pmap.c revision 1.85 1 /* $NetBSD: pmap.c,v 1.85 2012/02/03 19:29:59 matt Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.85 2012/02/03 19:29:59 matt Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/pool.h>
78 #include <sys/queue.h>
79 #include <sys/device.h> /* for evcnt */
80 #include <sys/systm.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84
85 #include <machine/powerpc.h>
86 #include <powerpc/bat.h>
87 #include <powerpc/pcb.h>
88 #include <powerpc/psl.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/spr.h>
91 #include <powerpc/oea/sr_601.h>
92
93 #ifdef ALTIVEC
94 int pmap_use_altivec;
95 #endif
96
97 volatile struct pteg *pmap_pteg_table;
98 unsigned int pmap_pteg_cnt;
99 unsigned int pmap_pteg_mask;
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
104 #endif
105
106 struct pmap kernel_pmap_;
107 unsigned int pmap_pages_stolen;
108 u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 u_long pmap_pvo_enter_depth;
111 u_long pmap_pvo_remove_depth;
112 #endif
113
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define PMAP_OEA 1
123 #endif
124
125 #if defined(PMAP_OEA)
126 #define _PRIxpte "lx"
127 #else
128 #define _PRIxpte PRIx64
129 #endif
130 #define _PRIxpa "lx"
131 #define _PRIxva "lx"
132 #define _PRIsr "lx"
133
134 #ifdef PMAP_NEEDS_FIXUP
135 #if defined(PMAP_OEA)
136 #define PMAPNAME(name) pmap32_##name
137 #elif defined(PMAP_OEA64)
138 #define PMAPNAME(name) pmap64_##name
139 #elif defined(PMAP_OEA64_BRIDGE)
140 #define PMAPNAME(name) pmap64bridge_##name
141 #else
142 #error unknown variant for pmap
143 #endif
144 #endif /* PMAP_NEEDS_FIXUP */
145
146 #ifdef PMAPNAME
147 #define STATIC static
148 #define pmap_pte_spill PMAPNAME(pte_spill)
149 #define pmap_real_memory PMAPNAME(real_memory)
150 #define pmap_init PMAPNAME(init)
151 #define pmap_virtual_space PMAPNAME(virtual_space)
152 #define pmap_create PMAPNAME(create)
153 #define pmap_reference PMAPNAME(reference)
154 #define pmap_destroy PMAPNAME(destroy)
155 #define pmap_copy PMAPNAME(copy)
156 #define pmap_update PMAPNAME(update)
157 #define pmap_enter PMAPNAME(enter)
158 #define pmap_remove PMAPNAME(remove)
159 #define pmap_kenter_pa PMAPNAME(kenter_pa)
160 #define pmap_kremove PMAPNAME(kremove)
161 #define pmap_extract PMAPNAME(extract)
162 #define pmap_protect PMAPNAME(protect)
163 #define pmap_unwire PMAPNAME(unwire)
164 #define pmap_page_protect PMAPNAME(page_protect)
165 #define pmap_query_bit PMAPNAME(query_bit)
166 #define pmap_clear_bit PMAPNAME(clear_bit)
167
168 #define pmap_activate PMAPNAME(activate)
169 #define pmap_deactivate PMAPNAME(deactivate)
170
171 #define pmap_pinit PMAPNAME(pinit)
172 #define pmap_procwr PMAPNAME(procwr)
173
174 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
175 #define pmap_pte_print PMAPNAME(pte_print)
176 #define pmap_pteg_check PMAPNAME(pteg_check)
177 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
178 #define pmap_print_pte PMAPNAME(print_pte)
179 #define pmap_pteg_dist PMAPNAME(pteg_dist)
180 #endif
181 #if defined(DEBUG) || defined(PMAPCHECK)
182 #define pmap_pvo_verify PMAPNAME(pvo_verify)
183 #define pmapcheck PMAPNAME(check)
184 #endif
185 #if defined(DEBUG) || defined(PMAPDEBUG)
186 #define pmapdebug PMAPNAME(debug)
187 #endif
188 #define pmap_steal_memory PMAPNAME(steal_memory)
189 #define pmap_bootstrap PMAPNAME(bootstrap)
190 #else
191 #define STATIC /* nothing */
192 #endif /* PMAPNAME */
193
194 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
195 STATIC void pmap_real_memory(paddr_t *, psize_t *);
196 STATIC void pmap_init(void);
197 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
198 STATIC pmap_t pmap_create(void);
199 STATIC void pmap_reference(pmap_t);
200 STATIC void pmap_destroy(pmap_t);
201 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
202 STATIC void pmap_update(pmap_t);
203 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
204 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
205 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
206 STATIC void pmap_kremove(vaddr_t, vsize_t);
207 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
208
209 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
210 STATIC void pmap_unwire(pmap_t, vaddr_t);
211 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
212 STATIC bool pmap_query_bit(struct vm_page *, int);
213 STATIC bool pmap_clear_bit(struct vm_page *, int);
214
215 STATIC void pmap_activate(struct lwp *);
216 STATIC void pmap_deactivate(struct lwp *);
217
218 STATIC void pmap_pinit(pmap_t pm);
219 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
220
221 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
222 STATIC void pmap_pte_print(volatile struct pte *);
223 STATIC void pmap_pteg_check(void);
224 STATIC void pmap_print_mmuregs(void);
225 STATIC void pmap_print_pte(pmap_t, vaddr_t);
226 STATIC void pmap_pteg_dist(void);
227 #endif
228 #if defined(DEBUG) || defined(PMAPCHECK)
229 STATIC void pmap_pvo_verify(void);
230 #endif
231 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
232 STATIC void pmap_bootstrap(paddr_t, paddr_t);
233
234 #ifdef PMAPNAME
235 const struct pmap_ops PMAPNAME(ops) = {
236 .pmapop_pte_spill = pmap_pte_spill,
237 .pmapop_real_memory = pmap_real_memory,
238 .pmapop_init = pmap_init,
239 .pmapop_virtual_space = pmap_virtual_space,
240 .pmapop_create = pmap_create,
241 .pmapop_reference = pmap_reference,
242 .pmapop_destroy = pmap_destroy,
243 .pmapop_copy = pmap_copy,
244 .pmapop_update = pmap_update,
245 .pmapop_enter = pmap_enter,
246 .pmapop_remove = pmap_remove,
247 .pmapop_kenter_pa = pmap_kenter_pa,
248 .pmapop_kremove = pmap_kremove,
249 .pmapop_extract = pmap_extract,
250 .pmapop_protect = pmap_protect,
251 .pmapop_unwire = pmap_unwire,
252 .pmapop_page_protect = pmap_page_protect,
253 .pmapop_query_bit = pmap_query_bit,
254 .pmapop_clear_bit = pmap_clear_bit,
255 .pmapop_activate = pmap_activate,
256 .pmapop_deactivate = pmap_deactivate,
257 .pmapop_pinit = pmap_pinit,
258 .pmapop_procwr = pmap_procwr,
259 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
260 .pmapop_pte_print = pmap_pte_print,
261 .pmapop_pteg_check = pmap_pteg_check,
262 .pmapop_print_mmuregs = pmap_print_mmuregs,
263 .pmapop_print_pte = pmap_print_pte,
264 .pmapop_pteg_dist = pmap_pteg_dist,
265 #else
266 .pmapop_pte_print = NULL,
267 .pmapop_pteg_check = NULL,
268 .pmapop_print_mmuregs = NULL,
269 .pmapop_print_pte = NULL,
270 .pmapop_pteg_dist = NULL,
271 #endif
272 #if defined(DEBUG) || defined(PMAPCHECK)
273 .pmapop_pvo_verify = pmap_pvo_verify,
274 #else
275 .pmapop_pvo_verify = NULL,
276 #endif
277 .pmapop_steal_memory = pmap_steal_memory,
278 .pmapop_bootstrap = pmap_bootstrap,
279 };
280 #endif /* !PMAPNAME */
281
282 /*
283 * The following structure is aligned to 32 bytes
284 */
285 struct pvo_entry {
286 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
287 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
288 struct pte pvo_pte; /* Prebuilt PTE */
289 pmap_t pvo_pmap; /* ptr to owning pmap */
290 vaddr_t pvo_vaddr; /* VA of entry */
291 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
292 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
293 #define PVO_WIRED 0x0010 /* PVO entry is wired */
294 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
295 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
296 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
297 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
298 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
299 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
300 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
301 #define PVO_SPILL_SET 2 /* PVO has been spilled */
302 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
303 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
304 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
305 #define PVO_REMOVE 6 /* PVO has been removed */
306 #define PVO_WHERE_MASK 15
307 #define PVO_WHERE_SHFT 8
308 } __attribute__ ((aligned (32)));
309 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
310 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
311 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
312 #define PVO_PTEGIDX_CLR(pvo) \
313 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
314 #define PVO_PTEGIDX_SET(pvo,i) \
315 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
316 #define PVO_WHERE(pvo,w) \
317 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
318 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
319
320 TAILQ_HEAD(pvo_tqhead, pvo_entry);
321 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
322 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
323 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
324
325 struct pool pmap_pool; /* pool for pmap structures */
326 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
327 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
328
329 /*
330 * We keep a cache of unmanaged pages to be used for pvo entries for
331 * unmanaged pages.
