Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.77
      1 /*	$NetBSD: pmap.c,v 1.77 2011/02/15 19:39:12 macallan Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.77 2011/02/15 19:39:12 macallan Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 #include <sys/atomic.h>
     83 
     84 #include <uvm/uvm.h>
     85 
     86 #include <machine/pcb.h>
     87 #include <machine/powerpc.h>
     88 #include <powerpc/spr.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/stdarg.h>
     91 #include <powerpc/oea/spr.h>
     92 #include <powerpc/oea/sr_601.h>
     93 
     94 #ifdef ALTIVEC
     95 int pmap_use_altivec;
     96 #endif
     97 
     98 volatile struct pteg *pmap_pteg_table;
     99 unsigned int pmap_pteg_cnt;
    100 unsigned int pmap_pteg_mask;
    101 #ifdef PMAP_MEMLIMIT
    102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    103 #else
    104 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    105 #endif
    106 
    107 struct pmap kernel_pmap_;
    108 unsigned int pmap_pages_stolen;
    109 u_long pmap_pte_valid;
    110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    111 u_long pmap_pvo_enter_depth;
    112 u_long pmap_pvo_remove_depth;
    113 #endif
    114 
    115 #ifndef MSGBUFADDR
    116 extern paddr_t msgbuf_paddr;
    117 #endif
    118 
    119 static struct mem_region *mem, *avail;
    120 static u_int mem_cnt, avail_cnt;
    121 
    122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    123 # define	PMAP_OEA 1
    124 #endif
    125 
    126 #if defined(PMAP_OEA)
    127 #define	_PRIxpte	"lx"
    128 #else
    129 #define	_PRIxpte	PRIx64
    130 #endif
    131 #define	_PRIxpa		"lx"
    132 #define	_PRIxva		"lx"
    133 #define	_PRIsr  	"lx"
    134 
    135 #ifdef PMAP_NEEDS_FIXUP
    136 #if defined(PMAP_OEA)
    137 #define	PMAPNAME(name)	pmap32_##name
    138 #elif defined(PMAP_OEA64)
    139 #define	PMAPNAME(name)	pmap64_##name
    140 #elif defined(PMAP_OEA64_BRIDGE)
    141 #define	PMAPNAME(name)	pmap64bridge_##name
    142 #else
    143 #error unknown variant for pmap
    144 #endif
    145 #endif /* PMAP_NEEDS_FIXUP */
    146 
    147 #ifdef PMAPNAME
    148 #define	STATIC			static
    149 #define pmap_pte_spill		PMAPNAME(pte_spill)
    150 #define pmap_real_memory	PMAPNAME(real_memory)
    151 #define pmap_init		PMAPNAME(init)
    152 #define pmap_virtual_space	PMAPNAME(virtual_space)
    153 #define pmap_create		PMAPNAME(create)
    154 #define pmap_reference		PMAPNAME(reference)
    155 #define pmap_destroy		PMAPNAME(destroy)
    156 #define pmap_copy		PMAPNAME(copy)
    157 #define pmap_update		PMAPNAME(update)
    158 #define pmap_enter		PMAPNAME(enter)
    159 #define pmap_remove		PMAPNAME(remove)
    160 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    161 #define pmap_kremove		PMAPNAME(kremove)
    162 #define pmap_extract		PMAPNAME(extract)
    163 #define pmap_protect		PMAPNAME(protect)
    164 #define pmap_unwire		PMAPNAME(unwire)
    165 #define pmap_page_protect	PMAPNAME(page_protect)
    166 #define pmap_query_bit		PMAPNAME(query_bit)
    167 #define pmap_clear_bit		PMAPNAME(clear_bit)
    168 
    169 #define pmap_activate		PMAPNAME(activate)
    170 #define pmap_deactivate		PMAPNAME(deactivate)
    171 
    172 #define pmap_pinit		PMAPNAME(pinit)
    173 #define pmap_procwr		PMAPNAME(procwr)
    174 
    175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    176 #define pmap_pte_print		PMAPNAME(pte_print)
    177 #define pmap_pteg_check		PMAPNAME(pteg_check)
    178 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    179 #define pmap_print_pte		PMAPNAME(print_pte)
    180 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    181 #endif
    182 #if defined(DEBUG) || defined(PMAPCHECK)
    183 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    184 #define pmapcheck		PMAPNAME(check)
    185 #endif
    186 #if defined(DEBUG) || defined(PMAPDEBUG)
    187 #define pmapdebug		PMAPNAME(debug)
    188 #endif
    189 #define pmap_steal_memory	PMAPNAME(steal_memory)
    190 #define pmap_bootstrap		PMAPNAME(bootstrap)
    191 #else
    192 #define	STATIC			/* nothing */
    193 #endif /* PMAPNAME */
    194 
    195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    197 STATIC void pmap_init(void);
    198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    199 STATIC pmap_t pmap_create(void);
    200 STATIC void pmap_reference(pmap_t);
    201 STATIC void pmap_destroy(pmap_t);
    202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    203 STATIC void pmap_update(pmap_t);
    204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    207 STATIC void pmap_kremove(vaddr_t, vsize_t);
    208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    209 
    210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    211 STATIC void pmap_unwire(pmap_t, vaddr_t);
    212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    213 STATIC bool pmap_query_bit(struct vm_page *, int);
    214 STATIC bool pmap_clear_bit(struct vm_page *, int);
    215 
    216 STATIC void pmap_activate(struct lwp *);
    217 STATIC void pmap_deactivate(struct lwp *);
    218 
    219 STATIC void pmap_pinit(pmap_t pm);
    220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    221 
    222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    223 STATIC void pmap_pte_print(volatile struct pte *);
    224 STATIC void pmap_pteg_check(void);
    225 STATIC void pmap_print_mmuregs(void);
    226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    227 STATIC void pmap_pteg_dist(void);
    228 #endif
    229 #if defined(DEBUG) || defined(PMAPCHECK)
    230 STATIC void pmap_pvo_verify(void);
    231 #endif
    232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    234 
    235 #ifdef PMAPNAME
    236 const struct pmap_ops PMAPNAME(ops) = {
    237 	.pmapop_pte_spill = pmap_pte_spill,
    238 	.pmapop_real_memory = pmap_real_memory,
    239 	.pmapop_init = pmap_init,
    240 	.pmapop_virtual_space = pmap_virtual_space,
    241 	.pmapop_create = pmap_create,
    242 	.pmapop_reference = pmap_reference,
    243 	.pmapop_destroy = pmap_destroy,
    244 	.pmapop_copy = pmap_copy,
    245 	.pmapop_update = pmap_update,
    246 	.pmapop_enter = pmap_enter,
    247 	.pmapop_remove = pmap_remove,
    248 	.pmapop_kenter_pa = pmap_kenter_pa,
    249 	.pmapop_kremove = pmap_kremove,
    250 	.pmapop_extract = pmap_extract,
    251 	.pmapop_protect = pmap_protect,
    252 	.pmapop_unwire = pmap_unwire,
    253 	.pmapop_page_protect = pmap_page_protect,
    254 	.pmapop_query_bit = pmap_query_bit,
    255 	.pmapop_clear_bit = pmap_clear_bit,
    256 	.pmapop_activate = pmap_activate,
    257 	.pmapop_deactivate = pmap_deactivate,
    258 	.pmapop_pinit = pmap_pinit,
    259 	.pmapop_procwr = pmap_procwr,
    260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    261 	.pmapop_pte_print = pmap_pte_print,
    262 	.pmapop_pteg_check = pmap_pteg_check,
    263 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    264 	.pmapop_print_pte = pmap_print_pte,
    265 	.pmapop_pteg_dist = pmap_pteg_dist,
    266 #else
    267 	.pmapop_pte_print = NULL,
    268 	.pmapop_pteg_check = NULL,
    269 	.pmapop_print_mmuregs = NULL,
    270 	.pmapop_print_pte = NULL,
    271 	.pmapop_pteg_dist = NULL,
    272 #endif
    273 #if defined(DEBUG) || defined(PMAPCHECK)
    274 	.pmapop_pvo_verify = pmap_pvo_verify,
    275 #else
    276 	.pmapop_pvo_verify = NULL,
    277 #endif
    278 	.pmapop_steal_memory = pmap_steal_memory,
    279 	.pmapop_bootstrap = pmap_bootstrap,
    280 };
    281 #endif /* !PMAPNAME */
    282 
    283 /*
    284  * The following structure is aligned to 32 bytes
    285  */
    286 struct pvo_entry {
    287 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    288 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    289 	struct pte pvo_pte;			/* Prebuilt PTE */
    290 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    291 	vaddr_t pvo_vaddr;			/* VA of entry */
    292 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    293 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    294 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    295 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    296 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    297 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    298 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    299 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    300 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    301 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    302 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    303 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    304 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    305 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    306 #define	PVO_REMOVE		6		/* PVO has been removed */
    307 #define	PVO_WHERE_MASK		15
    308 #define	PVO_WHERE_SHFT		8
    309 } __attribute__ ((aligned (32)));
    310 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    311 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    312 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    313 #define	PVO_PTEGIDX_CLR(pvo)	\
    314 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    315 #define	PVO_PTEGIDX_SET(pvo,i)	\
    316 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    317 #define	PVO_WHERE(pvo,w)	\
    318 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    319 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    320 
    321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    322 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    325 
    326 struct pool pmap_pool;		/* pool for pmap structures */
    327 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    328 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    329 
    330 /*
    331  * We keep a cache of unmanaged pages to be used for pvo entries for
    332  * unmanaged pages.
    333  */
    334 struct pvo_page {
    335 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    336 };
    337 SIMPLEQ_HEAD(pvop_head, pvo_page);
    338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    340 u_long pmap_upvop_free;
    341 u_long pmap_upvop_maxfree;
    342 u_long pmap_mpvop_free;
    343 u_long pmap_mpvop_maxfree;
    344 
    345 static void *pmap_pool_ualloc(struct pool *, int);
    346 static void *pmap_pool_malloc(struct pool *, int);
    347 
    348 static void pmap_pool_ufree(struct pool *, void *);
    349 static void pmap_pool_mfree(struct pool *, void *);
    350 
    351 static struct pool_allocator pmap_pool_mallocator = {
    352 	.pa_alloc = pmap_pool_malloc,
    353 	.pa_free = pmap_pool_mfree,
    354 	.pa_pagesz = 0,
    355 };
    356 
    357 static struct pool_allocator pmap_pool_uallocator = {
    358 	.pa_alloc = pmap_pool_ualloc,
    359 	.pa_free = pmap_pool_ufree,
    360 	.pa_pagesz = 0,
    361 };
    362 
    363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    364 void pmap_pte_print(volatile struct pte *);
    365 void pmap_pteg_check(void);
    366 void pmap_pteg_dist(void);
    367 void pmap_print_pte(pmap_t, vaddr_t);
    368 void pmap_print_mmuregs(void);
    369 #endif
    370 
    371 #if defined(DEBUG) || defined(PMAPCHECK)
    372 #ifdef PMAPCHECK
    373 int pmapcheck = 1;
    374 #else
    375 int pmapcheck = 0;
    376 #endif
    377 void pmap_pvo_verify(void);
    378 static void pmap_pvo_check(const struct pvo_entry *);
    379 #define	PMAP_PVO_CHECK(pvo)	 		\
    380 	do {					\
    381 		if (pmapcheck)			\
    382 			pmap_pvo_check(pvo);	\
    383 	} while (0)
    384 #else
    385 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    386 #endif
    387 static int pmap_pte_insert(int, struct pte *);
    388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    389 	vaddr_t, paddr_t, register_t, int);
    390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    391 static void pmap_pvo_free(struct pvo_entry *);
    392 static void pmap_pvo_free_list(struct pvo_head *);
    393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    396 static void pvo_set_exec(struct pvo_entry *);
    397 static void pvo_clear_exec(struct pvo_entry *);
    398 
    399 static void tlbia(void);
    400 
    401 static void pmap_release(pmap_t);
    402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    403 
    404 static uint32_t pmap_pvo_reclaim_nextidx;
    405 #ifdef DEBUG
    406 static int pmap_pvo_reclaim_debugctr;
    407 #endif
    408 
    409 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    411 
    412 static int pmap_initialized;
    413 
    414 #if defined(DEBUG) || defined(PMAPDEBUG)
    415 #define	PMAPDEBUG_BOOT		0x0001
    416 #define	PMAPDEBUG_PTE		0x0002
    417 #define	PMAPDEBUG_EXEC		0x0008
    418 #define	PMAPDEBUG_PVOENTER	0x0010
    419 #define	PMAPDEBUG_PVOREMOVE	0x0020
    420 #define	PMAPDEBUG_ACTIVATE	0x0100
    421 #define	PMAPDEBUG_CREATE	0x0200
    422 #define	PMAPDEBUG_ENTER		0x1000
    423 #define	PMAPDEBUG_KENTER	0x2000
    424 #define	PMAPDEBUG_KREMOVE	0x4000
    425 #define	PMAPDEBUG_REMOVE	0x8000
    426 
    427 unsigned int pmapdebug = 0;
    428 
    429 # define DPRINTF(x)		printf x
    430 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    431 #else
    432 # define DPRINTF(x)
    433 # define DPRINTFN(n, x)
    434 #endif
    435 
    436 
    437 #ifdef PMAPCOUNTERS
    438 /*
    439  * From pmap_subr.c
    440  */
    441 extern struct evcnt pmap_evcnt_mappings;
    442 extern struct evcnt pmap_evcnt_unmappings;
    443 
    444 extern struct evcnt pmap_evcnt_kernel_mappings;
    445 extern struct evcnt pmap_evcnt_kernel_unmappings;
    446 
    447 extern struct evcnt pmap_evcnt_mappings_replaced;
    448 
    449 extern struct evcnt pmap_evcnt_exec_mappings;
    450 extern struct evcnt pmap_evcnt_exec_cached;
    451 
    452 extern struct evcnt pmap_evcnt_exec_synced;
    453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    455 
    456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    461 
    462 extern struct evcnt pmap_evcnt_updates;
    463 extern struct evcnt pmap_evcnt_collects;
    464 extern struct evcnt pmap_evcnt_copies;
    465 
    466 extern struct evcnt pmap_evcnt_ptes_spilled;
    467 extern struct evcnt pmap_evcnt_ptes_unspilled;
    468 extern struct evcnt pmap_evcnt_ptes_evicted;
    469 
    470 extern struct evcnt pmap_evcnt_ptes_primary[8];
    471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    472 extern struct evcnt pmap_evcnt_ptes_removed;
    473 extern struct evcnt pmap_evcnt_ptes_changed;
    474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    475 extern struct evcnt pmap_evcnt_pvos_failed;
    476 
    477 extern struct evcnt pmap_evcnt_zeroed_pages;
    478 extern struct evcnt pmap_evcnt_copied_pages;
    479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    480 
    481 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    482 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    483 #else
    484 #define	PMAPCOUNT(ev)	((void) 0)
    485 #define	PMAPCOUNT2(ev)	((void) 0)
    486 #endif
    487 
    488 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    489 
    490 /* XXXSL: this needs to be moved to assembler */
    491 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    492 
    493 #define	TLBSYNC()	__asm volatile("tlbsync")
    494 #define	SYNC()		__asm volatile("sync")
    495 #define	EIEIO()		__asm volatile("eieio")
    496 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    497 #define	MFMSR()		mfmsr()
    498 #define	MTMSR(psl)	mtmsr(psl)
    499 #define	MFPVR()		mfpvr()
    500 #define	MFSRIN(va)	mfsrin(va)
    501 #define	MFTB()		mfrtcltbl()
    502 
    503 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    504 static inline register_t
    505 mfsrin(vaddr_t va)
    506 {
    507 	register_t sr;
    508 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    509 	return sr;
    510 }
    511 #endif	/* PMAP_OEA*/
    512 
    513 #if defined (PMAP_OEA64_BRIDGE)
    514 extern void mfmsr64 (register64_t *result);
    515 #endif /* PMAP_OEA64_BRIDGE */
    516 
    517 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    518 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    519 
    520 static inline register_t
    521 pmap_interrupts_off(void)
    522 {
    523 	register_t msr = MFMSR();
    524 	if (msr & PSL_EE)
    525 		MTMSR(msr & ~PSL_EE);
    526 	return msr;
    527 }
    528 
    529 static void
    530 pmap_interrupts_restore(register_t msr)
    531 {
    532 	if (msr & PSL_EE)
    533 		MTMSR(msr);
    534 }
    535 
    536 static inline u_int32_t
    537 mfrtcltbl(void)
    538 {
    539 #ifdef PPC_OEA601
    540 	if ((MFPVR() >> 16) == MPC601)
    541 		return (mfrtcl() >> 7);
    542 	else
    543 #endif
    544 		return (mftbl());
    545 }
    546 
    547 /*
    548  * These small routines may have to be replaced,
    549  * if/when we support processors other that the 604.
