pmap.c revision 1.81 1 /* $NetBSD: pmap.c,v 1.81 2011/06/30 00:52:59 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.81 2011/06/30 00:52:59 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/pool.h>
79 #include <sys/queue.h>
80 #include <sys/device.h> /* for evcnt */
81 #include <sys/systm.h>
82 #include <sys/atomic.h>
83
84 #include <uvm/uvm.h>
85
86 #include <machine/powerpc.h>
87 #include <powerpc/bat.h>
88 #include <powerpc/pcb.h>
89 #include <powerpc/psl.h>
90 #include <powerpc/spr.h>
91 #include <powerpc/stdarg.h>
92 #include <powerpc/oea/spr.h>
93 #include <powerpc/oea/sr_601.h>
94
95 #ifdef ALTIVEC
96 int pmap_use_altivec;
97 #endif
98
99 volatile struct pteg *pmap_pteg_table;
100 unsigned int pmap_pteg_cnt;
101 unsigned int pmap_pteg_mask;
102 #ifdef PMAP_MEMLIMIT
103 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
104 #else
105 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
106 #endif
107
108 struct pmap kernel_pmap_;
109 unsigned int pmap_pages_stolen;
110 u_long pmap_pte_valid;
111 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
112 u_long pmap_pvo_enter_depth;
113 u_long pmap_pvo_remove_depth;
114 #endif
115
116 #ifndef MSGBUFADDR
117 extern paddr_t msgbuf_paddr;
118 #endif
119
120 static struct mem_region *mem, *avail;
121 static u_int mem_cnt, avail_cnt;
122
123 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
124 # define PMAP_OEA 1
125 #endif
126
127 #if defined(PMAP_OEA)
128 #define _PRIxpte "lx"
129 #else
130 #define _PRIxpte PRIx64
131 #endif
132 #define _PRIxpa "lx"
133 #define _PRIxva "lx"
134 #define _PRIsr "lx"
135
136 #ifdef PMAP_NEEDS_FIXUP
137 #if defined(PMAP_OEA)
138 #define PMAPNAME(name) pmap32_##name
139 #elif defined(PMAP_OEA64)
140 #define PMAPNAME(name) pmap64_##name
141 #elif defined(PMAP_OEA64_BRIDGE)
142 #define PMAPNAME(name) pmap64bridge_##name
143 #else
144 #error unknown variant for pmap
145 #endif
146 #endif /* PMAP_NEEDS_FIXUP */
147
148 #ifdef PMAPNAME
149 #define STATIC static
150 #define pmap_pte_spill PMAPNAME(pte_spill)
151 #define pmap_real_memory PMAPNAME(real_memory)
152 #define pmap_init PMAPNAME(init)
153 #define pmap_virtual_space PMAPNAME(virtual_space)
154 #define pmap_create PMAPNAME(create)
155 #define pmap_reference PMAPNAME(reference)
156 #define pmap_destroy PMAPNAME(destroy)
157 #define pmap_copy PMAPNAME(copy)
158 #define pmap_update PMAPNAME(update)
159 #define pmap_enter PMAPNAME(enter)
160 #define pmap_remove PMAPNAME(remove)
161 #define pmap_kenter_pa PMAPNAME(kenter_pa)
162 #define pmap_kremove PMAPNAME(kremove)
163 #define pmap_extract PMAPNAME(extract)
164 #define pmap_protect PMAPNAME(protect)
165 #define pmap_unwire PMAPNAME(unwire)
166 #define pmap_page_protect PMAPNAME(page_protect)
167 #define pmap_query_bit PMAPNAME(query_bit)
168 #define pmap_clear_bit PMAPNAME(clear_bit)
169
170 #define pmap_activate PMAPNAME(activate)
171 #define pmap_deactivate PMAPNAME(deactivate)
172
173 #define pmap_pinit PMAPNAME(pinit)
174 #define pmap_procwr PMAPNAME(procwr)
175
176 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
177 #define pmap_pte_print PMAPNAME(pte_print)
178 #define pmap_pteg_check PMAPNAME(pteg_check)
179 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
180 #define pmap_print_pte PMAPNAME(print_pte)
181 #define pmap_pteg_dist PMAPNAME(pteg_dist)
182 #endif
183 #if defined(DEBUG) || defined(PMAPCHECK)
184 #define pmap_pvo_verify PMAPNAME(pvo_verify)
185 #define pmapcheck PMAPNAME(check)
186 #endif
187 #if defined(DEBUG) || defined(PMAPDEBUG)
188 #define pmapdebug PMAPNAME(debug)
189 #endif
190 #define pmap_steal_memory PMAPNAME(steal_memory)
191 #define pmap_bootstrap PMAPNAME(bootstrap)
192 #else
193 #define STATIC /* nothing */
194 #endif /* PMAPNAME */
195
196 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
197 STATIC void pmap_real_memory(paddr_t *, psize_t *);
198 STATIC void pmap_init(void);
199 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
200 STATIC pmap_t pmap_create(void);
201 STATIC void pmap_reference(pmap_t);
202 STATIC void pmap_destroy(pmap_t);
203 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
204 STATIC void pmap_update(pmap_t);
205 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
206 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
207 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_kremove(vaddr_t, vsize_t);
209 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
210
211 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
212 STATIC void pmap_unwire(pmap_t, vaddr_t);
213 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
214 STATIC bool pmap_query_bit(struct vm_page *, int);
215 STATIC bool pmap_clear_bit(struct vm_page *, int);
216
217 STATIC void pmap_activate(struct lwp *);
218 STATIC void pmap_deactivate(struct lwp *);
219
220 STATIC void pmap_pinit(pmap_t pm);
221 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
222
223 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
224 STATIC void pmap_pte_print(volatile struct pte *);
225 STATIC void pmap_pteg_check(void);
226 STATIC void pmap_print_mmuregs(void);
227 STATIC void pmap_print_pte(pmap_t, vaddr_t);
228 STATIC void pmap_pteg_dist(void);
229 #endif
230 #if defined(DEBUG) || defined(PMAPCHECK)
231 STATIC void pmap_pvo_verify(void);
232 #endif
233 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
234 STATIC void pmap_bootstrap(paddr_t, paddr_t);
235
236 #ifdef PMAPNAME
237 const struct pmap_ops PMAPNAME(ops) = {
238 .pmapop_pte_spill = pmap_pte_spill,
239 .pmapop_real_memory = pmap_real_memory,
240 .pmapop_init = pmap_init,
241 .pmapop_virtual_space = pmap_virtual_space,
242 .pmapop_create = pmap_create,
243 .pmapop_reference = pmap_reference,
244 .pmapop_destroy = pmap_destroy,
245 .pmapop_copy = pmap_copy,
246 .pmapop_update = pmap_update,
247 .pmapop_enter = pmap_enter,
248 .pmapop_remove = pmap_remove,
249 .pmapop_kenter_pa = pmap_kenter_pa,
250 .pmapop_kremove = pmap_kremove,
251 .pmapop_extract = pmap_extract,
252 .pmapop_protect = pmap_protect,
253 .pmapop_unwire = pmap_unwire,
254 .pmapop_page_protect = pmap_page_protect,
255 .pmapop_query_bit = pmap_query_bit,
256 .pmapop_clear_bit = pmap_clear_bit,
257 .pmapop_activate = pmap_activate,
258 .pmapop_deactivate = pmap_deactivate,
259 .pmapop_pinit = pmap_pinit,
260 .pmapop_procwr = pmap_procwr,
261 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
262 .pmapop_pte_print = pmap_pte_print,
263 .pmapop_pteg_check = pmap_pteg_check,
264 .pmapop_print_mmuregs = pmap_print_mmuregs,
265 .pmapop_print_pte = pmap_print_pte,
266 .pmapop_pteg_dist = pmap_pteg_dist,
267 #else
268 .pmapop_pte_print = NULL,
269 .pmapop_pteg_check = NULL,
270 .pmapop_print_mmuregs = NULL,
271 .pmapop_print_pte = NULL,
272 .pmapop_pteg_dist = NULL,
273 #endif
274 #if defined(DEBUG) || defined(PMAPCHECK)
275 .pmapop_pvo_verify = pmap_pvo_verify,
276 #else
277 .pmapop_pvo_verify = NULL,
278 #endif
279 .pmapop_steal_memory = pmap_steal_memory,
280 .pmapop_bootstrap = pmap_bootstrap,
281 };
282 #endif /* !PMAPNAME */
283
284 /*
285 * The following structure is aligned to 32 bytes
286 */
287 struct pvo_entry {
288 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
289 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
290 struct pte pvo_pte; /* Prebuilt PTE */
291 pmap_t pvo_pmap; /* ptr to owning pmap */
292 vaddr_t pvo_vaddr; /* VA of entry */
293 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
294 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
295 #define PVO_WIRED 0x0010 /* PVO entry is wired */
296 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
297 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
298 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
299 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
300 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
301 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
302 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
303 #define PVO_SPILL_SET 2 /* PVO has been spilled */
304 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
305 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
306 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
307 #define PVO_REMOVE 6 /* PVO has been removed */
308 #define PVO_WHERE_MASK 15
309 #define PVO_WHERE_SHFT 8
310 } __attribute__ ((aligned (32)));
311 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
312 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
313 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
314 #define PVO_PTEGIDX_CLR(pvo) \
315 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
316 #define PVO_PTEGIDX_SET(pvo,i) \
317 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
318 #define PVO_WHERE(pvo,w) \
319 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
320 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
321
322 TAILQ_HEAD(pvo_tqhead, pvo_entry);
323 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
324 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
325 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
326
327 struct pool pmap_pool; /* pool for pmap structures */
328 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
329 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
330
331 /*
332 * We keep a cache of unmanaged pages to be used for pvo entries for
333 * unmanaged pages.
