECK(pvo); /* sanity check */
2277 }
2278 pmap_interrupts_restore(msr);
2279 PMAP_UNLOCK();
2280 }
2281
2282 /*
2283 * Lower the protection on the specified physical page.
2284 */
2285 void
2286 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2287 {
2288 struct pvo_head *pvo_head, pvol;
2289 struct pvo_entry *pvo, *next_pvo;
2290 volatile struct pte *pt;
2291 register_t msr;
2292
2293 PMAP_LOCK();
2294
2295 KASSERT(prot != VM_PROT_ALL);
2296 LIST_INIT(&pvol);
2297 msr = pmap_interrupts_off();
2298
2299 /*
2300 * When UVM reuses a page, it does a pmap_page_protect with
2301 * VM_PROT_NONE. At that point, we can clear the exec flag
2302 * since we know the page will have different contents.
2303 */
2304 if ((prot & VM_PROT_READ) == 0) {
2305 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2306 VM_PAGE_TO_PHYS(pg)));
2307 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2308 PMAPCOUNT(exec_uncached_page_protect);
2309 pmap_attr_clear(pg, PTE_EXEC);
2310 }
2311 }
2312
2313 pvo_head = vm_page_to_pvoh(pg);
2314 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2315 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2316 PMAP_PVO_CHECK(pvo); /* sanity check */
2317
2318 /*
2319 * Downgrading to no mapping at all, we just remove the entry.
2320 */
2321 if ((prot & VM_PROT_READ) == 0) {
2322 pmap_pvo_remove(pvo, -1, &pvol);
2323 continue;
2324 }
2325
2326 /*
2327 * If EXEC permission is being revoked, just clear the
2328 * flag in the PVO.
2329 */
2330 if ((prot & VM_PROT_EXECUTE) == 0)
2331 pvo_clear_exec(pvo);
2332
2333 /*
2334 * If this entry is already RO, don't diddle with the
2335 * page table.
2336 */
2337 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2338 PMAP_PVO_CHECK(pvo);
2339 continue;
2340 }
2341
2342 /*
2343 * Grab the PTE before the we diddle the bits so
2344 * pvo_to_pte can verify the pte contents are as
2345 * expected.
2346 */
2347 pt = pmap_pvo_to_pte(pvo, -1);
2348 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2349 pvo->pvo_pte.pte_lo |= PTE_BR;
2350 if (pt != NULL) {
2351 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2352 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2353 PMAPCOUNT(ptes_changed);
2354 }
2355 PMAP_PVO_CHECK(pvo); /* sanity check */
2356 }
2357 pmap_interrupts_restore(msr);
2358 pmap_pvo_free_list(&pvol);
2359
2360 PMAP_UNLOCK();
2361 }
2362
2363 /*
2364 * Activate the address space for the specified process. If the process
2365 * is the current process, load the new MMU context.
2366 */
2367 void
2368 pmap_activate(struct lwp *l)
2369 {
2370 struct pcb *pcb = lwp_getpcb(l);
2371 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2372
2373 DPRINTFN(ACTIVATE,
2374 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2375
2376 /*
2377 * XXX Normally performed in cpu_lwp_fork().
2378 */
2379 pcb->pcb_pm = pmap;
2380
2381 /*
2382 * In theory, the SR registers need only be valid on return
2383 * to user space wait to do them there.
2384 */
2385 if (l == curlwp) {
2386 /* Store pointer to new current pmap. */
2387 curpm = pmap;
2388 }
2389 }
2390
2391 /*
2392 * Deactivate the specified process's address space.
2393 */
2394 void
2395 pmap_deactivate(struct lwp *l)
2396 {
2397 }
2398
2399 bool
2400 pmap_query_bit(struct vm_page *pg, int ptebit)
2401 {
2402 struct pvo_entry *pvo;
2403 volatile struct pte *pt;
2404 register_t msr;
2405
2406 PMAP_LOCK();
2407
2408 if (pmap_attr_fetch(pg) & ptebit) {
2409 PMAP_UNLOCK();
2410 return true;
2411 }
2412
2413 msr = pmap_interrupts_off();
2414 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2415 PMAP_PVO_CHECK(pvo); /* sanity check */
2416 /*
2417 * See if we saved the bit off. If so cache, it and return
2418 * success.
2419 */
2420 if (pvo->pvo_pte.pte_lo & ptebit) {
2421 pmap_attr_save(pg, ptebit);
2422 PMAP_PVO_CHECK(pvo); /* sanity check */
2423 pmap_interrupts_restore(msr);
2424 PMAP_UNLOCK();
2425 return true;
2426 }
2427 }
2428 /*
2429 * No luck, now go thru the hard part of looking at the ptes
2430 * themselves. Sync so any pending REF/CHG bits are flushed
2431 * to the PTEs.
