Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.79
      1 /*	$NetBSD: pmap.c,v 1.79 2011/05/02 01:49:23 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.79 2011/05/02 01:49:23 matt Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/malloc.h>
     77 #include <sys/proc.h>
     78 #include <sys/pool.h>
     79 #include <sys/queue.h>
     80 #include <sys/device.h>		/* for evcnt */
     81 #include <sys/systm.h>
     82 #include <sys/atomic.h>
     83 
     84 #include <uvm/uvm.h>
     85 
     86 #include <machine/pcb.h>
     87 #include <machine/powerpc.h>
     88 #include <powerpc/spr.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/stdarg.h>
     91 #include <powerpc/oea/spr.h>
     92 #include <powerpc/oea/sr_601.h>
     93 
     94 #ifdef ALTIVEC
     95 int pmap_use_altivec;
     96 #endif
     97 
     98 volatile struct pteg *pmap_pteg_table;
     99 unsigned int pmap_pteg_cnt;
    100 unsigned int pmap_pteg_mask;
    101 #ifdef PMAP_MEMLIMIT
    102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    103 #else
    104 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    105 #endif
    106 
    107 struct pmap kernel_pmap_;
    108 unsigned int pmap_pages_stolen;
    109 u_long pmap_pte_valid;
    110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    111 u_long pmap_pvo_enter_depth;
    112 u_long pmap_pvo_remove_depth;
    113 #endif
    114 
    115 #ifndef MSGBUFADDR
    116 extern paddr_t msgbuf_paddr;
    117 #endif
    118 
    119 static struct mem_region *mem, *avail;
    120 static u_int mem_cnt, avail_cnt;
    121 
    122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    123 # define	PMAP_OEA 1
    124 #endif
    125 
    126 #if defined(PMAP_OEA)
    127 #define	_PRIxpte	"lx"
    128 #else
    129 #define	_PRIxpte	PRIx64
    130 #endif
    131 #define	_PRIxpa		"lx"
    132 #define	_PRIxva		"lx"
    133 #define	_PRIsr  	"lx"
    134 
    135 #ifdef PMAP_NEEDS_FIXUP
    136 #if defined(PMAP_OEA)
    137 #define	PMAPNAME(name)	pmap32_##name
    138 #elif defined(PMAP_OEA64)
    139 #define	PMAPNAME(name)	pmap64_##name
    140 #elif defined(PMAP_OEA64_BRIDGE)
    141 #define	PMAPNAME(name)	pmap64bridge_##name
    142 #else
    143 #error unknown variant for pmap
    144 #endif
    145 #endif /* PMAP_NEEDS_FIXUP */
    146 
    147 #ifdef PMAPNAME
    148 #define	STATIC			static
    149 #define pmap_pte_spill		PMAPNAME(pte_spill)
    150 #define pmap_real_memory	PMAPNAME(real_memory)
    151 #define pmap_init		PMAPNAME(init)
    152 #define pmap_virtual_space	PMAPNAME(virtual_space)
    153 #define pmap_create		PMAPNAME(create)
    154 #define pmap_reference		PMAPNAME(reference)
    155 #define pmap_destroy		PMAPNAME(destroy)
    156 #define pmap_copy		PMAPNAME(copy)
    157 #define pmap_update		PMAPNAME(update)
    158 #define pmap_enter		PMAPNAME(enter)
    159 #define pmap_remove		PMAPNAME(remove)
    160 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    161 #define pmap_kremove		PMAPNAME(kremove)
    162 #define pmap_extract		PMAPNAME(extract)
    163 #define pmap_protect		PMAPNAME(protect)
    164 #define pmap_unwire		PMAPNAME(unwire)
    165 #define pmap_page_protect	PMAPNAME(page_protect)
    166 #define pmap_query_bit		PMAPNAME(query_bit)
    167 #define pmap_clear_bit		PMAPNAME(clear_bit)
    168 
    169 #define pmap_activate		PMAPNAME(activate)
    170 #define pmap_deactivate		PMAPNAME(deactivate)
    171 
    172 #define pmap_pinit		PMAPNAME(pinit)
    173 #define pmap_procwr		PMAPNAME(procwr)
    174 
    175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    176 #define pmap_pte_print		PMAPNAME(pte_print)
    177 #define pmap_pteg_check		PMAPNAME(pteg_check)
    178 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    179 #define pmap_print_pte		PMAPNAME(print_pte)
    180 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    181 #endif
    182 #if defined(DEBUG) || defined(PMAPCHECK)
    183 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    184 #define pmapcheck		PMAPNAME(check)
    185 #endif
    186 #if defined(DEBUG) || defined(PMAPDEBUG)
    187 #define pmapdebug		PMAPNAME(debug)
    188 #endif
    189 #define pmap_steal_memory	PMAPNAME(steal_memory)
    190 #define pmap_bootstrap		PMAPNAME(bootstrap)
    191 #else
    192 #define	STATIC			/* nothing */
    193 #endif /* PMAPNAME */
    194 
    195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    197 STATIC void pmap_init(void);
    198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    199 STATIC pmap_t pmap_create(void);
    200 STATIC void pmap_reference(pmap_t);
    201 STATIC void pmap_destroy(pmap_t);
    202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    203 STATIC void pmap_update(pmap_t);
    204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    207 STATIC void pmap_kremove(vaddr_t, vsize_t);
    208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    209 
    210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    211 STATIC void pmap_unwire(pmap_t, vaddr_t);
    212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    213 STATIC bool pmap_query_bit(struct vm_page *, int);
    214 STATIC bool pmap_clear_bit(struct vm_page *, int);
    215 
    216 STATIC void pmap_activate(struct lwp *);
    217 STATIC void pmap_deactivate(struct lwp *);
    218 
    219 STATIC void pmap_pinit(pmap_t pm);
    220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    221 
    222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    223 STATIC void pmap_pte_print(volatile struct pte *);
    224 STATIC void pmap_pteg_check(void);
    225 STATIC void pmap_print_mmuregs(void);
    226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    227 STATIC void pmap_pteg_dist(void);
    228 #endif
    229 #if defined(DEBUG) || defined(PMAPCHECK)
    230 STATIC void pmap_pvo_verify(void);
    231 #endif
    232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    234 
    235 #ifdef PMAPNAME
    236 const struct pmap_ops PMAPNAME(ops) = {
    237 	.pmapop_pte_spill = pmap_pte_spill,
    238 	.pmapop_real_memory = pmap_real_memory,
    239 	.pmapop_init = pmap_init,
    240 	.pmapop_virtual_space = pmap_virtual_space,
    241 	.pmapop_create = pmap_create,
    242 	.pmapop_reference = pmap_reference,
    243 	.pmapop_destroy = pmap_destroy,
    244 	.pmapop_copy = pmap_copy,
    245 	.pmapop_update = pmap_update,
    246 	.pmapop_enter = pmap_enter,
    247 	.pmapop_remove = pmap_remove,
    248 	.pmapop_kenter_pa = pmap_kenter_pa,
    249 	.pmapop_kremove = pmap_kremove,
    250 	.pmapop_extract = pmap_extract,
    251 	.pmapop_protect = pmap_protect,
    252 	.pmapop_unwire = pmap_unwire,
    253 	.pmapop_page_protect = pmap_page_protect,
    254 	.pmapop_query_bit = pmap_query_bit,
    255 	.pmapop_clear_bit = pmap_clear_bit,
    256 	.pmapop_activate = pmap_activate,
    257 	.pmapop_deactivate = pmap_deactivate,
    258 	.pmapop_pinit = pmap_pinit,
    259 	.pmapop_procwr = pmap_procwr,
    260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    261 	.pmapop_pte_print = pmap_pte_print,
    262 	.pmapop_pteg_check = pmap_pteg_check,
    263 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    264 	.pmapop_print_pte = pmap_print_pte,
    265 	.pmapop_pteg_dist = pmap_pteg_dist,
    266 #else
    267 	.pmapop_pte_print = NULL,
    268 	.pmapop_pteg_check = NULL,
    269 	.pmapop_print_mmuregs = NULL,
    270 	.pmapop_print_pte = NULL,
    271 	.pmapop_pteg_dist = NULL,
    272 #endif
    273 #if defined(DEBUG) || defined(PMAPCHECK)
    274 	.pmapop_pvo_verify = pmap_pvo_verify,
    275 #else
    276 	.pmapop_pvo_verify = NULL,
    277 #endif
    278 	.pmapop_steal_memory = pmap_steal_memory,
    279 	.pmapop_bootstrap = pmap_bootstrap,
    280 };
    281 #endif /* !PMAPNAME */
    282 
    283 /*
    284  * The following structure is aligned to 32 bytes
    285  */
    286 struct pvo_entry {
    287 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    288 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    289 	struct pte pvo_pte;			/* Prebuilt PTE */
    290 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    291 	vaddr_t pvo_vaddr;			/* VA of entry */
    292 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    293 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    294 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    295 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    296 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    297 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    298 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    299 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    300 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    301 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    302 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    303 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    304 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    305 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    306 #define	PVO_REMOVE		6		/* PVO has been removed */
    307 #define	PVO_WHERE_MASK		15
    308 #define	PVO_WHERE_SHFT		8
    309 } __attribute__ ((aligned (32)));
    310 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    311 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    312 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    313 #define	PVO_PTEGIDX_CLR(pvo)	\
    314 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    315 #define	PVO_PTEGIDX_SET(pvo,i)	\
    316 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    317 #define	PVO_WHERE(pvo,w)	\
    318 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    319 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    320 
    321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    322 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    325 
    326 struct pool pmap_pool;		/* pool for pmap structures */
    327 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    328 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    329 
    330 /*
    331  * We keep a cache of unmanaged pages to be used for pvo entries for
    332  * unmanaged pages.
