Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.9
      1 /*	$NetBSD: pmap.c,v 1.9 2003/05/08 18:13:22 thorpej Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *        This product includes software developed by the NetBSD
     20  *        Foundation, Inc. and its contributors.
     21  * 4. Neither the name of The NetBSD Foundation nor the names of its
     22  *    contributors may be used to endorse or promote products derived
     23  *    from this software without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     40  * Copyright (C) 1995, 1996 TooLs GmbH.
     41  * All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed by TooLs GmbH.
     54  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     55  *    derived from this software without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     58  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     59  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     60  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     61  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     62  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     63  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     64  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     65  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     66  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 #include "opt_altivec.h"
     70 #include "opt_pmap.h"
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/proc.h>
     74 #include <sys/user.h>
     75 #include <sys/pool.h>
     76 #include <sys/queue.h>
     77 #include <sys/device.h>		/* for evcnt */
     78 #include <sys/systm.h>
     79 
     80 #if __NetBSD_Version__ < 105010000
     81 #include <vm/vm.h>
     82 #include <vm/vm_kern.h>
     83 #define	splvm()		splimp()
     84 #endif
     85 
     86 #include <uvm/uvm.h>
     87 
     88 #include <machine/pcb.h>
     89 #include <machine/powerpc.h>
     90 #include <powerpc/spr.h>
     91 #include <powerpc/oea/sr_601.h>
     92 #if __NetBSD_Version__ > 105010000
     93 #include <powerpc/oea/bat.h>
     94 #else
     95 #include <powerpc/bat.h>
     96 #endif
     97 
     98 #if defined(DEBUG) || defined(PMAPCHECK)
     99 #define	STATIC
    100 #else
    101 #define	STATIC	static
    102 #endif
    103 
    104 #ifdef ALTIVEC
    105 int pmap_use_altivec;
    106 #endif
    107 
    108 volatile struct pteg *pmap_pteg_table;
    109 unsigned int pmap_pteg_cnt;
    110 unsigned int pmap_pteg_mask;
    111 paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    112 
    113 struct pmap kernel_pmap_;
    114 unsigned int pmap_pages_stolen;
    115 u_long pmap_pte_valid;
    116 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    117 u_long pmap_pvo_enter_depth;
    118 u_long pmap_pvo_remove_depth;
    119 #endif
    120 
    121 int physmem;
    122 #ifndef MSGBUFADDR
    123 extern paddr_t msgbuf_paddr;
    124 #endif
    125 
    126 static struct mem_region *mem, *avail;
    127 static u_int mem_cnt, avail_cnt;
    128 
    129 #ifdef __HAVE_PMAP_PHYSSEG
    130 /*
    131  * This is a cache of referenced/modified bits.
    132  * Bits herein are shifted by ATTRSHFT.
    133  */
    134 #define	ATTR_SHFT	4
    135 struct pmap_physseg pmap_physseg;
    136 #endif
    137 
    138 /*
    139  * The following structure is exactly 32 bytes long (one cacheline).
    140  */
    141 struct pvo_entry {
    142 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    143 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    144 	struct pte pvo_pte;			/* Prebuilt PTE */
    145 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    146 	vaddr_t pvo_vaddr;			/* VA of entry */
    147 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    148 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    149 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    150 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    151 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    152 };
    153 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    154 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    155 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    156 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    157 #define	PVO_PTEGIDX_CLR(pvo)	\
    158 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    159 #define	PVO_PTEGIDX_SET(pvo,i)	\
    160 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    161 
    162 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    163 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    164 struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    165 struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    166 
    167 struct pool pmap_pool;		/* pool for pmap structures */
    168 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    169 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    170 
    171 /*
    172  * We keep a cache of unmanaged pages to be used for pvo entries for
    173  * unmanaged pages.
    174  */
    175 struct pvo_page {
    176 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    177 };
    178 SIMPLEQ_HEAD(pvop_head, pvo_page);
    179 struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    180 struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    181 u_long pmap_upvop_free;
    182 u_long pmap_upvop_maxfree;
    183 u_long pmap_mpvop_free;
    184 u_long pmap_mpvop_maxfree;
    185 
    186 STATIC void *pmap_pool_ualloc(struct pool *, int);
    187 STATIC void *pmap_pool_malloc(struct pool *, int);
    188 
    189 STATIC void pmap_pool_ufree(struct pool *, void *);
    190 STATIC void pmap_pool_mfree(struct pool *, void *);
    191 
    192 static struct pool_allocator pmap_pool_mallocator = {
    193 	pmap_pool_malloc, pmap_pool_mfree, 0,
    194 };
    195 
    196 static struct pool_allocator pmap_pool_uallocator = {
    197 	pmap_pool_ualloc, pmap_pool_ufree, 0,
    198 };
    199 
    200 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    201 void pmap_pte_print(volatile struct pte *);
    202 #endif
    203 
    204 #ifdef DDB
    205 void pmap_pteg_check(void);
    206 void pmap_pteg_dist(void);
    207 void pmap_print_pte(pmap_t, vaddr_t);
    208 void pmap_print_mmuregs(void);
    209 #endif
    210 
    211 #if defined(DEBUG) || defined(PMAPCHECK)
    212 #ifdef PMAPCHECK
    213 int pmapcheck = 1;
    214 #else
    215 int pmapcheck = 0;
    216 #endif
    217 void pmap_pvo_verify(void);
    218 STATIC void pmap_pvo_check(const struct pvo_entry *);
    219 #define	PMAP_PVO_CHECK(pvo)	 		\
    220 	do {					\
    221 		if (pmapcheck)			\
    222 			pmap_pvo_check(pvo);	\
    223 	} while (0)
    224 #else
    225 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    226 #endif
    227 STATIC int pmap_pte_insert(int, struct pte *);
    228 STATIC int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    229 	vaddr_t, paddr_t, register_t, int);
    230 STATIC void pmap_pvo_remove(struct pvo_entry *, int);
    231 STATIC struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    232 STATIC volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    233 
    234 STATIC void tlbia(void);
    235 
    236 STATIC void pmap_release(pmap_t);
    237 STATIC void *pmap_boot_find_memory(psize_t, psize_t, int);
    238 
    239 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    240 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    241 
    242 static int pmap_initialized;
    243 
    244 #if defined(DEBUG) || defined(PMAPDEBUG)
    245 #define	PMAPDEBUG_BOOT		0x0001
    246 #define	PMAPDEBUG_PTE		0x0002
    247 #define	PMAPDEBUG_EXEC		0x0008
    248 #define	PMAPDEBUG_PVOENTER	0x0010
    249 #define	PMAPDEBUG_PVOREMOVE	0x0020
    250 #define	PMAPDEBUG_ACTIVATE	0x0100
    251 #define	PMAPDEBUG_CREATE	0x0200
    252 #define	PMAPDEBUG_ENTER		0x1000
    253 #define	PMAPDEBUG_KENTER	0x2000
    254 #define	PMAPDEBUG_KREMOVE	0x4000
    255 #define	PMAPDEBUG_REMOVE	0x8000
    256 unsigned int pmapdebug = 0;
    257 # define DPRINTF(x)		printf x
    258 # define DPRINTFN(n, x)		if (pmapdebug & PMAPDEBUG_ ## n) printf x
    259 #else
    260 # define DPRINTF(x)
    261 # define DPRINTFN(n, x)
    262 #endif
    263 
    264 
    265 #ifdef PMAPCOUNTERS
    266 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    267 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    268 
    269 struct evcnt pmap_evcnt_mappings =
    270     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    271 	    "pmap", "pages mapped");
    272 struct evcnt pmap_evcnt_unmappings =
    273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    274 	    "pmap", "pages unmapped");
    275 
    276 struct evcnt pmap_evcnt_kernel_mappings =
    277     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    278 	    "pmap", "kernel pages mapped");
    279 struct evcnt pmap_evcnt_kernel_unmappings =
    280     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_kernel_mappings,
    281 	    "pmap", "kernel pages unmapped");
    282 
    283 struct evcnt pmap_evcnt_mappings_replaced =
    284     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    285 	    "pmap", "page mappings replaced");
    286 
    287 struct evcnt pmap_evcnt_exec_mappings =
    288     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    289 	    "pmap", "exec pages mapped");
    290 struct evcnt pmap_evcnt_exec_cached =
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_mappings,
    292 	    "pmap", "exec pages cached");
    293 
    294 struct evcnt pmap_evcnt_exec_synced =
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    296 	    "pmap", "exec pages synced");
    297 struct evcnt pmap_evcnt_exec_synced_clear_modify =
    298     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    299 	    "pmap", "exec pages synced (CM)");
    300 
    301 struct evcnt pmap_evcnt_exec_uncached_page_protect =
    302     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    303 	    "pmap", "exec pages uncached (PP)");
    304 struct evcnt pmap_evcnt_exec_uncached_clear_modify =
    305     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    306 	    "pmap", "exec pages uncached (CM)");
    307 struct evcnt pmap_evcnt_exec_uncached_zero_page =
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    309 	    "pmap", "exec pages uncached (ZP)");
    310 struct evcnt pmap_evcnt_exec_uncached_copy_page =
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &pmap_evcnt_exec_mappings,
    312 	    "pmap", "exec pages uncached (CP)");
    313 
    314 struct evcnt pmap_evcnt_updates =
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    316 	    "pmap", "updates");
    317 struct evcnt pmap_evcnt_collects =
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    319 	    "pmap", "collects");
    320 struct evcnt pmap_evcnt_copies =
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    322 	    "pmap", "copies");
    323 
    324 struct evcnt pmap_evcnt_ptes_spilled =
    325     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    326 	    "pmap", "ptes spilled from overflow");
    327 struct evcnt pmap_evcnt_ptes_unspilled =
    328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    329 	    "pmap", "ptes not spilled");
    330 struct evcnt pmap_evcnt_ptes_evicted =
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    332 	    "pmap", "ptes evicted");
    333 
    334 struct evcnt pmap_evcnt_ptes_primary[8] = {
    335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    336 	    "pmap", "ptes added at primary[0]"),
    337     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    338 	    "pmap", "ptes added at primary[1]"),
    339     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    340 	    "pmap", "ptes added at primary[2]"),
    341     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    342 	    "pmap", "ptes added at primary[3]"),
    343 
    344     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    345 	    "pmap", "ptes added at primary[4]"),
    346     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    347 	    "pmap", "ptes added at primary[5]"),
    348     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    349 	    "pmap", "ptes added at primary[6]"),
    350     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    351 	    "pmap", "ptes added at primary[7]"),
    352 };
    353 struct evcnt pmap_evcnt_ptes_secondary[8] = {
    354     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    355 	    "pmap", "ptes added at secondary[0]"),
    356     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    357 	    "pmap", "ptes added at secondary[1]"),
    358     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    359 	    "pmap", "ptes added at secondary[2]"),
    360     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    361 	    "pmap", "ptes added at secondary[3]"),
    362 
    363     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    364 	    "pmap", "ptes added at secondary[4]"),
    365     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    366 	    "pmap", "ptes added at secondary[5]"),
    367     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    368 	    "pmap", "ptes added at secondary[6]"),
    369     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    370 	    "pmap", "ptes added at secondary[7]"),
    371 };
    372 struct evcnt pmap_evcnt_ptes_removed =
    373     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    374 	    "pmap", "ptes removed");
    375 struct evcnt pmap_evcnt_ptes_changed =
    376     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL,
    377 	    "pmap", "ptes changed");
    378 
    379 /*
    380  * From pmap_subr.c
    381  */
    382 extern struct evcnt pmap_evcnt_zeroed_pages;
    383 extern struct evcnt pmap_evcnt_copied_pages;
    384 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    385 #else
    386 #define	PMAPCOUNT(ev)	((void) 0)
    387 #define	PMAPCOUNT2(ev)	((void) 0)
    388 #endif
    389 
    390 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
    391 #define	TLBSYNC()	__asm __volatile("tlbsync")
    392 #define	SYNC()		__asm __volatile("sync")
    393 #define	EIEIO()		__asm __volatile("eieio")
    394 #define	MFMSR()		mfmsr()
    395 #define	MTMSR(psl)	mtmsr(psl)
    396 #define	MFPVR()		mfpvr()
    397 #define	MFSRIN(va)	mfsrin(va)
    398 #define	MFTB()		mfrtcltbl()
    399 
    400 static __inline register_t
    401 mfsrin(vaddr_t va)
    402 {
    403 	register_t sr;
    404 	__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    405 	return sr;
    406 }
    407 
    408 static __inline register_t
    409 pmap_interrupts_off(void)
    410 {
    411 	register_t msr = MFMSR();
    412 	if (msr & PSL_EE)
    413 		MTMSR(msr & ~PSL_EE);
    414 	return msr;
    415 }
    416 
    417 static void
    418 pmap_interrupts_restore(register_t msr)
    419 {
    420 	if (msr & PSL_EE)
    421 		MTMSR(msr);
    422 }
    423 
    424 static __inline u_int32_t
    425 mfrtcltbl(void)
    426 {
    427 
    428 	if ((MFPVR() >> 16) == MPC601)
    429 		return (mfrtcl() >> 7);
    430 	else
    431 		return (mftbl());
    432 }
    433 
    434 /*
    435  * These small routines may have to be replaced,
    436  * if/when we support processors other that the 604.
