pmap.c revision 1.79 1 /* $NetBSD: pmap.c,v 1.79 2011/05/02 01:49:23 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.79 2011/05/02 01:49:23 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/pcb.h>
87 #include <machine/powerpc.h>
88 #include <powerpc/spr.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/stdarg.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 int pmap_use_altivec;
96 #endif
97
98 volatile struct pteg *pmap_pteg_table;
99 unsigned int pmap_pteg_cnt;
100 unsigned int pmap_pteg_mask;
101 #ifdef PMAP_MEMLIMIT
102 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
103 #else
104 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
105 #endif
106
107 struct pmap kernel_pmap_;
108 unsigned int pmap_pages_stolen;
109 u_long pmap_pte_valid;
110 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
111 u_long pmap_pvo_enter_depth;
112 u_long pmap_pvo_remove_depth;
113 #endif
114
115 #ifndef MSGBUFADDR
116 extern paddr_t msgbuf_paddr;
117 #endif
118
119 static struct mem_region *mem, *avail;
120 static u_int mem_cnt, avail_cnt;
121
122 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
123 # define PMAP_OEA 1
124 #endif
125
126 #if defined(PMAP_OEA)
127 #define _PRIxpte "lx"
128 #else
129 #define _PRIxpte PRIx64
130 #endif
131 #define _PRIxpa "lx"
132 #define _PRIxva "lx"
133 #define _PRIsr "lx"
134
135 #ifdef PMAP_NEEDS_FIXUP
136 #if defined(PMAP_OEA)
137 #define PMAPNAME(name) pmap32_##name
138 #elif defined(PMAP_OEA64)
139 #define PMAPNAME(name) pmap64_##name
140 #elif defined(PMAP_OEA64_BRIDGE)
141 #define PMAPNAME(name) pmap64bridge_##name
142 #else
143 #error unknown variant for pmap
144 #endif
145 #endif /* PMAP_NEEDS_FIXUP */
146
147 #ifdef PMAPNAME
148 #define STATIC static
149 #define pmap_pte_spill PMAPNAME(pte_spill)
150 #define pmap_real_memory PMAPNAME(real_memory)
151 #define pmap_init PMAPNAME(init)
152 #define pmap_virtual_space PMAPNAME(virtual_space)
153 #define pmap_create PMAPNAME(create)
154 #define pmap_reference PMAPNAME(reference)
155 #define pmap_destroy PMAPNAME(destroy)
156 #define pmap_copy PMAPNAME(copy)
157 #define pmap_update PMAPNAME(update)
158 #define pmap_enter PMAPNAME(enter)
159 #define pmap_remove PMAPNAME(remove)
160 #define pmap_kenter_pa PMAPNAME(kenter_pa)
161 #define pmap_kremove PMAPNAME(kremove)
162 #define pmap_extract PMAPNAME(extract)
163 #define pmap_protect PMAPNAME(protect)
164 #define pmap_unwire PMAPNAME(unwire)
165 #define pmap_page_protect PMAPNAME(page_protect)
166 #define pmap_query_bit PMAPNAME(query_bit)
167 #define pmap_clear_bit PMAPNAME(clear_bit)
168
169 #define pmap_activate PMAPNAME(activate)
170 #define pmap_deactivate PMAPNAME(deactivate)
171
172 #define pmap_pinit PMAPNAME(pinit)
173 #define pmap_procwr PMAPNAME(procwr)
174
175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
176 #define pmap_pte_print PMAPNAME(pte_print)
177 #define pmap_pteg_check PMAPNAME(pteg_check)
178 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
179 #define pmap_print_pte PMAPNAME(print_pte)
180 #define pmap_pteg_dist PMAPNAME(pteg_dist)
181 #endif
182 #if defined(DEBUG) || defined(PMAPCHECK)
183 #define pmap_pvo_verify PMAPNAME(pvo_verify)
184 #define pmapcheck PMAPNAME(check)
185 #endif
186 #if defined(DEBUG) || defined(PMAPDEBUG)
187 #define pmapdebug PMAPNAME(debug)
188 #endif
189 #define pmap_steal_memory PMAPNAME(steal_memory)
190 #define pmap_bootstrap PMAPNAME(bootstrap)
191 #else
192 #define STATIC /* nothing */
193 #endif /* PMAPNAME */
194
195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
197 STATIC void pmap_init(void);
198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
199 STATIC pmap_t pmap_create(void);
200 STATIC void pmap_reference(pmap_t);
201 STATIC void pmap_destroy(pmap_t);
202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
203 STATIC void pmap_update(pmap_t);
204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
207 STATIC void pmap_kremove(vaddr_t, vsize_t);
208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
209
210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
211 STATIC void pmap_unwire(pmap_t, vaddr_t);
212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
213 STATIC bool pmap_query_bit(struct vm_page *, int);
214 STATIC bool pmap_clear_bit(struct vm_page *, int);
215
216 STATIC void pmap_activate(struct lwp *);
217 STATIC void pmap_deactivate(struct lwp *);
218
219 STATIC void pmap_pinit(pmap_t pm);
220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
221
222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
223 STATIC void pmap_pte_print(volatile struct pte *);
224 STATIC void pmap_pteg_check(void);
225 STATIC void pmap_print_mmuregs(void);
226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
227 STATIC void pmap_pteg_dist(void);
228 #endif
229 #if defined(DEBUG) || defined(PMAPCHECK)
230 STATIC void pmap_pvo_verify(void);
231 #endif
232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
234
235 #ifdef PMAPNAME
236 const struct pmap_ops PMAPNAME(ops) = {
237 .pmapop_pte_spill = pmap_pte_spill,
238 .pmapop_real_memory = pmap_real_memory,
239 .pmapop_init = pmap_init,
240 .pmapop_virtual_space = pmap_virtual_space,
241 .pmapop_create = pmap_create,
242 .pmapop_reference = pmap_reference,
243 .pmapop_destroy = pmap_destroy,
244 .pmapop_copy = pmap_copy,
245 .pmapop_update = pmap_update,
246 .pmapop_enter = pmap_enter,
247 .pmapop_remove = pmap_remove,
248 .pmapop_kenter_pa = pmap_kenter_pa,
249 .pmapop_kremove = pmap_kremove,
250 .pmapop_extract = pmap_extract,
251 .pmapop_protect = pmap_protect,
252 .pmapop_unwire = pmap_unwire,
253 .pmapop_page_protect = pmap_page_protect,
254 .pmapop_query_bit = pmap_query_bit,
255 .pmapop_clear_bit = pmap_clear_bit,
256 .pmapop_activate = pmap_activate,
257 .pmapop_deactivate = pmap_deactivate,
258 .pmapop_pinit = pmap_pinit,
259 .pmapop_procwr = pmap_procwr,
260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
261 .pmapop_pte_print = pmap_pte_print,
262 .pmapop_pteg_check = pmap_pteg_check,
263 .pmapop_print_mmuregs = pmap_print_mmuregs,
264 .pmapop_print_pte = pmap_print_pte,
265 .pmapop_pteg_dist = pmap_pteg_dist,
266 #else
267 .pmapop_pte_print = NULL,
268 .pmapop_pteg_check = NULL,
269 .pmapop_print_mmuregs = NULL,
270 .pmapop_print_pte = NULL,
271 .pmapop_pteg_dist = NULL,
272 #endif
273 #if defined(DEBUG) || defined(PMAPCHECK)
274 .pmapop_pvo_verify = pmap_pvo_verify,
275 #else
276 .pmapop_pvo_verify = NULL,
277 #endif
278 .pmapop_steal_memory = pmap_steal_memory,
279 .pmapop_bootstrap = pmap_bootstrap,
280 };
281 #endif /* !PMAPNAME */
282
283 /*
284 * The following structure is aligned to 32 bytes
285 */
286 struct pvo_entry {
287 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
288 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
289 struct pte pvo_pte; /* Prebuilt PTE */
290 pmap_t pvo_pmap; /* ptr to owning pmap */
291 vaddr_t pvo_vaddr; /* VA of entry */
292 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
293 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
294 #define PVO_WIRED 0x0010 /* PVO entry is wired */
295 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
296 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
297 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
298 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
299 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
300 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
301 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
302 #define PVO_SPILL_SET 2 /* PVO has been spilled */
303 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
304 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
305 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
306 #define PVO_REMOVE 6 /* PVO has been removed */
307 #define PVO_WHERE_MASK 15
308 #define PVO_WHERE_SHFT 8
309 } __attribute__ ((aligned (32)));
310 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
311 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
312 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
313 #define PVO_PTEGIDX_CLR(pvo) \
314 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
315 #define PVO_PTEGIDX_SET(pvo,i) \
316 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
317 #define PVO_WHERE(pvo,w) \
318 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
319 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
320
321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
322 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
325
326 struct pool pmap_pool; /* pool for pmap structures */
327 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
328 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
329
330 /*
331 * We keep a cache of unmanaged pages to be used for pvo entries for
332 * unmanaged pages.
333 */
334 struct pvo_page {
335 SIMPLEQ_ENTRY(pvo_page) pvop_link;
336 };
337 SIMPLEQ_HEAD(pvop_head, pvo_page);
338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
340 u_long pmap_upvop_free;
341 u_long pmap_upvop_maxfree;
342 u_long pmap_mpvop_free;
343 u_long pmap_mpvop_maxfree;
344
345 static void *pmap_pool_ualloc(struct pool *, int);
346 static void *pmap_pool_malloc(struct pool *, int);
347
348 static void pmap_pool_ufree(struct pool *, void *);
349 static void pmap_pool_mfree(struct pool *, void *);
350
351 static struct pool_allocator pmap_pool_mallocator = {
352 .pa_alloc = pmap_pool_malloc,
353 .pa_free = pmap_pool_mfree,
354 .pa_pagesz = 0,
355 };
356
357 static struct pool_allocator pmap_pool_uallocator = {
358 .pa_alloc = pmap_pool_ualloc,
359 .pa_free = pmap_pool_ufree,
360 .pa_pagesz = 0,
361 };
362
363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
364 void pmap_pte_print(volatile struct pte *);
365 void pmap_pteg_check(void);
366 void pmap_pteg_dist(void);
367 void pmap_print_pte(pmap_t, vaddr_t);
368 void pmap_print_mmuregs(void);
369 #endif
370
371 #if defined(DEBUG) || defined(PMAPCHECK)
372 #ifdef PMAPCHECK
373 int pmapcheck = 1;
374 #else
375 int pmapcheck = 0;
376 #endif
377 void pmap_pvo_verify(void);
378 static void pmap_pvo_check(const struct pvo_entry *);
379 #define PMAP_PVO_CHECK(pvo) \
380 do { \
381 if (pmapcheck) \
382 pmap_pvo_check(pvo); \
383 } while (0)
384 #else
385 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
386 #endif
387 static int pmap_pte_insert(int, struct pte *);
388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
389 vaddr_t, paddr_t, register_t, int);
390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
391 static void pmap_pvo_free(struct pvo_entry *);
392 static void pmap_pvo_free_list(struct pvo_head *);
393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
396 static void pvo_set_exec(struct pvo_entry *);
397 static void pvo_clear_exec(struct pvo_entry *);
398
399 static void tlbia(void);
400
401 static void pmap_release(pmap_t);
402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
403
404 static uint32_t pmap_pvo_reclaim_nextidx;
405 #ifdef DEBUG
406 static int pmap_pvo_reclaim_debugctr;
407 #endif
408
409 #define VSID_NBPW (sizeof(uint32_t) * 8)
410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
411
412 static int pmap_initialized;
413
414 #if defined(DEBUG) || defined(PMAPDEBUG)
415 #define PMAPDEBUG_BOOT 0x0001
416 #define PMAPDEBUG_PTE 0x0002
417 #define PMAPDEBUG_EXEC 0x0008
418 #define PMAPDEBUG_PVOENTER 0x0010
419 #define PMAPDEBUG_PVOREMOVE 0x0020
420 #define PMAPDEBUG_ACTIVATE 0x0100
421 #define PMAPDEBUG_CREATE 0x0200
422 #define PMAPDEBUG_ENTER 0x1000
423 #define PMAPDEBUG_KENTER 0x2000
424 #define PMAPDEBUG_KREMOVE 0x4000
425 #define PMAPDEBUG_REMOVE 0x8000
426
427 unsigned int pmapdebug = 0;
428
429 # define DPRINTF(x) printf x
430 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
431 #else
432 # define DPRINTF(x)
433 # define DPRINTFN(n, x)
434 #endif
435
436
437 #ifdef PMAPCOUNTERS
438 /*
439 * From pmap_subr.c
440 */
441 extern struct evcnt pmap_evcnt_mappings;
442 extern struct evcnt pmap_evcnt_unmappings;
443
444 extern struct evcnt pmap_evcnt_kernel_mappings;
445 extern struct evcnt pmap_evcnt_kernel_unmappings;
446
447 extern struct evcnt pmap_evcnt_mappings_replaced;
448
449 extern struct evcnt pmap_evcnt_exec_mappings;
450 extern struct evcnt pmap_evcnt_exec_cached;
451
452 extern struct evcnt pmap_evcnt_exec_synced;
453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
455
456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
461
462 extern struct evcnt pmap_evcnt_updates;
463 extern struct evcnt pmap_evcnt_collects;
464 extern struct evcnt pmap_evcnt_copies;
465
466 extern struct evcnt pmap_evcnt_ptes_spilled;
467 extern struct evcnt pmap_evcnt_ptes_unspilled;
468 extern struct evcnt pmap_evcnt_ptes_evicted;
469
470 extern struct evcnt pmap_evcnt_ptes_primary[8];
471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
472 extern struct evcnt pmap_evcnt_ptes_removed;
473 extern struct evcnt pmap_evcnt_ptes_changed;
474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
475 extern struct evcnt pmap_evcnt_pvos_failed;
476
477 extern struct evcnt pmap_evcnt_zeroed_pages;
478 extern struct evcnt pmap_evcnt_copied_pages;
479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
480
481 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
482 #define PMAPCOUNT2(ev) ((ev).ev_count++)
483 #else
484 #define PMAPCOUNT(ev) ((void) 0)
485 #define PMAPCOUNT2(ev) ((void) 0)
486 #endif
487
488 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
489
490 /* XXXSL: this needs to be moved to assembler */
491 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
492
493 #define TLBSYNC() __asm volatile("tlbsync")
494 #define SYNC() __asm volatile("sync")
495 #define EIEIO() __asm volatile("eieio")
496 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
497 #define MFMSR() mfmsr()
498 #define MTMSR(psl) mtmsr(psl)
499 #define MFPVR() mfpvr()
500 #define MFSRIN(va) mfsrin(va)
501 #define MFTB() mfrtcltbl()
502
503 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
504 static inline register_t
505 mfsrin(vaddr_t va)
506 {
507 register_t sr;
508 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
509 return sr;
510 }
511 #endif /* PMAP_OEA*/
512
513 #if defined (PMAP_OEA64_BRIDGE)
514 extern void mfmsr64 (register64_t *result);
515 #endif /* PMAP_OEA64_BRIDGE */
516
517 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
518 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
519
520 static inline register_t
521 pmap_interrupts_off(void)
522 {
523 register_t msr = MFMSR();
524 if (msr & PSL_EE)
525 MTMSR(msr & ~PSL_EE);
526 return msr;
527 }
528
529 static void
530 pmap_interrupts_restore(register_t msr)
531 {
532 if (msr & PSL_EE)
533 MTMSR(msr);
534 }
535
536 static inline u_int32_t
537 mfrtcltbl(void)
538 {
539 #ifdef PPC_OEA601
540 if ((MFPVR() >> 16) == MPC601)
541 return (mfrtcl() >> 7);
542 else
543 #endif
544 return (mftbl());
545 }
546
547 /*
548 * These small routines may have to be replaced,
549 * if/when we support processors other that the 604.