332 */
333 struct pvo_page {
334 SIMPLEQ_ENTRY(pvo_page) pvop_link;
335 };
336 SIMPLEQ_HEAD(pvop_head, pvo_page);
337 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
338 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
339 u_long pmap_upvop_free;
340 u_long pmap_upvop_maxfree;
341 u_long pmap_mpvop_free;
342 u_long pmap_mpvop_maxfree;
343
344 static void *pmap_pool_ualloc(struct pool *, int);
345 static void *pmap_pool_malloc(struct pool *, int);
346
347 static void pmap_pool_ufree(struct pool *, void *);
348 static void pmap_pool_mfree(struct pool *, void *);
349
350 static struct pool_allocator pmap_pool_mallocator = {
351 .pa_alloc = pmap_pool_malloc,
352 .pa_free = pmap_pool_mfree,
353 .pa_pagesz = 0,
354 };
355
356 static struct pool_allocator pmap_pool_uallocator = {
357 .pa_alloc = pmap_pool_ualloc,
358 .pa_free = pmap_pool_ufree,
359 .pa_pagesz = 0,
360 };
361
362 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
363 void pmap_pte_print(volatile struct pte *);
364 void pmap_pteg_check(void);
365 void pmap_pteg_dist(void);
366 void pmap_print_pte(pmap_t, vaddr_t);
367 void pmap_print_mmuregs(void);
368 #endif
369
370 #if defined(DEBUG) || defined(PMAPCHECK)
371 #ifdef PMAPCHECK
372 int pmapcheck = 1;
373 #else
374 int pmapcheck = 0;
375 #endif
376 void pmap_pvo_verify(void);
377 static void pmap_pvo_check(const struct pvo_entry *);
378 #define PMAP_PVO_CHECK(pvo) \
379 do { \
380 if (pmapcheck) \
381 pmap_pvo_check(pvo); \
382 } while (0)
383 #else
384 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
385 #endif
386 static int pmap_pte_insert(int, struct pte *);
387 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
388 vaddr_t, paddr_t, register_t, int);
389 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
390 static void pmap_pvo_free(struct pvo_entry *);
391 static void pmap_pvo_free_list(struct pvo_head *);
392 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
393 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
394 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
395 static void pvo_set_exec(struct pvo_entry *);
396 static void pvo_clear_exec(struct pvo_entry *);
397
398 static void tlbia(void);
399
400 static void pmap_release(pmap_t);
401 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
402
403 static uint32_t pmap_pvo_reclaim_nextidx;
404 #ifdef DEBUG
405 static int pmap_pvo_reclaim_debugctr;
406 #endif
407
408 #define VSID_NBPW (sizeof(uint32_t) * 8)
409 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
410
411 static int pmap_initialized;
412
413 #if defined(DEBUG) || defined(PMAPDEBUG)
414 #define PMAPDEBUG_BOOT 0x0001
415 #define PMAPDEBUG_PTE 0x0002
416 #define PMAPDEBUG_EXEC 0x0008
417 #define PMAPDEBUG_PVOENTER 0x0010
418 #define PMAPDEBUG_PVOREMOVE 0x0020
419 #define PMAPDEBUG_ACTIVATE 0x0100
420 #define PMAPDEBUG_CREATE 0x0200
421 #define PMAPDEBUG_ENTER 0x1000
422 #define PMAPDEBUG_KENTER 0x2000
423 #define PMAPDEBUG_KREMOVE 0x4000
424 #define PMAPDEBUG_REMOVE 0x8000
425
426 unsigned int pmapdebug = 0;
427
428 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
429 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
430 #else
431 # define DPRINTF(x, ...) do { } while (0)
432 # define DPRINTFN(n, x, ...) do { } while (0)
433 #endif
434
435
436 #ifdef PMAPCOUNTERS
437 /*
438 * From pmap_subr.c
439 */
440 extern struct evcnt pmap_evcnt_mappings;
441 extern struct evcnt pmap_evcnt_unmappings;
442
443 extern struct evcnt pmap_evcnt_kernel_mappings;
444 extern struct evcnt pmap_evcnt_kernel_unmappings;
445
446 extern struct evcnt pmap_evcnt_mappings_replaced;
447
448 extern struct evcnt pmap_evcnt_exec_mappings;
449 extern struct evcnt pmap_evcnt_exec_cached;
450
451 extern struct evcnt pmap_evcnt_exec_synced;
452 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
453 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
454
455 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
456 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
457 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
458 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
459 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
460
461 extern struct evcnt pmap_evcnt_updates;
462 extern struct evcnt pmap_evcnt_collects;
463 extern struct evcnt pmap_evcnt_copies;
464
465 extern struct evcnt pmap_evcnt_ptes_spilled;
466 extern struct evcnt pmap_evcnt_ptes_unspilled;
467 extern struct evcnt pmap_evcnt_ptes_evicted;
468
469 extern struct evcnt pmap_evcnt_ptes_primary[8];
470 extern struct evcnt pmap_evcnt_ptes_secondary[8];
471 extern struct evcnt pmap_evcnt_ptes_removed;
472 extern struct evcnt pmap_evcnt_ptes_changed;
473 extern struct evcnt pmap_evcnt_pvos_reclaimed;
474 extern struct evcnt pmap_evcnt_pvos_failed;
475
476 extern struct evcnt pmap_evcnt_zeroed_pages;
477 extern struct evcnt pmap_evcnt_copied_pages;
478 extern struct evcnt pmap_evcnt_idlezeroed_pages;
479
480 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
481 #define PMAPCOUNT2(ev) ((ev).ev_count++)
482 #else
483 #define PMAPCOUNT(ev) ((void) 0)
484 #define PMAPCOUNT2(ev) ((void) 0)
485 #endif
486
487 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
488
489 /* XXXSL: this needs to be moved to assembler */
490 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
491
492 #define TLBSYNC() __asm volatile("tlbsync")
493 #define SYNC() __asm volatile("sync")
494 #define EIEIO() __asm volatile("eieio")
495 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
496 #define MFMSR() mfmsr()
497 #define MTMSR(psl) mtmsr(psl)
498 #define MFPVR() mfpvr()
499 #define MFSRIN(va) mfsrin(va)
500 #define MFTB() mfrtcltbl()
501
502 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
503 static inline register_t
504 mfsrin(vaddr_t va)
505 {
506 register_t sr;
507 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
508 return sr;
509 }
510 #endif /* PMAP_OEA*/
511
512 #if defined (PMAP_OEA64_BRIDGE)
513 extern void mfmsr64 (register64_t *result);
514 #endif /* PMAP_OEA64_BRIDGE */
515
516 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
517 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
518
519 static inline register_t
520 pmap_interrupts_off(void)
521 {
522 register_t msr = MFMSR();
523 if (msr & PSL_EE)
524 MTMSR(msr & ~PSL_EE);
525 return msr;
526 }
527
528 static void
529 pmap_interrupts_restore(register_t msr)
530 {
531 if (msr & PSL_EE)
532 MTMSR(msr);
533 }
534
535 static inline u_int32_t
536 mfrtcltbl(void)
537 {
538 #ifdef PPC_OEA601
539 if ((MFPVR() >> 16) == MPC601)
540 return (mfrtcl() >> 7);
541 else
542 #endif
543 return (mftbl());
544 }
545
546 /*
547 * These small routines may have to be replaced,
548 * if/when we support processors other that the 604.
549 */
550
551 void
552 tlbia(void)
553 {
554 char *i;
555
556 SYNC();
557 #if defined(PMAP_OEA)
558 /*
559 * Why not use "tlbia"? Because not all processors implement it.
560 *
561 * This needs to be a per-CPU callback to do the appropriate thing
562 * for the CPU. XXX
563 */
564 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
565 TLBIE(i);
566 EIEIO();
567 SYNC();
568 }
569 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
570 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
571 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
572 TLBIEL(i);
573 EIEIO();
574 SYNC();
575 }
576 #endif
577 TLBSYNC();
578 SYNC();
579 }
580
581 static inline register_t
582 va_to_vsid(const struct pmap *pm, vaddr_t addr)
583 {
584 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
585 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
586 #else /* PMAP_OEA64 */
587 #if 0
588 const struct ste *ste;
589 register_t hash;
590 int i;
591
592 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
593
594 /*
595 * Try the primary group first
596 */
597 ste = pm->pm_stes[hash].stes;
598 for (i = 0; i < 8; i++, ste++) {
599 if (ste->ste_hi & STE_V) &&
600 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
601 return ste;
602 }
603
604 /*
605 * Then the secondary group.
606 */
607 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
608 for (i = 0; i < 8; i++, ste++) {
609 if (ste->ste_hi & STE_V) &&
610 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
611 return addr;
612 }
613
614 return NULL;
615 #else
616 /*
617 * Rather than searching the STE groups for the VSID, we know
618 * how we generate that from the ESID and so do that.
619 */
620 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
621 #endif
622 #endif /* PMAP_OEA */
623 }
624
625 static inline register_t
626 va_to_pteg(const struct pmap *pm, vaddr_t addr)
627 {
628 register_t hash;
629
630 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
631 return hash & pmap_pteg_mask;
632 }
633
634 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
635 /*
636 * Given a PTE in the page table, calculate the VADDR that hashes to it.
637 * The only bit of magic is that the top 4 bits of the address doesn't
638 * technically exist in the PTE. But we know we reserved 4 bits of the
639 * VSID for it so that's how we get it.
640 */
641 static vaddr_t
642 pmap_pte_to_va(volatile const struct pte *pt)
643 {
644 vaddr_t va;
645 uintptr_t ptaddr = (uintptr_t) pt;
646
647 if (pt->pte_hi & PTE_HID)
648 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
649
650 /* PPC Bits 10-19 PPC64 Bits 42-51 */
651 #if defined(PMAP_OEA)
652 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
653 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
654 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
655 #endif
656 va <<= ADDR_PIDX_SHFT;
657
658 /* PPC Bits 4-9 PPC64 Bits 36-41 */
659 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
660
661 #if defined(PMAP_OEA64)
662 /* PPC63 Bits 0-35 */
663 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
664 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
665 /* PPC Bits 0-3 */
666 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
667 #endif
668
669 return va;
670 }
671 #endif
672
673 static inline struct pvo_head *
674 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
675 {
676 struct vm_page *pg;
677 struct vm_page_md *md;
678
679 pg = PHYS_TO_VM_PAGE(pa);
680 if (pg_p != NULL)
681 *pg_p = pg;
682 if (pg == NULL)
683 return &pmap_pvo_unmanaged;
684 md = VM_PAGE_TO_MD(pg);
685 return &md->mdpg_pvoh;
686 }
687
688 static inline struct pvo_head *
689 vm_page_to_pvoh(struct vm_page *pg)
690 {
691 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
692
693 return &md->mdpg_pvoh;
694 }
695
696
697 static inline void
698 pmap_attr_clear(struct vm_page *pg, int ptebit)
699 {
700 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
701
702 md->mdpg_attrs &= ~ptebit;
703 }
704
705 static inline int
706 pmap_attr_fetch(struct vm_page *pg)
707 {
708 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
709
710 return md->mdpg_attrs;
711 }
712
713 static inline void
714 pmap_attr_save(struct vm_page *pg, int ptebit)
715 {
716 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
717
718 md->mdpg_attrs |= ptebit;
719 }
720
721 static inline int
722 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
723 {
724 if (pt->pte_hi == pvo_pt->pte_hi
725 #if 0
726 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
727 ~(PTE_REF|PTE_CHG)) == 0
728 #endif
729 )
730 return 1;
731 return 0;
732 }
733
734 static inline void
735 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
736 {
737 /*
738 * Construct the PTE. Default to IMB initially. Valid bit
739 * only gets set when the real pte is set in memory.
740 *
741 * Note: Don't set the valid bit for correct operation of tlb update.
742 */
743 #if defined(PMAP_OEA)
744 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
745 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
746 pt->pte_lo = pte_lo;
747 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
748 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
749 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
750 pt->pte_lo = (u_int64_t) pte_lo;
751 #endif /* PMAP_OEA */
752 }
753
754 static inline void
755 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
756 {
757 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
758 }
759
760 static inline void
761 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
762 {
763 /*
764 * As shown in Section 7.6.3.2.3
765 */
766 pt->pte_lo &= ~ptebit;
767 TLBIE(va);
768 SYNC();
769 EIEIO();
770 TLBSYNC();
771 SYNC();
772 #ifdef MULTIPROCESSOR
773 DCBST(pt);
774 #endif
775 }
776
777 static inline void
778 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
779 {
780 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
781 if (pvo_pt->pte_hi & PTE_VALID)
782 panic("pte_set: setting an already valid pte %p", pvo_pt);
783 #endif
784 pvo_pt->pte_hi |= PTE_VALID;
785
786 /*
787 * Update the PTE as defined in section 7.6.3.1
788 * Note that the REF/CHG bits are from pvo_pt and thus should
789 * have been saved so this routine can restore them (if desired).
790 */
791 pt->pte_lo = pvo_pt->pte_lo;
792 EIEIO();
793 pt->pte_hi = pvo_pt->pte_hi;
794 TLBSYNC();
795 SYNC();
796 #ifdef MULTIPROCESSOR
797 DCBST(pt);
798 #endif
799 pmap_pte_valid++;
800 }
801
802 static inline void
803 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
804 {
805 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
806 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
807 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
808 if ((pt->pte_hi & PTE_VALID) == 0)
809 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
810 #endif
811
812 pvo_pt->pte_hi &= ~PTE_VALID;
813 /*
814 * Force the ref & chg bits back into the PTEs.
815 */
816 SYNC();
817 /*
818 * Invalidate the pte ... (Section 7.6.3.3)
819 */
820 pt->pte_hi &= ~PTE_VALID;
821 SYNC();
822 TLBIE(va);
823 SYNC();
824 EIEIO();
825 TLBSYNC();
826 SYNC();
827 /*
828 * Save the ref & chg bits ...
829 */
830 pmap_pte_synch(pt, pvo_pt);
831 pmap_pte_valid--;
832 }
833
834 static inline void
835 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
836 {
837 /*
838 * Invalidate the PTE
839 */
840 pmap_pte_unset(pt, pvo_pt, va);
841 pmap_pte_set(pt, pvo_pt);
842 }
843
844 /*
845 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
846 * (either primary or secondary location).
847 *
848 * Note: both the destination and source PTEs must not have PTE_VALID set.
849 */
850
851 static int
852 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
853 {
854 volatile struct pte *pt;
855 int i;
856
857 #if defined(DEBUG)
858 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
859 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
860 #endif
861 /*
862 * First try primary hash.
863 */
864 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
865 if ((pt->pte_hi & PTE_VALID) == 0) {
866 pvo_pt->pte_hi &= ~PTE_HID;
867 pmap_pte_set(pt, pvo_pt);
868 return i;
869 }
870 }
871
872 /*
873 * Now try secondary hash.
874 */
875 ptegidx ^= pmap_pteg_mask;
876 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
877 if ((pt->pte_hi & PTE_VALID) == 0) {
878 pvo_pt->pte_hi |= PTE_HID;
879 pmap_pte_set(pt, pvo_pt);
880 return i;
881 }
882 }
883 return -1;
884 }
885
886 /*
887 * Spill handler.
888 *
889 * Tries to spill a page table entry from the overflow area.
890 * This runs in either real mode (if dealing with a exception spill)
891 * or virtual mode when dealing with manually spilling one of the
892 * kernel's pte entries. In either case, interrupts are already
893 * disabled.
894 */
895
896 int
897 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
898 {
899 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
900 struct pvo_entry *pvo;
901 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
902 struct pvo_tqhead *pvoh, *vpvoh = NULL;
903 int ptegidx, i, j;
904 volatile struct pteg *pteg;
905 volatile struct pte *pt;
906
907 PMAP_LOCK();
908
909 ptegidx = va_to_pteg(pm, addr);
910
911 /*
912 * Have to substitute some entry. Use the primary hash for this.