    333  */
    334 struct pvo_page {
    335 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    336 };
    337 SIMPLEQ_HEAD(pvop_head, pvo_page);
    338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    340 u_long pmap_upvop_free;
    341 u_long pmap_upvop_maxfree;
    342 u_long pmap_mpvop_free;
    343 u_long pmap_mpvop_maxfree;
    344 
    345 static void *pmap_pool_ualloc(struct pool *, int);
    346 static void *pmap_pool_malloc(struct pool *, int);
    347 
    348 static void pmap_pool_ufree(struct pool *, void *);
    349 static void pmap_pool_mfree(struct pool *, void *);
    350 
    351 static struct pool_allocator pmap_pool_mallocator = {
    352 	.pa_alloc = pmap_pool_malloc,
    353 	.pa_free = pmap_pool_mfree,
    354 	.pa_pagesz = 0,
    355 };
    356 
    357 static struct pool_allocator pmap_pool_uallocator = {
    358 	.pa_alloc = pmap_pool_ualloc,
    359 	.pa_free = pmap_pool_ufree,
    360 	.pa_pagesz = 0,
    361 };
    362 
    363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    364 void pmap_pte_print(volatile struct pte *);
    365 void pmap_pteg_check(void);
    366 void pmap_pteg_dist(void);
    367 void pmap_print_pte(pmap_t, vaddr_t);
    368 void pmap_print_mmuregs(void);
    369 #endif
    370 
    371 #if defined(DEBUG) || defined(PMAPCHECK)
    372 #ifdef PMAPCHECK
    373 int pmapcheck = 1;
    374 #else
    375 int pmapcheck = 0;
    376 #endif
    377 void pmap_pvo_verify(void);
    378 static void pmap_pvo_check(const struct pvo_entry *);
    379 #define	PMAP_PVO_CHECK(pvo)	 		\
    380 	do {					\
    381 		if (pmapcheck)			\
    382 			pmap_pvo_check(pvo);	\
    383 	} while (0)
    384 #else
    385 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    386 #endif
    387 static int pmap_pte_insert(int, struct pte *);
    388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    389 	vaddr_t, paddr_t, register_t, int);
    390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    391 static void pmap_pvo_free(struct pvo_entry *);
    392 static void pmap_pvo_free_list(struct pvo_head *);
    393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    396 static void pvo_set_exec(struct pvo_entry *);
    397 static void pvo_clear_exec(struct pvo_entry *);
    398 
    399 static void tlbia(void);
    400 
    401 static void pmap_release(pmap_t);
    402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    403 
    404 static uint32_t pmap_pvo_reclaim_nextidx;
    405 #ifdef DEBUG
    406 static int pmap_pvo_reclaim_debugctr;
    407 #endif
    408 
    409 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    411 
    412 static int pmap_initialized;
    413 
    414 #if defined(DEBUG) || defined(PMAPDEBUG)
    415 #define	PMAPDEBUG_BOOT		0x0001
    416 #define	PMAPDEBUG_PTE		0x0002
    417 #define	PMAPDEBUG_EXEC		0x0008
    418 #define	PMAPDEBUG_PVOENTER	0x0010
    419 #define	PMAPDEBUG_PVOREMOVE	0x0020
    420 #define	PMAPDEBUG_ACTIVATE	0x0100
    421 #define	PMAPDEBUG_CREATE	0x0200
    422 #define	PMAPDEBUG_ENTER		0x1000
    423 #define	PMAPDEBUG_KENTER	0x2000
    424 #define	PMAPDEBUG_KREMOVE	0x4000
    425 #define	PMAPDEBUG_REMOVE	0x8000
    426 
    427 unsigned int pmapdebug = 0;
    428 
    429 # define DPRINTF(x)		printf x
    430 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    431 #else
    432 # define DPRINTF(x)
    433 # define DPRINTFN(n, x)
    434 #endif
    435 
    436 
    437 #ifdef PMAPCOUNTERS
    438 /*
    439  * From pmap_subr.c
    440  */
    441 extern struct evcnt pmap_evcnt_mappings;
    442 extern struct evcnt pmap_evcnt_unmappings;
    443 
    444 extern struct evcnt pmap_evcnt_kernel_mappings;
    445 extern struct evcnt pmap_evcnt_kernel_unmappings;
    446 
    447 extern struct evcnt pmap_evcnt_mappings_replaced;
    448 
    449 extern struct evcnt pmap_evcnt_exec_mappings;
    450 extern struct evcnt pmap_evcnt_exec_cached;
    451 
    452 extern struct evcnt pmap_evcnt_exec_synced;
    453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    455 
    456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    461 
    462 extern struct evcnt pmap_evcnt_updates;
    463 extern struct evcnt pmap_evcnt_collects;
    464 extern struct evcnt pmap_evcnt_copies;
    465 
    466 extern struct evcnt pmap_evcnt_ptes_spilled;
    467 extern struct evcnt pmap_evcnt_ptes_unspilled;
    468 extern struct evcnt pmap_evcnt_ptes_evicted;
    469 
    470 extern struct evcnt pmap_evcnt_ptes_primary[8];
    471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    472 extern struct evcnt pmap_evcnt_ptes_removed;
    473 extern struct evcnt pmap_evcnt_ptes_changed;
    474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    475 extern struct evcnt pmap_evcnt_pvos_failed;
    476 
    477 extern struct evcnt pmap_evcnt_zeroed_pages;
    478 extern struct evcnt pmap_evcnt_copied_pages;
    479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    480 
    481 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    482 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    483 #else
    484 #define	PMAPCOUNT(ev)	((void) 0)
    485 #define	PMAPCOUNT2(ev)	((void) 0)
    486 #endif
    487 
    488 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    489 
    490 /* XXXSL: this needs to be moved to assembler */
    491 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    492 
    493 #define	TLBSYNC()	__asm volatile("tlbsync")
    494 #define	SYNC()		__asm volatile("sync")
    495 #define	EIEIO()		__asm volatile("eieio")
    496 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    497 #define	MFMSR()		mfmsr()
    498 #define	MTMSR(psl)	mtmsr(psl)
    499 #define	MFPVR()		mfpvr()
    500 #define	MFSRIN(va)	mfsrin(va)
    501 #define	MFTB()		mfrtcltbl()
    502 
    503 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    504 static inline register_t
    505 mfsrin(vaddr_t va)
    506 {
    507 	register_t sr;
    508 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    509 	return sr;
    510 }
    511 #endif	/* PMAP_OEA*/
    512 
    513 #if defined (PMAP_OEA64_BRIDGE)
    514 extern void mfmsr64 (register64_t *result);
    515 #endif /* PMAP_OEA64_BRIDGE */
    516 
    517 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    518 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    519 
    520 static inline register_t
    521 pmap_interrupts_off(void)
    522 {
    523 	register_t msr = MFMSR();
    524 	if (msr & PSL_EE)
    525 		MTMSR(msr & ~PSL_EE);
    526 	return msr;
    527 }
    528 
    529 static void
    530 pmap_interrupts_restore(register_t msr)
    531 {
    532 	if (msr & PSL_EE)
    533 		MTMSR(msr);
    534 }
    535 
    536 static inline u_int32_t
    537 mfrtcltbl(void)
    538 {
    539 #ifdef PPC_OEA601
    540 	if ((MFPVR() >> 16) == MPC601)
    541 		return (mfrtcl() >> 7);
    542 	else
    543 #endif
    544 		return (mftbl());
    545 }
    546 
    547 /*
    548  * These small routines may have to be replaced,
    549  * if/when we support processors other that the 604.
    550  */
    551 
    552 void
    553 tlbia(void)
    554 {
    555 	char *i;
    556 
    557 	SYNC();
    558 #if defined(PMAP_OEA)
    559 	/*
    560 	 * Why not use "tlbia"?  Because not all processors implement it.
    561 	 *
    562 	 * This needs to be a per-CPU callback to do the appropriate thing
    563 	 * for the CPU. XXX
    564 	 */
    565 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    566 		TLBIE(i);
    567 		EIEIO();
    568 		SYNC();
    569 	}
    570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    571 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    572 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    573 		TLBIEL(i);
    574 		EIEIO();
    575 		SYNC();
    576 	}
    577 #endif
    578 	TLBSYNC();
    579 	SYNC();
    580 }
    581 
    582 static inline register_t
    583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    584 {
    585 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    586 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    587 #else /* PMAP_OEA64 */
    588 #if 0
    589 	const struct ste *ste;
    590 	register_t hash;
    591 	int i;
    592 
    593 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    594 
    595 	/*
    596 	 * Try the primary group first
    597 	 */
    598 	ste = pm->pm_stes[hash].stes;
    599 	for (i = 0; i < 8; i++, ste++) {
    600 		if (ste->ste_hi & STE_V) &&
    601 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    602 			return ste;
    603 	}
    604 
    605 	/*
    606 	 * Then the secondary group.
    607 	 */
    608 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    609 	for (i = 0; i < 8; i++, ste++) {
    610 		if (ste->ste_hi & STE_V) &&
    611 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    612 			return addr;
    613 	}
    614 
    615 	return NULL;
    616 #else
    617 	/*
    618 	 * Rather than searching the STE groups for the VSID, we know
    619 	 * how we generate that from the ESID and so do that.
    620 	 */
    621 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    622 #endif
    623 #endif /* PMAP_OEA */
    624 }
    625 
    626 static inline register_t
    627 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    628 {
    629 	register_t hash;
    630 
    631 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    632 	return hash & pmap_pteg_mask;
    633 }
    634 
    635 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    636 /*
    637  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    638  * The only bit of magic is that the top 4 bits of the address doesn't
    639  * technically exist in the PTE.  But we know we reserved 4 bits of the
    640  * VSID for it so that's how we get it.
    641  */
    642 static vaddr_t
    643 pmap_pte_to_va(volatile const struct pte *pt)
    644 {
    645 	vaddr_t va;
    646 	uintptr_t ptaddr = (uintptr_t) pt;
    647 
    648 	if (pt->pte_hi & PTE_HID)
    649 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    650 
    651 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    652 #if defined(PMAP_OEA)
    653 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    654 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    655 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    656 #endif
    657 	va <<= ADDR_PIDX_SHFT;
    658 
    659 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    660 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    661 
    662 #if defined(PMAP_OEA64)
    663 	/* PPC63 Bits 0-35 */
    664 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    665 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    666 	/* PPC Bits 0-3 */
    667 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    668 #endif
    669 
    670 	return va;
    671 }
    672 #endif
    673 
    674 static inline struct pvo_head *
    675 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    676 {
    677 	struct vm_page *pg;
    678 	struct vm_page_md *md;
    679 
    680 	pg = PHYS_TO_VM_PAGE(pa);
    681 	if (pg_p != NULL)
    682 		*pg_p = pg;
    683 	if (pg == NULL)
    684 		return &pmap_pvo_unmanaged;
    685 	md = VM_PAGE_TO_MD(pg);
    686 	return &md->mdpg_pvoh;
    687 }
    688 
    689 static inline struct pvo_head *
    690 vm_page_to_pvoh(struct vm_page *pg)
    691 {
    692 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    693 
    694 	return &md->mdpg_pvoh;
    695 }
    696 
    697 
    698 static inline void
    699 pmap_attr_clear(struct vm_page *pg, int ptebit)
    700 {
    701 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    702 
    703 	md->mdpg_attrs &= ~ptebit;
    704 }
    705 
    706 static inline int
    707 pmap_attr_fetch(struct vm_page *pg)
    708 {
    709 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    710 
    711 	return md->mdpg_attrs;
    712 }
    713 
    714 static inline void
    715 pmap_attr_save(struct vm_page *pg, int ptebit)
    716 {
    717 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    718 
    719 	md->mdpg_attrs |= ptebit;
    720 }
    721 
    722 static inline int
    723 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    724 {
    725 	if (pt->pte_hi == pvo_pt->pte_hi
    726 #if 0
    727 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    728 	        ~(PTE_REF|PTE_CHG)) == 0
    729 #endif
    730 	    )
    731 		return 1;
    732 	return 0;
    733 }
    734 
    735 static inline void
    736 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    737 {
    738 	/*
    739 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    740 	 * only gets set when the real pte is set in memory.
    741 	 *
    742 	 * Note: Don't set the valid bit for correct operation of tlb update.
    743 	 */
    744 #if defined(PMAP_OEA)
    745 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    746 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    747 	pt->pte_lo = pte_lo;
    748 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    749 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    750 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    751 	pt->pte_lo = (u_int64_t) pte_lo;
    752 #endif /* PMAP_OEA */
    753 }
    754 
    755 static inline void
    756 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    757 {
    758 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    759 }
    760 
    761 static inline void
    762 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    763 {
    764 	/*
    765 	 * As shown in Section 7.6.3.2.3
    766 	 */
    767 	pt->pte_lo &= ~ptebit;
    768 	TLBIE(va);
    769 	SYNC();
    770 	EIEIO();
    771 	TLBSYNC();
    772 	SYNC();
    773 #ifdef MULTIPROCESSOR
    774 	DCBST(pt);
    775 #endif
    776 }
    777 
    778 static inline void
    779 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    780 {
    781 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    782 	if (pvo_pt->pte_hi & PTE_VALID)
    783 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    784 #endif
    785 	pvo_pt->pte_hi |= PTE_VALID;
    786 
    787 	/*
    788 	 * Update the PTE as defined in section 7.6.3.1
    789 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    790 	 * have been saved so this routine can restore them (if desired).
    791 	 */
    792 	pt->pte_lo = pvo_pt->pte_lo;
    793 	EIEIO();
    794 	pt->pte_hi = pvo_pt->pte_hi;
    795 	TLBSYNC();
    796 	SYNC();
    797 #ifdef MULTIPROCESSOR
    798 	DCBST(pt);
    799 #endif
    800 	pmap_pte_valid++;
    801 }
    802 
    803 static inline void
    804 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    805 {
    806 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    807 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    808 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    809 	if ((pt->pte_hi & PTE_VALID) == 0)
    810 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    811 #endif
    812 
    813 	pvo_pt->pte_hi &= ~PTE_VALID;
    814 	/*
    815 	 * Force the ref & chg bits back into the PTEs.
    816 	 */
    817 	SYNC();
    818 	/*
    819 	 * Invalidate the pte ... (Section 7.6.3.3)
    820 	 */
    821 	pt->pte_hi &= ~PTE_VALID;
    822 	SYNC();
    823 	TLBIE(va);
    824 	SYNC();
    825 	EIEIO();
    826 	TLBSYNC();
    827 	SYNC();
    828 	/*
    829 	 * Save the ref & chg bits ...
    830 	 */
    831 	pmap_pte_synch(pt, pvo_pt);
    832 	pmap_pte_valid--;
    833 }
    834 
    835 static inline void
    836 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    837 {
    838 	/*
    839 	 * Invalidate the PTE
    840 	 */
    841 	pmap_pte_unset(pt, pvo_pt, va);
    842 	pmap_pte_set(pt, pvo_pt);
    843 }
    844 
    845 /*
    846  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    847  * (either primary or secondary location).
    848  *
    849  * Note: both the destination and source PTEs must not have PTE_VALID set.
    850  */
    851 
    852 static int
    853 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    854 {
    855 	volatile struct pte *pt;
    856 	int i;
    857 
    858 #if defined(DEBUG)
    859 	DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    860 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    861 #endif
    862 	/*
    863 	 * First try primary hash.
    864 	 */
    865 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    866 		if ((pt->pte_hi & PTE_VALID) == 0) {
    867 			pvo_pt->pte_hi &= ~PTE_HID;
    868 			pmap_pte_set(pt, pvo_pt);
    869 			return i;
    870 		}
    871 	}
    872 
    873 	/*
    874 	 * Now try secondary hash.
    875 	 */
    876 	ptegidx ^= pmap_pteg_mask;
    877 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    878 		if ((pt->pte_hi & PTE_VALID) == 0) {
    879 			pvo_pt->pte_hi |= PTE_HID;
    880 			pmap_pte_set(pt, pvo_pt);
    881 			return i;
    882 		}
    883 	}
    884 	return -1;
    885 }
    886 
    887 /*
    888  * Spill handler.
    889  *
    890  * Tries to spill a page table entry from the overflow area.
    891  * This runs in either real mode (if dealing with a exception spill)
    892  * or virtual mode when dealing with manually spilling one of the
    893  * kernel's pte entries.  In either case, interrupts are already
    894  * disabled.
    895  */
    896 
    897 int
    898 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    899 {
    900 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    901 	struct pvo_entry *pvo;
    902 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    903 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    904 	int ptegidx, i, j;
    905 	volatile struct pteg *pteg;
    906 	volatile struct pte *pt;
    907 
    908 	PMAP_LOCK();
    909 
    910 	ptegidx = va_to_pteg(pm, addr);
    911 
    912 	/*
    913 	 * Have to substitute some entry. Use the primary hash for this.