550 */
551
552 void
553 tlbia(void)
554 {
555 char *i;
556
557 SYNC();
558 #if defined(PMAP_OEA)
559 /*
560 * Why not use "tlbia"? Because not all processors implement it.
561 *
562 * This needs to be a per-CPU callback to do the appropriate thing
563 * for the CPU. XXX
564 */
565 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
566 TLBIE(i);
567 EIEIO();
568 SYNC();
569 }
570 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
571 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
572 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
573 TLBIEL(i);
574 EIEIO();
575 SYNC();
576 }
577 #endif
578 TLBSYNC();
579 SYNC();
580 }
581
582 static inline register_t
583 va_to_vsid(const struct pmap *pm, vaddr_t addr)
584 {
585 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
586 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
587 #else /* PMAP_OEA64 */
588 #if 0
589 const struct ste *ste;
590 register_t hash;
591 int i;
592
593 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
594
595 /*
596 * Try the primary group first
597 */
598 ste = pm->pm_stes[hash].stes;
599 for (i = 0; i < 8; i++, ste++) {
600 if (ste->ste_hi & STE_V) &&
601 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
602 return ste;
603 }
604
605 /*
606 * Then the secondary group.
607 */
608 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
609 for (i = 0; i < 8; i++, ste++) {
610 if (ste->ste_hi & STE_V) &&
611 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
612 return addr;
613 }
614
615 return NULL;
616 #else
617 /*
618 * Rather than searching the STE groups for the VSID, we know
619 * how we generate that from the ESID and so do that.
620 */
621 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
622 #endif
623 #endif /* PMAP_OEA */
624 }
625
626 static inline register_t
627 va_to_pteg(const struct pmap *pm, vaddr_t addr)
628 {
629 register_t hash;
630
631 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
632 return hash & pmap_pteg_mask;
633 }
634
635 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
636 /*
637 * Given a PTE in the page table, calculate the VADDR that hashes to it.
638 * The only bit of magic is that the top 4 bits of the address doesn't
639 * technically exist in the PTE. But we know we reserved 4 bits of the
640 * VSID for it so that's how we get it.
641 */
642 static vaddr_t
643 pmap_pte_to_va(volatile const struct pte *pt)
644 {
645 vaddr_t va;
646 uintptr_t ptaddr = (uintptr_t) pt;
647
648 if (pt->pte_hi & PTE_HID)
649 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
650
651 /* PPC Bits 10-19 PPC64 Bits 42-51 */
652 #if defined(PMAP_OEA)
653 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
654 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
655 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
656 #endif
657 va <<= ADDR_PIDX_SHFT;
658
659 /* PPC Bits 4-9 PPC64 Bits 36-41 */
660 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
661
662 #if defined(PMAP_OEA64)
663 /* PPC63 Bits 0-35 */
664 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
665 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
666 /* PPC Bits 0-3 */
667 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
668 #endif
669
670 return va;
671 }
672 #endif
673
674 static inline struct pvo_head *
675 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
676 {
677 struct vm_page *pg;
678 struct vm_page_md *md;
679
680 pg = PHYS_TO_VM_PAGE(pa);
681 if (pg_p != NULL)
682 *pg_p = pg;
683 if (pg == NULL)
684 return &pmap_pvo_unmanaged;
685 md = VM_PAGE_TO_MD(pg);
686 return &md->mdpg_pvoh;
687 }
688
689 static inline struct pvo_head *
690 vm_page_to_pvoh(struct vm_page *pg)
691 {
692 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
693
694 return &md->mdpg_pvoh;
695 }
696
697
698 static inline void
699 pmap_attr_clear(struct vm_page *pg, int ptebit)
700 {
701 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
702
703 md->mdpg_attrs &= ~ptebit;
704 }
705
706 static inline int
707 pmap_attr_fetch(struct vm_page *pg)
708 {
709 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
710
711 return md->mdpg_attrs;
712 }
713
714 static inline void
715 pmap_attr_save(struct vm_page *pg, int ptebit)
716 {
717 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
718
719 md->mdpg_attrs |= ptebit;
720 }
721
722 static inline int
723 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
724 {
725 if (pt->pte_hi == pvo_pt->pte_hi
726 #if 0
727 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
728 ~(PTE_REF|PTE_CHG)) == 0
729 #endif
730 )
731 return 1;
732 return 0;
733 }
734
735 static inline void
736 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
737 {
738 /*
739 * Construct the PTE. Default to IMB initially. Valid bit
740 * only gets set when the real pte is set in memory.
741 *
742 * Note: Don't set the valid bit for correct operation of tlb update.
743 */
744 #if defined(PMAP_OEA)
745 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
746 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
747 pt->pte_lo = pte_lo;
748 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
749 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
750 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
751 pt->pte_lo = (u_int64_t) pte_lo;
752 #endif /* PMAP_OEA */
753 }
754
755 static inline void
756 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
757 {
758 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
759 }
760
761 static inline void
762 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
763 {
764 /*
765 * As shown in Section 7.6.3.2.3
766 */
767 pt->pte_lo &= ~ptebit;
768 TLBIE(va);
769 SYNC();
770 EIEIO();
771 TLBSYNC();
772 SYNC();
773 #ifdef MULTIPROCESSOR
774 DCBST(pt);
775 #endif
776 }
777
778 static inline void
779 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
780 {
781 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
782 if (pvo_pt->pte_hi & PTE_VALID)
783 panic("pte_set: setting an already valid pte %p", pvo_pt);
784 #endif
785 pvo_pt->pte_hi |= PTE_VALID;
786
787 /*
788 * Update the PTE as defined in section 7.6.3.1
789 * Note that the REF/CHG bits are from pvo_pt and thus should
790 * have been saved so this routine can restore them (if desired).
791 */
792 pt->pte_lo = pvo_pt->pte_lo;
793 EIEIO();
794 pt->pte_hi = pvo_pt->pte_hi;
795 TLBSYNC();
796 SYNC();
797 #ifdef MULTIPROCESSOR
798 DCBST(pt);
799 #endif
800 pmap_pte_valid++;
801 }
802
803 static inline void
804 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
805 {
806 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
807 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
808 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
809 if ((pt->pte_hi & PTE_VALID) == 0)
810 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
811 #endif
812
813 pvo_pt->pte_hi &= ~PTE_VALID;
814 /*
815 * Force the ref & chg bits back into the PTEs.
816 */
817 SYNC();
818 /*
819 * Invalidate the pte ... (Section 7.6.3.3)
820 */
821 pt->pte_hi &= ~PTE_VALID;
822 SYNC();
823 TLBIE(va);
824 SYNC();
825 EIEIO();
826 TLBSYNC();
827 SYNC();
828 /*
829 * Save the ref & chg bits ...
830 */
831 pmap_pte_synch(pt, pvo_pt);
832 pmap_pte_valid--;
833 }
834
835 static inline void
836 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
837 {
838 /*
839 * Invalidate the PTE
840 */
841 pmap_pte_unset(pt, pvo_pt, va);
842 pmap_pte_set(pt, pvo_pt);
843 }
844
845 /*
846 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
847 * (either primary or secondary location).
848 *
849 * Note: both the destination and source PTEs must not have PTE_VALID set.
850 */
851
852 static int
853 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
854 {
855 volatile struct pte *pt;
856 int i;
857
858 #if defined(DEBUG)
859 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
860 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
861 #endif
862 /*
863 * First try primary hash.
864 */
865 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
866 if ((pt->pte_hi & PTE_VALID) == 0) {
867 pvo_pt->pte_hi &= ~PTE_HID;
868 pmap_pte_set(pt, pvo_pt);
869 return i;
870 }
871 }
872
873 /*
874 * Now try secondary hash.
875 */
876 ptegidx ^= pmap_pteg_mask;
877 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
878 if ((pt->pte_hi & PTE_VALID) == 0) {
879 pvo_pt->pte_hi |= PTE_HID;
880 pmap_pte_set(pt, pvo_pt);
881 return i;
882 }
883 }
884 return -1;
885 }
886
887 /*
888 * Spill handler.
889 *
890 * Tries to spill a page table entry from the overflow area.
891 * This runs in either real mode (if dealing with a exception spill)
892 * or virtual mode when dealing with manually spilling one of the
893 * kernel's pte entries. In either case, interrupts are already
894 * disabled.
895 */
896
897 int
898 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
899 {
900 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
901 struct pvo_entry *pvo;
902 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
903 struct pvo_tqhead *pvoh, *vpvoh = NULL;
904 int ptegidx, i, j;
905 volatile struct pteg *pteg;
906 volatile struct pte *pt;
907
908 PMAP_LOCK();
909
910 ptegidx = va_to_pteg(pm, addr);
911
912 /*
913 * Have to substitute some entry. Use the primary hash for this.
914 * Use low bits of timebase as random generator. Make sure we are
915 * not picking a kernel pte for replacement.
916 */
917 pteg = &pmap_pteg_table[ptegidx];
918 i = MFTB() & 7;
919 for (j = 0; j < 8; j++) {
920 pt = &pteg->pt[i];
921 if ((pt->pte_hi & PTE_VALID) == 0)
922 break;
923 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
924 < PHYSMAP_VSIDBITS)
925 break;
926 i = (i + 1) & 7;
927 }
928 KASSERT(j < 8);
929
930 source_pvo = NULL;
931 victim_pvo = NULL;
932 pvoh = &pmap_pvo_table[ptegidx];
933 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
934
935 /*
936 * We need to find pvo entry for this address...