2432 */
2433 SYNC();
2434 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2435 PMAP_PVO_CHECK(pvo); /* sanity check */
2436 /*
2437 * See if this pvo have a valid PTE. If so, fetch the
2438 * REF/CHG bits from the valid PTE. If the appropriate
2439 * ptebit is set, cache, it and return success.
2440 */
2441 pt = pmap_pvo_to_pte(pvo, -1);
2442 if (pt != NULL) {
2443 pmap_pte_synch(pt, &pvo->pvo_pte);
2444 if (pvo->pvo_pte.pte_lo & ptebit) {
2445 pmap_attr_save(pg, ptebit);
2446 PMAP_PVO_CHECK(pvo); /* sanity check */
2447 pmap_interrupts_restore(msr);
2448 PMAP_UNLOCK();
2449 return true;
2450 }
2451 }
2452 }
2453 pmap_interrupts_restore(msr);
2454 PMAP_UNLOCK();
2455 return false;
2456 }
2457
2458 bool
2459 pmap_clear_bit(struct vm_page *pg, int ptebit)
2460 {
2461 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2462 struct pvo_entry *pvo;
2463 volatile struct pte *pt;
2464 register_t msr;
2465 int rv = 0;
2466
2467 PMAP_LOCK();
2468 msr = pmap_interrupts_off();
2469
2470 /*
2471 * Fetch the cache value
2472 */
2473 rv |= pmap_attr_fetch(pg);
2474
2475 /*
2476 * Clear the cached value.
2477 */
2478 pmap_attr_clear(pg, ptebit);
2479
2480 /*
2481 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2482 * can reset the right ones). Note that since the pvo entries and
2483 * list heads are accessed via BAT0 and are never placed in the
2484 * page table, we don't have to worry about further accesses setting
2485 * the REF/CHG bits.
2486 */
2487 SYNC();
2488
2489 /*
2490 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2491 * valid PTE. If so, clear the ptebit from the valid PTE.
2492 */
2493 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2494 PMAP_PVO_CHECK(pvo); /* sanity check */
2495 pt = pmap_pvo_to_pte(pvo, -1);
2496 if (pt != NULL) {
2497 /*
2498 * Only sync the PTE if the bit we are looking
2499 * for is not already set.
2500 */
2501 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2502 pmap_pte_synch(pt, &pvo->pvo_pte);
2503 /*
2504 * If the bit we are looking for was already set,
2505 * clear that bit in the pte.
2506 */
2507 if (pvo->pvo_pte.pte_lo & ptebit)
2508 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2509 }
2510 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2511 pvo->pvo_pte.pte_lo &= ~ptebit;
2512 PMAP_PVO_CHECK(pvo); /* sanity check */
2513 }
2514 pmap_interrupts_restore(msr);
2515
2516 /*
2517 * If we are clearing the modify bit and this page was marked EXEC
2518 * and the user of the page thinks the page was modified, then we
2519 * need to clean it from the icache if it's mapped or clear the EXEC
2520 * bit if it's not mapped. The page itself might not have the CHG
2521 * bit set if the modification was done via DMA to the page.