    437  */
    438 
    439 void
    440 tlbia(void)
    441 {
    442 	caddr_t i;
    443 
    444 	SYNC();
    445 	/*
    446 	 * Why not use "tlbia"?  Because not all processors implement it.
    447 	 *
    448 	 * This needs to be a per-cpu callback to do the appropriate thing
    449 	 * for the CPU. XXX
    450 	 */
    451 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
    452 		TLBIE(i);
    453 		EIEIO();
    454 		SYNC();
    455 	}
    456 	TLBSYNC();
    457 	SYNC();
    458 }
    459 
    460 static __inline register_t
    461 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    462 {
    463 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID);
    464 }
    465 
    466 static __inline register_t
    467 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    468 {
    469 	register_t hash;
    470 
    471 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    472 	return hash & pmap_pteg_mask;
    473 }
    474 
    475 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    476 /*
    477  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    478  * The only bit of magic is that the top 4 bits of the address doesn't
    479  * technically exist in the PTE.  But we know we reserved 4 bits of the
    480  * VSID for it so that's how we get it.
    481  */
    482 static vaddr_t
    483 pmap_pte_to_va(volatile const struct pte *pt)
    484 {
    485 	vaddr_t va;
    486 	uintptr_t ptaddr = (uintptr_t) pt;
    487 
    488 	if (pt->pte_hi & PTE_HID)
    489 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    490 
    491 	/* PPC Bits 10-19 */
    492 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    493 	va <<= ADDR_PIDX_SHFT;
    494 
    495 	/* PPC Bits 4-9 */
    496 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    497 
    498 	/* PPC Bits 0-3 */
    499 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    500 
    501 	return va;
    502 }
    503 #endif
    504 
    505 static __inline struct pvo_head *
    506 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    507 {
    508 #ifdef __HAVE_VM_PAGE_MD
    509 	struct vm_page *pg;
    510 
    511 	pg = PHYS_TO_VM_PAGE(pa);
    512 	if (pg_p != NULL)
    513 		*pg_p = pg;
    514 	if (pg == NULL)
    515 		return &pmap_pvo_unmanaged;
    516 	return &pg->mdpage.mdpg_pvoh;
    517 #endif
    518 #ifdef __HAVE_PMAP_PHYSSEG
    519 	int bank, pg;
    520 
    521 	bank = vm_physseg_find(atop(pa), &pg);
    522 	if (pg_p != NULL)
    523 		*pg_p = pg;
    524 	if (bank == -1)
    525 		return &pmap_pvo_unmanaged;
    526 	return &vm_physmem[bank].pmseg.pvoh[pg];
    527 #endif
    528 }
    529 
    530 static __inline struct pvo_head *
    531 vm_page_to_pvoh(struct vm_page *pg)
    532 {
    533 #ifdef __HAVE_VM_PAGE_MD
    534 	return &pg->mdpage.mdpg_pvoh;
    535 #endif
    536 #ifdef __HAVE_PMAP_PHYSSEG
    537 	return pa_to_pvoh(VM_PAGE_TO_PHYS(pg), NULL);
    538 #endif
    539 }
    540 
    541 
    542 #ifdef __HAVE_PMAP_PHYSSEG
    543 static __inline char *
    544 pa_to_attr(paddr_t pa)
    545 {
    546 	int bank, pg;
    547 
    548 	bank = vm_physseg_find(atop(pa), &pg);
    549 	if (bank == -1)
    550 		return NULL;
    551 	return &vm_physmem[bank].pmseg.attrs[pg];
    552 }
    553 #endif
    554 
    555 static __inline void
    556 pmap_attr_clear(struct vm_page *pg, int ptebit)
    557 {
    558 #ifdef __HAVE_PMAP_PHYSSEG
    559 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
    560 #endif
    561 #ifdef __HAVE_VM_PAGE_MD
    562 	pg->mdpage.mdpg_attrs &= ~ptebit;
    563 #endif
    564 }
    565 
    566 static __inline int
    567 pmap_attr_fetch(struct vm_page *pg)
    568 {
    569 #ifdef __HAVE_PMAP_PHYSSEG
    570 	return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
    571 #endif
    572 #ifdef __HAVE_VM_PAGE_MD
    573 	return pg->mdpage.mdpg_attrs;
    574 #endif
    575 }
    576 
    577 static __inline void
    578 pmap_attr_save(struct vm_page *pg, int ptebit)
    579 {
    580 #ifdef __HAVE_PMAP_PHYSSEG
    581 	*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
    582 #endif
    583 #ifdef __HAVE_VM_PAGE_MD
    584 	pg->mdpage.mdpg_attrs |= ptebit;
    585 #endif
    586 }
    587 
    588 static __inline int
    589 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    590 {
    591 	if (pt->pte_hi == pvo_pt->pte_hi
    592 #if 0
    593 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    594 	        ~(PTE_REF|PTE_CHG)) == 0
    595 #endif
    596 	    )
    597 		return 1;
    598 	return 0;
    599 }
    600 
    601 static __inline void
    602 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    603 {
    604 	/*
    605 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    606 	 * only gets set when the real pte is set in memory.
    607 	 *
    608 	 * Note: Don't set the valid bit for correct operation of tlb update.
    609 	 */
    610 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    611 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    612 	pt->pte_lo = pte_lo;
    613 }
    614 
    615 static __inline void
    616 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    617 {
    618 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    619 }
    620 
    621 static __inline void
    622 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    623 {
    624 	/*
    625 	 * As shown in Section 7.6.3.2.3
    626 	 */
    627 	pt->pte_lo &= ~ptebit;
    628 	TLBIE(va);
    629 	SYNC();
    630 	EIEIO();
    631 	TLBSYNC();
    632 	SYNC();
    633 }
    634 
    635 static __inline void
    636 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    637 {
    638 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    639 	if (pvo_pt->pte_hi & PTE_VALID)
    640 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    641 #endif
    642 	pvo_pt->pte_hi |= PTE_VALID;
    643 	/*
    644 	 * Update the PTE as defined in section 7.6.3.1
    645 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    646 	 * have been saved so this routine can restore them (if desired).
    647 	 */
    648 	pt->pte_lo = pvo_pt->pte_lo;
    649 	EIEIO();
    650 	pt->pte_hi = pvo_pt->pte_hi;
    651 	SYNC();
    652 	pmap_pte_valid++;
    653 }
    654 
    655 static __inline void
    656 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    657 {
    658 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    659 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    660 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    661 	if ((pt->pte_hi & PTE_VALID) == 0)
    662 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    663 #endif
    664 
    665 	pvo_pt->pte_hi &= ~PTE_VALID;
    666 	/*
    667 	 * Force the ref & chg bits back into the PTEs.
    668 	 */
    669 	SYNC();
    670 	/*
    671 	 * Invalidate the pte ... (Section 7.6.3.3)
    672 	 */
    673 	pt->pte_hi &= ~PTE_VALID;
    674 	SYNC();
    675 	TLBIE(va);
    676 	SYNC();
    677 	EIEIO();
    678 	TLBSYNC();
    679 	SYNC();
    680 	/*
    681 	 * Save the ref & chg bits ...
    682 	 */
    683 	pmap_pte_synch(pt, pvo_pt);
    684 	pmap_pte_valid--;
    685 }
    686 
    687 static __inline void
    688 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    689 {
    690 	/*
    691 	 * Invalidate the PTE
    692 	 */
    693 	pmap_pte_unset(pt, pvo_pt, va);
    694 	pmap_pte_set(pt, pvo_pt);
    695 }
    696 
    697 /*
    698  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    699  * (either primary or secondary location).
    700  *
    701  * Note: both the destination and source PTEs must not have PTE_VALID set.
    702  */
    703 
    704 STATIC int
    705 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    706 {
    707 	volatile struct pte *pt;
    708 	int i;
    709 
    710 #if defined(DEBUG)
    711 	DPRINTFN(PTE, ("pmap_pte_insert: idx 0x%x, pte 0x%lx 0x%lx\n",
    712 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
    713 #endif
    714 	/*
    715 	 * First try primary hash.
    716 	 */
    717 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    718 		if ((pt->pte_hi & PTE_VALID) == 0) {
    719 			pvo_pt->pte_hi &= ~PTE_HID;
    720 			pmap_pte_set(pt, pvo_pt);
    721 			return i;
    722 		}
    723 	}
    724 
    725 	/*
    726 	 * Now try secondary hash.
    727 	 */
    728 	ptegidx ^= pmap_pteg_mask;
    729 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    730 		if ((pt->pte_hi & PTE_VALID) == 0) {
    731 			pvo_pt->pte_hi |= PTE_HID;
    732 			pmap_pte_set(pt, pvo_pt);
    733 			return i;
    734 		}
    735 	}
    736 	return -1;
    737 }
    738 
    739 /*
    740  * Spill handler.
    741  *
    742  * Tries to spill a page table entry from the overflow area.
    743  * This runs in either real mode (if dealing with a exception spill)
    744  * or virtual mode when dealing with manually spilling one of the
    745  * kernel's pte entries.  In either case, interrupts are already
    746  * disabled.
    747  */
    748 int
    749 pmap_pte_spill(struct pmap *pm, vaddr_t addr)
    750 {
    751 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    752 	struct pvo_entry *pvo;
    753 	struct pvo_tqhead *pvoh, *vpvoh;
    754 	int ptegidx, i, j;
    755 	volatile struct pteg *pteg;
    756 	volatile struct pte *pt;
    757 
    758 	ptegidx = va_to_pteg(pm, addr);
    759 
    760 	/*
    761 	 * Have to substitute some entry. Use the primary hash for this.
    762 	 *
    763 	 * Use low bits of timebase as random generator
    764 	 */
    765 	pteg = &pmap_pteg_table[ptegidx];
    766 	i = MFTB() & 7;
    767 	pt = &pteg->pt[i];
    768 
    769 	source_pvo = NULL;
    770 	victim_pvo = NULL;
    771 	pvoh = &pmap_pvo_table[ptegidx];
    772 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    773 
    774 		/*
    775 		 * We need to find pvo entry for this address...
    776 		 */
    777 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    778 
    779 		/*
    780 		 * If we haven't found the source and we come to a PVO with
    781 		 * a valid PTE, then we know we can't find it because all
    782 		 * evicted PVOs always are first in the list.
    783 		 */
    784 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    785 			break;
    786 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    787 		    addr == PVO_VADDR(pvo)) {
    788 
    789 			/*
    790 			 * Now we have found the entry to be spilled into the
    791 			 * pteg.  Attempt to insert it into the page table.
    792 			 */
    793 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    794 			if (j >= 0) {
    795 				PVO_PTEGIDX_SET(pvo, j);
    796 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    797 				pvo->pvo_pmap->pm_evictions--;
    798 				PMAPCOUNT(ptes_spilled);
    799 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    800 				    ? pmap_evcnt_ptes_secondary
    801 				    : pmap_evcnt_ptes_primary)[j]);
    802 
    803 				/*
    804 				 * Since we keep the evicted entries at the
    805 				 * from of the PVO list, we need move this
    806 				 * (now resident) PVO after the evicted
    807 				 * entries.
    808 				 */
    809 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    810 
    811 				/*
    812 				 * If we don't have to move (either we were the
    813 				 * last entry or the next entry was valid),
    814 				 * don't change our position.  Otherwise
    815 				 * move ourselves to the tail of the queue.
    816 				 */
    817 				if (next_pvo != NULL &&
    818 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    819 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    820 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    821 				}
    822 				return 1;
    823 			}
    824 			source_pvo = pvo;
    825 			if (victim_pvo != NULL)
    826 				break;
    827 		}
    828 
    829 		/*
    830 		 * We also need the pvo entry of the victim we are replacing
    831 		 * so save the R & C bits of the PTE.