937 */
938 PMAP_PVO_CHECK(pvo); /* sanity check */
939
940 /*
941 * If we haven't found the source and we come to a PVO with
942 * a valid PTE, then we know we can't find it because all
943 * evicted PVOs always are first in the list.
944 */
945 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
946 break;
947 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
948 addr == PVO_VADDR(pvo)) {
949
950 /*
951 * Now we have found the entry to be spilled into the
952 * pteg. Attempt to insert it into the page table.
953 */
954 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
955 if (j >= 0) {
956 PVO_PTEGIDX_SET(pvo, j);
957 PMAP_PVO_CHECK(pvo); /* sanity check */
958 PVO_WHERE(pvo, SPILL_INSERT);
959 pvo->pvo_pmap->pm_evictions--;
960 PMAPCOUNT(ptes_spilled);
961 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
962 ? pmap_evcnt_ptes_secondary
963 : pmap_evcnt_ptes_primary)[j]);
964
965 /*
966 * Since we keep the evicted entries at the
967 * from of the PVO list, we need move this
968 * (now resident) PVO after the evicted
969 * entries.
970 */
971 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
972
973 /*
974 * If we don't have to move (either we were the
975 * last entry or the next entry was valid),
976 * don't change our position. Otherwise
977 * move ourselves to the tail of the queue.
978 */
979 if (next_pvo != NULL &&
980 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
981 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
982 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
983 }
984 PMAP_UNLOCK();
985 return 1;
986 }
987 source_pvo = pvo;
988 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
989 return 0;
990 }
991 if (victim_pvo != NULL)
992 break;
993 }
994
995 /*
996 * We also need the pvo entry of the victim we are replacing
997 * so save the R & C bits of the PTE.
998 */
999 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1000 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1001 vpvoh = pvoh; /* *1* */
1002 victim_pvo = pvo;
1003 if (source_pvo != NULL)
1004 break;
1005 }
1006 }
1007
1008 if (source_pvo == NULL) {
1009 PMAPCOUNT(ptes_unspilled);
1010 PMAP_UNLOCK();
1011 return 0;
1012 }
1013
1014 if (victim_pvo == NULL) {
1015 if ((pt->pte_hi & PTE_HID) == 0)
1016 panic("pmap_pte_spill: victim p-pte (%p) has "
1017 "no pvo entry!", pt);
1018
1019 /*
1020 * If this is a secondary PTE, we need to search
1021 * its primary pvo bucket for the matching PVO.
1022 */
1023 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1024 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1025 PMAP_PVO_CHECK(pvo); /* sanity check */
1026
1027 /*
1028 * We also need the pvo entry of the victim we are
1029 * replacing so save the R & C bits of the PTE.
1030 */
1031 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1032 victim_pvo = pvo;
1033 break;
1034 }
1035 }
1036 if (victim_pvo == NULL)
1037 panic("pmap_pte_spill: victim s-pte (%p) has "
1038 "no pvo entry!", pt);
1039 }
1040
1041 /*
1042 * The victim should be not be a kernel PVO/PTE entry.
1043 */
1044 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1045 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1046 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1047
1048 /*
1049 * We are invalidating the TLB entry for the EA for the
1050 * we are replacing even though its valid; If we don't
1051 * we lose any ref/chg bit changes contained in the TLB
1052 * entry.
1053 */
1054 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1055
1056 /*
1057 * To enforce the PVO list ordering constraint that all
1058 * evicted entries should come before all valid entries,
1059 * move the source PVO to the tail of its list and the
1060 * victim PVO to the head of its list (which might not be
1061 * the same list, if the victim was using the secondary hash).
1062 */
1063 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1064 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1065 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1066 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1067 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1068 pmap_pte_set(pt, &source_pvo->pvo_pte);
1069 victim_pvo->pvo_pmap->pm_evictions++;
1070 source_pvo->pvo_pmap->pm_evictions--;
1071 PVO_WHERE(victim_pvo, SPILL_UNSET);
1072 PVO_WHERE(source_pvo, SPILL_SET);
1073
1074 PVO_PTEGIDX_CLR(victim_pvo);
1075 PVO_PTEGIDX_SET(source_pvo, i);
1076 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1077 PMAPCOUNT(ptes_spilled);
1078 PMAPCOUNT(ptes_evicted);
1079 PMAPCOUNT(ptes_removed);
1080
1081 PMAP_PVO_CHECK(victim_pvo);
1082 PMAP_PVO_CHECK(source_pvo);
1083
1084 PMAP_UNLOCK();
1085 return 1;
1086 }
1087
1088 /*
1089 * Restrict given range to physical memory
1090 */
1091 void
1092 pmap_real_memory(paddr_t *start, psize_t *size)
1093 {
1094 struct mem_region *mp;
1095
1096 for (mp = mem; mp->size; mp++) {
1097 if (*start + *size > mp->start
1098 && *start < mp->start + mp->size) {
1099 if (*start < mp->start) {
1100 *size -= mp->start - *start;
1101 *start = mp->start;
1102 }
1103 if (*start + *size > mp->start + mp->size)
1104 *size = mp->start + mp->size - *start;
1105 return;
1106 }
1107 }
1108 *size = 0;
1109 }
1110
1111 /*
1112 * Initialize anything else for pmap handling.
1113 * Called during vm_init().
1114 */
1115 void
1116 pmap_init(void)
1117 {
1118 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1119 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1120 &pmap_pool_mallocator, IPL_NONE);
1121
1122 pool_setlowat(&pmap_mpvo_pool, 1008);
1123
1124 pmap_initialized = 1;
1125
1126 }
1127
1128 /*
1129 * How much virtual space does the kernel get?
1130 */
1131 void
1132 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1133 {
1134 /*
1135 * For now, reserve one segment (minus some overhead) for kernel
1136 * virtual memory
1137 */
1138 *start = VM_MIN_KERNEL_ADDRESS;
1139 *end = VM_MAX_KERNEL_ADDRESS;
1140 }
1141
1142 /*
1143 * Allocate, initialize, and return a new physical map.
1144 */
1145 pmap_t
1146 pmap_create(void)
1147 {
1148 pmap_t pm;
1149
1150 pm = pool_get(&pmap_pool, PR_WAITOK);
1151 memset((void *)pm, 0, sizeof *pm);
1152 pmap_pinit(pm);
1153
1154 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1155 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1156 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1157 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1158 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1159 pm,
1160 pm->pm_sr[0], pm->pm_sr[1],
1161 pm->pm_sr[2], pm->pm_sr[3],
1162 pm->pm_sr[4], pm->pm_sr[5],
1163 pm->pm_sr[6], pm->pm_sr[7],
1164 pm->pm_sr[8], pm->pm_sr[9],
1165 pm->pm_sr[10], pm->pm_sr[11],
1166 pm->pm_sr[12], pm->pm_sr[13],
1167 pm->pm_sr[14], pm->pm_sr[15]));
1168 return pm;
1169 }
1170
1171 /*
1172 * Initialize a preallocated and zeroed pmap structure.
1173 */
1174 void
1175 pmap_pinit(pmap_t pm)
1176 {
1177 register_t entropy = MFTB();
1178 register_t mask;
1179 int i;
1180
1181 /*
1182 * Allocate some segment registers for this pmap.
1183 */
1184 pm->pm_refs = 1;
1185 PMAP_LOCK();
1186 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1187 static register_t pmap_vsidcontext;
1188 register_t hash;
1189 unsigned int n;
1190
1191 /* Create a new value by multiplying by a prime adding in
1192 * entropy from the timebase register. This is to make the
1193 * VSID more random so that the PT Hash function collides
1194 * less often. (note that the prime causes gcc to do shifts
1195 * instead of a multiply)
1196 */
1197 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1198 hash = pmap_vsidcontext & (NPMAPS - 1);
1199 if (hash == 0) { /* 0 is special, avoid it */
1200 entropy += 0xbadf00d;
1201 continue;
1202 }
1203 n = hash >> 5;
1204 mask = 1L << (hash & (VSID_NBPW-1));
1205 hash = pmap_vsidcontext;
1206 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1207 /* anything free in this bucket? */
1208 if (~pmap_vsid_bitmap[n] == 0) {
1209 entropy = hash ^ (hash >> 16);
1210 continue;
1211 }
1212 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1213 mask = 1L << i;
1214 hash &= ~(VSID_NBPW-1);
1215 hash |= i;
1216 }
1217 hash &= PTE_VSID >> PTE_VSID_SHFT;
1218 pmap_vsid_bitmap[n] |= mask;
1219 pm->pm_vsid = hash;
1220 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1221 for (i = 0; i < 16; i++)
1222 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1223 SR_NOEXEC;
1224 #endif
1225 PMAP_UNLOCK();
1226 return;
1227 }
1228 PMAP_UNLOCK();
1229 panic("pmap_pinit: out of segments");
1230 }
1231
1232 /*
1233 * Add a reference to the given pmap.
1234 */
1235 void
1236 pmap_reference(pmap_t pm)
1237 {
1238 atomic_inc_uint(&pm->pm_refs);
1239 }
1240
1241 /*
1242 * Retire the given pmap from service.
1243 * Should only be called if the map contains no valid mappings.
1244 */
1245 void
1246 pmap_destroy(pmap_t pm)
1247 {
1248 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1249 pmap_release(pm);
1250 pool_put(&pmap_pool, pm);
1251 }
1252 }
1253
1254 /*
1255 * Release any resources held by the given physical map.
1256 * Called when a pmap initialized by pmap_pinit is being released.
1257 */
1258 void
1259 pmap_release(pmap_t pm)
1260 {
1261 int idx, mask;
1262
1263 KASSERT(pm->pm_stats.resident_count == 0);
1264 KASSERT(pm->pm_stats.wired_count == 0);
1265
1266 PMAP_LOCK();
1267 if (pm->pm_sr[0] == 0)
1268 panic("pmap_release");
1269 idx = pm->pm_vsid & (NPMAPS-1);
1270 mask = 1 << (idx % VSID_NBPW);
1271 idx /= VSID_NBPW;
1272
1273 KASSERT(pmap_vsid_bitmap[idx] & mask);
1274 pmap_vsid_bitmap[idx] &= ~mask;
1275 PMAP_UNLOCK();
1276 }
1277
1278 /*
1279 * Copy the range specified by src_addr/len
1280 * from the source map to the range dst_addr/len
1281 * in the destination map.
1282 *
1283 * This routine is only advisory and need not do anything.
1284 */
1285 void
1286 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1287 vsize_t len, vaddr_t src_addr)
1288 {
1289 PMAPCOUNT(copies);
1290 }
1291
1292 /*
1293 * Require that all active physical maps contain no
1294 * incorrect entries NOW.
1295 */
1296 void
1297 pmap_update(struct pmap *pmap)
1298 {
1299 PMAPCOUNT(updates);
1300 TLBSYNC();
1301 }
1302
1303 static inline int
1304 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1305 {
1306 int pteidx;
1307 /*
1308 * We can find the actual pte entry without searching by
1309 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1310 * and by noticing the HID bit.
1311 */
1312 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1313 if (pvo->pvo_pte.pte_hi & PTE_HID)
1314 pteidx ^= pmap_pteg_mask * 8;
1315 return pteidx;
1316 }
1317
1318 volatile struct pte *
1319 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1320 {
1321 volatile struct pte *pt;
1322
1323 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1324 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1325 return NULL;
1326 #endif
1327
1328 /*
1329 * If we haven't been supplied the ptegidx, calculate it.
