pmap.c revision 1.77 1 /* $NetBSD: pmap.c,v 1.77 2011/02/15 19:39:12 macallan Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.77 2011/02/15 19:39:12 macallan Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/pcb.h>
87 #include <machine/powerpc.h>
88 #include <powerpc/spr.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/stdarg.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 #ifndef MSGBUFADDR
116 extern paddr_t msgbuf_paddr;
117 #endif
118
119 static struct mem_region *mem, *avail;
120 static u_int mem_cnt, avail_cnt;
121
122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
123 # define PMAP_OEA 1
124 #endif
125
126 #if defined(PMAP_OEA)
127 #define _PRIxpte "lx"
128 #else
129 #define _PRIxpte PRIx64
130 #endif
131 #define _PRIxpa "lx"
132 #define _PRIxva "lx"
133 #define _PRIsr "lx"
134
135 #ifdef PMAP_NEEDS_FIXUP
136 #if defined(PMAP_OEA)
137 #define PMAPNAME(name) pmap32_##name
138 #elif defined(PMAP_OEA64)
139 #define PMAPNAME(name) pmap64_##name
140 #elif defined(PMAP_OEA64_BRIDGE)
141 #define PMAPNAME(name) pmap64bridge_##name
142 #else
143 #error unknown variant for pmap
144 #endif
145 #endif /* PMAP_NEEDS_FIXUP */
146
147 #ifdef PMAPNAME
148 #define STATIC static
149 #define pmap_pte_spill PMAPNAME(pte_spill)
150 #define pmap_real_memory PMAPNAME(real_memory)
151 #define pmap_init PMAPNAME(init)
152 #define pmap_virtual_space PMAPNAME(virtual_space)
153 #define pmap_create PMAPNAME(create)
154 #define pmap_reference PMAPNAME(reference)
155 #define pmap_destroy PMAPNAME(destroy)
156 #define pmap_copy PMAPNAME(copy)
157 #define pmap_update PMAPNAME(update)
158 #define pmap_enter PMAPNAME(enter)
159 #define pmap_remove PMAPNAME(remove)
160 #define pmap_kenter_pa PMAPNAME(kenter_pa)
161 #define pmap_kremove PMAPNAME(kremove)
162 #define pmap_extract PMAPNAME(extract)
163 #define pmap_protect PMAPNAME(protect)
164 #define pmap_unwire PMAPNAME(unwire)
165 #define pmap_page_protect PMAPNAME(page_protect)
166 #define pmap_query_bit PMAPNAME(query_bit)
167 #define pmap_clear_bit PMAPNAME(clear_bit)
168
169 #define pmap_activate PMAPNAME(activate)
170 #define pmap_deactivate PMAPNAME(deactivate)
171
172 #define pmap_pinit PMAPNAME(pinit)
173 #define pmap_procwr PMAPNAME(procwr)
174
175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
176 #define pmap_pte_print PMAPNAME(pte_print)
177 #define pmap_pteg_check PMAPNAME(pteg_check)
178 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
179 #define pmap_print_pte PMAPNAME(print_pte)
180 #define pmap_pteg_dist PMAPNAME(pteg_dist)
181 #endif
182 #if defined(DEBUG) || defined(PMAPCHECK)
183 #define pmap_pvo_verify PMAPNAME(pvo_verify)
184 #define pmapcheck PMAPNAME(check)
185 #endif
186 #if defined(DEBUG) || defined(PMAPDEBUG)
187 #define pmapdebug PMAPNAME(debug)
188 #endif
189 #define pmap_steal_memory PMAPNAME(steal_memory)
190 #define pmap_bootstrap PMAPNAME(bootstrap)
191 #else
192 #define STATIC /* nothing */
193 #endif /* PMAPNAME */
194
195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
197 STATIC void pmap_init(void);
198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
199 STATIC pmap_t pmap_create(void);
200 STATIC void pmap_reference(pmap_t);
201 STATIC void pmap_destroy(pmap_t);
202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
203 STATIC void pmap_update(pmap_t);
204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
207 STATIC void pmap_kremove(vaddr_t, vsize_t);
208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
209
210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
211 STATIC void pmap_unwire(pmap_t, vaddr_t);
212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
213 STATIC bool pmap_query_bit(struct vm_page *, int);
214 STATIC bool pmap_clear_bit(struct vm_page *, int);
215
216 STATIC void pmap_activate(struct lwp *);
217 STATIC void pmap_deactivate(struct lwp *);
218
219 STATIC void pmap_pinit(pmap_t pm);
220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
221
222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
223 STATIC void pmap_pte_print(volatile struct pte *);
224 STATIC void pmap_pteg_check(void);
225 STATIC void pmap_print_mmuregs(void);
226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
227 STATIC void pmap_pteg_dist(void);
228 #endif
229 #if defined(DEBUG) || defined(PMAPCHECK)
230 STATIC void pmap_pvo_verify(void);
231 #endif
232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
234
235 #ifdef PMAPNAME
236 const struct pmap_ops PMAPNAME(ops) = {
237 .pmapop_pte_spill = pmap_pte_spill,
238 .pmapop_real_memory = pmap_real_memory,
239 .pmapop_init = pmap_init,
240 .pmapop_virtual_space = pmap_virtual_space,
241 .pmapop_create = pmap_create,
242 .pmapop_reference = pmap_reference,
243 .pmapop_destroy = pmap_destroy,
244 .pmapop_copy = pmap_copy,
245 .pmapop_update = pmap_update,
246 .pmapop_enter = pmap_enter,
247 .pmapop_remove = pmap_remove,
248 .pmapop_kenter_pa = pmap_kenter_pa,
249 .pmapop_kremove = pmap_kremove,
250 .pmapop_extract = pmap_extract,
251 .pmapop_protect = pmap_protect,
252 .pmapop_unwire = pmap_unwire,
253 .pmapop_page_protect = pmap_page_protect,
254 .pmapop_query_bit = pmap_query_bit,
255 .pmapop_clear_bit = pmap_clear_bit,
256 .pmapop_activate = pmap_activate,
257 .pmapop_deactivate = pmap_deactivate,
258 .pmapop_pinit = pmap_pinit,
259 .pmapop_procwr = pmap_procwr,
260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
261 .pmapop_pte_print = pmap_pte_print,
262 .pmapop_pteg_check = pmap_pteg_check,
263 .pmapop_print_mmuregs = pmap_print_mmuregs,
264 .pmapop_print_pte = pmap_print_pte,
265 .pmapop_pteg_dist = pmap_pteg_dist,
266 #else
267 .pmapop_pte_print = NULL,
268 .pmapop_pteg_check = NULL,
269 .pmapop_print_mmuregs = NULL,
270 .pmapop_print_pte = NULL,
271 .pmapop_pteg_dist = NULL,
272 #endif
273 #if defined(DEBUG) || defined(PMAPCHECK)
274 .pmapop_pvo_verify = pmap_pvo_verify,
275 #else
276 .pmapop_pvo_verify = NULL,
277 #endif
278 .pmapop_steal_memory = pmap_steal_memory,
279 .pmapop_bootstrap = pmap_bootstrap,
280 };
281 #endif /* !PMAPNAME */
282
283 /*
284 * The following structure is aligned to 32 bytes
285 */
286 struct pvo_entry {
287 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
288 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
289 struct pte pvo_pte; /* Prebuilt PTE */
290 pmap_t pvo_pmap; /* ptr to owning pmap */
291 vaddr_t pvo_vaddr; /* VA of entry */
292 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
293 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
294 #define PVO_WIRED 0x0010 /* PVO entry is wired */
295 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
296 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
297 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
298 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
299 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
300 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
301 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
302 #define PVO_SPILL_SET 2 /* PVO has been spilled */
303 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
304 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
305 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
306 #define PVO_REMOVE 6 /* PVO has been removed */
307 #define PVO_WHERE_MASK 15
308 #define PVO_WHERE_SHFT 8
309 } __attribute__ ((aligned (32)));
310 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
311 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
312 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
313 #define PVO_PTEGIDX_CLR(pvo) \
314 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
315 #define PVO_PTEGIDX_SET(pvo,i) \
316 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
317 #define PVO_WHERE(pvo,w) \
318 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
319 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
320
321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
322 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
325
326 struct pool pmap_pool; /* pool for pmap structures */
327 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
328 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
329
330 /*
331 * We keep a cache of unmanaged pages to be used for pvo entries for
332 * unmanaged pages.
333 */
334 struct pvo_page {
335 SIMPLEQ_ENTRY(pvo_page) pvop_link;
336 };
337 SIMPLEQ_HEAD(pvop_head, pvo_page);
338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
340 u_long pmap_upvop_free;
341 u_long pmap_upvop_maxfree;
342 u_long pmap_mpvop_free;
343 u_long pmap_mpvop_maxfree;
344
345 static void *pmap_pool_ualloc(struct pool *, int);
346 static void *pmap_pool_malloc(struct pool *, int);
347
348 static void pmap_pool_ufree(struct pool *, void *);
349 static void pmap_pool_mfree(struct pool *, void *);
350
351 static struct pool_allocator pmap_pool_mallocator = {
352 .pa_alloc = pmap_pool_malloc,
353 .pa_free = pmap_pool_mfree,
354 .pa_pagesz = 0,
355 };
356
357 static struct pool_allocator pmap_pool_uallocator = {
358 .pa_alloc = pmap_pool_ualloc,
359 .pa_free = pmap_pool_ufree,
360 .pa_pagesz = 0,
361 };
362
363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
364 void pmap_pte_print(volatile struct pte *);
365 void pmap_pteg_check(void);
366 void pmap_pteg_dist(void);
367 void pmap_print_pte(pmap_t, vaddr_t);
368 void pmap_print_mmuregs(void);
369 #endif
370
371 #if defined(DEBUG) || defined(PMAPCHECK)
372 #ifdef PMAPCHECK
373 int pmapcheck = 1;
374 #else
375 int pmapcheck = 0;
376 #endif
377 void pmap_pvo_verify(void);
378 static void pmap_pvo_check(const struct pvo_entry *);
379 #define PMAP_PVO_CHECK(pvo) \
380 do { \
381 if (pmapcheck) \
382 pmap_pvo_check(pvo); \
383 } while (0)
384 #else
385 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
386 #endif
387 static int pmap_pte_insert(int, struct pte *);
388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
389 vaddr_t, paddr_t, register_t, int);
390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
391 static void pmap_pvo_free(struct pvo_entry *);
392 static void pmap_pvo_free_list(struct pvo_head *);
393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
396 static void pvo_set_exec(struct pvo_entry *);
397 static void pvo_clear_exec(struct pvo_entry *);
398
399 static void tlbia(void);
400
401 static void pmap_release(pmap_t);
402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
403
404 static uint32_t pmap_pvo_reclaim_nextidx;
405 #ifdef DEBUG
406 static int pmap_pvo_reclaim_debugctr;
407 #endif
408
409 #define VSID_NBPW (sizeof(uint32_t) * 8)
410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
411
412 static int pmap_initialized;
413
414 #if defined(DEBUG) || defined(PMAPDEBUG)
415 #define PMAPDEBUG_BOOT 0x0001
416 #define PMAPDEBUG_PTE 0x0002
417 #define PMAPDEBUG_EXEC 0x0008
418 #define PMAPDEBUG_PVOENTER 0x0010
419 #define PMAPDEBUG_PVOREMOVE 0x0020
420 #define PMAPDEBUG_ACTIVATE 0x0100
421 #define PMAPDEBUG_CREATE 0x0200
422 #define PMAPDEBUG_ENTER 0x1000
423 #define PMAPDEBUG_KENTER 0x2000
424 #define PMAPDEBUG_KREMOVE 0x4000
425 #define PMAPDEBUG_REMOVE 0x8000
426
427 unsigned int pmapdebug = 0;
428
429 # define DPRINTF(x) printf x
430 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
431 #else
432 # define DPRINTF(x)
433 # define DPRINTFN(n, x)
434 #endif
435
436
437 #ifdef PMAPCOUNTERS
438 /*
439 * From pmap_subr.c
440 */
441 extern struct evcnt pmap_evcnt_mappings;
442 extern struct evcnt pmap_evcnt_unmappings;
443
444 extern struct evcnt pmap_evcnt_kernel_mappings;
445 extern struct evcnt pmap_evcnt_kernel_unmappings;
446
447 extern struct evcnt pmap_evcnt_mappings_replaced;
448
449 extern struct evcnt pmap_evcnt_exec_mappings;
450 extern struct evcnt pmap_evcnt_exec_cached;
451
452 extern struct evcnt pmap_evcnt_exec_synced;
453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
455
456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
461
462 extern struct evcnt pmap_evcnt_updates;
463 extern struct evcnt pmap_evcnt_collects;
464 extern struct evcnt pmap_evcnt_copies;
465
466 extern struct evcnt pmap_evcnt_ptes_spilled;
467 extern struct evcnt pmap_evcnt_ptes_unspilled;
468 extern struct evcnt pmap_evcnt_ptes_evicted;
469
470 extern struct evcnt pmap_evcnt_ptes_primary[8];
471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
472 extern struct evcnt pmap_evcnt_ptes_removed;
473 extern struct evcnt pmap_evcnt_ptes_changed;
474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
475 extern struct evcnt pmap_evcnt_pvos_failed;
476
477 extern struct evcnt pmap_evcnt_zeroed_pages;
478 extern struct evcnt pmap_evcnt_copied_pages;
479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
480
481 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
482 #define PMAPCOUNT2(ev) ((ev).ev_count++)
483 #else
484 #define PMAPCOUNT(ev) ((void) 0)
485 #define PMAPCOUNT2(ev) ((void) 0)
486 #endif
487
488 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
489
490 /* XXXSL: this needs to be moved to assembler */
491 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
492
493 #define TLBSYNC() __asm volatile("tlbsync")
494 #define SYNC() __asm volatile("sync")
495 #define EIEIO() __asm volatile("eieio")
496 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
497 #define MFMSR() mfmsr()
498 #define MTMSR(psl) mtmsr(psl)
499 #define MFPVR() mfpvr()
500 #define MFSRIN(va) mfsrin(va)
501 #define MFTB() mfrtcltbl()
502
503 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
504 static inline register_t
505 mfsrin(vaddr_t va)
506 {
507 register_t sr;
508 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
509 return sr;
510 }
511 #endif /* PMAP_OEA*/
512
513 #if defined (PMAP_OEA64_BRIDGE)
514 extern void mfmsr64 (register64_t *result);
515 #endif /* PMAP_OEA64_BRIDGE */
516
517 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
518 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
519
520 static inline register_t
521 pmap_interrupts_off(void)
522 {
523 register_t msr = MFMSR();
524 if (msr & PSL_EE)
525 MTMSR(msr & ~PSL_EE);
526 return msr;
527 }
528
529 static void
530 pmap_interrupts_restore(register_t msr)
531 {
532 if (msr & PSL_EE)
533 MTMSR(msr);
534 }
535
536 static inline u_int32_t
537 mfrtcltbl(void)
538 {
539 #ifdef PPC_OEA601
540 if ((MFPVR() >> 16) == MPC601)
541 return (mfrtcl() >> 7);
542 else
543 #endif
544 return (mftbl());
545 }
546
547 /*
548 * These small routines may have to be replaced,
549 * if/when we support processors other that the 604.