    832 		 */
    833 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
    834 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
    835 			vpvoh = pvoh;
    836 			victim_pvo = pvo;
    837 			if (source_pvo != NULL)
    838 				break;
    839 		}
    840 	}
    841 
    842 	if (source_pvo == NULL) {
    843 		PMAPCOUNT(ptes_unspilled);
    844 		return 0;
    845 	}
    846 
    847 	if (victim_pvo == NULL) {
    848 		if ((pt->pte_hi & PTE_HID) == 0)
    849 			panic("pmap_pte_spill: victim p-pte (%p) has "
    850 			    "no pvo entry!", pt);
    851 
    852 		/*
    853 		 * If this is a secondary PTE, we need to search
    854 		 * its primary pvo bucket for the matching PVO.
    855 		 */
    856 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask];
    857 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
    858 			PMAP_PVO_CHECK(pvo);		/* sanity check */
    859 
    860 			/*
    861 			 * We also need the pvo entry of the victim we are
    862 			 * replacing so save the R & C bits of the PTE.
    863 			 */
    864 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
    865 				victim_pvo = pvo;
    866 				break;
    867 			}
    868 		}
    869 		if (victim_pvo == NULL)
    870 			panic("pmap_pte_spill: victim s-pte (%p) has "
    871 			    "no pvo entry!", pt);
    872 	}
    873 
    874 	/*
    875 	 * We are invalidating the TLB entry for the EA for the
    876 	 * we are replacing even though its valid; If we don't
    877 	 * we lose any ref/chg bit changes contained in the TLB
    878 	 * entry.
    879 	 */
    880 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
    881 
    882 	/*
    883 	 * To enforce the PVO list ordering constraint that all
    884 	 * evicted entries should come before all valid entries,
    885 	 * move the source PVO to the tail of its list and the
    886 	 * victim PVO to the head of its list (which might not be
    887 	 * the same list, if the victim was using the secondary hash).
    888 	 */
    889 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
    890 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
    891 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
    892 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
    893 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
    894 	pmap_pte_set(pt, &source_pvo->pvo_pte);
    895 	victim_pvo->pvo_pmap->pm_evictions++;
    896 	source_pvo->pvo_pmap->pm_evictions--;
    897 
    898 	PVO_PTEGIDX_CLR(victim_pvo);
    899 	PVO_PTEGIDX_SET(source_pvo, i);
    900 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
    901 	PMAPCOUNT(ptes_spilled);
    902 	PMAPCOUNT(ptes_evicted);
    903 	PMAPCOUNT(ptes_removed);
    904 
    905 	PMAP_PVO_CHECK(victim_pvo);
    906 	PMAP_PVO_CHECK(source_pvo);
    907 	return 1;
    908 }
    909 
    910 /*
    911  * Restrict given range to physical memory
    912  */
    913 void
    914 pmap_real_memory(paddr_t *start, psize_t *size)
    915 {
    916 	struct mem_region *mp;
    917 
    918 	for (mp = mem; mp->size; mp++) {
    919 		if (*start + *size > mp->start
    920 		    && *start < mp->start + mp->size) {
    921 			if (*start < mp->start) {
    922 				*size -= mp->start - *start;
    923 				*start = mp->start;
    924 			}
    925 			if (*start + *size > mp->start + mp->size)
    926 				*size = mp->start + mp->size - *start;
    927 			return;
    928 		}
    929 	}
    930 	*size = 0;
    931 }
    932 
    933 /*
    934  * Initialize anything else for pmap handling.
    935  * Called during vm_init().
    936  */
    937 void
    938 pmap_init(void)
    939 {
    940 	int s;
    941 #ifdef __HAVE_PMAP_PHYSSEG
    942 	struct pvo_tqhead *pvoh;
    943 	int bank;
    944 	long sz;
    945 	char *attr;
    946 
    947 	s = splvm();
    948 	pvoh = pmap_physseg.pvoh;
    949 	attr = pmap_physseg.attrs;
    950 	for (bank = 0; bank < vm_nphysseg; bank++) {
    951 		sz = vm_physmem[bank].end - vm_physmem[bank].start;
    952 		vm_physmem[bank].pmseg.pvoh = pvoh;
    953 		vm_physmem[bank].pmseg.attrs = attr;
    954 		for (; sz > 0; sz--, pvoh++, attr++) {
    955 			TAILQ_INIT(pvoh);
    956 			*attr = 0;
    957 		}
    958 	}
    959 	splx(s);
    960 #endif
    961 
    962 	s = splvm();
    963 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
    964 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
    965 	    &pmap_pool_mallocator);
    966 
    967 	pool_setlowat(&pmap_mpvo_pool, 1008);
    968 
    969 	pmap_initialized = 1;
    970 	splx(s);
    971 
    972 #ifdef PMAPCOUNTERS
    973 	evcnt_attach_static(&pmap_evcnt_mappings);
    974 	evcnt_attach_static(&pmap_evcnt_mappings_replaced);
    975 	evcnt_attach_static(&pmap_evcnt_unmappings);
    976 
    977 	evcnt_attach_static(&pmap_evcnt_kernel_mappings);
    978 	evcnt_attach_static(&pmap_evcnt_kernel_unmappings);
    979 
    980 	evcnt_attach_static(&pmap_evcnt_exec_mappings);
    981 	evcnt_attach_static(&pmap_evcnt_exec_cached);
    982 	evcnt_attach_static(&pmap_evcnt_exec_synced);
    983 	evcnt_attach_static(&pmap_evcnt_exec_synced_clear_modify);
    984 
    985 	evcnt_attach_static(&pmap_evcnt_exec_uncached_page_protect);
    986 	evcnt_attach_static(&pmap_evcnt_exec_uncached_clear_modify);
    987 	evcnt_attach_static(&pmap_evcnt_exec_uncached_zero_page);
    988 	evcnt_attach_static(&pmap_evcnt_exec_uncached_copy_page);
    989 
    990 	evcnt_attach_static(&pmap_evcnt_zeroed_pages);
    991 	evcnt_attach_static(&pmap_evcnt_copied_pages);
    992 	evcnt_attach_static(&pmap_evcnt_idlezeroed_pages);
    993 
    994 	evcnt_attach_static(&pmap_evcnt_updates);
    995 	evcnt_attach_static(&pmap_evcnt_collects);
    996 	evcnt_attach_static(&pmap_evcnt_copies);
    997 
    998 	evcnt_attach_static(&pmap_evcnt_ptes_spilled);
    999 	evcnt_attach_static(&pmap_evcnt_ptes_unspilled);
   1000 	evcnt_attach_static(&pmap_evcnt_ptes_evicted);
   1001 	evcnt_attach_static(&pmap_evcnt_ptes_removed);
   1002 	evcnt_attach_static(&pmap_evcnt_ptes_changed);
   1003 	evcnt_attach_static(&pmap_evcnt_ptes_primary[0]);
   1004 	evcnt_attach_static(&pmap_evcnt_ptes_primary[1]);
   1005 	evcnt_attach_static(&pmap_evcnt_ptes_primary[2]);
   1006 	evcnt_attach_static(&pmap_evcnt_ptes_primary[3]);
   1007 	evcnt_attach_static(&pmap_evcnt_ptes_primary[4]);
   1008 	evcnt_attach_static(&pmap_evcnt_ptes_primary[5]);
   1009 	evcnt_attach_static(&pmap_evcnt_ptes_primary[6]);
   1010 	evcnt_attach_static(&pmap_evcnt_ptes_primary[7]);
   1011 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[0]);
   1012 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[1]);
   1013 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[2]);
   1014 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[3]);
   1015 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[4]);
   1016 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[5]);
   1017 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[6]);
   1018 	evcnt_attach_static(&pmap_evcnt_ptes_secondary[7]);
   1019 #endif
   1020 }
   1021 
   1022 /*
   1023  * Allocate, initialize, and return a new physical map.
   1024  */
   1025 pmap_t
   1026 pmap_create(void)
   1027 {
   1028 	pmap_t pm;
   1029 
   1030 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1031 	memset((caddr_t)pm, 0, sizeof *pm);
   1032 	pmap_pinit(pm);
   1033 
   1034 	DPRINTFN(CREATE,("pmap_create: pm %p:\n"
   1035 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n"
   1036 	    "\t%06lx %06lx %06lx %06lx    %06lx %06lx %06lx %06lx\n", pm,
   1037 	    pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
   1038 	    pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
   1039 	    pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
   1040 	    pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
   1041 	return pm;
   1042 }
   1043 
   1044 /*
   1045  * Initialize a preallocated and zeroed pmap structure.
   1046  */
   1047 void
   1048 pmap_pinit(pmap_t pm)
   1049 {
   1050 	register_t entropy = MFTB();
   1051 	register_t mask;
   1052 	int i;
   1053 
   1054 	/*
   1055 	 * Allocate some segment registers for this pmap.
   1056 	 */
   1057 	pm->pm_refs = 1;
   1058 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1059 		static register_t pmap_vsidcontext;
   1060 		register_t hash;
   1061 		unsigned int n;
   1062 
   1063 		/* Create a new value by multiplying by a prime adding in
   1064 		 * entropy from the timebase register.  This is to make the
   1065 		 * VSID more random so that the PT Hash function collides
   1066 		 * less often. (note that the prime causes gcc to do shifts
   1067 		 * instead of a multiply)
   1068 		 */
   1069 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1070 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1071 		if (hash == 0)			/* 0 is special, avoid it */
   1072 			continue;
   1073 		n = hash >> 5;
   1074 		mask = 1L << (hash & (VSID_NBPW-1));
   1075 		hash = pmap_vsidcontext;
   1076 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1077 			/* anything free in this bucket? */
   1078 			if (~pmap_vsid_bitmap[n] == 0) {
   1079 				entropy = hash >> PTE_VSID_SHFT;
   1080 				continue;
   1081 			}
   1082 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1083 			mask = 1L << i;
   1084 			hash &= ~(VSID_NBPW-1);
   1085 			hash |= i;
   1086 		}
   1087 		/*
   1088 		 * Make sure clear out SR_KEY_LEN bits because we put our
   1089 		 * our data in those bits (to identify the segment).
   1090 		 */
   1091 		hash &= PTE_VSID >> (PTE_VSID_SHFT + SR_KEY_LEN);
   1092 		pmap_vsid_bitmap[n] |= mask;
   1093 		for (i = 0; i < 16; i++)
   1094 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY;
   1095 		return;
   1096 	}
   1097 	panic("pmap_pinit: out of segments");
   1098 }
   1099 
   1100 /*
   1101  * Add a reference to the given pmap.
   1102  */
   1103 void
   1104 pmap_reference(pmap_t pm)
   1105 {
   1106 	pm->pm_refs++;
   1107 }
   1108 
   1109 /*
   1110  * Retire the given pmap from service.
   1111  * Should only be called if the map contains no valid mappings.
   1112  */
   1113 void
   1114 pmap_destroy(pmap_t pm)
   1115 {
   1116 	if (--pm->pm_refs == 0) {
   1117 		pmap_release(pm);
   1118 		pool_put(&pmap_pool, pm);
   1119 	}
   1120 }
   1121 
   1122 /*
   1123  * Release any resources held by the given physical map.
   1124  * Called when a pmap initialized by pmap_pinit is being released.
   1125  */
   1126 void
   1127 pmap_release(pmap_t pm)
   1128 {
   1129 	int idx, mask;
   1130 
   1131 	if (pm->pm_sr[0] == 0)
   1132 		panic("pmap_release");
   1133 	idx = VSID_TO_HASH(pm->pm_sr[0]) & (NPMAPS-1);
   1134 	mask = 1 << (idx % VSID_NBPW);
   1135 	idx /= VSID_NBPW;
   1136 	pmap_vsid_bitmap[idx] &= ~mask;
   1137 }
   1138 
   1139 /*
   1140  * Copy the range specified by src_addr/len
   1141  * from the source map to the range dst_addr/len
   1142  * in the destination map.
   1143  *
   1144  * This routine is only advisory and need not do anything.
   1145  */
   1146 void
   1147 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1148 	vsize_t len, vaddr_t src_addr)
   1149 {
   1150 	PMAPCOUNT(copies);
   1151 }
   1152 
   1153 /*
   1154  * Require that all active physical maps contain no
   1155  * incorrect entries NOW.