    550  */
    551 
    552 void
    553 tlbia(void)
    554 {
    555 	char *i;
    556 
    557 	SYNC();
    558 #if defined(PMAP_OEA)
    559 	/*
    560 	 * Why not use "tlbia"?  Because not all processors implement it.
    561 	 *
    562 	 * This needs to be a per-CPU callback to do the appropriate thing
    563 	 * for the CPU. XXX
    564 	 */
    565 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    566 		TLBIE(i);
    567 		EIEIO();
    568 		SYNC();
    569 	}
    570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    571 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    572 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    573 		TLBIEL(i);
    574 		EIEIO();
    575 		SYNC();
    576 	}
    577 #endif
    578 	TLBSYNC();
    579 	SYNC();
    580 }
    581 
    582 static inline register_t
    583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    584 {
    585 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    586 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    587 #else /* PMAP_OEA64 */
    588 #if 0
    589 	const struct ste *ste;
    590 	register_t hash;
    591 	int i;
    592 
    593 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    594 
    595 	/*
    596 	 * Try the primary group first
    597 	 */
    598 	ste = pm->pm_stes[hash].stes;
    599 	for (i = 0; i < 8; i++, ste++) {
    600 		if (ste->ste_hi & STE_V) &&
    601 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    602 			return ste;
    603 	}
    604 
    605 	/*
    606 	 * Then the secondary group.
    607 	 */
    608 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    609 	for (i = 0; i < 8; i++, ste++) {
    610 		if (ste->ste_hi & STE_V) &&
    611 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    612 			return addr;
    613 	}
    614 
    615 	return NULL;
    616 #else
    617 	/*
    618 	 * Rather than searching the STE groups for the VSID, we know
    619 	 * how we generate that from the ESID and so do that.
    620 	 */
    621 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    622 #endif
    623 #endif /* PMAP_OEA */
    624 }
    625 
    626 static inline register_t
    627 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    628 {
    629 	register_t hash;
    630 
    631 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    632 	return hash & pmap_pteg_mask;
    633 }
    634 
    635 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    636 /*
    637  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    638  * The only bit of magic is that the top 4 bits of the address doesn't
    639  * technically exist in the PTE.  But we know we reserved 4 bits of the
    640  * VSID for it so that's how we get it.
    641  */
    642 static vaddr_t
    643 pmap_pte_to_va(volatile const struct pte *pt)
    644 {
    645 	vaddr_t va;
    646 	uintptr_t ptaddr = (uintptr_t) pt;
    647 
    648 	if (pt->pte_hi & PTE_HID)
    649 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    650 
    651 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    652 #if defined(PMAP_OEA)
    653 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    654 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    655 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    656 #endif
    657 	va <<= ADDR_PIDX_SHFT;
    658 
    659 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    660 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    661 
    662 #if defined(PMAP_OEA64)
    663 	/* PPC63 Bits 0-35 */
    664 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    665 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    666 	/* PPC Bits 0-3 */
    667 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    668 #endif
    669 
    670 	return va;
    671 }
    672 #endif
    673 
    674 static inline struct pvo_head *
    675 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    676 {
    677 	struct vm_page *pg;
    678 	struct vm_page_md *md;
    679 
    680 	pg = PHYS_TO_VM_PAGE(pa);
    681 	if (pg_p != NULL)
    682 		*pg_p = pg;
    683 	if (pg == NULL)
    684 		return &pmap_pvo_unmanaged;
    685 	md = VM_PAGE_TO_MD(pg);
    686 	return &md->mdpg_pvoh;
    687 }
    688 
    689 static inline struct pvo_head *
    690 vm_page_to_pvoh(struct vm_page *pg)
    691 {
    692 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    693 
    694 	return &md->mdpg_pvoh;
    695 }
    696 
    697 
    698 static inline void
    699 pmap_attr_clear(struct vm_page *pg, int ptebit)
    700 {
    701 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    702 
    703 	md->mdpg_attrs &= ~ptebit;
    704 }
    705 
    706 static inline int
    707 pmap_attr_fetch(struct vm_page *pg)
    708 {
    709 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    710 
    711 	return md->mdpg_attrs;
    712 }
    713 
    714 static inline void
    715 pmap_attr_save(struct vm_page *pg, int ptebit)
    716 {
    717 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    718 
    719 	md->mdpg_attrs |= ptebit;
    720 }
    721 
    722 static inline int
    723 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    724 {
    725 	if (pt->pte_hi == pvo_pt->pte_hi
    726 #if 0
    727 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    728 	        ~(PTE_REF|PTE_CHG)) == 0
    729 #endif
    730 	    )
    731 		return 1;
    732 	return 0;
    733 }
    734 
    735 static inline void
    736 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    737 {
    738 	/*
    739 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    740 	 * only gets set when the real pte is set in memory.
    741 	 *
    742 	 * Note: Don't set the valid bit for correct operation of tlb update.
    743 	 */
    744 #if defined(PMAP_OEA)
    745 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    746 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    747 	pt->pte_lo = pte_lo;
    748 #elif defined (PMAP_OEA64_BRIDGE)
    749 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    750 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    751 	pt->pte_lo = (u_int64_t) pte_lo;
    752 #elif defined (PMAP_OEA64)
    753 #error PMAP_OEA64 not supported
    754 #endif /* PMAP_OEA */
    755 }
    756 
    757 static inline void
    758 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    759 {
    760 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    761 }
    762 
    763 static inline void
    764 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    765 {
    766 	/*
    767 	 * As shown in Section 7.6.3.2.3
    768 	 */
    769 	pt->pte_lo &= ~ptebit;
    770 	TLBIE(va);
    771 	SYNC();
    772 	EIEIO();
    773 	TLBSYNC();
    774 	SYNC();
    775 #ifdef MULTIPROCESSOR
    776 	DCBST(pt);
    777 #endif
    778 }
    779 
    780 static inline void
    781 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    782 {
    783 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    784 	if (pvo_pt->pte_hi & PTE_VALID)
    785 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    786 #endif
    787 	pvo_pt->pte_hi |= PTE_VALID;
    788 
    789 	/*
    790 	 * Update the PTE as defined in section 7.6.3.1
    791 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    792 	 * have been saved so this routine can restore them (if desired).
    793 	 */
    794 	pt->pte_lo = pvo_pt->pte_lo;
    795 	EIEIO();
    796 	pt->pte_hi = pvo_pt->pte_hi;
    797 	TLBSYNC();
    798 	SYNC();
    799 #ifdef MULTIPROCESSOR
    800 	DCBST(pt);
    801 #endif
    802 	pmap_pte_valid++;
    803 }
    804 
    805 static inline void
    806 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    807 {
    808 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    809 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    810 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    811 	if ((pt->pte_hi & PTE_VALID) == 0)
    812 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    813 #endif
    814 
    815 	pvo_pt->pte_hi &= ~PTE_VALID;
    816 	/*
    817 	 * Force the ref & chg bits back into the PTEs.
    818 	 */
    819 	SYNC();
    820 	/*
    821 	 * Invalidate the pte ... (Section 7.6.3.3)
    822 	 */
    823 	pt->pte_hi &= ~PTE_VALID;
    824 	SYNC();
    825 	TLBIE(va);
    826 	SYNC();
    827 	EIEIO();
    828 	TLBSYNC();
    829 	SYNC();
    830 	/*
    831 	 * Save the ref & chg bits ...
    832 	 */
    833 	pmap_pte_synch(pt, pvo_pt);
    834 	pmap_pte_valid--;
    835 }
    836 
    837 static inline void
    838 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    839 {
    840 	/*
    841 	 * Invalidate the PTE
    842 	 */
    843 	pmap_pte_unset(pt, pvo_pt, va);
    844 	pmap_pte_set(pt, pvo_pt);
    845 }
    846 
    847 /*
    848  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    849  * (either primary or secondary location).
    850  *
    851  * Note: both the destination and source PTEs must not have PTE_VALID set.
    852  */
    853 
    854 static int
    855 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    856 {
    857 	volatile struct pte *pt;
    858 	int i;
    859 
    860 #if defined(DEBUG)
    861 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    862 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    863 #endif
    864 	/*
    865 	 * First try primary hash.
    866 	 */
    867 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    868 		if ((pt->pte_hi & PTE_VALID) == 0) {
    869 			pvo_pt->pte_hi &= ~PTE_HID;
    870 			pmap_pte_set(pt, pvo_pt);
    871 			return i;
    872 		}
    873 	}
    874 
    875 	/*
    876 	 * Now try secondary hash.
    877 	 */
    878 	ptegidx ^= pmap_pteg_mask;
    879 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    880 		if ((pt->pte_hi & PTE_VALID) == 0) {
    881 			pvo_pt->pte_hi |= PTE_HID;
    882 			pmap_pte_set(pt, pvo_pt);
    883 			return i;
    884 		}
    885 	}
    886 	return -1;
    887 }
    888 
    889 /*
    890  * Spill handler.
    891  *
    892  * Tries to spill a page table entry from the overflow area.
    893  * This runs in either real mode (if dealing with a exception spill)
    894  * or virtual mode when dealing with manually spilling one of the
    895  * kernel's pte entries.  In either case, interrupts are already
    896  * disabled.
    897  */
    898 
    899 int
    900 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    901 {
    902 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    903 	struct pvo_entry *pvo;
    904 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    905 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    906 	int ptegidx, i, j;
    907 	volatile struct pteg *pteg;
    908 	volatile struct pte *pt;
    909 
    910 	PMAP_LOCK();
    911 
    912 	ptegidx = va_to_pteg(pm, addr);
    913 
    914 	/*
    915 	 * Have to substitute some entry. Use the primary hash for this.
    916 	 * Use low bits of timebase as random generator.  Make sure we are
    917 	 * not picking a kernel pte for replacement.