550 */
551
552 void
553 tlbia(void)
554 {
555 char *i;
556
557 SYNC();
558 #if defined(PMAP_OEA)
559 /*
560 * Why not use "tlbia"? Because not all processors implement it.
561 *
562 * This needs to be a per-CPU callback to do the appropriate thing
563 * for the CPU. XXX
564 */
565 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
566 TLBIE(i);
567 EIEIO();
568 SYNC();
569 }
570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
571 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
572 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
573 TLBIEL(i);
574 EIEIO();
575 SYNC();
576 }
577 #endif
578 TLBSYNC();
579 SYNC();
580 }
581
582 static inline register_t
583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
584 {
585 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
586 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
587 #else /* PMAP_OEA64 */
588 #if 0
589 const struct ste *ste;
590 register_t hash;
591 int i;
592
593 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
594
595 /*
596 * Try the primary group first
597 */
598 ste = pm->pm_stes[hash].stes;
599 for (i = 0; i < 8; i++, ste++) {
600 if (ste->ste_hi & STE_V) &&
601 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
602 return ste;
603 }
604
605 /*
606 * Then the secondary group.
607 */
608 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
609 for (i = 0; i < 8; i++, ste++) {
610 if (ste->ste_hi & STE_V) &&
611 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
612 return addr;
613 }
614
615 return NULL;
616 #else
617 /*
618 * Rather than searching the STE groups for the VSID, we know
619 * how we generate that from the ESID and so do that.
620 */
621 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
622 #endif
623 #endif /* PMAP_OEA */
624 }
625
626 static inline register_t
627 va_to_pteg(const struct pmap *pm, vaddr_t addr)
628 {
629 register_t hash;
630
631 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
632 return hash & pmap_pteg_mask;
633 }
634
635 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
636 /*
637 * Given a PTE in the page table, calculate the VADDR that hashes to it.
638 * The only bit of magic is that the top 4 bits of the address doesn't
639 * technically exist in the PTE. But we know we reserved 4 bits of the
640 * VSID for it so that's how we get it.
641 */
642 static vaddr_t
643 pmap_pte_to_va(volatile const struct pte *pt)
644 {
645 vaddr_t va;
646 uintptr_t ptaddr = (uintptr_t) pt;
647
648 if (pt->pte_hi & PTE_HID)
649 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
650
651 /* PPC Bits 10-19 PPC64 Bits 42-51 */
652 #if defined(PMAP_OEA)
653 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
654 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
655 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
656 #endif
657 va <<= ADDR_PIDX_SHFT;
658
659 /* PPC Bits 4-9 PPC64 Bits 36-41 */
660 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
661
662 #if defined(PMAP_OEA64)
663 /* PPC63 Bits 0-35 */
664 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
665 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
666 /* PPC Bits 0-3 */
667 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
668 #endif
669
670 return va;
671 }
672 #endif
673
674 static inline struct pvo_head *
675 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
676 {
677 struct vm_page *pg;
678 struct vm_page_md *md;
679
680 pg = PHYS_TO_VM_PAGE(pa);
681 if (pg_p != NULL)
682 *pg_p = pg;
683 if (pg == NULL)
684 return &pmap_pvo_unmanaged;
685 md = VM_PAGE_TO_MD(pg);
686 return &md->mdpg_pvoh;
687 }
688
689 static inline struct pvo_head *
690 vm_page_to_pvoh(struct vm_page *pg)
691 {
692 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
693
694 return &md->mdpg_pvoh;
695 }
696
697
698 static inline void
699 pmap_attr_clear(struct vm_page *pg, int ptebit)
700 {
701 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
702
703 md->mdpg_attrs &= ~ptebit;
704 }
705
706 static inline int
707 pmap_attr_fetch(struct vm_page *pg)
708 {
709 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
710
711 return md->mdpg_attrs;
712 }
713
714 static inline void
715 pmap_attr_save(struct vm_page *pg, int ptebit)
716 {
717 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
718
719 md->mdpg_attrs |= ptebit;
720 }
721
722 static inline int
723 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
724 {
725 if (pt->pte_hi == pvo_pt->pte_hi
726 #if 0
727 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
728 ~(PTE_REF|PTE_CHG)) == 0
729 #endif
730 )
731 return 1;
732 return 0;
733 }
734
735 static inline void
736 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
737 {
738 /*
739 * Construct the PTE. Default to IMB initially. Valid bit
740 * only gets set when the real pte is set in memory.
741 *
742 * Note: Don't set the valid bit for correct operation of tlb update.
743 */
744 #if defined(PMAP_OEA)
745 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
746 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
747 pt->pte_lo = pte_lo;
748 #elif defined (PMAP_OEA64_BRIDGE)
749 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
750 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
751 pt->pte_lo = (u_int64_t) pte_lo;
752 #elif defined (PMAP_OEA64)
753 #error PMAP_OEA64 not supported
754 #endif /* PMAP_OEA */
755 }
756
757 static inline void
758 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
759 {
760 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
761 }
762
763 static inline void
764 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
765 {
766 /*
767 * As shown in Section 7.6.3.2.3
768 */
769 pt->pte_lo &= ~ptebit;
770 TLBIE(va);
771 SYNC();
772 EIEIO();
773 TLBSYNC();
774 SYNC();
775 #ifdef MULTIPROCESSOR
776 DCBST(pt);
777 #endif
778 }
779
780 static inline void
781 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
782 {
783 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
784 if (pvo_pt->pte_hi & PTE_VALID)
785 panic("pte_set: setting an already valid pte %p", pvo_pt);
786 #endif
787 pvo_pt->pte_hi |= PTE_VALID;
788
789 /*
790 * Update the PTE as defined in section 7.6.3.1
791 * Note that the REF/CHG bits are from pvo_pt and thus should
792 * have been saved so this routine can restore them (if desired).
793 */
794 pt->pte_lo = pvo_pt->pte_lo;
795 EIEIO();
796 pt->pte_hi = pvo_pt->pte_hi;
797 TLBSYNC();
798 SYNC();
799 #ifdef MULTIPROCESSOR
800 DCBST(pt);
801 #endif
802 pmap_pte_valid++;
803 }
804
805 static inline void
806 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
807 {
808 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
809 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
810 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
811 if ((pt->pte_hi & PTE_VALID) == 0)
812 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
813 #endif
814
815 pvo_pt->pte_hi &= ~PTE_VALID;
816 /*
817 * Force the ref & chg bits back into the PTEs.
818 */
819 SYNC();
820 /*
821 * Invalidate the pte ... (Section 7.6.3.3)
822 */
823 pt->pte_hi &= ~PTE_VALID;
824 SYNC();
825 TLBIE(va);
826 SYNC();
827 EIEIO();
828 TLBSYNC();
829 SYNC();
830 /*
831 * Save the ref & chg bits ...
832 */
833 pmap_pte_synch(pt, pvo_pt);
834 pmap_pte_valid--;
835 }
836
837 static inline void
838 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
839 {
840 /*
841 * Invalidate the PTE
842 */
843 pmap_pte_unset(pt, pvo_pt, va);
844 pmap_pte_set(pt, pvo_pt);
845 }
846
847 /*
848 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
849 * (either primary or secondary location).
850 *
851 * Note: both the destination and source PTEs must not have PTE_VALID set.
852 */
853
854 static int
855 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
856 {
857 volatile struct pte *pt;
858 int i;
859
860 #if defined(DEBUG)
861 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
862 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
863 #endif
864 /*
865 * First try primary hash.
866 */
867 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
868 if ((pt->pte_hi & PTE_VALID) == 0) {
869 pvo_pt->pte_hi &= ~PTE_HID;
870 pmap_pte_set(pt, pvo_pt);
871 return i;
872 }
873 }
874
875 /*
876 * Now try secondary hash.
877 */
878 ptegidx ^= pmap_pteg_mask;
879 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
880 if ((pt->pte_hi & PTE_VALID) == 0) {
881 pvo_pt->pte_hi |= PTE_HID;
882 pmap_pte_set(pt, pvo_pt);
883 return i;
884 }
885 }
886 return -1;
887 }
888
889 /*
890 * Spill handler.
891 *
892 * Tries to spill a page table entry from the overflow area.
893 * This runs in either real mode (if dealing with a exception spill)
894 * or virtual mode when dealing with manually spilling one of the
895 * kernel's pte entries. In either case, interrupts are already
896 * disabled.
897 */
898
899 int
900 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
901 {
902 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
903 struct pvo_entry *pvo;
904 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
905 struct pvo_tqhead *pvoh, *vpvoh = NULL;
906 int ptegidx, i, j;
907 volatile struct pteg *pteg;
908 volatile struct pte *pt;
909
910 PMAP_LOCK();
911
912 ptegidx = va_to_pteg(pm, addr);
913
914 /*
915 * Have to substitute some entry. Use the primary hash for this.
916 * Use low bits of timebase as random generator. Make sure we are
917 * not picking a kernel pte for replacement.
918 */
919 pteg = &pmap_pteg_table[ptegidx];
920 i = MFTB() & 7;
921 for (j = 0; j < 8; j++) {
922 pt = &pteg->pt[i];
923 if ((pt->pte_hi & PTE_VALID) == 0)
924 break;
925 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
926 < PHYSMAP_VSIDBITS)
927 break;
928 i = (i + 1) & 7;
929 }
930 KASSERT(j < 8);
931
932 source_pvo = NULL;
933 victim_pvo = NULL;
934 pvoh = &pmap_pvo_table[ptegidx];
935 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
936
937 /*
938 * We need to find pvo entry for this address...
939 */
940 PMAP_PVO_CHECK(pvo); /* sanity check */
941
942 /*
943 * If we haven't found the source and we come to a PVO with
944 * a valid PTE, then we know we can't find it because all
945 * evicted PVOs always are first in the list.