913 * Use low bits of timebase as random generator. Make sure we are
914 * not picking a kernel pte for replacement.
915 */
916 pteg = &pmap_pteg_table[ptegidx];
917 i = MFTB() & 7;
918 for (j = 0; j < 8; j++) {
919 pt = &pteg->pt[i];
920 if ((pt->pte_hi & PTE_VALID) == 0)
921 break;
922 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
923 < PHYSMAP_VSIDBITS)
924 break;
925 i = (i + 1) & 7;
926 }
927 KASSERT(j < 8);
928
929 source_pvo = NULL;
930 victim_pvo = NULL;
931 pvoh = &pmap_pvo_table[ptegidx];
932 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
933
934 /*
935 * We need to find pvo entry for this address...
936 */
937 PMAP_PVO_CHECK(pvo); /* sanity check */
938
939 /*
940 * If we haven't found the source and we come to a PVO with
941 * a valid PTE, then we know we can't find it because all
942 * evicted PVOs always are first in the list.
943 */
944 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
945 break;
946 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
947 addr == PVO_VADDR(pvo)) {
948
949 /*
950 * Now we have found the entry to be spilled into the
951 * pteg. Attempt to insert it into the page table.
952 */
953 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
954 if (j >= 0) {
955 PVO_PTEGIDX_SET(pvo, j);
956 PMAP_PVO_CHECK(pvo); /* sanity check */
957 PVO_WHERE(pvo, SPILL_INSERT);
958 pvo->pvo_pmap->pm_evictions--;
959 PMAPCOUNT(ptes_spilled);
960 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
961 ? pmap_evcnt_ptes_secondary
962 : pmap_evcnt_ptes_primary)[j]);
963
964 /*
965 * Since we keep the evicted entries at the
966 * from of the PVO list, we need move this
967 * (now resident) PVO after the evicted
968 * entries.
969 */
970 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
971
972 /*
973 * If we don't have to move (either we were the
974 * last entry or the next entry was valid),
975 * don't change our position. Otherwise
976 * move ourselves to the tail of the queue.
977 */
978 if (next_pvo != NULL &&
979 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
980 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
981 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
982 }
983 PMAP_UNLOCK();
984 return 1;
985 }
986 source_pvo = pvo;
987 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
988 return 0;
989 }
990 if (victim_pvo != NULL)
991 break;
992 }
993
994 /*
995 * We also need the pvo entry of the victim we are replacing
996 * so save the R & C bits of the PTE.
997 */
998 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
999 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1000 vpvoh = pvoh; /* *1* */
1001 victim_pvo = pvo;
1002 if (source_pvo != NULL)
1003 break;
1004 }
1005 }
1006
1007 if (source_pvo == NULL) {
1008 PMAPCOUNT(ptes_unspilled);
1009 PMAP_UNLOCK();
1010 return 0;
1011 }
1012
1013 if (victim_pvo == NULL) {
1014 if ((pt->pte_hi & PTE_HID) == 0)
1015 panic("pmap_pte_spill: victim p-pte (%p) has "
1016 "no pvo entry!", pt);
1017
1018 /*
1019 * If this is a secondary PTE, we need to search
1020 * its primary pvo bucket for the matching PVO.
1021 */
1022 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1023 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1024 PMAP_PVO_CHECK(pvo); /* sanity check */
1025
1026 /*
1027 * We also need the pvo entry of the victim we are
1028 * replacing so save the R & C bits of the PTE.
1029 */
1030 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1031 victim_pvo = pvo;
1032 break;
1033 }
1034 }
1035 if (victim_pvo == NULL)
1036 panic("pmap_pte_spill: victim s-pte (%p) has "
1037 "no pvo entry!", pt);
1038 }
1039
1040 /*
1041 * The victim should be not be a kernel PVO/PTE entry.
1042 */
1043 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1044 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1045 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1046
1047 /*
1048 * We are invalidating the TLB entry for the EA for the
1049 * we are replacing even though its valid; If we don't
1050 * we lose any ref/chg bit changes contained in the TLB
1051 * entry.
1052 */
1053 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1054
1055 /*
1056 * To enforce the PVO list ordering constraint that all
1057 * evicted entries should come before all valid entries,
1058 * move the source PVO to the tail of its list and the
1059 * victim PVO to the head of its list (which might not be
1060 * the same list, if the victim was using the secondary hash).
1061 */
1062 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1063 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1064 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1065 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1066 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1067 pmap_pte_set(pt, &source_pvo->pvo_pte);
1068 victim_pvo->pvo_pmap->pm_evictions++;
1069 source_pvo->pvo_pmap->pm_evictions--;
1070 PVO_WHERE(victim_pvo, SPILL_UNSET);
1071 PVO_WHERE(source_pvo, SPILL_SET);
1072
1073 PVO_PTEGIDX_CLR(victim_pvo);
1074 PVO_PTEGIDX_SET(source_pvo, i);
1075 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1076 PMAPCOUNT(ptes_spilled);
1077 PMAPCOUNT(ptes_evicted);
1078 PMAPCOUNT(ptes_removed);
1079
1080 PMAP_PVO_CHECK(victim_pvo);
1081 PMAP_PVO_CHECK(source_pvo);
1082
1083 PMAP_UNLOCK();
1084 return 1;
1085 }
1086
1087 /*
1088 * Restrict given range to physical memory
1089 */
1090 void
1091 pmap_real_memory(paddr_t *start, psize_t *size)
1092 {
1093 struct mem_region *mp;
1094
1095 for (mp = mem; mp->size; mp++) {
1096 if (*start + *size > mp->start
1097 && *start < mp->start + mp->size) {
1098 if (*start < mp->start) {
1099 *size -= mp->start - *start;
1100 *start = mp->start;
1101 }
1102 if (*start + *size > mp->start + mp->size)
1103 *size = mp->start + mp->size - *start;
1104 return;
1105 }
1106 }
1107 *size = 0;
1108 }
1109
1110 /*
1111 * Initialize anything else for pmap handling.
1112 * Called during vm_init().
1113 */
1114 void
1115 pmap_init(void)
1116 {
1117 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1118 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1119 &pmap_pool_mallocator, IPL_NONE);
1120
1121 pool_setlowat(&pmap_mpvo_pool, 1008);
1122
1123 pmap_initialized = 1;
1124
1125 }
1126
1127 /*
1128 * How much virtual space does the kernel get?
1129 */
1130 void
1131 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1132 {
1133 /*
1134 * For now, reserve one segment (minus some overhead) for kernel
1135 * virtual memory
1136 */
1137 *start = VM_MIN_KERNEL_ADDRESS;
1138 *end = VM_MAX_KERNEL_ADDRESS;
1139 }
1140
1141 /*
1142 * Allocate, initialize, and return a new physical map.
1143 */
1144 pmap_t
1145 pmap_create(void)
1146 {
1147 pmap_t pm;
1148
1149 pm = pool_get(&pmap_pool, PR_WAITOK);
1150 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1151 memset((void *)pm, 0, sizeof *pm);
1152 pmap_pinit(pm);
1153
1154 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1155 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1156 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1157 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1158 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1159 pm,
1160 pm->pm_sr[0], pm->pm_sr[1],
1161 pm->pm_sr[2], pm->pm_sr[3],
1162 pm->pm_sr[4], pm->pm_sr[5],
1163 pm->pm_sr[6], pm->pm_sr[7],
1164 pm->pm_sr[8], pm->pm_sr[9],
1165 pm->pm_sr[10], pm->pm_sr[11],
1166 pm->pm_sr[12], pm->pm_sr[13],
1167 pm->pm_sr[14], pm->pm_sr[15]);
1168 return pm;
1169 }
1170
1171 /*
1172 * Initialize a preallocated and zeroed pmap structure.
1173 */
1174 void
1175 pmap_pinit(pmap_t pm)
1176 {
1177 register_t entropy = MFTB();
1178 register_t mask;
1179 int i;
1180
1181 /*
1182 * Allocate some segment registers for this pmap.
1183 */
1184 pm->pm_refs = 1;
1185 PMAP_LOCK();
1186 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1187 static register_t pmap_vsidcontext;
1188 register_t hash;
1189 unsigned int n;
1190
1191 /* Create a new value by multiplying by a prime adding in
1192 * entropy from the timebase register. This is to make the
1193 * VSID more random so that the PT Hash function collides
1194 * less often. (note that the prime causes gcc to do shifts
1195 * instead of a multiply)
1196 */
1197 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1198 hash = pmap_vsidcontext & (NPMAPS - 1);
1199 if (hash == 0) { /* 0 is special, avoid it */
1200 entropy += 0xbadf00d;
1201 continue;
1202 }
1203 n = hash >> 5;
1204 mask = 1L << (hash & (VSID_NBPW-1));
1205 hash = pmap_vsidcontext;
1206 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1207 /* anything free in this bucket? */
1208 if (~pmap_vsid_bitmap[n] == 0) {
1209 entropy = hash ^ (hash >> 16);
1210 continue;
1211 }
1212 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1213 mask = 1L << i;
1214 hash &= ~(VSID_NBPW-1);
1215 hash |= i;
1216 }
1217 hash &= PTE_VSID >> PTE_VSID_SHFT;
1218 pmap_vsid_bitmap[n] |= mask;
1219 pm->pm_vsid = hash;
1220 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1221 for (i = 0; i < 16; i++)
1222 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1223 SR_NOEXEC;
1224 #endif
1225 PMAP_UNLOCK();
1226 return;
1227 }
1228 PMAP_UNLOCK();
1229 panic("pmap_pinit: out of segments");
1230 }
1231
1232 /*
1233 * Add a reference to the given pmap.
1234 */
1235 void
1236 pmap_reference(pmap_t pm)
1237 {
1238 atomic_inc_uint(&pm->pm_refs);
1239 }
1240
1241 /*
1242 * Retire the given pmap from service.
1243 * Should only be called if the map contains no valid mappings.
1244 */
1245 void
1246 pmap_destroy(pmap_t pm)
1247 {
1248 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1249 pmap_release(pm);
1250 pool_put(&pmap_pool, pm);
1251 }
1252 }
1253
1254 /*
1255 * Release any resources held by the given physical map.
1256 * Called when a pmap initialized by pmap_pinit is being released.
1257 */
1258 void
1259 pmap_release(pmap_t pm)
1260 {
1261 int idx, mask;
1262
1263 KASSERT(pm->pm_stats.resident_count == 0);
1264 KASSERT(pm->pm_stats.wired_count == 0);
1265
1266 PMAP_LOCK();
1267 if (pm->pm_sr[0] == 0)
1268 panic("pmap_release");
1269 idx = pm->pm_vsid & (NPMAPS-1);
1270 mask = 1 << (idx % VSID_NBPW);
1271 idx /= VSID_NBPW;
1272
1273 KASSERT(pmap_vsid_bitmap[idx] & mask);
1274 pmap_vsid_bitmap[idx] &= ~mask;
1275 PMAP_UNLOCK();
1276 }
1277
1278 /*
1279 * Copy the range specified by src_addr/len
1280 * from the source map to the range dst_addr/len
1281 * in the destination map.
1282 *
1283 * This routine is only advisory and need not do anything.
1284 */
1285 void
1286 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1287 vsize_t len, vaddr_t src_addr)
1288 {
1289 PMAPCOUNT(copies);
1290 }
1291
1292 /*
1293 * Require that all active physical maps contain no
1294 * incorrect entries NOW.
1295 */
1296 void
1297 pmap_update(struct pmap *pmap)
1298 {
1299 PMAPCOUNT(updates);
1300 TLBSYNC();
1301 }
1302
1303 static inline int
1304 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1305 {
1306 int pteidx;
1307 /*
1308 * We can find the actual pte entry without searching by
1309 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1310 * and by noticing the HID bit.
1311 */
1312 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1313 if (pvo->pvo_pte.pte_hi & PTE_HID)
1314 pteidx ^= pmap_pteg_mask * 8;
1315 return pteidx;
1316 }
1317
1318 volatile struct pte *
1319 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1320 {
1321 volatile struct pte *pt;
1322
1323 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1324 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1325 return NULL;
1326 #endif
1327
1328 /*
1329 * If we haven't been supplied the ptegidx, calculate it.