    918 	 */
    919 	pteg = &pmap_pteg_table[ptegidx];
    920 	i = MFTB() & 7;
    921 	for (j = 0; j < 8; j++) {
    922 		pt = &pteg->pt[i];
    923 		if ((pt->pte_hi & PTE_VALID) == 0)
    924 			break;
    925 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    926 				< PHYSMAP_VSIDBITS)
    927 			break;
    928 		i = (i + 1) & 7;
    929 	}
    930 	KASSERT(j < 8);
    931 
    932 	source_pvo = NULL;
    933 	victim_pvo = NULL;
    934 	pvoh = &pmap_pvo_table[ptegidx];
    935 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    936 
    937 		/*
    938 		 * We need to find pvo entry for this address...
    939 		 */
    940 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    941 
    942 		/*
    943 		 * If we haven't found the source and we come to a PVO with
    944 		 * a valid PTE, then we know we can't find it because all
    945 		 * evicted PVOs always are first in the list.
    946 		 */
    947 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    948 			break;
    949 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    950 		    addr == PVO_VADDR(pvo)) {
    951 
    952 			/*
    953 			 * Now we have found the entry to be spilled into the
    954 			 * pteg.  Attempt to insert it into the page table.
    955 			 */
    956 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    957 			if (j >= 0) {
    958 				PVO_PTEGIDX_SET(pvo, j);
    959 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    960 				PVO_WHERE(pvo, SPILL_INSERT);
    961 				pvo->pvo_pmap->pm_evictions--;
    962 				PMAPCOUNT(ptes_spilled);
    963 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    964 				    ? pmap_evcnt_ptes_secondary
    965 				    : pmap_evcnt_ptes_primary)[j]);
    966 
    967 				/*
    968 				 * Since we keep the evicted entries at the
    969 				 * from of the PVO list, we need move this
    970 				 * (now resident) PVO after the evicted
    971 				 * entries.
    972 				 */
    973 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    974 
    975 				/*
    976 				 * If we don't have to move (either we were the
    977 				 * last entry or the next entry was valid),
    978 				 * don't change our position.  Otherwise
    979 				 * move ourselves to the tail of the queue.
    980 				 */
    981 				if (next_pvo != NULL &&
    982 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    983 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    984 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    985 				}
    986 				PMAP_UNLOCK();
    987 				return 1;
    988 			}
    989 			source_pvo = pvo;
    990 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    991 				return 0;
    992 			}
    993 			if (victim_pvo != NULL)
    994 				break;
    995 		}
    996 
    997 		/*
    998 		 * We also need the pvo entry of the victim we are replacing
    999 		 * so save the R & C bits of the PTE.
   1000 		 */
   1001 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1002 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1003 			vpvoh = pvoh;			/* *1* */
   1004 			victim_pvo = pvo;
   1005 			if (source_pvo != NULL)
   1006 				break;
   1007 		}
   1008 	}
   1009 
   1010 	if (source_pvo == NULL) {
   1011 		PMAPCOUNT(ptes_unspilled);
   1012 		PMAP_UNLOCK();
   1013 		return 0;
   1014 	}
   1015 
   1016 	if (victim_pvo == NULL) {
   1017 		if ((pt->pte_hi & PTE_HID) == 0)
   1018 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1019 			    "no pvo entry!", pt);
   1020 
   1021 		/*
   1022 		 * If this is a secondary PTE, we need to search
   1023 		 * its primary pvo bucket for the matching PVO.
   1024 		 */
   1025 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1026 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1027 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1028 
   1029 			/*
   1030 			 * We also need the pvo entry of the victim we are
   1031 			 * replacing so save the R & C bits of the PTE.
   1032 			 */
   1033 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1034 				victim_pvo = pvo;
   1035 				break;
   1036 			}
   1037 		}
   1038 		if (victim_pvo == NULL)
   1039 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1040 			    "no pvo entry!", pt);
   1041 	}
   1042 
   1043 	/*
   1044 	 * The victim should be not be a kernel PVO/PTE entry.
   1045 	 */
   1046 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1047 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1048 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1049 
   1050 	/*
   1051 	 * We are invalidating the TLB entry for the EA for the
   1052 	 * we are replacing even though its valid; If we don't
   1053 	 * we lose any ref/chg bit changes contained in the TLB
   1054 	 * entry.
   1055 	 */
   1056 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1057 
   1058 	/*
   1059 	 * To enforce the PVO list ordering constraint that all
   1060 	 * evicted entries should come before all valid entries,
   1061 	 * move the source PVO to the tail of its list and the
   1062 	 * victim PVO to the head of its list (which might not be
   1063 	 * the same list, if the victim was using the secondary hash).
   1064 	 */
   1065 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1066 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1067 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1068 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1069 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1070 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1071 	victim_pvo->pvo_pmap->pm_evictions++;
   1072 	source_pvo->pvo_pmap->pm_evictions--;
   1073 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1074 	PVO_WHERE(source_pvo, SPILL_SET);
   1075 
   1076 	PVO_PTEGIDX_CLR(victim_pvo);
   1077 	PVO_PTEGIDX_SET(source_pvo, i);
   1078 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1079 	PMAPCOUNT(ptes_spilled);
   1080 	PMAPCOUNT(ptes_evicted);
   1081 	PMAPCOUNT(ptes_removed);
   1082 
   1083 	PMAP_PVO_CHECK(victim_pvo);
   1084 	PMAP_PVO_CHECK(source_pvo);
   1085 
   1086 	PMAP_UNLOCK();
   1087 	return 1;
   1088 }
   1089 
   1090 /*
   1091  * Restrict given range to physical memory
   1092  */
   1093 void
   1094 pmap_real_memory(paddr_t *start, psize_t *size)
   1095 {
   1096 	struct mem_region *mp;
   1097 
   1098 	for (mp = mem; mp->size; mp++) {
   1099 		if (*start + *size > mp->start
   1100 		    && *start < mp->start + mp->size) {
   1101 			if (*start < mp->start) {
   1102 				*size -= mp->start - *start;
   1103 				*start = mp->start;
   1104 			}
   1105 			if (*start + *size > mp->start + mp->size)
   1106 				*size = mp->start + mp->size - *start;
   1107 			return;
   1108 		}
   1109 	}
   1110 	*size = 0;
   1111 }
   1112 
   1113 /*
   1114  * Initialize anything else for pmap handling.
   1115  * Called during vm_init().
   1116  */
   1117 void
   1118 pmap_init(void)
   1119 {
   1120 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1121 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1122 	    &pmap_pool_mallocator, IPL_NONE);
   1123 
   1124 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1125 
   1126 	pmap_initialized = 1;
   1127 
   1128 }
   1129 
   1130 /*
   1131  * How much virtual space does the kernel get?
   1132  */
   1133 void
   1134 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1135 {
   1136 	/*
   1137 	 * For now, reserve one segment (minus some overhead) for kernel
   1138 	 * virtual memory
   1139 	 */
   1140 	*start = VM_MIN_KERNEL_ADDRESS;
   1141 	*end = VM_MAX_KERNEL_ADDRESS;
   1142 }
   1143 
   1144 /*
   1145  * Allocate, initialize, and return a new physical map.
   1146  */
   1147 pmap_t
   1148 pmap_create(void)
   1149 {
   1150 	pmap_t pm;
   1151 
   1152 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1153 	memset((void *)pm, 0, sizeof *pm);
   1154 	pmap_pinit(pm);
   1155 
   1156 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1157 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1158 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1159 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1160 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1161 	    pm,
   1162 	    pm->pm_sr[0], pm->pm_sr[1],
   1163 	    pm->pm_sr[2], pm->pm_sr[3],
   1164 	    pm->pm_sr[4], pm->pm_sr[5],
   1165 	    pm->pm_sr[6], pm->pm_sr[7],
   1166 	    pm->pm_sr[8], pm->pm_sr[9],
   1167 	    pm->pm_sr[10], pm->pm_sr[11],
   1168 	    pm->pm_sr[12], pm->pm_sr[13],
   1169 	    pm->pm_sr[14], pm->pm_sr[15]));
   1170 	return pm;
   1171 }
   1172 
   1173 /*
   1174  * Initialize a preallocated and zeroed pmap structure.
   1175  */
   1176 void
   1177 pmap_pinit(pmap_t pm)
   1178 {
   1179 	register_t entropy = MFTB();
   1180 	register_t mask;
   1181 	int i;
   1182 
   1183 	/*
   1184 	 * Allocate some segment registers for this pmap.
   1185 	 */
   1186 	pm->pm_refs = 1;
   1187 	PMAP_LOCK();
   1188 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1189 		static register_t pmap_vsidcontext;
   1190 		register_t hash;
   1191 		unsigned int n;
   1192 
   1193 		/* Create a new value by multiplying by a prime adding in
   1194 		 * entropy from the timebase register.  This is to make the
   1195 		 * VSID more random so that the PT Hash function collides
   1196 		 * less often. (note that the prime causes gcc to do shifts
   1197 		 * instead of a multiply)
   1198 		 */
   1199 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1200 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1201 		if (hash == 0) {		/* 0 is special, avoid it */
   1202 			entropy += 0xbadf00d;
   1203 			continue;
   1204 		}
   1205 		n = hash >> 5;
   1206 		mask = 1L << (hash & (VSID_NBPW-1));
   1207 		hash = pmap_vsidcontext;
   1208 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1209 			/* anything free in this bucket? */
   1210 			if (~pmap_vsid_bitmap[n] == 0) {
   1211 				entropy = hash ^ (hash >> 16);
   1212 				continue;
   1213 			}
   1214 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1215 			mask = 1L << i;
   1216 			hash &= ~(VSID_NBPW-1);
   1217 			hash |= i;
   1218 		}
   1219 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1220 		pmap_vsid_bitmap[n] |= mask;
   1221 		pm->pm_vsid = hash;
   1222 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1223 		for (i = 0; i < 16; i++)
   1224 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1225 			    SR_NOEXEC;
   1226 #endif
   1227 		PMAP_UNLOCK();
   1228 		return;
   1229 	}
   1230 	PMAP_UNLOCK();
   1231 	panic("pmap_pinit: out of segments");
   1232 }
   1233 
   1234 /*
   1235  * Add a reference to the given pmap.
   1236  */
   1237 void
   1238 pmap_reference(pmap_t pm)
   1239 {
   1240 	atomic_inc_uint(&pm->pm_refs);
   1241 }
   1242 
   1243 /*
   1244  * Retire the given pmap from service.
   1245  * Should only be called if the map contains no valid mappings.
   1246  */
   1247 void
   1248 pmap_destroy(pmap_t pm)
   1249 {
   1250 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1251 		pmap_release(pm);
   1252 		pool_put(&pmap_pool, pm);
   1253 	}
   1254 }
   1255 
   1256 /*
   1257  * Release any resources held by the given physical map.
   1258  * Called when a pmap initialized by pmap_pinit is being released.
   1259  */
   1260 void
   1261 pmap_release(pmap_t pm)
   1262 {
   1263 	int idx, mask;
   1264 
   1265 	KASSERT(pm->pm_stats.resident_count == 0);
   1266 	KASSERT(pm->pm_stats.wired_count == 0);
   1267 
   1268 	PMAP_LOCK();
   1269 	if (pm->pm_sr[0] == 0)
   1270 		panic("pmap_release");
   1271 	idx = pm->pm_vsid & (NPMAPS-1);
   1272 	mask = 1 << (idx % VSID_NBPW);
   1273 	idx /= VSID_NBPW;
   1274 
   1275 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1276 	pmap_vsid_bitmap[idx] &= ~mask;
   1277 	PMAP_UNLOCK();
   1278 }
   1279 
   1280 /*
   1281  * Copy the range specified by src_addr/len
   1282  * from the source map to the range dst_addr/len
   1283  * in the destination map.
   1284  *
   1285  * This routine is only advisory and need not do anything.
   1286  */
   1287 void
   1288 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1289 	vsize_t len, vaddr_t src_addr)
   1290 {
   1291 	PMAPCOUNT(copies);
   1292 }
   1293 
   1294 /*
   1295  * Require that all active physical maps contain no
   1296  * incorrect entries NOW.
   1297  */
   1298 void
   1299 pmap_update(struct pmap *pmap)
   1300 {
   1301 	PMAPCOUNT(updates);
   1302 	TLBSYNC();
   1303 }
   1304 
   1305 static inline int
   1306 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1307 {
   1308 	int pteidx;
   1309 	/*
   1310 	 * We can find the actual pte entry without searching by
   1311 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1312 	 * and by noticing the HID bit.
   1313 	 */
   1314 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1315 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1316 		pteidx ^= pmap_pteg_mask * 8;
   1317 	return pteidx;
   1318 }
   1319 
   1320 volatile struct pte *
   1321 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1322 {
   1323 	volatile struct pte *pt;
   1324 
   1325 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1326 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1327 		return NULL;
   1328 #endif
   1329 
   1330 	/*
   1331 	 * If we haven't been supplied the ptegidx, calculate it.