946 */
947 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
948 break;
949 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
950 addr == PVO_VADDR(pvo)) {
951
952 /*
953 * Now we have found the entry to be spilled into the
954 * pteg. Attempt to insert it into the page table.
955 */
956 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
957 if (j >= 0) {
958 PVO_PTEGIDX_SET(pvo, j);
959 PMAP_PVO_CHECK(pvo); /* sanity check */
960 PVO_WHERE(pvo, SPILL_INSERT);
961 pvo->pvo_pmap->pm_evictions--;
962 PMAPCOUNT(ptes_spilled);
963 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
964 ? pmap_evcnt_ptes_secondary
965 : pmap_evcnt_ptes_primary)[j]);
966
967 /*
968 * Since we keep the evicted entries at the
969 * from of the PVO list, we need move this
970 * (now resident) PVO after the evicted
971 * entries.
972 */
973 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
974
975 /*
976 * If we don't have to move (either we were the
977 * last entry or the next entry was valid),
978 * don't change our position. Otherwise
979 * move ourselves to the tail of the queue.
980 */
981 if (next_pvo != NULL &&
982 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
983 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
984 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
985 }
986 PMAP_UNLOCK();
987 return 1;
988 }
989 source_pvo = pvo;
990 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
991 return 0;
992 }
993 if (victim_pvo != NULL)
994 break;
995 }
996
997 /*
998 * We also need the pvo entry of the victim we are replacing
999 * so save the R & C bits of the PTE.
1000 */
1001 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1002 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1003 vpvoh = pvoh; /* *1* */
1004 victim_pvo = pvo;
1005 if (source_pvo != NULL)
1006 break;
1007 }
1008 }
1009
1010 if (source_pvo == NULL) {
1011 PMAPCOUNT(ptes_unspilled);
1012 PMAP_UNLOCK();
1013 return 0;
1014 }
1015
1016 if (victim_pvo == NULL) {
1017 if ((pt->pte_hi & PTE_HID) == 0)
1018 panic("pmap_pte_spill: victim p-pte (%p) has "
1019 "no pvo entry!", pt);
1020
1021 /*
1022 * If this is a secondary PTE, we need to search
1023 * its primary pvo bucket for the matching PVO.
1024 */
1025 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1026 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1027 PMAP_PVO_CHECK(pvo); /* sanity check */
1028
1029 /*
1030 * We also need the pvo entry of the victim we are
1031 * replacing so save the R & C bits of the PTE.
1032 */
1033 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1034 victim_pvo = pvo;
1035 break;
1036 }
1037 }
1038 if (victim_pvo == NULL)
1039 panic("pmap_pte_spill: victim s-pte (%p) has "
1040 "no pvo entry!", pt);
1041 }
1042
1043 /*
1044 * The victim should be not be a kernel PVO/PTE entry.
1045 */
1046 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1047 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1048 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1049
1050 /*
1051 * We are invalidating the TLB entry for the EA for the
1052 * we are replacing even though its valid; If we don't
1053 * we lose any ref/chg bit changes contained in the TLB
1054 * entry.
1055 */
1056 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1057
1058 /*
1059 * To enforce the PVO list ordering constraint that all
1060 * evicted entries should come before all valid entries,
1061 * move the source PVO to the tail of its list and the
1062 * victim PVO to the head of its list (which might not be
1063 * the same list, if the victim was using the secondary hash).
1064 */
1065 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1066 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1067 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1068 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1069 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1070 pmap_pte_set(pt, &source_pvo->pvo_pte);
1071 victim_pvo->pvo_pmap->pm_evictions++;
1072 source_pvo->pvo_pmap->pm_evictions--;
1073 PVO_WHERE(victim_pvo, SPILL_UNSET);
1074 PVO_WHERE(source_pvo, SPILL_SET);
1075
1076 PVO_PTEGIDX_CLR(victim_pvo);
1077 PVO_PTEGIDX_SET(source_pvo, i);
1078 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1079 PMAPCOUNT(ptes_spilled);
1080 PMAPCOUNT(ptes_evicted);
1081 PMAPCOUNT(ptes_removed);
1082
1083 PMAP_PVO_CHECK(victim_pvo);
1084 PMAP_PVO_CHECK(source_pvo);
1085
1086 PMAP_UNLOCK();
1087 return 1;
1088 }
1089
1090 /*
1091 * Restrict given range to physical memory
1092 */
1093 void
1094 pmap_real_memory(paddr_t *start, psize_t *size)
1095 {
1096 struct mem_region *mp;
1097
1098 for (mp = mem; mp->size; mp++) {
1099 if (*start + *size > mp->start
1100 && *start < mp->start + mp->size) {
1101 if (*start < mp->start) {
1102 *size -= mp->start - *start;
1103 *start = mp->start;
1104 }
1105 if (*start + *size > mp->start + mp->size)
1106 *size = mp->start + mp->size - *start;
1107 return;
1108 }
1109 }
1110 *size = 0;
1111 }
1112
1113 /*
1114 * Initialize anything else for pmap handling.
1115 * Called during vm_init().
1116 */
1117 void
1118 pmap_init(void)
1119 {
1120 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1121 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1122 &pmap_pool_mallocator, IPL_NONE);
1123
1124 pool_setlowat(&pmap_mpvo_pool, 1008);
1125
1126 pmap_initialized = 1;
1127
1128 }
1129
1130 /*
1131 * How much virtual space does the kernel get?
1132 */
1133 void
1134 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1135 {
1136 /*
1137 * For now, reserve one segment (minus some overhead) for kernel
1138 * virtual memory
1139 */
1140 *start = VM_MIN_KERNEL_ADDRESS;
1141 *end = VM_MAX_KERNEL_ADDRESS;
1142 }
1143
1144 /*
1145 * Allocate, initialize, and return a new physical map.
1146 */
1147 pmap_t
1148 pmap_create(void)
1149 {
1150 pmap_t pm;
1151
1152 pm = pool_get(&pmap_pool, PR_WAITOK);
1153 memset((void *)pm, 0, sizeof *pm);
1154 pmap_pinit(pm);
1155
1156 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1157 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1158 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1159 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1160 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1161 pm,
1162 pm->pm_sr[0], pm->pm_sr[1],
1163 pm->pm_sr[2], pm->pm_sr[3],
1164 pm->pm_sr[4], pm->pm_sr[5],
1165 pm->pm_sr[6], pm->pm_sr[7],
1166 pm->pm_sr[8], pm->pm_sr[9],
1167 pm->pm_sr[10], pm->pm_sr[11],
1168 pm->pm_sr[12], pm->pm_sr[13],
1169 pm->pm_sr[14], pm->pm_sr[15]));
1170 return pm;
1171 }
1172
1173 /*
1174 * Initialize a preallocated and zeroed pmap structure.
1175 */
1176 void
1177 pmap_pinit(pmap_t pm)
1178 {
1179 register_t entropy = MFTB();
1180 register_t mask;
1181 int i;
1182
1183 /*
1184 * Allocate some segment registers for this pmap.
1185 */
1186 pm->pm_refs = 1;
1187 PMAP_LOCK();
1188 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1189 static register_t pmap_vsidcontext;
1190 register_t hash;
1191 unsigned int n;
1192
1193 /* Create a new value by multiplying by a prime adding in
1194 * entropy from the timebase register. This is to make the
1195 * VSID more random so that the PT Hash function collides
1196 * less often. (note that the prime causes gcc to do shifts
1197 * instead of a multiply)
1198 */
1199 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1200 hash = pmap_vsidcontext & (NPMAPS - 1);
1201 if (hash == 0) { /* 0 is special, avoid it */
1202 entropy += 0xbadf00d;
1203 continue;
1204 }
1205 n = hash >> 5;
1206 mask = 1L << (hash & (VSID_NBPW-1));
1207 hash = pmap_vsidcontext;
1208 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1209 /* anything free in this bucket? */
1210 if (~pmap_vsid_bitmap[n] == 0) {
1211 entropy = hash ^ (hash >> 16);
1212 continue;
1213 }
1214 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1215 mask = 1L << i;
1216 hash &= ~(VSID_NBPW-1);
1217 hash |= i;
1218 }
1219 hash &= PTE_VSID >> PTE_VSID_SHFT;
1220 pmap_vsid_bitmap[n] |= mask;
1221 pm->pm_vsid = hash;
1222 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1223 for (i = 0; i < 16; i++)
1224 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1225 SR_NOEXEC;
1226 #endif
1227 PMAP_UNLOCK();
1228 return;
1229 }
1230 PMAP_UNLOCK();
1231 panic("pmap_pinit: out of segments");
1232 }
1233
1234 /*
1235 * Add a reference to the given pmap.
1236 */
1237 void
1238 pmap_reference(pmap_t pm)
1239 {
1240 atomic_inc_uint(&pm->pm_refs);
1241 }
1242
1243 /*
1244 * Retire the given pmap from service.
1245 * Should only be called if the map contains no valid mappings.
1246 */
1247 void
1248 pmap_destroy(pmap_t pm)
1249 {
1250 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1251 pmap_release(pm);
1252 pool_put(&pmap_pool, pm);
1253 }
1254 }
1255
1256 /*
1257 * Release any resources held by the given physical map.
1258 * Called when a pmap initialized by pmap_pinit is being released.
1259 */
1260 void
1261 pmap_release(pmap_t pm)
1262 {
1263 int idx, mask;
1264
1265 KASSERT(pm->pm_stats.resident_count == 0);
1266 KASSERT(pm->pm_stats.wired_count == 0);
1267
1268 PMAP_LOCK();
1269 if (pm->pm_sr[0] == 0)
1270 panic("pmap_release");
1271 idx = pm->pm_vsid & (NPMAPS-1);
1272 mask = 1 << (idx % VSID_NBPW);
1273 idx /= VSID_NBPW;
1274
1275 KASSERT(pmap_vsid_bitmap[idx] & mask);
1276 pmap_vsid_bitmap[idx] &= ~mask;
1277 PMAP_UNLOCK();
1278 }
1279
1280 /*
1281 * Copy the range specified by src_addr/len
1282 * from the source map to the range dst_addr/len
1283 * in the destination map.
1284 *
1285 * This routine is only advisory and need not do anything.
1286 */
1287 void
1288 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1289 vsize_t len, vaddr_t src_addr)
1290 {
1291 PMAPCOUNT(copies);
1292 }
1293
1294 /*
1295 * Require that all active physical maps contain no
1296 * incorrect entries NOW.
1297 */
1298 void
1299 pmap_update(struct pmap *pmap)
1300 {
1301 PMAPCOUNT(updates);
1302 TLBSYNC();
1303 }
1304
1305 static inline int
1306 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1307 {
1308 int pteidx;
1309 /*
1310 * We can find the actual pte entry without searching by
1311 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1312 * and by noticing the HID bit.
1313 */
1314 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1315 if (pvo->pvo_pte.pte_hi & PTE_HID)
1316 pteidx ^= pmap_pteg_mask * 8;
1317 return pteidx;
1318 }
1319
1320 volatile struct pte *
1321 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1322 {
1323 volatile struct pte *pt;
1324
1325 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1326 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1327 return NULL;
1328 #endif
1329
1330 /*
1331 * If we haven't been supplied the ptegidx, calculate it.