1330 */
1331 if (pteidx == -1) {
1332 int ptegidx;
1333 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1334 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1335 }
1336
1337 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1338
1339 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1340 return pt;
1341 #else
1342 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1343 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1344 "pvo but no valid pte index", pvo);
1345 }
1346 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1347 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1348 "pvo but no valid pte", pvo);
1349 }
1350
1351 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1352 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1353 #if defined(DEBUG) || defined(PMAPCHECK)
1354 pmap_pte_print(pt);
1355 #endif
1356 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1357 "pmap_pteg_table %p but invalid in pvo",
1358 pvo, pt);
1359 }
1360 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1361 #if defined(DEBUG) || defined(PMAPCHECK)
1362 pmap_pte_print(pt);
1363 #endif
1364 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1365 "not match pte %p in pmap_pteg_table",
1366 pvo, pt);
1367 }
1368 return pt;
1369 }
1370
1371 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1372 #if defined(DEBUG) || defined(PMAPCHECK)
1373 pmap_pte_print(pt);
1374 #endif
1375 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1376 "pmap_pteg_table but valid in pvo", pvo, pt);
1377 }
1378 return NULL;
1379 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1380 }
1381
1382 struct pvo_entry *
1383 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1384 {
1385 struct pvo_entry *pvo;
1386 int ptegidx;
1387
1388 va &= ~ADDR_POFF;
1389 ptegidx = va_to_pteg(pm, va);
1390
1391 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1392 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1393 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1394 panic("pmap_pvo_find_va: invalid pvo %p on "
1395 "list %#x (%p)", pvo, ptegidx,
1396 &pmap_pvo_table[ptegidx]);
1397 #endif
1398 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1399 if (pteidx_p)
1400 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1401 return pvo;
1402 }
1403 }
1404 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1405 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1406 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1407 return NULL;
1408 }
1409
1410 #if defined(DEBUG) || defined(PMAPCHECK)
1411 void
1412 pmap_pvo_check(const struct pvo_entry *pvo)
1413 {
1414 struct pvo_head *pvo_head;
1415 struct pvo_entry *pvo0;
1416 volatile struct pte *pt;
1417 int failed = 0;
1418
1419 PMAP_LOCK();
1420
1421 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1422 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1423
1424 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1425 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1426 pvo, pvo->pvo_pmap);
1427 failed = 1;
1428 }
1429
1430 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1431 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1432 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1433 pvo, TAILQ_NEXT(pvo, pvo_olink));
1434 failed = 1;
1435 }
1436
1437 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1438 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1439 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1440 pvo, LIST_NEXT(pvo, pvo_vlink));
1441 failed = 1;
1442 }
1443
1444 if (PVO_MANAGED_P(pvo)) {
1445 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1446 } else {
1447 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1448 printf("pmap_pvo_check: pvo %p: non kernel address "
1449 "on kernel unmanaged list\n", pvo);
1450 failed = 1;
1451 }
1452 pvo_head = &pmap_pvo_kunmanaged;
1453 }
1454 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1455 if (pvo0 == pvo)
1456 break;
1457 }
1458 if (pvo0 == NULL) {
1459 printf("pmap_pvo_check: pvo %p: not present "
1460 "on its vlist head %p\n", pvo, pvo_head);
1461 failed = 1;
1462 }
1463 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1464 printf("pmap_pvo_check: pvo %p: not present "
1465 "on its olist head\n", pvo);
1466 failed = 1;
1467 }
1468 pt = pmap_pvo_to_pte(pvo, -1);
1469 if (pt == NULL) {
1470 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1471 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1472 "no PTE\n", pvo);
1473 failed = 1;
1474 }
1475 } else {
1476 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1477 (uintptr_t) pt >=
1478 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1479 printf("pmap_pvo_check: pvo %p: pte %p not in "
1480 "pteg table\n", pvo, pt);
1481 failed = 1;
1482 }
1483 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1484 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1485 "no PTE\n", pvo);
1486 failed = 1;
1487 }
1488 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1489 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1490 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1491 pvo->pvo_pte.pte_hi,
1492 pt->pte_hi);
1493 failed = 1;
1494 }
1495 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1496 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1497 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1498 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1499 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1500 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1501 failed = 1;
1502 }
1503 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1504 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1505 " doesn't not match PVO's VA %#" _PRIxva "\n",
1506 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1507 failed = 1;
1508 }
1509 if (failed)
1510 pmap_pte_print(pt);
1511 }
1512 if (failed)
1513 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1514 pvo->pvo_pmap);
1515
1516 PMAP_UNLOCK();
1517 }
1518 #endif /* DEBUG || PMAPCHECK */
1519
1520 /*
1521 * Search the PVO table looking for a non-wired entry.
1522 * If we find one, remove it and return it.
1523 */
1524
1525 struct pvo_entry *
1526 pmap_pvo_reclaim(struct pmap *pm)
1527 {
1528 struct pvo_tqhead *pvoh;
1529 struct pvo_entry *pvo;
1530 uint32_t idx, endidx;
1531
1532 endidx = pmap_pvo_reclaim_nextidx;
1533 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1534 idx = (idx + 1) & pmap_pteg_mask) {
1535 pvoh = &pmap_pvo_table[idx];
1536 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1537 if (!PVO_WIRED_P(pvo)) {
1538 pmap_pvo_remove(pvo, -1, NULL);
1539 pmap_pvo_reclaim_nextidx = idx;
1540 PMAPCOUNT(pvos_reclaimed);
1541 return pvo;
1542 }
1543 }
1544 }
1545 return NULL;
1546 }
1547
1548 /*
1549 * This returns whether this is the first mapping of a page.
1550 */
1551 int
1552 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1553 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1554 {
1555 struct pvo_entry *pvo;
1556 struct pvo_tqhead *pvoh;
1557 register_t msr;
1558 int ptegidx;
1559 int i;
1560 int poolflags = PR_NOWAIT;
1561
1562 /*
1563 * Compute the PTE Group index.
1564 */
1565 va &= ~ADDR_POFF;
1566 ptegidx = va_to_pteg(pm, va);
1567
1568 msr = pmap_interrupts_off();
1569
1570 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1571 if (pmap_pvo_remove_depth > 0)
1572 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1573 if (++pmap_pvo_enter_depth > 1)
1574 panic("pmap_pvo_enter: called recursively!");
1575 #endif
1576
1577 /*
1578 * Remove any existing mapping for this page. Reuse the
1579 * pvo entry if there a mapping.
1580 */
1581 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1582 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1583 #ifdef DEBUG
1584 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1585 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1586 ~(PTE_REF|PTE_CHG)) == 0 &&
1587 va < VM_MIN_KERNEL_ADDRESS) {
1588 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1589 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1590 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1591 pvo->pvo_pte.pte_hi,
1592 pm->pm_sr[va >> ADDR_SR_SHFT]);
1593 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1594 #ifdef DDBX
1595 Debugger();
1596 #endif
1597 }
1598 #endif
1599 PMAPCOUNT(mappings_replaced);
1600 pmap_pvo_remove(pvo, -1, NULL);
1601 break;
1602 }
1603 }
1604
1605 /*
1606 * If we aren't overwriting an mapping, try to allocate
1607 */
1608 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1609 --pmap_pvo_enter_depth;
1610 #endif
1611 pmap_interrupts_restore(msr);
1612 if (pvo) {
1613 pmap_pvo_free(pvo);
1614 }
1615 pvo = pool_get(pl, poolflags);
1616 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1617
1618 #ifdef DEBUG
1619 /*
1620 * Exercise pmap_pvo_reclaim() a little.
1621 */
1622 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1623 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1624 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1625 pool_put(pl, pvo);
1626 pvo = NULL;
1627 }
1628 #endif
1629
1630 msr = pmap_interrupts_off();
1631 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1632 ++pmap_pvo_enter_depth;
1633 #endif
1634 if (pvo == NULL) {
1635 pvo = pmap_pvo_reclaim(pm);
1636 if (pvo == NULL) {
1637 if ((flags & PMAP_CANFAIL) == 0)
1638 panic("pmap_pvo_enter: failed");
1639 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1640 pmap_pvo_enter_depth--;
1641 #endif
1642 PMAPCOUNT(pvos_failed);
1643 pmap_interrupts_restore(msr);
1644 return ENOMEM;
1645 }
1646 }
1647
1648 pvo->pvo_vaddr = va;
1649 pvo->pvo_pmap = pm;
1650 pvo->pvo_vaddr &= ~ADDR_POFF;
1651 if (flags & VM_PROT_EXECUTE) {
1652 PMAPCOUNT(exec_mappings);
1653 pvo_set_exec(pvo);
1654 }
1655 if (flags & PMAP_WIRED)
1656 pvo->pvo_vaddr |= PVO_WIRED;
1657 if (pvo_head != &pmap_pvo_kunmanaged) {
1658 pvo->pvo_vaddr |= PVO_MANAGED;
1659 PMAPCOUNT(mappings);
1660 } else {
1661 PMAPCOUNT(kernel_mappings);
1662 }
1663 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1664
1665 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1666 if (PVO_WIRED_P(pvo))
1667 pvo->pvo_pmap->pm_stats.wired_count++;
1668 pvo->pvo_pmap->pm_stats.resident_count++;
1669 #if defined(DEBUG)
1670 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1671 DPRINTFN(PVOENTER,
1672 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1673 pvo, pm, va, pa);
1674 #endif
1675
1676 /*
1677 * We hope this succeeds but it isn't required.
1678 */
1679 pvoh = &pmap_pvo_table[ptegidx];
1680 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1681 if (i >= 0) {
1682 PVO_PTEGIDX_SET(pvo, i);
1683 PVO_WHERE(pvo, ENTER_INSERT);
1684 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1685 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1686 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1687
1688 } else {
1689 /*
1690 * Since we didn't have room for this entry (which makes it
1691 * and evicted entry), place it at the head of the list.
1692 */
1693 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1694 PMAPCOUNT(ptes_evicted);
1695 pm->pm_evictions++;
1696 /*
1697 * If this is a kernel page, make sure it's active.
1698 */
1699 if (pm == pmap_kernel()) {
1700 i = pmap_pte_spill(pm, va, false);
1701 KASSERT(i);
1702 }
1703 }
1704 PMAP_PVO_CHECK(pvo); /* sanity check */
1705 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1706 pmap_pvo_enter_depth--;
1707 #endif
1708 pmap_interrupts_restore(msr);
1709 return 0;
1710 }
1711
1712 static void
1713 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1714 {
1715 volatile struct pte *pt;
1716 int ptegidx;
1717
1718 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1719 if (++pmap_pvo_remove_depth > 1)
1720 panic("pmap_pvo_remove: called recursively!");
1721 #endif
1722
1723 /*
1724 * If we haven't been supplied the ptegidx, calculate it.
1725 */
1726 if (pteidx == -1) {
1727 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1728 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1729 } else {
1730 ptegidx = pteidx >> 3;
1731 if (pvo->pvo_pte.pte_hi & PTE_HID)
1732 ptegidx ^= pmap_pteg_mask;
1733 }
1734 PMAP_PVO_CHECK(pvo); /* sanity check */
1735
1736 /*
1737 * If there is an active pte entry, we need to deactivate it
1738 * (and save the ref & chg bits).
1739 */
1740 pt = pmap_pvo_to_pte(pvo, pteidx);
1741 if (pt != NULL) {
1742 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1743 PVO_WHERE(pvo, REMOVE);
1744 PVO_PTEGIDX_CLR(pvo);
1745 PMAPCOUNT(ptes_removed);
1746 } else {
1747 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1748 pvo->pvo_pmap->pm_evictions--;
1749 }
1750
1751 /*
1752 * Account for executable mappings.
1753 */
1754 if (PVO_EXECUTABLE_P(pvo))
1755 pvo_clear_exec(pvo);
1756
1757 /*
1758 * Update our statistics.
1759 */
1760 pvo->pvo_pmap->pm_stats.resident_count--;
1761 if (PVO_WIRED_P(pvo))
1762 pvo->pvo_pmap->pm_stats.wired_count--;
1763
1764 /*
1765 * Save the REF/CHG bits into their cache if the page is managed.
1766 */
1767 if (PVO_MANAGED_P(pvo)) {
1768 register_t ptelo = pvo->pvo_pte.pte_lo;
1769 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1770
1771 if (pg != NULL) {
1772 /*
1773 * If this page was changed and it is mapped exec,
1774 * invalidate it.
1775 */
1776 if ((ptelo & PTE_CHG) &&
1777 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1778 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1779 if (LIST_EMPTY(pvoh)) {
1780 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1781 "%#" _PRIxpa ": clear-exec]\n",
1782 VM_PAGE_TO_PHYS(pg));
1783 pmap_attr_clear(pg, PTE_EXEC);
1784 PMAPCOUNT(exec_uncached_pvo_remove);
1785 } else {
1786 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1787 "%#" _PRIxpa ": syncicache]\n",
1788 VM_PAGE_TO_PHYS(pg));
1789 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1790 PAGE_SIZE);
1791 PMAPCOUNT(exec_synced_pvo_remove);
1792 }
1793 }
1794
1795 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1796 }
1797 PMAPCOUNT(unmappings);
1798 } else {
1799 PMAPCOUNT(kernel_unmappings);
1800 }
1801
1802 /*
1803 * Remove the PVO from its lists and return it to the pool.