   1332 	 */
   1333 	if (pteidx == -1) {
   1334 		int ptegidx;
   1335 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1336 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1337 	}
   1338 
   1339 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1340 
   1341 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1342 	return pt;
   1343 #else
   1344 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1345 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1346 		    "pvo but no valid pte index", pvo);
   1347 	}
   1348 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1349 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1350 		    "pvo but no valid pte", pvo);
   1351 	}
   1352 
   1353 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1354 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1355 #if defined(DEBUG) || defined(PMAPCHECK)
   1356 			pmap_pte_print(pt);
   1357 #endif
   1358 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1359 			    "pmap_pteg_table %p but invalid in pvo",
   1360 			    pvo, pt);
   1361 		}
   1362 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1363 #if defined(DEBUG) || defined(PMAPCHECK)
   1364 			pmap_pte_print(pt);
   1365 #endif
   1366 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1367 			    "not match pte %p in pmap_pteg_table",
   1368 			    pvo, pt);
   1369 		}
   1370 		return pt;
   1371 	}
   1372 
   1373 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1374 #if defined(DEBUG) || defined(PMAPCHECK)
   1375 		pmap_pte_print(pt);
   1376 #endif
   1377 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1378 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1379 	}
   1380 	return NULL;
   1381 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1382 }
   1383 
   1384 struct pvo_entry *
   1385 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1386 {
   1387 	struct pvo_entry *pvo;
   1388 	int ptegidx;
   1389 
   1390 	va &= ~ADDR_POFF;
   1391 	ptegidx = va_to_pteg(pm, va);
   1392 
   1393 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1394 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1395 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1396 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1397 			    "list %#x (%p)", pvo, ptegidx,
   1398 			     &pmap_pvo_table[ptegidx]);
   1399 #endif
   1400 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1401 			if (pteidx_p)
   1402 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1403 			return pvo;
   1404 		}
   1405 	}
   1406 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1407 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1408 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1409 	return NULL;
   1410 }
   1411 
   1412 #if defined(DEBUG) || defined(PMAPCHECK)
   1413 void
   1414 pmap_pvo_check(const struct pvo_entry *pvo)
   1415 {
   1416 	struct pvo_head *pvo_head;
   1417 	struct pvo_entry *pvo0;
   1418 	volatile struct pte *pt;
   1419 	int failed = 0;
   1420 
   1421 	PMAP_LOCK();
   1422 
   1423 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1424 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1425 
   1426 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1427 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1428 		    pvo, pvo->pvo_pmap);
   1429 		failed = 1;
   1430 	}
   1431 
   1432 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1433 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1434 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1435 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1436 		failed = 1;
   1437 	}
   1438 
   1439 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1440 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1441 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1442 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1443 		failed = 1;
   1444 	}
   1445 
   1446 	if (PVO_MANAGED_P(pvo)) {
   1447 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1448 	} else {
   1449 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1450 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1451 			    "on kernel unmanaged list\n", pvo);
   1452 			failed = 1;
   1453 		}
   1454 		pvo_head = &pmap_pvo_kunmanaged;
   1455 	}
   1456 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1457 		if (pvo0 == pvo)
   1458 			break;
   1459 	}
   1460 	if (pvo0 == NULL) {
   1461 		printf("pmap_pvo_check: pvo %p: not present "
   1462 		    "on its vlist head %p\n", pvo, pvo_head);
   1463 		failed = 1;
   1464 	}
   1465 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1466 		printf("pmap_pvo_check: pvo %p: not present "
   1467 		    "on its olist head\n", pvo);
   1468 		failed = 1;
   1469 	}
   1470 	pt = pmap_pvo_to_pte(pvo, -1);
   1471 	if (pt == NULL) {
   1472 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1473 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1474 			    "no PTE\n", pvo);
   1475 			failed = 1;
   1476 		}
   1477 	} else {
   1478 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1479 		    (uintptr_t) pt >=
   1480 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1481 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1482 			    "pteg table\n", pvo, pt);
   1483 			failed = 1;
   1484 		}
   1485 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1486 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1487 			    "no PTE\n", pvo);
   1488 			failed = 1;
   1489 		}
   1490 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1491 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1492 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1493 			    pvo->pvo_pte.pte_hi,
   1494 			    pt->pte_hi);
   1495 			failed = 1;
   1496 		}
   1497 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1498 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1499 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1500 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1501 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1502 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1503 			failed = 1;
   1504 		}
   1505 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1506 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1507 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1508 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1509 			failed = 1;
   1510 		}
   1511 		if (failed)
   1512 			pmap_pte_print(pt);
   1513 	}
   1514 	if (failed)
   1515 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1516 		    pvo->pvo_pmap);
   1517 
   1518 	PMAP_UNLOCK();
   1519 }
   1520 #endif /* DEBUG || PMAPCHECK */
   1521 
   1522 /*
   1523  * Search the PVO table looking for a non-wired entry.
   1524  * If we find one, remove it and return it.
   1525  */
   1526 
   1527 struct pvo_entry *
   1528 pmap_pvo_reclaim(struct pmap *pm)
   1529 {
   1530 	struct pvo_tqhead *pvoh;
   1531 	struct pvo_entry *pvo;
   1532 	uint32_t idx, endidx;
   1533 
   1534 	endidx = pmap_pvo_reclaim_nextidx;
   1535 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1536 	     idx = (idx + 1) & pmap_pteg_mask) {
   1537 		pvoh = &pmap_pvo_table[idx];
   1538 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1539 			if (!PVO_WIRED_P(pvo)) {
   1540 				pmap_pvo_remove(pvo, -1, NULL);
   1541 				pmap_pvo_reclaim_nextidx = idx;
   1542 				PMAPCOUNT(pvos_reclaimed);
   1543 				return pvo;
   1544 			}
   1545 		}
   1546 	}
   1547 	return NULL;
   1548 }
   1549 
   1550 /*
   1551  * This returns whether this is the first mapping of a page.
   1552  */
   1553 int
   1554 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1555 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1556 {
   1557 	struct pvo_entry *pvo;
   1558 	struct pvo_tqhead *pvoh;
   1559 	register_t msr;
   1560 	int ptegidx;
   1561 	int i;
   1562 	int poolflags = PR_NOWAIT;
   1563 
   1564 	/*
   1565 	 * Compute the PTE Group index.
   1566 	 */
   1567 	va &= ~ADDR_POFF;
   1568 	ptegidx = va_to_pteg(pm, va);
   1569 
   1570 	msr = pmap_interrupts_off();
   1571 
   1572 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1573 	if (pmap_pvo_remove_depth > 0)
   1574 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1575 	if (++pmap_pvo_enter_depth > 1)
   1576 		panic("pmap_pvo_enter: called recursively!");
   1577 #endif
   1578 
   1579 	/*
   1580 	 * Remove any existing mapping for this page.  Reuse the
   1581 	 * pvo entry if there a mapping.
   1582 	 */
   1583 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1584 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1585 #ifdef DEBUG
   1586 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1587 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1588 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1589 			   va < VM_MIN_KERNEL_ADDRESS) {
   1590 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1591 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1592 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1593 				    pvo->pvo_pte.pte_hi,
   1594 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1595 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1596 #ifdef DDBX
   1597 				Debugger();
   1598 #endif
   1599 			}
   1600 #endif
   1601 			PMAPCOUNT(mappings_replaced);
   1602 			pmap_pvo_remove(pvo, -1, NULL);
   1603 			break;
   1604 		}
   1605 	}
   1606 
   1607 	/*
   1608 	 * If we aren't overwriting an mapping, try to allocate
   1609 	 */
   1610 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1611 	--pmap_pvo_enter_depth;
   1612 #endif
   1613 	pmap_interrupts_restore(msr);
   1614 	if (pvo) {
   1615 		pmap_pvo_free(pvo);
   1616 	}
   1617 	pvo = pool_get(pl, poolflags);
   1618 
   1619 #ifdef DEBUG
   1620 	/*
   1621 	 * Exercise pmap_pvo_reclaim() a little.
   1622 	 */
   1623 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1624 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1625 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1626 		pool_put(pl, pvo);
   1627 		pvo = NULL;
   1628 	}
   1629 #endif
   1630 
   1631 	msr = pmap_interrupts_off();
   1632 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1633 	++pmap_pvo_enter_depth;
   1634 #endif
   1635 	if (pvo == NULL) {
   1636 		pvo = pmap_pvo_reclaim(pm);
   1637 		if (pvo == NULL) {
   1638 			if ((flags & PMAP_CANFAIL) == 0)
   1639 				panic("pmap_pvo_enter: failed");
   1640 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1641 			pmap_pvo_enter_depth--;
   1642 #endif
   1643 			PMAPCOUNT(pvos_failed);
   1644 			pmap_interrupts_restore(msr);
   1645 			return ENOMEM;
   1646 		}
   1647 	}
   1648 
   1649 	pvo->pvo_vaddr = va;
   1650 	pvo->pvo_pmap = pm;
   1651 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1652 	if (flags & VM_PROT_EXECUTE) {
   1653 		PMAPCOUNT(exec_mappings);
   1654 		pvo_set_exec(pvo);
   1655 	}
   1656 	if (flags & PMAP_WIRED)
   1657 		pvo->pvo_vaddr |= PVO_WIRED;
   1658 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1659 		pvo->pvo_vaddr |= PVO_MANAGED;
   1660 		PMAPCOUNT(mappings);
   1661 	} else {
   1662 		PMAPCOUNT(kernel_mappings);
   1663 	}
   1664 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1665 
   1666 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1667 	if (PVO_WIRED_P(pvo))
   1668 		pvo->pvo_pmap->pm_stats.wired_count++;
   1669 	pvo->pvo_pmap->pm_stats.resident_count++;
   1670 #if defined(DEBUG)
   1671 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1672 		DPRINTFN(PVOENTER,
   1673 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1674 		    pvo, pm, va, pa));
   1675 #endif
   1676 
   1677 	/*
   1678 	 * We hope this succeeds but it isn't required.
   1679 	 */
   1680 	pvoh = &pmap_pvo_table[ptegidx];
   1681 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1682 	if (i >= 0) {
   1683 		PVO_PTEGIDX_SET(pvo, i);
   1684 		PVO_WHERE(pvo, ENTER_INSERT);
   1685 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1686 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1687 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1688 
   1689 	} else {
   1690 		/*
   1691 		 * Since we didn't have room for this entry (which makes it
   1692 		 * and evicted entry), place it at the head of the list.
   1693 		 */
   1694 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1695 		PMAPCOUNT(ptes_evicted);
   1696 		pm->pm_evictions++;
   1697 		/*
   1698 		 * If this is a kernel page, make sure it's active.
   1699 		 */
   1700 		if (pm == pmap_kernel()) {
   1701 			i = pmap_pte_spill(pm, va, false);
   1702 			KASSERT(i);
   1703 		}
   1704 	}
   1705 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1706 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1707 	pmap_pvo_enter_depth--;
   1708 #endif
   1709 	pmap_interrupts_restore(msr);
   1710 	return 0;
   1711 }
   1712 
   1713 static void
   1714 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1715 {
   1716 	volatile struct pte *pt;
   1717 	int ptegidx;
   1718 
   1719 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1720 	if (++pmap_pvo_remove_depth > 1)
   1721 		panic("pmap_pvo_remove: called recursively!");
   1722 #endif
   1723 
   1724 	/*
   1725 	 * If we haven't been supplied the ptegidx, calculate it.
   1726 	 */
   1727 	if (pteidx == -1) {
   1728 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1729 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1730 	} else {
   1731 		ptegidx = pteidx >> 3;
   1732 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1733 			ptegidx ^= pmap_pteg_mask;
   1734 	}
   1735 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1736 
   1737 	/*
   1738 	 * If there is an active pte entry, we need to deactivate it
   1739 	 * (and save the ref & chg bits).
   1740 	 */
   1741 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1742 	if (pt != NULL) {
   1743 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1744 		PVO_WHERE(pvo, REMOVE);
   1745 		PVO_PTEGIDX_CLR(pvo);
   1746 		PMAPCOUNT(ptes_removed);
   1747 	} else {
   1748 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1749 		pvo->pvo_pmap->pm_evictions--;
   1750 	}
   1751 
   1752 	/*
   1753 	 * Account for executable mappings.
   1754 	 */
   1755 	if (PVO_EXECUTABLE_P(pvo))
   1756 		pvo_clear_exec(pvo);
   1757 
   1758 	/*
   1759 	 * Update our statistics.
   1760 	 */
   1761 	pvo->pvo_pmap->pm_stats.resident_count--;
   1762 	if (PVO_WIRED_P(pvo))
   1763 		pvo->pvo_pmap->pm_stats.wired_count--;
   1764 
   1765 	/*
   1766 	 * Save the REF/CHG bits into their cache if the page is managed.
   1767 	 */
   1768 	if (PVO_MANAGED_P(pvo)) {
   1769 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1770 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1771 
   1772 		if (pg != NULL) {
   1773 			/*
   1774 			 * If this page was changed and it is mapped exec,
   1775 			 * invalidate it.
   1776 			 */
   1777 			if ((ptelo & PTE_CHG) &&
   1778 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1779 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1780 				if (LIST_EMPTY(pvoh)) {
   1781 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1782 					    "%#" _PRIxpa ": clear-exec]\n",
   1783 					    VM_PAGE_TO_PHYS(pg)));
   1784 					pmap_attr_clear(pg, PTE_EXEC);
   1785 					PMAPCOUNT(exec_uncached_pvo_remove);
   1786 				} else {
   1787 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1788 					    "%#" _PRIxpa ": syncicache]\n",
   1789 					    VM_PAGE_TO_PHYS(pg)));
   1790 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1791 					    PAGE_SIZE);
   1792 					PMAPCOUNT(exec_synced_pvo_remove);
   1793 				}
   1794 			}
   1795 
   1796 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1797 		}
   1798 		PMAPCOUNT(unmappings);
   1799 	} else {
   1800 		PMAPCOUNT(kernel_unmappings);
   1801 	}
   1802 
   1803 	/*
   1804 	 * Remove the PVO from its lists and return it to the pool.