1332 */
1333 if (pteidx == -1) {
1334 int ptegidx;
1335 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1336 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1337 }
1338
1339 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1340
1341 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1342 return pt;
1343 #else
1344 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1345 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1346 "pvo but no valid pte index", pvo);
1347 }
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1349 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1350 "pvo but no valid pte", pvo);
1351 }
1352
1353 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1354 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1355 #if defined(DEBUG) || defined(PMAPCHECK)
1356 pmap_pte_print(pt);
1357 #endif
1358 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1359 "pmap_pteg_table %p but invalid in pvo",
1360 pvo, pt);
1361 }
1362 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1363 #if defined(DEBUG) || defined(PMAPCHECK)
1364 pmap_pte_print(pt);
1365 #endif
1366 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1367 "not match pte %p in pmap_pteg_table",
1368 pvo, pt);
1369 }
1370 return pt;
1371 }
1372
1373 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1374 #if defined(DEBUG) || defined(PMAPCHECK)
1375 pmap_pte_print(pt);
1376 #endif
1377 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1378 "pmap_pteg_table but valid in pvo", pvo, pt);
1379 }
1380 return NULL;
1381 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1382 }
1383
1384 struct pvo_entry *
1385 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1386 {
1387 struct pvo_entry *pvo;
1388 int ptegidx;
1389
1390 va &= ~ADDR_POFF;
1391 ptegidx = va_to_pteg(pm, va);
1392
1393 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1394 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1395 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1396 panic("pmap_pvo_find_va: invalid pvo %p on "
1397 "list %#x (%p)", pvo, ptegidx,
1398 &pmap_pvo_table[ptegidx]);
1399 #endif
1400 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1401 if (pteidx_p)
1402 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1403 return pvo;
1404 }
1405 }
1406 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1407 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1408 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1409 return NULL;
1410 }
1411
1412 #if defined(DEBUG) || defined(PMAPCHECK)
1413 void
1414 pmap_pvo_check(const struct pvo_entry *pvo)
1415 {
1416 struct pvo_head *pvo_head;
1417 struct pvo_entry *pvo0;
1418 volatile struct pte *pt;
1419 int failed = 0;
1420
1421 PMAP_LOCK();
1422
1423 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1424 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1425
1426 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1427 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1428 pvo, pvo->pvo_pmap);
1429 failed = 1;
1430 }
1431
1432 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1433 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1434 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1435 pvo, TAILQ_NEXT(pvo, pvo_olink));
1436 failed = 1;
1437 }
1438
1439 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1440 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1441 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1442 pvo, LIST_NEXT(pvo, pvo_vlink));
1443 failed = 1;
1444 }
1445
1446 if (PVO_MANAGED_P(pvo)) {
1447 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1448 } else {
1449 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1450 printf("pmap_pvo_check: pvo %p: non kernel address "
1451 "on kernel unmanaged list\n", pvo);
1452 failed = 1;
1453 }
1454 pvo_head = &pmap_pvo_kunmanaged;
1455 }
1456 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1457 if (pvo0 == pvo)
1458 break;
1459 }
1460 if (pvo0 == NULL) {
1461 printf("pmap_pvo_check: pvo %p: not present "
1462 "on its vlist head %p\n", pvo, pvo_head);
1463 failed = 1;
1464 }
1465 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1466 printf("pmap_pvo_check: pvo %p: not present "
1467 "on its olist head\n", pvo);
1468 failed = 1;
1469 }
1470 pt = pmap_pvo_to_pte(pvo, -1);
1471 if (pt == NULL) {
1472 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1473 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1474 "no PTE\n", pvo);
1475 failed = 1;
1476 }
1477 } else {
1478 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1479 (uintptr_t) pt >=
1480 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1481 printf("pmap_pvo_check: pvo %p: pte %p not in "
1482 "pteg table\n", pvo, pt);
1483 failed = 1;
1484 }
1485 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1486 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1487 "no PTE\n", pvo);
1488 failed = 1;
1489 }
1490 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1491 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1492 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1493 pvo->pvo_pte.pte_hi,
1494 pt->pte_hi);
1495 failed = 1;
1496 }
1497 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1498 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1499 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1500 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1501 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1502 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1503 failed = 1;
1504 }
1505 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1506 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1507 " doesn't not match PVO's VA %#" _PRIxva "\n",
1508 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1509 failed = 1;
1510 }
1511 if (failed)
1512 pmap_pte_print(pt);
1513 }
1514 if (failed)
1515 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1516 pvo->pvo_pmap);
1517
1518 PMAP_UNLOCK();
1519 }
1520 #endif /* DEBUG || PMAPCHECK */
1521
1522 /*
1523 * Search the PVO table looking for a non-wired entry.
1524 * If we find one, remove it and return it.
1525 */
1526
1527 struct pvo_entry *
1528 pmap_pvo_reclaim(struct pmap *pm)
1529 {
1530 struct pvo_tqhead *pvoh;
1531 struct pvo_entry *pvo;
1532 uint32_t idx, endidx;
1533
1534 endidx = pmap_pvo_reclaim_nextidx;
1535 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1536 idx = (idx + 1) & pmap_pteg_mask) {
1537 pvoh = &pmap_pvo_table[idx];
1538 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1539 if (!PVO_WIRED_P(pvo)) {
1540 pmap_pvo_remove(pvo, -1, NULL);
1541 pmap_pvo_reclaim_nextidx = idx;
1542 PMAPCOUNT(pvos_reclaimed);
1543 return pvo;
1544 }
1545 }
1546 }
1547 return NULL;
1548 }
1549
1550 /*
1551 * This returns whether this is the first mapping of a page.
1552 */
1553 int
1554 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1555 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1556 {
1557 struct pvo_entry *pvo;
1558 struct pvo_tqhead *pvoh;
1559 register_t msr;
1560 int ptegidx;
1561 int i;
1562 int poolflags = PR_NOWAIT;
1563
1564 /*
1565 * Compute the PTE Group index.
1566 */
1567 va &= ~ADDR_POFF;
1568 ptegidx = va_to_pteg(pm, va);
1569
1570 msr = pmap_interrupts_off();
1571
1572 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1573 if (pmap_pvo_remove_depth > 0)
1574 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1575 if (++pmap_pvo_enter_depth > 1)
1576 panic("pmap_pvo_enter: called recursively!");
1577 #endif
1578
1579 /*
1580 * Remove any existing mapping for this page. Reuse the
1581 * pvo entry if there a mapping.
1582 */
1583 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1584 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1585 #ifdef DEBUG
1586 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1587 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1588 ~(PTE_REF|PTE_CHG)) == 0 &&
1589 va < VM_MIN_KERNEL_ADDRESS) {
1590 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1591 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1592 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1593 pvo->pvo_pte.pte_hi,
1594 pm->pm_sr[va >> ADDR_SR_SHFT]);
1595 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1596 #ifdef DDBX
1597 Debugger();
1598 #endif
1599 }
1600 #endif
1601 PMAPCOUNT(mappings_replaced);
1602 pmap_pvo_remove(pvo, -1, NULL);
1603 break;
1604 }
1605 }
1606
1607 /*
1608 * If we aren't overwriting an mapping, try to allocate
1609 */
1610 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1611 --pmap_pvo_enter_depth;
1612 #endif
1613 pmap_interrupts_restore(msr);
1614 if (pvo) {
1615 pmap_pvo_free(pvo);
1616 }
1617 pvo = pool_get(pl, poolflags);
1618
1619 #ifdef DEBUG
1620 /*
1621 * Exercise pmap_pvo_reclaim() a little.
1622 */
1623 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1624 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1625 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1626 pool_put(pl, pvo);
1627 pvo = NULL;
1628 }
1629 #endif
1630
1631 msr = pmap_interrupts_off();
1632 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1633 ++pmap_pvo_enter_depth;
1634 #endif
1635 if (pvo == NULL) {
1636 pvo = pmap_pvo_reclaim(pm);
1637 if (pvo == NULL) {
1638 if ((flags & PMAP_CANFAIL) == 0)
1639 panic("pmap_pvo_enter: failed");
1640 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1641 pmap_pvo_enter_depth--;
1642 #endif
1643 PMAPCOUNT(pvos_failed);
1644 pmap_interrupts_restore(msr);
1645 return ENOMEM;
1646 }
1647 }
1648
1649 pvo->pvo_vaddr = va;
1650 pvo->pvo_pmap = pm;
1651 pvo->pvo_vaddr &= ~ADDR_POFF;
1652 if (flags & VM_PROT_EXECUTE) {
1653 PMAPCOUNT(exec_mappings);
1654 pvo_set_exec(pvo);
1655 }
1656 if (flags & PMAP_WIRED)
1657 pvo->pvo_vaddr |= PVO_WIRED;
1658 if (pvo_head != &pmap_pvo_kunmanaged) {
1659 pvo->pvo_vaddr |= PVO_MANAGED;
1660 PMAPCOUNT(mappings);
1661 } else {
1662 PMAPCOUNT(kernel_mappings);
1663 }
1664 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1665
1666 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1667 if (PVO_WIRED_P(pvo))
1668 pvo->pvo_pmap->pm_stats.wired_count++;
1669 pvo->pvo_pmap->pm_stats.resident_count++;
1670 #if defined(DEBUG)
1671 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1672 DPRINTFN(PVOENTER,
1673 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1674 pvo, pm, va, pa));
1675 #endif
1676
1677 /*
1678 * We hope this succeeds but it isn't required.
1679 */
1680 pvoh = &pmap_pvo_table[ptegidx];
1681 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1682 if (i >= 0) {
1683 PVO_PTEGIDX_SET(pvo, i);
1684 PVO_WHERE(pvo, ENTER_INSERT);
1685 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1686 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1687 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1688
1689 } else {
1690 /*
1691 * Since we didn't have room for this entry (which makes it
1692 * and evicted entry), place it at the head of the list.
1693 */
1694 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1695 PMAPCOUNT(ptes_evicted);
1696 pm->pm_evictions++;
1697 /*
1698 * If this is a kernel page, make sure it's active.
1699 */
1700 if (pm == pmap_kernel()) {
1701 i = pmap_pte_spill(pm, va, false);
1702 KASSERT(i);
1703 }
1704 }
1705 PMAP_PVO_CHECK(pvo); /* sanity check */
1706 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1707 pmap_pvo_enter_depth--;
1708 #endif
1709 pmap_interrupts_restore(msr);
1710 return 0;
1711 }
1712
1713 static void
1714 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1715 {
1716 volatile struct pte *pt;
1717 int ptegidx;
1718
1719 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1720 if (++pmap_pvo_remove_depth > 1)
1721 panic("pmap_pvo_remove: called recursively!");
1722 #endif
1723
1724 /*
1725 * If we haven't been supplied the ptegidx, calculate it.
1726 */
1727 if (pteidx == -1) {
1728 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1729 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1730 } else {
1731 ptegidx = pteidx >> 3;
1732 if (pvo->pvo_pte.pte_hi & PTE_HID)
1733 ptegidx ^= pmap_pteg_mask;
1734 }
1735 PMAP_PVO_CHECK(pvo); /* sanity check */
1736
1737 /*
1738 * If there is an active pte entry, we need to deactivate it
1739 * (and save the ref & chg bits).
1740 */
1741 pt = pmap_pvo_to_pte(pvo, pteidx);
1742 if (pt != NULL) {
1743 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1744 PVO_WHERE(pvo, REMOVE);
1745 PVO_PTEGIDX_CLR(pvo);
1746 PMAPCOUNT(ptes_removed);
1747 } else {
1748 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1749 pvo->pvo_pmap->pm_evictions--;
1750 }
1751
1752 /*
1753 * Account for executable mappings.
1754 */
1755 if (PVO_EXECUTABLE_P(pvo))
1756 pvo_clear_exec(pvo);
1757
1758 /*
1759 * Update our statistics.
1760 */
1761 pvo->pvo_pmap->pm_stats.resident_count--;
1762 if (PVO_WIRED_P(pvo))
1763 pvo->pvo_pmap->pm_stats.wired_count--;
1764
1765 /*
1766 * Save the REF/CHG bits into their cache if the page is managed.
1767 */
1768 if (PVO_MANAGED_P(pvo)) {
1769 register_t ptelo = pvo->pvo_pte.pte_lo;
1770 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1771
1772 if (pg != NULL) {
1773 /*
1774 * If this page was changed and it is mapped exec,
1775 * invalidate it.
1776 */
1777 if ((ptelo & PTE_CHG) &&
1778 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1779 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1780 if (LIST_EMPTY(pvoh)) {
1781 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1782 "%#" _PRIxpa ": clear-exec]\n",
1783 VM_PAGE_TO_PHYS(pg)));
1784 pmap_attr_clear(pg, PTE_EXEC);
1785 PMAPCOUNT(exec_uncached_pvo_remove);
1786 } else {
1787 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1788 "%#" _PRIxpa ": syncicache]\n",
1789 VM_PAGE_TO_PHYS(pg)));
1790 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1791 PAGE_SIZE);
1792 PMAPCOUNT(exec_synced_pvo_remove);
1793 }
1794 }
1795
1796 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1797 }
1798 PMAPCOUNT(unmappings);
1799 } else {
1800 PMAPCOUNT(kernel_unmappings);
1801 }
1802
1803 /*
1804 * Remove the PVO from its lists and return it to the pool.
