pmap.c revision 1.92.2.1 1 /* $NetBSD: pmap.c,v 1.92.2.1 2020/06/07 12:26:22 martin Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.92.2.1 2020/06/07 12:26:22 martin Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/pool.h>
78 #include <sys/queue.h>
79 #include <sys/device.h> /* for evcnt */
80 #include <sys/systm.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84
85 #include <machine/powerpc.h>
86 #include <powerpc/bat.h>
87 #include <powerpc/pcb.h>
88 #include <powerpc/psl.h>
89 #include <powerpc/spr.h>
90 #include <powerpc/oea/spr.h>
91 #include <powerpc/oea/sr_601.h>
92
93 #ifdef ALTIVEC
94 extern int pmap_use_altivec;
95 #endif
96
97 #ifdef PMAP_MEMLIMIT
98 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
99 #else
100 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
101 #endif
102
103 extern struct pmap kernel_pmap_;
104 static unsigned int pmap_pages_stolen;
105 static u_long pmap_pte_valid;
106 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
107 static u_long pmap_pvo_enter_depth;
108 static u_long pmap_pvo_remove_depth;
109 #endif
110
111 #ifndef MSGBUFADDR
112 extern paddr_t msgbuf_paddr;
113 #endif
114
115 static struct mem_region *mem, *avail;
116 static u_int mem_cnt, avail_cnt;
117
118 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
119 # define PMAP_OEA 1
120 #endif
121
122 #if defined(PMAP_OEA)
123 #define _PRIxpte "lx"
124 #else
125 #define _PRIxpte PRIx64
126 #endif
127 #define _PRIxpa "lx"
128 #define _PRIxva "lx"
129 #define _PRIsr "lx"
130
131 #ifdef PMAP_NEEDS_FIXUP
132 #if defined(PMAP_OEA)
133 #define PMAPNAME(name) pmap32_##name
134 #elif defined(PMAP_OEA64)
135 #define PMAPNAME(name) pmap64_##name
136 #elif defined(PMAP_OEA64_BRIDGE)
137 #define PMAPNAME(name) pmap64bridge_##name
138 #else
139 #error unknown variant for pmap
140 #endif
141 #endif /* PMAP_NEEDS_FIXUP */
142
143 #ifdef PMAPNAME
144 #define STATIC static
145 #define pmap_pte_spill PMAPNAME(pte_spill)
146 #define pmap_real_memory PMAPNAME(real_memory)
147 #define pmap_init PMAPNAME(init)
148 #define pmap_virtual_space PMAPNAME(virtual_space)
149 #define pmap_create PMAPNAME(create)
150 #define pmap_reference PMAPNAME(reference)
151 #define pmap_destroy PMAPNAME(destroy)
152 #define pmap_copy PMAPNAME(copy)
153 #define pmap_update PMAPNAME(update)
154 #define pmap_enter PMAPNAME(enter)
155 #define pmap_remove PMAPNAME(remove)
156 #define pmap_kenter_pa PMAPNAME(kenter_pa)
157 #define pmap_kremove PMAPNAME(kremove)
158 #define pmap_extract PMAPNAME(extract)
159 #define pmap_protect PMAPNAME(protect)
160 #define pmap_unwire PMAPNAME(unwire)
161 #define pmap_page_protect PMAPNAME(page_protect)
162 #define pmap_query_bit PMAPNAME(query_bit)
163 #define pmap_clear_bit PMAPNAME(clear_bit)
164
165 #define pmap_activate PMAPNAME(activate)
166 #define pmap_deactivate PMAPNAME(deactivate)
167
168 #define pmap_pinit PMAPNAME(pinit)
169 #define pmap_procwr PMAPNAME(procwr)
170
171 #define pmap_pool PMAPNAME(pool)
172 #define pmap_upvo_pool PMAPNAME(upvo_pool)
173 #define pmap_mpvo_pool PMAPNAME(mpvo_pool)
174 #define pmap_pvo_table PMAPNAME(pvo_table)
175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
176 #define pmap_pte_print PMAPNAME(pte_print)
177 #define pmap_pteg_check PMAPNAME(pteg_check)
178 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
179 #define pmap_print_pte PMAPNAME(print_pte)
180 #define pmap_pteg_dist PMAPNAME(pteg_dist)
181 #endif
182 #if defined(DEBUG) || defined(PMAPCHECK)
183 #define pmap_pvo_verify PMAPNAME(pvo_verify)
184 #define pmapcheck PMAPNAME(check)
185 #endif
186 #if defined(DEBUG) || defined(PMAPDEBUG)
187 #define pmapdebug PMAPNAME(debug)
188 #endif
189 #define pmap_steal_memory PMAPNAME(steal_memory)
190 #define pmap_bootstrap PMAPNAME(bootstrap)
191 #else
192 #define STATIC /* nothing */
193 #endif /* PMAPNAME */
194
195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
197 STATIC void pmap_init(void);
198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
199 STATIC pmap_t pmap_create(void);
200 STATIC void pmap_reference(pmap_t);
201 STATIC void pmap_destroy(pmap_t);
202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
203 STATIC void pmap_update(pmap_t);
204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
207 STATIC void pmap_kremove(vaddr_t, vsize_t);
208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
209
210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
211 STATIC void pmap_unwire(pmap_t, vaddr_t);
212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
213 STATIC bool pmap_query_bit(struct vm_page *, int);
214 STATIC bool pmap_clear_bit(struct vm_page *, int);
215
216 STATIC void pmap_activate(struct lwp *);
217 STATIC void pmap_deactivate(struct lwp *);
218
219 STATIC void pmap_pinit(pmap_t pm);
220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
221
222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
223 STATIC void pmap_pte_print(volatile struct pte *);
224 STATIC void pmap_pteg_check(void);
225 STATIC void pmap_print_mmuregs(void);
226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
227 STATIC void pmap_pteg_dist(void);
228 #endif
229 #if defined(DEBUG) || defined(PMAPCHECK)
230 STATIC void pmap_pvo_verify(void);
231 #endif
232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
234
235 #ifdef PMAPNAME
236 const struct pmap_ops PMAPNAME(ops) = {
237 .pmapop_pte_spill = pmap_pte_spill,
238 .pmapop_real_memory = pmap_real_memory,
239 .pmapop_init = pmap_init,
240 .pmapop_virtual_space = pmap_virtual_space,
241 .pmapop_create = pmap_create,
242 .pmapop_reference = pmap_reference,
243 .pmapop_destroy = pmap_destroy,
244 .pmapop_copy = pmap_copy,
245 .pmapop_update = pmap_update,
246 .pmapop_enter = pmap_enter,
247 .pmapop_remove = pmap_remove,
248 .pmapop_kenter_pa = pmap_kenter_pa,
249 .pmapop_kremove = pmap_kremove,
250 .pmapop_extract = pmap_extract,
251 .pmapop_protect = pmap_protect,
252 .pmapop_unwire = pmap_unwire,
253 .pmapop_page_protect = pmap_page_protect,
254 .pmapop_query_bit = pmap_query_bit,
255 .pmapop_clear_bit = pmap_clear_bit,
256 .pmapop_activate = pmap_activate,
257 .pmapop_deactivate = pmap_deactivate,
258 .pmapop_pinit = pmap_pinit,
259 .pmapop_procwr = pmap_procwr,
260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
261 .pmapop_pte_print = pmap_pte_print,
262 .pmapop_pteg_check = pmap_pteg_check,
263 .pmapop_print_mmuregs = pmap_print_mmuregs,
264 .pmapop_print_pte = pmap_print_pte,
265 .pmapop_pteg_dist = pmap_pteg_dist,
266 #else
267 .pmapop_pte_print = NULL,
268 .pmapop_pteg_check = NULL,
269 .pmapop_print_mmuregs = NULL,
270 .pmapop_print_pte = NULL,
271 .pmapop_pteg_dist = NULL,
272 #endif
273 #if defined(DEBUG) || defined(PMAPCHECK)
274 .pmapop_pvo_verify = pmap_pvo_verify,
275 #else
276 .pmapop_pvo_verify = NULL,
277 #endif
278 .pmapop_steal_memory = pmap_steal_memory,
279 .pmapop_bootstrap = pmap_bootstrap,
280 };
281 #endif /* !PMAPNAME */
282
283 /*
284 * The following structure is aligned to 32 bytes
285 */
286 struct pvo_entry {
287 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
288 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
289 struct pte pvo_pte; /* Prebuilt PTE */
290 pmap_t pvo_pmap; /* ptr to owning pmap */
291 vaddr_t pvo_vaddr; /* VA of entry */
292 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
293 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
294 #define PVO_WIRED 0x0010 /* PVO entry is wired */
295 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
296 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
297 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
298 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
299 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
300 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
301 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
302 #define PVO_SPILL_SET 2 /* PVO has been spilled */
303 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
304 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
305 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
306 #define PVO_REMOVE 6 /* PVO has been removed */
307 #define PVO_WHERE_MASK 15
308 #define PVO_WHERE_SHFT 8
309 } __attribute__ ((aligned (32)));
310 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
311 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
312 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
313 #define PVO_PTEGIDX_CLR(pvo) \
314 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
315 #define PVO_PTEGIDX_SET(pvo,i) \
316 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
317 #define PVO_WHERE(pvo,w) \
318 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
319 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
320
321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
322 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
325
326 struct pool pmap_pool; /* pool for pmap structures */
327 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
328 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
329
330 /*
331 * We keep a cache of unmanaged pages to be used for pvo entries for
332 * unmanaged pages.