2522 */
2523 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2524 if (LIST_EMPTY(pvoh)) {
2525 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2526 VM_PAGE_TO_PHYS(pg)));
2527 pmap_attr_clear(pg, PTE_EXEC);
2528 PMAPCOUNT(exec_uncached_clear_modify);
2529 } else {
2530 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2531 VM_PAGE_TO_PHYS(pg)));
2532 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2533 PMAPCOUNT(exec_synced_clear_modify);
2534 }
2535 }
2536 PMAP_UNLOCK();
2537 return (rv & ptebit) != 0;
2538 }
2539
2540 void
2541 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2542 {
2543 struct pvo_entry *pvo;
2544 size_t offset = va & ADDR_POFF;
2545 int s;
2546
2547 PMAP_LOCK();
2548 s = splvm();
2549 while (len > 0) {
2550 size_t seglen = PAGE_SIZE - offset;
2551 if (seglen > len)
2552 seglen = len;
2553 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2554 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2555 pmap_syncicache(
2556 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2557 PMAP_PVO_CHECK(pvo);
2558 }
2559 va += seglen;
2560 len -= seglen;
2561 offset = 0;
2562 }
2563 splx(s);
2564 PMAP_UNLOCK();
2565 }
2566
2567 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2568 void
2569 pmap_pte_print(volatile struct pte *pt)
2570 {
2571 printf("PTE %p: ", pt);
2572
2573 #if defined(PMAP_OEA)
2574 /* High word: */
2575 printf("%#" _PRIxpte ": [", pt->pte_hi);
2576 #else
2577 printf("%#" _PRIxpte ": [", pt->pte_hi);
2578 #endif /* PMAP_OEA */
2579
2580 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2581 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2582
2583 printf("%#" _PRIxpte " %#" _PRIxpte "",
2584 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2585 pt->pte_hi & PTE_API);
2586 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2587 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2588 #else
2589 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2590 #endif /* PMAP_OEA */
2591
2592 /* Low word: */
2593 #if defined (PMAP_OEA)
2594 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2595 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2596 #else
2597 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2598 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2599 #endif
2600 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2601 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2602 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2603 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2604 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2605 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2606 switch (pt->pte_lo & PTE_PP) {
2607 case PTE_BR: printf("br]\n"); break;
2608 case PTE_BW: printf("bw]\n"); break;
2609 case PTE_SO: printf("so]\n"); break;
2610 case PTE_SW: printf("sw]\n"); break;
2611 }
2612 }
2613 #endif
2614
2615 #if defined(DDB)
2616 void
2617 pmap_pteg_check(void)
2618 {
2619 volatile struct pte *pt;
2620 int i;
2621 int ptegidx;
2622 u_int p_valid = 0;
2623 u_int s_valid = 0;
2624 u_int invalid = 0;
2625
2626 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2627 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2628 if (pt->pte_hi & PTE_VALID) {
2629 if (pt->pte_hi & PTE_HID)
2630 s_valid++;
2631 else
2632 {
2633 p_valid++;
2634 }
2635 } else
2636 invalid++;
2637 }
2638 }
2639 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2640 p_valid, p_valid, s_valid, s_valid,
2641 invalid, invalid);
2642 }
2643
2644 void
2645 pmap_print_mmuregs(void)
2646 {
2647 int i;
2648 u_int cpuvers;
2649 #ifndef PMAP_OEA64
2650 vaddr_t addr;
2651 register_t soft_sr[16];
2652 #endif
2653 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2654 struct bat soft_ibat[4];
2655 struct bat soft_dbat[4];
2656 #endif
2657 paddr_t sdr1;
2658
2659 cpuvers = MFPVR() >> 16;
2660 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2661 #ifndef PMAP_OEA64
2662 addr = 0;
2663 for (i = 0; i < 16; i++) {
2664 soft_sr[i] = MFSRIN(addr);
2665 addr += (1 << ADDR_SR_SHFT);
2666 }
2667 #endif
2668
2669 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2670 /* read iBAT (601: uBAT) registers */
2671 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2672 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2673 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2674 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2675 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2676 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2677 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2678 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2679
2680
2681 if (cpuvers != MPC601) {
2682 /* read dBAT registers */
2683 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2684 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2685 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2686 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2687 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2688 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2689 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2690 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2691 }
2692 #endif
2693
2694 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2695 #ifndef PMAP_OEA64