1330 */
1331 if (pteidx == -1) {
1332 int ptegidx;
1333 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1334 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1335 }
1336
1337 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1338
1339 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1340 return pt;
1341 #else
1342 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1343 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1344 "pvo but no valid pte index", pvo);
1345 }
1346 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1347 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1348 "pvo but no valid pte", pvo);
1349 }
1350
1351 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1352 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1353 #if defined(DEBUG) || defined(PMAPCHECK)
1354 pmap_pte_print(pt);
1355 #endif
1356 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1357 "pmap_pteg_table %p but invalid in pvo",
1358 pvo, pt);
1359 }
1360 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1361 #if defined(DEBUG) || defined(PMAPCHECK)
1362 pmap_pte_print(pt);
1363 #endif
1364 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1365 "not match pte %p in pmap_pteg_table",
1366 pvo, pt);
1367 }
1368 return pt;
1369 }
1370
1371 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1372 #if defined(DEBUG) || defined(PMAPCHECK)
1373 pmap_pte_print(pt);
1374 #endif
1375 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1376 "pmap_pteg_table but valid in pvo", pvo, pt);
1377 }
1378 return NULL;
1379 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1380 }
1381
1382 struct pvo_entry *
1383 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1384 {
1385 struct pvo_entry *pvo;
1386 int ptegidx;
1387
1388 va &= ~ADDR_POFF;
1389 ptegidx = va_to_pteg(pm, va);
1390
1391 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1392 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1393 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1394 panic("pmap_pvo_find_va: invalid pvo %p on "
1395 "list %#x (%p)", pvo, ptegidx,
1396 &pmap_pvo_table[ptegidx]);
1397 #endif
1398 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1399 if (pteidx_p)
1400 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1401 return pvo;
1402 }
1403 }
1404 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1405 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1406 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1407 return NULL;
1408 }
1409
1410 #if defined(DEBUG) || defined(PMAPCHECK)
1411 void
1412 pmap_pvo_check(const struct pvo_entry *pvo)
1413 {
1414 struct pvo_head *pvo_head;
1415 struct pvo_entry *pvo0;
1416 volatile struct pte *pt;
1417 int failed = 0;
1418
1419 PMAP_LOCK();
1420
1421 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1422 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1423
1424 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1425 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1426 pvo, pvo->pvo_pmap);
1427 failed = 1;
1428 }
1429
1430 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1431 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1432 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1433 pvo, TAILQ_NEXT(pvo, pvo_olink));
1434 failed = 1;
1435 }
1436
1437 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1438 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1439 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1440 pvo, LIST_NEXT(pvo, pvo_vlink));
1441 failed = 1;
1442 }
1443
1444 if (PVO_MANAGED_P(pvo)) {
1445 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1446 } else {
1447 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1448 printf("pmap_pvo_check: pvo %p: non kernel address "
1449 "on kernel unmanaged list\n", pvo);
1450 failed = 1;
1451 }
1452 pvo_head = &pmap_pvo_kunmanaged;
1453 }
1454 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1455 if (pvo0 == pvo)
1456 break;
1457 }
1458 if (pvo0 == NULL) {
1459 printf("pmap_pvo_check: pvo %p: not present "
1460 "on its vlist head %p\n", pvo, pvo_head);
1461 failed = 1;
1462 }
1463 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1464 printf("pmap_pvo_check: pvo %p: not present "
1465 "on its olist head\n", pvo);
1466 failed = 1;
1467 }
1468 pt = pmap_pvo_to_pte(pvo, -1);
1469 if (pt == NULL) {
1470 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1471 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1472 "no PTE\n", pvo);
1473 failed = 1;
1474 }
1475 } else {
1476 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1477 (uintptr_t) pt >=
1478 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1479 printf("pmap_pvo_check: pvo %p: pte %p not in "
1480 "pteg table\n", pvo, pt);
1481 failed = 1;
1482 }
1483 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1484 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1485 "no PTE\n", pvo);
1486 failed = 1;
1487 }
1488 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1489 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1490 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1491 pvo->pvo_pte.pte_hi,
1492 pt->pte_hi);
1493 failed = 1;
1494 }
1495 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1496 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1497 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1498 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1499 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1500 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1501 failed = 1;
1502 }
1503 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1504 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1505 " doesn't not match PVO's VA %#" _PRIxva "\n",
1506 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1507 failed = 1;
1508 }
1509 if (failed)
1510 pmap_pte_print(pt);
1511 }
1512 if (failed)
1513 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1514 pvo->pvo_pmap);
1515
1516 PMAP_UNLOCK();
1517 }
1518 #endif /* DEBUG || PMAPCHECK */
1519
1520 /*
1521 * Search the PVO table looking for a non-wired entry.
1522 * If we find one, remove it and return it.
1523 */
1524
1525 struct pvo_entry *
1526 pmap_pvo_reclaim(struct pmap *pm)
1527 {
1528 struct pvo_tqhead *pvoh;
1529 struct pvo_entry *pvo;
1530 uint32_t idx, endidx;
1531
1532 endidx = pmap_pvo_reclaim_nextidx;
1533 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1534 idx = (idx + 1) & pmap_pteg_mask) {
1535 pvoh = &pmap_pvo_table[idx];
1536 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1537 if (!PVO_WIRED_P(pvo)) {
1538 pmap_pvo_remove(pvo, -1, NULL);
1539 pmap_pvo_reclaim_nextidx = idx;
1540 PMAPCOUNT(pvos_reclaimed);
1541 return pvo;
1542 }
1543 }
1544 }
1545 return NULL;
1546 }
1547
1548 /*
1549 * This returns whether this is the first mapping of a page.
1550 */
1551 int
1552 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1553 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1554 {
1555 struct pvo_entry *pvo;
1556 struct pvo_tqhead *pvoh;
1557 register_t msr;
1558 int ptegidx;
1559 int i;
1560 int poolflags = PR_NOWAIT;
1561
1562 /*
1563 * Compute the PTE Group index.
1564 */
1565 va &= ~ADDR_POFF;
1566 ptegidx = va_to_pteg(pm, va);
1567
1568 msr = pmap_interrupts_off();
1569
1570 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1571 if (pmap_pvo_remove_depth > 0)
1572 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1573 if (++pmap_pvo_enter_depth > 1)
1574 panic("pmap_pvo_enter: called recursively!");
1575 #endif
1576
1577 /*
1578 * Remove any existing mapping for this page. Reuse the
1579 * pvo entry if there a mapping.
1580 */
1581 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1582 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1583 #ifdef DEBUG
1584 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1585 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1586 ~(PTE_REF|PTE_CHG)) == 0 &&
1587 va < VM_MIN_KERNEL_ADDRESS) {
1588 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1589 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1590 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1591 pvo->pvo_pte.pte_hi,
1592 pm->pm_sr[va >> ADDR_SR_SHFT]);
1593 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1594 #ifdef DDBX
1595 Debugger();
1596 #endif
1597 }
1598 #endif
1599 PMAPCOUNT(mappings_replaced);
1600 pmap_pvo_remove(pvo, -1, NULL);
1601 break;
1602 }
1603 }
1604
1605 /*
1606 * If we aren't overwriting an mapping, try to allocate
1607 */
1608 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1609 --pmap_pvo_enter_depth;
1610 #endif
1611 pmap_interrupts_restore(msr);
1612 if (pvo) {
1613 pmap_pvo_free(pvo);
1614 }
1615 pvo = pool_get(pl, poolflags);
1616
1617 #ifdef DEBUG
1618 /*
1619 * Exercise pmap_pvo_reclaim() a little.
1620 */
1621 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1622 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1623 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1624 pool_put(pl, pvo);
1625 pvo = NULL;
1626 }
1627 #endif
1628
1629 msr = pmap_interrupts_off();
1630 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1631 ++pmap_pvo_enter_depth;
1632 #endif
1633 if (pvo == NULL) {
1634 pvo = pmap_pvo_reclaim(pm);
1635 if (pvo == NULL) {
1636 if ((flags & PMAP_CANFAIL) == 0)
1637 panic("pmap_pvo_enter: failed");
1638 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1639 pmap_pvo_enter_depth--;
1640 #endif
1641 PMAPCOUNT(pvos_failed);
1642 pmap_interrupts_restore(msr);
1643 return ENOMEM;
1644 }
1645 }
1646
1647 pvo->pvo_vaddr = va;
1648 pvo->pvo_pmap = pm;
1649 pvo->pvo_vaddr &= ~ADDR_POFF;
1650 if (flags & VM_PROT_EXECUTE) {
1651 PMAPCOUNT(exec_mappings);
1652 pvo_set_exec(pvo);
1653 }
1654 if (flags & PMAP_WIRED)
1655 pvo->pvo_vaddr |= PVO_WIRED;
1656 if (pvo_head != &pmap_pvo_kunmanaged) {
1657 pvo->pvo_vaddr |= PVO_MANAGED;
1658 PMAPCOUNT(mappings);
1659 } else {
1660 PMAPCOUNT(kernel_mappings);
1661 }
1662 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1663
1664 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1665 if (PVO_WIRED_P(pvo))
1666 pvo->pvo_pmap->pm_stats.wired_count++;
1667 pvo->pvo_pmap->pm_stats.resident_count++;
1668 #if defined(DEBUG)
1669 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1670 DPRINTFN(PVOENTER,
1671 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1672 pvo, pm, va, pa));
1673 #endif
1674
1675 /*
1676 * We hope this succeeds but it isn't required.
1677 */
1678 pvoh = &pmap_pvo_table[ptegidx];
1679 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1680 if (i >= 0) {
1681 PVO_PTEGIDX_SET(pvo, i);
1682 PVO_WHERE(pvo, ENTER_INSERT);
1683 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1684 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1685 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1686
1687 } else {
1688 /*
1689 * Since we didn't have room for this entry (which makes it
1690 * and evicted entry), place it at the head of the list.
1691 */
1692 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1693 PMAPCOUNT(ptes_evicted);
1694 pm->pm_evictions++;
1695 /*
1696 * If this is a kernel page, make sure it's active.
1697 */
1698 if (pm == pmap_kernel()) {
1699 i = pmap_pte_spill(pm, va, false);
1700 KASSERT(i);
1701 }
1702 }
1703 PMAP_PVO_CHECK(pvo); /* sanity check */
1704 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1705 pmap_pvo_enter_depth--;
1706 #endif
1707 pmap_interrupts_restore(msr);
1708 return 0;
1709 }
1710
1711 static void
1712 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1713 {
1714 volatile struct pte *pt;
1715 int ptegidx;
1716
1717 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1718 if (++pmap_pvo_remove_depth > 1)
1719 panic("pmap_pvo_remove: called recursively!");
1720 #endif
1721
1722 /*
1723 * If we haven't been supplied the ptegidx, calculate it.
1724 */
1725 if (pteidx == -1) {
1726 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1727 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1728 } else {
1729 ptegidx = pteidx >> 3;
1730 if (pvo->pvo_pte.pte_hi & PTE_HID)
1731 ptegidx ^= pmap_pteg_mask;
1732 }
1733 PMAP_PVO_CHECK(pvo); /* sanity check */
1734
1735 /*
1736 * If there is an active pte entry, we need to deactivate it
1737 * (and save the ref & chg bits).
1738 */
1739 pt = pmap_pvo_to_pte(pvo, pteidx);
1740 if (pt != NULL) {
1741 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1742 PVO_WHERE(pvo, REMOVE);
1743 PVO_PTEGIDX_CLR(pvo);
1744 PMAPCOUNT(ptes_removed);
1745 } else {
1746 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1747 pvo->pvo_pmap->pm_evictions--;
1748 }
1749
1750 /*
1751 * Account for executable mappings.
1752 */
1753 if (PVO_EXECUTABLE_P(pvo))
1754 pvo_clear_exec(pvo);
1755
1756 /*
1757 * Update our statistics.
1758 */
1759 pvo->pvo_pmap->pm_stats.resident_count--;
1760 if (PVO_WIRED_P(pvo))
1761 pvo->pvo_pmap->pm_stats.wired_count--;
1762
1763 /*
1764 * Save the REF/CHG bits into their cache if the page is managed.
1765 */
1766 if (PVO_MANAGED_P(pvo)) {
1767 register_t ptelo = pvo->pvo_pte.pte_lo;
1768 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1769
1770 if (pg != NULL) {
1771 /*
1772 * If this page was changed and it is mapped exec,
1773 * invalidate it.
1774 */
1775 if ((ptelo & PTE_CHG) &&
1776 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1777 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1778 if (LIST_EMPTY(pvoh)) {
1779 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1780 "%#" _PRIxpa ": clear-exec]\n",
1781 VM_PAGE_TO_PHYS(pg)));
1782 pmap_attr_clear(pg, PTE_EXEC);
1783 PMAPCOUNT(exec_uncached_pvo_remove);
1784 } else {
1785 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1786 "%#" _PRIxpa ": syncicache]\n",
1787 VM_PAGE_TO_PHYS(pg)));
1788 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1789 PAGE_SIZE);
1790 PMAPCOUNT(exec_synced_pvo_remove);
1791 }
1792 }
1793
1794 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1795 }
1796 PMAPCOUNT(unmappings);
1797 } else {
1798 PMAPCOUNT(kernel_unmappings);
1799 }
1800
1801 /*
1802 * Remove the PVO from its lists and return it to the pool.