1805 */
1806 LIST_REMOVE(pvo, pvo_vlink);
1807 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1808 if (pvol) {
1809 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1810 }
1811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1812 pmap_pvo_remove_depth--;
1813 #endif
1814 }
1815
1816 void
1817 pmap_pvo_free(struct pvo_entry *pvo)
1818 {
1819
1820 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1821 }
1822
1823 void
1824 pmap_pvo_free_list(struct pvo_head *pvol)
1825 {
1826 struct pvo_entry *pvo, *npvo;
1827
1828 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1829 npvo = LIST_NEXT(pvo, pvo_vlink);
1830 LIST_REMOVE(pvo, pvo_vlink);
1831 pmap_pvo_free(pvo);
1832 }
1833 }
1834
1835 /*
1836 * Mark a mapping as executable.
1837 * If this is the first executable mapping in the segment,
1838 * clear the noexec flag.
1839 */
1840 static void
1841 pvo_set_exec(struct pvo_entry *pvo)
1842 {
1843 struct pmap *pm = pvo->pvo_pmap;
1844
1845 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1846 return;
1847 }
1848 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1849 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1850 {
1851 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1852 if (pm->pm_exec[sr]++ == 0) {
1853 pm->pm_sr[sr] &= ~SR_NOEXEC;
1854 }
1855 }
1856 #endif
1857 }
1858
1859 /*
1860 * Mark a mapping as non-executable.
1861 * If this was the last executable mapping in the segment,
1862 * set the noexec flag.
1863 */
1864 static void
1865 pvo_clear_exec(struct pvo_entry *pvo)
1866 {
1867 struct pmap *pm = pvo->pvo_pmap;
1868
1869 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1870 return;
1871 }
1872 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1873 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1874 {
1875 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1876 if (--pm->pm_exec[sr] == 0) {
1877 pm->pm_sr[sr] |= SR_NOEXEC;
1878 }
1879 }
1880 #endif
1881 }
1882
1883 /*
1884 * Insert physical page at pa into the given pmap at virtual address va.
1885 */
1886 int
1887 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1888 {
1889 struct mem_region *mp;
1890 struct pvo_head *pvo_head;
1891 struct vm_page *pg;
1892 struct pool *pl;
1893 register_t pte_lo;
1894 int error;
1895 u_int pvo_flags;
1896 u_int was_exec = 0;
1897
1898 PMAP_LOCK();
1899
1900 if (__predict_false(!pmap_initialized)) {
1901 pvo_head = &pmap_pvo_kunmanaged;
1902 pl = &pmap_upvo_pool;
1903 pvo_flags = 0;
1904 pg = NULL;
1905 was_exec = PTE_EXEC;
1906 } else {
1907 pvo_head = pa_to_pvoh(pa, &pg);
1908 pl = &pmap_mpvo_pool;
1909 pvo_flags = PVO_MANAGED;
1910 }
1911
1912 DPRINTFN(ENTER,
1913 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1914 pm, va, pa, prot, flags));
1915
1916 /*
1917 * If this is a managed page, and it's the first reference to the
1918 * page clear the execness of the page. Otherwise fetch the execness.
1919 */
1920 if (pg != NULL)
1921 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1922
1923 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1924
1925 /*
1926 * Assume the page is cache inhibited and access is guarded unless
1927 * it's in our available memory array. If it is in the memory array,
1928 * asssume it's in memory coherent memory.
1929 */
1930 if (flags & PMAP_MD_PREFETCHABLE) {
1931 pte_lo = 0;
1932 } else
1933 pte_lo = PTE_G;
1934
1935 if ((flags & PMAP_MD_NOCACHE) == 0) {
1936 for (mp = mem; mp->size; mp++) {
1937 if (pa >= mp->start && pa < mp->start + mp->size) {
1938 pte_lo = PTE_M;
1939 break;
1940 }
1941 }
1942 } else {
1943 pte_lo |= PTE_I;
1944 }
1945
1946 if (prot & VM_PROT_WRITE)
1947 pte_lo |= PTE_BW;
1948 else
1949 pte_lo |= PTE_BR;
1950
1951 /*
1952 * If this was in response to a fault, "pre-fault" the PTE's
1953 * changed/referenced bit appropriately.
1954 */
1955 if (flags & VM_PROT_WRITE)
1956 pte_lo |= PTE_CHG;
1957 if (flags & VM_PROT_ALL)
1958 pte_lo |= PTE_REF;
1959
1960 /*
1961 * We need to know if this page can be executable
1962 */
1963 flags |= (prot & VM_PROT_EXECUTE);
1964
1965 /*
1966 * Record mapping for later back-translation and pte spilling.
1967 * This will overwrite any existing mapping.
1968 */
1969 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1970
1971 /*
1972 * Flush the real page from the instruction cache if this page is
1973 * mapped executable and cacheable and has not been flushed since
1974 * the last time it was modified.
1975 */
1976 if (error == 0 &&
1977 (flags & VM_PROT_EXECUTE) &&
1978 (pte_lo & PTE_I) == 0 &&
1979 was_exec == 0) {
1980 DPRINTFN(ENTER, (" syncicache"));
1981 PMAPCOUNT(exec_synced);
1982 pmap_syncicache(pa, PAGE_SIZE);
1983 if (pg != NULL) {
1984 pmap_attr_save(pg, PTE_EXEC);
1985 PMAPCOUNT(exec_cached);
1986 #if defined(DEBUG) || defined(PMAPDEBUG)
1987 if (pmapdebug & PMAPDEBUG_ENTER)
1988 printf(" marked-as-exec");
1989 else if (pmapdebug & PMAPDEBUG_EXEC)
1990 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1991 VM_PAGE_TO_PHYS(pg));
1992
1993 #endif
1994 }
1995 }
1996
1997 DPRINTFN(ENTER, (": error=%d\n", error));
1998
1999 PMAP_UNLOCK();
2000
2001 return error;
2002 }
2003
2004 void
2005 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2006 {
2007 struct mem_region *mp;
2008 register_t pte_lo;
2009 int error;
2010
2011 #if defined (PMAP_OEA64_BRIDGE)
2012 if (va < VM_MIN_KERNEL_ADDRESS)
2013 panic("pmap_kenter_pa: attempt to enter "
2014 "non-kernel address %#" _PRIxva "!", va);
2015 #endif
2016
2017 DPRINTFN(KENTER,
2018 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2019
2020 PMAP_LOCK();
2021
2022 /*
2023 * Assume the page is cache inhibited and access is guarded unless
2024 * it's in our available memory array. If it is in the memory array,
2025 * asssume it's in memory coherent memory.
2026 */
2027 pte_lo = PTE_IG;
2028 if ((flags & PMAP_MD_NOCACHE) == 0) {
2029 for (mp = mem; mp->size; mp++) {
2030 if (pa >= mp->start && pa < mp->start + mp->size) {
2031 pte_lo = PTE_M;
2032 break;
2033 }
2034 }
2035 }
2036
2037 if (prot & VM_PROT_WRITE)
2038 pte_lo |= PTE_BW;
2039 else
2040 pte_lo |= PTE_BR;
2041
2042 /*
2043 * We don't care about REF/CHG on PVOs on the unmanaged list.
2044 */
2045 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2046 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2047
2048 if (error != 0)
2049 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2050 va, pa, error);
2051
2052 PMAP_UNLOCK();
2053 }
2054
2055 void
2056 pmap_kremove(vaddr_t va, vsize_t len)
2057 {
2058 if (va < VM_MIN_KERNEL_ADDRESS)
2059 panic("pmap_kremove: attempt to remove "
2060 "non-kernel address %#" _PRIxva "!", va);
2061
2062 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2063 pmap_remove(pmap_kernel(), va, va + len);
2064 }
2065
2066 /*
2067 * Remove the given range of mapping entries.
2068 */
2069 void
2070 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2071 {
2072 struct pvo_head pvol;
2073 struct pvo_entry *pvo;
2074 register_t msr;
2075 int pteidx;
2076
2077 PMAP_LOCK();
2078 LIST_INIT(&pvol);
2079 msr = pmap_interrupts_off();
2080 for (; va < endva; va += PAGE_SIZE) {
2081 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2082 if (pvo != NULL) {
2083 pmap_pvo_remove(pvo, pteidx, &pvol);
2084 }
2085 }
2086 pmap_interrupts_restore(msr);
2087 pmap_pvo_free_list(&pvol);
2088 PMAP_UNLOCK();
2089 }
2090
2091 /*
2092 * Get the physical page address for the given pmap/virtual address.
2093 */
2094 bool
2095 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2096 {
2097 struct pvo_entry *pvo;
2098 register_t msr;
2099
2100 PMAP_LOCK();
2101
2102 /*
2103 * If this is a kernel pmap lookup, also check the battable
2104 * and if we get a hit, translate the VA to a PA using the
2105 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2106 * that will wrap back to 0.
2107 */
2108 if (pm == pmap_kernel() &&
2109 (va < VM_MIN_KERNEL_ADDRESS ||
2110 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2111 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2112 #if defined (PMAP_OEA)
2113 #ifdef PPC_OEA601
2114 if ((MFPVR() >> 16) == MPC601) {
2115 register_t batu = battable[va >> 23].batu;
2116 register_t batl = battable[va >> 23].batl;
2117 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2118 if (BAT601_VALID_P(batl) &&
2119 BAT601_VA_MATCH_P(batu, batl, va)) {
2120 register_t mask =
2121 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2122 if (pap)
2123 *pap = (batl & mask) | (va & ~mask);
2124 PMAP_UNLOCK();
2125 return true;
2126 } else if (SR601_VALID_P(sr) &&
2127 SR601_PA_MATCH_P(sr, va)) {
2128 if (pap)
2129 *pap = va;
2130 PMAP_UNLOCK();
2131 return true;
2132 }
2133 } else
2134 #endif /* PPC_OEA601 */
2135 {
2136 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2137 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2138 register_t batl =
2139 battable[va >> ADDR_SR_SHFT].batl;
2140 register_t mask =
2141 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2142 if (pap)
2143 *pap = (batl & mask) | (va & ~mask);
2144 PMAP_UNLOCK();
2145 return true;
2146 }
2147 }
2148 return false;
2149 #elif defined (PMAP_OEA64_BRIDGE)
2150 if (va >= SEGMENT_LENGTH)
2151 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2152 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2153 else {
2154 if (pap)
2155 *pap = va;
2156 PMAP_UNLOCK();
2157 return true;
2158 }
2159 #elif defined (PMAP_OEA64)
2160 #error PPC_OEA64 not supported
2161 #endif /* PPC_OEA */
2162 }
2163
2164 msr = pmap_interrupts_off();
2165 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2166 if (pvo != NULL) {
2167 PMAP_PVO_CHECK(pvo); /* sanity check */
2168 if (pap)
2169 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2170 | (va & ADDR_POFF);
2171 }
2172 pmap_interrupts_restore(msr);
2173 PMAP_UNLOCK();
2174 return pvo != NULL;
2175 }
2176
2177 /*
2178 * Lower the protection on the specified range of this pmap.
2179 */
2180 void
2181 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2182 {
2183 struct pvo_entry *pvo;
2184 volatile struct pte *pt;
2185 register_t msr;
2186 int pteidx;
2187
2188 /*
2189 * Since this routine only downgrades protection, we should
2190 * always be called with at least one bit not set.
2191 */
2192 KASSERT(prot != VM_PROT_ALL);
2193
2194 /*
2195 * If there is no protection, this is equivalent to
2196 * remove the pmap from the pmap.
2197 */
2198 if ((prot & VM_PROT_READ) == 0) {
2199 pmap_remove(pm, va, endva);
2200 return;
2201 }
2202
2203 PMAP_LOCK();
2204
2205 msr = pmap_interrupts_off();
2206 for (; va < endva; va += PAGE_SIZE) {
2207 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2208 if (pvo == NULL)
2209 continue;
2210 PMAP_PVO_CHECK(pvo); /* sanity check */
2211
2212 /*
2213 * Revoke executable if asked to do so.
2214 */
2215 if ((prot & VM_PROT_EXECUTE) == 0)
2216 pvo_clear_exec(pvo);
2217
2218 #if 0
2219 /*
2220 * If the page is already read-only, no change
2221 * needs to be made.
2222 */
2223 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2224 continue;
2225 #endif
2226 /*
2227 * Grab the PTE pointer before we diddle with
2228 * the cached PTE copy.
2229 */
2230 pt = pmap_pvo_to_pte(pvo, pteidx);
2231 /*
2232 * Change the protection of the page.
2233 */
2234 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2235 pvo->pvo_pte.pte_lo |= PTE_BR;
2236
2237 /*
2238 * If the PVO is in the page table, update
2239 * that pte at well.