    914 	 * Use low bits of timebase as random generator.  Make sure we are
    915 	 * not picking a kernel pte for replacement.
    916 	 */
    917 	pteg = &pmap_pteg_table[ptegidx];
    918 	i = MFTB() & 7;
    919 	for (j = 0; j < 8; j++) {
    920 		pt = &pteg->pt[i];
    921 		if ((pt->pte_hi & PTE_VALID) == 0)
    922 			break;
    923 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    924 				< PHYSMAP_VSIDBITS)
    925 			break;
    926 		i = (i + 1) & 7;
    927 	}
    928 	KASSERT(j < 8);
    929 
    930 	source_pvo = NULL;
    931 	victim_pvo = NULL;
    932 	pvoh = &pmap_pvo_table[ptegidx];
    933 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    934 
    935 		/*
    936 		 * We need to find pvo entry for this address...
    937 		 */
    938 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    939 
    940 		/*
    941 		 * If we haven't found the source and we come to a PVO with
    942 		 * a valid PTE, then we know we can't find it because all
    943 		 * evicted PVOs always are first in the list.
    944 		 */
    945 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    946 			break;
    947 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    948 		    addr == PVO_VADDR(pvo)) {
    949 
    950 			/*
    951 			 * Now we have found the entry to be spilled into the
    952 			 * pteg.  Attempt to insert it into the page table.
    953 			 */
    954 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    955 			if (j >= 0) {
    956 				PVO_PTEGIDX_SET(pvo, j);
    957 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    958 				PVO_WHERE(pvo, SPILL_INSERT);
    959 				pvo->pvo_pmap->pm_evictions--;
    960 				PMAPCOUNT(ptes_spilled);
    961 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    962 				    ? pmap_evcnt_ptes_secondary
    963 				    : pmap_evcnt_ptes_primary)[j]);
    964 
    965 				/*
    966 				 * Since we keep the evicted entries at the
    967 				 * from of the PVO list, we need move this
    968 				 * (now resident) PVO after the evicted
    969 				 * entries.
    970 				 */
    971 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    972 
    973 				/*
    974 				 * If we don't have to move (either we were the
    975 				 * last entry or the next entry was valid),
    976 				 * don't change our position.  Otherwise
    977 				 * move ourselves to the tail of the queue.
    978 				 */
    979 				if (next_pvo != NULL &&
    980 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    981 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    982 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    983 				}
    984 				PMAP_UNLOCK();
    985 				return 1;
    986 			}
    987 			source_pvo = pvo;
    988 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    989 				return 0;
    990 			}
    991 			if (victim_pvo != NULL)
    992 				break;
    993 		}
    994 
    995 		/*
    996 		 * We also need the pvo entry of the victim we are replacing
    997 		 * so save the R & C bits of the PTE.
    998 		 */
    999 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1000 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1001 			vpvoh = pvoh;			/* *1* */
   1002 			victim_pvo = pvo;
   1003 			if (source_pvo != NULL)
   1004 				break;
   1005 		}
   1006 	}
   1007 
   1008 	if (source_pvo == NULL) {
   1009 		PMAPCOUNT(ptes_unspilled);
   1010 		PMAP_UNLOCK();
   1011 		return 0;
   1012 	}
   1013 
   1014 	if (victim_pvo == NULL) {
   1015 		if ((pt->pte_hi & PTE_HID) == 0)
   1016 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1017 			    "no pvo entry!", pt);
   1018 
   1019 		/*
   1020 		 * If this is a secondary PTE, we need to search
   1021 		 * its primary pvo bucket for the matching PVO.
   1022 		 */
   1023 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1024 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1025 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1026 
   1027 			/*
   1028 			 * We also need the pvo entry of the victim we are
   1029 			 * replacing so save the R & C bits of the PTE.
   1030 			 */
   1031 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1032 				victim_pvo = pvo;
   1033 				break;
   1034 			}
   1035 		}
   1036 		if (victim_pvo == NULL)
   1037 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1038 			    "no pvo entry!", pt);
   1039 	}
   1040 
   1041 	/*
   1042 	 * The victim should be not be a kernel PVO/PTE entry.
   1043 	 */
   1044 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1045 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1046 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1047 
   1048 	/*
   1049 	 * We are invalidating the TLB entry for the EA for the
   1050 	 * we are replacing even though its valid; If we don't
   1051 	 * we lose any ref/chg bit changes contained in the TLB
   1052 	 * entry.
   1053 	 */
   1054 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1055 
   1056 	/*
   1057 	 * To enforce the PVO list ordering constraint that all
   1058 	 * evicted entries should come before all valid entries,
   1059 	 * move the source PVO to the tail of its list and the
   1060 	 * victim PVO to the head of its list (which might not be
   1061 	 * the same list, if the victim was using the secondary hash).
   1062 	 */
   1063 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1064 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1065 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1066 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1067 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1068 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1069 	victim_pvo->pvo_pmap->pm_evictions++;
   1070 	source_pvo->pvo_pmap->pm_evictions--;
   1071 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1072 	PVO_WHERE(source_pvo, SPILL_SET);
   1073 
   1074 	PVO_PTEGIDX_CLR(victim_pvo);
   1075 	PVO_PTEGIDX_SET(source_pvo, i);
   1076 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1077 	PMAPCOUNT(ptes_spilled);
   1078 	PMAPCOUNT(ptes_evicted);
   1079 	PMAPCOUNT(ptes_removed);
   1080 
   1081 	PMAP_PVO_CHECK(victim_pvo);
   1082 	PMAP_PVO_CHECK(source_pvo);
   1083 
   1084 	PMAP_UNLOCK();
   1085 	return 1;
   1086 }
   1087 
   1088 /*
   1089  * Restrict given range to physical memory
   1090  */
   1091 void
   1092 pmap_real_memory(paddr_t *start, psize_t *size)
   1093 {
   1094 	struct mem_region *mp;
   1095 
   1096 	for (mp = mem; mp->size; mp++) {
   1097 		if (*start + *size > mp->start
   1098 		    && *start < mp->start + mp->size) {
   1099 			if (*start < mp->start) {
   1100 				*size -= mp->start - *start;
   1101 				*start = mp->start;
   1102 			}
   1103 			if (*start + *size > mp->start + mp->size)
   1104 				*size = mp->start + mp->size - *start;
   1105 			return;
   1106 		}
   1107 	}
   1108 	*size = 0;
   1109 }
   1110 
   1111 /*
   1112  * Initialize anything else for pmap handling.
   1113  * Called during vm_init().
   1114  */
   1115 void
   1116 pmap_init(void)
   1117 {
   1118 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1119 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1120 	    &pmap_pool_mallocator, IPL_NONE);
   1121 
   1122 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1123 
   1124 	pmap_initialized = 1;
   1125 
   1126 }
   1127 
   1128 /*
   1129  * How much virtual space does the kernel get?
   1130  */
   1131 void
   1132 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1133 {
   1134 	/*
   1135 	 * For now, reserve one segment (minus some overhead) for kernel
   1136 	 * virtual memory
   1137 	 */
   1138 	*start = VM_MIN_KERNEL_ADDRESS;
   1139 	*end = VM_MAX_KERNEL_ADDRESS;
   1140 }
   1141 
   1142 /*
   1143  * Allocate, initialize, and return a new physical map.
   1144  */
   1145 pmap_t
   1146 pmap_create(void)
   1147 {
   1148 	pmap_t pm;
   1149 
   1150 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1151 	memset((void *)pm, 0, sizeof *pm);
   1152 	pmap_pinit(pm);
   1153 
   1154 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1155 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1156 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1157 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1158 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1159 	    pm,
   1160 	    pm->pm_sr[0], pm->pm_sr[1],
   1161 	    pm->pm_sr[2], pm->pm_sr[3],
   1162 	    pm->pm_sr[4], pm->pm_sr[5],
   1163 	    pm->pm_sr[6], pm->pm_sr[7],
   1164 	    pm->pm_sr[8], pm->pm_sr[9],
   1165 	    pm->pm_sr[10], pm->pm_sr[11],
   1166 	    pm->pm_sr[12], pm->pm_sr[13],
   1167 	    pm->pm_sr[14], pm->pm_sr[15]));
   1168 	return pm;
   1169 }
   1170 
   1171 /*
   1172  * Initialize a preallocated and zeroed pmap structure.
   1173  */
   1174 void
   1175 pmap_pinit(pmap_t pm)
   1176 {
   1177 	register_t entropy = MFTB();
   1178 	register_t mask;
   1179 	int i;
   1180 
   1181 	/*
   1182 	 * Allocate some segment registers for this pmap.
   1183 	 */
   1184 	pm->pm_refs = 1;
   1185 	PMAP_LOCK();
   1186 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1187 		static register_t pmap_vsidcontext;
   1188 		register_t hash;
   1189 		unsigned int n;
   1190 
   1191 		/* Create a new value by multiplying by a prime adding in
   1192 		 * entropy from the timebase register.  This is to make the
   1193 		 * VSID more random so that the PT Hash function collides
   1194 		 * less often. (note that the prime causes gcc to do shifts
   1195 		 * instead of a multiply)
   1196 		 */
   1197 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1198 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1199 		if (hash == 0) {		/* 0 is special, avoid it */
   1200 			entropy += 0xbadf00d;
   1201 			continue;
   1202 		}
   1203 		n = hash >> 5;
   1204 		mask = 1L << (hash & (VSID_NBPW-1));
   1205 		hash = pmap_vsidcontext;
   1206 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1207 			/* anything free in this bucket? */
   1208 			if (~pmap_vsid_bitmap[n] == 0) {
   1209 				entropy = hash ^ (hash >> 16);
   1210 				continue;
   1211 			}
   1212 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1213 			mask = 1L << i;
   1214 			hash &= ~(VSID_NBPW-1);
   1215 			hash |= i;
   1216 		}
   1217 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1218 		pmap_vsid_bitmap[n] |= mask;
   1219 		pm->pm_vsid = hash;
   1220 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1221 		for (i = 0; i < 16; i++)
   1222 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1223 			    SR_NOEXEC;
   1224 #endif
   1225 		PMAP_UNLOCK();
   1226 		return;
   1227 	}
   1228 	PMAP_UNLOCK();
   1229 	panic("pmap_pinit: out of segments");
   1230 }
   1231 
   1232 /*
   1233  * Add a reference to the given pmap.
   1234  */
   1235 void
   1236 pmap_reference(pmap_t pm)
   1237 {
   1238 	atomic_inc_uint(&pm->pm_refs);
   1239 }
   1240 
   1241 /*
   1242  * Retire the given pmap from service.
   1243  * Should only be called if the map contains no valid mappings.
   1244  */
   1245 void
   1246 pmap_destroy(pmap_t pm)
   1247 {
   1248 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1249 		pmap_release(pm);
   1250 		pool_put(&pmap_pool, pm);
   1251 	}
   1252 }
   1253 
   1254 /*
   1255  * Release any resources held by the given physical map.
   1256  * Called when a pmap initialized by pmap_pinit is being released.
   1257  */
   1258 void
   1259 pmap_release(pmap_t pm)
   1260 {
   1261 	int idx, mask;
   1262 
   1263 	KASSERT(pm->pm_stats.resident_count == 0);
   1264 	KASSERT(pm->pm_stats.wired_count == 0);
   1265 
   1266 	PMAP_LOCK();
   1267 	if (pm->pm_sr[0] == 0)
   1268 		panic("pmap_release");
   1269 	idx = pm->pm_vsid & (NPMAPS-1);
   1270 	mask = 1 << (idx % VSID_NBPW);
   1271 	idx /= VSID_NBPW;
   1272 
   1273 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1274 	pmap_vsid_bitmap[idx] &= ~mask;
   1275 	PMAP_UNLOCK();
   1276 }
   1277 
   1278 /*
   1279  * Copy the range specified by src_addr/len
   1280  * from the source map to the range dst_addr/len
   1281  * in the destination map.
   1282  *
   1283  * This routine is only advisory and need not do anything.
   1284  */
   1285 void
   1286 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1287 	vsize_t len, vaddr_t src_addr)
   1288 {
   1289 	PMAPCOUNT(copies);
   1290 }
   1291 
   1292 /*
   1293  * Require that all active physical maps contain no
   1294  * incorrect entries NOW.
   1295  */
   1296 void
   1297 pmap_update(struct pmap *pmap)
   1298 {
   1299 	PMAPCOUNT(updates);
   1300 	TLBSYNC();
   1301 }
   1302 
   1303 static inline int
   1304 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1305 {
   1306 	int pteidx;
   1307 	/*
   1308 	 * We can find the actual pte entry without searching by
   1309 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1310 	 * and by noticing the HID bit.
   1311 	 */
   1312 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1313 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1314 		pteidx ^= pmap_pteg_mask * 8;
   1315 	return pteidx;
   1316 }
   1317 
   1318 volatile struct pte *
   1319 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1320 {
   1321 	volatile struct pte *pt;
   1322 
   1323 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1324 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1325 		return NULL;
   1326 #endif
   1327 
   1328 	/*
   1329 	 * If we haven't been supplied the ptegidx, calculate it.