334 */
335 struct pvo_page {
336 SIMPLEQ_ENTRY(pvo_page) pvop_link;
337 };
338 SIMPLEQ_HEAD(pvop_head, pvo_page);
339 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
340 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
341 u_long pmap_upvop_free;
342 u_long pmap_upvop_maxfree;
343 u_long pmap_mpvop_free;
344 u_long pmap_mpvop_maxfree;
345
346 static void *pmap_pool_ualloc(struct pool *, int);
347 static void *pmap_pool_malloc(struct pool *, int);
348
349 static void pmap_pool_ufree(struct pool *, void *);
350 static void pmap_pool_mfree(struct pool *, void *);
351
352 static struct pool_allocator pmap_pool_mallocator = {
353 .pa_alloc = pmap_pool_malloc,
354 .pa_free = pmap_pool_mfree,
355 .pa_pagesz = 0,
356 };
357
358 static struct pool_allocator pmap_pool_uallocator = {
359 .pa_alloc = pmap_pool_ualloc,
360 .pa_free = pmap_pool_ufree,
361 .pa_pagesz = 0,
362 };
363
364 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
365 void pmap_pte_print(volatile struct pte *);
366 void pmap_pteg_check(void);
367 void pmap_pteg_dist(void);
368 void pmap_print_pte(pmap_t, vaddr_t);
369 void pmap_print_mmuregs(void);
370 #endif
371
372 #if defined(DEBUG) || defined(PMAPCHECK)
373 #ifdef PMAPCHECK
374 int pmapcheck = 1;
375 #else
376 int pmapcheck = 0;
377 #endif
378 void pmap_pvo_verify(void);
379 static void pmap_pvo_check(const struct pvo_entry *);
380 #define PMAP_PVO_CHECK(pvo) \
381 do { \
382 if (pmapcheck) \
383 pmap_pvo_check(pvo); \
384 } while (0)
385 #else
386 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
387 #endif
388 static int pmap_pte_insert(int, struct pte *);
389 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
390 vaddr_t, paddr_t, register_t, int);
391 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
392 static void pmap_pvo_free(struct pvo_entry *);
393 static void pmap_pvo_free_list(struct pvo_head *);
394 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
395 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
396 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
397 static void pvo_set_exec(struct pvo_entry *);
398 static void pvo_clear_exec(struct pvo_entry *);
399
400 static void tlbia(void);
401
402 static void pmap_release(pmap_t);
403 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
404
405 static uint32_t pmap_pvo_reclaim_nextidx;
406 #ifdef DEBUG
407 static int pmap_pvo_reclaim_debugctr;
408 #endif
409
410 #define VSID_NBPW (sizeof(uint32_t) * 8)
411 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
412
413 static int pmap_initialized;
414
415 #if defined(DEBUG) || defined(PMAPDEBUG)
416 #define PMAPDEBUG_BOOT 0x0001
417 #define PMAPDEBUG_PTE 0x0002
418 #define PMAPDEBUG_EXEC 0x0008
419 #define PMAPDEBUG_PVOENTER 0x0010
420 #define PMAPDEBUG_PVOREMOVE 0x0020
421 #define PMAPDEBUG_ACTIVATE 0x0100
422 #define PMAPDEBUG_CREATE 0x0200
423 #define PMAPDEBUG_ENTER 0x1000
424 #define PMAPDEBUG_KENTER 0x2000
425 #define PMAPDEBUG_KREMOVE 0x4000
426 #define PMAPDEBUG_REMOVE 0x8000
427
428 unsigned int pmapdebug = 0;
429
430 # define DPRINTF(x) printf x
431 # define DPRINTFN(n, x) if (pmapdebug & PMAPDEBUG_ ## n) printf x
432 #else
433 # define DPRINTF(x)
434 # define DPRINTFN(n, x)
435 #endif
436
437
438 #ifdef PMAPCOUNTERS
439 /*
440 * From pmap_subr.c
441 */
442 extern struct evcnt pmap_evcnt_mappings;
443 extern struct evcnt pmap_evcnt_unmappings;
444
445 extern struct evcnt pmap_evcnt_kernel_mappings;
446 extern struct evcnt pmap_evcnt_kernel_unmappings;
447
448 extern struct evcnt pmap_evcnt_mappings_replaced;
449
450 extern struct evcnt pmap_evcnt_exec_mappings;
451 extern struct evcnt pmap_evcnt_exec_cached;
452
453 extern struct evcnt pmap_evcnt_exec_synced;
454 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
455 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
456
457 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
458 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
459 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
461 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
462
463 extern struct evcnt pmap_evcnt_updates;
464 extern struct evcnt pmap_evcnt_collects;
465 extern struct evcnt pmap_evcnt_copies;
466
467 extern struct evcnt pmap_evcnt_ptes_spilled;
468 extern struct evcnt pmap_evcnt_ptes_unspilled;
469 extern struct evcnt pmap_evcnt_ptes_evicted;
470
471 extern struct evcnt pmap_evcnt_ptes_primary[8];
472 extern struct evcnt pmap_evcnt_ptes_secondary[8];
473 extern struct evcnt pmap_evcnt_ptes_removed;
474 extern struct evcnt pmap_evcnt_ptes_changed;
475 extern struct evcnt pmap_evcnt_pvos_reclaimed;
476 extern struct evcnt pmap_evcnt_pvos_failed;
477
478 extern struct evcnt pmap_evcnt_zeroed_pages;
479 extern struct evcnt pmap_evcnt_copied_pages;
480 extern struct evcnt pmap_evcnt_idlezeroed_pages;
481
482 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
483 #define PMAPCOUNT2(ev) ((ev).ev_count++)
484 #else
485 #define PMAPCOUNT(ev) ((void) 0)
486 #define PMAPCOUNT2(ev) ((void) 0)
487 #endif
488
489 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
490
491 /* XXXSL: this needs to be moved to assembler */
492 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
493
494 #define TLBSYNC() __asm volatile("tlbsync")
495 #define SYNC() __asm volatile("sync")
496 #define EIEIO() __asm volatile("eieio")
497 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
498 #define MFMSR() mfmsr()
499 #define MTMSR(psl) mtmsr(psl)
500 #define MFPVR() mfpvr()
501 #define MFSRIN(va) mfsrin(va)
502 #define MFTB() mfrtcltbl()
503
504 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
505 static inline register_t
506 mfsrin(vaddr_t va)
507 {
508 register_t sr;
509 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
510 return sr;
511 }
512 #endif /* PMAP_OEA*/
513
514 #if defined (PMAP_OEA64_BRIDGE)
515 extern void mfmsr64 (register64_t *result);
516 #endif /* PMAP_OEA64_BRIDGE */
517
518 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
519 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
520
521 static inline register_t
522 pmap_interrupts_off(void)
523 {
524 register_t msr = MFMSR();
525 if (msr & PSL_EE)
526 MTMSR(msr & ~PSL_EE);
527 return msr;
528 }
529
530 static void
531 pmap_interrupts_restore(register_t msr)
532 {
533 if (msr & PSL_EE)
534 MTMSR(msr);
535 }
536
537 static inline u_int32_t
538 mfrtcltbl(void)
539 {
540 #ifdef PPC_OEA601
541 if ((MFPVR() >> 16) == MPC601)
542 return (mfrtcl() >> 7);
543 else
544 #endif
545 return (mftbl());
546 }
547
548 /*
549 * These small routines may have to be replaced,
550 * if/when we support processors other that the 604.
551 */
552
553 void
554 tlbia(void)
555 {
556 char *i;
557
558 SYNC();
559 #if defined(PMAP_OEA)
560 /*
561 * Why not use "tlbia"? Because not all processors implement it.
562 *
563 * This needs to be a per-CPU callback to do the appropriate thing
564 * for the CPU. XXX
565 */
566 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
567 TLBIE(i);
568 EIEIO();
569 SYNC();
570 }
571 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
572 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
573 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
574 TLBIEL(i);
575 EIEIO();
576 SYNC();
577 }
578 #endif
579 TLBSYNC();
580 SYNC();
581 }
582
583 static inline register_t
584 va_to_vsid(const struct pmap *pm, vaddr_t addr)
585 {
586 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
587 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
588 #else /* PMAP_OEA64 */
589 #if 0
590 const struct ste *ste;
591 register_t hash;
592 int i;
593
594 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
595
596 /*
597 * Try the primary group first
598 */
599 ste = pm->pm_stes[hash].stes;
600 for (i = 0; i < 8; i++, ste++) {
601 if (ste->ste_hi & STE_V) &&
602 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
603 return ste;
604 }
605
606 /*
607 * Then the secondary group.
608 */
609 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
610 for (i = 0; i < 8; i++, ste++) {
611 if (ste->ste_hi & STE_V) &&
612 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
613 return addr;
614 }
615
616 return NULL;
617 #else
618 /*
619 * Rather than searching the STE groups for the VSID, we know
620 * how we generate that from the ESID and so do that.
621 */
622 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
623 #endif
624 #endif /* PMAP_OEA */
625 }
626
627 static inline register_t
628 va_to_pteg(const struct pmap *pm, vaddr_t addr)
629 {
630 register_t hash;
631
632 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
633 return hash & pmap_pteg_mask;
634 }
635
636 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
637 /*
638 * Given a PTE in the page table, calculate the VADDR that hashes to it.
639 * The only bit of magic is that the top 4 bits of the address doesn't
640 * technically exist in the PTE. But we know we reserved 4 bits of the
641 * VSID for it so that's how we get it.
642 */
643 static vaddr_t
644 pmap_pte_to_va(volatile const struct pte *pt)
645 {
646 vaddr_t va;
647 uintptr_t ptaddr = (uintptr_t) pt;
648
649 if (pt->pte_hi & PTE_HID)
650 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
651
652 /* PPC Bits 10-19 PPC64 Bits 42-51 */
653 #if defined(PMAP_OEA)
654 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
655 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
656 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
657 #endif
658 va <<= ADDR_PIDX_SHFT;
659
660 /* PPC Bits 4-9 PPC64 Bits 36-41 */
661 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
662
663 #if defined(PMAP_OEA64)
664 /* PPC63 Bits 0-35 */
665 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
666 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
667 /* PPC Bits 0-3 */
668 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
669 #endif
670
671 return va;
672 }
673 #endif
674
675 static inline struct pvo_head *
676 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
677 {
678 struct vm_page *pg;
679 struct vm_page_md *md;
680
681 pg = PHYS_TO_VM_PAGE(pa);
682 if (pg_p != NULL)
683 *pg_p = pg;
684 if (pg == NULL)
685 return &pmap_pvo_unmanaged;
686 md = VM_PAGE_TO_MD(pg);
687 return &md->mdpg_pvoh;
688 }
689
690 static inline struct pvo_head *
691 vm_page_to_pvoh(struct vm_page *pg)
692 {
693 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
694
695 return &md->mdpg_pvoh;
696 }
697
698
699 static inline void
700 pmap_attr_clear(struct vm_page *pg, int ptebit)
701 {
702 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
703
704 md->mdpg_attrs &= ~ptebit;
705 }
706
707 static inline int
708 pmap_attr_fetch(struct vm_page *pg)
709 {
710 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
711
712 return md->mdpg_attrs;
713 }
714
715 static inline void
716 pmap_attr_save(struct vm_page *pg, int ptebit)
717 {
718 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
719
720 md->mdpg_attrs |= ptebit;
721 }
722
723 static inline int
724 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
725 {
726 if (pt->pte_hi == pvo_pt->pte_hi
727 #if 0
728 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
729 ~(PTE_REF|PTE_CHG)) == 0
730 #endif
731 )
732 return 1;
733 return 0;
734 }
735
736 static inline void
737 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
738 {
739 /*
740 * Construct the PTE. Default to IMB initially. Valid bit
741 * only gets set when the real pte is set in memory.
742 *
743 * Note: Don't set the valid bit for correct operation of tlb update.
744 */
745 #if defined(PMAP_OEA)
746 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
747 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
748 pt->pte_lo = pte_lo;
749 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
750 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
751 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
752 pt->pte_lo = (u_int64_t) pte_lo;
753 #endif /* PMAP_OEA */
754 }
755
756 static inline void
757 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
758 {
759 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
760 }
761
762 static inline void
763 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
764 {
765 /*
766 * As shown in Section 7.6.3.2.3
767 */
768 pt->pte_lo &= ~ptebit;
769 TLBIE(va);
770 SYNC();
771 EIEIO();
772 TLBSYNC();
773 SYNC();
774 #ifdef MULTIPROCESSOR
775 DCBST(pt);
776 #endif
777 }
778
779 static inline void
780 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
781 {
782 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
783 if (pvo_pt->pte_hi & PTE_VALID)
784 panic("pte_set: setting an already valid pte %p", pvo_pt);
785 #endif
786 pvo_pt->pte_hi |= PTE_VALID;
787
788 /*
789 * Update the PTE as defined in section 7.6.3.1
790 * Note that the REF/CHG bits are from pvo_pt and thus should
791 * have been saved so this routine can restore them (if desired).
792 */
793 pt->pte_lo = pvo_pt->pte_lo;
794 EIEIO();
795 pt->pte_hi = pvo_pt->pte_hi;
796 TLBSYNC();
797 SYNC();
798 #ifdef MULTIPROCESSOR
799 DCBST(pt);
800 #endif
801 pmap_pte_valid++;
802 }
803
804 static inline void
805 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
806 {
807 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
808 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
809 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
810 if ((pt->pte_hi & PTE_VALID) == 0)
811 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
812 #endif
813
814 pvo_pt->pte_hi &= ~PTE_VALID;
815 /*
816 * Force the ref & chg bits back into the PTEs.
817 */
818 SYNC();
819 /*
820 * Invalidate the pte ... (Section 7.6.3.3)
821 */
822 pt->pte_hi &= ~PTE_VALID;
823 SYNC();
824 TLBIE(va);
825 SYNC();
826 EIEIO();
827 TLBSYNC();
828 SYNC();
829 /*
830 * Save the ref & chg bits ...
831 */
832 pmap_pte_synch(pt, pvo_pt);
833 pmap_pte_valid--;
834 }
835
836 static inline void
837 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
838 {
839 /*
840 * Invalidate the PTE
841 */
842 pmap_pte_unset(pt, pvo_pt, va);
843 pmap_pte_set(pt, pvo_pt);
844 }
845
846 /*
847 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
848 * (either primary or secondary location).
849 *
850 * Note: both the destination and source PTEs must not have PTE_VALID set.
851 */
852
853 static int
854 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
855 {
856 volatile struct pte *pt;
857 int i;
858
859 #if defined(DEBUG)
860 DPRINTFN(PTE, ("pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
861 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
862 #endif
863 /*
864 * First try primary hash.
865 */
866 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
867 if ((pt->pte_hi & PTE_VALID) == 0) {
868 pvo_pt->pte_hi &= ~PTE_HID;
869 pmap_pte_set(pt, pvo_pt);
870 return i;
871 }
872 }
873
874 /*
875 * Now try secondary hash.
876 */
877 ptegidx ^= pmap_pteg_mask;
878 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
879 if ((pt->pte_hi & PTE_VALID) == 0) {
880 pvo_pt->pte_hi |= PTE_HID;
881 pmap_pte_set(pt, pvo_pt);
882 return i;
883 }
884 }
885 return -1;
886 }
887
888 /*
889 * Spill handler.
890 *
891 * Tries to spill a page table entry from the overflow area.
892 * This runs in either real mode (if dealing with a exception spill)
893 * or virtual mode when dealing with manually spilling one of the
894 * kernel's pte entries. In either case, interrupts are already
895 * disabled.