2240 */
2241 if (pt != NULL) {
2242 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2243 PVO_WHERE(pvo, PMAP_PROTECT);
2244 PMAPCOUNT(ptes_changed);
2245 }
2246
2247 PMAP_PVO_CHECK(pvo); /* sanity check */
2248 }
2249 pmap_interrupts_restore(msr);
2250 PMAP_UNLOCK();
2251 }
2252
2253 void
2254 pmap_unwire(pmap_t pm, vaddr_t va)
2255 {
2256 struct pvo_entry *pvo;
2257 register_t msr;
2258
2259 PMAP_LOCK();
2260 msr = pmap_interrupts_off();
2261 pvo = pmap_pvo_find_va(pm, va, NULL);
2262 if (pvo != NULL) {
2263 if (PVO_WIRED_P(pvo)) {
2264 pvo->pvo_vaddr &= ~PVO_WIRED;
2265 pm->pm_stats.wired_count--;
2266 }
2267 PMAP_PVO_CHECK(pvo); /* sanity check */
2268 }
2269 pmap_interrupts_restore(msr);
2270 PMAP_UNLOCK();
2271 }
2272
2273 /*
2274 * Lower the protection on the specified physical page.
2275 */
2276 void
2277 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2278 {
2279 struct pvo_head *pvo_head, pvol;
2280 struct pvo_entry *pvo, *next_pvo;
2281 volatile struct pte *pt;
2282 register_t msr;
2283
2284 PMAP_LOCK();
2285
2286 KASSERT(prot != VM_PROT_ALL);
2287 LIST_INIT(&pvol);
2288 msr = pmap_interrupts_off();
2289
2290 /*
2291 * When UVM reuses a page, it does a pmap_page_protect with
2292 * VM_PROT_NONE. At that point, we can clear the exec flag
2293 * since we know the page will have different contents.
2294 */
2295 if ((prot & VM_PROT_READ) == 0) {
2296 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2297 VM_PAGE_TO_PHYS(pg)));
2298 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2299 PMAPCOUNT(exec_uncached_page_protect);
2300 pmap_attr_clear(pg, PTE_EXEC);
2301 }
2302 }
2303
2304 pvo_head = vm_page_to_pvoh(pg);
2305 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2306 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2307 PMAP_PVO_CHECK(pvo); /* sanity check */
2308
2309 /*
2310 * Downgrading to no mapping at all, we just remove the entry.
2311 */
2312 if ((prot & VM_PROT_READ) == 0) {
2313 pmap_pvo_remove(pvo, -1, &pvol);
2314 continue;
2315 }
2316
2317 /*
2318 * If EXEC permission is being revoked, just clear the
2319 * flag in the PVO.
2320 */
2321 if ((prot & VM_PROT_EXECUTE) == 0)
2322 pvo_clear_exec(pvo);
2323
2324 /*
2325 * If this entry is already RO, don't diddle with the
2326 * page table.
2327 */
2328 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2329 PMAP_PVO_CHECK(pvo);
2330 continue;
2331 }
2332
2333 /*
2334 * Grab the PTE before the we diddle the bits so
2335 * pvo_to_pte can verify the pte contents are as
2336 * expected.
2337 */
2338 pt = pmap_pvo_to_pte(pvo, -1);
2339 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2340 pvo->pvo_pte.pte_lo |= PTE_BR;
2341 if (pt != NULL) {
2342 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2343 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2344 PMAPCOUNT(ptes_changed);
2345 }
2346 PMAP_PVO_CHECK(pvo); /* sanity check */
2347 }
2348 pmap_interrupts_restore(msr);
2349 pmap_pvo_free_list(&pvol);
2350
2351 PMAP_UNLOCK();
2352 }
2353
2354 /*
2355 * Activate the address space for the specified process. If the process
2356 * is the current process, load the new MMU context.
2357 */
2358 void
2359 pmap_activate(struct lwp *l)
2360 {
2361 struct pcb *pcb = lwp_getpcb(l);
2362 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2363
2364 DPRINTFN(ACTIVATE,
2365 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2366
2367 /*
2368 * XXX Normally performed in cpu_lwp_fork().
2369 */
2370 pcb->pcb_pm = pmap;
2371
2372 /*
2373 * In theory, the SR registers need only be valid on return
2374 * to user space wait to do them there.
2375 */
2376 if (l == curlwp) {
2377 /* Store pointer to new current pmap. */
2378 curpm = pmap;
2379 }
2380 }
2381
2382 /*
2383 * Deactivate the specified process's address space.
2384 */
2385 void
2386 pmap_deactivate(struct lwp *l)
2387 {
2388 }
2389
2390 bool
2391 pmap_query_bit(struct vm_page *pg, int ptebit)
2392 {
2393 struct pvo_entry *pvo;
2394 volatile struct pte *pt;
2395 register_t msr;
2396
2397 PMAP_LOCK();
2398
2399 if (pmap_attr_fetch(pg) & ptebit) {
2400 PMAP_UNLOCK();
2401 return true;
2402 }
2403
2404 msr = pmap_interrupts_off();
2405 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2406 PMAP_PVO_CHECK(pvo); /* sanity check */
2407 /*
2408 * See if we saved the bit off. If so cache, it and return
2409 * success.
2410 */
2411 if (pvo->pvo_pte.pte_lo & ptebit) {
2412 pmap_attr_save(pg, ptebit);
2413 PMAP_PVO_CHECK(pvo); /* sanity check */
2414 pmap_interrupts_restore(msr);
2415 PMAP_UNLOCK();
2416 return true;
2417 }
2418 }
2419 /*
2420 * No luck, now go thru the hard part of looking at the ptes
2421 * themselves. Sync so any pending REF/CHG bits are flushed
2422 * to the PTEs.
2423 */
2424 SYNC();
2425 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2426 PMAP_PVO_CHECK(pvo); /* sanity check */
2427 /*
2428 * See if this pvo have a valid PTE. If so, fetch the
2429 * REF/CHG bits from the valid PTE. If the appropriate
2430 * ptebit is set, cache, it and return success.
2431 */
2432 pt = pmap_pvo_to_pte(pvo, -1);
2433 if (pt != NULL) {
2434 pmap_pte_synch(pt, &pvo->pvo_pte);
2435 if (pvo->pvo_pte.pte_lo & ptebit) {
2436 pmap_attr_save(pg, ptebit);
2437 PMAP_PVO_CHECK(pvo); /* sanity check */
2438 pmap_interrupts_restore(msr);
2439 PMAP_UNLOCK();
2440 return true;
2441 }
2442 }
2443 }
2444 pmap_interrupts_restore(msr);
2445 PMAP_UNLOCK();
2446 return false;
2447 }
2448
2449 bool
2450 pmap_clear_bit(struct vm_page *pg, int ptebit)
2451 {
2452 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2453 struct pvo_entry *pvo;
2454 volatile struct pte *pt;
2455 register_t msr;
2456 int rv = 0;
2457
2458 PMAP_LOCK();
2459 msr = pmap_interrupts_off();
2460
2461 /*
2462 * Fetch the cache value
2463 */
2464 rv |= pmap_attr_fetch(pg);
2465
2466 /*
2467 * Clear the cached value.
2468 */
2469 pmap_attr_clear(pg, ptebit);
2470
2471 /*
2472 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2473 * can reset the right ones). Note that since the pvo entries and
2474 * list heads are accessed via BAT0 and are never placed in the
2475 * page table, we don't have to worry about further accesses setting
2476 * the REF/CHG bits.
2477 */
2478 SYNC();
2479
2480 /*
2481 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2482 * valid PTE. If so, clear the ptebit from the valid PTE.
2483 */
2484 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2485 PMAP_PVO_CHECK(pvo); /* sanity check */
2486 pt = pmap_pvo_to_pte(pvo, -1);
2487 if (pt != NULL) {
2488 /*
2489 * Only sync the PTE if the bit we are looking
2490 * for is not already set.
2491 */
2492 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2493 pmap_pte_synch(pt, &pvo->pvo_pte);
2494 /*
2495 * If the bit we are looking for was already set,
2496 * clear that bit in the pte.
2497 */
2498 if (pvo->pvo_pte.pte_lo & ptebit)
2499 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2500 }
2501 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2502 pvo->pvo_pte.pte_lo &= ~ptebit;
2503 PMAP_PVO_CHECK(pvo); /* sanity check */
2504 }
2505 pmap_interrupts_restore(msr);
2506
2507 /*
2508 * If we are clearing the modify bit and this page was marked EXEC
2509 * and the user of the page thinks the page was modified, then we
2510 * need to clean it from the icache if it's mapped or clear the EXEC
2511 * bit if it's not mapped. The page itself might not have the CHG
2512 * bit set if the modification was done via DMA to the page.
2513 */
2514 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2515 if (LIST_EMPTY(pvoh)) {
2516 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2517 VM_PAGE_TO_PHYS(pg)));
2518 pmap_attr_clear(pg, PTE_EXEC);
2519 PMAPCOUNT(exec_uncached_clear_modify);
2520 } else {
2521 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2522 VM_PAGE_TO_PHYS(pg)));
2523 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2524 PMAPCOUNT(exec_synced_clear_modify);
2525 }
2526 }
2527 PMAP_UNLOCK();
2528 return (rv & ptebit) != 0;
2529 }
2530
2531 void
2532 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2533 {
2534 struct pvo_entry *pvo;
2535 size_t offset = va & ADDR_POFF;
2536 int s;
2537
2538 PMAP_LOCK();
2539 s = splvm();
2540 while (len > 0) {
2541 size_t seglen = PAGE_SIZE - offset;
2542 if (seglen > len)
2543 seglen = len;
2544 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2545 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2546 pmap_syncicache(
2547 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2548 PMAP_PVO_CHECK(pvo);
2549 }
2550 va += seglen;
2551 len -= seglen;
2552 offset = 0;
2553 }
2554 splx(s);
2555 PMAP_UNLOCK();
2556 }
2557
2558 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2559 void
2560 pmap_pte_print(volatile struct pte *pt)
2561 {
2562 printf("PTE %p: ", pt);
2563
2564 #if defined(PMAP_OEA)
2565 /* High word: */
2566 printf("%#" _PRIxpte ": [", pt->pte_hi);
2567 #else
2568 printf("%#" _PRIxpte ": [", pt->pte_hi);
2569 #endif /* PMAP_OEA */
2570
2571 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2572 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2573
2574 printf("%#" _PRIxpte " %#" _PRIxpte "",
2575 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2576 pt->pte_hi & PTE_API);
2577 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2578 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2579 #else
2580 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2581 #endif /* PMAP_OEA */
2582
2583 /* Low word: */
2584 #if defined (PMAP_OEA)
2585 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2586 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2587 #else
2588 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2589 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2590 #endif
2591 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2592 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2593 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2594 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2595 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2596 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2597 switch (pt->pte_lo & PTE_PP) {
2598 case PTE_BR: printf("br]\n"); break;
2599 case PTE_BW: printf("bw]\n"); break;
2600 case PTE_SO: printf("so]\n"); break;
2601 case PTE_SW: printf("sw]\n"); break;
2602 }
2603 }
2604 #endif
2605
2606 #if defined(DDB)
2607 void
2608 pmap_pteg_check(void)
2609 {
2610 volatile struct pte *pt;
2611 int i;
2612 int ptegidx;
2613 u_int p_valid = 0;
2614 u_int s_valid = 0;
2615 u_int invalid = 0;
2616
2617 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2618 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2619 if (pt->pte_hi & PTE_VALID) {
2620 if (pt->pte_hi & PTE_HID)
2621 s_valid++;
2622 else
2623 {
2624 p_valid++;
2625 }
2626 } else
2627 invalid++;
2628 }
2629 }
2630 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2631 p_valid, p_valid, s_valid, s_valid,
2632 invalid, invalid);
2633 }
2634
2635 void
2636 pmap_print_mmuregs(void)
2637 {
2638 int i;
2639 u_int cpuvers;
2640 #ifndef PMAP_OEA64
2641 vaddr_t addr;
2642 register_t soft_sr[16];
2643 #endif
2644 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2645 struct bat soft_ibat[4];
2646 struct bat soft_dbat[4];
2647 #endif
2648 paddr_t sdr1;
2649
2650 cpuvers = MFPVR() >> 16;
2651 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2652 #ifndef PMAP_OEA64
2653 addr = 0;
2654 for (i = 0; i < 16; i++) {
2655 soft_sr[i] = MFSRIN(addr);
2656 addr += (1 << ADDR_SR_SHFT);
2657 }
2658 #endif
2659
2660 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2661 /* read iBAT (601: uBAT) registers */