   1805 	 */
   1806 	LIST_REMOVE(pvo, pvo_vlink);
   1807 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1808 	if (pvol) {
   1809 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1810 	}
   1811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1812 	pmap_pvo_remove_depth--;
   1813 #endif
   1814 }
   1815 
   1816 void
   1817 pmap_pvo_free(struct pvo_entry *pvo)
   1818 {
   1819 
   1820 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1821 }
   1822 
   1823 void
   1824 pmap_pvo_free_list(struct pvo_head *pvol)
   1825 {
   1826 	struct pvo_entry *pvo, *npvo;
   1827 
   1828 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1829 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1830 		LIST_REMOVE(pvo, pvo_vlink);
   1831 		pmap_pvo_free(pvo);
   1832 	}
   1833 }
   1834 
   1835 /*
   1836  * Mark a mapping as executable.
   1837  * If this is the first executable mapping in the segment,
   1838  * clear the noexec flag.
   1839  */
   1840 static void
   1841 pvo_set_exec(struct pvo_entry *pvo)
   1842 {
   1843 	struct pmap *pm = pvo->pvo_pmap;
   1844 
   1845 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1846 		return;
   1847 	}
   1848 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1849 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1850 	{
   1851 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1852 		if (pm->pm_exec[sr]++ == 0) {
   1853 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1854 		}
   1855 	}
   1856 #endif
   1857 }
   1858 
   1859 /*
   1860  * Mark a mapping as non-executable.
   1861  * If this was the last executable mapping in the segment,
   1862  * set the noexec flag.
   1863  */
   1864 static void
   1865 pvo_clear_exec(struct pvo_entry *pvo)
   1866 {
   1867 	struct pmap *pm = pvo->pvo_pmap;
   1868 
   1869 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1870 		return;
   1871 	}
   1872 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1873 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1874 	{
   1875 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1876 		if (--pm->pm_exec[sr] == 0) {
   1877 			pm->pm_sr[sr] |= SR_NOEXEC;
   1878 		}
   1879 	}
   1880 #endif
   1881 }
   1882 
   1883 /*
   1884  * Insert physical page at pa into the given pmap at virtual address va.
   1885  */
   1886 int
   1887 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1888 {
   1889 	struct mem_region *mp;
   1890 	struct pvo_head *pvo_head;
   1891 	struct vm_page *pg;
   1892 	struct pool *pl;
   1893 	register_t pte_lo;
   1894 	int error;
   1895 	u_int pvo_flags;
   1896 	u_int was_exec = 0;
   1897 
   1898 	PMAP_LOCK();
   1899 
   1900 	if (__predict_false(!pmap_initialized)) {
   1901 		pvo_head = &pmap_pvo_kunmanaged;
   1902 		pl = &pmap_upvo_pool;
   1903 		pvo_flags = 0;
   1904 		pg = NULL;
   1905 		was_exec = PTE_EXEC;
   1906 	} else {
   1907 		pvo_head = pa_to_pvoh(pa, &pg);
   1908 		pl = &pmap_mpvo_pool;
   1909 		pvo_flags = PVO_MANAGED;
   1910 	}
   1911 
   1912 	DPRINTFN(ENTER,
   1913 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1914 	    pm, va, pa, prot, flags));
   1915 
   1916 	/*
   1917 	 * If this is a managed page, and it's the first reference to the
   1918 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1919 	 */
   1920 	if (pg != NULL)
   1921 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1922 
   1923 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1924 
   1925 	/*
   1926 	 * Assume the page is cache inhibited and access is guarded unless
   1927 	 * it's in our available memory array.  If it is in the memory array,
   1928 	 * asssume it's in memory coherent memory.
   1929 	 */
   1930 	if (flags & PMAP_MD_PREFETCHABLE) {
   1931 		pte_lo = 0;
   1932 	} else
   1933 		pte_lo = PTE_G;
   1934 
   1935 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   1936 		for (mp = mem; mp->size; mp++) {
   1937 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1938 				pte_lo = PTE_M;
   1939 				break;
   1940 			}
   1941 		}
   1942 	} else {
   1943 		pte_lo |= PTE_I;
   1944 	}
   1945 
   1946 	if (prot & VM_PROT_WRITE)
   1947 		pte_lo |= PTE_BW;
   1948 	else
   1949 		pte_lo |= PTE_BR;
   1950 
   1951 	/*
   1952 	 * If this was in response to a fault, "pre-fault" the PTE's
   1953 	 * changed/referenced bit appropriately.
   1954 	 */
   1955 	if (flags & VM_PROT_WRITE)
   1956 		pte_lo |= PTE_CHG;
   1957 	if (flags & VM_PROT_ALL)
   1958 		pte_lo |= PTE_REF;
   1959 
   1960 	/*
   1961 	 * We need to know if this page can be executable
   1962 	 */
   1963 	flags |= (prot & VM_PROT_EXECUTE);
   1964 
   1965 	/*
   1966 	 * Record mapping for later back-translation and pte spilling.
   1967 	 * This will overwrite any existing mapping.
   1968 	 */
   1969 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1970 
   1971 	/*
   1972 	 * Flush the real page from the instruction cache if this page is
   1973 	 * mapped executable and cacheable and has not been flushed since
   1974 	 * the last time it was modified.
   1975 	 */
   1976 	if (error == 0 &&
   1977             (flags & VM_PROT_EXECUTE) &&
   1978             (pte_lo & PTE_I) == 0 &&
   1979 	    was_exec == 0) {
   1980 		DPRINTFN(ENTER, (" syncicache"));
   1981 		PMAPCOUNT(exec_synced);
   1982 		pmap_syncicache(pa, PAGE_SIZE);
   1983 		if (pg != NULL) {
   1984 			pmap_attr_save(pg, PTE_EXEC);
   1985 			PMAPCOUNT(exec_cached);
   1986 #if defined(DEBUG) || defined(PMAPDEBUG)
   1987 			if (pmapdebug & PMAPDEBUG_ENTER)
   1988 				printf(" marked-as-exec");
   1989 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1990 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1991 				    VM_PAGE_TO_PHYS(pg));
   1992 
   1993 #endif
   1994 		}
   1995 	}
   1996 
   1997 	DPRINTFN(ENTER, (": error=%d\n", error));
   1998 
   1999 	PMAP_UNLOCK();
   2000 
   2001 	return error;
   2002 }
   2003 
   2004 void
   2005 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2006 {
   2007 	struct mem_region *mp;
   2008 	register_t pte_lo;
   2009 	int error;
   2010 
   2011 #if defined (PMAP_OEA64_BRIDGE)
   2012 	if (va < VM_MIN_KERNEL_ADDRESS)
   2013 		panic("pmap_kenter_pa: attempt to enter "
   2014 		    "non-kernel address %#" _PRIxva "!", va);
   2015 #endif
   2016 
   2017 	DPRINTFN(KENTER,
   2018 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2019 
   2020 	PMAP_LOCK();
   2021 
   2022 	/*
   2023 	 * Assume the page is cache inhibited and access is guarded unless
   2024 	 * it's in our available memory array.  If it is in the memory array,
   2025 	 * asssume it's in memory coherent memory.
   2026 	 */
   2027 	pte_lo = PTE_IG;
   2028 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   2029 		for (mp = mem; mp->size; mp++) {
   2030 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2031 				pte_lo = PTE_M;
   2032 				break;
   2033 			}
   2034 		}
   2035 	}
   2036 
   2037 	if (prot & VM_PROT_WRITE)
   2038 		pte_lo |= PTE_BW;
   2039 	else
   2040 		pte_lo |= PTE_BR;
   2041 
   2042 	/*
   2043 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2044 	 */
   2045 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2046 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2047 
   2048 	if (error != 0)
   2049 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2050 		      va, pa, error);
   2051 
   2052 	PMAP_UNLOCK();
   2053 }
   2054 
   2055 void
   2056 pmap_kremove(vaddr_t va, vsize_t len)
   2057 {
   2058 	if (va < VM_MIN_KERNEL_ADDRESS)
   2059 		panic("pmap_kremove: attempt to remove "
   2060 		    "non-kernel address %#" _PRIxva "!", va);
   2061 
   2062 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2063 	pmap_remove(pmap_kernel(), va, va + len);
   2064 }
   2065 
   2066 /*
   2067  * Remove the given range of mapping entries.
   2068  */
   2069 void
   2070 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2071 {
   2072 	struct pvo_head pvol;
   2073 	struct pvo_entry *pvo;
   2074 	register_t msr;
   2075 	int pteidx;
   2076 
   2077 	PMAP_LOCK();
   2078 	LIST_INIT(&pvol);
   2079 	msr = pmap_interrupts_off();
   2080 	for (; va < endva; va += PAGE_SIZE) {
   2081 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2082 		if (pvo != NULL) {
   2083 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2084 		}
   2085 	}
   2086 	pmap_interrupts_restore(msr);
   2087 	pmap_pvo_free_list(&pvol);
   2088 	PMAP_UNLOCK();
   2089 }
   2090 
   2091 /*
   2092  * Get the physical page address for the given pmap/virtual address.
   2093  */
   2094 bool
   2095 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2096 {
   2097 	struct pvo_entry *pvo;
   2098 	register_t msr;
   2099 
   2100 	PMAP_LOCK();
   2101 
   2102 	/*
   2103 	 * If this is a kernel pmap lookup, also check the battable
   2104 	 * and if we get a hit, translate the VA to a PA using the
   2105 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2106 	 * that will wrap back to 0.
   2107 	 */
   2108 	if (pm == pmap_kernel() &&
   2109 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2110 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2111 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2112 #if defined (PMAP_OEA)
   2113 #ifdef PPC_OEA601
   2114 		if ((MFPVR() >> 16) == MPC601) {
   2115 			register_t batu = battable[va >> 23].batu;
   2116 			register_t batl = battable[va >> 23].batl;
   2117 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2118 			if (BAT601_VALID_P(batl) &&
   2119 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2120 				register_t mask =
   2121 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2122 				if (pap)
   2123 					*pap = (batl & mask) | (va & ~mask);
   2124 				PMAP_UNLOCK();
   2125 				return true;
   2126 			} else if (SR601_VALID_P(sr) &&
   2127 				   SR601_PA_MATCH_P(sr, va)) {
   2128 				if (pap)
   2129 					*pap = va;
   2130 				PMAP_UNLOCK();
   2131 				return true;
   2132 			}
   2133 		} else
   2134 #endif /* PPC_OEA601 */
   2135 		{
   2136 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2137 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2138 				register_t batl =
   2139 				    battable[va >> ADDR_SR_SHFT].batl;
   2140 				register_t mask =
   2141 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2142 				if (pap)
   2143 					*pap = (batl & mask) | (va & ~mask);
   2144 				PMAP_UNLOCK();
   2145 				return true;
   2146 			}
   2147 		}
   2148 		return false;
   2149 #elif defined (PMAP_OEA64_BRIDGE)
   2150 	if (va >= SEGMENT_LENGTH)
   2151 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2152 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2153 	else {
   2154 		if (pap)
   2155 			*pap = va;
   2156 			PMAP_UNLOCK();
   2157 			return true;
   2158 	}
   2159 #elif defined (PMAP_OEA64)
   2160 #error PPC_OEA64 not supported
   2161 #endif /* PPC_OEA */
   2162 	}
   2163 
   2164 	msr = pmap_interrupts_off();
   2165 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2166 	if (pvo != NULL) {
   2167 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2168 		if (pap)
   2169 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2170 			    | (va & ADDR_POFF);
   2171 	}
   2172 	pmap_interrupts_restore(msr);
   2173 	PMAP_UNLOCK();
   2174 	return pvo != NULL;
   2175 }
   2176 
   2177 /*
   2178  * Lower the protection on the specified range of this pmap.
   2179  */
   2180 void
   2181 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2182 {
   2183 	struct pvo_entry *pvo;
   2184 	volatile struct pte *pt;
   2185 	register_t msr;
   2186 	int pteidx;
   2187 
   2188 	/*
   2189 	 * Since this routine only downgrades protection, we should
   2190 	 * always be called with at least one bit not set.
   2191 	 */
   2192 	KASSERT(prot != VM_PROT_ALL);
   2193 
   2194 	/*
   2195 	 * If there is no protection, this is equivalent to
   2196 	 * remove the pmap from the pmap.
   2197 	 */
   2198 	if ((prot & VM_PROT_READ) == 0) {
   2199 		pmap_remove(pm, va, endva);
   2200 		return;
   2201 	}
   2202 
   2203 	PMAP_LOCK();
   2204 
   2205 	msr = pmap_interrupts_off();
   2206 	for (; va < endva; va += PAGE_SIZE) {
   2207 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2208 		if (pvo == NULL)
   2209 			continue;
   2210 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2211 
   2212 		/*
   2213 		 * Revoke executable if asked to do so.