   1330 	 */
   1331 	if (pteidx == -1) {
   1332 		int ptegidx;
   1333 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1334 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1335 	}
   1336 
   1337 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1338 
   1339 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1340 	return pt;
   1341 #else
   1342 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1343 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1344 		    "pvo but no valid pte index", pvo);
   1345 	}
   1346 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1347 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1348 		    "pvo but no valid pte", pvo);
   1349 	}
   1350 
   1351 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1352 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1353 #if defined(DEBUG) || defined(PMAPCHECK)
   1354 			pmap_pte_print(pt);
   1355 #endif
   1356 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1357 			    "pmap_pteg_table %p but invalid in pvo",
   1358 			    pvo, pt);
   1359 		}
   1360 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1361 #if defined(DEBUG) || defined(PMAPCHECK)
   1362 			pmap_pte_print(pt);
   1363 #endif
   1364 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1365 			    "not match pte %p in pmap_pteg_table",
   1366 			    pvo, pt);
   1367 		}
   1368 		return pt;
   1369 	}
   1370 
   1371 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1372 #if defined(DEBUG) || defined(PMAPCHECK)
   1373 		pmap_pte_print(pt);
   1374 #endif
   1375 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1376 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1377 	}
   1378 	return NULL;
   1379 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1380 }
   1381 
   1382 struct pvo_entry *
   1383 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1384 {
   1385 	struct pvo_entry *pvo;
   1386 	int ptegidx;
   1387 
   1388 	va &= ~ADDR_POFF;
   1389 	ptegidx = va_to_pteg(pm, va);
   1390 
   1391 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1392 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1393 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1394 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1395 			    "list %#x (%p)", pvo, ptegidx,
   1396 			     &pmap_pvo_table[ptegidx]);
   1397 #endif
   1398 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1399 			if (pteidx_p)
   1400 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1401 			return pvo;
   1402 		}
   1403 	}
   1404 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1405 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1406 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1407 	return NULL;
   1408 }
   1409 
   1410 #if defined(DEBUG) || defined(PMAPCHECK)
   1411 void
   1412 pmap_pvo_check(const struct pvo_entry *pvo)
   1413 {
   1414 	struct pvo_head *pvo_head;
   1415 	struct pvo_entry *pvo0;
   1416 	volatile struct pte *pt;
   1417 	int failed = 0;
   1418 
   1419 	PMAP_LOCK();
   1420 
   1421 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1422 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1423 
   1424 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1425 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1426 		    pvo, pvo->pvo_pmap);
   1427 		failed = 1;
   1428 	}
   1429 
   1430 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1431 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1432 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1433 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1434 		failed = 1;
   1435 	}
   1436 
   1437 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1438 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1439 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1440 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1441 		failed = 1;
   1442 	}
   1443 
   1444 	if (PVO_MANAGED_P(pvo)) {
   1445 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1446 	} else {
   1447 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1448 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1449 			    "on kernel unmanaged list\n", pvo);
   1450 			failed = 1;
   1451 		}
   1452 		pvo_head = &pmap_pvo_kunmanaged;
   1453 	}
   1454 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1455 		if (pvo0 == pvo)
   1456 			break;
   1457 	}
   1458 	if (pvo0 == NULL) {
   1459 		printf("pmap_pvo_check: pvo %p: not present "
   1460 		    "on its vlist head %p\n", pvo, pvo_head);
   1461 		failed = 1;
   1462 	}
   1463 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1464 		printf("pmap_pvo_check: pvo %p: not present "
   1465 		    "on its olist head\n", pvo);
   1466 		failed = 1;
   1467 	}
   1468 	pt = pmap_pvo_to_pte(pvo, -1);
   1469 	if (pt == NULL) {
   1470 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1471 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1472 			    "no PTE\n", pvo);
   1473 			failed = 1;
   1474 		}
   1475 	} else {
   1476 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1477 		    (uintptr_t) pt >=
   1478 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1479 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1480 			    "pteg table\n", pvo, pt);
   1481 			failed = 1;
   1482 		}
   1483 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1484 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1485 			    "no PTE\n", pvo);
   1486 			failed = 1;
   1487 		}
   1488 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1489 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1490 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1491 			    pvo->pvo_pte.pte_hi,
   1492 			    pt->pte_hi);
   1493 			failed = 1;
   1494 		}
   1495 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1496 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1497 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1498 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1499 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1500 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1501 			failed = 1;
   1502 		}
   1503 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1504 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1505 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1506 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1507 			failed = 1;
   1508 		}
   1509 		if (failed)
   1510 			pmap_pte_print(pt);
   1511 	}
   1512 	if (failed)
   1513 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1514 		    pvo->pvo_pmap);
   1515 
   1516 	PMAP_UNLOCK();
   1517 }
   1518 #endif /* DEBUG || PMAPCHECK */
   1519 
   1520 /*
   1521  * Search the PVO table looking for a non-wired entry.
   1522  * If we find one, remove it and return it.
   1523  */
   1524 
   1525 struct pvo_entry *
   1526 pmap_pvo_reclaim(struct pmap *pm)
   1527 {
   1528 	struct pvo_tqhead *pvoh;
   1529 	struct pvo_entry *pvo;
   1530 	uint32_t idx, endidx;
   1531 
   1532 	endidx = pmap_pvo_reclaim_nextidx;
   1533 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1534 	     idx = (idx + 1) & pmap_pteg_mask) {
   1535 		pvoh = &pmap_pvo_table[idx];
   1536 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1537 			if (!PVO_WIRED_P(pvo)) {
   1538 				pmap_pvo_remove(pvo, -1, NULL);
   1539 				pmap_pvo_reclaim_nextidx = idx;
   1540 				PMAPCOUNT(pvos_reclaimed);
   1541 				return pvo;
   1542 			}
   1543 		}
   1544 	}
   1545 	return NULL;
   1546 }
   1547 
   1548 /*
   1549  * This returns whether this is the first mapping of a page.
   1550  */
   1551 int
   1552 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1553 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1554 {
   1555 	struct pvo_entry *pvo;
   1556 	struct pvo_tqhead *pvoh;
   1557 	register_t msr;
   1558 	int ptegidx;
   1559 	int i;
   1560 	int poolflags = PR_NOWAIT;
   1561 
   1562 	/*
   1563 	 * Compute the PTE Group index.
   1564 	 */
   1565 	va &= ~ADDR_POFF;
   1566 	ptegidx = va_to_pteg(pm, va);
   1567 
   1568 	msr = pmap_interrupts_off();
   1569 
   1570 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1571 	if (pmap_pvo_remove_depth > 0)
   1572 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1573 	if (++pmap_pvo_enter_depth > 1)
   1574 		panic("pmap_pvo_enter: called recursively!");
   1575 #endif
   1576 
   1577 	/*
   1578 	 * Remove any existing mapping for this page.  Reuse the
   1579 	 * pvo entry if there a mapping.
   1580 	 */
   1581 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1582 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1583 #ifdef DEBUG
   1584 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1585 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1586 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1587 			   va < VM_MIN_KERNEL_ADDRESS) {
   1588 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1589 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1590 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1591 				    pvo->pvo_pte.pte_hi,
   1592 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1593 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1594 #ifdef DDBX
   1595 				Debugger();
   1596 #endif
   1597 			}
   1598 #endif
   1599 			PMAPCOUNT(mappings_replaced);
   1600 			pmap_pvo_remove(pvo, -1, NULL);
   1601 			break;
   1602 		}
   1603 	}
   1604 
   1605 	/*
   1606 	 * If we aren't overwriting an mapping, try to allocate
   1607 	 */
   1608 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1609 	--pmap_pvo_enter_depth;
   1610 #endif
   1611 	pmap_interrupts_restore(msr);
   1612 	if (pvo) {
   1613 		pmap_pvo_free(pvo);
   1614 	}
   1615 	pvo = pool_get(pl, poolflags);
   1616 
   1617 #ifdef DEBUG
   1618 	/*
   1619 	 * Exercise pmap_pvo_reclaim() a little.
   1620 	 */
   1621 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1622 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1623 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1624 		pool_put(pl, pvo);
   1625 		pvo = NULL;
   1626 	}
   1627 #endif
   1628 
   1629 	msr = pmap_interrupts_off();
   1630 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1631 	++pmap_pvo_enter_depth;
   1632 #endif
   1633 	if (pvo == NULL) {
   1634 		pvo = pmap_pvo_reclaim(pm);
   1635 		if (pvo == NULL) {
   1636 			if ((flags & PMAP_CANFAIL) == 0)
   1637 				panic("pmap_pvo_enter: failed");
   1638 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1639 			pmap_pvo_enter_depth--;
   1640 #endif
   1641 			PMAPCOUNT(pvos_failed);
   1642 			pmap_interrupts_restore(msr);
   1643 			return ENOMEM;
   1644 		}
   1645 	}
   1646 
   1647 	pvo->pvo_vaddr = va;
   1648 	pvo->pvo_pmap = pm;
   1649 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1650 	if (flags & VM_PROT_EXECUTE) {
   1651 		PMAPCOUNT(exec_mappings);
   1652 		pvo_set_exec(pvo);
   1653 	}
   1654 	if (flags & PMAP_WIRED)
   1655 		pvo->pvo_vaddr |= PVO_WIRED;
   1656 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1657 		pvo->pvo_vaddr |= PVO_MANAGED;
   1658 		PMAPCOUNT(mappings);
   1659 	} else {
   1660 		PMAPCOUNT(kernel_mappings);
   1661 	}
   1662 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1663 
   1664 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1665 	if (PVO_WIRED_P(pvo))
   1666 		pvo->pvo_pmap->pm_stats.wired_count++;
   1667 	pvo->pvo_pmap->pm_stats.resident_count++;
   1668 #if defined(DEBUG)
   1669 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1670 		DPRINTFN(PVOENTER,
   1671 		    ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1672 		    pvo, pm, va, pa));
   1673 #endif
   1674 
   1675 	/*
   1676 	 * We hope this succeeds but it isn't required.
   1677 	 */
   1678 	pvoh = &pmap_pvo_table[ptegidx];
   1679 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1680 	if (i >= 0) {
   1681 		PVO_PTEGIDX_SET(pvo, i);
   1682 		PVO_WHERE(pvo, ENTER_INSERT);
   1683 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1684 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1685 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1686 
   1687 	} else {
   1688 		/*
   1689 		 * Since we didn't have room for this entry (which makes it
   1690 		 * and evicted entry), place it at the head of the list.
   1691 		 */
   1692 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1693 		PMAPCOUNT(ptes_evicted);
   1694 		pm->pm_evictions++;
   1695 		/*
   1696 		 * If this is a kernel page, make sure it's active.
   1697 		 */
   1698 		if (pm == pmap_kernel()) {
   1699 			i = pmap_pte_spill(pm, va, false);
   1700 			KASSERT(i);
   1701 		}
   1702 	}
   1703 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1704 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1705 	pmap_pvo_enter_depth--;
   1706 #endif
   1707 	pmap_interrupts_restore(msr);
   1708 	return 0;
   1709 }
   1710 
   1711 static void
   1712 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1713 {
   1714 	volatile struct pte *pt;
   1715 	int ptegidx;
   1716 
   1717 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1718 	if (++pmap_pvo_remove_depth > 1)
   1719 		panic("pmap_pvo_remove: called recursively!");
   1720 #endif
   1721 
   1722 	/*
   1723 	 * If we haven't been supplied the ptegidx, calculate it.
   1724 	 */
   1725 	if (pteidx == -1) {
   1726 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1727 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1728 	} else {
   1729 		ptegidx = pteidx >> 3;
   1730 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1731 			ptegidx ^= pmap_pteg_mask;
   1732 	}
   1733 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1734 
   1735 	/*
   1736 	 * If there is an active pte entry, we need to deactivate it
   1737 	 * (and save the ref & chg bits).
   1738 	 */
   1739 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1740 	if (pt != NULL) {
   1741 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1742 		PVO_WHERE(pvo, REMOVE);
   1743 		PVO_PTEGIDX_CLR(pvo);
   1744 		PMAPCOUNT(ptes_removed);
   1745 	} else {
   1746 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1747 		pvo->pvo_pmap->pm_evictions--;
   1748 	}
   1749 
   1750 	/*
   1751 	 * Account for executable mappings.
   1752 	 */
   1753 	if (PVO_EXECUTABLE_P(pvo))
   1754 		pvo_clear_exec(pvo);
   1755 
   1756 	/*
   1757 	 * Update our statistics.
   1758 	 */
   1759 	pvo->pvo_pmap->pm_stats.resident_count--;
   1760 	if (PVO_WIRED_P(pvo))
   1761 		pvo->pvo_pmap->pm_stats.wired_count--;
   1762 
   1763 	/*
   1764 	 * Save the REF/CHG bits into their cache if the page is managed.
   1765 	 */
   1766 	if (PVO_MANAGED_P(pvo)) {
   1767 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1768 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1769 
   1770 		if (pg != NULL) {
   1771 			/*
   1772 			 * If this page was changed and it is mapped exec,
   1773 			 * invalidate it.