2696 printf("SR[]:\t");
2697 for (i = 0; i < 4; i++)
2698 printf("0x%08lx, ", soft_sr[i]);
2699 printf("\n\t");
2700 for ( ; i < 8; i++)
2701 printf("0x%08lx, ", soft_sr[i]);
2702 printf("\n\t");
2703 for ( ; i < 12; i++)
2704 printf("0x%08lx, ", soft_sr[i]);
2705 printf("\n\t");
2706 for ( ; i < 16; i++)
2707 printf("0x%08lx, ", soft_sr[i]);
2708 printf("\n");
2709 #endif
2710
2711 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2712 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2713 for (i = 0; i < 4; i++) {
2714 printf("0x%08lx 0x%08lx, ",
2715 soft_ibat[i].batu, soft_ibat[i].batl);
2716 if (i == 1)
2717 printf("\n\t");
2718 }
2719 if (cpuvers != MPC601) {
2720 printf("\ndBAT[]:\t");
2721 for (i = 0; i < 4; i++) {
2722 printf("0x%08lx 0x%08lx, ",
2723 soft_dbat[i].batu, soft_dbat[i].batl);
2724 if (i == 1)
2725 printf("\n\t");
2726 }
2727 }
2728 printf("\n");
2729 #endif /* PMAP_OEA... */
2730 }
2731
2732 void
2733 pmap_print_pte(pmap_t pm, vaddr_t va)
2734 {
2735 struct pvo_entry *pvo;
2736 volatile struct pte *pt;
2737 int pteidx;
2738
2739 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2740 if (pvo != NULL) {
2741 pt = pmap_pvo_to_pte(pvo, pteidx);
2742 if (pt != NULL) {
2743 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2744 va, pt,
2745 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2746 pt->pte_hi, pt->pte_lo);
2747 } else {
2748 printf("No valid PTE found\n");
2749 }
2750 } else {
2751 printf("Address not in pmap\n");
2752 }
2753 }
2754
2755 void
2756 pmap_pteg_dist(void)
2757 {
2758 struct pvo_entry *pvo;
2759 int ptegidx;
2760 int depth;
2761 int max_depth = 0;
2762 unsigned int depths[64];
2763
2764 memset(depths, 0, sizeof(depths));
2765 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2766 depth = 0;
2767 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2768 depth++;
2769 }
2770 if (depth > max_depth)
2771 max_depth = depth;
2772 if (depth > 63)
2773 depth = 63;
2774 depths[depth]++;
2775 }
2776
2777 for (depth = 0; depth < 64; depth++) {
2778 printf(" [%2d]: %8u", depth, depths[depth]);
2779 if ((depth & 3) == 3)
2780 printf("\n");
2781 if (depth == max_depth)
2782 break;
2783 }
2784 if ((depth & 3) != 3)
2785 printf("\n");
2786 printf("Max depth found was %d\n", max_depth);
2787 }
2788 #endif /* DEBUG */
2789
2790 #if defined(PMAPCHECK) || defined(DEBUG)
2791 void
2792 pmap_pvo_verify(void)
2793 {
2794 int ptegidx;
2795 int s;
2796
2797 s = splvm();
2798 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2799 struct pvo_entry *pvo;
2800 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2801 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2802 panic("pmap_pvo_verify: invalid pvo %p "
2803 "on list %#x", pvo, ptegidx);
2804 pmap_pvo_check(pvo);
2805 }
2806 }
2807 splx(s);
2808 }
2809 #endif /* PMAPCHECK */
2810
2811
2812 void *
2813 pmap_pool_ualloc(struct pool *pp, int flags)
2814 {
2815 struct pvo_page *pvop;
2816
2817 if (uvm.page_init_done != true) {
2818 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2819 }
2820
2821 PMAP_LOCK();
2822 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2823 if (pvop != NULL) {
2824 pmap_upvop_free--;
2825 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2826 PMAP_UNLOCK();
2827 return pvop;
2828 }
2829 PMAP_UNLOCK();
2830 return pmap_pool_malloc(pp, flags);
2831 }
2832
2833 void *
2834 pmap_pool_malloc(struct pool *pp, int flags)
2835 {
2836 struct pvo_page *pvop;
2837 struct vm_page *pg;
2838
2839 PMAP_LOCK();
2840 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2841 if (pvop != NULL) {
2842 pmap_mpvop_free--;
2843 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2844 PMAP_UNLOCK();
2845 return pvop;
2846 }
2847 PMAP_UNLOCK();
2848 again:
2849 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2850 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2851 if (__predict_false(pg == NULL)) {
2852 if (flags & PR_WAITOK) {
2853 uvm_wait("plpg");
2854 goto again;
2855 } else {
2856 return (0);
2857 }
2858 }
2859 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2860 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2861 }
2862
2863 void
2864 pmap_pool_ufree(struct pool *pp, void *va)
2865 {
2866 struct pvo_page *pvop;
2867 #if 0
2868 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2869 pmap_pool_mfree(va, size, tag);
2870 return;
2871 }
2872 #endif
2873 PMAP_LOCK();
2874 pvop = va;
2875 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2876 pmap_upvop_free++;
2877 if (pmap_upvop_free > pmap_upvop_maxfree)
2878 pmap_upvop_maxfree = pmap_upvop_free;
2879 PMAP_UNLOCK();
2880 }
2881
2882 void
2883 pmap_pool_mfree(struct pool *pp, void *va)
2884 {
2885 struct pvo_page *pvop;
2886
2887 PMAP_LOCK();
2888 pvop = va;
2889 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2890 pmap_mpvop_free++;
2891 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2892 pmap_mpvop_maxfree = pmap_mpvop_free;
2893 PMAP_UNLOCK();
2894 #if 0
2895 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2896 #endif
2897 }
2898
2899 /*
2900 * This routine in bootstraping to steal to-be-managed memory (which will
2901 * then be unmanaged). We use it to grab from the first 256MB for our
2902 * pmap needs and above 256MB for other stuff.