333 */
334 struct pvo_page {
335 SIMPLEQ_ENTRY(pvo_page) pvop_link;
336 };
337 SIMPLEQ_HEAD(pvop_head, pvo_page);
338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
340 static u_long pmap_upvop_free;
341 static u_long pmap_upvop_maxfree;
342 static u_long pmap_mpvop_free;
343 static u_long pmap_mpvop_maxfree;
344
345 static void *pmap_pool_ualloc(struct pool *, int);
346 static void *pmap_pool_malloc(struct pool *, int);
347
348 static void pmap_pool_ufree(struct pool *, void *);
349 static void pmap_pool_mfree(struct pool *, void *);
350
351 static struct pool_allocator pmap_pool_mallocator = {
352 .pa_alloc = pmap_pool_malloc,
353 .pa_free = pmap_pool_mfree,
354 .pa_pagesz = 0,
355 };
356
357 static struct pool_allocator pmap_pool_uallocator = {
358 .pa_alloc = pmap_pool_ualloc,
359 .pa_free = pmap_pool_ufree,
360 .pa_pagesz = 0,
361 };
362
363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
364 void pmap_pte_print(volatile struct pte *);
365 void pmap_pteg_check(void);
366 void pmap_pteg_dist(void);
367 void pmap_print_pte(pmap_t, vaddr_t);
368 void pmap_print_mmuregs(void);
369 #endif
370
371 #if defined(DEBUG) || defined(PMAPCHECK)
372 #ifdef PMAPCHECK
373 int pmapcheck = 1;
374 #else
375 int pmapcheck = 0;
376 #endif
377 void pmap_pvo_verify(void);
378 static void pmap_pvo_check(const struct pvo_entry *);
379 #define PMAP_PVO_CHECK(pvo) \
380 do { \
381 if (pmapcheck) \
382 pmap_pvo_check(pvo); \
383 } while (0)
384 #else
385 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
386 #endif
387 static int pmap_pte_insert(int, struct pte *);
388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
389 vaddr_t, paddr_t, register_t, int);
390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
391 static void pmap_pvo_free(struct pvo_entry *);
392 static void pmap_pvo_free_list(struct pvo_head *);
393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
396 static void pvo_set_exec(struct pvo_entry *);
397 static void pvo_clear_exec(struct pvo_entry *);
398
399 static void tlbia(void);
400
401 static void pmap_release(pmap_t);
402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
403
404 static uint32_t pmap_pvo_reclaim_nextidx;
405 #ifdef DEBUG
406 static int pmap_pvo_reclaim_debugctr;
407 #endif
408
409 #define VSID_NBPW (sizeof(uint32_t) * 8)
410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
411
412 static int pmap_initialized;
413
414 #if defined(DEBUG) || defined(PMAPDEBUG)
415 #define PMAPDEBUG_BOOT 0x0001
416 #define PMAPDEBUG_PTE 0x0002
417 #define PMAPDEBUG_EXEC 0x0008
418 #define PMAPDEBUG_PVOENTER 0x0010
419 #define PMAPDEBUG_PVOREMOVE 0x0020
420 #define PMAPDEBUG_ACTIVATE 0x0100
421 #define PMAPDEBUG_CREATE 0x0200
422 #define PMAPDEBUG_ENTER 0x1000
423 #define PMAPDEBUG_KENTER 0x2000
424 #define PMAPDEBUG_KREMOVE 0x4000
425 #define PMAPDEBUG_REMOVE 0x8000
426
427 unsigned int pmapdebug = 0;
428
429 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
430 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
431 #else
432 # define DPRINTF(x, ...) do { } while (0)
433 # define DPRINTFN(n, x, ...) do { } while (0)
434 #endif
435
436
437 #ifdef PMAPCOUNTERS
438 /*
439 * From pmap_subr.c
440 */
441 extern struct evcnt pmap_evcnt_mappings;
442 extern struct evcnt pmap_evcnt_unmappings;
443
444 extern struct evcnt pmap_evcnt_kernel_mappings;
445 extern struct evcnt pmap_evcnt_kernel_unmappings;
446
447 extern struct evcnt pmap_evcnt_mappings_replaced;
448
449 extern struct evcnt pmap_evcnt_exec_mappings;
450 extern struct evcnt pmap_evcnt_exec_cached;
451
452 extern struct evcnt pmap_evcnt_exec_synced;
453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
455
456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
461
462 extern struct evcnt pmap_evcnt_updates;
463 extern struct evcnt pmap_evcnt_collects;
464 extern struct evcnt pmap_evcnt_copies;
465
466 extern struct evcnt pmap_evcnt_ptes_spilled;
467 extern struct evcnt pmap_evcnt_ptes_unspilled;
468 extern struct evcnt pmap_evcnt_ptes_evicted;
469
470 extern struct evcnt pmap_evcnt_ptes_primary[8];
471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
472 extern struct evcnt pmap_evcnt_ptes_removed;
473 extern struct evcnt pmap_evcnt_ptes_changed;
474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
475 extern struct evcnt pmap_evcnt_pvos_failed;
476
477 extern struct evcnt pmap_evcnt_zeroed_pages;
478 extern struct evcnt pmap_evcnt_copied_pages;
479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
480
481 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
482 #define PMAPCOUNT2(ev) ((ev).ev_count++)
483 #else
484 #define PMAPCOUNT(ev) ((void) 0)
485 #define PMAPCOUNT2(ev) ((void) 0)
486 #endif
487
488 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
489
490 /* XXXSL: this needs to be moved to assembler */
491 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
492
493 #ifdef MD_TLBSYNC
494 #define TLBSYNC() MD_TLBSYNC()
495 #else
496 #define TLBSYNC() __asm volatile("tlbsync")
497 #endif
498 #define SYNC() __asm volatile("sync")
499 #define EIEIO() __asm volatile("eieio")
500 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
501 #define MFMSR() mfmsr()
502 #define MTMSR(psl) mtmsr(psl)
503 #define MFPVR() mfpvr()
504 #define MFSRIN(va) mfsrin(va)
505 #define MFTB() mfrtcltbl()
506
507 #if defined(DDB) && !defined(PMAP_OEA64)
508 static inline register_t
509 mfsrin(vaddr_t va)
510 {
511 register_t sr;
512 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
513 return sr;
514 }
515 #endif /* DDB && !PMAP_OEA64 */
516
517 #if defined (PMAP_OEA64_BRIDGE)
518 extern void mfmsr64 (register64_t *result);
519 #endif /* PMAP_OEA64_BRIDGE */
520
521 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
522 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
523
524 static inline register_t
525 pmap_interrupts_off(void)
526 {
527 register_t msr = MFMSR();
528 if (msr & PSL_EE)
529 MTMSR(msr & ~PSL_EE);
530 return msr;
531 }
532
533 static void
534 pmap_interrupts_restore(register_t msr)
535 {
536 if (msr & PSL_EE)
537 MTMSR(msr);
538 }
539
540 static inline u_int32_t
541 mfrtcltbl(void)
542 {
543 #ifdef PPC_OEA601
544 if ((MFPVR() >> 16) == MPC601)
545 return (mfrtcl() >> 7);
546 else
547 #endif
548 return (mftbl());
549 }
550
551 /*
552 * These small routines may have to be replaced,
553 * if/when we support processors other that the 604.
554 */
555
556 void
557 tlbia(void)
558 {
559 char *i;
560
561 SYNC();
562 #if defined(PMAP_OEA)
563 /*
564 * Why not use "tlbia"? Because not all processors implement it.
565 *
566 * This needs to be a per-CPU callback to do the appropriate thing
567 * for the CPU. XXX
568 */
569 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
570 TLBIE(i);
571 EIEIO();
572 SYNC();
573 }
574 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
575 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
576 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
577 TLBIEL(i);
578 EIEIO();
579 SYNC();
580 }
581 #endif
582 TLBSYNC();
583 SYNC();
584 }
585
586 static inline register_t
587 va_to_vsid(const struct pmap *pm, vaddr_t addr)
588 {
589 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
590 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
591 #else /* PMAP_OEA64 */
592 #if 0
593 const struct ste *ste;
594 register_t hash;
595 int i;
596
597 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
598
599 /*
600 * Try the primary group first
601 */
602 ste = pm->pm_stes[hash].stes;
603 for (i = 0; i < 8; i++, ste++) {
604 if (ste->ste_hi & STE_V) &&
605 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
606 return ste;
607 }
608
609 /*
610 * Then the secondary group.
611 */
612 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
613 for (i = 0; i < 8; i++, ste++) {
614 if (ste->ste_hi & STE_V) &&
615 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
616 return addr;
617 }
618
619 return NULL;
620 #else
621 /*
622 * Rather than searching the STE groups for the VSID, we know
623 * how we generate that from the ESID and so do that.
624 */
625 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
626 #endif
627 #endif /* PMAP_OEA */
628 }
629
630 static inline register_t
631 va_to_pteg(const struct pmap *pm, vaddr_t addr)
632 {
633 register_t hash;
634
635 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
636 return hash & pmap_pteg_mask;
637 }
638
639 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
640 /*
641 * Given a PTE in the page table, calculate the VADDR that hashes to it.
642 * The only bit of magic is that the top 4 bits of the address doesn't
643 * technically exist in the PTE. But we know we reserved 4 bits of the
644 * VSID for it so that's how we get it.
645 */
646 static vaddr_t
647 pmap_pte_to_va(volatile const struct pte *pt)
648 {
649 vaddr_t va;
650 uintptr_t ptaddr = (uintptr_t) pt;
651
652 if (pt->pte_hi & PTE_HID)
653 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
654
655 /* PPC Bits 10-19 PPC64 Bits 42-51 */
656 #if defined(PMAP_OEA)
657 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
658 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
659 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
660 #endif
661 va <<= ADDR_PIDX_SHFT;
662
663 /* PPC Bits 4-9 PPC64 Bits 36-41 */
664 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
665
666 #if defined(PMAP_OEA64)
667 /* PPC63 Bits 0-35 */
668 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
669 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
670 /* PPC Bits 0-3 */
671 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
672 #endif
673
674 return va;
675 }
676 #endif
677
678 static inline struct pvo_head *
679 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
680 {
681 struct vm_page *pg;
682 struct vm_page_md *md;
683
684 pg = PHYS_TO_VM_PAGE(pa);
685 if (pg_p != NULL)
686 *pg_p = pg;
687 if (pg == NULL)
688 return &pmap_pvo_unmanaged;
689 md = VM_PAGE_TO_MD(pg);
690 return &md->mdpg_pvoh;
691 }
692
693 static inline struct pvo_head *
694 vm_page_to_pvoh(struct vm_page *pg)
695 {
696 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
697
698 return &md->mdpg_pvoh;
699 }
700
701
702 static inline void
703 pmap_attr_clear(struct vm_page *pg, int ptebit)
704 {
705 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
706
707 md->mdpg_attrs &= ~ptebit;
708 }
709
710 static inline int
711 pmap_attr_fetch(struct vm_page *pg)
712 {
713 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
714
715 return md->mdpg_attrs;
716 }
717
718 static inline void
719 pmap_attr_save(struct vm_page *pg, int ptebit)
720 {
721 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
722
723 md->mdpg_attrs |= ptebit;
724 }
725
726 static inline int
727 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
728 {
729 if (pt->pte_hi == pvo_pt->pte_hi
730 #if 0
731 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
732 ~(PTE_REF|PTE_CHG)) == 0
733 #endif
734 )
735 return 1;
736 return 0;
737 }
738
739 static inline void
740 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
741 {
742 /*
743 * Construct the PTE. Default to IMB initially. Valid bit
744 * only gets set when the real pte is set in memory.
745 *
746 * Note: Don't set the valid bit for correct operation of tlb update.
747 */
748 #if defined(PMAP_OEA)
749 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
750 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
751 pt->pte_lo = pte_lo;
752 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
753 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
754 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
755 pt->pte_lo = (u_int64_t) pte_lo;
756 #endif /* PMAP_OEA */
757 }
758
759 static inline void
760 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
761 {
762 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
763 }
764
765 static inline void
766 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
767 {
768 /*
769 * As shown in Section 7.6.3.2.3
770 */
771 pt->pte_lo &= ~ptebit;
772 TLBIE(va);
773 SYNC();
774 EIEIO();
775 TLBSYNC();
776 SYNC();
777 #ifdef MULTIPROCESSOR
778 DCBST(pt);
779 #endif
780 }
781
782 static inline void
783 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
784 {
785 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
786 if (pvo_pt->pte_hi & PTE_VALID)
787 panic("pte_set: setting an already valid pte %p", pvo_pt);
788 #endif
789 pvo_pt->pte_hi |= PTE_VALID;
790
791 /*
792 * Update the PTE as defined in section 7.6.3.1
793 * Note that the REF/CHG bits are from pvo_pt and thus should
794 * have been saved so this routine can restore them (if desired).
795 */
796 pt->pte_lo = pvo_pt->pte_lo;
797 EIEIO();
798 pt->pte_hi = pvo_pt->pte_hi;
799 TLBSYNC();
800 SYNC();
801 #ifdef MULTIPROCESSOR
802 DCBST(pt);
803 #endif
804 pmap_pte_valid++;
805 }
806
807 static inline void
808 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
809 {
810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
811 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
812 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
813 if ((pt->pte_hi & PTE_VALID) == 0)
814 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
815 #endif
816
817 pvo_pt->pte_hi &= ~PTE_VALID;
818 /*
819 * Force the ref & chg bits back into the PTEs.
820 */
821 SYNC();
822 /*
823 * Invalidate the pte ... (Section 7.6.3.3)
824 */
825 pt->pte_hi &= ~PTE_VALID;
826 SYNC();
827 TLBIE(va);
828 SYNC();
829 EIEIO();
830 TLBSYNC();
831 SYNC();
832 /*
833 * Save the ref & chg bits ...