   1774 			 */
   1775 			if ((ptelo & PTE_CHG) &&
   1776 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1777 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1778 				if (LIST_EMPTY(pvoh)) {
   1779 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1780 					    "%#" _PRIxpa ": clear-exec]\n",
   1781 					    VM_PAGE_TO_PHYS(pg)));
   1782 					pmap_attr_clear(pg, PTE_EXEC);
   1783 					PMAPCOUNT(exec_uncached_pvo_remove);
   1784 				} else {
   1785 					DPRINTFN(EXEC, ("[pmap_pvo_remove: "
   1786 					    "%#" _PRIxpa ": syncicache]\n",
   1787 					    VM_PAGE_TO_PHYS(pg)));
   1788 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1789 					    PAGE_SIZE);
   1790 					PMAPCOUNT(exec_synced_pvo_remove);
   1791 				}
   1792 			}
   1793 
   1794 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1795 		}
   1796 		PMAPCOUNT(unmappings);
   1797 	} else {
   1798 		PMAPCOUNT(kernel_unmappings);
   1799 	}
   1800 
   1801 	/*
   1802 	 * Remove the PVO from its lists and return it to the pool.
   1803 	 */
   1804 	LIST_REMOVE(pvo, pvo_vlink);
   1805 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1806 	if (pvol) {
   1807 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1808 	}
   1809 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1810 	pmap_pvo_remove_depth--;
   1811 #endif
   1812 }
   1813 
   1814 void
   1815 pmap_pvo_free(struct pvo_entry *pvo)
   1816 {
   1817 
   1818 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1819 }
   1820 
   1821 void
   1822 pmap_pvo_free_list(struct pvo_head *pvol)
   1823 {
   1824 	struct pvo_entry *pvo, *npvo;
   1825 
   1826 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1827 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1828 		LIST_REMOVE(pvo, pvo_vlink);
   1829 		pmap_pvo_free(pvo);
   1830 	}
   1831 }
   1832 
   1833 /*
   1834  * Mark a mapping as executable.
   1835  * If this is the first executable mapping in the segment,
   1836  * clear the noexec flag.
   1837  */
   1838 static void
   1839 pvo_set_exec(struct pvo_entry *pvo)
   1840 {
   1841 	struct pmap *pm = pvo->pvo_pmap;
   1842 
   1843 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1844 		return;
   1845 	}
   1846 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1847 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1848 	{
   1849 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1850 		if (pm->pm_exec[sr]++ == 0) {
   1851 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1852 		}
   1853 	}
   1854 #endif
   1855 }
   1856 
   1857 /*
   1858  * Mark a mapping as non-executable.
   1859  * If this was the last executable mapping in the segment,
   1860  * set the noexec flag.
   1861  */
   1862 static void
   1863 pvo_clear_exec(struct pvo_entry *pvo)
   1864 {
   1865 	struct pmap *pm = pvo->pvo_pmap;
   1866 
   1867 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1868 		return;
   1869 	}
   1870 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1871 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1872 	{
   1873 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1874 		if (--pm->pm_exec[sr] == 0) {
   1875 			pm->pm_sr[sr] |= SR_NOEXEC;
   1876 		}
   1877 	}
   1878 #endif
   1879 }
   1880 
   1881 /*
   1882  * Insert physical page at pa into the given pmap at virtual address va.
   1883  */
   1884 int
   1885 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1886 {
   1887 	struct mem_region *mp;
   1888 	struct pvo_head *pvo_head;
   1889 	struct vm_page *pg;
   1890 	struct pool *pl;
   1891 	register_t pte_lo;
   1892 	int error;
   1893 	u_int pvo_flags;
   1894 	u_int was_exec = 0;
   1895 
   1896 	PMAP_LOCK();
   1897 
   1898 	if (__predict_false(!pmap_initialized)) {
   1899 		pvo_head = &pmap_pvo_kunmanaged;
   1900 		pl = &pmap_upvo_pool;
   1901 		pvo_flags = 0;
   1902 		pg = NULL;
   1903 		was_exec = PTE_EXEC;
   1904 	} else {
   1905 		pvo_head = pa_to_pvoh(pa, &pg);
   1906 		pl = &pmap_mpvo_pool;
   1907 		pvo_flags = PVO_MANAGED;
   1908 	}
   1909 
   1910 	DPRINTFN(ENTER,
   1911 	    ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1912 	    pm, va, pa, prot, flags));
   1913 
   1914 	/*
   1915 	 * If this is a managed page, and it's the first reference to the
   1916 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1917 	 */
   1918 	if (pg != NULL)
   1919 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1920 
   1921 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1922 
   1923 	/*
   1924 	 * Assume the page is cache inhibited and access is guarded unless
   1925 	 * it's in our available memory array.  If it is in the memory array,
   1926 	 * asssume it's in memory coherent memory.
   1927 	 */
   1928 	if (flags & PMAP_MD_PREFETCHABLE) {
   1929 		pte_lo = 0;
   1930 	} else
   1931 		pte_lo = PTE_G;
   1932 
   1933 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   1934 		for (mp = mem; mp->size; mp++) {
   1935 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1936 				pte_lo = PTE_M;
   1937 				break;
   1938 			}
   1939 		}
   1940 	} else {
   1941 		pte_lo |= PTE_I;
   1942 	}
   1943 
   1944 	if (prot & VM_PROT_WRITE)
   1945 		pte_lo |= PTE_BW;
   1946 	else
   1947 		pte_lo |= PTE_BR;
   1948 
   1949 	/*
   1950 	 * If this was in response to a fault, "pre-fault" the PTE's
   1951 	 * changed/referenced bit appropriately.
   1952 	 */
   1953 	if (flags & VM_PROT_WRITE)
   1954 		pte_lo |= PTE_CHG;
   1955 	if (flags & VM_PROT_ALL)
   1956 		pte_lo |= PTE_REF;
   1957 
   1958 	/*
   1959 	 * We need to know if this page can be executable
   1960 	 */
   1961 	flags |= (prot & VM_PROT_EXECUTE);
   1962 
   1963 	/*
   1964 	 * Record mapping for later back-translation and pte spilling.
   1965 	 * This will overwrite any existing mapping.
   1966 	 */
   1967 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1968 
   1969 	/*
   1970 	 * Flush the real page from the instruction cache if this page is
   1971 	 * mapped executable and cacheable and has not been flushed since
   1972 	 * the last time it was modified.
   1973 	 */
   1974 	if (error == 0 &&
   1975             (flags & VM_PROT_EXECUTE) &&
   1976             (pte_lo & PTE_I) == 0 &&
   1977 	    was_exec == 0) {
   1978 		DPRINTFN(ENTER, (" syncicache"));
   1979 		PMAPCOUNT(exec_synced);
   1980 		pmap_syncicache(pa, PAGE_SIZE);
   1981 		if (pg != NULL) {
   1982 			pmap_attr_save(pg, PTE_EXEC);
   1983 			PMAPCOUNT(exec_cached);
   1984 #if defined(DEBUG) || defined(PMAPDEBUG)
   1985 			if (pmapdebug & PMAPDEBUG_ENTER)
   1986 				printf(" marked-as-exec");
   1987 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1988 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1989 				    VM_PAGE_TO_PHYS(pg));
   1990 
   1991 #endif
   1992 		}
   1993 	}
   1994 
   1995 	DPRINTFN(ENTER, (": error=%d\n", error));
   1996 
   1997 	PMAP_UNLOCK();
   1998 
   1999 	return error;
   2000 }
   2001 
   2002 void
   2003 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2004 {
   2005 	struct mem_region *mp;
   2006 	register_t pte_lo;
   2007 	int error;
   2008 
   2009 #if defined (PMAP_OEA64_BRIDGE)
   2010 	if (va < VM_MIN_KERNEL_ADDRESS)
   2011 		panic("pmap_kenter_pa: attempt to enter "
   2012 		    "non-kernel address %#" _PRIxva "!", va);
   2013 #endif
   2014 
   2015 	DPRINTFN(KENTER,
   2016 	    ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
   2017 
   2018 	PMAP_LOCK();
   2019 
   2020 	/*
   2021 	 * Assume the page is cache inhibited and access is guarded unless
   2022 	 * it's in our available memory array.  If it is in the memory array,
   2023 	 * asssume it's in memory coherent memory.
   2024 	 */
   2025 	pte_lo = PTE_IG;
   2026 	if ((flags & PMAP_MD_NOCACHE) == 0) {
   2027 		for (mp = mem; mp->size; mp++) {
   2028 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2029 				pte_lo = PTE_M;
   2030 				break;
   2031 			}
   2032 		}
   2033 	}
   2034 
   2035 	if (prot & VM_PROT_WRITE)
   2036 		pte_lo |= PTE_BW;
   2037 	else
   2038 		pte_lo |= PTE_BR;
   2039 
   2040 	/*
   2041 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2042 	 */
   2043 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2044 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2045 
   2046 	if (error != 0)
   2047 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2048 		      va, pa, error);
   2049 
   2050 	PMAP_UNLOCK();
   2051 }
   2052 
   2053 void
   2054 pmap_kremove(vaddr_t va, vsize_t len)
   2055 {
   2056 	if (va < VM_MIN_KERNEL_ADDRESS)
   2057 		panic("pmap_kremove: attempt to remove "
   2058 		    "non-kernel address %#" _PRIxva "!", va);
   2059 
   2060 	DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
   2061 	pmap_remove(pmap_kernel(), va, va + len);
   2062 }
   2063 
   2064 /*
   2065  * Remove the given range of mapping entries.
   2066  */
   2067 void
   2068 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2069 {
   2070 	struct pvo_head pvol;
   2071 	struct pvo_entry *pvo;
   2072 	register_t msr;
   2073 	int pteidx;
   2074 
   2075 	PMAP_LOCK();
   2076 	LIST_INIT(&pvol);
   2077 	msr = pmap_interrupts_off();
   2078 	for (; va < endva; va += PAGE_SIZE) {
   2079 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2080 		if (pvo != NULL) {
   2081 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2082 		}
   2083 	}
   2084 	pmap_interrupts_restore(msr);
   2085 	pmap_pvo_free_list(&pvol);
   2086 	PMAP_UNLOCK();
   2087 }
   2088 
   2089 /*
   2090  * Get the physical page address for the given pmap/virtual address.
   2091  */
   2092 bool
   2093 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2094 {
   2095 	struct pvo_entry *pvo;
   2096 	register_t msr;
   2097 
   2098 	PMAP_LOCK();
   2099 
   2100 	/*
   2101 	 * If this is a kernel pmap lookup, also check the battable
   2102 	 * and if we get a hit, translate the VA to a PA using the
   2103 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2104 	 * that will wrap back to 0.
   2105 	 */
   2106 	if (pm == pmap_kernel() &&
   2107 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2108 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2109 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2110 #if defined (PMAP_OEA)
   2111 #ifdef PPC_OEA601
   2112 		if ((MFPVR() >> 16) == MPC601) {
   2113 			register_t batu = battable[va >> 23].batu;
   2114 			register_t batl = battable[va >> 23].batl;
   2115 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2116 			if (BAT601_VALID_P(batl) &&
   2117 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2118 				register_t mask =
   2119 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2120 				if (pap)
   2121 					*pap = (batl & mask) | (va & ~mask);
   2122 				PMAP_UNLOCK();
   2123 				return true;
   2124 			} else if (SR601_VALID_P(sr) &&
   2125 				   SR601_PA_MATCH_P(sr, va)) {
   2126 				if (pap)
   2127 					*pap = va;
   2128 				PMAP_UNLOCK();
   2129 				return true;
   2130 			}
   2131 		} else
   2132 #endif /* PPC_OEA601 */
   2133 		{
   2134 			register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   2135 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2136 				register_t batl =
   2137 				    battable[va >> ADDR_SR_SHFT].batl;
   2138 				register_t mask =
   2139 				    (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   2140 				if (pap)
   2141 					*pap = (batl & mask) | (va & ~mask);
   2142 				PMAP_UNLOCK();
   2143 				return true;
   2144 			}
   2145 		}
   2146 		return false;
   2147 #elif defined (PMAP_OEA64_BRIDGE)
   2148 	if (va >= SEGMENT_LENGTH)
   2149 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2150 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2151 	else {
   2152 		if (pap)
   2153 			*pap = va;
   2154 			PMAP_UNLOCK();
   2155 			return true;
   2156 	}
   2157 #elif defined (PMAP_OEA64)
   2158 #error PPC_OEA64 not supported
   2159 #endif /* PPC_OEA */
   2160 	}
   2161 
   2162 	msr = pmap_interrupts_off();
   2163 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2164 	if (pvo != NULL) {
   2165 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2166 		if (pap)
   2167 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2168 			    | (va & ADDR_POFF);
   2169 	}
   2170 	pmap_interrupts_restore(msr);
   2171 	PMAP_UNLOCK();
   2172 	return pvo != NULL;
   2173 }
   2174 
   2175 /*
   2176  * Lower the protection on the specified range of this pmap.
   2177  */
   2178 void
   2179 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2180 {
   2181 	struct pvo_entry *pvo;
   2182 	volatile struct pte *pt;
   2183 	register_t msr;
   2184 	int pteidx;
   2185 
   2186 	/*
   2187 	 * Since this routine only downgrades protection, we should
   2188 	 * always be called with at least one bit not set.
   2189 	 */
   2190 	KASSERT(prot != VM_PROT_ALL);
   2191 
   2192 	/*
   2193 	 * If there is no protection, this is equivalent to
   2194 	 * remove the pmap from the pmap.
   2195 	 */
   2196 	if ((prot & VM_PROT_READ) == 0) {
   2197 		pmap_remove(pm, va, endva);
   2198 		return;
   2199 	}
   2200 
   2201 	PMAP_LOCK();
   2202 
   2203 	msr = pmap_interrupts_off();
   2204 	for (; va < endva; va += PAGE_SIZE) {
   2205 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2206 		if (pvo == NULL)
   2207 			continue;
   2208 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2209 
   2210 		/*
   2211 		 * Revoke executable if asked to do so.