1804 */
1805 LIST_REMOVE(pvo, pvo_vlink);
1806 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1807 if (pvol) {
1808 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1809 }
1810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1811 pmap_pvo_remove_depth--;
1812 #endif
1813 }
1814
1815 void
1816 pmap_pvo_free(struct pvo_entry *pvo)
1817 {
1818
1819 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1820 }
1821
1822 void
1823 pmap_pvo_free_list(struct pvo_head *pvol)
1824 {
1825 struct pvo_entry *pvo, *npvo;
1826
1827 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1828 npvo = LIST_NEXT(pvo, pvo_vlink);
1829 LIST_REMOVE(pvo, pvo_vlink);
1830 pmap_pvo_free(pvo);
1831 }
1832 }
1833
1834 /*
1835 * Mark a mapping as executable.
1836 * If this is the first executable mapping in the segment,
1837 * clear the noexec flag.
1838 */
1839 static void
1840 pvo_set_exec(struct pvo_entry *pvo)
1841 {
1842 struct pmap *pm = pvo->pvo_pmap;
1843
1844 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1845 return;
1846 }
1847 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1848 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1849 {
1850 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1851 if (pm->pm_exec[sr]++ == 0) {
1852 pm->pm_sr[sr] &= ~SR_NOEXEC;
1853 }
1854 }
1855 #endif
1856 }
1857
1858 /*
1859 * Mark a mapping as non-executable.
1860 * If this was the last executable mapping in the segment,
1861 * set the noexec flag.
1862 */
1863 static void
1864 pvo_clear_exec(struct pvo_entry *pvo)
1865 {
1866 struct pmap *pm = pvo->pvo_pmap;
1867
1868 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1869 return;
1870 }
1871 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1872 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1873 {
1874 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1875 if (--pm->pm_exec[sr] == 0) {
1876 pm->pm_sr[sr] |= SR_NOEXEC;
1877 }
1878 }
1879 #endif
1880 }
1881
1882 /*
1883 * Insert physical page at pa into the given pmap at virtual address va.
1884 */
1885 int
1886 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1887 {
1888 struct mem_region *mp;
1889 struct pvo_head *pvo_head;
1890 struct vm_page *pg;
1891 struct pool *pl;
1892 register_t pte_lo;
1893 int error;
1894 u_int pvo_flags;
1895 u_int was_exec = 0;
1896
1897 PMAP_LOCK();
1898
1899 if (__predict_false(!pmap_initialized)) {
1900 pvo_head = &pmap_pvo_kunmanaged;
1901 pl = &pmap_upvo_pool;
1902 pvo_flags = 0;
1903 pg = NULL;
1904 was_exec = PTE_EXEC;
1905 } else {
1906 pvo_head = pa_to_pvoh(pa, &pg);
1907 pl = &pmap_mpvo_pool;
1908 pvo_flags = PVO_MANAGED;
1909 }
1910
1911 DPRINTFN(ENTER,
1912 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1913 pm, va, pa, prot, flags);
1914
1915 /*
1916 * If this is a managed page, and it's the first reference to the
1917 * page clear the execness of the page. Otherwise fetch the execness.
1918 */
1919 if (pg != NULL)
1920 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1921
1922 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1923
1924 /*
1925 * Assume the page is cache inhibited and access is guarded unless
1926 * it's in our available memory array. If it is in the memory array,
1927 * asssume it's in memory coherent memory.
1928 */
1929 if (flags & PMAP_MD_PREFETCHABLE) {
1930 pte_lo = 0;
1931 } else
1932 pte_lo = PTE_G;
1933
1934 if ((flags & PMAP_NOCACHE) == 0) {
1935 for (mp = mem; mp->size; mp++) {
1936 if (pa >= mp->start && pa < mp->start + mp->size) {
1937 pte_lo = PTE_M;
1938 break;
1939 }
1940 }
1941 } else {
1942 pte_lo |= PTE_I;
1943 }
1944
1945 if (prot & VM_PROT_WRITE)
1946 pte_lo |= PTE_BW;
1947 else
1948 pte_lo |= PTE_BR;
1949
1950 /*
1951 * If this was in response to a fault, "pre-fault" the PTE's
1952 * changed/referenced bit appropriately.
1953 */
1954 if (flags & VM_PROT_WRITE)
1955 pte_lo |= PTE_CHG;
1956 if (flags & VM_PROT_ALL)
1957 pte_lo |= PTE_REF;
1958
1959 /*
1960 * We need to know if this page can be executable
1961 */
1962 flags |= (prot & VM_PROT_EXECUTE);
1963
1964 /*
1965 * Record mapping for later back-translation and pte spilling.
1966 * This will overwrite any existing mapping.
1967 */
1968 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1969
1970 /*
1971 * Flush the real page from the instruction cache if this page is
1972 * mapped executable and cacheable and has not been flushed since
1973 * the last time it was modified.
1974 */
1975 if (error == 0 &&
1976 (flags & VM_PROT_EXECUTE) &&
1977 (pte_lo & PTE_I) == 0 &&
1978 was_exec == 0) {
1979 DPRINTFN(ENTER, " %s", "syncicache");
1980 PMAPCOUNT(exec_synced);
1981 pmap_syncicache(pa, PAGE_SIZE);
1982 if (pg != NULL) {
1983 pmap_attr_save(pg, PTE_EXEC);
1984 PMAPCOUNT(exec_cached);
1985 #if defined(DEBUG) || defined(PMAPDEBUG)
1986 if (pmapdebug & PMAPDEBUG_ENTER)
1987 printf(" marked-as-exec");
1988 else if (pmapdebug & PMAPDEBUG_EXEC)
1989 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1990 VM_PAGE_TO_PHYS(pg));
1991
1992 #endif
1993 }
1994 }
1995
1996 DPRINTFN(ENTER, ": error=%d\n", error);
1997
1998 PMAP_UNLOCK();
1999
2000 return error;
2001 }
2002
2003 void
2004 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2005 {
2006 struct mem_region *mp;
2007 register_t pte_lo;
2008 int error;
2009
2010 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2011 if (va < VM_MIN_KERNEL_ADDRESS)
2012 panic("pmap_kenter_pa: attempt to enter "
2013 "non-kernel address %#" _PRIxva "!", va);
2014 #endif
2015
2016 DPRINTFN(KENTER,
2017 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2018
2019 PMAP_LOCK();
2020
2021 /*
2022 * Assume the page is cache inhibited and access is guarded unless
2023 * it's in our available memory array. If it is in the memory array,
2024 * asssume it's in memory coherent memory.
2025 */
2026 pte_lo = PTE_IG;
2027 if ((flags & PMAP_NOCACHE) == 0) {
2028 for (mp = mem; mp->size; mp++) {
2029 if (pa >= mp->start && pa < mp->start + mp->size) {
2030 pte_lo = PTE_M;
2031 break;
2032 }
2033 }
2034 }
2035
2036 if (prot & VM_PROT_WRITE)
2037 pte_lo |= PTE_BW;
2038 else
2039 pte_lo |= PTE_BR;
2040
2041 /*
2042 * We don't care about REF/CHG on PVOs on the unmanaged list.
2043 */
2044 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2045 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2046
2047 if (error != 0)
2048 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2049 va, pa, error);
2050
2051 PMAP_UNLOCK();
2052 }
2053
2054 void
2055 pmap_kremove(vaddr_t va, vsize_t len)
2056 {
2057 if (va < VM_MIN_KERNEL_ADDRESS)
2058 panic("pmap_kremove: attempt to remove "
2059 "non-kernel address %#" _PRIxva "!", va);
2060
2061 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2062 pmap_remove(pmap_kernel(), va, va + len);
2063 }
2064
2065 /*
2066 * Remove the given range of mapping entries.
2067 */
2068 void
2069 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2070 {
2071 struct pvo_head pvol;
2072 struct pvo_entry *pvo;
2073 register_t msr;
2074 int pteidx;
2075
2076 PMAP_LOCK();
2077 LIST_INIT(&pvol);
2078 msr = pmap_interrupts_off();
2079 for (; va < endva; va += PAGE_SIZE) {
2080 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2081 if (pvo != NULL) {
2082 pmap_pvo_remove(pvo, pteidx, &pvol);
2083 }
2084 }
2085 pmap_interrupts_restore(msr);
2086 pmap_pvo_free_list(&pvol);
2087 PMAP_UNLOCK();
2088 }
2089
2090 /*
2091 * Get the physical page address for the given pmap/virtual address.
2092 */
2093 bool
2094 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2095 {
2096 struct pvo_entry *pvo;
2097 register_t msr;
2098
2099 PMAP_LOCK();
2100
2101 /*
2102 * If this is a kernel pmap lookup, also check the battable
2103 * and if we get a hit, translate the VA to a PA using the
2104 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2105 * that will wrap back to 0.
2106 */
2107 if (pm == pmap_kernel() &&
2108 (va < VM_MIN_KERNEL_ADDRESS ||
2109 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2110 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2111 #if defined (PMAP_OEA)
2112 #ifdef PPC_OEA601
2113 if ((MFPVR() >> 16) == MPC601) {
2114 register_t batu = battable[va >> 23].batu;
2115 register_t batl = battable[va >> 23].batl;
2116 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2117 if (BAT601_VALID_P(batl) &&
2118 BAT601_VA_MATCH_P(batu, batl, va)) {
2119 register_t mask =
2120 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2121 if (pap)
2122 *pap = (batl & mask) | (va & ~mask);
2123 PMAP_UNLOCK();
2124 return true;
2125 } else if (SR601_VALID_P(sr) &&
2126 SR601_PA_MATCH_P(sr, va)) {
2127 if (pap)
2128 *pap = va;
2129 PMAP_UNLOCK();
2130 return true;
2131 }
2132 } else
2133 #endif /* PPC_OEA601 */
2134 {
2135 register_t batu = battable[BAT_VA2IDX(va)].batu;
2136 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2137 register_t batl = battable[BAT_VA2IDX(va)].batl;
2138 register_t mask =
2139 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2140 if (pap)
2141 *pap = (batl & mask) | (va & ~mask);
2142 PMAP_UNLOCK();
2143 return true;
2144 }
2145 }
2146 return false;
2147 #elif defined (PMAP_OEA64_BRIDGE)
2148 if (va >= SEGMENT_LENGTH)
2149 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2150 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2151 else {
2152 if (pap)
2153 *pap = va;
2154 PMAP_UNLOCK();
2155 return true;
2156 }
2157 #elif defined (PMAP_OEA64)
2158 #error PPC_OEA64 not supported
2159 #endif /* PPC_OEA */
2160 }
2161
2162 msr = pmap_interrupts_off();
2163 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2164 if (pvo != NULL) {
2165 PMAP_PVO_CHECK(pvo); /* sanity check */
2166 if (pap)
2167 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2168 | (va & ADDR_POFF);
2169 }
2170 pmap_interrupts_restore(msr);
2171 PMAP_UNLOCK();
2172 return pvo != NULL;
2173 }
2174
2175 /*
2176 * Lower the protection on the specified range of this pmap.
2177 */
2178 void
2179 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2180 {
2181 struct pvo_entry *pvo;
2182 volatile struct pte *pt;
2183 register_t msr;
2184 int pteidx;
2185
2186 /*
2187 * Since this routine only downgrades protection, we should
2188 * always be called with at least one bit not set.
2189 */
2190 KASSERT(prot != VM_PROT_ALL);
2191
2192 /*
2193 * If there is no protection, this is equivalent to
2194 * remove the pmap from the pmap.
2195 */
2196 if ((prot & VM_PROT_READ) == 0) {
2197 pmap_remove(pm, va, endva);
2198 return;
2199 }
2200
2201 PMAP_LOCK();
2202
2203 msr = pmap_interrupts_off();
2204 for (; va < endva; va += PAGE_SIZE) {
2205 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2206 if (pvo == NULL)
2207 continue;
2208 PMAP_PVO_CHECK(pvo); /* sanity check */
2209
2210 /*
2211 * Revoke executable if asked to do so.
2212 */
2213 if ((prot & VM_PROT_EXECUTE) == 0)
2214 pvo_clear_exec(pvo);
2215
2216 #if 0
2217 /*
2218 * If the page is already read-only, no change
2219 * needs to be made.