   1156  */
   1157 void
   1158 pmap_update(struct pmap *pmap)
   1159 {
   1160 	PMAPCOUNT(updates);
   1161 	TLBSYNC();
   1162 }
   1163 
   1164 /*
   1165  * Garbage collects the physical map system for
   1166  * pages which are no longer used.
   1167  * Success need not be guaranteed -- that is, there
   1168  * may well be pages which are not referenced, but
   1169  * others may be collected.
   1170  * Called by the pageout daemon when pages are scarce.
   1171  */
   1172 void
   1173 pmap_collect(pmap_t pm)
   1174 {
   1175 	PMAPCOUNT(collects);
   1176 }
   1177 
   1178 static __inline int
   1179 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1180 {
   1181 	int pteidx;
   1182 	/*
   1183 	 * We can find the actual pte entry without searching by
   1184 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1185 	 * and by noticing the HID bit.
   1186 	 */
   1187 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1188 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1189 		pteidx ^= pmap_pteg_mask * 8;
   1190 	return pteidx;
   1191 }
   1192 
   1193 volatile struct pte *
   1194 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1195 {
   1196 	volatile struct pte *pt;
   1197 
   1198 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1199 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1200 		return NULL;
   1201 #endif
   1202 
   1203 	/*
   1204 	 * If we haven't been supplied the ptegidx, calculate it.
   1205 	 */
   1206 	if (pteidx == -1) {
   1207 		int ptegidx;
   1208 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1209 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1210 	}
   1211 
   1212 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1213 
   1214 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1215 	return pt;
   1216 #else
   1217 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1218 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1219 		    "pvo but no valid pte index", pvo);
   1220 	}
   1221 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1222 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1223 		    "pvo but no valid pte", pvo);
   1224 	}
   1225 
   1226 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1227 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1228 #if defined(DEBUG) || defined(PMAPCHECK)
   1229 			pmap_pte_print(pt);
   1230 #endif
   1231 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1232 			    "pmap_pteg_table %p but invalid in pvo",
   1233 			    pvo, pt);
   1234 		}
   1235 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1236 #if defined(DEBUG) || defined(PMAPCHECK)
   1237 			pmap_pte_print(pt);
   1238 #endif
   1239 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1240 			    "not match pte %p in pmap_pteg_table",
   1241 			    pvo, pt);
   1242 		}
   1243 		return pt;
   1244 	}
   1245 
   1246 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1247 #if defined(DEBUG) || defined(PMAPCHECK)
   1248 		pmap_pte_print(pt);
   1249 #endif
   1250 		panic("pmap_pvo_to_pte: pvo %p: has invalid pte %p in "
   1251 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1252 	}
   1253 	return NULL;
   1254 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1255 }
   1256 
   1257 struct pvo_entry *
   1258 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1259 {
   1260 	struct pvo_entry *pvo;
   1261 	int ptegidx;
   1262 
   1263 	va &= ~ADDR_POFF;
   1264 	ptegidx = va_to_pteg(pm, va);
   1265 
   1266 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1267 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1268 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1269 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1270 			    "list %#x (%p)", pvo, ptegidx,
   1271 			     &pmap_pvo_table[ptegidx]);
   1272 #endif
   1273 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1274 			if (pteidx_p)
   1275 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1276 			return pvo;
   1277 		}
   1278 	}
   1279 	return NULL;
   1280 }
   1281 
   1282 #if defined(DEBUG) || defined(PMAPCHECK)
   1283 void
   1284 pmap_pvo_check(const struct pvo_entry *pvo)
   1285 {
   1286 	struct pvo_head *pvo_head;
   1287 	struct pvo_entry *pvo0;
   1288 	volatile struct pte *pt;
   1289 	int failed = 0;
   1290 
   1291 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1292 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1293 
   1294 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1295 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1296 		    pvo, pvo->pvo_pmap);
   1297 		failed = 1;
   1298 	}
   1299 
   1300 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1301 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1302 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1303 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1304 		failed = 1;
   1305 	}
   1306 
   1307 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1308 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1309 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1310 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1311 		failed = 1;
   1312 	}
   1313 
   1314 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1315 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1316 	} else {
   1317 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1318 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1319 			    "on kernel unmanaged list\n", pvo);
   1320 			failed = 1;
   1321 		}
   1322 		pvo_head = &pmap_pvo_kunmanaged;
   1323 	}
   1324 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1325 		if (pvo0 == pvo)
   1326 			break;
   1327 	}
   1328 	if (pvo0 == NULL) {
   1329 		printf("pmap_pvo_check: pvo %p: not present "
   1330 		    "on its vlist head %p\n", pvo, pvo_head);
   1331 		failed = 1;
   1332 	}
   1333 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1334 		printf("pmap_pvo_check: pvo %p: not present "
   1335 		    "on its olist head\n", pvo);
   1336 		failed = 1;
   1337 	}
   1338 	pt = pmap_pvo_to_pte(pvo, -1);
   1339 	if (pt == NULL) {
   1340 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1341 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1342 			    "no PTE\n", pvo);
   1343 			failed = 1;
   1344 		}
   1345 	} else {
   1346 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1347 		    (uintptr_t) pt >=
   1348 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1349 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1350 			    "pteg table\n", pvo, pt);
   1351 			failed = 1;
   1352 		}
   1353 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1354 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1355 			    "no PTE\n", pvo);
   1356 			failed = 1;
   1357 		}
   1358 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1359 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1360 			    "%#lx/%#lx\n", pvo, pvo->pvo_pte.pte_hi, pt->pte_hi);
   1361 			failed = 1;
   1362 		}
   1363 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1364 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1365 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1366 			    "%#lx/%#lx\n", pvo,
   1367 			    pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN),
   1368 			    pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN));
   1369 			failed = 1;
   1370 		}
   1371 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1372 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#lx"
   1373 			    " doesn't not match PVO's VA %#lx\n",
   1374 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1375 			failed = 1;
   1376 		}
   1377 		if (failed)
   1378 			pmap_pte_print(pt);
   1379 	}
   1380 	if (failed)
   1381 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1382 		    pvo->pvo_pmap);
   1383 }
   1384 #endif /* DEBUG || PMAPCHECK */
   1385 
   1386 /*
   1387  * This returns whether this is the first mapping of a page.
   1388  */
   1389 int
   1390 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1391 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1392 {
   1393 	struct pvo_entry *pvo;
   1394 	struct pvo_tqhead *pvoh;
   1395 	register_t msr;
   1396 	int ptegidx;
   1397 	int i;
   1398 	int poolflags = PR_NOWAIT;
   1399 
   1400 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1401 	if (pmap_pvo_remove_depth > 0)
   1402 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1403 	if (++pmap_pvo_enter_depth > 1)
   1404 		panic("pmap_pvo_enter: called recursively!");
   1405 #endif
   1406 
   1407 	/*
   1408 	 * Compute the PTE Group index.
   1409 	 */
   1410 	va &= ~ADDR_POFF;
   1411 	ptegidx = va_to_pteg(pm, va);
   1412 
   1413 	msr = pmap_interrupts_off();
   1414 	/*
   1415 	 * Remove any existing mapping for this page.  Reuse the
   1416 	 * pvo entry if there a mapping.
   1417 	 */
   1418 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1419 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1420 #ifdef DEBUG
   1421 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1422 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1423 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1424 			   va < VM_MIN_KERNEL_ADDRESS) {
   1425 				printf("pmap_pvo_enter: pvo %p: dup %#lx/%#lx\n",
   1426 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1427 				printf("pmap_pvo_enter: pte_hi=%#lx sr=%#lx\n",
   1428 				    pvo->pvo_pte.pte_hi,
   1429 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1430 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1431 #ifdef DDBX
   1432 				Debugger();
   1433 #endif
   1434 			}
   1435 #endif
   1436 			PMAPCOUNT(mappings_replaced);
   1437 			pmap_pvo_remove(pvo, -1);
   1438 			break;
   1439 		}
   1440 	}
   1441 
   1442 	/*
   1443 	 * If we aren't overwriting an mapping, try to allocate
   1444 	 */
   1445 	pmap_interrupts_restore(msr);
   1446 	pvo = pool_get(pl, poolflags);
   1447 	msr = pmap_interrupts_off();
   1448 	if (pvo == NULL) {
   1449 #if 0
   1450 		pvo = pmap_pvo_reclaim(pm);
   1451 		if (pvo == NULL) {
   1452 #endif
   1453 			if ((flags & PMAP_CANFAIL) == 0)
   1454 				panic("pmap_pvo_enter: failed");
   1455 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1456 			pmap_pvo_enter_depth--;
   1457 #endif
   1458 			pmap_interrupts_restore(msr);
   1459 			return ENOMEM;
   1460 #if 0
   1461 		}
   1462 #endif
   1463 	}
   1464 	pvo->pvo_vaddr = va;
   1465 	pvo->pvo_pmap = pm;
   1466 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1467 	if (flags & VM_PROT_EXECUTE) {
   1468 		PMAPCOUNT(exec_mappings);
   1469 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1470 	}
   1471 	if (flags & PMAP_WIRED)
   1472 		pvo->pvo_vaddr |= PVO_WIRED;
   1473 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1474 		pvo->pvo_vaddr |= PVO_MANAGED;
   1475 		PMAPCOUNT(mappings);
   1476 	} else {
   1477 		PMAPCOUNT(kernel_mappings);
   1478 	}
   1479 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1480 
   1481 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1482 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1483 		pvo->pvo_pmap->pm_stats.wired_count++;
   1484 	pvo->pvo_pmap->pm_stats.resident_count++;
   1485 #if defined(DEBUG)
   1486 	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
   1487 		DPRINTFN(PVOENTER,
   1488 		    ("pmap_pvo_enter: pvo %p: pm %p va %#lx pa %#lx\n",
   1489 		    pvo, pm, va, pa));
   1490 #endif
   1491 
   1492 	/*
   1493 	 * We hope this succeeds but it isn't required.
   1494 	 */
   1495 	pvoh = &pmap_pvo_table[ptegidx];
   1496 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1497 	if (i >= 0) {
   1498 		PVO_PTEGIDX_SET(pvo, i);
   1499 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1500 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1501 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1502 	} else {
   1503 
   1504 		/*
   1505 		 * Since we didn't have room for this entry (which makes it
   1506 		 * and evicted entry), place it at the head of the list.
   1507 		 */
   1508 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1509 		PMAPCOUNT(ptes_evicted);
   1510 		pm->pm_evictions++;
   1511 	}
   1512 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1513 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1514 	pmap_pvo_enter_depth--;
   1515 #endif
   1516 	pmap_interrupts_restore(msr);
   1517 	return 0;
   1518 }
   1519 
   1520 void
   1521 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
   1522 {
   1523 	volatile struct pte *pt;
   1524 	int ptegidx;
   1525 
   1526 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1527 	if (++pmap_pvo_remove_depth > 1)
   1528 		panic("pmap_pvo_remove: called recursively!");
   1529 #endif
   1530 
   1531 	/*
   1532 	 * If we haven't been supplied the ptegidx, calculate it.
   1533 	 */
   1534 	if (pteidx == -1) {
   1535 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1536 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1537 	} else {
   1538 		ptegidx = pteidx >> 3;
   1539 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1540 			ptegidx ^= pmap_pteg_mask;
   1541 	}
   1542 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1543 
   1544 	/*
   1545 	 * If there is an active pte entry, we need to deactivate it
   1546 	 * (and save the ref & chg bits).
   1547 	 */
   1548 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1549 	if (pt != NULL) {
   1550 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1551 		PVO_PTEGIDX_CLR(pvo);
   1552 		PMAPCOUNT(ptes_removed);
   1553 	} else {
   1554 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1555 		pvo->pvo_pmap->pm_evictions--;
   1556 	}
   1557 
   1558 	/*
   1559 	 * Update our statistics
   1560 	 */
   1561 	pvo->pvo_pmap->pm_stats.resident_count--;
   1562 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
   1563 		pvo->pvo_pmap->pm_stats.wired_count--;
   1564 
   1565 	/*
   1566 	 * Save the REF/CHG bits into their cache if the page is managed.
   1567 	 */
   1568 	if (pvo->pvo_vaddr & PVO_MANAGED) {
   1569 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1570 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1571 
   1572 		if (pg != NULL) {
   1573 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1574 		}
   1575 		PMAPCOUNT(unmappings);
   1576 	} else {
   1577 		PMAPCOUNT(kernel_unmappings);
   1578 	}
   1579 
   1580 	/*
   1581 	 * Remove the PVO from its lists and return it to the pool.