   2214 		 */
   2215 		if ((prot & VM_PROT_EXECUTE) == 0)
   2216 			pvo_clear_exec(pvo);
   2217 
   2218 #if 0
   2219 		/*
   2220 		 * If the page is already read-only, no change
   2221 		 * needs to be made.
   2222 		 */
   2223 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2224 			continue;
   2225 #endif
   2226 		/*
   2227 		 * Grab the PTE pointer before we diddle with
   2228 		 * the cached PTE copy.
   2229 		 */
   2230 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2231 		/*
   2232 		 * Change the protection of the page.
   2233 		 */
   2234 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2235 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2236 
   2237 		/*
   2238 		 * If the PVO is in the page table, update
   2239 		 * that pte at well.
   2240 		 */
   2241 		if (pt != NULL) {
   2242 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2243 			PVO_WHERE(pvo, PMAP_PROTECT);
   2244 			PMAPCOUNT(ptes_changed);
   2245 		}
   2246 
   2247 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2248 	}
   2249 	pmap_interrupts_restore(msr);
   2250 	PMAP_UNLOCK();
   2251 }
   2252 
   2253 void
   2254 pmap_unwire(pmap_t pm, vaddr_t va)
   2255 {
   2256 	struct pvo_entry *pvo;
   2257 	register_t msr;
   2258 
   2259 	PMAP_LOCK();
   2260 	msr = pmap_interrupts_off();
   2261 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2262 	if (pvo != NULL) {
   2263 		if (PVO_WIRED_P(pvo)) {
   2264 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2265 			pm->pm_stats.wired_count--;
   2266 		}
   2267 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2268 	}
   2269 	pmap_interrupts_restore(msr);
   2270 	PMAP_UNLOCK();
   2271 }
   2272 
   2273 /*
   2274  * Lower the protection on the specified physical page.
   2275  */
   2276 void
   2277 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2278 {
   2279 	struct pvo_head *pvo_head, pvol;
   2280 	struct pvo_entry *pvo, *next_pvo;
   2281 	volatile struct pte *pt;
   2282 	register_t msr;
   2283 
   2284 	PMAP_LOCK();
   2285 
   2286 	KASSERT(prot != VM_PROT_ALL);
   2287 	LIST_INIT(&pvol);
   2288 	msr = pmap_interrupts_off();
   2289 
   2290 	/*
   2291 	 * When UVM reuses a page, it does a pmap_page_protect with
   2292 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2293 	 * since we know the page will have different contents.
   2294 	 */
   2295 	if ((prot & VM_PROT_READ) == 0) {
   2296 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2297 		    VM_PAGE_TO_PHYS(pg)));
   2298 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2299 			PMAPCOUNT(exec_uncached_page_protect);
   2300 			pmap_attr_clear(pg, PTE_EXEC);
   2301 		}
   2302 	}
   2303 
   2304 	pvo_head = vm_page_to_pvoh(pg);
   2305 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2306 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2307 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2308 
   2309 		/*
   2310 		 * Downgrading to no mapping at all, we just remove the entry.
   2311 		 */
   2312 		if ((prot & VM_PROT_READ) == 0) {
   2313 			pmap_pvo_remove(pvo, -1, &pvol);
   2314 			continue;
   2315 		}
   2316 
   2317 		/*
   2318 		 * If EXEC permission is being revoked, just clear the
   2319 		 * flag in the PVO.
   2320 		 */
   2321 		if ((prot & VM_PROT_EXECUTE) == 0)
   2322 			pvo_clear_exec(pvo);
   2323 
   2324 		/*
   2325 		 * If this entry is already RO, don't diddle with the
   2326 		 * page table.
   2327 		 */
   2328 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2329 			PMAP_PVO_CHECK(pvo);
   2330 			continue;
   2331 		}
   2332 
   2333 		/*
   2334 		 * Grab the PTE before the we diddle the bits so
   2335 		 * pvo_to_pte can verify the pte contents are as
   2336 		 * expected.
   2337 		 */
   2338 		pt = pmap_pvo_to_pte(pvo, -1);
   2339 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2340 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2341 		if (pt != NULL) {
   2342 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2343 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2344 			PMAPCOUNT(ptes_changed);
   2345 		}
   2346 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2347 	}
   2348 	pmap_interrupts_restore(msr);
   2349 	pmap_pvo_free_list(&pvol);
   2350 
   2351 	PMAP_UNLOCK();
   2352 }
   2353 
   2354 /*
   2355  * Activate the address space for the specified process.  If the process
   2356  * is the current process, load the new MMU context.
   2357  */
   2358 void
   2359 pmap_activate(struct lwp *l)
   2360 {
   2361 	struct pcb *pcb = lwp_getpcb(l);
   2362 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2363 
   2364 	DPRINTFN(ACTIVATE,
   2365 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2366 
   2367 	/*
   2368 	 * XXX Normally performed in cpu_lwp_fork().
   2369 	 */
   2370 	pcb->pcb_pm = pmap;
   2371 
   2372 	/*
   2373 	* In theory, the SR registers need only be valid on return
   2374 	* to user space wait to do them there.
   2375 	*/
   2376 	if (l == curlwp) {
   2377 		/* Store pointer to new current pmap. */
   2378 		curpm = pmap;
   2379 	}
   2380 }
   2381 
   2382 /*
   2383  * Deactivate the specified process's address space.
   2384  */
   2385 void
   2386 pmap_deactivate(struct lwp *l)
   2387 {
   2388 }
   2389 
   2390 bool
   2391 pmap_query_bit(struct vm_page *pg, int ptebit)
   2392 {
   2393 	struct pvo_entry *pvo;
   2394 	volatile struct pte *pt;
   2395 	register_t msr;
   2396 
   2397 	PMAP_LOCK();
   2398 
   2399 	if (pmap_attr_fetch(pg) & ptebit) {
   2400 		PMAP_UNLOCK();
   2401 		return true;
   2402 	}
   2403 
   2404 	msr = pmap_interrupts_off();
   2405 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2406 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2407 		/*
   2408 		 * See if we saved the bit off.  If so cache, it and return
   2409 		 * success.
   2410 		 */
   2411 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2412 			pmap_attr_save(pg, ptebit);
   2413 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2414 			pmap_interrupts_restore(msr);
   2415 			PMAP_UNLOCK();
   2416 			return true;
   2417 		}
   2418 	}
   2419 	/*
   2420 	 * No luck, now go thru the hard part of looking at the ptes
   2421 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2422 	 * to the PTEs.
   2423 	 */
   2424 	SYNC();
   2425 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2426 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2427 		/*
   2428 		 * See if this pvo have a valid PTE.  If so, fetch the
   2429 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2430 		 * ptebit is set, cache, it and return success.
   2431 		 */
   2432 		pt = pmap_pvo_to_pte(pvo, -1);
   2433 		if (pt != NULL) {
   2434 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2435 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2436 				pmap_attr_save(pg, ptebit);
   2437 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2438 				pmap_interrupts_restore(msr);
   2439 				PMAP_UNLOCK();
   2440 				return true;
   2441 			}
   2442 		}
   2443 	}
   2444 	pmap_interrupts_restore(msr);
   2445 	PMAP_UNLOCK();
   2446 	return false;
   2447 }
   2448 
   2449 bool
   2450 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2451 {
   2452 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2453 	struct pvo_entry *pvo;
   2454 	volatile struct pte *pt;
   2455 	register_t msr;
   2456 	int rv = 0;
   2457 
   2458 	PMAP_LOCK();
   2459 	msr = pmap_interrupts_off();
   2460 
   2461 	/*
   2462 	 * Fetch the cache value
   2463 	 */
   2464 	rv |= pmap_attr_fetch(pg);
   2465 
   2466 	/*
   2467 	 * Clear the cached value.
   2468 	 */
   2469 	pmap_attr_clear(pg, ptebit);
   2470 
   2471 	/*
   2472 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2473 	 * can reset the right ones).  Note that since the pvo entries and
   2474 	 * list heads are accessed via BAT0 and are never placed in the
   2475 	 * page table, we don't have to worry about further accesses setting
   2476 	 * the REF/CHG bits.
   2477 	 */
   2478 	SYNC();
   2479 
   2480 	/*
   2481 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2482 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2483 	 */
   2484 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2485 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2486 		pt = pmap_pvo_to_pte(pvo, -1);
   2487 		if (pt != NULL) {
   2488 			/*
   2489 			 * Only sync the PTE if the bit we are looking
   2490 			 * for is not already set.
   2491 			 */
   2492 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2493 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2494 			/*
   2495 			 * If the bit we are looking for was already set,
   2496 			 * clear that bit in the pte.
   2497 			 */
   2498 			if (pvo->pvo_pte.pte_lo & ptebit)
   2499 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2500 		}
   2501 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2502 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2503 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2504 	}
   2505 	pmap_interrupts_restore(msr);
   2506 
   2507 	/*
   2508 	 * If we are clearing the modify bit and this page was marked EXEC
   2509 	 * and the user of the page thinks the page was modified, then we
   2510 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2511 	 * bit if it's not mapped.  The page itself might not have the CHG
   2512 	 * bit set if the modification was done via DMA to the page.
   2513 	 */
   2514 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2515 		if (LIST_EMPTY(pvoh)) {
   2516 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2517 			    VM_PAGE_TO_PHYS(pg)));
   2518 			pmap_attr_clear(pg, PTE_EXEC);
   2519 			PMAPCOUNT(exec_uncached_clear_modify);
   2520 		} else {
   2521 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2522 			    VM_PAGE_TO_PHYS(pg)));
   2523 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2524 			PMAPCOUNT(exec_synced_clear_modify);
   2525 		}
   2526 	}
   2527 	PMAP_UNLOCK();
   2528 	return (rv & ptebit) != 0;
   2529 }
   2530 
   2531 void
   2532 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2533 {
   2534 	struct pvo_entry *pvo;
   2535 	size_t offset = va & ADDR_POFF;
   2536 	int s;
   2537 
   2538 	PMAP_LOCK();
   2539 	s = splvm();
   2540 	while (len > 0) {
   2541 		size_t seglen = PAGE_SIZE - offset;
   2542 		if (seglen > len)
   2543 			seglen = len;
   2544 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2545 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2546 			pmap_syncicache(
   2547 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2548 			PMAP_PVO_CHECK(pvo);
   2549 		}
   2550 		va += seglen;
   2551 		len -= seglen;
   2552 		offset = 0;
   2553 	}
   2554 	splx(s);
   2555 	PMAP_UNLOCK();
   2556 }
   2557 
   2558 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2559 void
   2560 pmap_pte_print(volatile struct pte *pt)
   2561 {
   2562 	printf("PTE %p: ", pt);
   2563 
   2564 #if defined(PMAP_OEA)
   2565 	/* High word: */
   2566 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2567 #else
   2568 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2569 #endif /* PMAP_OEA */
   2570 
   2571 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2572 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2573 
   2574 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2575 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2576 	    pt->pte_hi & PTE_API);
   2577 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2578 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2579 #else
   2580 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2581 #endif /* PMAP_OEA */
   2582 
   2583 	/* Low word: */
   2584 #if defined (PMAP_OEA)
   2585 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2586 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2587 #else
   2588 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2589 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2590 #endif
   2591 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2592 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2593 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2594 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2595 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2596 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2597 	switch (pt->pte_lo & PTE_PP) {
   2598 	case PTE_BR: printf("br]\n"); break;
   2599 	case PTE_BW: printf("bw]\n"); break;
   2600 	case PTE_SO: printf("so]\n"); break;
   2601 	case PTE_SW: printf("sw]\n"); break;
   2602 	}
   2603 }
   2604 #endif
   2605 
   2606 #if defined(DDB)
   2607 void
   2608 pmap_pteg_check(void)
   2609 {
   2610 	volatile struct pte *pt;
   2611 	int i;
   2612 	int ptegidx;
   2613 	u_int p_valid = 0;
   2614 	u_int s_valid = 0;
   2615 	u_int invalid = 0;
   2616 
   2617 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2618 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2619 			if (pt->pte_hi & PTE_VALID) {
   2620 				if (pt->pte_hi & PTE_HID)
   2621 					s_valid++;
   2622 				else
   2623 				{
   2624 					p_valid++;
   2625 				}
   2626 			} else
   2627 				invalid++;
   2628 		}
   2629 	}
   2630 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2631 		p_valid, p_valid, s_valid, s_valid,
   2632 		invalid, invalid);
   2633 }
   2634 
   2635 void
   2636 pmap_print_mmuregs(void)
   2637 {
   2638 	int i;
   2639 	u_int cpuvers;
   2640 #ifndef PMAP_OEA64
   2641 	vaddr_t addr;
   2642 	register_t soft_sr[16];
   2643 #endif
   2644 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2645 	struct bat soft_ibat[4];
   2646 	struct bat soft_dbat[4];
   2647 #endif
   2648 	paddr_t sdr1;
   2649 
   2650 	cpuvers = MFPVR() >> 16;
   2651 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2652 #ifndef PMAP_OEA64
   2653 	addr = 0;
   2654 	for (i = 0; i < 16; i++) {
   2655 		soft_sr[i] = MFSRIN(addr);