896 */
897
898 int
899 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
900 {
901 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
902 struct pvo_entry *pvo;
903 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
904 struct pvo_tqhead *pvoh, *vpvoh = NULL;
905 int ptegidx, i, j;
906 volatile struct pteg *pteg;
907 volatile struct pte *pt;
908
909 PMAP_LOCK();
910
911 ptegidx = va_to_pteg(pm, addr);
912
913 /*
914 * Have to substitute some entry. Use the primary hash for this.
915 * Use low bits of timebase as random generator. Make sure we are
916 * not picking a kernel pte for replacement.
917 */
918 pteg = &pmap_pteg_table[ptegidx];
919 i = MFTB() & 7;
920 for (j = 0; j < 8; j++) {
921 pt = &pteg->pt[i];
922 if ((pt->pte_hi & PTE_VALID) == 0)
923 break;
924 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
925 < PHYSMAP_VSIDBITS)
926 break;
927 i = (i + 1) & 7;
928 }
929 KASSERT(j < 8);
930
931 source_pvo = NULL;
932 victim_pvo = NULL;
933 pvoh = &pmap_pvo_table[ptegidx];
934 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
935
936 /*
937 * We need to find pvo entry for this address...
938 */
939 PMAP_PVO_CHECK(pvo); /* sanity check */
940
941 /*
942 * If we haven't found the source and we come to a PVO with
943 * a valid PTE, then we know we can't find it because all
944 * evicted PVOs always are first in the list.
945 */
946 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
947 break;
948 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
949 addr == PVO_VADDR(pvo)) {
950
951 /*
952 * Now we have found the entry to be spilled into the
953 * pteg. Attempt to insert it into the page table.
954 */
955 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
956 if (j >= 0) {
957 PVO_PTEGIDX_SET(pvo, j);
958 PMAP_PVO_CHECK(pvo); /* sanity check */
959 PVO_WHERE(pvo, SPILL_INSERT);
960 pvo->pvo_pmap->pm_evictions--;
961 PMAPCOUNT(ptes_spilled);
962 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
963 ? pmap_evcnt_ptes_secondary
964 : pmap_evcnt_ptes_primary)[j]);
965
966 /*
967 * Since we keep the evicted entries at the
968 * from of the PVO list, we need move this
969 * (now resident) PVO after the evicted
970 * entries.
971 */
972 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
973
974 /*
975 * If we don't have to move (either we were the
976 * last entry or the next entry was valid),
977 * don't change our position. Otherwise
978 * move ourselves to the tail of the queue.
979 */
980 if (next_pvo != NULL &&
981 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
982 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
983 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
984 }
985 PMAP_UNLOCK();
986 return 1;
987 }
988 source_pvo = pvo;
989 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
990 return 0;
991 }
992 if (victim_pvo != NULL)
993 break;
994 }
995
996 /*
997 * We also need the pvo entry of the victim we are replacing
998 * so save the R & C bits of the PTE.
999 */
1000 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1001 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1002 vpvoh = pvoh; /* *1* */
1003 victim_pvo = pvo;
1004 if (source_pvo != NULL)
1005 break;
1006 }
1007 }
1008
1009 if (source_pvo == NULL) {
1010 PMAPCOUNT(ptes_unspilled);
1011 PMAP_UNLOCK();
1012 return 0;
1013 }
1014
1015 if (victim_pvo == NULL) {
1016 if ((pt->pte_hi & PTE_HID) == 0)
1017 panic("pmap_pte_spill: victim p-pte (%p) has "
1018 "no pvo entry!", pt);
1019
1020 /*
1021 * If this is a secondary PTE, we need to search
1022 * its primary pvo bucket for the matching PVO.
1023 */
1024 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1025 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1026 PMAP_PVO_CHECK(pvo); /* sanity check */
1027
1028 /*
1029 * We also need the pvo entry of the victim we are
1030 * replacing so save the R & C bits of the PTE.
1031 */
1032 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1033 victim_pvo = pvo;
1034 break;
1035 }
1036 }
1037 if (victim_pvo == NULL)
1038 panic("pmap_pte_spill: victim s-pte (%p) has "
1039 "no pvo entry!", pt);
1040 }
1041
1042 /*
1043 * The victim should be not be a kernel PVO/PTE entry.
1044 */
1045 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1046 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1047 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1048
1049 /*
1050 * We are invalidating the TLB entry for the EA for the
1051 * we are replacing even though its valid; If we don't
1052 * we lose any ref/chg bit changes contained in the TLB
1053 * entry.
1054 */
1055 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1056
1057 /*
1058 * To enforce the PVO list ordering constraint that all
1059 * evicted entries should come before all valid entries,
1060 * move the source PVO to the tail of its list and the
1061 * victim PVO to the head of its list (which might not be
1062 * the same list, if the victim was using the secondary hash).
1063 */
1064 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1065 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1066 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1067 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1068 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1069 pmap_pte_set(pt, &source_pvo->pvo_pte);
1070 victim_pvo->pvo_pmap->pm_evictions++;
1071 source_pvo->pvo_pmap->pm_evictions--;
1072 PVO_WHERE(victim_pvo, SPILL_UNSET);
1073 PVO_WHERE(source_pvo, SPILL_SET);
1074
1075 PVO_PTEGIDX_CLR(victim_pvo);
1076 PVO_PTEGIDX_SET(source_pvo, i);
1077 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1078 PMAPCOUNT(ptes_spilled);
1079 PMAPCOUNT(ptes_evicted);
1080 PMAPCOUNT(ptes_removed);
1081
1082 PMAP_PVO_CHECK(victim_pvo);
1083 PMAP_PVO_CHECK(source_pvo);
1084
1085 PMAP_UNLOCK();
1086 return 1;
1087 }
1088
1089 /*
1090 * Restrict given range to physical memory
1091 */
1092 void
1093 pmap_real_memory(paddr_t *start, psize_t *size)
1094 {
1095 struct mem_region *mp;
1096
1097 for (mp = mem; mp->size; mp++) {
1098 if (*start + *size > mp->start
1099 && *start < mp->start + mp->size) {
1100 if (*start < mp->start) {
1101 *size -= mp->start - *start;
1102 *start = mp->start;
1103 }
1104 if (*start + *size > mp->start + mp->size)
1105 *size = mp->start + mp->size - *start;
1106 return;
1107 }
1108 }
1109 *size = 0;
1110 }
1111
1112 /*
1113 * Initialize anything else for pmap handling.
1114 * Called during vm_init().
1115 */
1116 void
1117 pmap_init(void)
1118 {
1119 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1120 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1121 &pmap_pool_mallocator, IPL_NONE);
1122
1123 pool_setlowat(&pmap_mpvo_pool, 1008);
1124
1125 pmap_initialized = 1;
1126
1127 }
1128
1129 /*
1130 * How much virtual space does the kernel get?
1131 */
1132 void
1133 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1134 {
1135 /*
1136 * For now, reserve one segment (minus some overhead) for kernel
1137 * virtual memory
1138 */
1139 *start = VM_MIN_KERNEL_ADDRESS;
1140 *end = VM_MAX_KERNEL_ADDRESS;
1141 }
1142
1143 /*
1144 * Allocate, initialize, and return a new physical map.
1145 */
1146 pmap_t
1147 pmap_create(void)
1148 {
1149 pmap_t pm;
1150
1151 pm = pool_get(&pmap_pool, PR_WAITOK);
1152 memset((void *)pm, 0, sizeof *pm);
1153 pmap_pinit(pm);
1154
1155 DPRINTFN(CREATE,("pmap_create: pm %p:\n"
1156 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1157 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1158 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1159 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1160 pm,
1161 pm->pm_sr[0], pm->pm_sr[1],
1162 pm->pm_sr[2], pm->pm_sr[3],
1163 pm->pm_sr[4], pm->pm_sr[5],
1164 pm->pm_sr[6], pm->pm_sr[7],
1165 pm->pm_sr[8], pm->pm_sr[9],
1166 pm->pm_sr[10], pm->pm_sr[11],
1167 pm->pm_sr[12], pm->pm_sr[13],
1168 pm->pm_sr[14], pm->pm_sr[15]));
1169 return pm;
1170 }
1171
1172 /*
1173 * Initialize a preallocated and zeroed pmap structure.
1174 */
1175 void
1176 pmap_pinit(pmap_t pm)
1177 {
1178 register_t entropy = MFTB();
1179 register_t mask;
1180 int i;
1181
1182 /*
1183 * Allocate some segment registers for this pmap.
1184 */
1185 pm->pm_refs = 1;
1186 PMAP_LOCK();
1187 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1188 static register_t pmap_vsidcontext;
1189 register_t hash;
1190 unsigned int n;
1191
1192 /* Create a new value by multiplying by a prime adding in
1193 * entropy from the timebase register. This is to make the
1194 * VSID more random so that the PT Hash function collides
1195 * less often. (note that the prime causes gcc to do shifts
1196 * instead of a multiply)
1197 */
1198 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1199 hash = pmap_vsidcontext & (NPMAPS - 1);
1200 if (hash == 0) { /* 0 is special, avoid it */
1201 entropy += 0xbadf00d;
1202 continue;
1203 }
1204 n = hash >> 5;
1205 mask = 1L << (hash & (VSID_NBPW-1));
1206 hash = pmap_vsidcontext;
1207 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1208 /* anything free in this bucket? */
1209 if (~pmap_vsid_bitmap[n] == 0) {
1210 entropy = hash ^ (hash >> 16);
1211 continue;
1212 }
1213 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1214 mask = 1L << i;
1215 hash &= ~(VSID_NBPW-1);
1216 hash |= i;
1217 }
1218 hash &= PTE_VSID >> PTE_VSID_SHFT;
1219 pmap_vsid_bitmap[n] |= mask;
1220 pm->pm_vsid = hash;
1221 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1222 for (i = 0; i < 16; i++)
1223 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1224 SR_NOEXEC;
1225 #endif
1226 PMAP_UNLOCK();
1227 return;
1228 }
1229 PMAP_UNLOCK();
1230 panic("pmap_pinit: out of segments");
1231 }
1232
1233 /*
1234 * Add a reference to the given pmap.
1235 */
1236 void
1237 pmap_reference(pmap_t pm)
1238 {
1239 atomic_inc_uint(&pm->pm_refs);
1240 }
1241
1242 /*
1243 * Retire the given pmap from service.
1244 * Should only be called if the map contains no valid mappings.
1245 */
1246 void
1247 pmap_destroy(pmap_t pm)
1248 {
1249 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1250 pmap_release(pm);
1251 pool_put(&pmap_pool, pm);
1252 }
1253 }
1254
1255 /*
1256 * Release any resources held by the given physical map.
1257 * Called when a pmap initialized by pmap_pinit is being released.
1258 */
1259 void
1260 pmap_release(pmap_t pm)
1261 {
1262 int idx, mask;
1263
1264 KASSERT(pm->pm_stats.resident_count == 0);
1265 KASSERT(pm->pm_stats.wired_count == 0);
1266
1267 PMAP_LOCK();
1268 if (pm->pm_sr[0] == 0)
1269 panic("pmap_release");
1270 idx = pm->pm_vsid & (NPMAPS-1);
1271 mask = 1 << (idx % VSID_NBPW);
1272 idx /= VSID_NBPW;
1273
1274 KASSERT(pmap_vsid_bitmap[idx] & mask);
1275 pmap_vsid_bitmap[idx] &= ~mask;
1276 PMAP_UNLOCK();
1277 }
1278
1279 /*
1280 * Copy the range specified by src_addr/len
1281 * from the source map to the range dst_addr/len
1282 * in the destination map.
1283 *
1284 * This routine is only advisory and need not do anything.
1285 */
1286 void
1287 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1288 vsize_t len, vaddr_t src_addr)
1289 {
1290 PMAPCOUNT(copies);
1291 }
1292
1293 /*
1294 * Require that all active physical maps contain no
1295 * incorrect entries NOW.
1296 */
1297 void
1298 pmap_update(struct pmap *pmap)
1299 {
1300 PMAPCOUNT(updates);
1301 TLBSYNC();
1302 }
1303
1304 static inline int
1305 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1306 {
1307 int pteidx;
1308 /*
1309 * We can find the actual pte entry without searching by
1310 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1311 * and by noticing the HID bit.
1312 */
1313 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1314 if (pvo->pvo_pte.pte_hi & PTE_HID)
1315 pteidx ^= pmap_pteg_mask * 8;
1316 return pteidx;
1317 }
1318
1319 volatile struct pte *
1320 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1321 {
1322 volatile struct pte *pt;
1323
1324 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1325 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1326 return NULL;
1327 #endif
1328
1329 /*
1330 * If we haven't been supplied the ptegidx, calculate it.