2662 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2663 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2664 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2665 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2666 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2667 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2668 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2669 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2670
2671
2672 if (cpuvers != MPC601) {
2673 /* read dBAT registers */
2674 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2675 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2676 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2677 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2678 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2679 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2680 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2681 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2682 }
2683 #endif
2684
2685 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2686 #ifndef PMAP_OEA64
2687 printf("SR[]:\t");
2688 for (i = 0; i < 4; i++)
2689 printf("0x%08lx, ", soft_sr[i]);
2690 printf("\n\t");
2691 for ( ; i < 8; i++)
2692 printf("0x%08lx, ", soft_sr[i]);
2693 printf("\n\t");
2694 for ( ; i < 12; i++)
2695 printf("0x%08lx, ", soft_sr[i]);
2696 printf("\n\t");
2697 for ( ; i < 16; i++)
2698 printf("0x%08lx, ", soft_sr[i]);
2699 printf("\n");
2700 #endif
2701
2702 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2703 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2704 for (i = 0; i < 4; i++) {
2705 printf("0x%08lx 0x%08lx, ",
2706 soft_ibat[i].batu, soft_ibat[i].batl);
2707 if (i == 1)
2708 printf("\n\t");
2709 }
2710 if (cpuvers != MPC601) {
2711 printf("\ndBAT[]:\t");
2712 for (i = 0; i < 4; i++) {
2713 printf("0x%08lx 0x%08lx, ",
2714 soft_dbat[i].batu, soft_dbat[i].batl);
2715 if (i == 1)
2716 printf("\n\t");
2717 }
2718 }
2719 printf("\n");
2720 #endif /* PMAP_OEA... */
2721 }
2722
2723 void
2724 pmap_print_pte(pmap_t pm, vaddr_t va)
2725 {
2726 struct pvo_entry *pvo;
2727 volatile struct pte *pt;
2728 int pteidx;
2729
2730 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2731 if (pvo != NULL) {
2732 pt = pmap_pvo_to_pte(pvo, pteidx);
2733 if (pt != NULL) {
2734 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2735 va, pt,
2736 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2737 pt->pte_hi, pt->pte_lo);
2738 } else {
2739 printf("No valid PTE found\n");
2740 }
2741 } else {
2742 printf("Address not in pmap\n");
2743 }
2744 }
2745
2746 void
2747 pmap_pteg_dist(void)
2748 {
2749 struct pvo_entry *pvo;
2750 int ptegidx;
2751 int depth;
2752 int max_depth = 0;
2753 unsigned int depths[64];
2754
2755 memset(depths, 0, sizeof(depths));
2756 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2757 depth = 0;
2758 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2759 depth++;
2760 }
2761 if (depth > max_depth)
2762 max_depth = depth;
2763 if (depth > 63)
2764 depth = 63;
2765 depths[depth]++;
2766 }
2767
2768 for (depth = 0; depth < 64; depth++) {
2769 printf(" [%2d]: %8u", depth, depths[depth]);
2770 if ((depth & 3) == 3)
2771 printf("\n");
2772 if (depth == max_depth)
2773 break;
2774 }
2775 if ((depth & 3) != 3)
2776 printf("\n");
2777 printf("Max depth found was %d\n", max_depth);
2778 }
2779 #endif /* DEBUG */
2780
2781 #if defined(PMAPCHECK) || defined(DEBUG)
2782 void
2783 pmap_pvo_verify(void)
2784 {
2785 int ptegidx;
2786 int s;
2787
2788 s = splvm();
2789 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2790 struct pvo_entry *pvo;
2791 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2792 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2793 panic("pmap_pvo_verify: invalid pvo %p "
2794 "on list %#x", pvo, ptegidx);
2795 pmap_pvo_check(pvo);
2796 }
2797 }
2798 splx(s);
2799 }
2800 #endif /* PMAPCHECK */
2801
2802
2803 void *
2804 pmap_pool_ualloc(struct pool *pp, int flags)
2805 {
2806 struct pvo_page *pvop;
2807
2808 if (uvm.page_init_done != true) {
2809 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2810 }
2811
2812 PMAP_LOCK();
2813 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2814 if (pvop != NULL) {
2815 pmap_upvop_free--;
2816 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2817 PMAP_UNLOCK();
2818 return pvop;
2819 }
2820 PMAP_UNLOCK();
2821 return pmap_pool_malloc(pp, flags);
2822 }
2823
2824 void *
2825 pmap_pool_malloc(struct pool *pp, int flags)
2826 {
2827 struct pvo_page *pvop;
2828 struct vm_page *pg;
2829
2830 PMAP_LOCK();
2831 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2832 if (pvop != NULL) {
2833 pmap_mpvop_free--;
2834 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2835 PMAP_UNLOCK();
2836 return pvop;
2837 }
2838 PMAP_UNLOCK();
2839 again:
2840 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2841 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2842 if (__predict_false(pg == NULL)) {
2843 if (flags & PR_WAITOK) {
2844 uvm_wait("plpg");
2845 goto again;
2846 } else {
2847 return (0);
2848 }
2849 }
2850 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2851 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2852 }
2853
2854 void
2855 pmap_pool_ufree(struct pool *pp, void *va)
2856 {
2857 struct pvo_page *pvop;
2858 #if 0
2859 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2860 pmap_pool_mfree(va, size, tag);
2861 return;
2862 }
2863 #endif
2864 PMAP_LOCK();
2865 pvop = va;
2866 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2867 pmap_upvop_free++;
2868 if (pmap_upvop_free > pmap_upvop_maxfree)
2869 pmap_upvop_maxfree = pmap_upvop_free;
2870 PMAP_UNLOCK();
2871 }
2872
2873 void
2874 pmap_pool_mfree(struct pool *pp, void *va)
2875 {
2876 struct pvo_page *pvop;
2877
2878 PMAP_LOCK();
2879 pvop = va;
2880 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2881 pmap_mpvop_free++;
2882 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2883 pmap_mpvop_maxfree = pmap_mpvop_free;
2884 PMAP_UNLOCK();
2885 #if 0
2886 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2887 #endif
2888 }
2889
2890 /*
2891 * This routine in bootstraping to steal to-be-managed memory (which will
2892 * then be unmanaged). We use it to grab from the first 256MB for our
2893 * pmap needs and above 256MB for other stuff.
2894 */
2895 vaddr_t
2896 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2897 {
2898 vsize_t size;
2899 vaddr_t va;
2900 paddr_t pa = 0;
2901 int npgs, bank;
2902 struct vm_physseg *ps;
2903
2904 if (uvm.page_init_done == true)
2905 panic("pmap_steal_memory: called _after_ bootstrap");
2906
2907 *vstartp = VM_MIN_KERNEL_ADDRESS;
2908 *vendp = VM_MAX_KERNEL_ADDRESS;
2909
2910 size = round_page(vsize);
2911 npgs = atop(size);
2912
2913 /*
2914 * PA 0 will never be among those given to UVM so we can use it
2915 * to indicate we couldn't steal any memory.
2916 */
2917 for (bank = 0; bank < vm_nphysseg; bank++) {
2918 ps = VM_PHYSMEM_PTR(bank);
2919 if (ps->free_list == VM_FREELIST_FIRST256 &&
2920 ps->avail_end - ps->avail_start >= npgs) {
2921 pa = ptoa(ps->avail_start);
2922 break;
2923 }
2924 }
2925
2926 if (pa == 0)
2927 panic("pmap_steal_memory: no approriate memory to steal!");
2928
2929 ps->avail_start += npgs;
2930 ps->start += npgs;
2931
2932 /*
2933 * If we've used up all the pages in the segment, remove it and
2934 * compact the list.
2935 */
2936 if (ps->avail_start == ps->end) {
2937 /*
2938 * If this was the last one, then a very bad thing has occurred
2939 */
2940 if (--vm_nphysseg == 0)
2941 panic("pmap_steal_memory: out of memory!");
2942
2943 printf("pmap_steal_memory: consumed bank %d\n", bank);
2944 for (; bank < vm_nphysseg; bank++, ps++) {
2945 ps[0] = ps[1];
2946 }
2947 }
2948
2949 va = (vaddr_t) pa;
2950 memset((void *) va, 0, size);
2951 pmap_pages_stolen += npgs;
2952 #ifdef DEBUG
2953 if (pmapdebug && npgs > 1) {
2954 u_int cnt = 0;
2955 for (bank = 0; bank < vm_nphysseg; bank++) {
2956 ps = VM_PHYSMEM_PTR(bank);
2957 cnt += ps->avail_end - ps->avail_start;
2958 }
2959 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2960 npgs, pmap_pages_stolen, cnt);
2961 }
2962 #endif
2963
2964 return va;
2965 }
2966
2967 /*
2968 * Find a chuck of memory with right size and alignment.
2969 */
2970 paddr_t
2971 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2972 {
2973 struct mem_region *mp;
2974 paddr_t s, e;
2975 int i, j;
2976
2977 size = round_page(size);
2978
2979 DPRINTFN(BOOT,
2980 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2981 size, alignment, at_end));
2982
2983 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2984 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2985 alignment);
2986
2987 if (at_end) {
2988 if (alignment != PAGE_SIZE)
2989 panic("pmap_boot_find_memory: invalid ending "
2990 "alignment %#" _PRIxpa, alignment);
2991
2992 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2993 s = mp->start + mp->size - size;
2994 if (s >= mp->start && mp->size >= size) {
2995 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
2996 DPRINTFN(BOOT,
2997 ("pmap_boot_find_memory: b-avail[%d] start "
2998 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
2999 mp->start, mp->size));
3000 mp->size -= size;
3001 DPRINTFN(BOOT,
3002 ("pmap_boot_find_memory: a-avail[%d] start "
3003 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3004 mp->start, mp->size));
3005 return s;
3006 }
3007 }
3008 panic("pmap_boot_find_memory: no available memory");
3009 }
3010
3011 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3012 s = (mp->start + alignment - 1) & ~(alignment-1);
3013 e = s + size;
3014
3015 /*
3016 * Is the calculated region entirely within the region?
3017 */
3018 if (s < mp->start || e > mp->start + mp->size)
3019 continue;
3020
3021 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3022 if (s == mp->start) {
3023 /*
3024 * If the block starts at the beginning of region,
3025 * adjust the size & start. (the region may now be
3026 * zero in length)
3027 */
3028 DPRINTFN(BOOT,
3029 ("pmap_boot_find_memory: b-avail[%d] start "
3030 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3031 mp->start += size;
3032 mp->size -= size;
3033 DPRINTFN(BOOT,
3034 ("pmap_boot_find_memory: a-avail[%d] start "
3035 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3036 } else if (e == mp->start + mp->size) {
3037 /*
3038 * If the block starts at the beginning of region,
3039 * adjust only the size.
3040 */
3041 DPRINTFN(BOOT,
3042 ("pmap_boot_find_memory: b-avail[%d] start "
3043 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3044 mp->size -= size;
3045 DPRINTFN(BOOT,
3046 ("pmap_boot_find_memory: a-avail[%d] start "
3047 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3048 } else {
3049 /*
3050 * Block is in the middle of the region, so we
3051 * have to split it in two.
3052 */
3053 for (j = avail_cnt; j > i + 1; j--) {
3054 avail[j] = avail[j-1];
3055 }
3056 DPRINTFN(BOOT,
3057 ("pmap_boot_find_memory: b-avail[%d] start "
3058 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3059 mp[1].start = e;
3060 mp[1].size = mp[0].start + mp[0].size - e;
3061 mp[0].size = s - mp[0].start;
3062 avail_cnt++;
3063 for (; i < avail_cnt; i++) {
3064 DPRINTFN(BOOT,
3065 ("pmap_boot_find_memory: a-avail[%d] "
3066 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3067 avail[i].start, avail[i].size));
3068 }
3069 }
3070 KASSERT(s == (uintptr_t) s);
3071 return s;
3072 }
3073 panic("pmap_boot_find_memory: not enough memory for "
3074 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3075 }
3076
3077 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3078 #if defined (PMAP_OEA64_BRIDGE)
3079 int
3080 pmap_setup_segment0_map(int use_large_pages, ...)
3081 {
3082 vaddr_t va;
3083
3084 register_t pte_lo = 0x0;
3085 int ptegidx = 0, i = 0;
3086 struct pte pte;
3087 va_list ap;
3088
3089 /* Coherent + Supervisor RW, no user access */
3090 pte_lo = PTE_M;
3091
3092 /* XXXSL
3093 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3094 * these have to take priority.