2220 */
2221 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2222 continue;
2223 #endif
2224 /*
2225 * Grab the PTE pointer before we diddle with
2226 * the cached PTE copy.
2227 */
2228 pt = pmap_pvo_to_pte(pvo, pteidx);
2229 /*
2230 * Change the protection of the page.
2231 */
2232 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2233 pvo->pvo_pte.pte_lo |= PTE_BR;
2234
2235 /*
2236 * If the PVO is in the page table, update
2237 * that pte at well.
2238 */
2239 if (pt != NULL) {
2240 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2241 PVO_WHERE(pvo, PMAP_PROTECT);
2242 PMAPCOUNT(ptes_changed);
2243 }
2244
2245 PMAP_PVO_CHECK(pvo); /* sanity check */
2246 }
2247 pmap_interrupts_restore(msr);
2248 PMAP_UNLOCK();
2249 }
2250
2251 void
2252 pmap_unwire(pmap_t pm, vaddr_t va)
2253 {
2254 struct pvo_entry *pvo;
2255 register_t msr;
2256
2257 PMAP_LOCK();
2258 msr = pmap_interrupts_off();
2259 pvo = pmap_pvo_find_va(pm, va, NULL);
2260 if (pvo != NULL) {
2261 if (PVO_WIRED_P(pvo)) {
2262 pvo->pvo_vaddr &= ~PVO_WIRED;
2263 pm->pm_stats.wired_count--;
2264 }
2265 PMAP_PVO_CHECK(pvo); /* sanity check */
2266 }
2267 pmap_interrupts_restore(msr);
2268 PMAP_UNLOCK();
2269 }
2270
2271 /*
2272 * Lower the protection on the specified physical page.
2273 */
2274 void
2275 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2276 {
2277 struct pvo_head *pvo_head, pvol;
2278 struct pvo_entry *pvo, *next_pvo;
2279 volatile struct pte *pt;
2280 register_t msr;
2281
2282 PMAP_LOCK();
2283
2284 KASSERT(prot != VM_PROT_ALL);
2285 LIST_INIT(&pvol);
2286 msr = pmap_interrupts_off();
2287
2288 /*
2289 * When UVM reuses a page, it does a pmap_page_protect with
2290 * VM_PROT_NONE. At that point, we can clear the exec flag
2291 * since we know the page will have different contents.
2292 */
2293 if ((prot & VM_PROT_READ) == 0) {
2294 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2295 VM_PAGE_TO_PHYS(pg));
2296 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2297 PMAPCOUNT(exec_uncached_page_protect);
2298 pmap_attr_clear(pg, PTE_EXEC);
2299 }
2300 }
2301
2302 pvo_head = vm_page_to_pvoh(pg);
2303 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2304 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2305 PMAP_PVO_CHECK(pvo); /* sanity check */
2306
2307 /*
2308 * Downgrading to no mapping at all, we just remove the entry.
2309 */
2310 if ((prot & VM_PROT_READ) == 0) {
2311 pmap_pvo_remove(pvo, -1, &pvol);
2312 continue;
2313 }
2314
2315 /*
2316 * If EXEC permission is being revoked, just clear the
2317 * flag in the PVO.
2318 */
2319 if ((prot & VM_PROT_EXECUTE) == 0)
2320 pvo_clear_exec(pvo);
2321
2322 /*
2323 * If this entry is already RO, don't diddle with the
2324 * page table.
2325 */
2326 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2327 PMAP_PVO_CHECK(pvo);
2328 continue;
2329 }
2330
2331 /*
2332 * Grab the PTE before the we diddle the bits so
2333 * pvo_to_pte can verify the pte contents are as
2334 * expected.
2335 */
2336 pt = pmap_pvo_to_pte(pvo, -1);
2337 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2338 pvo->pvo_pte.pte_lo |= PTE_BR;
2339 if (pt != NULL) {
2340 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2341 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2342 PMAPCOUNT(ptes_changed);
2343 }
2344 PMAP_PVO_CHECK(pvo); /* sanity check */
2345 }
2346 pmap_interrupts_restore(msr);
2347 pmap_pvo_free_list(&pvol);
2348
2349 PMAP_UNLOCK();
2350 }
2351
2352 /*
2353 * Activate the address space for the specified process. If the process
2354 * is the current process, load the new MMU context.
2355 */
2356 void
2357 pmap_activate(struct lwp *l)
2358 {
2359 struct pcb *pcb = lwp_getpcb(l);
2360 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2361
2362 DPRINTFN(ACTIVATE,
2363 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2364
2365 /*
2366 * XXX Normally performed in cpu_lwp_fork().
2367 */
2368 pcb->pcb_pm = pmap;
2369
2370 /*
2371 * In theory, the SR registers need only be valid on return
2372 * to user space wait to do them there.
2373 */
2374 if (l == curlwp) {
2375 /* Store pointer to new current pmap. */
2376 curpm = pmap;
2377 }
2378 }
2379
2380 /*
2381 * Deactivate the specified process's address space.
2382 */
2383 void
2384 pmap_deactivate(struct lwp *l)
2385 {
2386 }
2387
2388 bool
2389 pmap_query_bit(struct vm_page *pg, int ptebit)
2390 {
2391 struct pvo_entry *pvo;
2392 volatile struct pte *pt;
2393 register_t msr;
2394
2395 PMAP_LOCK();
2396
2397 if (pmap_attr_fetch(pg) & ptebit) {
2398 PMAP_UNLOCK();
2399 return true;
2400 }
2401
2402 msr = pmap_interrupts_off();
2403 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2404 PMAP_PVO_CHECK(pvo); /* sanity check */
2405 /*
2406 * See if we saved the bit off. If so cache, it and return
2407 * success.
2408 */
2409 if (pvo->pvo_pte.pte_lo & ptebit) {
2410 pmap_attr_save(pg, ptebit);
2411 PMAP_PVO_CHECK(pvo); /* sanity check */
2412 pmap_interrupts_restore(msr);
2413 PMAP_UNLOCK();
2414 return true;
2415 }
2416 }
2417 /*
2418 * No luck, now go thru the hard part of looking at the ptes
2419 * themselves. Sync so any pending REF/CHG bits are flushed
2420 * to the PTEs.
2421 */
2422 SYNC();
2423 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2424 PMAP_PVO_CHECK(pvo); /* sanity check */
2425 /*
2426 * See if this pvo have a valid PTE. If so, fetch the
2427 * REF/CHG bits from the valid PTE. If the appropriate
2428 * ptebit is set, cache, it and return success.
2429 */
2430 pt = pmap_pvo_to_pte(pvo, -1);
2431 if (pt != NULL) {
2432 pmap_pte_synch(pt, &pvo->pvo_pte);
2433 if (pvo->pvo_pte.pte_lo & ptebit) {
2434 pmap_attr_save(pg, ptebit);
2435 PMAP_PVO_CHECK(pvo); /* sanity check */
2436 pmap_interrupts_restore(msr);
2437 PMAP_UNLOCK();
2438 return true;
2439 }
2440 }
2441 }
2442 pmap_interrupts_restore(msr);
2443 PMAP_UNLOCK();
2444 return false;
2445 }
2446
2447 bool
2448 pmap_clear_bit(struct vm_page *pg, int ptebit)
2449 {
2450 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2451 struct pvo_entry *pvo;
2452 volatile struct pte *pt;
2453 register_t msr;
2454 int rv = 0;
2455
2456 PMAP_LOCK();
2457 msr = pmap_interrupts_off();
2458
2459 /*
2460 * Fetch the cache value
2461 */
2462 rv |= pmap_attr_fetch(pg);
2463
2464 /*
2465 * Clear the cached value.
2466 */
2467 pmap_attr_clear(pg, ptebit);
2468
2469 /*
2470 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2471 * can reset the right ones). Note that since the pvo entries and
2472 * list heads are accessed via BAT0 and are never placed in the
2473 * page table, we don't have to worry about further accesses setting
2474 * the REF/CHG bits.
2475 */
2476 SYNC();
2477
2478 /*
2479 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2480 * valid PTE. If so, clear the ptebit from the valid PTE.
2481 */
2482 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2483 PMAP_PVO_CHECK(pvo); /* sanity check */
2484 pt = pmap_pvo_to_pte(pvo, -1);
2485 if (pt != NULL) {
2486 /*
2487 * Only sync the PTE if the bit we are looking
2488 * for is not already set.
2489 */
2490 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2491 pmap_pte_synch(pt, &pvo->pvo_pte);
2492 /*
2493 * If the bit we are looking for was already set,
2494 * clear that bit in the pte.
2495 */
2496 if (pvo->pvo_pte.pte_lo & ptebit)
2497 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2498 }
2499 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2500 pvo->pvo_pte.pte_lo &= ~ptebit;
2501 PMAP_PVO_CHECK(pvo); /* sanity check */
2502 }
2503 pmap_interrupts_restore(msr);
2504
2505 /*
2506 * If we are clearing the modify bit and this page was marked EXEC
2507 * and the user of the page thinks the page was modified, then we
2508 * need to clean it from the icache if it's mapped or clear the EXEC
2509 * bit if it's not mapped. The page itself might not have the CHG
2510 * bit set if the modification was done via DMA to the page.