2903 */
2904 vaddr_t
2905 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2906 {
2907 vsize_t size;
2908 vaddr_t va;
2909 paddr_t pa = 0;
2910 int npgs, bank;
2911 struct vm_physseg *ps;
2912
2913 if (uvm.page_init_done == true)
2914 panic("pmap_steal_memory: called _after_ bootstrap");
2915
2916 *vstartp = VM_MIN_KERNEL_ADDRESS;
2917 *vendp = VM_MAX_KERNEL_ADDRESS;
2918
2919 size = round_page(vsize);
2920 npgs = atop(size);
2921
2922 /*
2923 * PA 0 will never be among those given to UVM so we can use it
2924 * to indicate we couldn't steal any memory.
2925 */
2926 for (bank = 0; bank < vm_nphysseg; bank++) {
2927 ps = VM_PHYSMEM_PTR(bank);
2928 if (ps->free_list == VM_FREELIST_FIRST256 &&
2929 ps->avail_end - ps->avail_start >= npgs) {
2930 pa = ptoa(ps->avail_start);
2931 break;
2932 }
2933 }
2934
2935 if (pa == 0)
2936 panic("pmap_steal_memory: no approriate memory to steal!");
2937
2938 ps->avail_start += npgs;
2939 ps->start += npgs;
2940
2941 /*
2942 * If we've used up all the pages in the segment, remove it and
2943 * compact the list.
2944 */
2945 if (ps->avail_start == ps->end) {
2946 /*
2947 * If this was the last one, then a very bad thing has occurred
2948 */
2949 if (--vm_nphysseg == 0)
2950 panic("pmap_steal_memory: out of memory!");
2951
2952 printf("pmap_steal_memory: consumed bank %d\n", bank);
2953 for (; bank < vm_nphysseg; bank++, ps++) {
2954 ps[0] = ps[1];
2955 }
2956 }
2957
2958 va = (vaddr_t) pa;
2959 memset((void *) va, 0, size);
2960 pmap_pages_stolen += npgs;
2961 #ifdef DEBUG
2962 if (pmapdebug && npgs > 1) {
2963 u_int cnt = 0;
2964 for (bank = 0; bank < vm_nphysseg; bank++) {
2965 ps = VM_PHYSMEM_PTR(bank);
2966 cnt += ps->avail_end - ps->avail_start;
2967 }
2968 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2969 npgs, pmap_pages_stolen, cnt);
2970 }
2971 #endif
2972
2973 return va;
2974 }
2975
2976 /*
2977 * Find a chuck of memory with right size and alignment.
2978 */
2979 paddr_t
2980 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2981 {
2982 struct mem_region *mp;
2983 paddr_t s, e;
2984 int i, j;
2985
2986 size = round_page(size);
2987
2988 DPRINTFN(BOOT,
2989 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2990 size, alignment, at_end));
2991
2992 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2993 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2994 alignment);
2995
2996 if (at_end) {
2997 if (alignment != PAGE_SIZE)
2998 panic("pmap_boot_find_memory: invalid ending "
2999 "alignment %#" _PRIxpa, alignment);
3000
3001 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3002 s = mp->start + mp->size - size;
3003 if (s >= mp->start && mp->size >= size) {
3004 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3005 DPRINTFN(BOOT,
3006 ("pmap_boot_find_memory: b-avail[%d] start "
3007 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3008 mp->start, mp->size));
3009 mp->size -= size;
3010 DPRINTFN(BOOT,
3011 ("pmap_boot_find_memory: a-avail[%d] start "
3012 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3013 mp->start, mp->size));
3014 return s;
3015 }
3016 }
3017 panic("pmap_boot_find_memory: no available memory");
3018 }
3019
3020 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3021 s = (mp->start + alignment - 1) & ~(alignment-1);
3022 e = s + size;
3023
3024 /*
3025 * Is the calculated region entirely within the region?
3026 */
3027 if (s < mp->start || e > mp->start + mp->size)
3028 continue;
3029
3030 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3031 if (s == mp->start) {
3032 /*
3033 * If the block starts at the beginning of region,
3034 * adjust the size & start. (the region may now be
3035 * zero in length)
3036 */
3037 DPRINTFN(BOOT,
3038 ("pmap_boot_find_memory: b-avail[%d] start "
3039 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3040 mp->start += size;
3041 mp->size -= size;
3042 DPRINTFN(BOOT,
3043 ("pmap_boot_find_memory: a-avail[%d] start "
3044 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3045 } else if (e == mp->start + mp->size) {
3046 /*
3047 * If the block starts at the beginning of region,
3048 * adjust only the size.
3049 */
3050 DPRINTFN(BOOT,
3051 ("pmap_boot_find_memory: b-avail[%d] start "
3052 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3053 mp->size -= size;
3054 DPRINTFN(BOOT,
3055 ("pmap_boot_find_memory: a-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3057 } else {
3058 /*
3059 * Block is in the middle of the region, so we
3060 * have to split it in two.