   2212 		 */
   2213 		if ((prot & VM_PROT_EXECUTE) == 0)
   2214 			pvo_clear_exec(pvo);
   2215 
   2216 #if 0
   2217 		/*
   2218 		 * If the page is already read-only, no change
   2219 		 * needs to be made.
   2220 		 */
   2221 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2222 			continue;
   2223 #endif
   2224 		/*
   2225 		 * Grab the PTE pointer before we diddle with
   2226 		 * the cached PTE copy.
   2227 		 */
   2228 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2229 		/*
   2230 		 * Change the protection of the page.
   2231 		 */
   2232 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2233 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2234 
   2235 		/*
   2236 		 * If the PVO is in the page table, update
   2237 		 * that pte at well.
   2238 		 */
   2239 		if (pt != NULL) {
   2240 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2241 			PVO_WHERE(pvo, PMAP_PROTECT);
   2242 			PMAPCOUNT(ptes_changed);
   2243 		}
   2244 
   2245 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2246 	}
   2247 	pmap_interrupts_restore(msr);
   2248 	PMAP_UNLOCK();
   2249 }
   2250 
   2251 void
   2252 pmap_unwire(pmap_t pm, vaddr_t va)
   2253 {
   2254 	struct pvo_entry *pvo;
   2255 	register_t msr;
   2256 
   2257 	PMAP_LOCK();
   2258 	msr = pmap_interrupts_off();
   2259 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2260 	if (pvo != NULL) {
   2261 		if (PVO_WIRED_P(pvo)) {
   2262 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2263 			pm->pm_stats.wired_count--;
   2264 		}
   2265 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2266 	}
   2267 	pmap_interrupts_restore(msr);
   2268 	PMAP_UNLOCK();
   2269 }
   2270 
   2271 /*
   2272  * Lower the protection on the specified physical page.
   2273  */
   2274 void
   2275 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2276 {
   2277 	struct pvo_head *pvo_head, pvol;
   2278 	struct pvo_entry *pvo, *next_pvo;
   2279 	volatile struct pte *pt;
   2280 	register_t msr;
   2281 
   2282 	PMAP_LOCK();
   2283 
   2284 	KASSERT(prot != VM_PROT_ALL);
   2285 	LIST_INIT(&pvol);
   2286 	msr = pmap_interrupts_off();
   2287 
   2288 	/*
   2289 	 * When UVM reuses a page, it does a pmap_page_protect with
   2290 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2291 	 * since we know the page will have different contents.
   2292 	 */
   2293 	if ((prot & VM_PROT_READ) == 0) {
   2294 		DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2295 		    VM_PAGE_TO_PHYS(pg)));
   2296 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2297 			PMAPCOUNT(exec_uncached_page_protect);
   2298 			pmap_attr_clear(pg, PTE_EXEC);
   2299 		}
   2300 	}
   2301 
   2302 	pvo_head = vm_page_to_pvoh(pg);
   2303 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2304 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2305 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2306 
   2307 		/*
   2308 		 * Downgrading to no mapping at all, we just remove the entry.
   2309 		 */
   2310 		if ((prot & VM_PROT_READ) == 0) {
   2311 			pmap_pvo_remove(pvo, -1, &pvol);
   2312 			continue;
   2313 		}
   2314 
   2315 		/*
   2316 		 * If EXEC permission is being revoked, just clear the
   2317 		 * flag in the PVO.
   2318 		 */
   2319 		if ((prot & VM_PROT_EXECUTE) == 0)
   2320 			pvo_clear_exec(pvo);
   2321 
   2322 		/*
   2323 		 * If this entry is already RO, don't diddle with the
   2324 		 * page table.
   2325 		 */
   2326 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2327 			PMAP_PVO_CHECK(pvo);
   2328 			continue;
   2329 		}
   2330 
   2331 		/*
   2332 		 * Grab the PTE before the we diddle the bits so
   2333 		 * pvo_to_pte can verify the pte contents are as
   2334 		 * expected.
   2335 		 */
   2336 		pt = pmap_pvo_to_pte(pvo, -1);
   2337 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2338 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2339 		if (pt != NULL) {
   2340 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2341 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2342 			PMAPCOUNT(ptes_changed);
   2343 		}
   2344 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2345 	}
   2346 	pmap_interrupts_restore(msr);
   2347 	pmap_pvo_free_list(&pvol);
   2348 
   2349 	PMAP_UNLOCK();
   2350 }
   2351 
   2352 /*
   2353  * Activate the address space for the specified process.  If the process
   2354  * is the current process, load the new MMU context.
   2355  */
   2356 void
   2357 pmap_activate(struct lwp *l)
   2358 {
   2359 	struct pcb *pcb = lwp_getpcb(l);
   2360 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2361 
   2362 	DPRINTFN(ACTIVATE,
   2363 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2364 
   2365 	/*
   2366 	 * XXX Normally performed in cpu_lwp_fork().
   2367 	 */
   2368 	pcb->pcb_pm = pmap;
   2369 
   2370 	/*
   2371 	* In theory, the SR registers need only be valid on return
   2372 	* to user space wait to do them there.
   2373 	*/
   2374 	if (l == curlwp) {
   2375 		/* Store pointer to new current pmap. */
   2376 		curpm = pmap;
   2377 	}
   2378 }
   2379 
   2380 /*
   2381  * Deactivate the specified process's address space.
   2382  */
   2383 void
   2384 pmap_deactivate(struct lwp *l)
   2385 {
   2386 }
   2387 
   2388 bool
   2389 pmap_query_bit(struct vm_page *pg, int ptebit)
   2390 {
   2391 	struct pvo_entry *pvo;
   2392 	volatile struct pte *pt;
   2393 	register_t msr;
   2394 
   2395 	PMAP_LOCK();
   2396 
   2397 	if (pmap_attr_fetch(pg) & ptebit) {
   2398 		PMAP_UNLOCK();
   2399 		return true;
   2400 	}
   2401 
   2402 	msr = pmap_interrupts_off();
   2403 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2404 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2405 		/*
   2406 		 * See if we saved the bit off.  If so cache, it and return
   2407 		 * success.
   2408 		 */
   2409 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2410 			pmap_attr_save(pg, ptebit);
   2411 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2412 			pmap_interrupts_restore(msr);
   2413 			PMAP_UNLOCK();
   2414 			return true;
   2415 		}
   2416 	}
   2417 	/*
   2418 	 * No luck, now go thru the hard part of looking at the ptes
   2419 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2420 	 * to the PTEs.
   2421 	 */
   2422 	SYNC();
   2423 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2424 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2425 		/*
   2426 		 * See if this pvo have a valid PTE.  If so, fetch the
   2427 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2428 		 * ptebit is set, cache, it and return success.
   2429 		 */
   2430 		pt = pmap_pvo_to_pte(pvo, -1);
   2431 		if (pt != NULL) {
   2432 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2433 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2434 				pmap_attr_save(pg, ptebit);
   2435 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2436 				pmap_interrupts_restore(msr);
   2437 				PMAP_UNLOCK();
   2438 				return true;
   2439 			}
   2440 		}
   2441 	}
   2442 	pmap_interrupts_restore(msr);
   2443 	PMAP_UNLOCK();
   2444 	return false;
   2445 }
   2446 
   2447 bool
   2448 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2449 {
   2450 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2451 	struct pvo_entry *pvo;
   2452 	volatile struct pte *pt;
   2453 	register_t msr;
   2454 	int rv = 0;
   2455 
   2456 	PMAP_LOCK();
   2457 	msr = pmap_interrupts_off();
   2458 
   2459 	/*
   2460 	 * Fetch the cache value
   2461 	 */
   2462 	rv |= pmap_attr_fetch(pg);
   2463 
   2464 	/*
   2465 	 * Clear the cached value.
   2466 	 */
   2467 	pmap_attr_clear(pg, ptebit);
   2468 
   2469 	/*
   2470 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2471 	 * can reset the right ones).  Note that since the pvo entries and
   2472 	 * list heads are accessed via BAT0 and are never placed in the
   2473 	 * page table, we don't have to worry about further accesses setting
   2474 	 * the REF/CHG bits.
   2475 	 */
   2476 	SYNC();
   2477 
   2478 	/*
   2479 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2480 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2481 	 */
   2482 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2483 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2484 		pt = pmap_pvo_to_pte(pvo, -1);
   2485 		if (pt != NULL) {
   2486 			/*
   2487 			 * Only sync the PTE if the bit we are looking
   2488 			 * for is not already set.
   2489 			 */
   2490 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2491 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2492 			/*
   2493 			 * If the bit we are looking for was already set,
   2494 			 * clear that bit in the pte.
   2495 			 */
   2496 			if (pvo->pvo_pte.pte_lo & ptebit)
   2497 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2498 		}
   2499 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2500 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2501 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2502 	}
   2503 	pmap_interrupts_restore(msr);
   2504 
   2505 	/*
   2506 	 * If we are clearing the modify bit and this page was marked EXEC
   2507 	 * and the user of the page thinks the page was modified, then we
   2508 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2509 	 * bit if it's not mapped.  The page itself might not have the CHG
   2510 	 * bit set if the modification was done via DMA to the page.
   2511 	 */
   2512 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2513 		if (LIST_EMPTY(pvoh)) {
   2514 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2515 			    VM_PAGE_TO_PHYS(pg)));
   2516 			pmap_attr_clear(pg, PTE_EXEC);
   2517 			PMAPCOUNT(exec_uncached_clear_modify);
   2518 		} else {
   2519 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2520 			    VM_PAGE_TO_PHYS(pg)));
   2521 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2522 			PMAPCOUNT(exec_synced_clear_modify);
   2523 		}
   2524 	}
   2525 	PMAP_UNLOCK();
   2526 	return (rv & ptebit) != 0;
   2527 }
   2528 
   2529 void
   2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2531 {
   2532 	struct pvo_entry *pvo;
   2533 	size_t offset = va & ADDR_POFF;
   2534 	int s;
   2535 
   2536 	PMAP_LOCK();
   2537 	s = splvm();
   2538 	while (len > 0) {
   2539 		size_t seglen = PAGE_SIZE - offset;
   2540 		if (seglen > len)
   2541 			seglen = len;
   2542 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2543 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2544 			pmap_syncicache(
   2545 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2546 			PMAP_PVO_CHECK(pvo);
   2547 		}
   2548 		va += seglen;
   2549 		len -= seglen;
   2550 		offset = 0;
   2551 	}
   2552 	splx(s);
   2553 	PMAP_UNLOCK();
   2554 }
   2555 
   2556 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2557 void
   2558 pmap_pte_print(volatile struct pte *pt)
   2559 {
   2560 	printf("PTE %p: ", pt);
   2561 
   2562 #if defined(PMAP_OEA)
   2563 	/* High word: */
   2564 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2565 #else
   2566 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2567 #endif /* PMAP_OEA */
   2568 
   2569 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2570 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2571 
   2572 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2573 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2574 	    pt->pte_hi & PTE_API);
   2575 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2576 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2577 #else
   2578 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2579 #endif /* PMAP_OEA */
   2580 
   2581 	/* Low word: */
   2582 #if defined (PMAP_OEA)
   2583 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2584 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2585 #else
   2586 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2587 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2588 #endif
   2589 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2590 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2591 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2592 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2593 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2594 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2595 	switch (pt->pte_lo & PTE_PP) {
   2596 	case PTE_BR: printf("br]\n"); break;
   2597 	case PTE_BW: printf("bw]\n"); break;
   2598 	case PTE_SO: printf("so]\n"); break;
   2599 	case PTE_SW: printf("sw]\n"); break;
   2600 	}
   2601 }
   2602 #endif
   2603 
   2604 #if defined(DDB)
   2605 void
   2606 pmap_pteg_check(void)
   2607 {
   2608 	volatile struct pte *pt;
   2609 	int i;
   2610 	int ptegidx;
   2611 	u_int p_valid = 0;
   2612 	u_int s_valid = 0;
   2613 	u_int invalid = 0;
   2614 
   2615 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2616 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2617 			if (pt->pte_hi & PTE_VALID) {
   2618 				if (pt->pte_hi & PTE_HID)
   2619 					s_valid++;
   2620 				else
   2621 				{
   2622 					p_valid++;
   2623 				}
   2624 			} else
   2625 				invalid++;
   2626 		}
   2627 	}
   2628 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2629 		p_valid, p_valid, s_valid, s_valid,
   2630 		invalid, invalid);
   2631 }
   2632 
   2633 void
   2634 pmap_print_mmuregs(void)
   2635 {
   2636 	int i;
   2637 	u_int cpuvers;
   2638 #ifndef PMAP_OEA64
   2639 	vaddr_t addr;
   2640 	register_t soft_sr[16];
   2641 #endif
   2642 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2643 	struct bat soft_ibat[4];
   2644 	struct bat soft_dbat[4];
   2645 #endif
   2646 	paddr_t sdr1;
   2647 
   2648 	cpuvers = MFPVR() >> 16;