   2656 		addr += (1 << ADDR_SR_SHFT);
   2657 	}
   2658 #endif
   2659 
   2660 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2661 	/* read iBAT (601: uBAT) registers */
   2662 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2663 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2664 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2665 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2666 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2667 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2668 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2669 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2670 
   2671 
   2672 	if (cpuvers != MPC601) {
   2673 		/* read dBAT registers */
   2674 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2675 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2676 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2677 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2678 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2679 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2680 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2681 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2682 	}
   2683 #endif
   2684 
   2685 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2686 #ifndef PMAP_OEA64
   2687 	printf("SR[]:\t");
   2688 	for (i = 0; i < 4; i++)
   2689 		printf("0x%08lx,   ", soft_sr[i]);
   2690 	printf("\n\t");
   2691 	for ( ; i < 8; i++)
   2692 		printf("0x%08lx,   ", soft_sr[i]);
   2693 	printf("\n\t");
   2694 	for ( ; i < 12; i++)
   2695 		printf("0x%08lx,   ", soft_sr[i]);
   2696 	printf("\n\t");
   2697 	for ( ; i < 16; i++)
   2698 		printf("0x%08lx,   ", soft_sr[i]);
   2699 	printf("\n");
   2700 #endif
   2701 
   2702 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2703 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2704 	for (i = 0; i < 4; i++) {
   2705 		printf("0x%08lx 0x%08lx, ",
   2706 			soft_ibat[i].batu, soft_ibat[i].batl);
   2707 		if (i == 1)
   2708 			printf("\n\t");
   2709 	}
   2710 	if (cpuvers != MPC601) {
   2711 		printf("\ndBAT[]:\t");
   2712 		for (i = 0; i < 4; i++) {
   2713 			printf("0x%08lx 0x%08lx, ",
   2714 				soft_dbat[i].batu, soft_dbat[i].batl);
   2715 			if (i == 1)
   2716 				printf("\n\t");
   2717 		}
   2718 	}
   2719 	printf("\n");
   2720 #endif /* PMAP_OEA... */
   2721 }
   2722 
   2723 void
   2724 pmap_print_pte(pmap_t pm, vaddr_t va)
   2725 {
   2726 	struct pvo_entry *pvo;
   2727 	volatile struct pte *pt;
   2728 	int pteidx;
   2729 
   2730 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2731 	if (pvo != NULL) {
   2732 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2733 		if (pt != NULL) {
   2734 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2735 				va, pt,
   2736 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2737 				pt->pte_hi, pt->pte_lo);
   2738 		} else {
   2739 			printf("No valid PTE found\n");
   2740 		}
   2741 	} else {
   2742 		printf("Address not in pmap\n");
   2743 	}
   2744 }
   2745 
   2746 void
   2747 pmap_pteg_dist(void)
   2748 {
   2749 	struct pvo_entry *pvo;
   2750 	int ptegidx;
   2751 	int depth;
   2752 	int max_depth = 0;
   2753 	unsigned int depths[64];
   2754 
   2755 	memset(depths, 0, sizeof(depths));
   2756 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2757 		depth = 0;
   2758 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2759 			depth++;
   2760 		}
   2761 		if (depth > max_depth)
   2762 			max_depth = depth;
   2763 		if (depth > 63)
   2764 			depth = 63;
   2765 		depths[depth]++;
   2766 	}
   2767 
   2768 	for (depth = 0; depth < 64; depth++) {
   2769 		printf("  [%2d]: %8u", depth, depths[depth]);
   2770 		if ((depth & 3) == 3)
   2771 			printf("\n");
   2772 		if (depth == max_depth)
   2773 			break;
   2774 	}
   2775 	if ((depth & 3) != 3)
   2776 		printf("\n");
   2777 	printf("Max depth found was %d\n", max_depth);
   2778 }
   2779 #endif /* DEBUG */
   2780 
   2781 #if defined(PMAPCHECK) || defined(DEBUG)
   2782 void
   2783 pmap_pvo_verify(void)
   2784 {
   2785 	int ptegidx;
   2786 	int s;
   2787 
   2788 	s = splvm();
   2789 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2790 		struct pvo_entry *pvo;
   2791 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2792 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2793 				panic("pmap_pvo_verify: invalid pvo %p "
   2794 				    "on list %#x", pvo, ptegidx);
   2795 			pmap_pvo_check(pvo);
   2796 		}
   2797 	}
   2798 	splx(s);
   2799 }
   2800 #endif /* PMAPCHECK */
   2801 
   2802 
   2803 void *
   2804 pmap_pool_ualloc(struct pool *pp, int flags)
   2805 {
   2806 	struct pvo_page *pvop;
   2807 
   2808 	if (uvm.page_init_done != true) {
   2809 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2810 	}
   2811 
   2812 	PMAP_LOCK();
   2813 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2814 	if (pvop != NULL) {
   2815 		pmap_upvop_free--;
   2816 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2817 		PMAP_UNLOCK();
   2818 		return pvop;
   2819 	}
   2820 	PMAP_UNLOCK();
   2821 	return pmap_pool_malloc(pp, flags);
   2822 }
   2823 
   2824 void *
   2825 pmap_pool_malloc(struct pool *pp, int flags)
   2826 {
   2827 	struct pvo_page *pvop;
   2828 	struct vm_page *pg;
   2829 
   2830 	PMAP_LOCK();
   2831 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2832 	if (pvop != NULL) {
   2833 		pmap_mpvop_free--;
   2834 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2835 		PMAP_UNLOCK();
   2836 		return pvop;
   2837 	}
   2838 	PMAP_UNLOCK();
   2839  again:
   2840 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2841 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2842 	if (__predict_false(pg == NULL)) {
   2843 		if (flags & PR_WAITOK) {
   2844 			uvm_wait("plpg");
   2845 			goto again;
   2846 		} else {
   2847 			return (0);
   2848 		}
   2849 	}
   2850 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2851 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2852 }
   2853 
   2854 void
   2855 pmap_pool_ufree(struct pool *pp, void *va)
   2856 {
   2857 	struct pvo_page *pvop;
   2858 #if 0
   2859 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2860 		pmap_pool_mfree(va, size, tag);
   2861 		return;
   2862 	}
   2863 #endif
   2864 	PMAP_LOCK();
   2865 	pvop = va;
   2866 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2867 	pmap_upvop_free++;
   2868 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2869 		pmap_upvop_maxfree = pmap_upvop_free;
   2870 	PMAP_UNLOCK();
   2871 }
   2872 
   2873 void
   2874 pmap_pool_mfree(struct pool *pp, void *va)
   2875 {
   2876 	struct pvo_page *pvop;
   2877 
   2878 	PMAP_LOCK();
   2879 	pvop = va;
   2880 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2881 	pmap_mpvop_free++;
   2882 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2883 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2884 	PMAP_UNLOCK();
   2885 #if 0
   2886 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2887 #endif
   2888 }
   2889 
   2890 /*
   2891  * This routine in bootstraping to steal to-be-managed memory (which will
   2892  * then be unmanaged).  We use it to grab from the first 256MB for our
   2893  * pmap needs and above 256MB for other stuff.
   2894  */
   2895 vaddr_t
   2896 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2897 {
   2898 	vsize_t size;
   2899 	vaddr_t va;
   2900 	paddr_t pa = 0;
   2901 	int npgs, bank;
   2902 	struct vm_physseg *ps;
   2903 
   2904 	if (uvm.page_init_done == true)
   2905 		panic("pmap_steal_memory: called _after_ bootstrap");
   2906 
   2907 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2908 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2909 
   2910 	size = round_page(vsize);
   2911 	npgs = atop(size);
   2912 
   2913 	/*
   2914 	 * PA 0 will never be among those given to UVM so we can use it
   2915 	 * to indicate we couldn't steal any memory.
   2916 	 */
   2917 	for (bank = 0; bank < vm_nphysseg; bank++) {
   2918 		ps = VM_PHYSMEM_PTR(bank);
   2919 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2920 		    ps->avail_end - ps->avail_start >= npgs) {
   2921 			pa = ptoa(ps->avail_start);
   2922 			break;
   2923 		}
   2924 	}
   2925 
   2926 	if (pa == 0)
   2927 		panic("pmap_steal_memory: no approriate memory to steal!");
   2928 
   2929 	ps->avail_start += npgs;
   2930 	ps->start += npgs;
   2931 
   2932 	/*
   2933 	 * If we've used up all the pages in the segment, remove it and
   2934 	 * compact the list.
   2935 	 */
   2936 	if (ps->avail_start == ps->end) {
   2937 		/*
   2938 		 * If this was the last one, then a very bad thing has occurred
   2939 		 */
   2940 		if (--vm_nphysseg == 0)
   2941 			panic("pmap_steal_memory: out of memory!");
   2942 
   2943 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2944 		for (; bank < vm_nphysseg; bank++, ps++) {
   2945 			ps[0] = ps[1];
   2946 		}
   2947 	}
   2948 
   2949 	va = (vaddr_t) pa;
   2950 	memset((void *) va, 0, size);
   2951 	pmap_pages_stolen += npgs;
   2952 #ifdef DEBUG
   2953 	if (pmapdebug && npgs > 1) {
   2954 		u_int cnt = 0;
   2955 		for (bank = 0; bank < vm_nphysseg; bank++) {
   2956 			ps = VM_PHYSMEM_PTR(bank);
   2957 			cnt += ps->avail_end - ps->avail_start;
   2958 		}
   2959 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2960 		    npgs, pmap_pages_stolen, cnt);
   2961 	}
   2962 #endif
   2963 
   2964 	return va;
   2965 }
   2966 
   2967 /*
   2968  * Find a chuck of memory with right size and alignment.
   2969  */
   2970 paddr_t
   2971 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2972 {
   2973 	struct mem_region *mp;
   2974 	paddr_t s, e;
   2975 	int i, j;
   2976 
   2977 	size = round_page(size);
   2978 
   2979 	DPRINTFN(BOOT,
   2980 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2981 	    size, alignment, at_end));
   2982 
   2983 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2984 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2985 		    alignment);
   2986 
   2987 	if (at_end) {
   2988 		if (alignment != PAGE_SIZE)
   2989 			panic("pmap_boot_find_memory: invalid ending "
   2990 			    "alignment %#" _PRIxpa, alignment);
   2991 
   2992 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2993 			s = mp->start + mp->size - size;
   2994 			if (s >= mp->start && mp->size >= size) {
   2995 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   2996 				DPRINTFN(BOOT,
   2997 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2998 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   2999 				     mp->start, mp->size));
   3000 				mp->size -= size;
   3001 				DPRINTFN(BOOT,
   3002 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3003 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3004 				     mp->start, mp->size));
   3005 				return s;
   3006 			}
   3007 		}
   3008 		panic("pmap_boot_find_memory: no available memory");
   3009 	}
   3010 
   3011 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3012 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3013 		e = s + size;
   3014 
   3015 		/*
   3016 		 * Is the calculated region entirely within the region?
   3017 		 */
   3018 		if (s < mp->start || e > mp->start + mp->size)
   3019 			continue;
   3020 
   3021 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3022 		if (s == mp->start) {
   3023 			/*
   3024 			 * If the block starts at the beginning of region,
   3025 			 * adjust the size & start. (the region may now be
   3026 			 * zero in length)
   3027 			 */
   3028 			DPRINTFN(BOOT,
   3029 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3030 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3031 			mp->start += size;
   3032 			mp->size -= size;
   3033 			DPRINTFN(BOOT,
   3034 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3035 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3036 		} else if (e == mp->start + mp->size) {
   3037 			/*
   3038 			 * If the block starts at the beginning of region,
   3039 			 * adjust only the size.
   3040 			 */
   3041 			DPRINTFN(BOOT,
   3042 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3043 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3044 			mp->size -= size;
   3045 			DPRINTFN(BOOT,
   3046 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3047 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3048 		} else {
   3049 			/*
   3050 			 * Block is in the middle of the region, so we
   3051 			 * have to split it in two.
   3052 			 */
   3053 			for (j = avail_cnt; j > i + 1; j--) {
   3054 				avail[j] = avail[j-1];
   3055 			}
   3056 			DPRINTFN(BOOT,
   3057 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3058 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3059 			mp[1].start = e;
   3060 			mp[1].size = mp[0].start + mp[0].size - e;
   3061 			mp[0].size = s - mp[0].start;
   3062 			avail_cnt++;
   3063 			for (; i < avail_cnt; i++) {
   3064 				DPRINTFN(BOOT,
   3065 				    ("pmap_boot_find_memory: a-avail[%d] "
   3066 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3067 				     avail[i].start, avail[i].size));
   3068 			}
   3069 		}
   3070 		KASSERT(s == (uintptr_t) s);
   3071 		return s;
   3072 	}
   3073 	panic("pmap_boot_find_memory: not enough memory for "
   3074 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3075 }
   3076 
   3077 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3078 #if defined (PMAP_OEA64_BRIDGE)
   3079 int
   3080 pmap_setup_segment0_map(int use_large_pages, ...)
   3081 {
   3082     vaddr_t va;
   3083 
   3084     register_t pte_lo = 0x0;
   3085     int ptegidx = 0, i = 0;
   3086     struct pte pte;
   3087     va_list ap;
   3088 
   3089     /* Coherent + Supervisor RW, no user access */
   3090     pte_lo = PTE_M;
   3091 
   3092     /* XXXSL
   3093      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3094      * these have to take priority.