3095 */
3096 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3097 ptegidx = va_to_pteg(pmap_kernel(), va);
3098 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3099 i = pmap_pte_insert(ptegidx, &pte);
3100 }
3101
3102 va_start(ap, use_large_pages);
3103 while (1) {
3104 paddr_t pa;
3105 size_t size;
3106
3107 va = va_arg(ap, vaddr_t);
3108
3109 if (va == 0)
3110 break;
3111
3112 pa = va_arg(ap, paddr_t);
3113 size = va_arg(ap, size_t);
3114
3115 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3116 #if 0
3117 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3118 #endif
3119 ptegidx = va_to_pteg(pmap_kernel(), va);
3120 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3121 i = pmap_pte_insert(ptegidx, &pte);
3122 }
3123 }
3124
3125 TLBSYNC();
3126 SYNC();
3127 return (0);
3128 }
3129 #endif /* PMAP_OEA64_BRIDGE */
3130
3131 /*
3132 * This is not part of the defined PMAP interface and is specific to the
3133 * PowerPC architecture. This is called during initppc, before the system
3134 * is really initialized.
3135 */
3136 void
3137 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3138 {
3139 struct mem_region *mp, tmp;
3140 paddr_t s, e;
3141 psize_t size;
3142 int i, j;
3143
3144 /*
3145 * Get memory.
3146 */
3147 mem_regions(&mem, &avail);
3148 #if defined(DEBUG)
3149 if (pmapdebug & PMAPDEBUG_BOOT) {
3150 printf("pmap_bootstrap: memory configuration:\n");
3151 for (mp = mem; mp->size; mp++) {
3152 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3153 mp->start, mp->size);
3154 }
3155 for (mp = avail; mp->size; mp++) {
3156 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3157 mp->start, mp->size);
3158 }
3159 }
3160 #endif
3161
3162 /*
3163 * Find out how much physical memory we have and in how many chunks.
3164 */
3165 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3166 if (mp->start >= pmap_memlimit)
3167 continue;
3168 if (mp->start + mp->size > pmap_memlimit) {
3169 size = pmap_memlimit - mp->start;
3170 physmem += btoc(size);
3171 } else {
3172 physmem += btoc(mp->size);
3173 }
3174 mem_cnt++;
3175 }
3176
3177 /*
3178 * Count the number of available entries.
3179 */
3180 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3181 avail_cnt++;
3182
3183 /*
3184 * Page align all regions.
3185 */
3186 kernelstart = trunc_page(kernelstart);
3187 kernelend = round_page(kernelend);
3188 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3189 s = round_page(mp->start);
3190 mp->size -= (s - mp->start);
3191 mp->size = trunc_page(mp->size);
3192 mp->start = s;
3193 e = mp->start + mp->size;
3194
3195 DPRINTFN(BOOT,
3196 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3197 i, mp->start, mp->size));
3198
3199 /*
3200 * Don't allow the end to run beyond our artificial limit
3201 */
3202 if (e > pmap_memlimit)
3203 e = pmap_memlimit;
3204
3205 /*
3206 * Is this region empty or strange? skip it.
3207 */
3208 if (e <= s) {
3209 mp->start = 0;
3210 mp->size = 0;
3211 continue;
3212 }
3213
3214 /*
3215 * Does this overlap the beginning of kernel?
3216 * Does extend past the end of the kernel?
3217 */
3218 else if (s < kernelstart && e > kernelstart) {
3219 if (e > kernelend) {
3220 avail[avail_cnt].start = kernelend;
3221 avail[avail_cnt].size = e - kernelend;
3222 avail_cnt++;
3223 }
3224 mp->size = kernelstart - s;
3225 }
3226 /*
3227 * Check whether this region overlaps the end of the kernel.
3228 */
3229 else if (s < kernelend && e > kernelend) {
3230 mp->start = kernelend;
3231 mp->size = e - kernelend;
3232 }
3233 /*
3234 * Look whether this regions is completely inside the kernel.
3235 * Nuke it if it does.
3236 */
3237 else if (s >= kernelstart && e <= kernelend) {
3238 mp->start = 0;
3239 mp->size = 0;
3240 }
3241 /*
3242 * If the user imposed a memory limit, enforce it.
3243 */
3244 else if (s >= pmap_memlimit) {
3245 mp->start = -PAGE_SIZE; /* let's know why */
3246 mp->size = 0;
3247 }
3248 else {
3249 mp->start = s;
3250 mp->size = e - s;
3251 }
3252 DPRINTFN(BOOT,
3253 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3254 i, mp->start, mp->size));
3255 }
3256
3257 /*
3258 * Move (and uncount) all the null return to the end.
3259 */
3260 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3261 if (mp->size == 0) {
3262 tmp = avail[i];
3263 avail[i] = avail[--avail_cnt];
3264 avail[avail_cnt] = avail[i];
3265 }
3266 }
3267
3268 /*
3269 * (Bubble)sort them into ascending order.
3270 */
3271 for (i = 0; i < avail_cnt; i++) {
3272 for (j = i + 1; j < avail_cnt; j++) {
3273 if (avail[i].start > avail[j].start) {
3274 tmp = avail[i];
3275 avail[i] = avail[j];
3276 avail[j] = tmp;
3277 }
3278 }
3279 }
3280
3281 /*
3282 * Make sure they don't overlap.
3283 */
3284 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3285 if (mp[0].start + mp[0].size > mp[1].start) {
3286 mp[0].size = mp[1].start - mp[0].start;
3287 }
3288 DPRINTFN(BOOT,
3289 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3290 i, mp->start, mp->size));
3291 }
3292 DPRINTFN(BOOT,
3293 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3294 i, mp->start, mp->size));
3295
3296 #ifdef PTEGCOUNT
3297 pmap_pteg_cnt = PTEGCOUNT;
3298 #else /* PTEGCOUNT */
3299
3300 pmap_pteg_cnt = 0x1000;
3301
3302 while (pmap_pteg_cnt < physmem)
3303 pmap_pteg_cnt <<= 1;
3304
3305 pmap_pteg_cnt >>= 1;
3306 #endif /* PTEGCOUNT */
3307
3308 #ifdef DEBUG
3309 DPRINTFN(BOOT,
3310 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3311 #endif
3312
3313 /*
3314 * Find suitably aligned memory for PTEG hash table.
3315 */
3316 size = pmap_pteg_cnt * sizeof(struct pteg);
3317 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3318
3319 #ifdef DEBUG
3320 DPRINTFN(BOOT,
3321 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3322 #endif
3323
3324
3325 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3326 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3327 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3328 pmap_pteg_table, size);
3329 #endif
3330
3331 memset(__UNVOLATILE(pmap_pteg_table), 0,
3332 pmap_pteg_cnt * sizeof(struct pteg));
3333 pmap_pteg_mask = pmap_pteg_cnt - 1;
3334
3335 /*
3336 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3337 * with pages. So we just steal them before giving them to UVM.
3338 */
3339 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3340 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3341 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3342 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3343 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3344 pmap_pvo_table, size);
3345 #endif
3346
3347 for (i = 0; i < pmap_pteg_cnt; i++)
3348 TAILQ_INIT(&pmap_pvo_table[i]);
3349
3350 #ifndef MSGBUFADDR
3351 /*
3352 * Allocate msgbuf in high memory.
3353 */
3354 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3355 #endif
3356
3357 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3358 paddr_t pfstart = atop(mp->start);
3359 paddr_t pfend = atop(mp->start + mp->size);
3360 if (mp->size == 0)
3361 continue;
3362 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3363 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3364 VM_FREELIST_FIRST256);
3365 } else if (mp->start >= SEGMENT_LENGTH) {
3366 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3367 VM_FREELIST_DEFAULT);
3368 } else {
3369 pfend = atop(SEGMENT_LENGTH);
3370 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3371 VM_FREELIST_FIRST256);
3372 pfstart = atop(SEGMENT_LENGTH);
3373 pfend = atop(mp->start + mp->size);
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_DEFAULT);
3376 }
3377 }
3378
3379 /*
3380 * Make sure kernel vsid is allocated as well as VSID 0.
3381 */
3382 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3383 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3384 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3385 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3386 pmap_vsid_bitmap[0] |= 1;
3387
3388 /*
3389 * Initialize kernel pmap and hardware.
3390 */
3391
3392 /* PMAP_OEA64_BRIDGE does support these instructions */
3393 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3394 for (i = 0; i < 16; i++) {
3395 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3396 __asm volatile ("mtsrin %0,%1"
3397 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3398 }
3399
3400 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3401 __asm volatile ("mtsr %0,%1"
3402 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3403 #ifdef KERNEL2_SR
3404 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3405 __asm volatile ("mtsr %0,%1"
3406 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3407 #endif
3408 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3409 #if defined (PMAP_OEA)
3410 for (i = 0; i < 16; i++) {
3411 if (iosrtable[i] & SR601_T) {
3412 pmap_kernel()->pm_sr[i] = iosrtable[i];
3413 __asm volatile ("mtsrin %0,%1"
3414 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3415 }
3416 }
3417 __asm volatile ("sync; mtsdr1 %0; isync"
3418 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3419 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3420 __asm __volatile ("sync; mtsdr1 %0; isync"
3421 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3422 #endif
3423 tlbia();
3424
3425 #ifdef ALTIVEC
3426 pmap_use_altivec = cpu_altivec;
3427 #endif
3428
3429 #ifdef DEBUG
3430 if (pmapdebug & PMAPDEBUG_BOOT) {
3431 u_int cnt;
3432 int bank;
3433 char pbuf[9];
3434 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3435 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3436 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3437 bank,
3438 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3439 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3440 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3441 }
3442 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3443 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3444 pbuf, cnt);
3445 }
3446 #endif
3447
3448 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3449 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3450 &pmap_pool_uallocator, IPL_VM);
3451
3452 pool_setlowat(&pmap_upvo_pool, 252);
3453
3454 pool_init(&pmap_pool, sizeof(struct pmap),
3455 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3456 IPL_NONE);
3457
3458 #if defined(PMAP_NEED_MAPKERNEL) || 1
3459 {
3460 struct pmap *pm = pmap_kernel();
3461 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3462 extern int etext[], kernel_text[];
3463 vaddr_t va, va_etext = (paddr_t) etext;
3464 #endif
3465 paddr_t pa, pa_end;
3466 register_t sr;
3467 struct pte pt;
3468 unsigned int ptegidx;
3469 int bank;
3470
3471 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3472 pm->pm_sr[0] = sr;
3473
3474 for (bank = 0; bank < vm_nphysseg; bank++) {
3475 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3476 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3477 for (; pa < pa_end; pa += PAGE_SIZE) {
3478 ptegidx = va_to_pteg(pm, pa);
3479 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3480 pmap_pte_insert(ptegidx, &pt);
3481 }
3482 }
3483
3484 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3485 va = (vaddr_t) kernel_text;
3486
3487 for (pa = kernelstart; va < va_etext;
3488 pa += PAGE_SIZE, va += PAGE_SIZE) {
3489 ptegidx = va_to_pteg(pm, va);
3490 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3491 pmap_pte_insert(ptegidx, &pt);
3492 }
3493
3494 for (; pa < kernelend;
3495 pa += PAGE_SIZE, va += PAGE_SIZE) {
3496 ptegidx = va_to_pteg(pm, va);
3497 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3498 pmap_pte_insert(ptegidx, &pt);
3499 }
3500
3501 for (va = 0, pa = 0; va < kernelstart;
3502 pa += PAGE_SIZE, va += PAGE_SIZE) {
3503 ptegidx = va_to_pteg(pm, va);
3504 if (va < 0x3000)
3505 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3506 else
3507 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3508 pmap_pte_insert(ptegidx, &pt);
3509 }
3510 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3511 pa += PAGE_SIZE, va += PAGE_SIZE) {
3512 ptegidx = va_to_pteg(pm, va);
3513 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3514 pmap_pte_insert(ptegidx, &pt);
3515 }
3516 #endif
3517
3518 __asm volatile ("mtsrin %0,%1"
3519 :: "r"(sr), "r"(kernelstart));
3520 }
3521 #endif
3522 }
3523
3524 u_int
3525 powerpc_mmap_flags(paddr_t pa)
3526 {
3527 u_int flags = PMAP_MD_NOCACHE;
3528
3529 if (pa & POWERPC_MMAP_FLAG_PREFETCHABLE)
3530 flags |= PMAP_MD_PREFETCHABLE;
3531 if (pa & POWERPC_MMAP_FLAG_CACHEABLE)
3532 flags &= ~PMAP_MD_NOCACHE;
3533 return flags;
3534 }
3535
3536