1803 */
1804 LIST_REMOVE(pvo, pvo_vlink);
1805 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1806 if (pvol) {
1807 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1808 }
1809 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1810 pmap_pvo_remove_depth--;
1811 #endif
1812 }
1813
1814 void
1815 pmap_pvo_free(struct pvo_entry *pvo)
1816 {
1817
1818 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1819 }
1820
1821 void
1822 pmap_pvo_free_list(struct pvo_head *pvol)
1823 {
1824 struct pvo_entry *pvo, *npvo;
1825
1826 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1827 npvo = LIST_NEXT(pvo, pvo_vlink);
1828 LIST_REMOVE(pvo, pvo_vlink);
1829 pmap_pvo_free(pvo);
1830 }
1831 }
1832
1833 /*
1834 * Mark a mapping as executable.
1835 * If this is the first executable mapping in the segment,
1836 * clear the noexec flag.
1837 */
1838 static void
1839 pvo_set_exec(struct pvo_entry *pvo)
1840 {
1841 struct pmap *pm = pvo->pvo_pmap;
1842
1843 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1844 return;
1845 }
1846 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1847 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1848 {
1849 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1850 if (pm->pm_exec[sr]++ == 0) {
1851 pm->pm_sr[sr] &= ~SR_NOEXEC;
1852 }
1853 }
1854 #endif
1855 }
1856
1857 /*
1858 * Mark a mapping as non-executable.
1859 * If this was the last executable mapping in the segment,
1860 * set the noexec flag.
1861 */
1862 static void
1863 pvo_clear_exec(struct pvo_entry *pvo)
1864 {
1865 struct pmap *pm = pvo->pvo_pmap;
1866
1867 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1868 return;
1869 }
1870 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1871 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1872 {
1873 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1874 if (--pm->pm_exec[sr] == 0) {
1875 pm->pm_sr[sr] |= SR_NOEXEC;
1876 }
1877 }
1878 #endif
1879 }
1880
1881 /*
1882 * Insert physical page at pa into the given pmap at virtual address va.
1883 */
1884 int
1885 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1886 {
1887 struct mem_region *mp;
1888 struct pvo_head *pvo_head;
1889 struct vm_page *pg;
1890 struct pool *pl;
1891 register_t pte_lo;
1892 int error;
1893 u_int pvo_flags;
1894 u_int was_exec = 0;
1895
1896 PMAP_LOCK();
1897
1898 if (__predict_false(!pmap_initialized)) {
1899 pvo_head = &pmap_pvo_kunmanaged;
1900 pl = &pmap_upvo_pool;
1901 pvo_flags = 0;
1902 pg = NULL;
1903 was_exec = PTE_EXEC;
1904 } else {
1905 pvo_head = pa_to_pvoh(pa, &pg);
1906 pl = &pmap_mpvo_pool;
1907 pvo_flags = PVO_MANAGED;
1908 }
1909
1910 DPRINTFN(ENTER,
1911 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1912 pm, va, pa, prot, flags));
1913
1914 /*
1915 * If this is a managed page, and it's the first reference to the
1916 * page clear the execness of the page. Otherwise fetch the execness.
1917 */
1918 if (pg != NULL)
1919 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1920
1921 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1922
1923 /*
1924 * Assume the page is cache inhibited and access is guarded unless
1925 * it's in our available memory array. If it is in the memory array,
1926 * asssume it's in memory coherent memory.
1927 */
1928 if (flags & PMAP_MD_PREFETCHABLE) {
1929 pte_lo = 0;
1930 } else
1931 pte_lo = PTE_G;
1932
1933 if ((flags & PMAP_MD_NOCACHE) == 0) {
1934 for (mp = mem; mp->size; mp++) {
1935 if (pa >= mp->start && pa < mp->start + mp->size) {
1936 pte_lo = PTE_M;
1937 break;
1938 }
1939 }
1940 } else {
1941 pte_lo |= PTE_I;
1942 }
1943
1944 if (prot & VM_PROT_WRITE)
1945 pte_lo |= PTE_BW;
1946 else
1947 pte_lo |= PTE_BR;
1948
1949 /*
1950 * If this was in response to a fault, "pre-fault" the PTE's
1951 * changed/referenced bit appropriately.
1952 */
1953 if (flags & VM_PROT_WRITE)
1954 pte_lo |= PTE_CHG;
1955 if (flags & VM_PROT_ALL)
1956 pte_lo |= PTE_REF;
1957
1958 /*
1959 * We need to know if this page can be executable
1960 */
1961 flags |= (prot & VM_PROT_EXECUTE);
1962
1963 /*
1964 * Record mapping for later back-translation and pte spilling.
1965 * This will overwrite any existing mapping.
1966 */
1967 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1968
1969 /*
1970 * Flush the real page from the instruction cache if this page is
1971 * mapped executable and cacheable and has not been flushed since
1972 * the last time it was modified.
1973 */
1974 if (error == 0 &&
1975 (flags & VM_PROT_EXECUTE) &&
1976 (pte_lo & PTE_I) == 0 &&
1977 was_exec == 0) {
1978 DPRINTFN(ENTER, (" syncicache"));
1979 PMAPCOUNT(exec_synced);
1980 pmap_syncicache(pa, PAGE_SIZE);
1981 if (pg != NULL) {
1982 pmap_attr_save(pg, PTE_EXEC);
1983 PMAPCOUNT(exec_cached);
1984 #if defined(DEBUG) || defined(PMAPDEBUG)
1985 if (pmapdebug & PMAPDEBUG_ENTER)
1986 printf(" marked-as-exec");
1987 else if (pmapdebug & PMAPDEBUG_EXEC)
1988 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1989 VM_PAGE_TO_PHYS(pg));
1990
1991 #endif
1992 }
1993 }
1994
1995 DPRINTFN(ENTER, (": error=%d\n", error));
1996
1997 PMAP_UNLOCK();
1998
1999 return error;
2000 }
2001
2002 void
2003 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2004 {
2005 struct mem_region *mp;
2006 register_t pte_lo;
2007 int error;
2008
2009 #if defined (PMAP_OEA64_BRIDGE)
2010 if (va < VM_MIN_KERNEL_ADDRESS)
2011 panic("pmap_kenter_pa: attempt to enter "
2012 "non-kernel address %#" _PRIxva "!", va);
2013 #endif
2014
2015 DPRINTFN(KENTER,
2016 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2017
2018 PMAP_LOCK();
2019
2020 /*
2021 * Assume the page is cache inhibited and access is guarded unless
2022 * it's in our available memory array. If it is in the memory array,
2023 * asssume it's in memory coherent memory.
2024 */
2025 pte_lo = PTE_IG;
2026 if ((flags & PMAP_MD_NOCACHE) == 0) {
2027 for (mp = mem; mp->size; mp++) {
2028 if (pa >= mp->start && pa < mp->start + mp->size) {
2029 pte_lo = PTE_M;
2030 break;
2031 }
2032 }
2033 }
2034
2035 if (prot & VM_PROT_WRITE)
2036 pte_lo |= PTE_BW;
2037 else
2038 pte_lo |= PTE_BR;
2039
2040 /*
2041 * We don't care about REF/CHG on PVOs on the unmanaged list.
2042 */
2043 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2044 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2045
2046 if (error != 0)
2047 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2048 va, pa, error);
2049
2050 PMAP_UNLOCK();
2051 }
2052
2053 void
2054 pmap_kremove(vaddr_t va, vsize_t len)
2055 {
2056 if (va < VM_MIN_KERNEL_ADDRESS)
2057 panic("pmap_kremove: attempt to remove "
2058 "non-kernel address %#" _PRIxva "!", va);
2059
2060 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2061 pmap_remove(pmap_kernel(), va, va + len);
2062 }
2063
2064 /*
2065 * Remove the given range of mapping entries.
2066 */
2067 void
2068 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2069 {
2070 struct pvo_head pvol;
2071 struct pvo_entry *pvo;
2072 register_t msr;
2073 int pteidx;
2074
2075 PMAP_LOCK();
2076 LIST_INIT(&pvol);
2077 msr = pmap_interrupts_off();
2078 for (; va < endva; va += PAGE_SIZE) {
2079 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2080 if (pvo != NULL) {
2081 pmap_pvo_remove(pvo, pteidx, &pvol);
2082 }
2083 }
2084 pmap_interrupts_restore(msr);
2085 pmap_pvo_free_list(&pvol);
2086 PMAP_UNLOCK();
2087 }
2088
2089 /*
2090 * Get the physical page address for the given pmap/virtual address.
2091 */
2092 bool
2093 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2094 {
2095 struct pvo_entry *pvo;
2096 register_t msr;
2097
2098 PMAP_LOCK();
2099
2100 /*
2101 * If this is a kernel pmap lookup, also check the battable
2102 * and if we get a hit, translate the VA to a PA using the
2103 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2104 * that will wrap back to 0.
2105 */
2106 if (pm == pmap_kernel() &&
2107 (va < VM_MIN_KERNEL_ADDRESS ||
2108 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2109 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2110 #if defined (PMAP_OEA)
2111 #ifdef PPC_OEA601
2112 if ((MFPVR() >> 16) == MPC601) {
2113 register_t batu = battable[va >> 23].batu;
2114 register_t batl = battable[va >> 23].batl;
2115 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2116 if (BAT601_VALID_P(batl) &&
2117 BAT601_VA_MATCH_P(batu, batl, va)) {
2118 register_t mask =
2119 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2120 if (pap)
2121 *pap = (batl & mask) | (va & ~mask);
2122 PMAP_UNLOCK();
2123 return true;
2124 } else if (SR601_VALID_P(sr) &&
2125 SR601_PA_MATCH_P(sr, va)) {
2126 if (pap)
2127 *pap = va;
2128 PMAP_UNLOCK();
2129 return true;
2130 }
2131 } else
2132 #endif /* PPC_OEA601 */
2133 {
2134 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2135 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2136 register_t batl =
2137 battable[va >> ADDR_SR_SHFT].batl;
2138 register_t mask =
2139 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2140 if (pap)
2141 *pap = (batl & mask) | (va & ~mask);
2142 PMAP_UNLOCK();
2143 return true;
2144 }
2145 }
2146 return false;
2147 #elif defined (PMAP_OEA64_BRIDGE)
2148 if (va >= SEGMENT_LENGTH)
2149 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2150 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2151 else {
2152 if (pap)
2153 *pap = va;
2154 PMAP_UNLOCK();
2155 return true;
2156 }
2157 #elif defined (PMAP_OEA64)
2158 #error PPC_OEA64 not supported
2159 #endif /* PPC_OEA */
2160 }
2161
2162 msr = pmap_interrupts_off();
2163 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2164 if (pvo != NULL) {
2165 PMAP_PVO_CHECK(pvo); /* sanity check */
2166 if (pap)
2167 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2168 | (va & ADDR_POFF);
2169 }
2170 pmap_interrupts_restore(msr);
2171 PMAP_UNLOCK();
2172 return pvo != NULL;
2173 }
2174
2175 /*
2176 * Lower the protection on the specified range of this pmap.
2177 */
2178 void
2179 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2180 {
2181 struct pvo_entry *pvo;
2182 volatile struct pte *pt;
2183 register_t msr;
2184 int pteidx;
2185
2186 /*
2187 * Since this routine only downgrades protection, we should
2188 * always be called with at least one bit not set.
2189 */
2190 KASSERT(prot != VM_PROT_ALL);
2191
2192 /*
2193 * If there is no protection, this is equivalent to
2194 * remove the pmap from the pmap.
2195 */
2196 if ((prot & VM_PROT_READ) == 0) {
2197 pmap_remove(pm, va, endva);
2198 return;
2199 }
2200
2201 PMAP_LOCK();
2202
2203 msr = pmap_interrupts_off();
2204 for (; va < endva; va += PAGE_SIZE) {
2205 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2206 if (pvo == NULL)
2207 continue;
2208 PMAP_PVO_CHECK(pvo); /* sanity check */
2209
2210 /*
2211 * Revoke executable if asked to do so.
2212 */
2213 if ((prot & VM_PROT_EXECUTE) == 0)
2214 pvo_clear_exec(pvo);
2215
2216 #if 0
2217 /*
2218 * If the page is already read-only, no change
2219 * needs to be made.
2220 */
2221 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2222 continue;
2223 #endif
2224 /*
2225 * Grab the PTE pointer before we diddle with
2226 * the cached PTE copy.