3061 */
3062 for (j = avail_cnt; j > i + 1; j--) {
3063 avail[j] = avail[j-1];
3064 }
3065 DPRINTFN(BOOT,
3066 ("pmap_boot_find_memory: b-avail[%d] start "
3067 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3068 mp[1].start = e;
3069 mp[1].size = mp[0].start + mp[0].size - e;
3070 mp[0].size = s - mp[0].start;
3071 avail_cnt++;
3072 for (; i < avail_cnt; i++) {
3073 DPRINTFN(BOOT,
3074 ("pmap_boot_find_memory: a-avail[%d] "
3075 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3076 avail[i].start, avail[i].size));
3077 }
3078 }
3079 KASSERT(s == (uintptr_t) s);
3080 return s;
3081 }
3082 panic("pmap_boot_find_memory: not enough memory for "
3083 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3084 }
3085
3086 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3087 #if defined (PMAP_OEA64_BRIDGE)
3088 int
3089 pmap_setup_segment0_map(int use_large_pages, ...)
3090 {
3091 vaddr_t va;
3092
3093 register_t pte_lo = 0x0;
3094 int ptegidx = 0, i = 0;
3095 struct pte pte;
3096 va_list ap;
3097
3098 /* Coherent + Supervisor RW, no user access */
3099 pte_lo = PTE_M;
3100
3101 /* XXXSL
3102 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3103 * these have to take priority.
3104 */
3105 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3106 ptegidx = va_to_pteg(pmap_kernel(), va);
3107 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3108 i = pmap_pte_insert(ptegidx, &pte);
3109 }
3110
3111 va_start(ap, use_large_pages);
3112 while (1) {
3113 paddr_t pa;
3114 size_t size;
3115
3116 va = va_arg(ap, vaddr_t);
3117
3118 if (va == 0)
3119 break;
3120
3121 pa = va_arg(ap, paddr_t);
3122 size = va_arg(ap, size_t);
3123
3124 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3125 #if 0
3126 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3127 #endif
3128 ptegidx = va_to_pteg(pmap_kernel(), va);
3129 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3130 i = pmap_pte_insert(ptegidx, &pte);
3131 }
3132 }
3133
3134 TLBSYNC();
3135 SYNC();
3136 return (0);
3137 }
3138 #endif /* PMAP_OEA64_BRIDGE */
3139
3140 /*
3141 * This is not part of the defined PMAP interface and is specific to the
3142 * PowerPC architecture. This is called during initppc, before the system
3143 * is really initialized.
3144 */
3145 void
3146 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3147 {
3148 struct mem_region *mp, tmp;
3149 paddr_t s, e;
3150 psize_t size;
3151 int i, j;
3152
3153 /*
3154 * Get memory.
3155 */
3156 mem_regions(&mem, &avail);
3157 #if defined(DEBUG)
3158 if (pmapdebug & PMAPDEBUG_BOOT) {
3159 printf("pmap_bootstrap: memory configuration:\n");
3160 for (mp = mem; mp->size; mp++) {
3161 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3162 mp->start, mp->size);
3163 }
3164 for (mp = avail; mp->size; mp++) {
3165 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3166 mp->start, mp->size);
3167 }
3168 }
3169 #endif
3170
3171 /*
3172 * Find out how much physical memory we have and in how many chunks.
3173 */
3174 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3175 if (mp->start >= pmap_memlimit)
3176 continue;
3177 if (mp->start + mp->size > pmap_memlimit) {
3178 size = pmap_memlimit - mp->start;
3179 physmem += btoc(size);
3180 } else {
3181 physmem += btoc(mp->size);
3182 }
3183 mem_cnt++;
3184 }
3185
3186 /*
3187 * Count the number of available entries.
3188 */
3189 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3190 avail_cnt++;
3191
3192 /*
3193 * Page align all regions.
3194 */
3195 kernelstart = trunc_page(kernelstart);
3196 kernelend = round_page(kernelend);
3197 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3198 s = round_page(mp->start);
3199 mp->size -= (s - mp->start);
3200 mp->size = trunc_page(mp->size);
3201 mp->start = s;
3202 e = mp->start + mp->size;
3203
3204 DPRINTFN(BOOT,
3205 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3206 i, mp->start, mp->size));
3207
3208 /*
3209 * Don't allow the end to run beyond our artificial limit
3210 */
3211 if (e > pmap_memlimit)
3212 e = pmap_memlimit;
3213
3214 /*
3215 * Is this region empty or strange? skip it.