2511 */
2512 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2513 if (LIST_EMPTY(pvoh)) {
2514 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2515 VM_PAGE_TO_PHYS(pg));
2516 pmap_attr_clear(pg, PTE_EXEC);
2517 PMAPCOUNT(exec_uncached_clear_modify);
2518 } else {
2519 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2520 VM_PAGE_TO_PHYS(pg));
2521 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2522 PMAPCOUNT(exec_synced_clear_modify);
2523 }
2524 }
2525 PMAP_UNLOCK();
2526 return (rv & ptebit) != 0;
2527 }
2528
2529 void
2530 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2531 {
2532 struct pvo_entry *pvo;
2533 size_t offset = va & ADDR_POFF;
2534 int s;
2535
2536 PMAP_LOCK();
2537 s = splvm();
2538 while (len > 0) {
2539 size_t seglen = PAGE_SIZE - offset;
2540 if (seglen > len)
2541 seglen = len;
2542 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2543 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2544 pmap_syncicache(
2545 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2546 PMAP_PVO_CHECK(pvo);
2547 }
2548 va += seglen;
2549 len -= seglen;
2550 offset = 0;
2551 }
2552 splx(s);
2553 PMAP_UNLOCK();
2554 }
2555
2556 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2557 void
2558 pmap_pte_print(volatile struct pte *pt)
2559 {
2560 printf("PTE %p: ", pt);
2561
2562 #if defined(PMAP_OEA)
2563 /* High word: */
2564 printf("%#" _PRIxpte ": [", pt->pte_hi);
2565 #else
2566 printf("%#" _PRIxpte ": [", pt->pte_hi);
2567 #endif /* PMAP_OEA */
2568
2569 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2570 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2571
2572 printf("%#" _PRIxpte " %#" _PRIxpte "",
2573 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2574 pt->pte_hi & PTE_API);
2575 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2576 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2577 #else
2578 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2579 #endif /* PMAP_OEA */
2580
2581 /* Low word: */
2582 #if defined (PMAP_OEA)
2583 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2584 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2585 #else
2586 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2587 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2588 #endif
2589 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2590 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2591 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2592 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2593 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2594 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2595 switch (pt->pte_lo & PTE_PP) {
2596 case PTE_BR: printf("br]\n"); break;
2597 case PTE_BW: printf("bw]\n"); break;
2598 case PTE_SO: printf("so]\n"); break;
2599 case PTE_SW: printf("sw]\n"); break;
2600 }
2601 }
2602 #endif
2603
2604 #if defined(DDB)
2605 void
2606 pmap_pteg_check(void)
2607 {
2608 volatile struct pte *pt;
2609 int i;
2610 int ptegidx;
2611 u_int p_valid = 0;
2612 u_int s_valid = 0;
2613 u_int invalid = 0;
2614
2615 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2616 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2617 if (pt->pte_hi & PTE_VALID) {
2618 if (pt->pte_hi & PTE_HID)
2619 s_valid++;
2620 else
2621 {
2622 p_valid++;
2623 }
2624 } else
2625 invalid++;
2626 }
2627 }
2628 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2629 p_valid, p_valid, s_valid, s_valid,
2630 invalid, invalid);
2631 }
2632
2633 void
2634 pmap_print_mmuregs(void)
2635 {
2636 int i;
2637 u_int cpuvers;
2638 #ifndef PMAP_OEA64
2639 vaddr_t addr;
2640 register_t soft_sr[16];
2641 #endif
2642 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2643 struct bat soft_ibat[4];
2644 struct bat soft_dbat[4];
2645 #endif
2646 paddr_t sdr1;
2647
2648 cpuvers = MFPVR() >> 16;
2649 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2650 #ifndef PMAP_OEA64
2651 addr = 0;
2652 for (i = 0; i < 16; i++) {
2653 soft_sr[i] = MFSRIN(addr);
2654 addr += (1 << ADDR_SR_SHFT);
2655 }
2656 #endif
2657
2658 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2659 /* read iBAT (601: uBAT) registers */
2660 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2661 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2662 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2663 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2664 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2665 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2666 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2667 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2668
2669
2670 if (cpuvers != MPC601) {
2671 /* read dBAT registers */
2672 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2673 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2674 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2675 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2676 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2677 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2678 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2679 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2680 }
2681 #endif
2682
2683 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2684 #ifndef PMAP_OEA64
2685 printf("SR[]:\t");
2686 for (i = 0; i < 4; i++)
2687 printf("0x%08lx, ", soft_sr[i]);
2688 printf("\n\t");
2689 for ( ; i < 8; i++)
2690 printf("0x%08lx, ", soft_sr[i]);
2691 printf("\n\t");
2692 for ( ; i < 12; i++)
2693 printf("0x%08lx, ", soft_sr[i]);
2694 printf("\n\t");
2695 for ( ; i < 16; i++)
2696 printf("0x%08lx, ", soft_sr[i]);
2697 printf("\n");
2698 #endif
2699
2700 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2701 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2702 for (i = 0; i < 4; i++) {
2703 printf("0x%08lx 0x%08lx, ",
2704 soft_ibat[i].batu, soft_ibat[i].batl);
2705 if (i == 1)
2706 printf("\n\t");
2707 }
2708 if (cpuvers != MPC601) {
2709 printf("\ndBAT[]:\t");
2710 for (i = 0; i < 4; i++) {
2711 printf("0x%08lx 0x%08lx, ",
2712 soft_dbat[i].batu, soft_dbat[i].batl);
2713 if (i == 1)
2714 printf("\n\t");
2715 }
2716 }
2717 printf("\n");
2718 #endif /* PMAP_OEA... */
2719 }
2720
2721 void
2722 pmap_print_pte(pmap_t pm, vaddr_t va)
2723 {
2724 struct pvo_entry *pvo;
2725 volatile struct pte *pt;
2726 int pteidx;
2727
2728 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2729 if (pvo != NULL) {
2730 pt = pmap_pvo_to_pte(pvo, pteidx);
2731 if (pt != NULL) {
2732 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2733 va, pt,
2734 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2735 pt->pte_hi, pt->pte_lo);
2736 } else {
2737 printf("No valid PTE found\n");
2738 }
2739 } else {
2740 printf("Address not in pmap\n");
2741 }
2742 }
2743
2744 void
2745 pmap_pteg_dist(void)
2746 {
2747 struct pvo_entry *pvo;
2748 int ptegidx;
2749 int depth;
2750 int max_depth = 0;
2751 unsigned int depths[64];
2752
2753 memset(depths, 0, sizeof(depths));
2754 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2755 depth = 0;
2756 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2757 depth++;
2758 }
2759 if (depth > max_depth)
2760 max_depth = depth;
2761 if (depth > 63)
2762 depth = 63;
2763 depths[depth]++;
2764 }
2765
2766 for (depth = 0; depth < 64; depth++) {
2767 printf(" [%2d]: %8u", depth, depths[depth]);
2768 if ((depth & 3) == 3)
2769 printf("\n");
2770 if (depth == max_depth)
2771 break;
2772 }
2773 if ((depth & 3) != 3)
2774 printf("\n");
2775 printf("Max depth found was %d\n", max_depth);
2776 }
2777 #endif /* DEBUG */
2778
2779 #if defined(PMAPCHECK) || defined(DEBUG)
2780 void
2781 pmap_pvo_verify(void)
2782 {
2783 int ptegidx;
2784 int s;
2785
2786 s = splvm();
2787 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2788 struct pvo_entry *pvo;
2789 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2790 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2791 panic("pmap_pvo_verify: invalid pvo %p "
2792 "on list %#x", pvo, ptegidx);
2793 pmap_pvo_check(pvo);
2794 }
2795 }
2796 splx(s);
2797 }
2798 #endif /* PMAPCHECK */
2799
2800
2801 void *
2802 pmap_pool_ualloc(struct pool *pp, int flags)
2803 {
2804 struct pvo_page *pvop;
2805
2806 if (uvm.page_init_done != true) {
2807 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2808 }
2809
2810 PMAP_LOCK();
2811 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2812 if (pvop != NULL) {
2813 pmap_upvop_free--;
2814 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2815 PMAP_UNLOCK();
2816 return pvop;
2817 }
2818 PMAP_UNLOCK();
2819 return pmap_pool_malloc(pp, flags);
2820 }
2821
2822 void *
2823 pmap_pool_malloc(struct pool *pp, int flags)
2824 {
2825 struct pvo_page *pvop;
2826 struct vm_page *pg;
2827
2828 PMAP_LOCK();
2829 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2830 if (pvop != NULL) {
2831 pmap_mpvop_free--;
2832 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2833 PMAP_UNLOCK();
2834 return pvop;
2835 }
2836 PMAP_UNLOCK();
2837 again:
2838 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2839 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2840 if (__predict_false(pg == NULL)) {
2841 if (flags & PR_WAITOK) {
2842 uvm_wait("plpg");
2843 goto again;
2844 } else {
2845 return (0);
2846 }
2847 }
2848 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2849 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2850 }
2851
2852 void
2853 pmap_pool_ufree(struct pool *pp, void *va)
2854 {
2855 struct pvo_page *pvop;
2856 #if 0
2857 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2858 pmap_pool_mfree(va, size, tag);
2859 return;
2860 }
2861 #endif
2862 PMAP_LOCK();
2863 pvop = va;
2864 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2865 pmap_upvop_free++;
2866 if (pmap_upvop_free > pmap_upvop_maxfree)
2867 pmap_upvop_maxfree = pmap_upvop_free;
2868 PMAP_UNLOCK();
2869 }
2870
2871 void
2872 pmap_pool_mfree(struct pool *pp, void *va)
2873 {
2874 struct pvo_page *pvop;
2875
2876 PMAP_LOCK();
2877 pvop = va;
2878 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2879 pmap_mpvop_free++;
2880 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2881 pmap_mpvop_maxfree = pmap_mpvop_free;
2882 PMAP_UNLOCK();
2883 #if 0
2884 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2885 #endif
2886 }
2887
2888 /*
2889 * This routine in bootstraping to steal to-be-managed memory (which will
2890 * then be unmanaged). We use it to grab from the first 256MB for our
2891 * pmap needs and above 256MB for other stuff.
2892 */
2893 vaddr_t
2894 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2895 {
2896 vsize_t size;
2897 vaddr_t va;
2898 paddr_t pa = 0;
2899 int npgs, bank;
2900 struct vm_physseg *ps;
2901
2902 if (uvm.page_init_done == true)
2903 panic("pmap_steal_memory: called _after_ bootstrap");
2904
2905 *vstartp = VM_MIN_KERNEL_ADDRESS;
2906 *vendp = VM_MAX_KERNEL_ADDRESS;
2907
2908 size = round_page(vsize);
2909 npgs = atop(size);
2910
2911 /*
2912 * PA 0 will never be among those given to UVM so we can use it
2913 * to indicate we couldn't steal any memory.
2914 */
2915 for (bank = 0; bank < vm_nphysseg; bank++) {
2916 ps = VM_PHYSMEM_PTR(bank);
2917 if (ps->free_list == VM_FREELIST_FIRST256 &&
2918 ps->avail_end - ps->avail_start >= npgs) {
2919 pa = ptoa(ps->avail_start);
2920 break;
2921 }
2922 }
2923
2924 if (pa == 0)
2925 panic("pmap_steal_memory: no approriate memory to steal!");
2926
2927 ps->avail_start += npgs;
2928 ps->start += npgs;
2929
2930 /*
2931 * If we've used up all the pages in the segment, remove it and
2932 * compact the list.
2933 */
2934 if (ps->avail_start == ps->end) {
2935 /*
2936 * If this was the last one, then a very bad thing has occurred
2937 */
2938 if (--vm_nphysseg == 0)
2939 panic("pmap_steal_memory: out of memory!");
2940
2941 printf("pmap_steal_memory: consumed bank %d\n", bank);
2942 for (; bank < vm_nphysseg; bank++, ps++) {
2943 ps[0] = ps[1];
2944 }
2945 }
2946
2947 va = (vaddr_t) pa;
2948 memset((void *) va, 0, size);
2949 pmap_pages_stolen += npgs;
2950 #ifdef DEBUG
2951 if (pmapdebug && npgs > 1) {
2952 u_int cnt = 0;
2953 for (bank = 0; bank < vm_nphysseg; bank++) {
2954 ps = VM_PHYSMEM_PTR(bank);
2955 cnt += ps->avail_end - ps->avail_start;
2956 }
2957 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2958 npgs, pmap_pages_stolen, cnt);
2959 }
2960 #endif
2961
2962 return va;
2963 }
2964
2965 /*
2966 * Find a chuck of memory with right size and alignment.
2967 */
2968 paddr_t
2969 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2970 {
2971 struct mem_region *mp;
2972 paddr_t s, e;
2973 int i, j;
2974
2975 size = round_page(size);
2976
2977 DPRINTFN(BOOT,
2978 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2979 size, alignment, at_end);
2980
2981 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2982 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2983 alignment);
2984
2985 if (at_end) {
2986 if (alignment != PAGE_SIZE)
2987 panic("pmap_boot_find_memory: invalid ending "
2988 "alignment %#" _PRIxpa, alignment);
2989
2990 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2991 s = mp->start + mp->size - size;
2992 if (s >= mp->start && mp->size >= size) {
2993 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
2994 DPRINTFN(BOOT,
2995 "pmap_boot_find_memory: b-avail[%d] start "
2996 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
2997 mp->start, mp->size);
2998 mp->size -= size;
2999 DPRINTFN(BOOT,
3000 "pmap_boot_find_memory: a-avail[%d] start "
3001 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3002 mp->start, mp->size);
3003 return s;
3004 }
3005 }
3006 panic("pmap_boot_find_memory: no available memory");
3007 }
3008
3009 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3010 s = (mp->start + alignment - 1) & ~(alignment-1);
3011 e = s + size;
3012
3013 /*
3014 * Is the calculated region entirely within the region?
3015 */
3016 if (s < mp->start || e > mp->start + mp->size)
3017 continue;
3018
3019 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3020 if (s == mp->start) {
3021 /*
3022 * If the block starts at the beginning of region,
3023 * adjust the size & start. (the region may now be
3024 * zero in length)
3025 */
3026 DPRINTFN(BOOT,
3027 "pmap_boot_find_memory: b-avail[%d] start "
3028 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3029 mp->start += size;
3030 mp->size -= size;
3031 DPRINTFN(BOOT,
3032 "pmap_boot_find_memory: a-avail[%d] start "
3033 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3034 } else if (e == mp->start + mp->size) {
3035 /*
3036 * If the block starts at the beginning of region,
3037 * adjust only the size.
3038 */
3039 DPRINTFN(BOOT,
3040 "pmap_boot_find_memory: b-avail[%d] start "
3041 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3042 mp->size -= size;
3043 DPRINTFN(BOOT,
3044 "pmap_boot_find_memory: a-avail[%d] start "
3045 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3046 } else {
3047 /*
3048 * Block is in the middle of the region, so we
3049 * have to split it in two.
3050 */
3051 for (j = avail_cnt; j > i + 1; j--) {
3052 avail[j] = avail[j-1];
3053 }
3054 DPRINTFN(BOOT,
3055 "pmap_boot_find_memory: b-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3057 mp[1].start = e;
3058 mp[1].size = mp[0].start + mp[0].size - e;
3059 mp[0].size = s - mp[0].start;
3060 avail_cnt++;
3061 for (; i < avail_cnt; i++) {
3062 DPRINTFN(BOOT,
3063 "pmap_boot_find_memory: a-avail[%d] "
3064 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3065 avail[i].start, avail[i].size);
3066 }
3067 }
3068 KASSERT(s == (uintptr_t) s);
3069 return s;
3070 }
3071 panic("pmap_boot_find_memory: not enough memory for "
3072 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3073 }
3074
3075 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3076 #if defined (PMAP_OEA64_BRIDGE)
3077 int
3078 pmap_setup_segment0_map(int use_large_pages, ...)