   2649 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2650 #ifndef PMAP_OEA64
   2651 	addr = 0;
   2652 	for (i = 0; i < 16; i++) {
   2653 		soft_sr[i] = MFSRIN(addr);
   2654 		addr += (1 << ADDR_SR_SHFT);
   2655 	}
   2656 #endif
   2657 
   2658 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2659 	/* read iBAT (601: uBAT) registers */
   2660 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2661 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2662 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2663 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2664 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2665 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2666 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2667 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2668 
   2669 
   2670 	if (cpuvers != MPC601) {
   2671 		/* read dBAT registers */
   2672 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2673 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2674 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2675 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2676 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2677 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2678 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2679 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2680 	}
   2681 #endif
   2682 
   2683 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2684 #ifndef PMAP_OEA64
   2685 	printf("SR[]:\t");
   2686 	for (i = 0; i < 4; i++)
   2687 		printf("0x%08lx,   ", soft_sr[i]);
   2688 	printf("\n\t");
   2689 	for ( ; i < 8; i++)
   2690 		printf("0x%08lx,   ", soft_sr[i]);
   2691 	printf("\n\t");
   2692 	for ( ; i < 12; i++)
   2693 		printf("0x%08lx,   ", soft_sr[i]);
   2694 	printf("\n\t");
   2695 	for ( ; i < 16; i++)
   2696 		printf("0x%08lx,   ", soft_sr[i]);
   2697 	printf("\n");
   2698 #endif
   2699 
   2700 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2701 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2702 	for (i = 0; i < 4; i++) {
   2703 		printf("0x%08lx 0x%08lx, ",
   2704 			soft_ibat[i].batu, soft_ibat[i].batl);
   2705 		if (i == 1)
   2706 			printf("\n\t");
   2707 	}
   2708 	if (cpuvers != MPC601) {
   2709 		printf("\ndBAT[]:\t");
   2710 		for (i = 0; i < 4; i++) {
   2711 			printf("0x%08lx 0x%08lx, ",
   2712 				soft_dbat[i].batu, soft_dbat[i].batl);
   2713 			if (i == 1)
   2714 				printf("\n\t");
   2715 		}
   2716 	}
   2717 	printf("\n");
   2718 #endif /* PMAP_OEA... */
   2719 }
   2720 
   2721 void
   2722 pmap_print_pte(pmap_t pm, vaddr_t va)
   2723 {
   2724 	struct pvo_entry *pvo;
   2725 	volatile struct pte *pt;
   2726 	int pteidx;
   2727 
   2728 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2729 	if (pvo != NULL) {
   2730 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2731 		if (pt != NULL) {
   2732 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2733 				va, pt,
   2734 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2735 				pt->pte_hi, pt->pte_lo);
   2736 		} else {
   2737 			printf("No valid PTE found\n");
   2738 		}
   2739 	} else {
   2740 		printf("Address not in pmap\n");
   2741 	}
   2742 }
   2743 
   2744 void
   2745 pmap_pteg_dist(void)
   2746 {
   2747 	struct pvo_entry *pvo;
   2748 	int ptegidx;
   2749 	int depth;
   2750 	int max_depth = 0;
   2751 	unsigned int depths[64];
   2752 
   2753 	memset(depths, 0, sizeof(depths));
   2754 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2755 		depth = 0;
   2756 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2757 			depth++;
   2758 		}
   2759 		if (depth > max_depth)
   2760 			max_depth = depth;
   2761 		if (depth > 63)
   2762 			depth = 63;
   2763 		depths[depth]++;
   2764 	}
   2765 
   2766 	for (depth = 0; depth < 64; depth++) {
   2767 		printf("  [%2d]: %8u", depth, depths[depth]);
   2768 		if ((depth & 3) == 3)
   2769 			printf("\n");
   2770 		if (depth == max_depth)
   2771 			break;
   2772 	}
   2773 	if ((depth & 3) != 3)
   2774 		printf("\n");
   2775 	printf("Max depth found was %d\n", max_depth);
   2776 }
   2777 #endif /* DEBUG */
   2778 
   2779 #if defined(PMAPCHECK) || defined(DEBUG)
   2780 void
   2781 pmap_pvo_verify(void)
   2782 {
   2783 	int ptegidx;
   2784 	int s;
   2785 
   2786 	s = splvm();
   2787 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2788 		struct pvo_entry *pvo;
   2789 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2790 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2791 				panic("pmap_pvo_verify: invalid pvo %p "
   2792 				    "on list %#x", pvo, ptegidx);
   2793 			pmap_pvo_check(pvo);
   2794 		}
   2795 	}
   2796 	splx(s);
   2797 }
   2798 #endif /* PMAPCHECK */
   2799 
   2800 
   2801 void *
   2802 pmap_pool_ualloc(struct pool *pp, int flags)
   2803 {
   2804 	struct pvo_page *pvop;
   2805 
   2806 	if (uvm.page_init_done != true) {
   2807 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2808 	}
   2809 
   2810 	PMAP_LOCK();
   2811 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2812 	if (pvop != NULL) {
   2813 		pmap_upvop_free--;
   2814 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2815 		PMAP_UNLOCK();
   2816 		return pvop;
   2817 	}
   2818 	PMAP_UNLOCK();
   2819 	return pmap_pool_malloc(pp, flags);
   2820 }
   2821 
   2822 void *
   2823 pmap_pool_malloc(struct pool *pp, int flags)
   2824 {
   2825 	struct pvo_page *pvop;
   2826 	struct vm_page *pg;
   2827 
   2828 	PMAP_LOCK();
   2829 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2830 	if (pvop != NULL) {
   2831 		pmap_mpvop_free--;
   2832 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2833 		PMAP_UNLOCK();
   2834 		return pvop;
   2835 	}
   2836 	PMAP_UNLOCK();
   2837  again:
   2838 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2839 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2840 	if (__predict_false(pg == NULL)) {
   2841 		if (flags & PR_WAITOK) {
   2842 			uvm_wait("plpg");
   2843 			goto again;
   2844 		} else {
   2845 			return (0);
   2846 		}
   2847 	}
   2848 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2849 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2850 }
   2851 
   2852 void
   2853 pmap_pool_ufree(struct pool *pp, void *va)
   2854 {
   2855 	struct pvo_page *pvop;
   2856 #if 0
   2857 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2858 		pmap_pool_mfree(va, size, tag);
   2859 		return;
   2860 	}
   2861 #endif
   2862 	PMAP_LOCK();
   2863 	pvop = va;
   2864 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2865 	pmap_upvop_free++;
   2866 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2867 		pmap_upvop_maxfree = pmap_upvop_free;
   2868 	PMAP_UNLOCK();
   2869 }
   2870 
   2871 void
   2872 pmap_pool_mfree(struct pool *pp, void *va)
   2873 {
   2874 	struct pvo_page *pvop;
   2875 
   2876 	PMAP_LOCK();
   2877 	pvop = va;
   2878 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2879 	pmap_mpvop_free++;
   2880 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2881 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2882 	PMAP_UNLOCK();
   2883 #if 0
   2884 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2885 #endif
   2886 }
   2887 
   2888 /*
   2889  * This routine in bootstraping to steal to-be-managed memory (which will
   2890  * then be unmanaged).  We use it to grab from the first 256MB for our
   2891  * pmap needs and above 256MB for other stuff.
   2892  */
   2893 vaddr_t
   2894 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2895 {
   2896 	vsize_t size;
   2897 	vaddr_t va;
   2898 	paddr_t pa = 0;
   2899 	int npgs, bank;
   2900 	struct vm_physseg *ps;
   2901 
   2902 	if (uvm.page_init_done == true)
   2903 		panic("pmap_steal_memory: called _after_ bootstrap");
   2904 
   2905 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2906 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2907 
   2908 	size = round_page(vsize);
   2909 	npgs = atop(size);
   2910 
   2911 	/*
   2912 	 * PA 0 will never be among those given to UVM so we can use it
   2913 	 * to indicate we couldn't steal any memory.
   2914 	 */
   2915 	for (bank = 0; bank < vm_nphysseg; bank++) {
   2916 		ps = VM_PHYSMEM_PTR(bank);
   2917 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2918 		    ps->avail_end - ps->avail_start >= npgs) {
   2919 			pa = ptoa(ps->avail_start);
   2920 			break;
   2921 		}
   2922 	}
   2923 
   2924 	if (pa == 0)
   2925 		panic("pmap_steal_memory: no approriate memory to steal!");
   2926 
   2927 	ps->avail_start += npgs;
   2928 	ps->start += npgs;
   2929 
   2930 	/*
   2931 	 * If we've used up all the pages in the segment, remove it and
   2932 	 * compact the list.
   2933 	 */
   2934 	if (ps->avail_start == ps->end) {
   2935 		/*
   2936 		 * If this was the last one, then a very bad thing has occurred
   2937 		 */
   2938 		if (--vm_nphysseg == 0)
   2939 			panic("pmap_steal_memory: out of memory!");
   2940 
   2941 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2942 		for (; bank < vm_nphysseg; bank++, ps++) {
   2943 			ps[0] = ps[1];
   2944 		}
   2945 	}
   2946 
   2947 	va = (vaddr_t) pa;
   2948 	memset((void *) va, 0, size);
   2949 	pmap_pages_stolen += npgs;
   2950 #ifdef DEBUG
   2951 	if (pmapdebug && npgs > 1) {
   2952 		u_int cnt = 0;
   2953 		for (bank = 0; bank < vm_nphysseg; bank++) {
   2954 			ps = VM_PHYSMEM_PTR(bank);
   2955 			cnt += ps->avail_end - ps->avail_start;
   2956 		}
   2957 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2958 		    npgs, pmap_pages_stolen, cnt);
   2959 	}
   2960 #endif
   2961 
   2962 	return va;
   2963 }
   2964 
   2965 /*
   2966  * Find a chuck of memory with right size and alignment.
   2967  */
   2968 paddr_t
   2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2970 {
   2971 	struct mem_region *mp;
   2972 	paddr_t s, e;
   2973 	int i, j;
   2974 
   2975 	size = round_page(size);
   2976 
   2977 	DPRINTFN(BOOT,
   2978 	    ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2979 	    size, alignment, at_end));
   2980 
   2981 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2982 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2983 		    alignment);
   2984 
   2985 	if (at_end) {
   2986 		if (alignment != PAGE_SIZE)
   2987 			panic("pmap_boot_find_memory: invalid ending "
   2988 			    "alignment %#" _PRIxpa, alignment);
   2989 
   2990 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2991 			s = mp->start + mp->size - size;
   2992 			if (s >= mp->start && mp->size >= size) {
   2993 				DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   2994 				DPRINTFN(BOOT,
   2995 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2996 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   2997 				     mp->start, mp->size));
   2998 				mp->size -= size;
   2999 				DPRINTFN(BOOT,
   3000 				    ("pmap_boot_find_memory: a-avail[%d] start "
   3001 				     "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3002 				     mp->start, mp->size));
   3003 				return s;
   3004 			}
   3005 		}
   3006 		panic("pmap_boot_find_memory: no available memory");
   3007 	}
   3008 
   3009 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3010 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3011 		e = s + size;
   3012 
   3013 		/*
   3014 		 * Is the calculated region entirely within the region?
   3015 		 */
   3016 		if (s < mp->start || e > mp->start + mp->size)
   3017 			continue;
   3018 
   3019 		DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
   3020 		if (s == mp->start) {
   3021 			/*
   3022 			 * If the block starts at the beginning of region,
   3023 			 * adjust the size & start. (the region may now be
   3024 			 * zero in length)
   3025 			 */
   3026 			DPRINTFN(BOOT,
   3027 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3028 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3029 			mp->start += size;
   3030 			mp->size -= size;
   3031 			DPRINTFN(BOOT,
   3032 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3033 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3034 		} else if (e == mp->start + mp->size) {
   3035 			/*
   3036 			 * If the block starts at the beginning of region,
   3037 			 * adjust only the size.
   3038 			 */
   3039 			DPRINTFN(BOOT,
   3040 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3041 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3042 			mp->size -= size;
   3043 			DPRINTFN(BOOT,
   3044 			    ("pmap_boot_find_memory: a-avail[%d] start "
   3045 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3046 		} else {
   3047 			/*
   3048 			 * Block is in the middle of the region, so we
   3049 			 * have to split it in two.
   3050 			 */
   3051 			for (j = avail_cnt; j > i + 1; j--) {
   3052 				avail[j] = avail[j-1];
   3053 			}
   3054 			DPRINTFN(BOOT,
   3055 			    ("pmap_boot_find_memory: b-avail[%d] start "
   3056 			     "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
   3057 			mp[1].start = e;
   3058 			mp[1].size = mp[0].start + mp[0].size - e;
   3059 			mp[0].size = s - mp[0].start;
   3060 			avail_cnt++;
   3061 			for (; i < avail_cnt; i++) {
   3062 				DPRINTFN(BOOT,
   3063 				    ("pmap_boot_find_memory: a-avail[%d] "
   3064 				     "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3065 				     avail[i].start, avail[i].size));
   3066 			}
   3067 		}
   3068 		KASSERT(s == (uintptr_t) s);
   3069 		return s;
   3070 	}
   3071 	panic("pmap_boot_find_memory: not enough memory for "
   3072 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3073 }
   3074 
   3075 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3076 #if defined (PMAP_OEA64_BRIDGE)
   3077 int
   3078 pmap_setup_segment0_map(int use_large_pages, ...)