834 */
835 pmap_pte_synch(pt, pvo_pt);
836 pmap_pte_valid--;
837 }
838
839 static inline void
840 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
841 {
842 /*
843 * Invalidate the PTE
844 */
845 pmap_pte_unset(pt, pvo_pt, va);
846 pmap_pte_set(pt, pvo_pt);
847 }
848
849 /*
850 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
851 * (either primary or secondary location).
852 *
853 * Note: both the destination and source PTEs must not have PTE_VALID set.
854 */
855
856 static int
857 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
858 {
859 volatile struct pte *pt;
860 int i;
861
862 #if defined(DEBUG)
863 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
864 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
865 #endif
866 /*
867 * First try primary hash.
868 */
869 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
870 if ((pt->pte_hi & PTE_VALID) == 0) {
871 pvo_pt->pte_hi &= ~PTE_HID;
872 pmap_pte_set(pt, pvo_pt);
873 return i;
874 }
875 }
876
877 /*
878 * Now try secondary hash.
879 */
880 ptegidx ^= pmap_pteg_mask;
881 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
882 if ((pt->pte_hi & PTE_VALID) == 0) {
883 pvo_pt->pte_hi |= PTE_HID;
884 pmap_pte_set(pt, pvo_pt);
885 return i;
886 }
887 }
888 return -1;
889 }
890
891 /*
892 * Spill handler.
893 *
894 * Tries to spill a page table entry from the overflow area.
895 * This runs in either real mode (if dealing with a exception spill)
896 * or virtual mode when dealing with manually spilling one of the
897 * kernel's pte entries. In either case, interrupts are already
898 * disabled.
899 */
900
901 int
902 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
903 {
904 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
905 struct pvo_entry *pvo;
906 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
907 struct pvo_tqhead *pvoh, *vpvoh = NULL;
908 int ptegidx, i, j;
909 volatile struct pteg *pteg;
910 volatile struct pte *pt;
911
912 PMAP_LOCK();
913
914 ptegidx = va_to_pteg(pm, addr);
915
916 /*
917 * Have to substitute some entry. Use the primary hash for this.
918 * Use low bits of timebase as random generator. Make sure we are
919 * not picking a kernel pte for replacement.
920 */
921 pteg = &pmap_pteg_table[ptegidx];
922 i = MFTB() & 7;
923 for (j = 0; j < 8; j++) {
924 pt = &pteg->pt[i];
925 if ((pt->pte_hi & PTE_VALID) == 0)
926 break;
927 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
928 < PHYSMAP_VSIDBITS)
929 break;
930 i = (i + 1) & 7;
931 }
932 KASSERT(j < 8);
933
934 source_pvo = NULL;
935 victim_pvo = NULL;
936 pvoh = &pmap_pvo_table[ptegidx];
937 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
938
939 /*
940 * We need to find pvo entry for this address...
941 */
942 PMAP_PVO_CHECK(pvo); /* sanity check */
943
944 /*
945 * If we haven't found the source and we come to a PVO with
946 * a valid PTE, then we know we can't find it because all
947 * evicted PVOs always are first in the list.
948 */
949 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
950 break;
951 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
952 addr == PVO_VADDR(pvo)) {
953
954 /*
955 * Now we have found the entry to be spilled into the
956 * pteg. Attempt to insert it into the page table.
957 */
958 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
959 if (j >= 0) {
960 PVO_PTEGIDX_SET(pvo, j);
961 PMAP_PVO_CHECK(pvo); /* sanity check */
962 PVO_WHERE(pvo, SPILL_INSERT);
963 pvo->pvo_pmap->pm_evictions--;
964 PMAPCOUNT(ptes_spilled);
965 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
966 ? pmap_evcnt_ptes_secondary
967 : pmap_evcnt_ptes_primary)[j]);
968
969 /*
970 * Since we keep the evicted entries at the
971 * from of the PVO list, we need move this
972 * (now resident) PVO after the evicted
973 * entries.
974 */
975 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
976
977 /*
978 * If we don't have to move (either we were the
979 * last entry or the next entry was valid),
980 * don't change our position. Otherwise
981 * move ourselves to the tail of the queue.
982 */
983 if (next_pvo != NULL &&
984 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
985 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
986 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
987 }
988 PMAP_UNLOCK();
989 return 1;
990 }
991 source_pvo = pvo;
992 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
993 PMAP_UNLOCK();
994 return 0;
995 }
996 if (victim_pvo != NULL)
997 break;
998 }
999
1000 /*
1001 * We also need the pvo entry of the victim we are replacing
1002 * so save the R & C bits of the PTE.
1003 */
1004 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1005 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 vpvoh = pvoh; /* *1* */
1007 victim_pvo = pvo;
1008 if (source_pvo != NULL)
1009 break;
1010 }
1011 }
1012
1013 if (source_pvo == NULL) {
1014 PMAPCOUNT(ptes_unspilled);
1015 PMAP_UNLOCK();
1016 return 0;
1017 }
1018
1019 if (victim_pvo == NULL) {
1020 if ((pt->pte_hi & PTE_HID) == 0)
1021 panic("pmap_pte_spill: victim p-pte (%p) has "
1022 "no pvo entry!", pt);
1023
1024 /*
1025 * If this is a secondary PTE, we need to search
1026 * its primary pvo bucket for the matching PVO.
1027 */
1028 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1029 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1030 PMAP_PVO_CHECK(pvo); /* sanity check */
1031
1032 /*
1033 * We also need the pvo entry of the victim we are
1034 * replacing so save the R & C bits of the PTE.
1035 */
1036 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1037 victim_pvo = pvo;
1038 break;
1039 }
1040 }
1041 if (victim_pvo == NULL)
1042 panic("pmap_pte_spill: victim s-pte (%p) has "
1043 "no pvo entry!", pt);
1044 }
1045
1046 /*
1047 * The victim should be not be a kernel PVO/PTE entry.
1048 */
1049 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1050 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1051 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1052
1053 /*
1054 * We are invalidating the TLB entry for the EA for the
1055 * we are replacing even though its valid; If we don't
1056 * we lose any ref/chg bit changes contained in the TLB
1057 * entry.
1058 */
1059 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1060
1061 /*
1062 * To enforce the PVO list ordering constraint that all
1063 * evicted entries should come before all valid entries,
1064 * move the source PVO to the tail of its list and the
1065 * victim PVO to the head of its list (which might not be
1066 * the same list, if the victim was using the secondary hash).
1067 */
1068 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1069 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1070 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1071 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1072 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1073 pmap_pte_set(pt, &source_pvo->pvo_pte);
1074 victim_pvo->pvo_pmap->pm_evictions++;
1075 source_pvo->pvo_pmap->pm_evictions--;
1076 PVO_WHERE(victim_pvo, SPILL_UNSET);
1077 PVO_WHERE(source_pvo, SPILL_SET);
1078
1079 PVO_PTEGIDX_CLR(victim_pvo);
1080 PVO_PTEGIDX_SET(source_pvo, i);
1081 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1082 PMAPCOUNT(ptes_spilled);
1083 PMAPCOUNT(ptes_evicted);
1084 PMAPCOUNT(ptes_removed);
1085
1086 PMAP_PVO_CHECK(victim_pvo);
1087 PMAP_PVO_CHECK(source_pvo);
1088
1089 PMAP_UNLOCK();
1090 return 1;
1091 }
1092
1093 /*
1094 * Restrict given range to physical memory
1095 */
1096 void
1097 pmap_real_memory(paddr_t *start, psize_t *size)
1098 {
1099 struct mem_region *mp;
1100
1101 for (mp = mem; mp->size; mp++) {
1102 if (*start + *size > mp->start
1103 && *start < mp->start + mp->size) {
1104 if (*start < mp->start) {
1105 *size -= mp->start - *start;
1106 *start = mp->start;
1107 }
1108 if (*start + *size > mp->start + mp->size)
1109 *size = mp->start + mp->size - *start;
1110 return;
1111 }
1112 }
1113 *size = 0;
1114 }
1115
1116 /*
1117 * Initialize anything else for pmap handling.
1118 * Called during vm_init().
1119 */
1120 void
1121 pmap_init(void)
1122 {
1123 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1124 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1125 &pmap_pool_mallocator, IPL_NONE);
1126
1127 pool_setlowat(&pmap_mpvo_pool, 1008);
1128
1129 pmap_initialized = 1;
1130
1131 }
1132
1133 /*
1134 * How much virtual space does the kernel get?
1135 */
1136 void
1137 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1138 {
1139 /*
1140 * For now, reserve one segment (minus some overhead) for kernel
1141 * virtual memory
1142 */
1143 *start = VM_MIN_KERNEL_ADDRESS;
1144 *end = VM_MAX_KERNEL_ADDRESS;
1145 }
1146
1147 /*
1148 * Allocate, initialize, and return a new physical map.
1149 */
1150 pmap_t
1151 pmap_create(void)
1152 {
1153 pmap_t pm;
1154
1155 pm = pool_get(&pmap_pool, PR_WAITOK);
1156 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1157 memset((void *)pm, 0, sizeof *pm);
1158 pmap_pinit(pm);
1159
1160 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1161 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1162 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1163 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1164 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1165 pm,
1166 pm->pm_sr[0], pm->pm_sr[1],
1167 pm->pm_sr[2], pm->pm_sr[3],
1168 pm->pm_sr[4], pm->pm_sr[5],
1169 pm->pm_sr[6], pm->pm_sr[7],
1170 pm->pm_sr[8], pm->pm_sr[9],
1171 pm->pm_sr[10], pm->pm_sr[11],
1172 pm->pm_sr[12], pm->pm_sr[13],
1173 pm->pm_sr[14], pm->pm_sr[15]);
1174 return pm;
1175 }
1176
1177 /*
1178 * Initialize a preallocated and zeroed pmap structure.
1179 */
1180 void
1181 pmap_pinit(pmap_t pm)
1182 {
1183 register_t entropy = MFTB();
1184 register_t mask;
1185 int i;
1186
1187 /*
1188 * Allocate some segment registers for this pmap.
1189 */
1190 pm->pm_refs = 1;
1191 PMAP_LOCK();
1192 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1193 static register_t pmap_vsidcontext;
1194 register_t hash;
1195 unsigned int n;
1196
1197 /* Create a new value by multiplying by a prime adding in
1198 * entropy from the timebase register. This is to make the
1199 * VSID more random so that the PT Hash function collides
1200 * less often. (note that the prime causes gcc to do shifts
1201 * instead of a multiply)
1202 */
1203 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1204 hash = pmap_vsidcontext & (NPMAPS - 1);
1205 if (hash == 0) { /* 0 is special, avoid it */
1206 entropy += 0xbadf00d;
1207 continue;
1208 }
1209 n = hash >> 5;
1210 mask = 1L << (hash & (VSID_NBPW-1));
1211 hash = pmap_vsidcontext;
1212 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1213 /* anything free in this bucket? */
1214 if (~pmap_vsid_bitmap[n] == 0) {
1215 entropy = hash ^ (hash >> 16);
1216 continue;
1217 }
1218 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1219 mask = 1L << i;
1220 hash &= ~(VSID_NBPW-1);
1221 hash |= i;
1222 }
1223 hash &= PTE_VSID >> PTE_VSID_SHFT;
1224 pmap_vsid_bitmap[n] |= mask;
1225 pm->pm_vsid = hash;
1226 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1227 for (i = 0; i < 16; i++)
1228 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1229 SR_NOEXEC;
1230 #endif
1231 PMAP_UNLOCK();
1232 return;
1233 }
1234 PMAP_UNLOCK();
1235 panic("pmap_pinit: out of segments");
1236 }
1237
1238 /*
1239 * Add a reference to the given pmap.