   1582 	 */
   1583 	LIST_REMOVE(pvo, pvo_vlink);
   1584 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1585 	pool_put(pvo->pvo_vaddr & PVO_MANAGED
   1586 	    ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1587 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1588 	pmap_pvo_remove_depth--;
   1589 #endif
   1590 }
   1591 
   1592 /*
   1593  * Insert physical page at pa into the given pmap at virtual address va.
   1594  */
   1595 int
   1596 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
   1597 {
   1598 	struct mem_region *mp;
   1599 	struct pvo_head *pvo_head;
   1600 	struct vm_page *pg;
   1601 	struct pool *pl;
   1602 	register_t pte_lo;
   1603 	int s;
   1604 	int error;
   1605 	u_int pvo_flags;
   1606 	u_int was_exec = 0;
   1607 
   1608 	if (__predict_false(!pmap_initialized)) {
   1609 		pvo_head = &pmap_pvo_kunmanaged;
   1610 		pl = &pmap_upvo_pool;
   1611 		pvo_flags = 0;
   1612 		pg = NULL;
   1613 		was_exec = PTE_EXEC;
   1614 	} else {
   1615 		pvo_head = pa_to_pvoh(pa, &pg);
   1616 		pl = &pmap_mpvo_pool;
   1617 		pvo_flags = PVO_MANAGED;
   1618 	}
   1619 
   1620 	DPRINTFN(ENTER,
   1621 	    ("pmap_enter(%p, 0x%lx, 0x%lx, 0x%x, 0x%x):",
   1622 	    pm, va, pa, prot, flags));
   1623 
   1624 	/*
   1625 	 * If this is a managed page, and it's the first reference to the
   1626 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1627 	 */
   1628 	if (pg != NULL)
   1629 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1630 
   1631 	DPRINTFN(ENTER, (" was_exec=%d", was_exec));
   1632 
   1633 	/*
   1634 	 * Assume the page is cache inhibited and access is guarded unless
   1635 	 * it's in our available memory array.  If it is in the memory array,
   1636 	 * asssume it's in memory coherent memory.
   1637 	 */
   1638 	pte_lo = PTE_IG;
   1639 	if ((flags & PMAP_NC) == 0) {
   1640 		for (mp = mem; mp->size; mp++) {
   1641 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1642 				pte_lo = PTE_M;
   1643 				break;
   1644 			}
   1645 		}
   1646 	}
   1647 
   1648 	if (prot & VM_PROT_WRITE)
   1649 		pte_lo |= PTE_BW;
   1650 	else
   1651 		pte_lo |= PTE_BR;
   1652 
   1653 	/*
   1654 	 * If this was in response to a fault, "pre-fault" the PTE's
   1655 	 * changed/referenced bit appropriately.
   1656 	 */
   1657 	if (flags & VM_PROT_WRITE)
   1658 		pte_lo |= PTE_CHG;
   1659 	if (flags & (VM_PROT_READ|VM_PROT_WRITE))
   1660 		pte_lo |= PTE_REF;
   1661 
   1662 #if 0
   1663 	if (pm == pmap_kernel()) {
   1664 		if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_READ)
   1665 			printf("pmap_pvo_enter: Kernel RO va %#lx pa %#lx\n",
   1666 				va, pa);
   1667 		if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == VM_PROT_NONE)
   1668 			printf("pmap_pvo_enter: Kernel N/A va %#lx pa %#lx\n",
   1669 				va, pa);
   1670 	}
   1671 #endif
   1672 
   1673 	/*
   1674 	 * We need to know if this page can be executable
   1675 	 */
   1676 	flags |= (prot & VM_PROT_EXECUTE);
   1677 
   1678 	/*
   1679 	 * Record mapping for later back-translation and pte spilling.
   1680 	 * This will overwrite any existing mapping.
   1681 	 */
   1682 	s = splvm();
   1683 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1684 	splx(s);
   1685 
   1686 	/*
   1687 	 * Flush the real page from the instruction cache if this page is
   1688 	 * mapped executable and cacheable and has not been flushed since
   1689 	 * the last time it was modified.
   1690 	 */
   1691 	if (error == 0 &&
   1692             (flags & VM_PROT_EXECUTE) &&
   1693             (pte_lo & PTE_I) == 0 &&
   1694 	    was_exec == 0) {
   1695 		DPRINTFN(ENTER, (" syncicache"));
   1696 		PMAPCOUNT(exec_synced);
   1697 		pmap_syncicache(pa, PAGE_SIZE);
   1698 		if (pg != NULL) {
   1699 			pmap_attr_save(pg, PTE_EXEC);
   1700 			PMAPCOUNT(exec_cached);
   1701 #if defined(DEBUG) || defined(PMAPDEBUG)
   1702 			if (pmapdebug & PMAPDEBUG_ENTER)
   1703 				printf(" marked-as-exec");
   1704 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1705 				printf("[pmap_enter: %#lx: marked-as-exec]\n",
   1706 				    pg->phys_addr);
   1707 
   1708 #endif
   1709 		}
   1710 	}
   1711 
   1712 	DPRINTFN(ENTER, (": error=%d\n", error));
   1713 
   1714 	return error;
   1715 }
   1716 
   1717 void
   1718 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   1719 {
   1720 	struct mem_region *mp;
   1721 	register_t pte_lo;
   1722 	register_t msr;
   1723 	int error;
   1724 	int s;
   1725 
   1726 	if (va < VM_MIN_KERNEL_ADDRESS)
   1727 		panic("pmap_kenter_pa: attempt to enter "
   1728 		    "non-kernel address %#lx!", va);
   1729 
   1730 	DPRINTFN(KENTER,
   1731 	    ("pmap_kenter_pa(%#lx,%#lx,%#x)\n", va, pa, prot));
   1732 
   1733 	/*
   1734 	 * Assume the page is cache inhibited and access is guarded unless
   1735 	 * it's in our available memory array.  If it is in the memory array,
   1736 	 * asssume it's in memory coherent memory.
   1737 	 */
   1738 	pte_lo = PTE_IG;
   1739 	if ((prot & PMAP_NC) == 0) {
   1740 		for (mp = mem; mp->size; mp++) {
   1741 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1742 				pte_lo = PTE_M;
   1743 				break;
   1744 			}
   1745 		}
   1746 	}
   1747 
   1748 	if (prot & VM_PROT_WRITE)
   1749 		pte_lo |= PTE_BW;
   1750 	else
   1751 		pte_lo |= PTE_BR;
   1752 
   1753 	/*
   1754 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   1755 	 */
   1756 	s = splvm();
   1757 	msr = pmap_interrupts_off();
   1758 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   1759 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   1760 	pmap_interrupts_restore(msr);
   1761 	splx(s);
   1762 
   1763 	if (error != 0)
   1764 		panic("pmap_kenter_pa: failed to enter va %#lx pa %#lx: %d",
   1765 		      va, pa, error);
   1766 }
   1767 
   1768 void
   1769 pmap_kremove(vaddr_t va, vsize_t len)
   1770 {
   1771 	if (va < VM_MIN_KERNEL_ADDRESS)
   1772 		panic("pmap_kremove: attempt to remove "
   1773 		    "non-kernel address %#lx!", va);
   1774 
   1775 	DPRINTFN(KREMOVE,("pmap_kremove(%#lx,%#lx)\n", va, len));
   1776 	pmap_remove(pmap_kernel(), va, va + len);
   1777 }
   1778 
   1779 /*
   1780  * Remove the given range of mapping entries.
   1781  */
   1782 void
   1783 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   1784 {
   1785 	struct pvo_entry *pvo;
   1786 	register_t msr;
   1787 	int pteidx;
   1788 	int s;
   1789 
   1790 	for (; va < endva; va += PAGE_SIZE) {
   1791 		s = splvm();
   1792 		msr = pmap_interrupts_off();
   1793 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1794 		if (pvo != NULL) {
   1795 			pmap_pvo_remove(pvo, pteidx);
   1796 		}
   1797 		pmap_interrupts_restore(msr);
   1798 		splx(s);
   1799 	}
   1800 }
   1801 
   1802 /*
   1803  * Get the physical page address for the given pmap/virtual address.
   1804  */
   1805 boolean_t
   1806 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   1807 {
   1808 	struct pvo_entry *pvo;
   1809 	register_t msr;
   1810 	int s;
   1811 
   1812 	/*
   1813 	 * If this is a kernel pmap lookup, also check the battable
   1814 	 * and if we get a hit, translate the VA to a PA using the
   1815 	 * BAT entries.  Don't check for VM_MAX_KENREL_ADDRESS is
   1816 	 * that will wrap back to 0.
   1817 	 */
   1818 	if (pm == pmap_kernel() &&
   1819 	    (va < VM_MIN_KERNEL_ADDRESS ||
   1820 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   1821 		register_t batu = battable[va >> ADDR_SR_SHFT].batu;
   1822 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   1823 		if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   1824 			register_t batl = battable[va >> ADDR_SR_SHFT].batl;
   1825 			register_t mask = (~(batu & BAT_BL) << 15) & ~0x1ffffL;
   1826 			*pap = (batl & mask) | (va & ~mask);
   1827 			return TRUE;
   1828 		}
   1829 		return FALSE;
   1830 	}
   1831 
   1832 	s = splvm();
   1833 	msr = pmap_interrupts_off();
   1834 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   1835 	if (pvo != NULL) {
   1836 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1837 		*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
   1838 	}
   1839 	pmap_interrupts_restore(msr);
   1840 	splx(s);
   1841 	return pvo != NULL;
   1842 }
   1843 
   1844 /*
   1845  * Lower the protection on the specified range of this pmap.
   1846  *
   1847  * There are only two cases: either the protection is going to 0,
   1848  * or it is going to read-only.
   1849  */
   1850 void
   1851 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   1852 {
   1853 	struct pvo_entry *pvo;
   1854 	volatile struct pte *pt;
   1855 	register_t msr;
   1856 	int s;
   1857 	int pteidx;
   1858 
   1859 	/*
   1860 	 * Since this routine only downgrades protection, we should
   1861 	 * always be called without WRITE permisison.
   1862 	 */
   1863 	KASSERT((prot & VM_PROT_WRITE) == 0);
   1864 
   1865 	/*
   1866 	 * If there is no protection, this is equivalent to
   1867 	 * remove the pmap from the pmap.
   1868 	 */
   1869 	if ((prot & VM_PROT_READ) == 0) {
   1870 		pmap_remove(pm, va, endva);
   1871 		return;
   1872 	}
   1873 
   1874 	s = splvm();
   1875 	msr = pmap_interrupts_off();
   1876 
   1877 	for (; va < endva; va += PAGE_SIZE) {
   1878 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   1879 		if (pvo == NULL)
   1880 			continue;
   1881 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1882 
   1883 		/*
   1884 		 * Revoke executable if asked to do so.
   1885 		 */
   1886 		if ((prot & VM_PROT_EXECUTE) == 0)
   1887 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1888 
   1889 #if 0
   1890 		/*
   1891 		 * If the page is already read-only, no change
   1892 		 * needs to be made.
   1893 		 */
   1894 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   1895 			continue;
   1896 #endif
   1897 		/*
   1898 		 * Grab the PTE pointer before we diddle with
   1899 		 * the cached PTE copy.
   1900 		 */
   1901 		pt = pmap_pvo_to_pte(pvo, pteidx);
   1902 		/*
   1903 		 * Change the protection of the page.
   1904 		 */
   1905 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   1906 		pvo->pvo_pte.pte_lo |= PTE_BR;
   1907 
   1908 		/*
   1909 		 * If the PVO is in the page table, update
   1910 		 * that pte at well.
   1911 		 */
   1912 		if (pt != NULL) {
   1913 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1914 			PMAPCOUNT(ptes_changed);
   1915 		}
   1916 
   1917 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1918 	}
   1919 
   1920 	pmap_interrupts_restore(msr);
   1921 	splx(s);
   1922 }
   1923 
   1924 void
   1925 pmap_unwire(pmap_t pm, vaddr_t va)
   1926 {
   1927 	struct pvo_entry *pvo;
   1928 	register_t msr;
   1929 	int s;
   1930 
   1931 	s = splvm();
   1932 	msr = pmap_interrupts_off();
   1933 
   1934 	pvo = pmap_pvo_find_va(pm, va, NULL);
   1935 	if (pvo != NULL) {
   1936 		if (pvo->pvo_vaddr & PVO_WIRED) {
   1937 			pvo->pvo_vaddr &= ~PVO_WIRED;
   1938 			pm->pm_stats.wired_count--;
   1939 		}
   1940 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1941 	}
   1942 
   1943 	pmap_interrupts_restore(msr);
   1944 	splx(s);
   1945 }
   1946 
   1947 /*
   1948  * Lower the protection on the specified physical page.