2227 */
2228 pt = pmap_pvo_to_pte(pvo, pteidx);
2229 /*
2230 * Change the protection of the page.
2231 */
2232 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2233 pvo->pvo_pte.pte_lo |= PTE_BR;
2234
2235 /*
2236 * If the PVO is in the page table, update
2237 * that pte at well.
2238 */
2239 if (pt != NULL) {
2240 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2241 PVO_WHERE(pvo, PMAP_PROTECT);
2242 PMAPCOUNT(ptes_changed);
2243 }
2244
2245 PMAP_PVO_CHECK(pvo); /* sanity check */
2246 }
2247 pmap_interrupts_restore(msr);
2248 PMAP_UNLOCK();
2249 }
2250
2251 void
2252 pmap_unwire(pmap_t pm, vaddr_t va)
2253 {
2254 struct pvo_entry *pvo;
2255 register_t msr;
2256
2257 PMAP_LOCK();
2258 msr = pmap_interrupts_off();
2259 pvo = pmap_pvo_find_va(pm, va, NULL);
2260 if (pvo != NULL) {
2261 if (PVO_WIRED_P(pvo)) {
2262 pvo->pvo_vaddr &= ~PVO_WIRED;
2263 pm->pm_stats.wired_count--;
2264 }
2265 PMAP_PVO_CHECK(pvo); /* sanity check */
2266 }
2267 pmap_interrupts_restore(msr);
2268 PMAP_UNLOCK();
2269 }
2270
2271 /*
2272 * Lower the protection on the specified physical page.
2273 */
2274 void
2275 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2276 {
2277 struct pvo_head *pvo_head, pvol;
2278 struct pvo_entry *pvo, *next_pvo;
2279 volatile struct pte *pt;
2280 register_t msr;
2281
2282 PMAP_LOCK();
2283
2284 KASSERT(prot != VM_PROT_ALL);
2285 LIST_INIT(&pvol);
2286 msr = pmap_interrupts_off();
2287
2288 /*
2289 * When UVM reuses a page, it does a pmap_page_protect with
2290 * VM_PROT_NONE. At that point, we can clear the exec flag
2291 * since we know the page will have different contents.
2292 */
2293 if ((prot & VM_PROT_READ) == 0) {
2294 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2295 VM_PAGE_TO_PHYS(pg)));
2296 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2297 PMAPCOUNT(exec_uncached_page_protect);
2298 pmap_attr_clear(pg, PTE_EXEC);
2299 }
2300 }
2301
2302 pvo_head = vm_page_to_pvoh(pg);
2303 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2304 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2305 PMAP_PVO_CHECK(pvo); /* sanity check */
2306
2307 /*
2308 * Downgrading to no mapping at all, we just remove the entry.
2309 */
2310 if ((prot & VM_PROT_READ) == 0) {
2311 pmap_pvo_remove(pvo, -1, &pvol);
2312 continue;
2313 }
2314
2315 /*
2316 * If EXEC permission is being revoked, just clear the
2317 * flag in the PVO.
2318 */
2319 if ((prot & VM_PROT_EXECUTE) == 0)
2320 pvo_clear_exec(pvo);
2321
2322 /*
2323 * If this entry is already RO, don't diddle with the
2324 * page table.
2325 */
2326 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2327 PMAP_PVO_CHECK(pvo);
2328 continue;
2329 }
2330
2331 /*
2332 * Grab the PTE before the we diddle the bits so
2333 * pvo_to_pte can verify the pte contents are as
2334 * expected.
2335 */
2336 pt = pmap_pvo_to_pte(pvo, -1);
2337 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2338 pvo->pvo_pte.pte_lo |= PTE_BR;
2339 if (pt != NULL) {
2340 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2341 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2342 PMAPCOUNT(ptes_changed);
2343 }
2344 PMAP_PVO_CHECK(pvo); /* sanity check */
2345 }
2346 pmap_interrupts_restore(msr);
2347 pmap_pvo_free_list(&pvol);
2348
2349 PMAP_UNLOCK();
2350 }
2351
2352 /*
2353 * Activate the address space for the specified process. If the process
2354 * is the current process, load the new MMU context.
2355 */
2356 void
2357 pmap_activate(struct lwp *l)
2358 {
2359 struct pcb *pcb = lwp_getpcb(l);
2360 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2361
2362 DPRINTFN(ACTIVATE,
2363 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2364
2365 /*
2366 * XXX Normally performed in cpu_lwp_fork().
2367 */
2368 pcb->pcb_pm = pmap;
2369
2370 /*
2371 * In theory, the SR registers need only be valid on return
2372 * to user space wait to do them there.
2373 */
2374 if (l == curlwp) {
2375 /* Store pointer to new current pmap. */
2376 curpm = pmap;
2377 }
2378 }
2379
2380 /*
2381 * Deactivate the specified process's address space.
2382 */
2383 void
2384 pmap_deactivate(struct lwp *l)
2385 {
2386 }
2387
2388 bool
2389 pmap_query_bit(struct vm_page *pg, int ptebit)
2390 {
2391 struct pvo_entry *pvo;
2392 volatile struct pte *pt;
2393 register_t msr;
2394
2395 PMAP_LOCK();
2396
2397 if (pmap_attr_fetch(pg) & ptebit) {
2398 PMAP_UNLOCK();
2399 return true;
2400 }
2401
2402 msr = pmap_interrupts_off();
2403 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2404 PMAP_PVO_CHECK(pvo); /* sanity check */
2405 /*
2406 * See if we saved the bit off. If so cache, it and return
2407 * success.
2408 */
2409 if (pvo->pvo_pte.pte_lo & ptebit) {
2410 pmap_attr_save(pg, ptebit);
2411 PMAP_PVO_CHECK(pvo); /* sanity check */
2412 pmap_interrupts_restore(msr);
2413 PMAP_UNLOCK();
2414 return true;
2415 }
2416 }
2417 /*
2418 * No luck, now go thru the hard part of looking at the ptes
2419 * themselves. Sync so any pending REF/CHG bits are flushed
2420 * to the PTEs.
2421 */
2422 SYNC();
2423 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 /*
2426 * See if this pvo have a valid PTE. If so, fetch the
2427 * REF/CHG bits from the valid PTE. If the appropriate
2428 * ptebit is set, cache, it and return success.
2429 */
2430 pt = pmap_pvo_to_pte(pvo, -1);
2431 if (pt != NULL) {
2432 pmap_pte_synch(pt, &pvo->pvo_pte);
2433 if (pvo->pvo_pte.pte_lo & ptebit) {
2434 pmap_attr_save(pg, ptebit);
2435 PMAP_PVO_CHECK(pvo); /* sanity check */
2436 pmap_interrupts_restore(msr);
2437 PMAP_UNLOCK();
2438 return true;
2439 }
2440 }
2441 }
2442 pmap_interrupts_restore(msr);
2443 PMAP_UNLOCK();
2444 return false;
2445 }
2446
2447 bool
2448 pmap_clear_bit(struct vm_page *pg, int ptebit)
2449 {
2450 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2451 struct pvo_entry *pvo;
2452 volatile struct pte *pt;
2453 register_t msr;
2454 int rv = 0;
2455
2456 PMAP_LOCK();
2457 msr = pmap_interrupts_off();
2458
2459 /*
2460 * Fetch the cache value
2461 */
2462 rv |= pmap_attr_fetch(pg);
2463
2464 /*
2465 * Clear the cached value.
2466 */
2467 pmap_attr_clear(pg, ptebit);
2468
2469 /*
2470 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2471 * can reset the right ones). Note that since the pvo entries and
2472 * list heads are accessed via BAT0 and are never placed in the
2473 * page table, we don't have to worry about further accesses setting
2474 * the REF/CHG bits.
2475 */
2476 SYNC();
2477
2478 /*
2479 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2480 * valid PTE. If so, clear the ptebit from the valid PTE.
2481 */
2482 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2483 PMAP_PVO_CHECK(pvo); /* sanity check */
2484 pt = pmap_pvo_to_pte(pvo, -1);
2485 if (pt != NULL) {
2486 /*
2487 * Only sync the PTE if the bit we are looking
2488 * for is not already set.
2489 */
2490 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2491 pmap_pte_synch(pt, &pvo->pvo_pte);
2492 /*
2493 * If the bit we are looking for was already set,
2494 * clear that bit in the pte.
2495 */
2496 if (pvo->pvo_pte.pte_lo & ptebit)
2497 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2498 }
2499 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2500 pvo->pvo_pte.pte_lo &= ~ptebit;
2501 PMAP_PVO_CHECK(pvo); /* sanity check */
2502 }
2503 pmap_interrupts_restore(msr);
2504
2505 /*
2506 * If we are clearing the modify bit and this page was marked EXEC
2507 * and the user of the page thinks the page was modified, then we
2508 * need to clean it from the icache if it's mapped or clear the EXEC
2509 * bit if it's not mapped. The page itself might not have the CHG
2510 * bit set if the modification was done via DMA to the page.