3216 */
3217 if (e <= s) {
3218 mp->start = 0;
3219 mp->size = 0;
3220 continue;
3221 }
3222
3223 /*
3224 * Does this overlap the beginning of kernel?
3225 * Does extend past the end of the kernel?
3226 */
3227 else if (s < kernelstart && e > kernelstart) {
3228 if (e > kernelend) {
3229 avail[avail_cnt].start = kernelend;
3230 avail[avail_cnt].size = e - kernelend;
3231 avail_cnt++;
3232 }
3233 mp->size = kernelstart - s;
3234 }
3235 /*
3236 * Check whether this region overlaps the end of the kernel.
3237 */
3238 else if (s < kernelend && e > kernelend) {
3239 mp->start = kernelend;
3240 mp->size = e - kernelend;
3241 }
3242 /*
3243 * Look whether this regions is completely inside the kernel.
3244 * Nuke it if it does.
3245 */
3246 else if (s >= kernelstart && e <= kernelend) {
3247 mp->start = 0;
3248 mp->size = 0;
3249 }
3250 /*
3251 * If the user imposed a memory limit, enforce it.
3252 */
3253 else if (s >= pmap_memlimit) {
3254 mp->start = -PAGE_SIZE; /* let's know why */
3255 mp->size = 0;
3256 }
3257 else {
3258 mp->start = s;
3259 mp->size = e - s;
3260 }
3261 DPRINTFN(BOOT,
3262 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3263 i, mp->start, mp->size));
3264 }
3265
3266 /*
3267 * Move (and uncount) all the null return to the end.
3268 */
3269 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3270 if (mp->size == 0) {
3271 tmp = avail[i];
3272 avail[i] = avail[--avail_cnt];
3273 avail[avail_cnt] = avail[i];
3274 }
3275 }
3276
3277 /*
3278 * (Bubble)sort them into ascending order.
3279 */
3280 for (i = 0; i < avail_cnt; i++) {
3281 for (j = i + 1; j < avail_cnt; j++) {
3282 if (avail[i].start > avail[j].start) {
3283 tmp = avail[i];
3284 avail[i] = avail[j];
3285 avail[j] = tmp;
3286 }
3287 }
3288 }
3289
3290 /*
3291 * Make sure they don't overlap.
3292 */
3293 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3294 if (mp[0].start + mp[0].size > mp[1].start) {
3295 mp[0].size = mp[1].start - mp[0].start;
3296 }
3297 DPRINTFN(BOOT,
3298 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3299 i, mp->start, mp->size));
3300 }
3301 DPRINTFN(BOOT,
3302 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3303 i, mp->start, mp->size));
3304
3305 #ifdef PTEGCOUNT
3306 pmap_pteg_cnt = PTEGCOUNT;
3307 #else /* PTEGCOUNT */
3308
3309 pmap_pteg_cnt = 0x1000;
3310
3311 while (pmap_pteg_cnt < physmem)
3312 pmap_pteg_cnt <<= 1;
3313
3314 pmap_pteg_cnt >>= 1;
3315 #endif /* PTEGCOUNT */
3316
3317 #ifdef DEBUG
3318 DPRINTFN(BOOT,
3319 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3320 #endif
3321
3322 /*
3323 * Find suitably aligned memory for PTEG hash table.
3324 */
3325 size = pmap_pteg_cnt * sizeof(struct pteg);
3326 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3327
3328 #ifdef DEBUG
3329 DPRINTFN(BOOT,
3330 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3331 #endif
3332
3333
3334 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3335 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3336 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3337 pmap_pteg_table, size);
3338 #endif
3339
3340 memset(__UNVOLATILE(pmap_pteg_table), 0,
3341 pmap_pteg_cnt * sizeof(struct pteg));
3342 pmap_pteg_mask = pmap_pteg_cnt - 1;
3343
3344 /*
3345 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3346 * with pages. So we just steal them before giving them to UVM.
3347 */
3348 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3349 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3350 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3351 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3352 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3353 pmap_pvo_table, size);
3354 #endif
3355
3356 for (i = 0; i < pmap_pteg_cnt; i++)
3357 TAILQ_INIT(&pmap_pvo_table[i]);
3358
3359 #ifndef MSGBUFADDR
3360 /*
3361 * Allocate msgbuf in high memory.