1331 */
1332 if (pteidx == -1) {
1333 int ptegidx;
1334 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1335 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1336 }
1337
1338 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1339
1340 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1341 return pt;
1342 #else
1343 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1344 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1345 "pvo but no valid pte index", pvo);
1346 }
1347 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1348 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1349 "pvo but no valid pte", pvo);
1350 }
1351
1352 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1353 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1354 #if defined(DEBUG) || defined(PMAPCHECK)
1355 pmap_pte_print(pt);
1356 #endif
1357 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1358 "pmap_pteg_table %p but invalid in pvo",
1359 pvo, pt);
1360 }
1361 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1362 #if defined(DEBUG) || defined(PMAPCHECK)
1363 pmap_pte_print(pt);
1364 #endif
1365 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1366 "not match pte %p in pmap_pteg_table",
1367 pvo, pt);
1368 }
1369 return pt;
1370 }
1371
1372 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1373 #if defined(DEBUG) || defined(PMAPCHECK)
1374 pmap_pte_print(pt);
1375 #endif
1376 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1377 "pmap_pteg_table but valid in pvo", pvo, pt);
1378 }
1379 return NULL;
1380 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1381 }
1382
1383 struct pvo_entry *
1384 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1385 {
1386 struct pvo_entry *pvo;
1387 int ptegidx;
1388
1389 va &= ~ADDR_POFF;
1390 ptegidx = va_to_pteg(pm, va);
1391
1392 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1393 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1394 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1395 panic("pmap_pvo_find_va: invalid pvo %p on "
1396 "list %#x (%p)", pvo, ptegidx,
1397 &pmap_pvo_table[ptegidx]);
1398 #endif
1399 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1400 if (pteidx_p)
1401 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1402 return pvo;
1403 }
1404 }
1405 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1406 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1407 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1408 return NULL;
1409 }
1410
1411 #if defined(DEBUG) || defined(PMAPCHECK)
1412 void
1413 pmap_pvo_check(const struct pvo_entry *pvo)
1414 {
1415 struct pvo_head *pvo_head;
1416 struct pvo_entry *pvo0;
1417 volatile struct pte *pt;
1418 int failed = 0;
1419
1420 PMAP_LOCK();
1421
1422 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1423 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1424
1425 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1426 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1427 pvo, pvo->pvo_pmap);
1428 failed = 1;
1429 }
1430
1431 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1432 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1433 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1434 pvo, TAILQ_NEXT(pvo, pvo_olink));
1435 failed = 1;
1436 }
1437
1438 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1439 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1440 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1441 pvo, LIST_NEXT(pvo, pvo_vlink));
1442 failed = 1;
1443 }
1444
1445 if (PVO_MANAGED_P(pvo)) {
1446 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1447 } else {
1448 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1449 printf("pmap_pvo_check: pvo %p: non kernel address "
1450 "on kernel unmanaged list\n", pvo);
1451 failed = 1;
1452 }
1453 pvo_head = &pmap_pvo_kunmanaged;
1454 }
1455 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1456 if (pvo0 == pvo)
1457 break;
1458 }
1459 if (pvo0 == NULL) {
1460 printf("pmap_pvo_check: pvo %p: not present "
1461 "on its vlist head %p\n", pvo, pvo_head);
1462 failed = 1;
1463 }
1464 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1465 printf("pmap_pvo_check: pvo %p: not present "
1466 "on its olist head\n", pvo);
1467 failed = 1;
1468 }
1469 pt = pmap_pvo_to_pte(pvo, -1);
1470 if (pt == NULL) {
1471 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1472 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1473 "no PTE\n", pvo);
1474 failed = 1;
1475 }
1476 } else {
1477 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1478 (uintptr_t) pt >=
1479 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1480 printf("pmap_pvo_check: pvo %p: pte %p not in "
1481 "pteg table\n", pvo, pt);
1482 failed = 1;
1483 }
1484 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1485 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1486 "no PTE\n", pvo);
1487 failed = 1;
1488 }
1489 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1491 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1492 pvo->pvo_pte.pte_hi,
1493 pt->pte_hi);
1494 failed = 1;
1495 }
1496 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1497 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1498 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1499 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1500 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1501 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1502 failed = 1;
1503 }
1504 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1505 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1506 " doesn't not match PVO's VA %#" _PRIxva "\n",
1507 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1508 failed = 1;
1509 }
1510 if (failed)
1511 pmap_pte_print(pt);
1512 }
1513 if (failed)
1514 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1515 pvo->pvo_pmap);
1516
1517 PMAP_UNLOCK();
1518 }
1519 #endif /* DEBUG || PMAPCHECK */
1520
1521 /*
1522 * Search the PVO table looking for a non-wired entry.
1523 * If we find one, remove it and return it.
1524 */
1525
1526 struct pvo_entry *
1527 pmap_pvo_reclaim(struct pmap *pm)
1528 {
1529 struct pvo_tqhead *pvoh;
1530 struct pvo_entry *pvo;
1531 uint32_t idx, endidx;
1532
1533 endidx = pmap_pvo_reclaim_nextidx;
1534 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1535 idx = (idx + 1) & pmap_pteg_mask) {
1536 pvoh = &pmap_pvo_table[idx];
1537 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1538 if (!PVO_WIRED_P(pvo)) {
1539 pmap_pvo_remove(pvo, -1, NULL);
1540 pmap_pvo_reclaim_nextidx = idx;
1541 PMAPCOUNT(pvos_reclaimed);
1542 return pvo;
1543 }
1544 }
1545 }
1546 return NULL;
1547 }
1548
1549 /*
1550 * This returns whether this is the first mapping of a page.
1551 */
1552 int
1553 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1554 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1555 {
1556 struct pvo_entry *pvo;
1557 struct pvo_tqhead *pvoh;
1558 register_t msr;
1559 int ptegidx;
1560 int i;
1561 int poolflags = PR_NOWAIT;
1562
1563 /*
1564 * Compute the PTE Group index.
1565 */
1566 va &= ~ADDR_POFF;
1567 ptegidx = va_to_pteg(pm, va);
1568
1569 msr = pmap_interrupts_off();
1570
1571 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1572 if (pmap_pvo_remove_depth > 0)
1573 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1574 if (++pmap_pvo_enter_depth > 1)
1575 panic("pmap_pvo_enter: called recursively!");
1576 #endif
1577
1578 /*
1579 * Remove any existing mapping for this page. Reuse the
1580 * pvo entry if there a mapping.
1581 */
1582 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1583 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1584 #ifdef DEBUG
1585 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1586 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1587 ~(PTE_REF|PTE_CHG)) == 0 &&
1588 va < VM_MIN_KERNEL_ADDRESS) {
1589 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1590 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1591 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1592 pvo->pvo_pte.pte_hi,
1593 pm->pm_sr[va >> ADDR_SR_SHFT]);
1594 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1595 #ifdef DDBX
1596 Debugger();
1597 #endif
1598 }
1599 #endif
1600 PMAPCOUNT(mappings_replaced);
1601 pmap_pvo_remove(pvo, -1, NULL);
1602 break;
1603 }
1604 }
1605
1606 /*
1607 * If we aren't overwriting an mapping, try to allocate
1608 */
1609 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1610 --pmap_pvo_enter_depth;
1611 #endif
1612 pmap_interrupts_restore(msr);
1613 if (pvo) {
1614 pmap_pvo_free(pvo);
1615 }
1616 pvo = pool_get(pl, poolflags);
1617
1618 #ifdef DEBUG
1619 /*
1620 * Exercise pmap_pvo_reclaim() a little.
1621 */
1622 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1623 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1624 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1625 pool_put(pl, pvo);
1626 pvo = NULL;
1627 }
1628 #endif
1629
1630 msr = pmap_interrupts_off();
1631 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1632 ++pmap_pvo_enter_depth;
1633 #endif
1634 if (pvo == NULL) {
1635 pvo = pmap_pvo_reclaim(pm);
1636 if (pvo == NULL) {
1637 if ((flags & PMAP_CANFAIL) == 0)
1638 panic("pmap_pvo_enter: failed");
1639 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1640 pmap_pvo_enter_depth--;
1641 #endif
1642 PMAPCOUNT(pvos_failed);
1643 pmap_interrupts_restore(msr);
1644 return ENOMEM;
1645 }
1646 }
1647
1648 pvo->pvo_vaddr = va;
1649 pvo->pvo_pmap = pm;
1650 pvo->pvo_vaddr &= ~ADDR_POFF;
1651 if (flags & VM_PROT_EXECUTE) {
1652 PMAPCOUNT(exec_mappings);
1653 pvo_set_exec(pvo);
1654 }
1655 if (flags & PMAP_WIRED)
1656 pvo->pvo_vaddr |= PVO_WIRED;
1657 if (pvo_head != &pmap_pvo_kunmanaged) {
1658 pvo->pvo_vaddr |= PVO_MANAGED;
1659 PMAPCOUNT(mappings);
1660 } else {
1661 PMAPCOUNT(kernel_mappings);
1662 }
1663 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1664
1665 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1666 if (PVO_WIRED_P(pvo))
1667 pvo->pvo_pmap->pm_stats.wired_count++;
1668 pvo->pvo_pmap->pm_stats.resident_count++;
1669 #if defined(DEBUG)
1670 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1671 DPRINTFN(PVOENTER,
1672 ("pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1673 pvo, pm, va, pa));
1674 #endif
1675
1676 /*
1677 * We hope this succeeds but it isn't required.
1678 */
1679 pvoh = &pmap_pvo_table[ptegidx];
1680 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1681 if (i >= 0) {
1682 PVO_PTEGIDX_SET(pvo, i);
1683 PVO_WHERE(pvo, ENTER_INSERT);
1684 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1685 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1686 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1687
1688 } else {
1689 /*
1690 * Since we didn't have room for this entry (which makes it
1691 * and evicted entry), place it at the head of the list.
1692 */
1693 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1694 PMAPCOUNT(ptes_evicted);
1695 pm->pm_evictions++;
1696 /*
1697 * If this is a kernel page, make sure it's active.
1698 */
1699 if (pm == pmap_kernel()) {
1700 i = pmap_pte_spill(pm, va, false);
1701 KASSERT(i);
1702 }
1703 }
1704 PMAP_PVO_CHECK(pvo); /* sanity check */
1705 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1706 pmap_pvo_enter_depth--;
1707 #endif
1708 pmap_interrupts_restore(msr);
1709 return 0;
1710 }
1711
1712 static void
1713 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1714 {
1715 volatile struct pte *pt;
1716 int ptegidx;
1717
1718 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1719 if (++pmap_pvo_remove_depth > 1)
1720 panic("pmap_pvo_remove: called recursively!");
1721 #endif
1722
1723 /*
1724 * If we haven't been supplied the ptegidx, calculate it.
1725 */
1726 if (pteidx == -1) {
1727 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1728 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1729 } else {
1730 ptegidx = pteidx >> 3;
1731 if (pvo->pvo_pte.pte_hi & PTE_HID)
1732 ptegidx ^= pmap_pteg_mask;
1733 }
1734 PMAP_PVO_CHECK(pvo); /* sanity check */
1735
1736 /*
1737 * If there is an active pte entry, we need to deactivate it
1738 * (and save the ref & chg bits).
1739 */
1740 pt = pmap_pvo_to_pte(pvo, pteidx);
1741 if (pt != NULL) {
1742 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1743 PVO_WHERE(pvo, REMOVE);
1744 PVO_PTEGIDX_CLR(pvo);
1745 PMAPCOUNT(ptes_removed);
1746 } else {
1747 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1748 pvo->pvo_pmap->pm_evictions--;
1749 }
1750
1751 /*
1752 * Account for executable mappings.
1753 */
1754 if (PVO_EXECUTABLE_P(pvo))
1755 pvo_clear_exec(pvo);
1756
1757 /*
1758 * Update our statistics.
1759 */
1760 pvo->pvo_pmap->pm_stats.resident_count--;
1761 if (PVO_WIRED_P(pvo))
1762 pvo->pvo_pmap->pm_stats.wired_count--;
1763
1764 /*
1765 * Save the REF/CHG bits into their cache if the page is managed.
1766 */
1767 if (PVO_MANAGED_P(pvo)) {
1768 register_t ptelo = pvo->pvo_pte.pte_lo;
1769 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1770
1771 if (pg != NULL) {
1772 /*
1773 * If this page was changed and it is mapped exec,
1774 * invalidate it.