1240 */
1241 void
1242 pmap_reference(pmap_t pm)
1243 {
1244 atomic_inc_uint(&pm->pm_refs);
1245 }
1246
1247 /*
1248 * Retire the given pmap from service.
1249 * Should only be called if the map contains no valid mappings.
1250 */
1251 void
1252 pmap_destroy(pmap_t pm)
1253 {
1254 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1255 pmap_release(pm);
1256 pool_put(&pmap_pool, pm);
1257 }
1258 }
1259
1260 /*
1261 * Release any resources held by the given physical map.
1262 * Called when a pmap initialized by pmap_pinit is being released.
1263 */
1264 void
1265 pmap_release(pmap_t pm)
1266 {
1267 int idx, mask;
1268
1269 KASSERT(pm->pm_stats.resident_count == 0);
1270 KASSERT(pm->pm_stats.wired_count == 0);
1271
1272 PMAP_LOCK();
1273 if (pm->pm_sr[0] == 0)
1274 panic("pmap_release");
1275 idx = pm->pm_vsid & (NPMAPS-1);
1276 mask = 1 << (idx % VSID_NBPW);
1277 idx /= VSID_NBPW;
1278
1279 KASSERT(pmap_vsid_bitmap[idx] & mask);
1280 pmap_vsid_bitmap[idx] &= ~mask;
1281 PMAP_UNLOCK();
1282 }
1283
1284 /*
1285 * Copy the range specified by src_addr/len
1286 * from the source map to the range dst_addr/len
1287 * in the destination map.
1288 *
1289 * This routine is only advisory and need not do anything.
1290 */
1291 void
1292 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1293 vsize_t len, vaddr_t src_addr)
1294 {
1295 PMAPCOUNT(copies);
1296 }
1297
1298 /*
1299 * Require that all active physical maps contain no
1300 * incorrect entries NOW.
1301 */
1302 void
1303 pmap_update(struct pmap *pmap)
1304 {
1305 PMAPCOUNT(updates);
1306 TLBSYNC();
1307 }
1308
1309 static inline int
1310 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1311 {
1312 int pteidx;
1313 /*
1314 * We can find the actual pte entry without searching by
1315 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1316 * and by noticing the HID bit.
1317 */
1318 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1319 if (pvo->pvo_pte.pte_hi & PTE_HID)
1320 pteidx ^= pmap_pteg_mask * 8;
1321 return pteidx;
1322 }
1323
1324 volatile struct pte *
1325 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1326 {
1327 volatile struct pte *pt;
1328
1329 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1330 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1331 return NULL;
1332 #endif
1333
1334 /*
1335 * If we haven't been supplied the ptegidx, calculate it.
1336 */
1337 if (pteidx == -1) {
1338 int ptegidx;
1339 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1340 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1341 }
1342
1343 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1344
1345 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1346 return pt;
1347 #else
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1349 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1350 "pvo but no valid pte index", pvo);
1351 }
1352 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1353 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1354 "pvo but no valid pte", pvo);
1355 }
1356
1357 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1358 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1359 #if defined(DEBUG) || defined(PMAPCHECK)
1360 pmap_pte_print(pt);
1361 #endif
1362 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1363 "pmap_pteg_table %p but invalid in pvo",
1364 pvo, pt);
1365 }
1366 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1367 #if defined(DEBUG) || defined(PMAPCHECK)
1368 pmap_pte_print(pt);
1369 #endif
1370 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1371 "not match pte %p in pmap_pteg_table",
1372 pvo, pt);
1373 }
1374 return pt;
1375 }
1376
1377 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1378 #if defined(DEBUG) || defined(PMAPCHECK)
1379 pmap_pte_print(pt);
1380 #endif
1381 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1382 "pmap_pteg_table but valid in pvo", pvo, pt);
1383 }
1384 return NULL;
1385 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1386 }
1387
1388 struct pvo_entry *
1389 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1390 {
1391 struct pvo_entry *pvo;
1392 int ptegidx;
1393
1394 va &= ~ADDR_POFF;
1395 ptegidx = va_to_pteg(pm, va);
1396
1397 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1399 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1400 panic("pmap_pvo_find_va: invalid pvo %p on "
1401 "list %#x (%p)", pvo, ptegidx,
1402 &pmap_pvo_table[ptegidx]);
1403 #endif
1404 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1405 if (pteidx_p)
1406 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1407 return pvo;
1408 }
1409 }
1410 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1411 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1412 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1413 return NULL;
1414 }
1415
1416 #if defined(DEBUG) || defined(PMAPCHECK)
1417 void
1418 pmap_pvo_check(const struct pvo_entry *pvo)
1419 {
1420 struct pvo_head *pvo_head;
1421 struct pvo_entry *pvo0;
1422 volatile struct pte *pt;
1423 int failed = 0;
1424
1425 PMAP_LOCK();
1426
1427 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1428 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1429
1430 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1431 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1432 pvo, pvo->pvo_pmap);
1433 failed = 1;
1434 }
1435
1436 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1437 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1438 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1439 pvo, TAILQ_NEXT(pvo, pvo_olink));
1440 failed = 1;
1441 }
1442
1443 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1444 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1445 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1446 pvo, LIST_NEXT(pvo, pvo_vlink));
1447 failed = 1;
1448 }
1449
1450 if (PVO_MANAGED_P(pvo)) {
1451 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1452 } else {
1453 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1454 printf("pmap_pvo_check: pvo %p: non kernel address "
1455 "on kernel unmanaged list\n", pvo);
1456 failed = 1;
1457 }
1458 pvo_head = &pmap_pvo_kunmanaged;
1459 }
1460 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1461 if (pvo0 == pvo)
1462 break;
1463 }
1464 if (pvo0 == NULL) {
1465 printf("pmap_pvo_check: pvo %p: not present "
1466 "on its vlist head %p\n", pvo, pvo_head);
1467 failed = 1;
1468 }
1469 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1470 printf("pmap_pvo_check: pvo %p: not present "
1471 "on its olist head\n", pvo);
1472 failed = 1;
1473 }
1474 pt = pmap_pvo_to_pte(pvo, -1);
1475 if (pt == NULL) {
1476 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1477 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1478 "no PTE\n", pvo);
1479 failed = 1;
1480 }
1481 } else {
1482 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1483 (uintptr_t) pt >=
1484 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1485 printf("pmap_pvo_check: pvo %p: pte %p not in "
1486 "pteg table\n", pvo, pt);
1487 failed = 1;
1488 }
1489 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1491 "no PTE\n", pvo);
1492 failed = 1;
1493 }
1494 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1495 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1496 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1497 pvo->pvo_pte.pte_hi,
1498 pt->pte_hi);
1499 failed = 1;
1500 }
1501 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1502 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1503 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1504 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1505 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1506 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1507 failed = 1;
1508 }
1509 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1510 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1511 " doesn't not match PVO's VA %#" _PRIxva "\n",
1512 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1513 failed = 1;
1514 }
1515 if (failed)
1516 pmap_pte_print(pt);
1517 }
1518 if (failed)
1519 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1520 pvo->pvo_pmap);
1521
1522 PMAP_UNLOCK();
1523 }
1524 #endif /* DEBUG || PMAPCHECK */
1525
1526 /*
1527 * Search the PVO table looking for a non-wired entry.
1528 * If we find one, remove it and return it.
1529 */
1530
1531 struct pvo_entry *
1532 pmap_pvo_reclaim(struct pmap *pm)
1533 {
1534 struct pvo_tqhead *pvoh;
1535 struct pvo_entry *pvo;
1536 uint32_t idx, endidx;
1537
1538 endidx = pmap_pvo_reclaim_nextidx;
1539 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1540 idx = (idx + 1) & pmap_pteg_mask) {
1541 pvoh = &pmap_pvo_table[idx];
1542 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1543 if (!PVO_WIRED_P(pvo)) {
1544 pmap_pvo_remove(pvo, -1, NULL);
1545 pmap_pvo_reclaim_nextidx = idx;
1546 PMAPCOUNT(pvos_reclaimed);
1547 return pvo;
1548 }
1549 }
1550 }
1551 return NULL;
1552 }
1553
1554 /*
1555 * This returns whether this is the first mapping of a page.
1556 */
1557 int
1558 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1559 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1560 {
1561 struct pvo_entry *pvo;
1562 struct pvo_tqhead *pvoh;
1563 register_t msr;
1564 int ptegidx;
1565 int i;
1566 int poolflags = PR_NOWAIT;
1567
1568 /*
1569 * Compute the PTE Group index.
1570 */
1571 va &= ~ADDR_POFF;
1572 ptegidx = va_to_pteg(pm, va);
1573
1574 msr = pmap_interrupts_off();
1575
1576 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1577 if (pmap_pvo_remove_depth > 0)
1578 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1579 if (++pmap_pvo_enter_depth > 1)
1580 panic("pmap_pvo_enter: called recursively!");
1581 #endif
1582
1583 /*
1584 * Remove any existing mapping for this page. Reuse the
1585 * pvo entry if there a mapping.
1586 */
1587 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1588 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1589 #ifdef DEBUG
1590 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1591 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1592 ~(PTE_REF|PTE_CHG)) == 0 &&
1593 va < VM_MIN_KERNEL_ADDRESS) {
1594 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1595 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1596 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1597 pvo->pvo_pte.pte_hi,
1598 pm->pm_sr[va >> ADDR_SR_SHFT]);
1599 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1600 #ifdef DDBX
1601 Debugger();
1602 #endif
1603 }
1604 #endif
1605 PMAPCOUNT(mappings_replaced);
1606 pmap_pvo_remove(pvo, -1, NULL);
1607 break;
1608 }
1609 }
1610
1611 /*
1612 * If we aren't overwriting an mapping, try to allocate
1613 */
1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1615 --pmap_pvo_enter_depth;
1616 #endif
1617 pmap_interrupts_restore(msr);
1618 if (pvo) {
1619 pmap_pvo_free(pvo);
1620 }
1621 pvo = pool_get(pl, poolflags);
1622 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1623
1624 #ifdef DEBUG
1625 /*
1626 * Exercise pmap_pvo_reclaim() a little.
1627 */
1628 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1629 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1630 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1631 pool_put(pl, pvo);
1632 pvo = NULL;
1633 }
1634 #endif
1635
1636 msr = pmap_interrupts_off();
1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1638 ++pmap_pvo_enter_depth;
1639 #endif
1640 if (pvo == NULL) {
1641 pvo = pmap_pvo_reclaim(pm);
1642 if (pvo == NULL) {
1643 if ((flags & PMAP_CANFAIL) == 0)
1644 panic("pmap_pvo_enter: failed");
1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1646 pmap_pvo_enter_depth--;
1647 #endif
1648 PMAPCOUNT(pvos_failed);
1649 pmap_interrupts_restore(msr);
1650 return ENOMEM;
1651 }
1652 }
1653
1654 pvo->pvo_vaddr = va;
1655 pvo->pvo_pmap = pm;
1656 pvo->pvo_vaddr &= ~ADDR_POFF;
1657 if (flags & VM_PROT_EXECUTE) {
1658 PMAPCOUNT(exec_mappings);
1659 pvo_set_exec(pvo);
1660 }
1661 if (flags & PMAP_WIRED)
1662 pvo->pvo_vaddr |= PVO_WIRED;
1663 if (pvo_head != &pmap_pvo_kunmanaged) {
1664 pvo->pvo_vaddr |= PVO_MANAGED;
1665 PMAPCOUNT(mappings);
1666 } else {
1667 PMAPCOUNT(kernel_mappings);
1668 }
1669 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1670
1671 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1672 if (PVO_WIRED_P(pvo))
1673 pvo->pvo_pmap->pm_stats.wired_count++;
1674 pvo->pvo_pmap->pm_stats.resident_count++;
1675 #if defined(DEBUG)
1676 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1677 DPRINTFN(PVOENTER,
1678 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1679 pvo, pm, va, pa);
1680 #endif
1681
1682 /*
1683 * We hope this succeeds but it isn't required.