3079 {
3080 vaddr_t va;
3081
3082 register_t pte_lo = 0x0;
3083 int ptegidx = 0, i = 0;
3084 struct pte pte;
3085 va_list ap;
3086
3087 /* Coherent + Supervisor RW, no user access */
3088 pte_lo = PTE_M;
3089
3090 /* XXXSL
3091 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3092 * these have to take priority.
3093 */
3094 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3095 ptegidx = va_to_pteg(pmap_kernel(), va);
3096 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3097 i = pmap_pte_insert(ptegidx, &pte);
3098 }
3099
3100 va_start(ap, use_large_pages);
3101 while (1) {
3102 paddr_t pa;
3103 size_t size;
3104
3105 va = va_arg(ap, vaddr_t);
3106
3107 if (va == 0)
3108 break;
3109
3110 pa = va_arg(ap, paddr_t);
3111 size = va_arg(ap, size_t);
3112
3113 for (; va < (va + size); va += 0x1000, pa += 0x1000) {
3114 #if 0
3115 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3116 #endif
3117 ptegidx = va_to_pteg(pmap_kernel(), va);
3118 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3119 i = pmap_pte_insert(ptegidx, &pte);
3120 }
3121 }
3122
3123 TLBSYNC();
3124 SYNC();
3125 return (0);
3126 }
3127 #endif /* PMAP_OEA64_BRIDGE */
3128
3129 /*
3130 * This is not part of the defined PMAP interface and is specific to the
3131 * PowerPC architecture. This is called during initppc, before the system
3132 * is really initialized.
3133 */
3134 void
3135 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3136 {
3137 struct mem_region *mp, tmp;
3138 paddr_t s, e;
3139 psize_t size;
3140 int i, j;
3141
3142 /*
3143 * Get memory.
3144 */
3145 mem_regions(&mem, &avail);
3146 #if defined(DEBUG)
3147 if (pmapdebug & PMAPDEBUG_BOOT) {
3148 printf("pmap_bootstrap: memory configuration:\n");
3149 for (mp = mem; mp->size; mp++) {
3150 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3151 mp->start, mp->size);
3152 }
3153 for (mp = avail; mp->size; mp++) {
3154 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3155 mp->start, mp->size);
3156 }
3157 }
3158 #endif
3159
3160 /*
3161 * Find out how much physical memory we have and in how many chunks.
3162 */
3163 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3164 if (mp->start >= pmap_memlimit)
3165 continue;
3166 if (mp->start + mp->size > pmap_memlimit) {
3167 size = pmap_memlimit - mp->start;
3168 physmem += btoc(size);
3169 } else {
3170 physmem += btoc(mp->size);
3171 }
3172 mem_cnt++;
3173 }
3174
3175 /*
3176 * Count the number of available entries.
3177 */
3178 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3179 avail_cnt++;
3180
3181 /*
3182 * Page align all regions.
3183 */
3184 kernelstart = trunc_page(kernelstart);
3185 kernelend = round_page(kernelend);
3186 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3187 s = round_page(mp->start);
3188 mp->size -= (s - mp->start);
3189 mp->size = trunc_page(mp->size);
3190 mp->start = s;
3191 e = mp->start + mp->size;
3192
3193 DPRINTFN(BOOT,
3194 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3195 i, mp->start, mp->size);
3196
3197 /*
3198 * Don't allow the end to run beyond our artificial limit
3199 */
3200 if (e > pmap_memlimit)
3201 e = pmap_memlimit;
3202
3203 /*
3204 * Is this region empty or strange? skip it.
3205 */
3206 if (e <= s) {
3207 mp->start = 0;
3208 mp->size = 0;
3209 continue;
3210 }
3211
3212 /*
3213 * Does this overlap the beginning of kernel?
3214 * Does extend past the end of the kernel?
3215 */
3216 else if (s < kernelstart && e > kernelstart) {
3217 if (e > kernelend) {
3218 avail[avail_cnt].start = kernelend;
3219 avail[avail_cnt].size = e - kernelend;
3220 avail_cnt++;
3221 }
3222 mp->size = kernelstart - s;
3223 }
3224 /*
3225 * Check whether this region overlaps the end of the kernel.
3226 */
3227 else if (s < kernelend && e > kernelend) {
3228 mp->start = kernelend;
3229 mp->size = e - kernelend;
3230 }
3231 /*
3232 * Look whether this regions is completely inside the kernel.
3233 * Nuke it if it does.
3234 */
3235 else if (s >= kernelstart && e <= kernelend) {
3236 mp->start = 0;
3237 mp->size = 0;
3238 }
3239 /*
3240 * If the user imposed a memory limit, enforce it.
3241 */
3242 else if (s >= pmap_memlimit) {
3243 mp->start = -PAGE_SIZE; /* let's know why */
3244 mp->size = 0;
3245 }
3246 else {
3247 mp->start = s;
3248 mp->size = e - s;
3249 }
3250 DPRINTFN(BOOT,
3251 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3252 i, mp->start, mp->size);
3253 }
3254
3255 /*
3256 * Move (and uncount) all the null return to the end.
3257 */
3258 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3259 if (mp->size == 0) {
3260 tmp = avail[i];
3261 avail[i] = avail[--avail_cnt];
3262 avail[avail_cnt] = avail[i];
3263 }
3264 }
3265
3266 /*
3267 * (Bubble)sort them into ascending order.
3268 */
3269 for (i = 0; i < avail_cnt; i++) {
3270 for (j = i + 1; j < avail_cnt; j++) {
3271 if (avail[i].start > avail[j].start) {
3272 tmp = avail[i];
3273 avail[i] = avail[j];
3274 avail[j] = tmp;
3275 }
3276 }
3277 }
3278
3279 /*
3280 * Make sure they don't overlap.
3281 */
3282 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3283 if (mp[0].start + mp[0].size > mp[1].start) {
3284 mp[0].size = mp[1].start - mp[0].start;
3285 }
3286 DPRINTFN(BOOT,
3287 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3288 i, mp->start, mp->size);
3289 }
3290 DPRINTFN(BOOT,
3291 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3292 i, mp->start, mp->size);
3293
3294 #ifdef PTEGCOUNT
3295 pmap_pteg_cnt = PTEGCOUNT;
3296 #else /* PTEGCOUNT */
3297
3298 pmap_pteg_cnt = 0x1000;
3299
3300 while (pmap_pteg_cnt < physmem)
3301 pmap_pteg_cnt <<= 1;
3302
3303 pmap_pteg_cnt >>= 1;
3304 #endif /* PTEGCOUNT */
3305
3306 #ifdef DEBUG
3307 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3308 #endif
3309
3310 /*
3311 * Find suitably aligned memory for PTEG hash table.
3312 */
3313 size = pmap_pteg_cnt * sizeof(struct pteg);
3314 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3315
3316 #ifdef DEBUG
3317 DPRINTFN(BOOT,
3318 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3319 #endif
3320
3321
3322 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3323 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3324 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3325 pmap_pteg_table, size);
3326 #endif
3327
3328 memset(__UNVOLATILE(pmap_pteg_table), 0,
3329 pmap_pteg_cnt * sizeof(struct pteg));
3330 pmap_pteg_mask = pmap_pteg_cnt - 1;
3331
3332 /*
3333 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3334 * with pages. So we just steal them before giving them to UVM.
3335 */
3336 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3337 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3339 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3340 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3341 pmap_pvo_table, size);
3342 #endif
3343
3344 for (i = 0; i < pmap_pteg_cnt; i++)
3345 TAILQ_INIT(&pmap_pvo_table[i]);
3346
3347 #ifndef MSGBUFADDR
3348 /*
3349 * Allocate msgbuf in high memory.
3350 */
3351 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3352 #endif
3353
3354 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3355 paddr_t pfstart = atop(mp->start);
3356 paddr_t pfend = atop(mp->start + mp->size);
3357 if (mp->size == 0)
3358 continue;
3359 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3360 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3361 VM_FREELIST_FIRST256);
3362 } else if (mp->start >= SEGMENT_LENGTH) {
3363 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3364 VM_FREELIST_DEFAULT);
3365 } else {
3366 pfend = atop(SEGMENT_LENGTH);
3367 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3368 VM_FREELIST_FIRST256);
3369 pfstart = atop(SEGMENT_LENGTH);
3370 pfend = atop(mp->start + mp->size);
3371 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3372 VM_FREELIST_DEFAULT);
3373 }
3374 }
3375
3376 /*
3377 * Make sure kernel vsid is allocated as well as VSID 0.
3378 */
3379 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3380 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3381 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3382 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3383 pmap_vsid_bitmap[0] |= 1;
3384
3385 /*
3386 * Initialize kernel pmap and hardware.
3387 */
3388
3389 /* PMAP_OEA64_BRIDGE does support these instructions */
3390 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3391 for (i = 0; i < 16; i++) {
3392 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3393 __asm volatile ("mtsrin %0,%1"
3394 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3395 }
3396
3397 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3398 __asm volatile ("mtsr %0,%1"
3399 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3400 #ifdef KERNEL2_SR
3401 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3402 __asm volatile ("mtsr %0,%1"
3403 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3404 #endif
3405 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3406 #if defined (PMAP_OEA)
3407 for (i = 0; i < 16; i++) {
3408 if (iosrtable[i] & SR601_T) {
3409 pmap_kernel()->pm_sr[i] = iosrtable[i];
3410 __asm volatile ("mtsrin %0,%1"
3411 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3412 }
3413 }
3414 __asm volatile ("sync; mtsdr1 %0; isync"
3415 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3416 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3417 __asm __volatile ("sync; mtsdr1 %0; isync"
3418 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3419 #endif
3420 tlbia();
3421
3422 #ifdef ALTIVEC
3423 pmap_use_altivec = cpu_altivec;
3424 #endif
3425
3426 #ifdef DEBUG
3427 if (pmapdebug & PMAPDEBUG_BOOT) {
3428 u_int cnt;
3429 int bank;
3430 char pbuf[9];
3431 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3432 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3433 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3434 bank,
3435 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3436 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3437 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3438 }
3439 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3440 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3441 pbuf, cnt);
3442 }
3443 #endif
3444
3445 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3446 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3447 &pmap_pool_uallocator, IPL_VM);
3448
3449 pool_setlowat(&pmap_upvo_pool, 252);
3450
3451 pool_init(&pmap_pool, sizeof(struct pmap),
3452 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3453 IPL_NONE);
3454
3455 #if defined(PMAP_NEED_MAPKERNEL) || 1
3456 {
3457 struct pmap *pm = pmap_kernel();
3458 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3459 extern int etext[], kernel_text[];
3460 vaddr_t va, va_etext = (paddr_t) etext;
3461 #endif
3462 paddr_t pa, pa_end;
3463 register_t sr;
3464 struct pte pt;
3465 unsigned int ptegidx;
3466 int bank;
3467
3468 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3469 pm->pm_sr[0] = sr;
3470
3471 for (bank = 0; bank < vm_nphysseg; bank++) {
3472 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3473 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3474 for (; pa < pa_end; pa += PAGE_SIZE) {
3475 ptegidx = va_to_pteg(pm, pa);
3476 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3477 pmap_pte_insert(ptegidx, &pt);
3478 }
3479 }
3480
3481 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3482 va = (vaddr_t) kernel_text;
3483
3484 for (pa = kernelstart; va < va_etext;
3485 pa += PAGE_SIZE, va += PAGE_SIZE) {
3486 ptegidx = va_to_pteg(pm, va);
3487 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3488 pmap_pte_insert(ptegidx, &pt);
3489 }
3490
3491 for (; pa < kernelend;
3492 pa += PAGE_SIZE, va += PAGE_SIZE) {
3493 ptegidx = va_to_pteg(pm, va);
3494 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3495 pmap_pte_insert(ptegidx, &pt);
3496 }
3497
3498 for (va = 0, pa = 0; va < kernelstart;
3499 pa += PAGE_SIZE, va += PAGE_SIZE) {
3500 ptegidx = va_to_pteg(pm, va);
3501 if (va < 0x3000)
3502 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3503 else
3504 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3505 pmap_pte_insert(ptegidx, &pt);
3506 }
3507 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3508 pa += PAGE_SIZE, va += PAGE_SIZE) {
3509 ptegidx = va_to_pteg(pm, va);
3510 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3511 pmap_pte_insert(ptegidx, &pt);
3512 }
3513 #endif
3514
3515 __asm volatile ("mtsrin %0,%1"
3516 :: "r"(sr), "r"(kernelstart));
3517 }
3518 #endif
3519 }
3520