1775 */
1776 if ((ptelo & PTE_CHG) &&
1777 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1778 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1779 if (LIST_EMPTY(pvoh)) {
1780 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1781 "%#" _PRIxpa ": clear-exec]\n",
1782 VM_PAGE_TO_PHYS(pg)));
1783 pmap_attr_clear(pg, PTE_EXEC);
1784 PMAPCOUNT(exec_uncached_pvo_remove);
1785 } else {
1786 DPRINTFN(EXEC, ("[pmap_pvo_remove: "
1787 "%#" _PRIxpa ": syncicache]\n",
1788 VM_PAGE_TO_PHYS(pg)));
1789 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1790 PAGE_SIZE);
1791 PMAPCOUNT(exec_synced_pvo_remove);
1792 }
1793 }
1794
1795 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1796 }
1797 PMAPCOUNT(unmappings);
1798 } else {
1799 PMAPCOUNT(kernel_unmappings);
1800 }
1801
1802 /*
1803 * Remove the PVO from its lists and return it to the pool.
1804 */
1805 LIST_REMOVE(pvo, pvo_vlink);
1806 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1807 if (pvol) {
1808 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1809 }
1810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1811 pmap_pvo_remove_depth--;
1812 #endif
1813 }
1814
1815 void
1816 pmap_pvo_free(struct pvo_entry *pvo)
1817 {
1818
1819 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1820 }
1821
1822 void
1823 pmap_pvo_free_list(struct pvo_head *pvol)
1824 {
1825 struct pvo_entry *pvo, *npvo;
1826
1827 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1828 npvo = LIST_NEXT(pvo, pvo_vlink);
1829 LIST_REMOVE(pvo, pvo_vlink);
1830 pmap_pvo_free(pvo);
1831 }
1832 }
1833
1834 /*
1835 * Mark a mapping as executable.
1836 * If this is the first executable mapping in the segment,
1837 * clear the noexec flag.
1838 */
1839 static void
1840 pvo_set_exec(struct pvo_entry *pvo)
1841 {
1842 struct pmap *pm = pvo->pvo_pmap;
1843
1844 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1845 return;
1846 }
1847 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1848 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1849 {
1850 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1851 if (pm->pm_exec[sr]++ == 0) {
1852 pm->pm_sr[sr] &= ~SR_NOEXEC;
1853 }
1854 }
1855 #endif
1856 }
1857
1858 /*
1859 * Mark a mapping as non-executable.
1860 * If this was the last executable mapping in the segment,
1861 * set the noexec flag.
1862 */
1863 static void
1864 pvo_clear_exec(struct pvo_entry *pvo)
1865 {
1866 struct pmap *pm = pvo->pvo_pmap;
1867
1868 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1869 return;
1870 }
1871 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1872 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1873 {
1874 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1875 if (--pm->pm_exec[sr] == 0) {
1876 pm->pm_sr[sr] |= SR_NOEXEC;
1877 }
1878 }
1879 #endif
1880 }
1881
1882 /*
1883 * Insert physical page at pa into the given pmap at virtual address va.
1884 */
1885 int
1886 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1887 {
1888 struct mem_region *mp;
1889 struct pvo_head *pvo_head;
1890 struct vm_page *pg;
1891 struct pool *pl;
1892 register_t pte_lo;
1893 int error;
1894 u_int pvo_flags;
1895 u_int was_exec = 0;
1896
1897 PMAP_LOCK();
1898
1899 if (__predict_false(!pmap_initialized)) {
1900 pvo_head = &pmap_pvo_kunmanaged;
1901 pl = &pmap_upvo_pool;
1902 pvo_flags = 0;
1903 pg = NULL;
1904 was_exec = PTE_EXEC;
1905 } else {
1906 pvo_head = pa_to_pvoh(pa, &pg);
1907 pl = &pmap_mpvo_pool;
1908 pvo_flags = PVO_MANAGED;
1909 }
1910
1911 DPRINTFN(ENTER,
1912 ("pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1913 pm, va, pa, prot, flags));
1914
1915 /*
1916 * If this is a managed page, and it's the first reference to the
1917 * page clear the execness of the page. Otherwise fetch the execness.
1918 */
1919 if (pg != NULL)
1920 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1921
1922 DPRINTFN(ENTER, (" was_exec=%d", was_exec));
1923
1924 /*
1925 * Assume the page is cache inhibited and access is guarded unless
1926 * it's in our available memory array. If it is in the memory array,
1927 * asssume it's in memory coherent memory.
1928 */
1929 if (flags & PMAP_MD_PREFETCHABLE) {
1930 pte_lo = 0;
1931 } else
1932 pte_lo = PTE_G;
1933
1934 if ((flags & PMAP_NOCACHE) == 0) {
1935 for (mp = mem; mp->size; mp++) {
1936 if (pa >= mp->start && pa < mp->start + mp->size) {
1937 pte_lo = PTE_M;
1938 break;
1939 }
1940 }
1941 } else {
1942 pte_lo |= PTE_I;
1943 }
1944
1945 if (prot & VM_PROT_WRITE)
1946 pte_lo |= PTE_BW;
1947 else
1948 pte_lo |= PTE_BR;
1949
1950 /*
1951 * If this was in response to a fault, "pre-fault" the PTE's
1952 * changed/referenced bit appropriately.
1953 */
1954 if (flags & VM_PROT_WRITE)
1955 pte_lo |= PTE_CHG;
1956 if (flags & VM_PROT_ALL)
1957 pte_lo |= PTE_REF;
1958
1959 /*
1960 * We need to know if this page can be executable
1961 */
1962 flags |= (prot & VM_PROT_EXECUTE);
1963
1964 /*
1965 * Record mapping for later back-translation and pte spilling.
1966 * This will overwrite any existing mapping.
1967 */
1968 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1969
1970 /*
1971 * Flush the real page from the instruction cache if this page is
1972 * mapped executable and cacheable and has not been flushed since
1973 * the last time it was modified.
1974 */
1975 if (error == 0 &&
1976 (flags & VM_PROT_EXECUTE) &&
1977 (pte_lo & PTE_I) == 0 &&
1978 was_exec == 0) {
1979 DPRINTFN(ENTER, (" syncicache"));
1980 PMAPCOUNT(exec_synced);
1981 pmap_syncicache(pa, PAGE_SIZE);
1982 if (pg != NULL) {
1983 pmap_attr_save(pg, PTE_EXEC);
1984 PMAPCOUNT(exec_cached);
1985 #if defined(DEBUG) || defined(PMAPDEBUG)
1986 if (pmapdebug & PMAPDEBUG_ENTER)
1987 printf(" marked-as-exec");
1988 else if (pmapdebug & PMAPDEBUG_EXEC)
1989 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1990 VM_PAGE_TO_PHYS(pg));
1991
1992 #endif
1993 }
1994 }
1995
1996 DPRINTFN(ENTER, (": error=%d\n", error));
1997
1998 PMAP_UNLOCK();
1999
2000 return error;
2001 }
2002
2003 void
2004 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2005 {
2006 struct mem_region *mp;
2007 register_t pte_lo;
2008 int error;
2009
2010 #if defined (PMAP_OEA64_BRIDGE)
2011 if (va < VM_MIN_KERNEL_ADDRESS)
2012 panic("pmap_kenter_pa: attempt to enter "
2013 "non-kernel address %#" _PRIxva "!", va);
2014 #endif
2015
2016 DPRINTFN(KENTER,
2017 ("pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot));
2018
2019 PMAP_LOCK();
2020
2021 /*
2022 * Assume the page is cache inhibited and access is guarded unless
2023 * it's in our available memory array. If it is in the memory array,
2024 * asssume it's in memory coherent memory.
2025 */
2026 pte_lo = PTE_IG;
2027 if ((flags & PMAP_NOCACHE) == 0) {
2028 for (mp = mem; mp->size; mp++) {
2029 if (pa >= mp->start && pa < mp->start + mp->size) {
2030 pte_lo = PTE_M;
2031 break;
2032 }
2033 }
2034 }
2035
2036 if (prot & VM_PROT_WRITE)
2037 pte_lo |= PTE_BW;
2038 else
2039 pte_lo |= PTE_BR;
2040
2041 /*
2042 * We don't care about REF/CHG on PVOs on the unmanaged list.
2043 */
2044 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2045 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2046
2047 if (error != 0)
2048 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2049 va, pa, error);
2050
2051 PMAP_UNLOCK();
2052 }
2053
2054 void
2055 pmap_kremove(vaddr_t va, vsize_t len)
2056 {
2057 if (va < VM_MIN_KERNEL_ADDRESS)
2058 panic("pmap_kremove: attempt to remove "
2059 "non-kernel address %#" _PRIxva "!", va);
2060
2061 DPRINTFN(KREMOVE,("pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len));
2062 pmap_remove(pmap_kernel(), va, va + len);
2063 }
2064
2065 /*
2066 * Remove the given range of mapping entries.
2067 */
2068 void
2069 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2070 {
2071 struct pvo_head pvol;
2072 struct pvo_entry *pvo;
2073 register_t msr;
2074 int pteidx;
2075
2076 PMAP_LOCK();
2077 LIST_INIT(&pvol);
2078 msr = pmap_interrupts_off();
2079 for (; va < endva; va += PAGE_SIZE) {
2080 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2081 if (pvo != NULL) {
2082 pmap_pvo_remove(pvo, pteidx, &pvol);
2083 }
2084 }
2085 pmap_interrupts_restore(msr);
2086 pmap_pvo_free_list(&pvol);
2087 PMAP_UNLOCK();
2088 }
2089
2090 /*
2091 * Get the physical page address for the given pmap/virtual address.
2092 */
2093 bool
2094 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2095 {
2096 struct pvo_entry *pvo;
2097 register_t msr;
2098
2099 PMAP_LOCK();
2100
2101 /*
2102 * If this is a kernel pmap lookup, also check the battable
2103 * and if we get a hit, translate the VA to a PA using the
2104 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2105 * that will wrap back to 0.
2106 */
2107 if (pm == pmap_kernel() &&
2108 (va < VM_MIN_KERNEL_ADDRESS ||
2109 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2110 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2111 #if defined (PMAP_OEA)
2112 #ifdef PPC_OEA601
2113 if ((MFPVR() >> 16) == MPC601) {
2114 register_t batu = battable[va >> 23].batu;
2115 register_t batl = battable[va >> 23].batl;
2116 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2117 if (BAT601_VALID_P(batl) &&
2118 BAT601_VA_MATCH_P(batu, batl, va)) {
2119 register_t mask =
2120 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2121 if (pap)
2122 *pap = (batl & mask) | (va & ~mask);
2123 PMAP_UNLOCK();
2124 return true;
2125 } else if (SR601_VALID_P(sr) &&
2126 SR601_PA_MATCH_P(sr, va)) {
2127 if (pap)
2128 *pap = va;
2129 PMAP_UNLOCK();
2130 return true;
2131 }
2132 } else
2133 #endif /* PPC_OEA601 */
2134 {
2135 register_t batu = battable[va >> ADDR_SR_SHFT].batu;
2136 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2137 register_t batl =
2138 battable[va >> ADDR_SR_SHFT].batl;
2139 register_t mask =
2140 (~(batu & BAT_BL) << 15) & ~0x1ffffL;
2141 if (pap)
2142 *pap = (batl & mask) | (va & ~mask);
2143 PMAP_UNLOCK();
2144 return true;
2145 }
2146 }
2147 return false;
2148 #elif defined (PMAP_OEA64_BRIDGE)
2149 if (va >= SEGMENT_LENGTH)
2150 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2151 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2152 else {
2153 if (pap)
2154 *pap = va;
2155 PMAP_UNLOCK();
2156 return true;
2157 }
2158 #elif defined (PMAP_OEA64)
2159 #error PPC_OEA64 not supported
2160 #endif /* PPC_OEA */
2161 }
2162
2163 msr = pmap_interrupts_off();
2164 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2165 if (pvo != NULL) {
2166 PMAP_PVO_CHECK(pvo); /* sanity check */
2167 if (pap)
2168 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2169 | (va & ADDR_POFF);
2170 }
2171 pmap_interrupts_restore(msr);
2172 PMAP_UNLOCK();
2173 return pvo != NULL;
2174 }
2175
2176 /*
2177 * Lower the protection on the specified range of this pmap.
2178 */
2179 void
2180 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2181 {
2182 struct pvo_entry *pvo;
2183 volatile struct pte *pt;
2184 register_t msr;
2185 int pteidx;
2186
2187 /*
2188 * Since this routine only downgrades protection, we should
2189 * always be called with at least one bit not set.
2190 */
2191 KASSERT(prot != VM_PROT_ALL);
2192
2193 /*
2194 * If there is no protection, this is equivalent to
2195 * remove the pmap from the pmap.
2196 */
2197 if ((prot & VM_PROT_READ) == 0) {
2198 pmap_remove(pm, va, endva);
2199 return;
2200 }
2201
2202 PMAP_LOCK();
2203
2204 msr = pmap_interrupts_off();
2205 for (; va < endva; va += PAGE_SIZE) {
2206 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2207 if (pvo == NULL)
2208 continue;
2209 PMAP_PVO_CHECK(pvo); /* sanity check */
2210
2211 /*
2212 * Revoke executable if asked to do so.