1684 */
1685 pvoh = &pmap_pvo_table[ptegidx];
1686 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1687 if (i >= 0) {
1688 PVO_PTEGIDX_SET(pvo, i);
1689 PVO_WHERE(pvo, ENTER_INSERT);
1690 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1691 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1692 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1693
1694 } else {
1695 /*
1696 * Since we didn't have room for this entry (which makes it
1697 * and evicted entry), place it at the head of the list.
1698 */
1699 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1700 PMAPCOUNT(ptes_evicted);
1701 pm->pm_evictions++;
1702 /*
1703 * If this is a kernel page, make sure it's active.
1704 */
1705 if (pm == pmap_kernel()) {
1706 i = pmap_pte_spill(pm, va, false);
1707 KASSERT(i);
1708 }
1709 }
1710 PMAP_PVO_CHECK(pvo); /* sanity check */
1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1712 pmap_pvo_enter_depth--;
1713 #endif
1714 pmap_interrupts_restore(msr);
1715 return 0;
1716 }
1717
1718 static void
1719 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1720 {
1721 volatile struct pte *pt;
1722 int ptegidx;
1723
1724 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1725 if (++pmap_pvo_remove_depth > 1)
1726 panic("pmap_pvo_remove: called recursively!");
1727 #endif
1728
1729 /*
1730 * If we haven't been supplied the ptegidx, calculate it.
1731 */
1732 if (pteidx == -1) {
1733 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1734 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1735 } else {
1736 ptegidx = pteidx >> 3;
1737 if (pvo->pvo_pte.pte_hi & PTE_HID)
1738 ptegidx ^= pmap_pteg_mask;
1739 }
1740 PMAP_PVO_CHECK(pvo); /* sanity check */
1741
1742 /*
1743 * If there is an active pte entry, we need to deactivate it
1744 * (and save the ref & chg bits).
1745 */
1746 pt = pmap_pvo_to_pte(pvo, pteidx);
1747 if (pt != NULL) {
1748 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1749 PVO_WHERE(pvo, REMOVE);
1750 PVO_PTEGIDX_CLR(pvo);
1751 PMAPCOUNT(ptes_removed);
1752 } else {
1753 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1754 pvo->pvo_pmap->pm_evictions--;
1755 }
1756
1757 /*
1758 * Account for executable mappings.
1759 */
1760 if (PVO_EXECUTABLE_P(pvo))
1761 pvo_clear_exec(pvo);
1762
1763 /*
1764 * Update our statistics.
1765 */
1766 pvo->pvo_pmap->pm_stats.resident_count--;
1767 if (PVO_WIRED_P(pvo))
1768 pvo->pvo_pmap->pm_stats.wired_count--;
1769
1770 /*
1771 * Save the REF/CHG bits into their cache if the page is managed.
1772 */
1773 if (PVO_MANAGED_P(pvo)) {
1774 register_t ptelo = pvo->pvo_pte.pte_lo;
1775 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1776
1777 if (pg != NULL) {
1778 /*
1779 * If this page was changed and it is mapped exec,
1780 * invalidate it.
1781 */
1782 if ((ptelo & PTE_CHG) &&
1783 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1784 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1785 if (LIST_EMPTY(pvoh)) {
1786 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1787 "%#" _PRIxpa ": clear-exec]\n",
1788 VM_PAGE_TO_PHYS(pg));
1789 pmap_attr_clear(pg, PTE_EXEC);
1790 PMAPCOUNT(exec_uncached_pvo_remove);
1791 } else {
1792 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1793 "%#" _PRIxpa ": syncicache]\n",
1794 VM_PAGE_TO_PHYS(pg));
1795 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1796 PAGE_SIZE);
1797 PMAPCOUNT(exec_synced_pvo_remove);
1798 }
1799 }
1800
1801 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1802 }
1803 PMAPCOUNT(unmappings);
1804 } else {
1805 PMAPCOUNT(kernel_unmappings);
1806 }
1807
1808 /*
1809 * Remove the PVO from its lists and return it to the pool.
1810 */
1811 LIST_REMOVE(pvo, pvo_vlink);
1812 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1813 if (pvol) {
1814 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1815 }
1816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1817 pmap_pvo_remove_depth--;
1818 #endif
1819 }
1820
1821 void
1822 pmap_pvo_free(struct pvo_entry *pvo)
1823 {
1824
1825 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1826 }
1827
1828 void
1829 pmap_pvo_free_list(struct pvo_head *pvol)
1830 {
1831 struct pvo_entry *pvo, *npvo;
1832
1833 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1834 npvo = LIST_NEXT(pvo, pvo_vlink);
1835 LIST_REMOVE(pvo, pvo_vlink);
1836 pmap_pvo_free(pvo);
1837 }
1838 }
1839
1840 /*
1841 * Mark a mapping as executable.
1842 * If this is the first executable mapping in the segment,
1843 * clear the noexec flag.
1844 */
1845 static void
1846 pvo_set_exec(struct pvo_entry *pvo)
1847 {
1848 struct pmap *pm = pvo->pvo_pmap;
1849
1850 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1851 return;
1852 }
1853 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1854 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1855 {
1856 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1857 if (pm->pm_exec[sr]++ == 0) {
1858 pm->pm_sr[sr] &= ~SR_NOEXEC;
1859 }
1860 }
1861 #endif
1862 }
1863
1864 /*
1865 * Mark a mapping as non-executable.
1866 * If this was the last executable mapping in the segment,
1867 * set the noexec flag.
1868 */
1869 static void
1870 pvo_clear_exec(struct pvo_entry *pvo)
1871 {
1872 struct pmap *pm = pvo->pvo_pmap;
1873
1874 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1875 return;
1876 }
1877 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1878 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1879 {
1880 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1881 if (--pm->pm_exec[sr] == 0) {
1882 pm->pm_sr[sr] |= SR_NOEXEC;
1883 }
1884 }
1885 #endif
1886 }
1887
1888 /*
1889 * Insert physical page at pa into the given pmap at virtual address va.
1890 */
1891 int
1892 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1893 {
1894 struct mem_region *mp;
1895 struct pvo_head *pvo_head;
1896 struct vm_page *pg;
1897 struct pool *pl;
1898 register_t pte_lo;
1899 int error;
1900 u_int was_exec = 0;
1901
1902 PMAP_LOCK();
1903
1904 if (__predict_false(!pmap_initialized)) {
1905 pvo_head = &pmap_pvo_kunmanaged;
1906 pl = &pmap_upvo_pool;
1907 pg = NULL;
1908 was_exec = PTE_EXEC;
1909 } else {
1910 pvo_head = pa_to_pvoh(pa, &pg);
1911 pl = &pmap_mpvo_pool;
1912 }
1913
1914 DPRINTFN(ENTER,
1915 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1916 pm, va, pa, prot, flags);
1917
1918 /*
1919 * If this is a managed page, and it's the first reference to the
1920 * page clear the execness of the page. Otherwise fetch the execness.
1921 */
1922 if (pg != NULL)
1923 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1924
1925 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1926
1927 /*
1928 * Assume the page is cache inhibited and access is guarded unless
1929 * it's in our available memory array. If it is in the memory array,
1930 * asssume it's in memory coherent memory.
1931 */
1932 if (flags & PMAP_MD_PREFETCHABLE) {
1933 pte_lo = 0;
1934 } else
1935 pte_lo = PTE_G;
1936
1937 if ((flags & PMAP_NOCACHE) == 0) {
1938 for (mp = mem; mp->size; mp++) {
1939 if (pa >= mp->start && pa < mp->start + mp->size) {
1940 pte_lo = PTE_M;
1941 break;
1942 }
1943 }
1944 #ifdef MULTIPROCESSOR
1945 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1946 pte_lo = PTE_M;
1947 #endif
1948 } else {
1949 pte_lo |= PTE_I;
1950 }
1951
1952 if (prot & VM_PROT_WRITE)
1953 pte_lo |= PTE_BW;
1954 else
1955 pte_lo |= PTE_BR;
1956
1957 /*
1958 * If this was in response to a fault, "pre-fault" the PTE's
1959 * changed/referenced bit appropriately.
1960 */
1961 if (flags & VM_PROT_WRITE)
1962 pte_lo |= PTE_CHG;
1963 if (flags & VM_PROT_ALL)
1964 pte_lo |= PTE_REF;
1965
1966 /*
1967 * We need to know if this page can be executable
1968 */
1969 flags |= (prot & VM_PROT_EXECUTE);
1970
1971 /*
1972 * Record mapping for later back-translation and pte spilling.
1973 * This will overwrite any existing mapping.
1974 */
1975 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1976
1977 /*
1978 * Flush the real page from the instruction cache if this page is
1979 * mapped executable and cacheable and has not been flushed since
1980 * the last time it was modified.
1981 */
1982 if (error == 0 &&
1983 (flags & VM_PROT_EXECUTE) &&
1984 (pte_lo & PTE_I) == 0 &&
1985 was_exec == 0) {
1986 DPRINTFN(ENTER, " %s", "syncicache");
1987 PMAPCOUNT(exec_synced);
1988 pmap_syncicache(pa, PAGE_SIZE);
1989 if (pg != NULL) {
1990 pmap_attr_save(pg, PTE_EXEC);
1991 PMAPCOUNT(exec_cached);
1992 #if defined(DEBUG) || defined(PMAPDEBUG)
1993 if (pmapdebug & PMAPDEBUG_ENTER)
1994 printf(" marked-as-exec");
1995 else if (pmapdebug & PMAPDEBUG_EXEC)
1996 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1997 VM_PAGE_TO_PHYS(pg));
1998
1999 #endif
2000 }
2001 }
2002
2003 DPRINTFN(ENTER, ": error=%d\n", error);
2004
2005 PMAP_UNLOCK();
2006
2007 return error;
2008 }
2009
2010 void
2011 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2012 {
2013 struct mem_region *mp;
2014 register_t pte_lo;
2015 int error;
2016
2017 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2018 if (va < VM_MIN_KERNEL_ADDRESS)
2019 panic("pmap_kenter_pa: attempt to enter "
2020 "non-kernel address %#" _PRIxva "!", va);
2021 #endif
2022
2023 DPRINTFN(KENTER,
2024 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2025
2026 PMAP_LOCK();
2027
2028 /*
2029 * Assume the page is cache inhibited and access is guarded unless
2030 * it's in our available memory array. If it is in the memory array,
2031 * asssume it's in memory coherent memory.
2032 */
2033 pte_lo = PTE_IG;
2034 if ((flags & PMAP_NOCACHE) == 0) {
2035 for (mp = mem; mp->size; mp++) {
2036 if (pa >= mp->start && pa < mp->start + mp->size) {
2037 pte_lo = PTE_M;
2038 break;
2039 }
2040 }
2041 #ifdef MULTIPROCESSOR
2042 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2043 pte_lo = PTE_M;
2044 #endif
2045 }
2046
2047 if (prot & VM_PROT_WRITE)
2048 pte_lo |= PTE_BW;
2049 else
2050 pte_lo |= PTE_BR;
2051
2052 /*
2053 * We don't care about REF/CHG on PVOs on the unmanaged list.
2054 */
2055 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2056 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2057
2058 if (error != 0)
2059 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2060 va, pa, error);
2061
2062 PMAP_UNLOCK();
2063 }
2064
2065 void
2066 pmap_kremove(vaddr_t va, vsize_t len)
2067 {
2068 if (va < VM_MIN_KERNEL_ADDRESS)
2069 panic("pmap_kremove: attempt to remove "
2070 "non-kernel address %#" _PRIxva "!", va);
2071
2072 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2073 pmap_remove(pmap_kernel(), va, va + len);
2074 }
2075
2076 /*
2077 * Remove the given range of mapping entries.