2511 */
2512 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2513 if (LIST_EMPTY(pvoh)) {
2514 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2515 VM_PAGE_TO_PHYS(pg)));
2516 pmap_attr_clear(pg, PTE_EXEC);
2517 PMAPCOUNT(exec_uncached_clear_modify);
2518 } else {
2519 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2520 VM_PAGE_TO_PHYS(pg)));
2521 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2522 PMAPCOUNT(exec_synced_clear_modify);
2523 }
2524 }
2525 PMAP_UNLOCK();
2526 return (rv & ptebit) != 0;
2527 }
2528
2529 void
2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2531 {
2532 struct pvo_entry *pvo;
2533 size_t offset = va & ADDR_POFF;
2534 int s;
2535
2536 PMAP_LOCK();
2537 s = splvm();
2538 while (len > 0) {
2539 size_t seglen = PAGE_SIZE - offset;
2540 if (seglen > len)
2541 seglen = len;
2542 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2543 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2544 pmap_syncicache(
2545 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2546 PMAP_PVO_CHECK(pvo);
2547 }
2548 va += seglen;
2549 len -= seglen;
2550 offset = 0;
2551 }
2552 splx(s);
2553 PMAP_UNLOCK();
2554 }
2555
2556 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2557 void
2558 pmap_pte_print(volatile struct pte *pt)
2559 {
2560 printf("PTE %p: ", pt);
2561
2562 #if defined(PMAP_OEA)
2563 /* High word: */
2564 printf("%#" _PRIxpte ": [", pt->pte_hi);
2565 #else
2566 printf("%#" _PRIxpte ": [", pt->pte_hi);
2567 #endif /* PMAP_OEA */
2568
2569 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2570 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2571
2572 printf("%#" _PRIxpte " %#" _PRIxpte "",
2573 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2574 pt->pte_hi & PTE_API);
2575 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2576 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2577 #else
2578 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2579 #endif /* PMAP_OEA */
2580
2581 /* Low word: */
2582 #if defined (PMAP_OEA)
2583 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2584 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2585 #else
2586 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2587 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2588 #endif
2589 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2590 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2591 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2592 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2593 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2594 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2595 switch (pt->pte_lo & PTE_PP) {
2596 case PTE_BR: printf("br]\n"); break;
2597 case PTE_BW: printf("bw]\n"); break;
2598 case PTE_SO: printf("so]\n"); break;
2599 case PTE_SW: printf("sw]\n"); break;
2600 }
2601 }
2602 #endif
2603
2604 #if defined(DDB)
2605 void
2606 pmap_pteg_check(void)
2607 {
2608 volatile struct pte *pt;
2609 int i;
2610 int ptegidx;
2611 u_int p_valid = 0;
2612 u_int s_valid = 0;
2613 u_int invalid = 0;
2614
2615 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2616 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2617 if (pt->pte_hi & PTE_VALID) {
2618 if (pt->pte_hi & PTE_HID)
2619 s_valid++;
2620 else
2621 {
2622 p_valid++;
2623 }
2624 } else
2625 invalid++;
2626 }
2627 }
2628 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2629 p_valid, p_valid, s_valid, s_valid,
2630 invalid, invalid);
2631 }
2632
2633 void
2634 pmap_print_mmuregs(void)
2635 {
2636 int i;
2637 u_int cpuvers;
2638 #ifndef PMAP_OEA64
2639 vaddr_t addr;
2640 register_t soft_sr[16];
2641 #endif
2642 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2643 struct bat soft_ibat[4];
2644 struct bat soft_dbat[4];
2645 #endif
2646 paddr_t sdr1;
2647
2648 cpuvers = MFPVR() >> 16;
2649 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2650 #ifndef PMAP_OEA64
2651 addr = 0;
2652 for (i = 0; i < 16; i++) {
2653 soft_sr[i] = MFSRIN(addr);
2654 addr += (1 << ADDR_SR_SHFT);
2655 }
2656 #endif
2657
2658 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2659 /* read iBAT (601: uBAT) registers */
2660 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2661 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2662 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2663 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2664 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2665 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2666 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2667 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2668
2669
2670 if (cpuvers != MPC601) {
2671 /* read dBAT registers */
2672 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2673 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2674 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2675 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2676 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2677 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2678 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2679 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2680 }
2681 #endif
2682
2683 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2684 #ifndef PMAP_OEA64
2685 printf("SR[]:\t");
2686 for (i = 0; i < 4; i++)
2687 printf("0x%08lx, ", soft_sr[i]);
2688 printf("\n\t");
2689 for ( ; i < 8; i++)
2690 printf("0x%08lx, ", soft_sr[i]);
2691 printf("\n\t");
2692 for ( ; i < 12; i++)
2693 printf("0x%08lx, ", soft_sr[i]);
2694 printf("\n\t");
2695 for ( ; i < 16; i++)
2696 printf("0x%08lx, ", soft_sr[i]);
2697 printf("\n");
2698 #endif
2699
2700 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2701 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2702 for (i = 0; i < 4; i++) {
2703 printf("0x%08lx 0x%08lx, ",
2704 soft_ibat[i].batu, soft_ibat[i].batl);
2705 if (i == 1)
2706 printf("\n\t");
2707 }
2708 if (cpuvers != MPC601) {
2709 printf("\ndBAT[]:\t");
2710 for (i = 0; i < 4; i++) {
2711 printf("0x%08lx 0x%08lx, ",
2712 soft_dbat[i].batu, soft_dbat[i].batl);
2713 if (i == 1)
2714 printf("\n\t");
2715 }
2716 }
2717 printf("\n");
2718 #endif /* PMAP_OEA... */
2719 }
2720
2721 void
2722 pmap_print_pte(pmap_t pm, vaddr_t va)
2723 {
2724 struct pvo_entry *pvo;
2725 volatile struct pte *pt;
2726 int pteidx;
2727
2728 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2729 if (pvo != NULL) {
2730 pt = pmap_pvo_to_pte(pvo, pteidx);
2731 if (pt != NULL) {
2732 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2733 va, pt,
2734 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2735 pt->pte_hi, pt->pte_lo);
2736 } else {
2737 printf("No valid PTE found\n");
2738 }
2739 } else {
2740 printf("Address not in pmap\n");
2741 }
2742 }
2743
2744 void
2745 pmap_pteg_dist(void)
2746 {
2747 struct pvo_entry *pvo;
2748 int ptegidx;
2749 int depth;
2750 int max_depth = 0;
2751 unsigned int depths[64];
2752
2753 memset(depths, 0, sizeof(depths));
2754 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2755 depth = 0;
2756 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2757 depth++;
2758 }
2759 if (depth > max_depth)
2760 max_depth = depth;
2761 if (depth > 63)
2762 depth = 63;
2763 depths[depth]++;
2764 }
2765
2766 for (depth = 0; depth < 64; depth++) {
2767 printf(" [%2d]: %8u", depth, depths[depth]);
2768 if ((depth & 3) == 3)
2769 printf("\n");
2770 if (depth == max_depth)
2771 break;
2772 }
2773 if ((depth & 3) != 3)
2774 printf("\n");
2775 printf("Max depth found was %d\n", max_depth);
2776 }
2777 #endif /* DEBUG */
2778
2779 #if defined(PMAPCHECK) || defined(DEBUG)
2780 void
2781 pmap_pvo_verify(void)
2782 {
2783 int ptegidx;
2784 int s;
2785
2786 s = splvm();
2787 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2788 struct pvo_entry *pvo;
2789 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2790 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2791 panic("pmap_pvo_verify: invalid pvo %p "
2792 "on list %#x", pvo, ptegidx);
2793 pmap_pvo_check(pvo);
2794 }
2795 }
2796 splx(s);
2797 }
2798 #endif /* PMAPCHECK */
2799
2800
2801 void *
2802 pmap_pool_ualloc(struct pool *pp, int flags)
2803 {
2804 struct pvo_page *pvop;
2805
2806 if (uvm.page_init_done != true) {
2807 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2808 }
2809
2810 PMAP_LOCK();
2811 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2812 if (pvop != NULL) {
2813 pmap_upvop_free--;
2814 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2815 PMAP_UNLOCK();
2816 return pvop;
2817 }
2818 PMAP_UNLOCK();
2819 return pmap_pool_malloc(pp, flags);
2820 }
2821
2822 void *
2823 pmap_pool_malloc(struct pool *pp, int flags)
2824 {
2825 struct pvo_page *pvop;
2826 struct vm_page *pg;
2827
2828 PMAP_LOCK();
2829 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2830 if (pvop != NULL) {
2831 pmap_mpvop_free--;
2832 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2833 PMAP_UNLOCK();
2834 return pvop;
2835 }
2836 PMAP_UNLOCK();
2837 again:
2838 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2839 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2840 if (__predict_false(pg == NULL)) {
2841 if (flags & PR_WAITOK) {
2842 uvm_wait("plpg");
2843 goto again;
2844 } else {
2845 return (0);
2846 }
2847 }
2848 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2849 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2850 }
2851
2852 void
2853 pmap_pool_ufree(struct pool *pp, void *va)
2854 {
2855 struct pvo_page *pvop;
2856 #if 0
2857 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2858 pmap_pool_mfree(va, size, tag);
2859 return;
2860 }
2861 #endif
2862 PMAP_LOCK();
2863 pvop = va;
2864 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2865 pmap_upvop_free++;
2866 if (pmap_upvop_free > pmap_upvop_maxfree)
2867 pmap_upvop_maxfree = pmap_upvop_free;
2868 PMAP_UNLOCK();
2869 }
2870
2871 void
2872 pmap_pool_mfree(struct pool *pp, void *va)
2873 {
2874 struct pvo_page *pvop;
2875
2876 PMAP_LOCK();
2877 pvop = va;
2878 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2879 pmap_mpvop_free++;
2880 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2881 pmap_mpvop_maxfree = pmap_mpvop_free;
2882 PMAP_UNLOCK();
2883 #if 0
2884 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2885 #endif
2886 }
2887
2888 /*
2889 * This routine in bootstraping to steal to-be-managed memory (which will
2890 * then be unmanaged). We use it to grab from the first 256MB for our
2891 * pmap needs and above 256MB for other stuff.
2892 */
2893 vaddr_t
2894 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2895 {
2896 vsize_t size;
2897 vaddr_t va;
2898 paddr_t pa = 0;
2899 int npgs, bank;
2900 struct vm_physseg *ps;
2901
2902 if (uvm.page_init_done == true)
2903 panic("pmap_steal_memory: called _after_ bootstrap");
2904
2905 *vstartp = VM_MIN_KERNEL_ADDRESS;
2906 *vendp = VM_MAX_KERNEL_ADDRESS;
2907
2908 size = round_page(vsize);
2909 npgs = atop(size);
2910
2911 /*
2912 * PA 0 will never be among those given to UVM so we can use it
2913 * to indicate we couldn't steal any memory.
2914 */
2915 for (bank = 0; bank < vm_nphysseg; bank++) {
2916 ps = VM_PHYSMEM_PTR(bank);
2917 if (ps->free_list == VM_FREELIST_FIRST256 &&
2918 ps->avail_end - ps->avail_start >= npgs) {
2919 pa = ptoa(ps->avail_start);
2920 break;
2921 }
2922 }
2923
2924 if (pa == 0)
2925 panic("pmap_steal_memory: no approriate memory to steal!");
2926
2927 ps->avail_start += npgs;
2928 ps->start += npgs;
2929
2930 /*
2931 * If we've used up all the pages in the segment, remove it and
2932 * compact the list.
2933 */
2934 if (ps->avail_start == ps->end) {
2935 /*
2936 * If this was the last one, then a very bad thing has occurred
2937 */
2938 if (--vm_nphysseg == 0)
2939 panic("pmap_steal_memory: out of memory!");
2940
2941 printf("pmap_steal_memory: consumed bank %d\n", bank);
2942 for (; bank < vm_nphysseg; bank++, ps++) {
2943 ps[0] = ps[1];
2944 }
2945 }
2946
2947 va = (vaddr_t) pa;
2948 memset((void *) va, 0, size);
2949 pmap_pages_stolen += npgs;
2950 #ifdef DEBUG
2951 if (pmapdebug && npgs > 1) {
2952 u_int cnt = 0;
2953 for (bank = 0; bank < vm_nphysseg; bank++) {
2954 ps = VM_PHYSMEM_PTR(bank);
2955 cnt += ps->avail_end - ps->avail_start;
2956 }
2957 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2958 npgs, pmap_pages_stolen, cnt);
2959 }
2960 #endif
2961
2962 return va;
2963 }
2964
2965 /*
2966 * Find a chuck of memory with right size and alignment.
2967 */
2968 paddr_t
2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2970 {
2971 struct mem_region *mp;
2972 paddr_t s, e;
2973 int i, j;
2974
2975 size = round_page(size);
2976
2977 DPRINTFN(BOOT,
2978 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2979 size, alignment, at_end));
2980
2981 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2982 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2983 alignment);
2984
2985 if (at_end) {
2986 if (alignment != PAGE_SIZE)
2987 panic("pmap_boot_find_memory: invalid ending "
2988 "alignment %#" _PRIxpa, alignment);
2989
2990 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2991 s = mp->start + mp->size - size;
2992 if (s >= mp->start && mp->size >= size) {
2993 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
2994 DPRINTFN(BOOT,
2995 ("pmap_boot_find_memory: b-avail[%d] start "
2996 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
2997 mp->start, mp->size));
2998 mp->size -= size;
2999 DPRINTFN(BOOT,
3000 ("pmap_boot_find_memory: a-avail[%d] start "
3001 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3002 mp->start, mp->size));
3003 return s;
3004 }
3005 }
3006 panic("pmap_boot_find_memory: no available memory");
3007 }
3008
3009 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3010 s = (mp->start + alignment - 1) & ~(alignment-1);
3011 e = s + size;
3012
3013 /*
3014 * Is the calculated region entirely within the region?
3015 */
3016 if (s < mp->start || e > mp->start + mp->size)
3017 continue;
3018
3019 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3020 if (s == mp->start) {
3021 /*
3022 * If the block starts at the beginning of region,
3023 * adjust the size & start. (the region may now be
3024 * zero in length)
3025 */
3026 DPRINTFN(BOOT,
3027 ("pmap_boot_find_memory: b-avail[%d] start "
3028 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3029 mp->start += size;
3030 mp->size -= size;
3031 DPRINTFN(BOOT,
3032 ("pmap_boot_find_memory: a-avail[%d] start "
3033 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3034 } else if (e == mp->start + mp->size) {
3035 /*
3036 * If the block starts at the beginning of region,
3037 * adjust only the size.
3038 */
3039 DPRINTFN(BOOT,
3040 ("pmap_boot_find_memory: b-avail[%d] start "
3041 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3042 mp->size -= size;
3043 DPRINTFN(BOOT,
3044 ("pmap_boot_find_memory: a-avail[%d] start "
3045 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3046 } else {
3047 /*
3048 * Block is in the middle of the region, so we
3049 * have to split it in two.
3050 */
3051 for (j = avail_cnt; j > i + 1; j--) {
3052 avail[j] = avail[j-1];
3053 }
3054 DPRINTFN(BOOT,
3055 ("pmap_boot_find_memory: b-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3057 mp[1].start = e;
3058 mp[1].size = mp[0].start + mp[0].size - e;
3059 mp[0].size = s - mp[0].start;
3060 avail_cnt++;
3061 for (; i < avail_cnt; i++) {
3062 DPRINTFN(BOOT,
3063 ("pmap_boot_find_memory: a-avail[%d] "
3064 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3065 avail[i].start, avail[i].size));
3066 }
3067 }
3068 KASSERT(s == (uintptr_t) s);
3069 return s;
3070 }
3071 panic("pmap_boot_find_memory: not enough memory for "
3072 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3073 }
3074
3075 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3076 #if defined (PMAP_OEA64_BRIDGE)
3077 int
3078 pmap_setup_segment0_map(int use_large_pages, ...)