   1949  *
   1950  * There are only two cases: either the protection is going to 0,
   1951  * or it is going to read-only.
   1952  */
   1953 void
   1954 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1955 {
   1956 	struct pvo_head *pvo_head;
   1957 	struct pvo_entry *pvo, *next_pvo;
   1958 	volatile struct pte *pt;
   1959 	register_t msr;
   1960 	int s;
   1961 
   1962 	/*
   1963 	 * Since this routine only downgrades protection, if the
   1964 	 * maximal protection is desired, there isn't any change
   1965 	 * to be made.
   1966 	 */
   1967 	KASSERT((prot & VM_PROT_WRITE) == 0);
   1968 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
   1969 		return;
   1970 
   1971 	s = splvm();
   1972 	msr = pmap_interrupts_off();
   1973 
   1974 	/*
   1975 	 * When UVM reuses a page, it does a pmap_page_protect with
   1976 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   1977 	 * since we know the page will have different contents.
   1978 	 */
   1979 	if ((prot & VM_PROT_READ) == 0) {
   1980 		DPRINTFN(EXEC, ("[pmap_page_protect: %#lx: clear-exec]\n",
   1981 		    pg->phys_addr));
   1982 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   1983 			PMAPCOUNT(exec_uncached_page_protect);
   1984 			pmap_attr_clear(pg, PTE_EXEC);
   1985 		}
   1986 	}
   1987 
   1988 	pvo_head = vm_page_to_pvoh(pg);
   1989 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   1990 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   1991 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   1992 
   1993 		/*
   1994 		 * Downgrading to no mapping at all, we just remove the entry.
   1995 		 */
   1996 		if ((prot & VM_PROT_READ) == 0) {
   1997 			pmap_pvo_remove(pvo, -1);
   1998 			continue;
   1999 		}
   2000 
   2001 		/*
   2002 		 * If EXEC permission is being revoked, just clear the
   2003 		 * flag in the PVO.
   2004 		 */
   2005 		if ((prot & VM_PROT_EXECUTE) == 0)
   2006 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   2007 
   2008 		/*
   2009 		 * If this entry is already RO, don't diddle with the
   2010 		 * page table.
   2011 		 */
   2012 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2013 			PMAP_PVO_CHECK(pvo);
   2014 			continue;
   2015 		}
   2016 
   2017 		/*
   2018 		 * Grab the PTE before the we diddle the bits so
   2019 		 * pvo_to_pte can verify the pte contents are as
   2020 		 * expected.
   2021 		 */
   2022 		pt = pmap_pvo_to_pte(pvo, -1);
   2023 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2024 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2025 		if (pt != NULL) {
   2026 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2027 			PMAPCOUNT(ptes_changed);
   2028 		}
   2029 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2030 	}
   2031 
   2032 	pmap_interrupts_restore(msr);
   2033 	splx(s);
   2034 }
   2035 
   2036 /*
   2037  * Activate the address space for the specified process.  If the process
   2038  * is the current process, load the new MMU context.
   2039  */
   2040 void
   2041 pmap_activate(struct lwp *l)
   2042 {
   2043 	struct pcb *pcb = &l->l_addr->u_pcb;
   2044 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2045 
   2046 	DPRINTFN(ACTIVATE,
   2047 	    ("pmap_activate: lwp %p (curlwp %p)\n", l, curlwp));
   2048 
   2049 	/*
   2050 	 * XXX Normally performed in cpu_fork().
   2051 	 */
   2052 	if (pcb->pcb_pm != pmap) {
   2053 		pcb->pcb_pm = pmap;
   2054 		pcb->pcb_pmreal = pmap;
   2055 	}
   2056 
   2057 	/*
   2058 	 * In theory, the SR registers need only be valid on return
   2059 	 * to user space wait to do them there.
   2060 	 */
   2061 	if (l == curlwp) {
   2062 		/* Store pointer to new current pmap. */
   2063 		curpm = pmap;
   2064 	}
   2065 }
   2066 
   2067 /*
   2068  * Deactivate the specified process's address space.
   2069  */
   2070 void
   2071 pmap_deactivate(struct lwp *l)
   2072 {
   2073 }
   2074 
   2075 boolean_t
   2076 pmap_query_bit(struct vm_page *pg, int ptebit)
   2077 {
   2078 	struct pvo_entry *pvo;
   2079 	volatile struct pte *pt;
   2080 	register_t msr;
   2081 	int s;
   2082 
   2083 	if (pmap_attr_fetch(pg) & ptebit)
   2084 		return TRUE;
   2085 	s = splvm();
   2086 	msr = pmap_interrupts_off();
   2087 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2088 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2089 		/*
   2090 		 * See if we saved the bit off.  If so cache, it and return
   2091 		 * success.
   2092 		 */
   2093 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2094 			pmap_attr_save(pg, ptebit);
   2095 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2096 			pmap_interrupts_restore(msr);
   2097 			splx(s);
   2098 			return TRUE;
   2099 		}
   2100 	}
   2101 	/*
   2102 	 * No luck, now go thru the hard part of looking at the ptes
   2103 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2104 	 * to the PTEs.
   2105 	 */
   2106 	SYNC();
   2107 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2108 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2109 		/*
   2110 		 * See if this pvo have a valid PTE.  If so, fetch the
   2111 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2112 		 * ptebit is set, cache, it and return success.
   2113 		 */
   2114 		pt = pmap_pvo_to_pte(pvo, -1);
   2115 		if (pt != NULL) {
   2116 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2117 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2118 				pmap_attr_save(pg, ptebit);
   2119 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2120 				pmap_interrupts_restore(msr);
   2121 				splx(s);
   2122 				return TRUE;
   2123 			}
   2124 		}
   2125 	}
   2126 	pmap_interrupts_restore(msr);
   2127 	splx(s);
   2128 	return FALSE;
   2129 }
   2130 
   2131 boolean_t
   2132 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2133 {
   2134 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2135 	struct pvo_entry *pvo;
   2136 	volatile struct pte *pt;
   2137 	register_t msr;
   2138 	int rv = 0;
   2139 	int s;
   2140 
   2141 	s = splvm();
   2142 	msr = pmap_interrupts_off();
   2143 
   2144 	/*
   2145 	 * Fetch the cache value
   2146 	 */
   2147 	rv |= pmap_attr_fetch(pg);
   2148 
   2149 	/*
   2150 	 * Clear the cached value.
   2151 	 */
   2152 	pmap_attr_clear(pg, ptebit);
   2153 
   2154 	/*
   2155 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2156 	 * can reset the right ones).  Note that since the pvo entries and
   2157 	 * list heads are accessed via BAT0 and are never placed in the
   2158 	 * page table, we don't have to worry about further accesses setting
   2159 	 * the REF/CHG bits.
   2160 	 */
   2161 	SYNC();
   2162 
   2163 	/*
   2164 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2165 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2166 	 */
   2167 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2168 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2169 		pt = pmap_pvo_to_pte(pvo, -1);
   2170 		if (pt != NULL) {
   2171 			/*
   2172 			 * Only sync the PTE if the bit we are looking
   2173 			 * for is not already set.
   2174 			 */
   2175 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2176 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2177 			/*
   2178 			 * If the bit we are looking for was already set,
   2179 			 * clear that bit in the pte.
   2180 			 */
   2181 			if (pvo->pvo_pte.pte_lo & ptebit)
   2182 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2183 		}
   2184 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2185 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2186 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2187 	}
   2188 	pmap_interrupts_restore(msr);
   2189 	splx(s);
   2190 	/*
   2191 	 * If we are clearing the modify bit and this page was marked EXEC
   2192 	 * and the user of the page thinks the page was modified, then we
   2193 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2194 	 * bit if it's not mapped.  The page itself might not have the CHG
   2195 	 * bit set if the modification was done via DMA to the page.
   2196 	 */
   2197 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2198 		if (LIST_EMPTY(pvoh)) {
   2199 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: clear-exec]\n",
   2200 			    pg->phys_addr));
   2201 			pmap_attr_clear(pg, PTE_EXEC);
   2202 			PMAPCOUNT(exec_uncached_clear_modify);
   2203 		} else {
   2204 			DPRINTFN(EXEC, ("[pmap_clear_bit: %#lx: syncicache]\n",
   2205 			    pg->phys_addr));
   2206 			pmap_syncicache(pg->phys_addr, PAGE_SIZE);
   2207 			PMAPCOUNT(exec_synced_clear_modify);
   2208 		}
   2209 	}
   2210 	return (rv & ptebit) != 0;
   2211 }
   2212 
   2213 void
   2214 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2215 {
   2216 	struct pvo_entry *pvo;
   2217 	size_t offset = va & ADDR_POFF;
   2218 	int s;
   2219 
   2220 	s = splvm();
   2221 	while (len > 0) {
   2222 		size_t seglen = PAGE_SIZE - offset;
   2223 		if (seglen > len)
   2224 			seglen = len;
   2225 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2226 		if (pvo != NULL && PVO_ISEXECUTABLE(pvo)) {
   2227 			pmap_syncicache(
   2228 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2229 			PMAP_PVO_CHECK(pvo);
   2230 		}
   2231 		va += seglen;
   2232 		len -= seglen;
   2233 		offset = 0;
   2234 	}
   2235 	splx(s);
   2236 }
   2237 
   2238 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2239 void
   2240 pmap_pte_print(volatile struct pte *pt)
   2241 {
   2242 	printf("PTE %p: ", pt);
   2243 	/* High word: */
   2244 	printf("0x%08lx: [", pt->pte_hi);
   2245 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2246 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2247 	printf("0x%06lx 0x%02lx",
   2248 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2249 	    pt->pte_hi & PTE_API);
   2250 	printf(" (va 0x%08lx)] ", pmap_pte_to_va(pt));
   2251 	/* Low word: */
   2252 	printf(" 0x%08lx: [", pt->pte_lo);
   2253 	printf("0x%05lx... ", pt->pte_lo >> 12);
   2254 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2255 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2256 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2257 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2258 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2259 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2260 	switch (pt->pte_lo & PTE_PP) {
   2261 	case PTE_BR: printf("br]\n"); break;
   2262 	case PTE_BW: printf("bw]\n"); break;
   2263 	case PTE_SO: printf("so]\n"); break;
   2264 	case PTE_SW: printf("sw]\n"); break;
   2265 	}
   2266 }
   2267 #endif
   2268 
   2269 #if defined(DDB)
   2270 void
   2271 pmap_pteg_check(void)
   2272 {
   2273 	volatile struct pte *pt;
   2274 	int i;
   2275 	int ptegidx;
   2276 	u_int p_valid = 0;
   2277 	u_int s_valid = 0;
   2278 	u_int invalid = 0;
   2279 
   2280 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2281 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2282 			if (pt->pte_hi & PTE_VALID) {
   2283 				if (pt->pte_hi & PTE_HID)
   2284 					s_valid++;
   2285 				else
   2286 					p_valid++;
   2287 			} else
   2288 				invalid++;
   2289 		}
   2290 	}
   2291 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2292 		p_valid, p_valid, s_valid, s_valid,
   2293 		invalid, invalid);
   2294 }
   2295 
   2296 void
   2297 pmap_print_mmuregs(void)
   2298 {
   2299 	int i;
   2300 	u_int cpuvers;
   2301 	vaddr_t addr;
   2302 	register_t soft_sr[16];
   2303 	struct bat soft_ibat[4];
   2304 	struct bat soft_dbat[4];
   2305 	register_t sdr1;
   2306 
   2307 	cpuvers = MFPVR() >> 16;
   2308 
   2309 	__asm __volatile ("mfsdr1 %0" : "=r"(sdr1));
   2310 	for (i=0; i<16; i++) {
   2311 		soft_sr[i] = MFSRIN(addr);
   2312 		addr += (1 << ADDR_SR_SHFT);
   2313 	}
   2314 
   2315 	/* read iBAT (601: uBAT) registers */