2213 */
2214 if ((prot & VM_PROT_EXECUTE) == 0)
2215 pvo_clear_exec(pvo);
2216
2217 #if 0
2218 /*
2219 * If the page is already read-only, no change
2220 * needs to be made.
2221 */
2222 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2223 continue;
2224 #endif
2225 /*
2226 * Grab the PTE pointer before we diddle with
2227 * the cached PTE copy.
2228 */
2229 pt = pmap_pvo_to_pte(pvo, pteidx);
2230 /*
2231 * Change the protection of the page.
2232 */
2233 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2234 pvo->pvo_pte.pte_lo |= PTE_BR;
2235
2236 /*
2237 * If the PVO is in the page table, update
2238 * that pte at well.
2239 */
2240 if (pt != NULL) {
2241 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2242 PVO_WHERE(pvo, PMAP_PROTECT);
2243 PMAPCOUNT(ptes_changed);
2244 }
2245
2246 PMAP_PVO_CHECK(pvo); /* sanity check */
2247 }
2248 pmap_interrupts_restore(msr);
2249 PMAP_UNLOCK();
2250 }
2251
2252 void
2253 pmap_unwire(pmap_t pm, vaddr_t va)
2254 {
2255 struct pvo_entry *pvo;
2256 register_t msr;
2257
2258 PMAP_LOCK();
2259 msr = pmap_interrupts_off();
2260 pvo = pmap_pvo_find_va(pm, va, NULL);
2261 if (pvo != NULL) {
2262 if (PVO_WIRED_P(pvo)) {
2263 pvo->pvo_vaddr &= ~PVO_WIRED;
2264 pm->pm_stats.wired_count--;
2265 }
2266 PMAP_PVO_CHECK(pvo); /* sanity check */
2267 }
2268 pmap_interrupts_restore(msr);
2269 PMAP_UNLOCK();
2270 }
2271
2272 /*
2273 * Lower the protection on the specified physical page.
2274 */
2275 void
2276 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2277 {
2278 struct pvo_head *pvo_head, pvol;
2279 struct pvo_entry *pvo, *next_pvo;
2280 volatile struct pte *pt;
2281 register_t msr;
2282
2283 PMAP_LOCK();
2284
2285 KASSERT(prot != VM_PROT_ALL);
2286 LIST_INIT(&pvol);
2287 msr = pmap_interrupts_off();
2288
2289 /*
2290 * When UVM reuses a page, it does a pmap_page_protect with
2291 * VM_PROT_NONE. At that point, we can clear the exec flag
2292 * since we know the page will have different contents.
2293 */
2294 if ((prot & VM_PROT_READ) == 0) {
2295 DPRINTFN(EXEC, ("[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2296 VM_PAGE_TO_PHYS(pg)));
2297 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2298 PMAPCOUNT(exec_uncached_page_protect);
2299 pmap_attr_clear(pg, PTE_EXEC);
2300 }
2301 }
2302
2303 pvo_head = vm_page_to_pvoh(pg);
2304 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2305 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2306 PMAP_PVO_CHECK(pvo); /* sanity check */
2307
2308 /*
2309 * Downgrading to no mapping at all, we just remove the entry.
2310 */
2311 if ((prot & VM_PROT_READ) == 0) {
2312 pmap_pvo_remove(pvo, -1, &pvol);
2313 continue;
2314 }
2315
2316 /*
2317 * If EXEC permission is being revoked, just clear the
2318 * flag in the PVO.
2319 */
2320 if ((prot & VM_PROT_EXECUTE) == 0)
2321 pvo_clear_exec(pvo);
2322
2323 /*
2324 * If this entry is already RO, don't diddle with the
2325 * page table.
2326 */
2327 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2328 PMAP_PVO_CHECK(pvo);
2329 continue;
2330 }
2331
2332 /*
2333 * Grab the PTE before the we diddle the bits so
2334 * pvo_to_pte can verify the pte contents are as
2335 * expected.
2336 */
2337 pt = pmap_pvo_to_pte(pvo, -1);
2338 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2339 pvo->pvo_pte.pte_lo |= PTE_BR;
2340 if (pt != NULL) {
2341 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2342 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2343 PMAPCOUNT(ptes_changed);
2344 }
2345 PMAP_PVO_CHECK(pvo); /* sanity check */
2346 }
2347 pmap_interrupts_restore(msr);
2348 pmap_pvo_free_list(&pvol);
2349
2350 PMAP_UNLOCK();
2351 }
2352
2353 /*
2354 * Activate the address space for the specified process. If the process
2355 * is the current process, load the new MMU context.
2356 */
2357 void
2358 pmap_activate(struct lwp *l)
2359 {
2360 struct pcb *pcb = lwp_getpcb(l);
2361 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2362
2363 DPRINTFN(ACTIVATE,
2364 ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
2365
2366 /*
2367 * XXX Normally performed in cpu_lwp_fork().
2368 */
2369 pcb->pcb_pm = pmap;
2370
2371 /*
2372 * In theory, the SR registers need only be valid on return
2373 * to user space wait to do them there.
2374 */
2375 if (l == curlwp) {
2376 /* Store pointer to new current pmap. */
2377 curpm = pmap;
2378 }
2379 }
2380
2381 /*
2382 * Deactivate the specified process's address space.
2383 */
2384 void
2385 pmap_deactivate(struct lwp *l)
2386 {
2387 }
2388
2389 bool
2390 pmap_query_bit(struct vm_page *pg, int ptebit)
2391 {
2392 struct pvo_entry *pvo;
2393 volatile struct pte *pt;
2394 register_t msr;
2395
2396 PMAP_LOCK();
2397
2398 if (pmap_attr_fetch(pg) & ptebit) {
2399 PMAP_UNLOCK();
2400 return true;
2401 }
2402
2403 msr = pmap_interrupts_off();
2404 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2405 PMAP_PVO_CHECK(pvo); /* sanity check */
2406 /*
2407 * See if we saved the bit off. If so cache, it and return
2408 * success.
2409 */
2410 if (pvo->pvo_pte.pte_lo & ptebit) {
2411 pmap_attr_save(pg, ptebit);
2412 PMAP_PVO_CHECK(pvo); /* sanity check */
2413 pmap_interrupts_restore(msr);
2414 PMAP_UNLOCK();
2415 return true;
2416 }
2417 }
2418 /*
2419 * No luck, now go thru the hard part of looking at the ptes
2420 * themselves. Sync so any pending REF/CHG bits are flushed
2421 * to the PTEs.
2422 */
2423 SYNC();
2424 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2425 PMAP_PVO_CHECK(pvo); /* sanity check */
2426 /*
2427 * See if this pvo have a valid PTE. If so, fetch the
2428 * REF/CHG bits from the valid PTE. If the appropriate
2429 * ptebit is set, cache, it and return success.
2430 */
2431 pt = pmap_pvo_to_pte(pvo, -1);
2432 if (pt != NULL) {
2433 pmap_pte_synch(pt, &pvo->pvo_pte);
2434 if (pvo->pvo_pte.pte_lo & ptebit) {
2435 pmap_attr_save(pg, ptebit);
2436 PMAP_PVO_CHECK(pvo); /* sanity check */
2437 pmap_interrupts_restore(msr);
2438 PMAP_UNLOCK();
2439 return true;
2440 }
2441 }
2442 }
2443 pmap_interrupts_restore(msr);
2444 PMAP_UNLOCK();
2445 return false;
2446 }
2447
2448 bool
2449 pmap_clear_bit(struct vm_page *pg, int ptebit)
2450 {
2451 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2452 struct pvo_entry *pvo;
2453 volatile struct pte *pt;
2454 register_t msr;
2455 int rv = 0;
2456
2457 PMAP_LOCK();
2458 msr = pmap_interrupts_off();
2459
2460 /*
2461 * Fetch the cache value
2462 */
2463 rv |= pmap_attr_fetch(pg);
2464
2465 /*
2466 * Clear the cached value.
2467 */
2468 pmap_attr_clear(pg, ptebit);
2469
2470 /*
2471 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2472 * can reset the right ones). Note that since the pvo entries and
2473 * list heads are accessed via BAT0 and are never placed in the
2474 * page table, we don't have to worry about further accesses setting
2475 * the REF/CHG bits.
2476 */
2477 SYNC();
2478
2479 /*
2480 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2481 * valid PTE. If so, clear the ptebit from the valid PTE.
2482 */
2483 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2484 PMAP_PVO_CHECK(pvo); /* sanity check */
2485 pt = pmap_pvo_to_pte(pvo, -1);
2486 if (pt != NULL) {
2487 /*
2488 * Only sync the PTE if the bit we are looking
2489 * for is not already set.
2490 */
2491 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2492 pmap_pte_synch(pt, &pvo->pvo_pte);
2493 /*
2494 * If the bit we are looking for was already set,
2495 * clear that bit in the pte.
2496 */
2497 if (pvo->pvo_pte.pte_lo & ptebit)
2498 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2499 }
2500 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2501 pvo->pvo_pte.pte_lo &= ~ptebit;
2502 PMAP_PVO_CHECK(pvo); /* sanity check */
2503 }
2504 pmap_interrupts_restore(msr);
2505
2506 /*
2507 * If we are clearing the modify bit and this page was marked EXEC
2508 * and the user of the page thinks the page was modified, then we
2509 * need to clean it from the icache if it's mapped or clear the EXEC
2510 * bit if it's not mapped. The page itself might not have the CHG
2511 * bit set if the modification was done via DMA to the page.