3079 {
3080 vaddr_t va;
3081
3082 register_t pte_lo = 0x0;
3083 int ptegidx = 0, i = 0;
3084 struct pte pte;
3085 va_list ap;
3086
3087 /* Coherent + Supervisor RW, no user access */
3088 pte_lo = PTE_M;
3089
3090 /* XXXSL
3091 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3092 * these have to take priority.
3093 */
3094 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3095 ptegidx = va_to_pteg(pmap_kernel(), va);
3096 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3097 i = pmap_pte_insert(ptegidx, &pte);
3098 }
3099
3100 va_start(ap, use_large_pages);
3101 while (1) {
3102 paddr_t pa;
3103 size_t size;
3104
3105 va = va_arg(ap, vaddr_t);
3106
3107 if (va == 0)
3108 break;
3109
3110 pa = va_arg(ap, paddr_t);
3111 size = va_arg(ap, size_t);
3112
3113 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3114 #if 0
3115 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3116 #endif
3117 ptegidx = va_to_pteg(pmap_kernel(), va);
3118 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3119 i = pmap_pte_insert(ptegidx, &pte);
3120 }
3121 }
3122
3123 TLBSYNC();
3124 SYNC();
3125 return (0);
3126 }
3127 #endif /* PMAP_OEA64_BRIDGE */
3128
3129 /*
3130 * This is not part of the defined PMAP interface and is specific to the
3131 * PowerPC architecture. This is called during initppc, before the system
3132 * is really initialized.
3133 */
3134 void
3135 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3136 {
3137 struct mem_region *mp, tmp;
3138 paddr_t s, e;
3139 psize_t size;
3140 int i, j;
3141
3142 /*
3143 * Get memory.
3144 */
3145 mem_regions(&mem, &avail);
3146 #if defined(DEBUG)
3147 if (pmapdebug & PMAPDEBUG_BOOT) {
3148 printf("pmap_bootstrap: memory configuration:\n");
3149 for (mp = mem; mp->size; mp++) {
3150 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3151 mp->start, mp->size);
3152 }
3153 for (mp = avail; mp->size; mp++) {
3154 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3155 mp->start, mp->size);
3156 }
3157 }
3158 #endif
3159
3160 /*
3161 * Find out how much physical memory we have and in how many chunks.
3162 */
3163 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3164 if (mp->start >= pmap_memlimit)
3165 continue;
3166 if (mp->start + mp->size > pmap_memlimit) {
3167 size = pmap_memlimit - mp->start;
3168 physmem += btoc(size);
3169 } else {
3170 physmem += btoc(mp->size);
3171 }
3172 mem_cnt++;
3173 }
3174
3175 /*
3176 * Count the number of available entries.
3177 */
3178 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3179 avail_cnt++;
3180
3181 /*
3182 * Page align all regions.
3183 */
3184 kernelstart = trunc_page(kernelstart);
3185 kernelend = round_page(kernelend);
3186 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3187 s = round_page(mp->start);
3188 mp->size -= (s - mp->start);
3189 mp->size = trunc_page(mp->size);
3190 mp->start = s;
3191 e = mp->start + mp->size;
3192
3193 DPRINTFN(BOOT,
3194 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3195 i, mp->start, mp->size));
3196
3197 /*
3198 * Don't allow the end to run beyond our artificial limit
3199 */
3200 if (e > pmap_memlimit)
3201 e = pmap_memlimit;
3202
3203 /*
3204 * Is this region empty or strange? skip it.
3205 */
3206 if (e <= s) {
3207 mp->start = 0;
3208 mp->size = 0;
3209 continue;
3210 }
3211
3212 /*
3213 * Does this overlap the beginning of kernel?
3214 * Does extend past the end of the kernel?
3215 */
3216 else if (s < kernelstart && e > kernelstart) {
3217 if (e > kernelend) {
3218 avail[avail_cnt].start = kernelend;
3219 avail[avail_cnt].size = e - kernelend;
3220 avail_cnt++;
3221 }
3222 mp->size = kernelstart - s;
3223 }
3224 /*
3225 * Check whether this region overlaps the end of the kernel.
3226 */
3227 else if (s < kernelend && e > kernelend) {
3228 mp->start = kernelend;
3229 mp->size = e - kernelend;
3230 }
3231 /*
3232 * Look whether this regions is completely inside the kernel.
3233 * Nuke it if it does.
3234 */
3235 else if (s >= kernelstart && e <= kernelend) {
3236 mp->start = 0;
3237 mp->size = 0;
3238 }
3239 /*
3240 * If the user imposed a memory limit, enforce it.
3241 */
3242 else if (s >= pmap_memlimit) {
3243 mp->start = -PAGE_SIZE; /* let's know why */
3244 mp->size = 0;
3245 }
3246 else {
3247 mp->start = s;
3248 mp->size = e - s;
3249 }
3250 DPRINTFN(BOOT,
3251 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3252 i, mp->start, mp->size));
3253 }
3254
3255 /*
3256 * Move (and uncount) all the null return to the end.
3257 */
3258 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3259 if (mp->size == 0) {
3260 tmp = avail[i];
3261 avail[i] = avail[--avail_cnt];
3262 avail[avail_cnt] = avail[i];
3263 }
3264 }
3265
3266 /*
3267 * (Bubble)sort them into ascending order.
3268 */
3269 for (i = 0; i < avail_cnt; i++) {
3270 for (j = i + 1; j < avail_cnt; j++) {
3271 if (avail[i].start > avail[j].start) {
3272 tmp = avail[i];
3273 avail[i] = avail[j];
3274 avail[j] = tmp;
3275 }
3276 }
3277 }
3278
3279 /*
3280 * Make sure they don't overlap.
3281 */
3282 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3283 if (mp[0].start + mp[0].size > mp[1].start) {
3284 mp[0].size = mp[1].start - mp[0].start;
3285 }
3286 DPRINTFN(BOOT,
3287 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3288 i, mp->start, mp->size));
3289 }
3290 DPRINTFN(BOOT,
3291 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3292 i, mp->start, mp->size));
3293
3294 #ifdef PTEGCOUNT
3295 pmap_pteg_cnt = PTEGCOUNT;
3296 #else /* PTEGCOUNT */
3297
3298 pmap_pteg_cnt = 0x1000;
3299
3300 while (pmap_pteg_cnt < physmem)
3301 pmap_pteg_cnt <<= 1;
3302
3303 pmap_pteg_cnt >>= 1;
3304 #endif /* PTEGCOUNT */
3305
3306 #ifdef DEBUG
3307 DPRINTFN(BOOT,
3308 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3309 #endif
3310
3311 /*
3312 * Find suitably aligned memory for PTEG hash table.
3313 */
3314 size = pmap_pteg_cnt * sizeof(struct pteg);
3315 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3316
3317 #ifdef DEBUG
3318 DPRINTFN(BOOT,
3319 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3320 #endif
3321
3322
3323 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3324 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3325 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3326 pmap_pteg_table, size);
3327 #endif
3328
3329 memset(__UNVOLATILE(pmap_pteg_table), 0,
3330 pmap_pteg_cnt * sizeof(struct pteg));
3331 pmap_pteg_mask = pmap_pteg_cnt - 1;
3332
3333 /*
3334 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3335 * with pages. So we just steal them before giving them to UVM.
3336 */
3337 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3338 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3339 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3340 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3341 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3342 pmap_pvo_table, size);
3343 #endif
3344
3345 for (i = 0; i < pmap_pteg_cnt; i++)
3346 TAILQ_INIT(&pmap_pvo_table[i]);
3347
3348 #ifndef MSGBUFADDR
3349 /*
3350 * Allocate msgbuf in high memory.
3351 */
3352 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3353 #endif
3354
3355 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3356 paddr_t pfstart = atop(mp->start);
3357 paddr_t pfend = atop(mp->start + mp->size);
3358 if (mp->size == 0)
3359 continue;
3360 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3361 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3362 VM_FREELIST_FIRST256);
3363 } else if (mp->start >= SEGMENT_LENGTH) {
3364 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3365 VM_FREELIST_DEFAULT);
3366 } else {
3367 pfend = atop(SEGMENT_LENGTH);
3368 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3369 VM_FREELIST_FIRST256);
3370 pfstart = atop(SEGMENT_LENGTH);
3371 pfend = atop(mp->start + mp->size);
3372 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3373 VM_FREELIST_DEFAULT);
3374 }
3375 }
3376
3377 /*
3378 * Make sure kernel vsid is allocated as well as VSID 0.
3379 */
3380 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3381 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3382 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3383 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3384 pmap_vsid_bitmap[0] |= 1;
3385
3386 /*
3387 * Initialize kernel pmap and hardware.
3388 */
3389
3390 /* PMAP_OEA64_BRIDGE does support these instructions */
3391 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3392 for (i = 0; i < 16; i++) {
3393 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3394 __asm volatile ("mtsrin %0,%1"
3395 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3396 }
3397
3398 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3399 __asm volatile ("mtsr %0,%1"
3400 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3401 #ifdef KERNEL2_SR
3402 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3403 __asm volatile ("mtsr %0,%1"
3404 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3405 #endif
3406 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3407 #if defined (PMAP_OEA)
3408 for (i = 0; i < 16; i++) {
3409 if (iosrtable[i] & SR601_T) {
3410 pmap_kernel()->pm_sr[i] = iosrtable[i];
3411 __asm volatile ("mtsrin %0,%1"
3412 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3413 }
3414 }
3415 __asm volatile ("sync; mtsdr1 %0; isync"
3416 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3417 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3418 __asm __volatile ("sync; mtsdr1 %0; isync"
3419 :: "r"((uintptr_t)pmap_pteg_table | (32 - cntlzw(pmap_pteg_mask >> 11))));
3420 #endif
3421 tlbia();
3422
3423 #ifdef ALTIVEC
3424 pmap_use_altivec = cpu_altivec;
3425 #endif
3426
3427 #ifdef DEBUG
3428 if (pmapdebug & PMAPDEBUG_BOOT) {
3429 u_int cnt;
3430 int bank;
3431 char pbuf[9];
3432 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3433 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3434 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3435 bank,
3436 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3437 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3438 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3439 }
3440 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3441 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3442 pbuf, cnt);
3443 }
3444 #endif
3445
3446 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3447 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3448 &pmap_pool_uallocator, IPL_VM);
3449
3450 pool_setlowat(&pmap_upvo_pool, 252);
3451
3452 pool_init(&pmap_pool, sizeof(struct pmap),
3453 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3454 IPL_NONE);
3455
3456 #if defined(PMAP_NEED_MAPKERNEL) || 1
3457 {
3458 struct pmap *pm = pmap_kernel();
3459 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3460 extern int etext[], kernel_text[];
3461 vaddr_t va, va_etext = (paddr_t) etext;
3462 #endif
3463 paddr_t pa, pa_end;
3464 register_t sr;
3465 struct pte pt;
3466 unsigned int ptegidx;
3467 int bank;
3468
3469 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3470 pm->pm_sr[0] = sr;
3471
3472 for (bank = 0; bank < vm_nphysseg; bank++) {
3473 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3474 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3475 for (; pa < pa_end; pa += PAGE_SIZE) {
3476 ptegidx = va_to_pteg(pm, pa);
3477 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3478 pmap_pte_insert(ptegidx, &pt);
3479 }
3480 }
3481
3482 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3483 va = (vaddr_t) kernel_text;
3484
3485 for (pa = kernelstart; va < va_etext;
3486 pa += PAGE_SIZE, va += PAGE_SIZE) {
3487 ptegidx = va_to_pteg(pm, va);
3488 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3489 pmap_pte_insert(ptegidx, &pt);
3490 }
3491
3492 for (; pa < kernelend;
3493 pa += PAGE_SIZE, va += PAGE_SIZE) {
3494 ptegidx = va_to_pteg(pm, va);
3495 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3496 pmap_pte_insert(ptegidx, &pt);
3497 }
3498
3499 for (va = 0, pa = 0; va < kernelstart;
3500 pa += PAGE_SIZE, va += PAGE_SIZE) {
3501 ptegidx = va_to_pteg(pm, va);
3502 if (va < 0x3000)
3503 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3504 else
3505 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3506 pmap_pte_insert(ptegidx, &pt);
3507 }
3508 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3509 pa += PAGE_SIZE, va += PAGE_SIZE) {
3510 ptegidx = va_to_pteg(pm, va);
3511 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3512 pmap_pte_insert(ptegidx, &pt);
3513 }
3514 #endif
3515
3516 __asm volatile ("mtsrin %0,%1"
3517 :: "r"(sr), "r"(kernelstart));
3518 }
3519 #endif
3520 }
3521