   2316 	__asm __volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2317 	__asm __volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2318 	__asm __volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2319 	__asm __volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2320 	__asm __volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2321 	__asm __volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2322 	__asm __volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2323 	__asm __volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2324 
   2325 
   2326 	if (cpuvers != MPC601) {
   2327 		/* read dBAT registers */
   2328 		__asm __volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2329 		__asm __volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2330 		__asm __volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2331 		__asm __volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2332 		__asm __volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2333 		__asm __volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2334 		__asm __volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2335 		__asm __volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2336 	}
   2337 
   2338 	printf("SDR1:\t%#lx\n", sdr1);
   2339 	printf("SR[]:\t");
   2340 	addr = 0;
   2341 	for (i=0; i<4; i++)
   2342 		printf("0x%08lx,   ", soft_sr[i]);
   2343 	printf("\n\t");
   2344 	for ( ; i<8; i++)
   2345 		printf("0x%08lx,   ", soft_sr[i]);
   2346 	printf("\n\t");
   2347 	for ( ; i<12; i++)
   2348 		printf("0x%08lx,   ", soft_sr[i]);
   2349 	printf("\n\t");
   2350 	for ( ; i<16; i++)
   2351 		printf("0x%08lx,   ", soft_sr[i]);
   2352 	printf("\n");
   2353 
   2354 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2355 	for (i=0; i<4; i++) {
   2356 		printf("0x%08lx 0x%08lx, ",
   2357 			soft_ibat[i].batu, soft_ibat[i].batl);
   2358 		if (i == 1)
   2359 			printf("\n\t");
   2360 	}
   2361 	if (cpuvers != MPC601) {
   2362 		printf("\ndBAT[]:\t");
   2363 		for (i=0; i<4; i++) {
   2364 			printf("0x%08lx 0x%08lx, ",
   2365 				soft_dbat[i].batu, soft_dbat[i].batl);
   2366 			if (i == 1)
   2367 				printf("\n\t");
   2368 		}
   2369 	}
   2370 	printf("\n");
   2371 }
   2372 
   2373 void
   2374 pmap_print_pte(pmap_t pm, vaddr_t va)
   2375 {
   2376 	struct pvo_entry *pvo;
   2377 	volatile struct pte *pt;
   2378 	int pteidx;
   2379 
   2380 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2381 	if (pvo != NULL) {
   2382 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2383 		if (pt != NULL) {
   2384 			printf("VA %#lx -> %p -> %s %#lx, %#lx\n",
   2385 				va, pt,
   2386 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2387 				pt->pte_hi, pt->pte_lo);
   2388 		} else {
   2389 			printf("No valid PTE found\n");
   2390 		}
   2391 	} else {
   2392 		printf("Address not in pmap\n");
   2393 	}
   2394 }
   2395 
   2396 void
   2397 pmap_pteg_dist(void)
   2398 {
   2399 	struct pvo_entry *pvo;
   2400 	int ptegidx;
   2401 	int depth;
   2402 	int max_depth = 0;
   2403 	unsigned int depths[64];
   2404 
   2405 	memset(depths, 0, sizeof(depths));
   2406 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2407 		depth = 0;
   2408 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2409 			depth++;
   2410 		}
   2411 		if (depth > max_depth)
   2412 			max_depth = depth;
   2413 		if (depth > 63)
   2414 			depth = 63;
   2415 		depths[depth]++;
   2416 	}
   2417 
   2418 	for (depth = 0; depth < 64; depth++) {
   2419 		printf("  [%2d]: %8u", depth, depths[depth]);
   2420 		if ((depth & 3) == 3)
   2421 			printf("\n");
   2422 		if (depth == max_depth)
   2423 			break;
   2424 	}
   2425 	if ((depth & 3) != 3)
   2426 		printf("\n");
   2427 	printf("Max depth found was %d\n", max_depth);
   2428 }
   2429 #endif /* DEBUG */
   2430 
   2431 #if defined(PMAPCHECK) || defined(DEBUG)
   2432 void
   2433 pmap_pvo_verify(void)
   2434 {
   2435 	int ptegidx;
   2436 	int s;
   2437 
   2438 	s = splvm();
   2439 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2440 		struct pvo_entry *pvo;
   2441 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2442 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2443 				panic("pmap_pvo_verify: invalid pvo %p "
   2444 				    "on list %#x", pvo, ptegidx);
   2445 			pmap_pvo_check(pvo);
   2446 		}
   2447 	}
   2448 	splx(s);
   2449 }
   2450 #endif /* PMAPCHECK */
   2451 
   2452 
   2453 void *
   2454 pmap_pool_ualloc(struct pool *pp, int flags)
   2455 {
   2456 	struct pvo_page *pvop;
   2457 
   2458 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2459 	if (pvop != NULL) {
   2460 		pmap_upvop_free--;
   2461 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2462 		return pvop;
   2463 	}
   2464 	if (uvm.page_init_done != TRUE) {
   2465 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2466 	}
   2467 	return pmap_pool_malloc(pp, flags);
   2468 }
   2469 
   2470 void *
   2471 pmap_pool_malloc(struct pool *pp, int flags)
   2472 {
   2473 	struct pvo_page *pvop;
   2474 	struct vm_page *pg;
   2475 
   2476 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2477 	if (pvop != NULL) {
   2478 		pmap_mpvop_free--;
   2479 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2480 		return pvop;
   2481 	}
   2482  again:
   2483 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2484 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2485 	if (__predict_false(pg == NULL)) {
   2486 		if (flags & PR_WAITOK) {
   2487 			uvm_wait("plpg");
   2488 			goto again;
   2489 		} else {
   2490 			return (0);
   2491 		}
   2492 	}
   2493 	return (void *) VM_PAGE_TO_PHYS(pg);
   2494 }
   2495 
   2496 void
   2497 pmap_pool_ufree(struct pool *pp, void *va)
   2498 {
   2499 	struct pvo_page *pvop;
   2500 #if 0
   2501 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2502 		pmap_pool_mfree(va, size, tag);
   2503 		return;
   2504 	}
   2505 #endif
   2506 	pvop = va;
   2507 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2508 	pmap_upvop_free++;
   2509 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2510 		pmap_upvop_maxfree = pmap_upvop_free;
   2511 }
   2512 
   2513 void
   2514 pmap_pool_mfree(struct pool *pp, void *va)
   2515 {
   2516 	struct pvo_page *pvop;
   2517 
   2518 	pvop = va;
   2519 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2520 	pmap_mpvop_free++;
   2521 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2522 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2523 #if 0
   2524 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2525 #endif
   2526 }
   2527 
   2528 /*
   2529  * This routine in bootstraping to steal to-be-managed memory (which will
   2530  * then be unmanaged).  We use it to grab from the first 256MB for our
   2531  * pmap needs and above 256MB for other stuff.
   2532  */
   2533 vaddr_t
   2534 pmap_steal_memory(vsize_t vsize)
   2535 {
   2536 	vsize_t size;
   2537 	vaddr_t va;
   2538 	paddr_t pa = 0;
   2539 	int npgs, bank;
   2540 	struct vm_physseg *ps;
   2541 
   2542 	if (uvm.page_init_done == TRUE)
   2543 		panic("pmap_steal_memory: called _after_ bootstrap");
   2544 
   2545 	size = round_page(vsize);
   2546 	npgs = atop(size);
   2547 
   2548 	/*
   2549 	 * PA 0 will never be among those given to UVM so we can use it
   2550 	 * to indicate we couldn't steal any memory.
   2551 	 */
   2552 	for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
   2553 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2554 		    ps->avail_end - ps->avail_start >= npgs) {
   2555 			pa = ptoa(ps->avail_start);
   2556 			break;
   2557 		}
   2558 	}
   2559 
   2560 	if (pa == 0)
   2561 		panic("pmap_steal_memory: no approriate memory to steal!");
   2562 
   2563 	ps->avail_start += npgs;
   2564 	ps->start += npgs;
   2565 
   2566 	/*
   2567 	 * If we've used up all the pages in the segment, remove it and
   2568 	 * compact the list.
   2569 	 */
   2570 	if (ps->avail_start == ps->end) {
   2571 		/*
   2572 		 * If this was the last one, then a very bad thing has occurred
   2573 		 */
   2574 		if (--vm_nphysseg == 0)
   2575 			panic("pmap_steal_memory: out of memory!");
   2576 
   2577 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2578 		for (; bank < vm_nphysseg; bank++, ps++) {
   2579 			ps[0] = ps[1];
   2580 		}
   2581 	}
   2582 
   2583 	va = (vaddr_t) pa;
   2584 	memset((caddr_t) va, 0, size);
   2585 	pmap_pages_stolen += npgs;
   2586 #ifdef DEBUG
   2587 	if (pmapdebug && npgs > 1) {
   2588 		u_int cnt = 0;
   2589 		for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
   2590 			cnt += ps->avail_end - ps->avail_start;
   2591 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2592 		    npgs, pmap_pages_stolen, cnt);
   2593 	}
   2594 #endif
   2595 
   2596 	return va;
   2597 }
   2598 
   2599 /*
   2600  * Find a chuck of memory with right size and alignment.
   2601  */
   2602 void *
   2603 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2604 {
   2605 	struct mem_region *mp;
   2606 	paddr_t s, e;
   2607 	int i, j;
   2608 
   2609 	size = round_page(size);
   2610 
   2611 	DPRINTFN(BOOT,
   2612 	    ("pmap_boot_find_memory: size=%lx, alignment=%lx, at_end=%d",
   2613 	    size, alignment, at_end));
   2614 
   2615 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2616 		panic("pmap_boot_find_memory: invalid alignment %lx",
   2617 		    alignment);
   2618 
   2619 	if (at_end) {
   2620 		if (alignment != PAGE_SIZE)
   2621 			panic("pmap_boot_find_memory: invalid ending "
   2622 			    "alignment %lx", alignment);
   2623 
   2624 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2625 			s = mp->start + mp->size - size;
   2626 			if (s >= mp->start && mp->size >= size) {
   2627 				DPRINTFN(BOOT,(": %lx\n", s));
   2628 				DPRINTFN(BOOT,
   2629 				    ("pmap_boot_find_memory: b-avail[%d] start "
   2630 				     "0x%lx size 0x%lx\n", mp - avail,
   2631 				     mp->start, mp->size));
   2632 				mp->size -= size;
   2633 				DPRINTFN(BOOT,
   2634 				    ("pmap_boot_find_memory: a-avail[%d] start "
   2635 				     "0x%lx size 0x%lx\n", mp - avail,
   2636 				     mp->start, mp->size));
   2637 				return (void *) s;
   2638 			}
   2639 		}
   2640 		panic("pmap_boot_find_memory: no available memory");
   2641 	}
   2642 
   2643 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2644 		s = (mp->start + alignment - 1) & ~(alignment-1);
   2645 		e = s + size;
   2646 
   2647 		/*
   2648 		 * Is the calculated region entirely within the region?
   2649 		 */
   2650 		if (s < mp->start || e > mp->start + mp->size)
   2651 			continue;
   2652 
   2653 		DPRINTFN(BOOT,(": %lx\n", s));
   2654 		if (s == mp->start) {
   2655 			/*
   2656 			 * If the block starts at the beginning of region,
   2657 			 * adjust the size & start. (the region may now be
   2658 			 * zero in length)
   2659 			 */
   2660 			DPRINTFN(BOOT,
   2661 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2662 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2663 			mp->start += size;
   2664 			mp->size -= size;
   2665 			DPRINTFN(BOOT,
   2666 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2667 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2668 		} else if (e == mp->start + mp->size) {
   2669 			/*
   2670 			 * If the block starts at the beginning of region,
   2671 			 * adjust only the size.
   2672 			 */
   2673 			DPRINTFN(BOOT,
   2674 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2675 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2676 			mp->size -= size;
   2677 			DPRINTFN(BOOT,
   2678 			    ("pmap_boot_find_memory: a-avail[%d] start "
   2679 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2680 		} else {
   2681 			/*
   2682 			 * Block is in the middle of the region, so we
   2683 			 * have to split it in two.