2078 */
2079 void
2080 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2081 {
2082 struct pvo_head pvol;
2083 struct pvo_entry *pvo;
2084 register_t msr;
2085 int pteidx;
2086
2087 PMAP_LOCK();
2088 LIST_INIT(&pvol);
2089 msr = pmap_interrupts_off();
2090 for (; va < endva; va += PAGE_SIZE) {
2091 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2092 if (pvo != NULL) {
2093 pmap_pvo_remove(pvo, pteidx, &pvol);
2094 }
2095 }
2096 pmap_interrupts_restore(msr);
2097 pmap_pvo_free_list(&pvol);
2098 PMAP_UNLOCK();
2099 }
2100
2101 /*
2102 * Get the physical page address for the given pmap/virtual address.
2103 */
2104 bool
2105 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2106 {
2107 struct pvo_entry *pvo;
2108 register_t msr;
2109
2110 PMAP_LOCK();
2111
2112 /*
2113 * If this is a kernel pmap lookup, also check the battable
2114 * and if we get a hit, translate the VA to a PA using the
2115 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2116 * that will wrap back to 0.
2117 */
2118 if (pm == pmap_kernel() &&
2119 (va < VM_MIN_KERNEL_ADDRESS ||
2120 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2121 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2122 #if defined (PMAP_OEA)
2123 #ifdef PPC_OEA601
2124 if ((MFPVR() >> 16) == MPC601) {
2125 register_t batu = battable[va >> 23].batu;
2126 register_t batl = battable[va >> 23].batl;
2127 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2128 if (BAT601_VALID_P(batl) &&
2129 BAT601_VA_MATCH_P(batu, batl, va)) {
2130 register_t mask =
2131 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2132 if (pap)
2133 *pap = (batl & mask) | (va & ~mask);
2134 PMAP_UNLOCK();
2135 return true;
2136 } else if (SR601_VALID_P(sr) &&
2137 SR601_PA_MATCH_P(sr, va)) {
2138 if (pap)
2139 *pap = va;
2140 PMAP_UNLOCK();
2141 return true;
2142 }
2143 } else
2144 #endif /* PPC_OEA601 */
2145 {
2146 register_t batu = battable[BAT_VA2IDX(va)].batu;
2147 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2148 register_t batl = battable[BAT_VA2IDX(va)].batl;
2149 register_t mask =
2150 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2151 if (pap)
2152 *pap = (batl & mask) | (va & ~mask);
2153 PMAP_UNLOCK();
2154 return true;
2155 }
2156 }
2157 PMAP_UNLOCK();
2158 return false;
2159 #elif defined (PMAP_OEA64_BRIDGE)
2160 if (va >= SEGMENT_LENGTH)
2161 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2162 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2163 else {
2164 if (pap)
2165 *pap = va;
2166 PMAP_UNLOCK();
2167 return true;
2168 }
2169 #elif defined (PMAP_OEA64)
2170 #error PPC_OEA64 not supported
2171 #endif /* PPC_OEA */
2172 }
2173
2174 msr = pmap_interrupts_off();
2175 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2176 if (pvo != NULL) {
2177 PMAP_PVO_CHECK(pvo); /* sanity check */
2178 if (pap)
2179 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2180 | (va & ADDR_POFF);
2181 }
2182 pmap_interrupts_restore(msr);
2183 PMAP_UNLOCK();
2184 return pvo != NULL;
2185 }
2186
2187 /*
2188 * Lower the protection on the specified range of this pmap.
2189 */
2190 void
2191 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2192 {
2193 struct pvo_entry *pvo;
2194 volatile struct pte *pt;
2195 register_t msr;
2196 int pteidx;
2197
2198 /*
2199 * Since this routine only downgrades protection, we should
2200 * always be called with at least one bit not set.
2201 */
2202 KASSERT(prot != VM_PROT_ALL);
2203
2204 /*
2205 * If there is no protection, this is equivalent to
2206 * remove the pmap from the pmap.
2207 */
2208 if ((prot & VM_PROT_READ) == 0) {
2209 pmap_remove(pm, va, endva);
2210 return;
2211 }
2212
2213 PMAP_LOCK();
2214
2215 msr = pmap_interrupts_off();
2216 for (; va < endva; va += PAGE_SIZE) {
2217 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2218 if (pvo == NULL)
2219 continue;
2220 PMAP_PVO_CHECK(pvo); /* sanity check */
2221
2222 /*
2223 * Revoke executable if asked to do so.
2224 */
2225 if ((prot & VM_PROT_EXECUTE) == 0)
2226 pvo_clear_exec(pvo);
2227
2228 #if 0
2229 /*
2230 * If the page is already read-only, no change
2231 * needs to be made.
2232 */
2233 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2234 continue;
2235 #endif
2236 /*
2237 * Grab the PTE pointer before we diddle with
2238 * the cached PTE copy.
2239 */
2240 pt = pmap_pvo_to_pte(pvo, pteidx);
2241 /*
2242 * Change the protection of the page.
2243 */
2244 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2245 pvo->pvo_pte.pte_lo |= PTE_BR;
2246
2247 /*
2248 * If the PVO is in the page table, update
2249 * that pte at well.
2250 */
2251 if (pt != NULL) {
2252 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2253 PVO_WHERE(pvo, PMAP_PROTECT);
2254 PMAPCOUNT(ptes_changed);
2255 }
2256
2257 PMAP_PVO_CHECK(pvo); /* sanity check */
2258 }
2259 pmap_interrupts_restore(msr);
2260 PMAP_UNLOCK();
2261 }
2262
2263 void
2264 pmap_unwire(pmap_t pm, vaddr_t va)
2265 {
2266 struct pvo_entry *pvo;
2267 register_t msr;
2268
2269 PMAP_LOCK();
2270 msr = pmap_interrupts_off();
2271 pvo = pmap_pvo_find_va(pm, va, NULL);
2272 if (pvo != NULL) {
2273 if (PVO_WIRED_P(pvo)) {
2274 pvo->pvo_vaddr &= ~PVO_WIRED;
2275 pm->pm_stats.wired_count--;
2276 }
2277 PMAP_PVO_CHECK(pvo); /* sanity check */
2278 }
2279 pmap_interrupts_restore(msr);
2280 PMAP_UNLOCK();
2281 }
2282
2283 /*
2284 * Lower the protection on the specified physical page.
2285 */
2286 void
2287 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2288 {
2289 struct pvo_head *pvo_head, pvol;
2290 struct pvo_entry *pvo, *next_pvo;
2291 volatile struct pte *pt;
2292 register_t msr;
2293
2294 PMAP_LOCK();
2295
2296 KASSERT(prot != VM_PROT_ALL);
2297 LIST_INIT(&pvol);
2298 msr = pmap_interrupts_off();
2299
2300 /*
2301 * When UVM reuses a page, it does a pmap_page_protect with
2302 * VM_PROT_NONE. At that point, we can clear the exec flag
2303 * since we know the page will have different contents.
2304 */
2305 if ((prot & VM_PROT_READ) == 0) {
2306 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2307 VM_PAGE_TO_PHYS(pg));
2308 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2309 PMAPCOUNT(exec_uncached_page_protect);
2310 pmap_attr_clear(pg, PTE_EXEC);
2311 }
2312 }
2313
2314 pvo_head = vm_page_to_pvoh(pg);
2315 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2316 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2317 PMAP_PVO_CHECK(pvo); /* sanity check */
2318
2319 /*
2320 * Downgrading to no mapping at all, we just remove the entry.
2321 */
2322 if ((prot & VM_PROT_READ) == 0) {
2323 pmap_pvo_remove(pvo, -1, &pvol);
2324 continue;
2325 }
2326
2327 /*
2328 * If EXEC permission is being revoked, just clear the
2329 * flag in the PVO.
2330 */
2331 if ((prot & VM_PROT_EXECUTE) == 0)
2332 pvo_clear_exec(pvo);
2333
2334 /*
2335 * If this entry is already RO, don't diddle with the
2336 * page table.
2337 */
2338 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2339 PMAP_PVO_CHECK(pvo);
2340 continue;
2341 }
2342
2343 /*
2344 * Grab the PTE before the we diddle the bits so
2345 * pvo_to_pte can verify the pte contents are as
2346 * expected.
2347 */
2348 pt = pmap_pvo_to_pte(pvo, -1);
2349 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2350 pvo->pvo_pte.pte_lo |= PTE_BR;
2351 if (pt != NULL) {
2352 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2353 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2354 PMAPCOUNT(ptes_changed);
2355 }
2356 PMAP_PVO_CHECK(pvo); /* sanity check */
2357 }
2358 pmap_interrupts_restore(msr);
2359 pmap_pvo_free_list(&pvol);
2360
2361 PMAP_UNLOCK();
2362 }
2363
2364 /*
2365 * Activate the address space for the specified process. If the process
2366 * is the current process, load the new MMU context.
2367 */
2368 void
2369 pmap_activate(struct lwp *l)
2370 {
2371 struct pcb *pcb = lwp_getpcb(l);
2372 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2373
2374 DPRINTFN(ACTIVATE,
2375 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2376
2377 /*
2378 * XXX Normally performed in cpu_lwp_fork().
2379 */
2380 pcb->pcb_pm = pmap;
2381
2382 /*
2383 * In theory, the SR registers need only be valid on return
2384 * to user space wait to do them there.
2385 */
2386 if (l == curlwp) {
2387 /* Store pointer to new current pmap. */
2388 curpm = pmap;
2389 }
2390 }
2391
2392 /*
2393 * Deactivate the specified process's address space.
2394 */
2395 void
2396 pmap_deactivate(struct lwp *l)
2397 {
2398 }
2399
2400 bool
2401 pmap_query_bit(struct vm_page *pg, int ptebit)
2402 {
2403 struct pvo_entry *pvo;
2404 volatile struct pte *pt;
2405 register_t msr;
2406
2407 PMAP_LOCK();
2408
2409 if (pmap_attr_fetch(pg) & ptebit) {
2410 PMAP_UNLOCK();
2411 return true;
2412 }
2413
2414 msr = pmap_interrupts_off();
2415 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2416 PMAP_PVO_CHECK(pvo); /* sanity check */
2417 /*
2418 * See if we saved the bit off. If so cache, it and return
2419 * success.
2420 */
2421 if (pvo->pvo_pte.pte_lo & ptebit) {
2422 pmap_attr_save(pg, ptebit);
2423 PMAP_PVO_CHECK(pvo); /* sanity check */
2424 pmap_interrupts_restore(msr);
2425 PMAP_UNLOCK();
2426 return true;
2427 }
2428 }
2429 /*
2430 * No luck, now go thru the hard part of looking at the ptes
2431 * themselves. Sync so any pending REF/CHG bits are flushed
2432 * to the PTEs.
2433 */
2434 SYNC();
2435 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2436 PMAP_PVO_CHECK(pvo); /* sanity check */
2437 /*
2438 * See if this pvo have a valid PTE. If so, fetch the
2439 * REF/CHG bits from the valid PTE. If the appropriate
2440 * ptebit is set, cache, it and return success.