3362 */
3363 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3364 #endif
3365
3366 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3367 paddr_t pfstart = atop(mp->start);
3368 paddr_t pfend = atop(mp->start + mp->size);
3369 if (mp->size == 0)
3370 continue;
3371 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3372 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3373 VM_FREELIST_FIRST256);
3374 } else if (mp->start >= SEGMENT_LENGTH) {
3375 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3376 VM_FREELIST_DEFAULT);
3377 } else {
3378 pfend = atop(SEGMENT_LENGTH);
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_FIRST256);
3381 pfstart = atop(SEGMENT_LENGTH);
3382 pfend = atop(mp->start + mp->size);
3383 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3384 VM_FREELIST_DEFAULT);
3385 }
3386 }
3387
3388 /*
3389 * Make sure kernel vsid is allocated as well as VSID 0.
3390 */
3391 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3392 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3393 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3394 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3395 pmap_vsid_bitmap[0] |= 1;
3396
3397 /*
3398 * Initialize kernel pmap and hardware.
3399 */
3400
3401 /* PMAP_OEA64_BRIDGE does support these instructions */
3402 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3403 for (i = 0; i < 16; i++) {
3404 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3405 __asm volatile ("mtsrin %0,%1"
3406 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3407 }
3408
3409 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3410 __asm volatile ("mtsr %0,%1"
3411 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3412 #ifdef KERNEL2_SR
3413 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3414 __asm volatile ("mtsr %0,%1"
3415 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3416 #endif
3417 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3418 #if defined (PMAP_OEA)
3419 for (i = 0; i < 16; i++) {
3420 if (iosrtable[i] & SR601_T) {
3421 pmap_kernel()->pm_sr[i] = iosrtable[i];
3422 __asm volatile ("mtsrin %0,%1"
3423 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3424 }
3425 }
3426 __asm volatile ("sync; mtsdr1 %0; isync"
3427 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3428 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3429 __asm __volatile ("sync; mtsdr1 %0; isync"
3430 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3431 #endif
3432 tlbia();
3433
3434 #ifdef ALTIVEC
3435 pmap_use_altivec = cpu_altivec;
3436 #endif
3437
3438 #ifdef DEBUG
3439 if (pmapdebug & PMAPDEBUG_BOOT) {
3440 u_int cnt;
3441 int bank;
3442 char pbuf[9];
3443 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3444 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3445 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3446 bank,
3447 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3448 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3449 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3450 }
3451 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3452 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3453 pbuf, cnt);
3454 }
3455 #endif
3456
3457 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3458 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3459 &pmap_pool_uallocator, IPL_VM);
3460
3461 pool_setlowat(&pmap_upvo_pool, 252);
3462
3463 pool_init(&pmap_pool, sizeof(struct pmap),
3464 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3465 IPL_NONE);
3466
3467 #if defined(PMAP_NEED_MAPKERNEL) || 1
3468 {
3469 struct pmap *pm = pmap_kernel();
3470 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3471 extern int etext[], kernel_text[];
3472 vaddr_t va, va_etext = (paddr_t) etext;
3473 #endif
3474 paddr_t pa, pa_end;
3475 register_t sr;
3476 struct pte pt;
3477 unsigned int ptegidx;
3478 int bank;
3479
3480 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3481 pm->pm_sr[0] = sr;
3482
3483 for (bank = 0; bank < vm_nphysseg; bank++) {
3484 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3485 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3486 for (; pa < pa_end; pa += PAGE_SIZE) {
3487 ptegidx = va_to_pteg(pm, pa);
3488 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3489 pmap_pte_insert(ptegidx, &pt);
3490 }
3491 }
3492
3493 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3494 va = (vaddr_t) kernel_text;
3495
3496 for (pa = kernelstart; va < va_etext;
3497 pa += PAGE_SIZE, va += PAGE_SIZE) {
3498 ptegidx = va_to_pteg(pm, va);
3499 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3500 pmap_pte_insert(ptegidx, &pt);
3501 }
3502
3503 for (; pa < kernelend;
3504 pa += PAGE_SIZE, va += PAGE_SIZE) {
3505 ptegidx = va_to_pteg(pm, va);
3506 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3507 pmap_pte_insert(ptegidx, &pt);
3508 }
3509
3510 for (va = 0, pa = 0; va < kernelstart;
3511 pa += PAGE_SIZE, va += PAGE_SIZE) {
3512 ptegidx = va_to_pteg(pm, va);
3513 if (va < 0x3000)
3514 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3515 else
3516 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3517 pmap_pte_insert(ptegidx, &pt);
3518 }
3519 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3520 pa += PAGE_SIZE, va += PAGE_SIZE) {
3521 ptegidx = va_to_pteg(pm, va);
3522 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3523 pmap_pte_insert(ptegidx, &pt);
3524 }
3525 #endif
3526
3527 __asm volatile ("mtsrin %0,%1"
3528 :: "r"(sr), "r"(kernelstart));
3529 }
3530 #endif
3531 }
3532