2512 */
2513 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2514 if (LIST_EMPTY(pvoh)) {
2515 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2516 VM_PAGE_TO_PHYS(pg)));
2517 pmap_attr_clear(pg, PTE_EXEC);
2518 PMAPCOUNT(exec_uncached_clear_modify);
2519 } else {
2520 DPRINTFN(EXEC, ("[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2521 VM_PAGE_TO_PHYS(pg)));
2522 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2523 PMAPCOUNT(exec_synced_clear_modify);
2524 }
2525 }
2526 PMAP_UNLOCK();
2527 return (rv & ptebit) != 0;
2528 }
2529
2530 void
2531 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2532 {
2533 struct pvo_entry *pvo;
2534 size_t offset = va & ADDR_POFF;
2535 int s;
2536
2537 PMAP_LOCK();
2538 s = splvm();
2539 while (len > 0) {
2540 size_t seglen = PAGE_SIZE - offset;
2541 if (seglen > len)
2542 seglen = len;
2543 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2544 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2545 pmap_syncicache(
2546 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2547 PMAP_PVO_CHECK(pvo);
2548 }
2549 va += seglen;
2550 len -= seglen;
2551 offset = 0;
2552 }
2553 splx(s);
2554 PMAP_UNLOCK();
2555 }
2556
2557 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2558 void
2559 pmap_pte_print(volatile struct pte *pt)
2560 {
2561 printf("PTE %p: ", pt);
2562
2563 #if defined(PMAP_OEA)
2564 /* High word: */
2565 printf("%#" _PRIxpte ": [", pt->pte_hi);
2566 #else
2567 printf("%#" _PRIxpte ": [", pt->pte_hi);
2568 #endif /* PMAP_OEA */
2569
2570 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2571 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2572
2573 printf("%#" _PRIxpte " %#" _PRIxpte "",
2574 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2575 pt->pte_hi & PTE_API);
2576 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2577 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2578 #else
2579 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2580 #endif /* PMAP_OEA */
2581
2582 /* Low word: */
2583 #if defined (PMAP_OEA)
2584 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2585 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2586 #else
2587 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2588 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2589 #endif
2590 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2591 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2592 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2593 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2594 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2595 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2596 switch (pt->pte_lo & PTE_PP) {
2597 case PTE_BR: printf("br]\n"); break;
2598 case PTE_BW: printf("bw]\n"); break;
2599 case PTE_SO: printf("so]\n"); break;
2600 case PTE_SW: printf("sw]\n"); break;
2601 }
2602 }
2603 #endif
2604
2605 #if defined(DDB)
2606 void
2607 pmap_pteg_check(void)
2608 {
2609 volatile struct pte *pt;
2610 int i;
2611 int ptegidx;
2612 u_int p_valid = 0;
2613 u_int s_valid = 0;
2614 u_int invalid = 0;
2615
2616 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2617 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2618 if (pt->pte_hi & PTE_VALID) {
2619 if (pt->pte_hi & PTE_HID)
2620 s_valid++;
2621 else
2622 {
2623 p_valid++;
2624 }
2625 } else
2626 invalid++;
2627 }
2628 }
2629 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2630 p_valid, p_valid, s_valid, s_valid,
2631 invalid, invalid);
2632 }
2633
2634 void
2635 pmap_print_mmuregs(void)
2636 {
2637 int i;
2638 u_int cpuvers;
2639 #ifndef PMAP_OEA64
2640 vaddr_t addr;
2641 register_t soft_sr[16];
2642 #endif
2643 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2644 struct bat soft_ibat[4];
2645 struct bat soft_dbat[4];
2646 #endif
2647 paddr_t sdr1;
2648
2649 cpuvers = MFPVR() >> 16;
2650 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2651 #ifndef PMAP_OEA64
2652 addr = 0;
2653 for (i = 0; i < 16; i++) {
2654 soft_sr[i] = MFSRIN(addr);
2655 addr += (1 << ADDR_SR_SHFT);
2656 }
2657 #endif
2658
2659 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2660 /* read iBAT (601: uBAT) registers */
2661 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2662 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2663 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2664 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2665 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2666 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2667 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2668 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2669
2670
2671 if (cpuvers != MPC601) {
2672 /* read dBAT registers */
2673 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2674 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2675 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2676 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2677 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2678 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2679 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2680 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2681 }
2682 #endif
2683
2684 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2685 #ifndef PMAP_OEA64
2686 printf("SR[]:\t");
2687 for (i = 0; i < 4; i++)
2688 printf("0x%08lx, ", soft_sr[i]);
2689 printf("\n\t");
2690 for ( ; i < 8; i++)
2691 printf("0x%08lx, ", soft_sr[i]);
2692 printf("\n\t");
2693 for ( ; i < 12; i++)
2694 printf("0x%08lx, ", soft_sr[i]);
2695 printf("\n\t");
2696 for ( ; i < 16; i++)
2697 printf("0x%08lx, ", soft_sr[i]);
2698 printf("\n");
2699 #endif
2700
2701 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2702 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2703 for (i = 0; i < 4; i++) {
2704 printf("0x%08lx 0x%08lx, ",
2705 soft_ibat[i].batu, soft_ibat[i].batl);
2706 if (i == 1)
2707 printf("\n\t");
2708 }
2709 if (cpuvers != MPC601) {
2710 printf("\ndBAT[]:\t");
2711 for (i = 0; i < 4; i++) {
2712 printf("0x%08lx 0x%08lx, ",
2713 soft_dbat[i].batu, soft_dbat[i].batl);
2714 if (i == 1)
2715 printf("\n\t");
2716 }
2717 }
2718 printf("\n");
2719 #endif /* PMAP_OEA... */
2720 }
2721
2722 void
2723 pmap_print_pte(pmap_t pm, vaddr_t va)
2724 {
2725 struct pvo_entry *pvo;
2726 volatile struct pte *pt;
2727 int pteidx;
2728
2729 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2730 if (pvo != NULL) {
2731 pt = pmap_pvo_to_pte(pvo, pteidx);
2732 if (pt != NULL) {
2733 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2734 va, pt,
2735 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2736 pt->pte_hi, pt->pte_lo);
2737 } else {
2738 printf("No valid PTE found\n");
2739 }
2740 } else {
2741 printf("Address not in pmap\n");
2742 }
2743 }
2744
2745 void
2746 pmap_pteg_dist(void)
2747 {
2748 struct pvo_entry *pvo;
2749 int ptegidx;
2750 int depth;
2751 int max_depth = 0;
2752 unsigned int depths[64];
2753
2754 memset(depths, 0, sizeof(depths));
2755 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2756 depth = 0;
2757 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2758 depth++;
2759 }
2760 if (depth > max_depth)
2761 max_depth = depth;
2762 if (depth > 63)
2763 depth = 63;
2764 depths[depth]++;
2765 }
2766
2767 for (depth = 0; depth < 64; depth++) {
2768 printf(" [%2d]: %8u", depth, depths[depth]);
2769 if ((depth & 3) == 3)
2770 printf("\n");
2771 if (depth == max_depth)
2772 break;
2773 }
2774 if ((depth & 3) != 3)
2775 printf("\n");
2776 printf("Max depth found was %d\n", max_depth);
2777 }
2778 #endif /* DEBUG */
2779
2780 #if defined(PMAPCHECK) || defined(DEBUG)
2781 void
2782 pmap_pvo_verify(void)
2783 {
2784 int ptegidx;
2785 int s;
2786
2787 s = splvm();
2788 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2789 struct pvo_entry *pvo;
2790 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2791 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2792 panic("pmap_pvo_verify: invalid pvo %p "
2793 "on list %#x", pvo, ptegidx);
2794 pmap_pvo_check(pvo);
2795 }
2796 }
2797 splx(s);
2798 }
2799 #endif /* PMAPCHECK */
2800
2801
2802 void *
2803 pmap_pool_ualloc(struct pool *pp, int flags)
2804 {
2805 struct pvo_page *pvop;
2806
2807 if (uvm.page_init_done != true) {
2808 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2809 }
2810
2811 PMAP_LOCK();
2812 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2813 if (pvop != NULL) {
2814 pmap_upvop_free--;
2815 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2816 PMAP_UNLOCK();
2817 return pvop;
2818 }
2819 PMAP_UNLOCK();
2820 return pmap_pool_malloc(pp, flags);
2821 }
2822
2823 void *
2824 pmap_pool_malloc(struct pool *pp, int flags)
2825 {
2826 struct pvo_page *pvop;
2827 struct vm_page *pg;
2828
2829 PMAP_LOCK();
2830 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2831 if (pvop != NULL) {
2832 pmap_mpvop_free--;
2833 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2834 PMAP_UNLOCK();
2835 return pvop;
2836 }
2837 PMAP_UNLOCK();
2838 again:
2839 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2840 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2841 if (__predict_false(pg == NULL)) {
2842 if (flags & PR_WAITOK) {
2843 uvm_wait("plpg");
2844 goto again;
2845 } else {
2846 return (0);
2847 }
2848 }
2849 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2850 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2851 }
2852
2853 void
2854 pmap_pool_ufree(struct pool *pp, void *va)
2855 {
2856 struct pvo_page *pvop;
2857 #if 0
2858 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2859 pmap_pool_mfree(va, size, tag);
2860 return;
2861 }
2862 #endif
2863 PMAP_LOCK();
2864 pvop = va;
2865 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2866 pmap_upvop_free++;
2867 if (pmap_upvop_free > pmap_upvop_maxfree)
2868 pmap_upvop_maxfree = pmap_upvop_free;
2869 PMAP_UNLOCK();
2870 }
2871
2872 void
2873 pmap_pool_mfree(struct pool *pp, void *va)
2874 {
2875 struct pvo_page *pvop;
2876
2877 PMAP_LOCK();
2878 pvop = va;
2879 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2880 pmap_mpvop_free++;
2881 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2882 pmap_mpvop_maxfree = pmap_mpvop_free;
2883 PMAP_UNLOCK();
2884 #if 0
2885 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2886 #endif
2887 }
2888
2889 /*
2890 * This routine in bootstraping to steal to-be-managed memory (which will
2891 * then be unmanaged). We use it to grab from the first 256MB for our
2892 * pmap needs and above 256MB for other stuff.
2893 */
2894 vaddr_t
2895 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2896 {
2897 vsize_t size;
2898 vaddr_t va;
2899 paddr_t pa = 0;
2900 int npgs, bank;
2901 struct vm_physseg *ps;
2902
2903 if (uvm.page_init_done == true)
2904 panic("pmap_steal_memory: called _after_ bootstrap");
2905
2906 *vstartp = VM_MIN_KERNEL_ADDRESS;
2907 *vendp = VM_MAX_KERNEL_ADDRESS;
2908
2909 size = round_page(vsize);
2910 npgs = atop(size);
2911
2912 /*
2913 * PA 0 will never be among those given to UVM so we can use it
2914 * to indicate we couldn't steal any memory.
2915 */
2916 for (bank = 0; bank < vm_nphysseg; bank++) {
2917 ps = VM_PHYSMEM_PTR(bank);
2918 if (ps->free_list == VM_FREELIST_FIRST256 &&
2919 ps->avail_end - ps->avail_start >= npgs) {
2920 pa = ptoa(ps->avail_start);
2921 break;
2922 }
2923 }
2924
2925 if (pa == 0)
2926 panic("pmap_steal_memory: no approriate memory to steal!");
2927
2928 ps->avail_start += npgs;
2929 ps->start += npgs;
2930
2931 /*
2932 * If we've used up all the pages in the segment, remove it and
2933 * compact the list.
2934 */
2935 if (ps->avail_start == ps->end) {
2936 /*
2937 * If this was the last one, then a very bad thing has occurred
2938 */
2939 if (--vm_nphysseg == 0)
2940 panic("pmap_steal_memory: out of memory!");
2941
2942 printf("pmap_steal_memory: consumed bank %d\n", bank);
2943 for (; bank < vm_nphysseg; bank++, ps++) {
2944 ps[0] = ps[1];
2945 }
2946 }
2947
2948 va = (vaddr_t) pa;
2949 memset((void *) va, 0, size);
2950 pmap_pages_stolen += npgs;
2951 #ifdef DEBUG
2952 if (pmapdebug && npgs > 1) {
2953 u_int cnt = 0;
2954 for (bank = 0; bank < vm_nphysseg; bank++) {
2955 ps = VM_PHYSMEM_PTR(bank);
2956 cnt += ps->avail_end - ps->avail_start;
2957 }
2958 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2959 npgs, pmap_pages_stolen, cnt);
2960 }
2961 #endif
2962
2963 return va;
2964 }
2965
2966 /*
2967 * Find a chuck of memory with right size and alignment.
2968 */
2969 paddr_t
2970 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2971 {
2972 struct mem_region *mp;
2973 paddr_t s, e;
2974 int i, j;
2975
2976 size = round_page(size);
2977
2978 DPRINTFN(BOOT,
2979 ("pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2980 size, alignment, at_end));
2981
2982 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2983 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2984 alignment);
2985
2986 if (at_end) {
2987 if (alignment != PAGE_SIZE)
2988 panic("pmap_boot_find_memory: invalid ending "
2989 "alignment %#" _PRIxpa, alignment);
2990
2991 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2992 s = mp->start + mp->size - size;
2993 if (s >= mp->start && mp->size >= size) {
2994 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
2995 DPRINTFN(BOOT,
2996 ("pmap_boot_find_memory: b-avail[%d] start "
2997 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
2998 mp->start, mp->size));
2999 mp->size -= size;
3000 DPRINTFN(BOOT,
3001 ("pmap_boot_find_memory: a-avail[%d] start "
3002 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3003 mp->start, mp->size));
3004 return s;
3005 }
3006 }
3007 panic("pmap_boot_find_memory: no available memory");
3008 }
3009
3010 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3011 s = (mp->start + alignment - 1) & ~(alignment-1);
3012 e = s + size;
3013
3014 /*
3015 * Is the calculated region entirely within the region?
3016 */
3017 if (s < mp->start || e > mp->start + mp->size)
3018 continue;
3019
3020 DPRINTFN(BOOT,(": %#" _PRIxpa "\n", s));
3021 if (s == mp->start) {
3022 /*
3023 * If the block starts at the beginning of region,
3024 * adjust the size & start. (the region may now be
3025 * zero in length)
3026 */
3027 DPRINTFN(BOOT,
3028 ("pmap_boot_find_memory: b-avail[%d] start "
3029 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3030 mp->start += size;
3031 mp->size -= size;
3032 DPRINTFN(BOOT,
3033 ("pmap_boot_find_memory: a-avail[%d] start "
3034 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3035 } else if (e == mp->start + mp->size) {
3036 /*
3037 * If the block starts at the beginning of region,
3038 * adjust only the size.
3039 */
3040 DPRINTFN(BOOT,
3041 ("pmap_boot_find_memory: b-avail[%d] start "
3042 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3043 mp->size -= size;
3044 DPRINTFN(BOOT,
3045 ("pmap_boot_find_memory: a-avail[%d] start "
3046 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3047 } else {
3048 /*
3049 * Block is in the middle of the region, so we
3050 * have to split it in two.
3051 */
3052 for (j = avail_cnt; j > i + 1; j--) {
3053 avail[j] = avail[j-1];
3054 }
3055 DPRINTFN(BOOT,
3056 ("pmap_boot_find_memory: b-avail[%d] start "
3057 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size));
3058 mp[1].start = e;
3059 mp[1].size = mp[0].start + mp[0].size - e;
3060 mp[0].size = s - mp[0].start;
3061 avail_cnt++;
3062 for (; i < avail_cnt; i++) {
3063 DPRINTFN(BOOT,
3064 ("pmap_boot_find_memory: a-avail[%d] "
3065 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3066 avail[i].start, avail[i].size));
3067 }
3068 }
3069 KASSERT(s == (uintptr_t) s);
3070 return s;
3071 }
3072 panic("pmap_boot_find_memory: not enough memory for "
3073 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3074 }
3075
3076 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3077 #if defined (PMAP_OEA64_BRIDGE)
3078 int
3079 pmap_setup_segment0_map(int use_large_pages, ...)