2441 */
2442 pt = pmap_pvo_to_pte(pvo, -1);
2443 if (pt != NULL) {
2444 pmap_pte_synch(pt, &pvo->pvo_pte);
2445 if (pvo->pvo_pte.pte_lo & ptebit) {
2446 pmap_attr_save(pg, ptebit);
2447 PMAP_PVO_CHECK(pvo); /* sanity check */
2448 pmap_interrupts_restore(msr);
2449 PMAP_UNLOCK();
2450 return true;
2451 }
2452 }
2453 }
2454 pmap_interrupts_restore(msr);
2455 PMAP_UNLOCK();
2456 return false;
2457 }
2458
2459 bool
2460 pmap_clear_bit(struct vm_page *pg, int ptebit)
2461 {
2462 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2463 struct pvo_entry *pvo;
2464 volatile struct pte *pt;
2465 register_t msr;
2466 int rv = 0;
2467
2468 PMAP_LOCK();
2469 msr = pmap_interrupts_off();
2470
2471 /*
2472 * Fetch the cache value
2473 */
2474 rv |= pmap_attr_fetch(pg);
2475
2476 /*
2477 * Clear the cached value.
2478 */
2479 pmap_attr_clear(pg, ptebit);
2480
2481 /*
2482 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2483 * can reset the right ones). Note that since the pvo entries and
2484 * list heads are accessed via BAT0 and are never placed in the
2485 * page table, we don't have to worry about further accesses setting
2486 * the REF/CHG bits.
2487 */
2488 SYNC();
2489
2490 /*
2491 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2492 * valid PTE. If so, clear the ptebit from the valid PTE.
2493 */
2494 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2495 PMAP_PVO_CHECK(pvo); /* sanity check */
2496 pt = pmap_pvo_to_pte(pvo, -1);
2497 if (pt != NULL) {
2498 /*
2499 * Only sync the PTE if the bit we are looking
2500 * for is not already set.
2501 */
2502 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2503 pmap_pte_synch(pt, &pvo->pvo_pte);
2504 /*
2505 * If the bit we are looking for was already set,
2506 * clear that bit in the pte.
2507 */
2508 if (pvo->pvo_pte.pte_lo & ptebit)
2509 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2510 }
2511 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2512 pvo->pvo_pte.pte_lo &= ~ptebit;
2513 PMAP_PVO_CHECK(pvo); /* sanity check */
2514 }
2515 pmap_interrupts_restore(msr);
2516
2517 /*
2518 * If we are clearing the modify bit and this page was marked EXEC
2519 * and the user of the page thinks the page was modified, then we
2520 * need to clean it from the icache if it's mapped or clear the EXEC
2521 * bit if it's not mapped. The page itself might not have the CHG
2522 * bit set if the modification was done via DMA to the page.
2523 */
2524 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2525 if (LIST_EMPTY(pvoh)) {
2526 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2527 VM_PAGE_TO_PHYS(pg));
2528 pmap_attr_clear(pg, PTE_EXEC);
2529 PMAPCOUNT(exec_uncached_clear_modify);
2530 } else {
2531 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2532 VM_PAGE_TO_PHYS(pg));
2533 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2534 PMAPCOUNT(exec_synced_clear_modify);
2535 }
2536 }
2537 PMAP_UNLOCK();
2538 return (rv & ptebit) != 0;
2539 }
2540
2541 void
2542 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2543 {
2544 struct pvo_entry *pvo;
2545 size_t offset = va & ADDR_POFF;
2546 int s;
2547
2548 PMAP_LOCK();
2549 s = splvm();
2550 while (len > 0) {
2551 size_t seglen = PAGE_SIZE - offset;
2552 if (seglen > len)
2553 seglen = len;
2554 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2555 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2556 pmap_syncicache(
2557 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2558 PMAP_PVO_CHECK(pvo);
2559 }
2560 va += seglen;
2561 len -= seglen;
2562 offset = 0;
2563 }
2564 splx(s);
2565 PMAP_UNLOCK();
2566 }
2567
2568 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2569 void
2570 pmap_pte_print(volatile struct pte *pt)
2571 {
2572 printf("PTE %p: ", pt);
2573
2574 #if defined(PMAP_OEA)
2575 /* High word: */
2576 printf("%#" _PRIxpte ": [", pt->pte_hi);
2577 #else
2578 printf("%#" _PRIxpte ": [", pt->pte_hi);
2579 #endif /* PMAP_OEA */
2580
2581 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2582 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2583
2584 printf("%#" _PRIxpte " %#" _PRIxpte "",
2585 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2586 pt->pte_hi & PTE_API);
2587 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2588 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2589 #else
2590 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2591 #endif /* PMAP_OEA */
2592
2593 /* Low word: */
2594 #if defined (PMAP_OEA)
2595 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2596 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2597 #else
2598 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2599 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2600 #endif
2601 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2602 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2603 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2604 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2605 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2606 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2607 switch (pt->pte_lo & PTE_PP) {
2608 case PTE_BR: printf("br]\n"); break;
2609 case PTE_BW: printf("bw]\n"); break;
2610 case PTE_SO: printf("so]\n"); break;
2611 case PTE_SW: printf("sw]\n"); break;
2612 }
2613 }
2614 #endif
2615
2616 #if defined(DDB)
2617 void
2618 pmap_pteg_check(void)
2619 {
2620 volatile struct pte *pt;
2621 int i;
2622 int ptegidx;
2623 u_int p_valid = 0;
2624 u_int s_valid = 0;
2625 u_int invalid = 0;
2626
2627 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2628 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2629 if (pt->pte_hi & PTE_VALID) {
2630 if (pt->pte_hi & PTE_HID)
2631 s_valid++;
2632 else
2633 {
2634 p_valid++;
2635 }
2636 } else
2637 invalid++;
2638 }
2639 }
2640 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2641 p_valid, p_valid, s_valid, s_valid,
2642 invalid, invalid);
2643 }
2644
2645 void
2646 pmap_print_mmuregs(void)
2647 {
2648 int i;
2649 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2650 u_int cpuvers;
2651 #endif
2652 #ifndef PMAP_OEA64
2653 vaddr_t addr;
2654 register_t soft_sr[16];
2655 #endif
2656 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2657 struct bat soft_ibat[4];
2658 struct bat soft_dbat[4];
2659 #endif
2660 paddr_t sdr1;
2661
2662 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2663 cpuvers = MFPVR() >> 16;
2664 #endif
2665 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2666 #ifndef PMAP_OEA64
2667 addr = 0;
2668 for (i = 0; i < 16; i++) {
2669 soft_sr[i] = MFSRIN(addr);
2670 addr += (1 << ADDR_SR_SHFT);
2671 }
2672 #endif
2673
2674 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2675 /* read iBAT (601: uBAT) registers */
2676 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2677 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2678 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2679 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2680 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2681 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2682 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2683 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2684
2685
2686 if (cpuvers != MPC601) {
2687 /* read dBAT registers */
2688 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2689 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2690 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2691 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2692 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2693 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2694 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2695 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2696 }
2697 #endif
2698
2699 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2700 #ifndef PMAP_OEA64
2701 printf("SR[]:\t");
2702 for (i = 0; i < 4; i++)
2703 printf("0x%08lx, ", soft_sr[i]);
2704 printf("\n\t");
2705 for ( ; i < 8; i++)
2706 printf("0x%08lx, ", soft_sr[i]);
2707 printf("\n\t");
2708 for ( ; i < 12; i++)
2709 printf("0x%08lx, ", soft_sr[i]);
2710 printf("\n\t");
2711 for ( ; i < 16; i++)
2712 printf("0x%08lx, ", soft_sr[i]);
2713 printf("\n");
2714 #endif
2715
2716 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2717 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2718 for (i = 0; i < 4; i++) {
2719 printf("0x%08lx 0x%08lx, ",
2720 soft_ibat[i].batu, soft_ibat[i].batl);
2721 if (i == 1)
2722 printf("\n\t");
2723 }
2724 if (cpuvers != MPC601) {
2725 printf("\ndBAT[]:\t");
2726 for (i = 0; i < 4; i++) {
2727 printf("0x%08lx 0x%08lx, ",
2728 soft_dbat[i].batu, soft_dbat[i].batl);
2729 if (i == 1)
2730 printf("\n\t");
2731 }
2732 }
2733 printf("\n");
2734 #endif /* PMAP_OEA... */
2735 }
2736
2737 void
2738 pmap_print_pte(pmap_t pm, vaddr_t va)
2739 {
2740 struct pvo_entry *pvo;
2741 volatile struct pte *pt;
2742 int pteidx;
2743
2744 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2745 if (pvo != NULL) {
2746 pt = pmap_pvo_to_pte(pvo, pteidx);
2747 if (pt != NULL) {
2748 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2749 va, pt,
2750 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2751 pt->pte_hi, pt->pte_lo);
2752 } else {
2753 printf("No valid PTE found\n");
2754 }
2755 } else {
2756 printf("Address not in pmap\n");
2757 }
2758 }
2759
2760 void
2761 pmap_pteg_dist(void)
2762 {
2763 struct pvo_entry *pvo;
2764 int ptegidx;
2765 int depth;
2766 int max_depth = 0;
2767 unsigned int depths[64];
2768
2769 memset(depths, 0, sizeof(depths));
2770 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2771 depth = 0;
2772 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2773 depth++;
2774 }
2775 if (depth > max_depth)
2776 max_depth = depth;
2777 if (depth > 63)
2778 depth = 63;
2779 depths[depth]++;
2780 }
2781
2782 for (depth = 0; depth < 64; depth++) {
2783 printf(" [%2d]: %8u", depth, depths[depth]);
2784 if ((depth & 3) == 3)
2785 printf("\n");
2786 if (depth == max_depth)
2787 break;
2788 }
2789 if ((depth & 3) != 3)
2790 printf("\n");
2791 printf("Max depth found was %d\n", max_depth);
2792 }
2793 #endif /* DEBUG */
2794
2795 #if defined(PMAPCHECK) || defined(DEBUG)
2796 void
2797 pmap_pvo_verify(void)
2798 {
2799 int ptegidx;
2800 int s;
2801
2802 s = splvm();
2803 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2804 struct pvo_entry *pvo;
2805 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2806 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2807 panic("pmap_pvo_verify: invalid pvo %p "
2808 "on list %#x", pvo, ptegidx);
2809 pmap_pvo_check(pvo);
2810 }
2811 }
2812 splx(s);
2813 }
2814 #endif /* PMAPCHECK */
2815
2816
2817 void *
2818 pmap_pool_ualloc(struct pool *pp, int flags)
2819 {
2820 struct pvo_page *pvop;
2821
2822 if (uvm.page_init_done != true) {
2823 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2824 }
2825
2826 PMAP_LOCK();
2827 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2828 if (pvop != NULL) {
2829 pmap_upvop_free--;
2830 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2831 PMAP_UNLOCK();
2832 return pvop;
2833 }
2834 PMAP_UNLOCK();
2835 return pmap_pool_malloc(pp, flags);
2836 }
2837
2838 void *
2839 pmap_pool_malloc(struct pool *pp, int flags)
2840 {
2841 struct pvo_page *pvop;
2842 struct vm_page *pg;
2843
2844 PMAP_LOCK();
2845 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2846 if (pvop != NULL) {
2847 pmap_mpvop_free--;
2848 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2849 PMAP_UNLOCK();
2850 return pvop;
2851 }
2852 PMAP_UNLOCK();
2853 again:
2854 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2855 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2856 if (__predict_false(pg == NULL)) {
2857 if (flags & PR_WAITOK) {
2858 uvm_wait("plpg");
2859 goto again;
2860 } else {
2861 return (0);
2862 }
2863 }
2864 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2865 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2866 }
2867
2868 void
2869 pmap_pool_ufree(struct pool *pp, void *va)
2870 {
2871 struct pvo_page *pvop;
2872 #if 0
2873 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2874 pmap_pool_mfree(va, size, tag);
2875 return;
2876 }
2877 #endif
2878 PMAP_LOCK();
2879 pvop = va;
2880 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2881 pmap_upvop_free++;
2882 if (pmap_upvop_free > pmap_upvop_maxfree)
2883 pmap_upvop_maxfree = pmap_upvop_free;
2884 PMAP_UNLOCK();
2885 }
2886
2887 void
2888 pmap_pool_mfree(struct pool *pp, void *va)
2889 {
2890 struct pvo_page *pvop;
2891
2892 PMAP_LOCK();
2893 pvop = va;
2894 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2895 pmap_mpvop_free++;
2896 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2897 pmap_mpvop_maxfree = pmap_mpvop_free;
2898 PMAP_UNLOCK();
2899 #if 0
2900 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2901 #endif
2902 }
2903
2904 /*
2905 * This routine in bootstraping to steal to-be-managed memory (which will
2906 * then be unmanaged). We use it to grab from the first 256MB for our
2907 * pmap needs and above 256MB for other stuff.