   3095      */
   3096     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3097         ptegidx = va_to_pteg(pmap_kernel(), va);
   3098         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3099         i = pmap_pte_insert(ptegidx, &pte);
   3100     }
   3101 
   3102     va_start(ap, use_large_pages);
   3103     while (1) {
   3104         paddr_t pa;
   3105         size_t size;
   3106 
   3107         va = va_arg(ap, vaddr_t);
   3108 
   3109         if (va == 0)
   3110             break;
   3111 
   3112         pa = va_arg(ap, paddr_t);
   3113         size = va_arg(ap, size_t);
   3114 
   3115         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3116 #if 0
   3117 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3118 #endif
   3119             ptegidx = va_to_pteg(pmap_kernel(), va);
   3120             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3121             i = pmap_pte_insert(ptegidx, &pte);
   3122         }
   3123     }
   3124 
   3125     TLBSYNC();
   3126     SYNC();
   3127     return (0);
   3128 }
   3129 #endif /* PMAP_OEA64_BRIDGE */
   3130 
   3131 /*
   3132  * This is not part of the defined PMAP interface and is specific to the
   3133  * PowerPC architecture.  This is called during initppc, before the system
   3134  * is really initialized.
   3135  */
   3136 void
   3137 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3138 {
   3139 	struct mem_region *mp, tmp;
   3140 	paddr_t s, e;
   3141 	psize_t size;
   3142 	int i, j;
   3143 
   3144 	/*
   3145 	 * Get memory.
   3146 	 */
   3147 	mem_regions(&mem, &avail);
   3148 #if defined(DEBUG)
   3149 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3150 		printf("pmap_bootstrap: memory configuration:\n");
   3151 		for (mp = mem; mp->size; mp++) {
   3152 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3153 				mp->start, mp->size);
   3154 		}
   3155 		for (mp = avail; mp->size; mp++) {
   3156 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3157 				mp->start, mp->size);
   3158 		}
   3159 	}
   3160 #endif
   3161 
   3162 	/*
   3163 	 * Find out how much physical memory we have and in how many chunks.
   3164 	 */
   3165 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3166 		if (mp->start >= pmap_memlimit)
   3167 			continue;
   3168 		if (mp->start + mp->size > pmap_memlimit) {
   3169 			size = pmap_memlimit - mp->start;
   3170 			physmem += btoc(size);
   3171 		} else {
   3172 			physmem += btoc(mp->size);
   3173 		}
   3174 		mem_cnt++;
   3175 	}
   3176 
   3177 	/*
   3178 	 * Count the number of available entries.
   3179 	 */
   3180 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3181 		avail_cnt++;
   3182 
   3183 	/*
   3184 	 * Page align all regions.
   3185 	 */
   3186 	kernelstart = trunc_page(kernelstart);
   3187 	kernelend = round_page(kernelend);
   3188 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3189 		s = round_page(mp->start);
   3190 		mp->size -= (s - mp->start);
   3191 		mp->size = trunc_page(mp->size);
   3192 		mp->start = s;
   3193 		e = mp->start + mp->size;
   3194 
   3195 		DPRINTFN(BOOT,
   3196 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3197 		    i, mp->start, mp->size));
   3198 
   3199 		/*
   3200 		 * Don't allow the end to run beyond our artificial limit
   3201 		 */
   3202 		if (e > pmap_memlimit)
   3203 			e = pmap_memlimit;
   3204 
   3205 		/*
   3206 		 * Is this region empty or strange?  skip it.
   3207 		 */
   3208 		if (e <= s) {
   3209 			mp->start = 0;
   3210 			mp->size = 0;
   3211 			continue;
   3212 		}
   3213 
   3214 		/*
   3215 		 * Does this overlap the beginning of kernel?
   3216 		 *   Does extend past the end of the kernel?
   3217 		 */
   3218 		else if (s < kernelstart && e > kernelstart) {
   3219 			if (e > kernelend) {
   3220 				avail[avail_cnt].start = kernelend;
   3221 				avail[avail_cnt].size = e - kernelend;
   3222 				avail_cnt++;
   3223 			}
   3224 			mp->size = kernelstart - s;
   3225 		}
   3226 		/*
   3227 		 * Check whether this region overlaps the end of the kernel.
   3228 		 */
   3229 		else if (s < kernelend && e > kernelend) {
   3230 			mp->start = kernelend;
   3231 			mp->size = e - kernelend;
   3232 		}
   3233 		/*
   3234 		 * Look whether this regions is completely inside the kernel.
   3235 		 * Nuke it if it does.
   3236 		 */
   3237 		else if (s >= kernelstart && e <= kernelend) {
   3238 			mp->start = 0;
   3239 			mp->size = 0;
   3240 		}
   3241 		/*
   3242 		 * If the user imposed a memory limit, enforce it.
   3243 		 */
   3244 		else if (s >= pmap_memlimit) {
   3245 			mp->start = -PAGE_SIZE;	/* let's know why */
   3246 			mp->size = 0;
   3247 		}
   3248 		else {
   3249 			mp->start = s;
   3250 			mp->size = e - s;
   3251 		}
   3252 		DPRINTFN(BOOT,
   3253 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3254 		    i, mp->start, mp->size));
   3255 	}
   3256 
   3257 	/*
   3258 	 * Move (and uncount) all the null return to the end.
   3259 	 */
   3260 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3261 		if (mp->size == 0) {
   3262 			tmp = avail[i];
   3263 			avail[i] = avail[--avail_cnt];
   3264 			avail[avail_cnt] = avail[i];
   3265 		}
   3266 	}
   3267 
   3268 	/*
   3269 	 * (Bubble)sort them into ascending order.
   3270 	 */
   3271 	for (i = 0; i < avail_cnt; i++) {
   3272 		for (j = i + 1; j < avail_cnt; j++) {
   3273 			if (avail[i].start > avail[j].start) {
   3274 				tmp = avail[i];
   3275 				avail[i] = avail[j];
   3276 				avail[j] = tmp;
   3277 			}
   3278 		}
   3279 	}
   3280 
   3281 	/*
   3282 	 * Make sure they don't overlap.
   3283 	 */
   3284 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3285 		if (mp[0].start + mp[0].size > mp[1].start) {
   3286 			mp[0].size = mp[1].start - mp[0].start;
   3287 		}
   3288 		DPRINTFN(BOOT,
   3289 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3290 		    i, mp->start, mp->size));
   3291 	}
   3292 	DPRINTFN(BOOT,
   3293 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3294 	    i, mp->start, mp->size));
   3295 
   3296 #ifdef	PTEGCOUNT
   3297 	pmap_pteg_cnt = PTEGCOUNT;
   3298 #else /* PTEGCOUNT */
   3299 
   3300 	pmap_pteg_cnt = 0x1000;
   3301 
   3302 	while (pmap_pteg_cnt < physmem)
   3303 		pmap_pteg_cnt <<= 1;
   3304 
   3305 	pmap_pteg_cnt >>= 1;
   3306 #endif /* PTEGCOUNT */
   3307 
   3308 #ifdef DEBUG
   3309 	DPRINTFN(BOOT,
   3310 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3311 #endif
   3312 
   3313 	/*
   3314 	 * Find suitably aligned memory for PTEG hash table.
   3315 	 */
   3316 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3317 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3318 
   3319 #ifdef DEBUG
   3320 	DPRINTFN(BOOT,
   3321 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3322 #endif
   3323 
   3324 
   3325 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3326 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3327 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3328 		    pmap_pteg_table, size);
   3329 #endif
   3330 
   3331 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3332 		pmap_pteg_cnt * sizeof(struct pteg));
   3333 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3334 
   3335 	/*
   3336 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3337 	 * with pages.  So we just steal them before giving them to UVM.
   3338 	 */
   3339 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3340 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3341 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3342 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3343 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3344 		    pmap_pvo_table, size);
   3345 #endif
   3346 
   3347 	for (i = 0; i < pmap_pteg_cnt; i++)
   3348 		TAILQ_INIT(&pmap_pvo_table[i]);
   3349 
   3350 #ifndef MSGBUFADDR
   3351 	/*
   3352 	 * Allocate msgbuf in high memory.
   3353 	 */
   3354 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3355 #endif
   3356 
   3357 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3358 		paddr_t pfstart = atop(mp->start);
   3359 		paddr_t pfend = atop(mp->start + mp->size);
   3360 		if (mp->size == 0)
   3361 			continue;
   3362 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3363 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3364 				VM_FREELIST_FIRST256);
   3365 		} else if (mp->start >= SEGMENT_LENGTH) {
   3366 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3367 				VM_FREELIST_DEFAULT);
   3368 		} else {
   3369 			pfend = atop(SEGMENT_LENGTH);
   3370 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3371 				VM_FREELIST_FIRST256);
   3372 			pfstart = atop(SEGMENT_LENGTH);
   3373 			pfend = atop(mp->start + mp->size);
   3374 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3375 				VM_FREELIST_DEFAULT);
   3376 		}
   3377 	}
   3378 
   3379 	/*
   3380 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3381 	 */
   3382 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3383 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3384 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3385 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3386 	pmap_vsid_bitmap[0] |= 1;
   3387 
   3388 	/*
   3389 	 * Initialize kernel pmap and hardware.
   3390 	 */
   3391 
   3392 /* PMAP_OEA64_BRIDGE does support these instructions */
   3393 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3394 	for (i = 0; i < 16; i++) {
   3395  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3396 		__asm volatile ("mtsrin %0,%1"
   3397  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3398 	}
   3399 
   3400 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3401 	__asm volatile ("mtsr %0,%1"
   3402 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3403 #ifdef KERNEL2_SR
   3404 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3405 	__asm volatile ("mtsr %0,%1"
   3406 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3407 #endif
   3408 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3409 #if defined (PMAP_OEA)
   3410 	for (i = 0; i < 16; i++) {
   3411 		if (iosrtable[i] & SR601_T) {
   3412 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3413 			__asm volatile ("mtsrin %0,%1"
   3414 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3415 		}
   3416 	}
   3417 	__asm volatile ("sync; mtsdr1 %0; isync"
   3418 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3419 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3420  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3421  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3422 #endif
   3423 	tlbia();
   3424 
   3425 #ifdef ALTIVEC
   3426 	pmap_use_altivec = cpu_altivec;
   3427 #endif
   3428 
   3429 #ifdef DEBUG
   3430 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3431 		u_int cnt;
   3432 		int bank;
   3433 		char pbuf[9];
   3434 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3435 			cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
   3436 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3437 			    bank,
   3438 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
   3439 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
   3440 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
   3441 		}
   3442 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3443 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3444 		    pbuf, cnt);
   3445 	}
   3446 #endif
   3447 
   3448 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3449 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3450 	    &pmap_pool_uallocator, IPL_VM);
   3451 
   3452 	pool_setlowat(&pmap_upvo_pool, 252);
   3453 
   3454 	pool_init(&pmap_pool, sizeof(struct pmap),
   3455 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3456 	    IPL_NONE);
   3457 
   3458 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3459 	{
   3460 		struct pmap *pm = pmap_kernel();
   3461 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3462 		extern int etext[], kernel_text[];
   3463 		vaddr_t va, va_etext = (paddr_t) etext;
   3464 #endif
   3465 		paddr_t pa, pa_end;
   3466 		register_t sr;
   3467 		struct pte pt;
   3468 		unsigned int ptegidx;
   3469 		int bank;
   3470 
   3471 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3472 		pm->pm_sr[0] = sr;
   3473 
   3474 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3475 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3476 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3477 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3478 				ptegidx = va_to_pteg(pm, pa);
   3479 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3480 				pmap_pte_insert(ptegidx, &pt);
   3481 			}
   3482 		}
   3483 
   3484 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3485 		va = (vaddr_t) kernel_text;
   3486 
   3487 		for (pa = kernelstart; va < va_etext;
   3488 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3489 			ptegidx = va_to_pteg(pm, va);
   3490 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3491 			pmap_pte_insert(ptegidx, &pt);
   3492 		}
   3493 
   3494 		for (; pa < kernelend;
   3495 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3496 			ptegidx = va_to_pteg(pm, va);
   3497 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3498 			pmap_pte_insert(ptegidx, &pt);
   3499 		}
   3500 
   3501 		for (va = 0, pa = 0; va < kernelstart;
   3502 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3503 			ptegidx = va_to_pteg(pm, va);
   3504 			if (va < 0x3000)
   3505 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3506 			else
   3507 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3508 			pmap_pte_insert(ptegidx, &pt);
   3509 		}
   3510 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3511 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3512 			ptegidx = va_to_pteg(pm, va);
   3513 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3514 			pmap_pte_insert(ptegidx, &pt);
   3515 		}
   3516 #endif
   3517 
   3518 		__asm volatile ("mtsrin %0,%1"
   3519  			      :: "r"(sr), "r"(kernelstart));
   3520 	}
   3521 #endif
   3522 }
   3523 
   3524 u_int
   3525 powerpc_mmap_flags(paddr_t pa)
   3526 {
   3527 	u_int flags = PMAP_MD_NOCACHE;
   3528 
   3529 	if (pa & POWERPC_MMAP_FLAG_PREFETCHABLE)
   3530 		flags |= PMAP_MD_PREFETCHABLE;
   3531 	if (pa & POWERPC_MMAP_FLAG_CACHEABLE)
   3532 		flags &= ~PMAP_MD_NOCACHE;
   3533 	return flags;
   3534 }
   3535 
   3536