   3079 {
   3080     vaddr_t va;
   3081 
   3082     register_t pte_lo = 0x0;
   3083     int ptegidx = 0, i = 0;
   3084     struct pte pte;
   3085     va_list ap;
   3086 
   3087     /* Coherent + Supervisor RW, no user access */
   3088     pte_lo = PTE_M;
   3089 
   3090     /* XXXSL
   3091      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3092      * these have to take priority.
   3093      */
   3094     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3095         ptegidx = va_to_pteg(pmap_kernel(), va);
   3096         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3097         i = pmap_pte_insert(ptegidx, &pte);
   3098     }
   3099 
   3100     va_start(ap, use_large_pages);
   3101     while (1) {
   3102         paddr_t pa;
   3103         size_t size;
   3104 
   3105         va = va_arg(ap, vaddr_t);
   3106 
   3107         if (va == 0)
   3108             break;
   3109 
   3110         pa = va_arg(ap, paddr_t);
   3111         size = va_arg(ap, size_t);
   3112 
   3113         for (; va < (va + size); va += 0x1000, pa += 0x1000) {
   3114 #if 0
   3115 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3116 #endif
   3117             ptegidx = va_to_pteg(pmap_kernel(), va);
   3118             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3119             i = pmap_pte_insert(ptegidx, &pte);
   3120         }
   3121     }
   3122 
   3123     TLBSYNC();
   3124     SYNC();
   3125     return (0);
   3126 }
   3127 #endif /* PMAP_OEA64_BRIDGE */
   3128 
   3129 /*
   3130  * This is not part of the defined PMAP interface and is specific to the
   3131  * PowerPC architecture.  This is called during initppc, before the system
   3132  * is really initialized.
   3133  */
   3134 void
   3135 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3136 {
   3137 	struct mem_region *mp, tmp;
   3138 	paddr_t s, e;
   3139 	psize_t size;
   3140 	int i, j;
   3141 
   3142 	/*
   3143 	 * Get memory.
   3144 	 */
   3145 	mem_regions(&mem, &avail);
   3146 #if defined(DEBUG)
   3147 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3148 		printf("pmap_bootstrap: memory configuration:\n");
   3149 		for (mp = mem; mp->size; mp++) {
   3150 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3151 				mp->start, mp->size);
   3152 		}
   3153 		for (mp = avail; mp->size; mp++) {
   3154 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3155 				mp->start, mp->size);
   3156 		}
   3157 	}
   3158 #endif
   3159 
   3160 	/*
   3161 	 * Find out how much physical memory we have and in how many chunks.
   3162 	 */
   3163 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3164 		if (mp->start >= pmap_memlimit)
   3165 			continue;
   3166 		if (mp->start + mp->size > pmap_memlimit) {
   3167 			size = pmap_memlimit - mp->start;
   3168 			physmem += btoc(size);
   3169 		} else {
   3170 			physmem += btoc(mp->size);
   3171 		}
   3172 		mem_cnt++;
   3173 	}
   3174 
   3175 	/*
   3176 	 * Count the number of available entries.
   3177 	 */
   3178 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3179 		avail_cnt++;
   3180 
   3181 	/*
   3182 	 * Page align all regions.
   3183 	 */
   3184 	kernelstart = trunc_page(kernelstart);
   3185 	kernelend = round_page(kernelend);
   3186 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3187 		s = round_page(mp->start);
   3188 		mp->size -= (s - mp->start);
   3189 		mp->size = trunc_page(mp->size);
   3190 		mp->start = s;
   3191 		e = mp->start + mp->size;
   3192 
   3193 		DPRINTFN(BOOT,
   3194 		    ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3195 		    i, mp->start, mp->size));
   3196 
   3197 		/*
   3198 		 * Don't allow the end to run beyond our artificial limit
   3199 		 */
   3200 		if (e > pmap_memlimit)
   3201 			e = pmap_memlimit;
   3202 
   3203 		/*
   3204 		 * Is this region empty or strange?  skip it.
   3205 		 */
   3206 		if (e <= s) {
   3207 			mp->start = 0;
   3208 			mp->size = 0;
   3209 			continue;
   3210 		}
   3211 
   3212 		/*
   3213 		 * Does this overlap the beginning of kernel?
   3214 		 *   Does extend past the end of the kernel?
   3215 		 */
   3216 		else if (s < kernelstart && e > kernelstart) {
   3217 			if (e > kernelend) {
   3218 				avail[avail_cnt].start = kernelend;
   3219 				avail[avail_cnt].size = e - kernelend;
   3220 				avail_cnt++;
   3221 			}
   3222 			mp->size = kernelstart - s;
   3223 		}
   3224 		/*
   3225 		 * Check whether this region overlaps the end of the kernel.
   3226 		 */
   3227 		else if (s < kernelend && e > kernelend) {
   3228 			mp->start = kernelend;
   3229 			mp->size = e - kernelend;
   3230 		}
   3231 		/*
   3232 		 * Look whether this regions is completely inside the kernel.
   3233 		 * Nuke it if it does.
   3234 		 */
   3235 		else if (s >= kernelstart && e <= kernelend) {
   3236 			mp->start = 0;
   3237 			mp->size = 0;
   3238 		}
   3239 		/*
   3240 		 * If the user imposed a memory limit, enforce it.
   3241 		 */
   3242 		else if (s >= pmap_memlimit) {
   3243 			mp->start = -PAGE_SIZE;	/* let's know why */
   3244 			mp->size = 0;
   3245 		}
   3246 		else {
   3247 			mp->start = s;
   3248 			mp->size = e - s;
   3249 		}
   3250 		DPRINTFN(BOOT,
   3251 		    ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3252 		    i, mp->start, mp->size));
   3253 	}
   3254 
   3255 	/*
   3256 	 * Move (and uncount) all the null return to the end.
   3257 	 */
   3258 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3259 		if (mp->size == 0) {
   3260 			tmp = avail[i];
   3261 			avail[i] = avail[--avail_cnt];
   3262 			avail[avail_cnt] = avail[i];
   3263 		}
   3264 	}
   3265 
   3266 	/*
   3267 	 * (Bubble)sort them into ascending order.
   3268 	 */
   3269 	for (i = 0; i < avail_cnt; i++) {
   3270 		for (j = i + 1; j < avail_cnt; j++) {
   3271 			if (avail[i].start > avail[j].start) {
   3272 				tmp = avail[i];
   3273 				avail[i] = avail[j];
   3274 				avail[j] = tmp;
   3275 			}
   3276 		}
   3277 	}
   3278 
   3279 	/*
   3280 	 * Make sure they don't overlap.
   3281 	 */
   3282 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3283 		if (mp[0].start + mp[0].size > mp[1].start) {
   3284 			mp[0].size = mp[1].start - mp[0].start;
   3285 		}
   3286 		DPRINTFN(BOOT,
   3287 		    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3288 		    i, mp->start, mp->size));
   3289 	}
   3290 	DPRINTFN(BOOT,
   3291 	    ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3292 	    i, mp->start, mp->size));
   3293 
   3294 #ifdef	PTEGCOUNT
   3295 	pmap_pteg_cnt = PTEGCOUNT;
   3296 #else /* PTEGCOUNT */
   3297 
   3298 	pmap_pteg_cnt = 0x1000;
   3299 
   3300 	while (pmap_pteg_cnt < physmem)
   3301 		pmap_pteg_cnt <<= 1;
   3302 
   3303 	pmap_pteg_cnt >>= 1;
   3304 #endif /* PTEGCOUNT */
   3305 
   3306 #ifdef DEBUG
   3307 	DPRINTFN(BOOT,
   3308 		("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
   3309 #endif
   3310 
   3311 	/*
   3312 	 * Find suitably aligned memory for PTEG hash table.
   3313 	 */
   3314 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3315 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3316 
   3317 #ifdef DEBUG
   3318 	DPRINTFN(BOOT,
   3319 		("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
   3320 #endif
   3321 
   3322 
   3323 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3324 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3325 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3326 		    pmap_pteg_table, size);
   3327 #endif
   3328 
   3329 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3330 		pmap_pteg_cnt * sizeof(struct pteg));
   3331 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3332 
   3333 	/*
   3334 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3335 	 * with pages.  So we just steal them before giving them to UVM.
   3336 	 */
   3337 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3338 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3339 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3340 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3341 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3342 		    pmap_pvo_table, size);
   3343 #endif
   3344 
   3345 	for (i = 0; i < pmap_pteg_cnt; i++)
   3346 		TAILQ_INIT(&pmap_pvo_table[i]);
   3347 
   3348 #ifndef MSGBUFADDR
   3349 	/*
   3350 	 * Allocate msgbuf in high memory.
   3351 	 */
   3352 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3353 #endif
   3354 
   3355 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3356 		paddr_t pfstart = atop(mp->start);
   3357 		paddr_t pfend = atop(mp->start + mp->size);
   3358 		if (mp->size == 0)
   3359 			continue;
   3360 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3361 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3362 				VM_FREELIST_FIRST256);
   3363 		} else if (mp->start >= SEGMENT_LENGTH) {
   3364 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3365 				VM_FREELIST_DEFAULT);
   3366 		} else {
   3367 			pfend = atop(SEGMENT_LENGTH);
   3368 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3369 				VM_FREELIST_FIRST256);
   3370 			pfstart = atop(SEGMENT_LENGTH);
   3371 			pfend = atop(mp->start + mp->size);
   3372 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3373 				VM_FREELIST_DEFAULT);
   3374 		}
   3375 	}
   3376 
   3377 	/*
   3378 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3379 	 */
   3380 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3381 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3382 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3383 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3384 	pmap_vsid_bitmap[0] |= 1;
   3385 
   3386 	/*
   3387 	 * Initialize kernel pmap and hardware.
   3388 	 */
   3389 
   3390 /* PMAP_OEA64_BRIDGE does support these instructions */
   3391 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3392 	for (i = 0; i < 16; i++) {
   3393  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3394 		__asm volatile ("mtsrin %0,%1"
   3395  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3396 	}
   3397 
   3398 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3399 	__asm volatile ("mtsr %0,%1"
   3400 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3401 #ifdef KERNEL2_SR
   3402 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3403 	__asm volatile ("mtsr %0,%1"
   3404 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3405 #endif
   3406 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3407 #if defined (PMAP_OEA)
   3408 	for (i = 0; i < 16; i++) {
   3409 		if (iosrtable[i] & SR601_T) {
   3410 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3411 			__asm volatile ("mtsrin %0,%1"
   3412 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3413 		}
   3414 	}
   3415 	__asm volatile ("sync; mtsdr1 %0; isync"
   3416 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3417 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3418  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3419  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
   3420 #endif
   3421 	tlbia();
   3422 
   3423 #ifdef ALTIVEC
   3424 	pmap_use_altivec = cpu_altivec;
   3425 #endif
   3426 
   3427 #ifdef DEBUG
   3428 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3429 		u_int cnt;
   3430 		int bank;
   3431 		char pbuf[9];
   3432 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3433 			cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
   3434 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3435 			    bank,
   3436 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
   3437 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
   3438 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
   3439 		}
   3440 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3441 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3442 		    pbuf, cnt);
   3443 	}
   3444 #endif
   3445 
   3446 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3447 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3448 	    &pmap_pool_uallocator, IPL_VM);
   3449 
   3450 	pool_setlowat(&pmap_upvo_pool, 252);
   3451 
   3452 	pool_init(&pmap_pool, sizeof(struct pmap),
   3453 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3454 	    IPL_NONE);
   3455 
   3456 #if defined(PMAP_NEED_MAPKERNEL) || 1
   3457 	{
   3458 		struct pmap *pm = pmap_kernel();
   3459 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3460 		extern int etext[], kernel_text[];
   3461 		vaddr_t va, va_etext = (paddr_t) etext;
   3462 #endif
   3463 		paddr_t pa, pa_end;
   3464 		register_t sr;
   3465 		struct pte pt;
   3466 		unsigned int ptegidx;
   3467 		int bank;
   3468 
   3469 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3470 		pm->pm_sr[0] = sr;
   3471 
   3472 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3473 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3474 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3475 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3476 				ptegidx = va_to_pteg(pm, pa);
   3477 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3478 				pmap_pte_insert(ptegidx, &pt);
   3479 			}
   3480 		}
   3481 
   3482 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3483 		va = (vaddr_t) kernel_text;
   3484 
   3485 		for (pa = kernelstart; va < va_etext;
   3486 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3487 			ptegidx = va_to_pteg(pm, va);
   3488 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3489 			pmap_pte_insert(ptegidx, &pt);
   3490 		}
   3491 
   3492 		for (; pa < kernelend;
   3493 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3494 			ptegidx = va_to_pteg(pm, va);
   3495 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3496 			pmap_pte_insert(ptegidx, &pt);
   3497 		}
   3498 
   3499 		for (va = 0, pa = 0; va < kernelstart;
   3500 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3501 			ptegidx = va_to_pteg(pm, va);
   3502 			if (va < 0x3000)
   3503 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3504 			else
   3505 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3506 			pmap_pte_insert(ptegidx, &pt);
   3507 		}
   3508 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3509 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3510 			ptegidx = va_to_pteg(pm, va);
   3511 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3512 			pmap_pte_insert(ptegidx, &pt);
   3513 		}
   3514 #endif
   3515 
   3516 		__asm volatile ("mtsrin %0,%1"
   3517  			      :: "r"(sr), "r"(kernelstart));
   3518 	}
   3519 #endif
   3520 }
   3521