   2684 			 */
   2685 			for (j = avail_cnt; j > i + 1; j--) {
   2686 				avail[j] = avail[j-1];
   2687 			}
   2688 			DPRINTFN(BOOT,
   2689 			    ("pmap_boot_find_memory: b-avail[%d] start "
   2690 			     "0x%lx size 0x%lx\n", i, mp->start, mp->size));
   2691 			mp[1].start = e;
   2692 			mp[1].size = mp[0].start + mp[0].size - e;
   2693 			mp[0].size = s - mp[0].start;
   2694 			avail_cnt++;
   2695 			for (; i < avail_cnt; i++) {
   2696 				DPRINTFN(BOOT,
   2697 				    ("pmap_boot_find_memory: a-avail[%d] "
   2698 				     "start 0x%lx size 0x%lx\n", i,
   2699 				     avail[i].start, avail[i].size));
   2700 			}
   2701 		}
   2702 		return (void *) s;
   2703 	}
   2704 	panic("pmap_boot_find_memory: not enough memory for "
   2705 	    "%lx/%lx allocation?", size, alignment);
   2706 }
   2707 
   2708 /*
   2709  * This is not part of the defined PMAP interface and is specific to the
   2710  * PowerPC architecture.  This is called during initppc, before the system
   2711  * is really initialized.
   2712  */
   2713 void
   2714 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   2715 {
   2716 	struct mem_region *mp, tmp;
   2717 	paddr_t s, e;
   2718 	psize_t size;
   2719 	int i, j;
   2720 
   2721 	/*
   2722 	 * Define the boundaries of the managed kernel virtual address
   2723 	 * space.  For now, reserve one segment (minus some overhead)
   2724 	 * for kernel virtual memory.
   2725 	 */
   2726 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
   2727 	virtual_end = VM_MAX_KERNEL_ADDRESS;
   2728 
   2729 	/*
   2730 	 * Get memory.
   2731 	 */
   2732 	mem_regions(&mem, &avail);
   2733 #if defined(DEBUG)
   2734 	if (pmapdebug & PMAPDEBUG_BOOT) {
   2735 		printf("pmap_bootstrap: memory configuration:\n");
   2736 		for (mp = mem; mp->size; mp++) {
   2737 			printf("pmap_bootstrap: mem start 0x%lx size 0x%lx\n",
   2738 				mp->start, mp->size);
   2739 		}
   2740 		for (mp = avail; mp->size; mp++) {
   2741 			printf("pmap_bootstrap: avail start 0x%lx size 0x%lx\n",
   2742 				mp->start, mp->size);
   2743 		}
   2744 	}
   2745 #endif
   2746 
   2747 	/*
   2748 	 * Find out how much physical memory we have and in how many chunks.
   2749 	 */
   2750 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   2751 		if (mp->start >= pmap_memlimit)
   2752 			continue;
   2753 		if (mp->start + mp->size > pmap_memlimit) {
   2754 			size = pmap_memlimit - mp->start;
   2755 			physmem += btoc(size);
   2756 		} else {
   2757 			physmem += btoc(mp->size);
   2758 		}
   2759 		mem_cnt++;
   2760 	}
   2761 
   2762 	/*
   2763 	 * Count the number of available entries.
   2764 	 */
   2765 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   2766 		avail_cnt++;
   2767 
   2768 	/*
   2769 	 * Page align all regions.
   2770 	 */
   2771 	kernelstart = trunc_page(kernelstart);
   2772 	kernelend = round_page(kernelend);
   2773 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2774 		s = round_page(mp->start);
   2775 		mp->size -= (s - mp->start);
   2776 		mp->size = trunc_page(mp->size);
   2777 		mp->start = s;
   2778 		e = mp->start + mp->size;
   2779 
   2780 		DPRINTFN(BOOT,
   2781 		    ("pmap_bootstrap: b-avail[%d] start 0x%lx size 0x%lx\n",
   2782 		    i, mp->start, mp->size));
   2783 
   2784 		/*
   2785 		 * Don't allow the end to run beyond our artificial limit
   2786 		 */
   2787 		if (e > pmap_memlimit)
   2788 			e = pmap_memlimit;
   2789 
   2790 		/*
   2791 		 * Is this region empty or strange?  skip it.
   2792 		 */
   2793 		if (e <= s) {
   2794 			mp->start = 0;
   2795 			mp->size = 0;
   2796 			continue;
   2797 		}
   2798 
   2799 		/*
   2800 		 * Does this overlap the beginning of kernel?
   2801 		 *   Does extend past the end of the kernel?
   2802 		 */
   2803 		else if (s < kernelstart && e > kernelstart) {
   2804 			if (e > kernelend) {
   2805 				avail[avail_cnt].start = kernelend;
   2806 				avail[avail_cnt].size = e - kernelend;
   2807 				avail_cnt++;
   2808 			}
   2809 			mp->size = kernelstart - s;
   2810 		}
   2811 		/*
   2812 		 * Check whether this region overlaps the end of the kernel.
   2813 		 */
   2814 		else if (s < kernelend && e > kernelend) {
   2815 			mp->start = kernelend;
   2816 			mp->size = e - kernelend;
   2817 		}
   2818 		/*
   2819 		 * Look whether this regions is completely inside the kernel.
   2820 		 * Nuke it if it does.
   2821 		 */
   2822 		else if (s >= kernelstart && e <= kernelend) {
   2823 			mp->start = 0;
   2824 			mp->size = 0;
   2825 		}
   2826 		/*
   2827 		 * If the user imposed a memory limit, enforce it.
   2828 		 */
   2829 		else if (s >= pmap_memlimit) {
   2830 			mp->start = -PAGE_SIZE;	/* let's know why */
   2831 			mp->size = 0;
   2832 		}
   2833 		else {
   2834 			mp->start = s;
   2835 			mp->size = e - s;
   2836 		}
   2837 		DPRINTFN(BOOT,
   2838 		    ("pmap_bootstrap: a-avail[%d] start 0x%lx size 0x%lx\n",
   2839 		    i, mp->start, mp->size));
   2840 	}
   2841 
   2842 	/*
   2843 	 * Move (and uncount) all the null return to the end.
   2844 	 */
   2845 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   2846 		if (mp->size == 0) {
   2847 			tmp = avail[i];
   2848 			avail[i] = avail[--avail_cnt];
   2849 			avail[avail_cnt] = avail[i];
   2850 		}
   2851 	}
   2852 
   2853 	/*
   2854 	 * (Bubble)sort them into asecnding order.
   2855 	 */
   2856 	for (i = 0; i < avail_cnt; i++) {
   2857 		for (j = i + 1; j < avail_cnt; j++) {
   2858 			if (avail[i].start > avail[j].start) {
   2859 				tmp = avail[i];
   2860 				avail[i] = avail[j];
   2861 				avail[j] = tmp;
   2862 			}
   2863 		}
   2864 	}
   2865 
   2866 	/*
   2867 	 * Make sure they don't overlap.
   2868 	 */
   2869 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   2870 		if (mp[0].start + mp[0].size > mp[1].start) {
   2871 			mp[0].size = mp[1].start - mp[0].start;
   2872 		}
   2873 		DPRINTFN(BOOT,
   2874 		    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2875 		    i, mp->start, mp->size));
   2876 	}
   2877 	DPRINTFN(BOOT,
   2878 	    ("pmap_bootstrap: avail[%d] start 0x%lx size 0x%lx\n",
   2879 	    i, mp->start, mp->size));
   2880 
   2881 #ifdef	PTEGCOUNT
   2882 	pmap_pteg_cnt = PTEGCOUNT;
   2883 #else /* PTEGCOUNT */
   2884 	pmap_pteg_cnt = 0x1000;
   2885 
   2886 	while (pmap_pteg_cnt < physmem)
   2887 		pmap_pteg_cnt <<= 1;
   2888 
   2889 	pmap_pteg_cnt >>= 1;
   2890 #endif /* PTEGCOUNT */
   2891 
   2892 	/*
   2893 	 * Find suitably aligned memory for PTEG hash table.
   2894 	 */
   2895 	size = pmap_pteg_cnt * sizeof(struct pteg);
   2896 	pmap_pteg_table = pmap_boot_find_memory(size, size, 0);
   2897 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2898 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   2899 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %lx) > 256MB",
   2900 		    pmap_pteg_table, size);
   2901 #endif
   2902 
   2903 	memset((void *)pmap_pteg_table, 0, pmap_pteg_cnt * sizeof(struct pteg));
   2904 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   2905 
   2906 	/*
   2907 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   2908 	 * with pages.  So we just steal them before giving them to UVM.
   2909 	 */
   2910 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   2911 	pmap_pvo_table = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2912 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2913 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   2914 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %lx) > 256MB",
   2915 		    pmap_pvo_table, size);
   2916 #endif
   2917 
   2918 	for (i = 0; i < pmap_pteg_cnt; i++)
   2919 		TAILQ_INIT(&pmap_pvo_table[i]);
   2920 
   2921 #ifndef MSGBUFADDR
   2922 	/*
   2923 	 * Allocate msgbuf in high memory.
   2924 	 */
   2925 	msgbuf_paddr =
   2926 	    (paddr_t) pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   2927 #endif
   2928 
   2929 #ifdef __HAVE_PMAP_PHYSSEG
   2930 	{
   2931 		u_int npgs = 0;
   2932 		for (i = 0, mp = avail; i < avail_cnt; i++, mp++)
   2933 			npgs += btoc(mp->size);
   2934 		size = (sizeof(struct pvo_head) + 1) * npgs;
   2935 		pmap_physseg.pvoh = pmap_boot_find_memory(size, PAGE_SIZE, 0);
   2936 		pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
   2937 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   2938 		if ((uintptr_t)pmap_physseg.pvoh + size > SEGMENT_LENGTH)
   2939 			panic("pmap_bootstrap: PVO list end (%p + %lx) > 256MB",
   2940 			    pmap_physseg.pvoh, size);
   2941 #endif
   2942 	}
   2943 #endif
   2944 
   2945 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   2946 		paddr_t pfstart = atop(mp->start);
   2947 		paddr_t pfend = atop(mp->start + mp->size);
   2948 		if (mp->size == 0)
   2949 			continue;
   2950 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   2951 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2952 				VM_FREELIST_FIRST256);
   2953 		} else if (mp->start >= SEGMENT_LENGTH) {
   2954 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2955 				VM_FREELIST_DEFAULT);
   2956 		} else {
   2957 			pfend = atop(SEGMENT_LENGTH);
   2958 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2959 				VM_FREELIST_FIRST256);
   2960 			pfstart = atop(SEGMENT_LENGTH);
   2961 			pfend = atop(mp->start + mp->size);
   2962 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   2963 				VM_FREELIST_DEFAULT);
   2964 		}
   2965 	}
   2966 
   2967 	/*
   2968 	 * Make sure kernel vsid is allocated as well as VSID 0.
   2969 	 */
   2970 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   2971 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   2972 	pmap_vsid_bitmap[0] |= 1;
   2973 
   2974 	/*
   2975 	 * Initialize kernel pmap and hardware.
   2976 	 */
   2977 	for (i = 0; i < 16; i++) {
   2978 		pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
   2979 		__asm __volatile ("mtsrin %0,%1"
   2980 			      :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
   2981 	}
   2982 
   2983 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   2984 	__asm __volatile ("mtsr %0,%1"
   2985 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   2986 #ifdef KERNEL2_SR
   2987 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   2988 	__asm __volatile ("mtsr %0,%1"
   2989 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   2990 #endif
   2991 	for (i = 0; i < 16; i++) {
   2992 		if (iosrtable[i] & SR601_T) {
   2993 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   2994 			__asm __volatile ("mtsrin %0,%1"
   2995 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   2996 		}
   2997 	}
   2998 
   2999 	__asm __volatile ("sync; mtsdr1 %0; isync"
   3000 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3001 	tlbia();
   3002 
   3003 #ifdef ALTIVEC
   3004 	pmap_use_altivec = cpu_altivec;
   3005 #endif
   3006 
   3007 #ifdef DEBUG
   3008 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3009 		u_int cnt;
   3010 		int bank;
   3011 		char pbuf[9];
   3012 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3013 			cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
   3014 			printf("pmap_bootstrap: vm_physmem[%d]=%#lx-%#lx/%#lx\n",
   3015 			    bank,
   3016 			    ptoa(vm_physmem[bank].avail_start),
   3017 			    ptoa(vm_physmem[bank].avail_end),
   3018 			    ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
   3019 		}
   3020 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3021 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3022 		    pbuf, cnt);
   3023 	}
   3024 #endif
   3025 
   3026 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3027 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3028 	    &pmap_pool_uallocator);
   3029 
   3030 	pool_setlowat(&pmap_upvo_pool, 252);
   3031 
   3032 	pool_init(&pmap_pool, sizeof(struct pmap),
   3033 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator);
   3034 }
   3035