3080 {
3081 vaddr_t va;
3082
3083 register_t pte_lo = 0x0;
3084 int ptegidx = 0, i = 0;
3085 struct pte pte;
3086 va_list ap;
3087
3088 /* Coherent + Supervisor RW, no user access */
3089 pte_lo = PTE_M;
3090
3091 /* XXXSL
3092 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3093 * these have to take priority.
3094 */
3095 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3096 ptegidx = va_to_pteg(pmap_kernel(), va);
3097 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3098 i = pmap_pte_insert(ptegidx, &pte);
3099 }
3100
3101 va_start(ap, use_large_pages);
3102 while (1) {
3103 paddr_t pa;
3104 size_t size;
3105
3106 va = va_arg(ap, vaddr_t);
3107
3108 if (va == 0)
3109 break;
3110
3111 pa = va_arg(ap, paddr_t);
3112 size = va_arg(ap, size_t);
3113
3114 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3115 #if 0
3116 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3117 #endif
3118 ptegidx = va_to_pteg(pmap_kernel(), va);
3119 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3120 i = pmap_pte_insert(ptegidx, &pte);
3121 }
3122 }
3123
3124 TLBSYNC();
3125 SYNC();
3126 return (0);
3127 }
3128 #endif /* PMAP_OEA64_BRIDGE */
3129
3130 /*
3131 * This is not part of the defined PMAP interface and is specific to the
3132 * PowerPC architecture. This is called during initppc, before the system
3133 * is really initialized.
3134 */
3135 void
3136 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3137 {
3138 struct mem_region *mp, tmp;
3139 paddr_t s, e;
3140 psize_t size;
3141 int i, j;
3142
3143 /*
3144 * Get memory.
3145 */
3146 mem_regions(&mem, &avail);
3147 #if defined(DEBUG)
3148 if (pmapdebug & PMAPDEBUG_BOOT) {
3149 printf("pmap_bootstrap: memory configuration:\n");
3150 for (mp = mem; mp->size; mp++) {
3151 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3152 mp->start, mp->size);
3153 }
3154 for (mp = avail; mp->size; mp++) {
3155 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3156 mp->start, mp->size);
3157 }
3158 }
3159 #endif
3160
3161 /*
3162 * Find out how much physical memory we have and in how many chunks.
3163 */
3164 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3165 if (mp->start >= pmap_memlimit)
3166 continue;
3167 if (mp->start + mp->size > pmap_memlimit) {
3168 size = pmap_memlimit - mp->start;
3169 physmem += btoc(size);
3170 } else {
3171 physmem += btoc(mp->size);
3172 }
3173 mem_cnt++;
3174 }
3175
3176 /*
3177 * Count the number of available entries.
3178 */
3179 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3180 avail_cnt++;
3181
3182 /*
3183 * Page align all regions.
3184 */
3185 kernelstart = trunc_page(kernelstart);
3186 kernelend = round_page(kernelend);
3187 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3188 s = round_page(mp->start);
3189 mp->size -= (s - mp->start);
3190 mp->size = trunc_page(mp->size);
3191 mp->start = s;
3192 e = mp->start + mp->size;
3193
3194 DPRINTFN(BOOT,
3195 ("pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3196 i, mp->start, mp->size));
3197
3198 /*
3199 * Don't allow the end to run beyond our artificial limit
3200 */
3201 if (e > pmap_memlimit)
3202 e = pmap_memlimit;
3203
3204 /*
3205 * Is this region empty or strange? skip it.
3206 */
3207 if (e <= s) {
3208 mp->start = 0;
3209 mp->size = 0;
3210 continue;
3211 }
3212
3213 /*
3214 * Does this overlap the beginning of kernel?
3215 * Does extend past the end of the kernel?
3216 */
3217 else if (s < kernelstart && e > kernelstart) {
3218 if (e > kernelend) {
3219 avail[avail_cnt].start = kernelend;
3220 avail[avail_cnt].size = e - kernelend;
3221 avail_cnt++;
3222 }
3223 mp->size = kernelstart - s;
3224 }
3225 /*
3226 * Check whether this region overlaps the end of the kernel.
3227 */
3228 else if (s < kernelend && e > kernelend) {
3229 mp->start = kernelend;
3230 mp->size = e - kernelend;
3231 }
3232 /*
3233 * Look whether this regions is completely inside the kernel.
3234 * Nuke it if it does.
3235 */
3236 else if (s >= kernelstart && e <= kernelend) {
3237 mp->start = 0;
3238 mp->size = 0;
3239 }
3240 /*
3241 * If the user imposed a memory limit, enforce it.
3242 */
3243 else if (s >= pmap_memlimit) {
3244 mp->start = -PAGE_SIZE; /* let's know why */
3245 mp->size = 0;
3246 }
3247 else {
3248 mp->start = s;
3249 mp->size = e - s;
3250 }
3251 DPRINTFN(BOOT,
3252 ("pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3253 i, mp->start, mp->size));
3254 }
3255
3256 /*
3257 * Move (and uncount) all the null return to the end.
3258 */
3259 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3260 if (mp->size == 0) {
3261 tmp = avail[i];
3262 avail[i] = avail[--avail_cnt];
3263 avail[avail_cnt] = avail[i];
3264 }
3265 }
3266
3267 /*
3268 * (Bubble)sort them into ascending order.
3269 */
3270 for (i = 0; i < avail_cnt; i++) {
3271 for (j = i + 1; j < avail_cnt; j++) {
3272 if (avail[i].start > avail[j].start) {
3273 tmp = avail[i];
3274 avail[i] = avail[j];
3275 avail[j] = tmp;
3276 }
3277 }
3278 }
3279
3280 /*
3281 * Make sure they don't overlap.
3282 */
3283 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3284 if (mp[0].start + mp[0].size > mp[1].start) {
3285 mp[0].size = mp[1].start - mp[0].start;
3286 }
3287 DPRINTFN(BOOT,
3288 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3289 i, mp->start, mp->size));
3290 }
3291 DPRINTFN(BOOT,
3292 ("pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3293 i, mp->start, mp->size));
3294
3295 #ifdef PTEGCOUNT
3296 pmap_pteg_cnt = PTEGCOUNT;
3297 #else /* PTEGCOUNT */
3298
3299 pmap_pteg_cnt = 0x1000;
3300
3301 while (pmap_pteg_cnt < physmem)
3302 pmap_pteg_cnt <<= 1;
3303
3304 pmap_pteg_cnt >>= 1;
3305 #endif /* PTEGCOUNT */
3306
3307 #ifdef DEBUG
3308 DPRINTFN(BOOT,
3309 ("pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt));
3310 #endif
3311
3312 /*
3313 * Find suitably aligned memory for PTEG hash table.
3314 */
3315 size = pmap_pteg_cnt * sizeof(struct pteg);
3316 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3317
3318 #ifdef DEBUG
3319 DPRINTFN(BOOT,
3320 ("PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table));
3321 #endif
3322
3323
3324 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3325 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3326 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3327 pmap_pteg_table, size);
3328 #endif
3329
3330 memset(__UNVOLATILE(pmap_pteg_table), 0,
3331 pmap_pteg_cnt * sizeof(struct pteg));
3332 pmap_pteg_mask = pmap_pteg_cnt - 1;
3333
3334 /*
3335 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3336 * with pages. So we just steal them before giving them to UVM.
3337 */
3338 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3339 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3341 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3342 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3343 pmap_pvo_table, size);
3344 #endif
3345
3346 for (i = 0; i < pmap_pteg_cnt; i++)
3347 TAILQ_INIT(&pmap_pvo_table[i]);
3348
3349 #ifndef MSGBUFADDR
3350 /*
3351 * Allocate msgbuf in high memory.
3352 */
3353 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3354 #endif
3355
3356 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3357 paddr_t pfstart = atop(mp->start);
3358 paddr_t pfend = atop(mp->start + mp->size);
3359 if (mp->size == 0)
3360 continue;
3361 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3362 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3363 VM_FREELIST_FIRST256);
3364 } else if (mp->start >= SEGMENT_LENGTH) {
3365 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3366 VM_FREELIST_DEFAULT);
3367 } else {
3368 pfend = atop(SEGMENT_LENGTH);
3369 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3370 VM_FREELIST_FIRST256);
3371 pfstart = atop(SEGMENT_LENGTH);
3372 pfend = atop(mp->start + mp->size);
3373 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3374 VM_FREELIST_DEFAULT);
3375 }
3376 }
3377
3378 /*
3379 * Make sure kernel vsid is allocated as well as VSID 0.
3380 */
3381 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3382 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3383 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3384 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3385 pmap_vsid_bitmap[0] |= 1;
3386
3387 /*
3388 * Initialize kernel pmap and hardware.
3389 */
3390
3391 /* PMAP_OEA64_BRIDGE does support these instructions */
3392 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3393 for (i = 0; i < 16; i++) {
3394 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3395 __asm volatile ("mtsrin %0,%1"
3396 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3397 }
3398
3399 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3400 __asm volatile ("mtsr %0,%1"
3401 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3402 #ifdef KERNEL2_SR
3403 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3404 __asm volatile ("mtsr %0,%1"
3405 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3406 #endif
3407 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3408 #if defined (PMAP_OEA)
3409 for (i = 0; i < 16; i++) {
3410 if (iosrtable[i] & SR601_T) {
3411 pmap_kernel()->pm_sr[i] = iosrtable[i];
3412 __asm volatile ("mtsrin %0,%1"
3413 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3414 }
3415 }
3416 __asm volatile ("sync; mtsdr1 %0; isync"
3417 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3418 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3419 __asm __volatile ("sync; mtsdr1 %0; isync"
3420 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3421 #endif
3422 tlbia();
3423
3424 #ifdef ALTIVEC
3425 pmap_use_altivec = cpu_altivec;
3426 #endif
3427
3428 #ifdef DEBUG
3429 if (pmapdebug & PMAPDEBUG_BOOT) {
3430 u_int cnt;
3431 int bank;
3432 char pbuf[9];
3433 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3434 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3435 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3436 bank,
3437 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3438 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3439 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3440 }
3441 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3442 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3443 pbuf, cnt);
3444 }
3445 #endif
3446
3447 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3448 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3449 &pmap_pool_uallocator, IPL_VM);
3450
3451 pool_setlowat(&pmap_upvo_pool, 252);
3452
3453 pool_init(&pmap_pool, sizeof(struct pmap),
3454 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3455 IPL_NONE);
3456
3457 #if defined(PMAP_NEED_MAPKERNEL) || 1
3458 {
3459 struct pmap *pm = pmap_kernel();
3460 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3461 extern int etext[], kernel_text[];
3462 vaddr_t va, va_etext = (paddr_t) etext;
3463 #endif
3464 paddr_t pa, pa_end;
3465 register_t sr;
3466 struct pte pt;
3467 unsigned int ptegidx;
3468 int bank;
3469
3470 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3471 pm->pm_sr[0] = sr;
3472
3473 for (bank = 0; bank < vm_nphysseg; bank++) {
3474 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3475 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3476 for (; pa < pa_end; pa += PAGE_SIZE) {
3477 ptegidx = va_to_pteg(pm, pa);
3478 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3479 pmap_pte_insert(ptegidx, &pt);
3480 }
3481 }
3482
3483 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3484 va = (vaddr_t) kernel_text;
3485
3486 for (pa = kernelstart; va < va_etext;
3487 pa += PAGE_SIZE, va += PAGE_SIZE) {
3488 ptegidx = va_to_pteg(pm, va);
3489 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3490 pmap_pte_insert(ptegidx, &pt);
3491 }
3492
3493 for (; pa < kernelend;
3494 pa += PAGE_SIZE, va += PAGE_SIZE) {
3495 ptegidx = va_to_pteg(pm, va);
3496 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3497 pmap_pte_insert(ptegidx, &pt);
3498 }
3499
3500 for (va = 0, pa = 0; va < kernelstart;
3501 pa += PAGE_SIZE, va += PAGE_SIZE) {
3502 ptegidx = va_to_pteg(pm, va);
3503 if (va < 0x3000)
3504 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3505 else
3506 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3507 pmap_pte_insert(ptegidx, &pt);
3508 }
3509 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3510 pa += PAGE_SIZE, va += PAGE_SIZE) {
3511 ptegidx = va_to_pteg(pm, va);
3512 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3513 pmap_pte_insert(ptegidx, &pt);
3514 }
3515 #endif
3516
3517 __asm volatile ("mtsrin %0,%1"
3518 :: "r"(sr), "r"(kernelstart));
3519 }
3520 #endif
3521 }
3522