2908 */
2909 vaddr_t
2910 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2911 {
2912 vsize_t size;
2913 vaddr_t va;
2914 paddr_t pa = 0;
2915 int npgs, bank;
2916 struct vm_physseg *ps;
2917
2918 if (uvm.page_init_done == true)
2919 panic("pmap_steal_memory: called _after_ bootstrap");
2920
2921 *vstartp = VM_MIN_KERNEL_ADDRESS;
2922 *vendp = VM_MAX_KERNEL_ADDRESS;
2923
2924 size = round_page(vsize);
2925 npgs = atop(size);
2926
2927 /*
2928 * PA 0 will never be among those given to UVM so we can use it
2929 * to indicate we couldn't steal any memory.
2930 */
2931 for (bank = 0; bank < vm_nphysseg; bank++) {
2932 ps = VM_PHYSMEM_PTR(bank);
2933 if (ps->free_list == VM_FREELIST_FIRST256 &&
2934 ps->avail_end - ps->avail_start >= npgs) {
2935 pa = ptoa(ps->avail_start);
2936 break;
2937 }
2938 }
2939
2940 if (pa == 0)
2941 panic("pmap_steal_memory: no approriate memory to steal!");
2942
2943 ps->avail_start += npgs;
2944 ps->start += npgs;
2945
2946 /*
2947 * If we've used up all the pages in the segment, remove it and
2948 * compact the list.
2949 */
2950 if (ps->avail_start == ps->end) {
2951 /*
2952 * If this was the last one, then a very bad thing has occurred
2953 */
2954 if (--vm_nphysseg == 0)
2955 panic("pmap_steal_memory: out of memory!");
2956
2957 printf("pmap_steal_memory: consumed bank %d\n", bank);
2958 for (; bank < vm_nphysseg; bank++, ps++) {
2959 ps[0] = ps[1];
2960 }
2961 }
2962
2963 va = (vaddr_t) pa;
2964 memset((void *) va, 0, size);
2965 pmap_pages_stolen += npgs;
2966 #ifdef DEBUG
2967 if (pmapdebug && npgs > 1) {
2968 u_int cnt = 0;
2969 for (bank = 0; bank < vm_nphysseg; bank++) {
2970 ps = VM_PHYSMEM_PTR(bank);
2971 cnt += ps->avail_end - ps->avail_start;
2972 }
2973 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2974 npgs, pmap_pages_stolen, cnt);
2975 }
2976 #endif
2977
2978 return va;
2979 }
2980
2981 /*
2982 * Find a chuck of memory with right size and alignment.
2983 */
2984 paddr_t
2985 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2986 {
2987 struct mem_region *mp;
2988 paddr_t s, e;
2989 int i, j;
2990
2991 size = round_page(size);
2992
2993 DPRINTFN(BOOT,
2994 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2995 size, alignment, at_end);
2996
2997 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2998 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2999 alignment);
3000
3001 if (at_end) {
3002 if (alignment != PAGE_SIZE)
3003 panic("pmap_boot_find_memory: invalid ending "
3004 "alignment %#" _PRIxpa, alignment);
3005
3006 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3007 s = mp->start + mp->size - size;
3008 if (s >= mp->start && mp->size >= size) {
3009 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3010 DPRINTFN(BOOT,
3011 "pmap_boot_find_memory: b-avail[%d] start "
3012 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3013 mp->start, mp->size);
3014 mp->size -= size;
3015 DPRINTFN(BOOT,
3016 "pmap_boot_find_memory: a-avail[%d] start "
3017 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3018 mp->start, mp->size);
3019 return s;
3020 }
3021 }
3022 panic("pmap_boot_find_memory: no available memory");
3023 }
3024
3025 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3026 s = (mp->start + alignment - 1) & ~(alignment-1);
3027 e = s + size;
3028
3029 /*
3030 * Is the calculated region entirely within the region?
3031 */
3032 if (s < mp->start || e > mp->start + mp->size)
3033 continue;
3034
3035 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3036 if (s == mp->start) {
3037 /*
3038 * If the block starts at the beginning of region,
3039 * adjust the size & start. (the region may now be
3040 * zero in length)
3041 */
3042 DPRINTFN(BOOT,
3043 "pmap_boot_find_memory: b-avail[%d] start "
3044 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3045 mp->start += size;
3046 mp->size -= size;
3047 DPRINTFN(BOOT,
3048 "pmap_boot_find_memory: a-avail[%d] start "
3049 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3050 } else if (e == mp->start + mp->size) {
3051 /*
3052 * If the block starts at the beginning of region,
3053 * adjust only the size.
3054 */
3055 DPRINTFN(BOOT,
3056 "pmap_boot_find_memory: b-avail[%d] start "
3057 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3058 mp->size -= size;
3059 DPRINTFN(BOOT,
3060 "pmap_boot_find_memory: a-avail[%d] start "
3061 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3062 } else {
3063 /*
3064 * Block is in the middle of the region, so we
3065 * have to split it in two.
3066 */
3067 for (j = avail_cnt; j > i + 1; j--) {
3068 avail[j] = avail[j-1];
3069 }
3070 DPRINTFN(BOOT,
3071 "pmap_boot_find_memory: b-avail[%d] start "
3072 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3073 mp[1].start = e;
3074 mp[1].size = mp[0].start + mp[0].size - e;
3075 mp[0].size = s - mp[0].start;
3076 avail_cnt++;
3077 for (; i < avail_cnt; i++) {
3078 DPRINTFN(BOOT,
3079 "pmap_boot_find_memory: a-avail[%d] "
3080 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3081 avail[i].start, avail[i].size);
3082 }
3083 }
3084 KASSERT(s == (uintptr_t) s);
3085 return s;
3086 }
3087 panic("pmap_boot_find_memory: not enough memory for "
3088 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3089 }
3090
3091 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3092 #if defined (PMAP_OEA64_BRIDGE)
3093 int
3094 pmap_setup_segment0_map(int use_large_pages, ...)
3095 {
3096 vaddr_t va, va_end;
3097
3098 register_t pte_lo = 0x0;
3099 int ptegidx = 0;
3100 struct pte pte;
3101 va_list ap;
3102
3103 /* Coherent + Supervisor RW, no user access */
3104 pte_lo = PTE_M;
3105
3106 /* XXXSL
3107 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3108 * these have to take priority.
3109 */
3110 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3111 ptegidx = va_to_pteg(pmap_kernel(), va);
3112 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3113 (void)pmap_pte_insert(ptegidx, &pte);
3114 }
3115
3116 va_start(ap, use_large_pages);
3117 while (1) {
3118 paddr_t pa;
3119 size_t size;
3120
3121 va = va_arg(ap, vaddr_t);
3122
3123 if (va == 0)
3124 break;
3125
3126 pa = va_arg(ap, paddr_t);
3127 size = va_arg(ap, size_t);
3128
3129 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3130 #if 0
3131 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3132 #endif
3133 ptegidx = va_to_pteg(pmap_kernel(), va);
3134 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3135 (void)pmap_pte_insert(ptegidx, &pte);
3136 }
3137 }
3138
3139 TLBSYNC();
3140 SYNC();
3141 return (0);
3142 }
3143 #endif /* PMAP_OEA64_BRIDGE */
3144
3145 /*
3146 * This is not part of the defined PMAP interface and is specific to the
3147 * PowerPC architecture. This is called during initppc, before the system
3148 * is really initialized.
3149 */
3150 void
3151 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3152 {
3153 struct mem_region *mp, tmp;
3154 paddr_t s, e;
3155 psize_t size;
3156 int i, j;
3157
3158 /*
3159 * Get memory.
3160 */
3161 mem_regions(&mem, &avail);
3162 #if defined(DEBUG)
3163 if (pmapdebug & PMAPDEBUG_BOOT) {
3164 printf("pmap_bootstrap: memory configuration:\n");
3165 for (mp = mem; mp->size; mp++) {
3166 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3167 mp->start, mp->size);
3168 }
3169 for (mp = avail; mp->size; mp++) {
3170 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3171 mp->start, mp->size);
3172 }
3173 }
3174 #endif
3175
3176 /*
3177 * Find out how much physical memory we have and in how many chunks.
3178 */
3179 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3180 if (mp->start >= pmap_memlimit)
3181 continue;
3182 if (mp->start + mp->size > pmap_memlimit) {
3183 size = pmap_memlimit - mp->start;
3184 physmem += btoc(size);
3185 } else {
3186 physmem += btoc(mp->size);
3187 }
3188 mem_cnt++;
3189 }
3190
3191 /*
3192 * Count the number of available entries.
3193 */
3194 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3195 avail_cnt++;
3196
3197 /*
3198 * Page align all regions.
3199 */
3200 kernelstart = trunc_page(kernelstart);
3201 kernelend = round_page(kernelend);
3202 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3203 s = round_page(mp->start);
3204 mp->size -= (s - mp->start);
3205 mp->size = trunc_page(mp->size);
3206 mp->start = s;
3207 e = mp->start + mp->size;
3208
3209 DPRINTFN(BOOT,
3210 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3211 i, mp->start, mp->size);
3212
3213 /*
3214 * Don't allow the end to run beyond our artificial limit
3215 */
3216 if (e > pmap_memlimit)
3217 e = pmap_memlimit;
3218
3219 /*
3220 * Is this region empty or strange? skip it.
3221 */
3222 if (e <= s) {
3223 mp->start = 0;
3224 mp->size = 0;
3225 continue;
3226 }
3227
3228 /*
3229 * Does this overlap the beginning of kernel?
3230 * Does extend past the end of the kernel?
3231 */
3232 else if (s < kernelstart && e > kernelstart) {
3233 if (e > kernelend) {
3234 avail[avail_cnt].start = kernelend;
3235 avail[avail_cnt].size = e - kernelend;
3236 avail_cnt++;
3237 }
3238 mp->size = kernelstart - s;
3239 }
3240 /*
3241 * Check whether this region overlaps the end of the kernel.
3242 */
3243 else if (s < kernelend && e > kernelend) {
3244 mp->start = kernelend;
3245 mp->size = e - kernelend;
3246 }
3247 /*
3248 * Look whether this regions is completely inside the kernel.
3249 * Nuke it if it does.
3250 */
3251 else if (s >= kernelstart && e <= kernelend) {
3252 mp->start = 0;
3253 mp->size = 0;
3254 }
3255 /*
3256 * If the user imposed a memory limit, enforce it.
3257 */
3258 else if (s >= pmap_memlimit) {
3259 mp->start = -PAGE_SIZE; /* let's know why */
3260 mp->size = 0;
3261 }
3262 else {
3263 mp->start = s;
3264 mp->size = e - s;
3265 }
3266 DPRINTFN(BOOT,
3267 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3268 i, mp->start, mp->size);
3269 }
3270
3271 /*
3272 * Move (and uncount) all the null return to the end.
3273 */
3274 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3275 if (mp->size == 0) {
3276 tmp = avail[i];
3277 avail[i] = avail[--avail_cnt];
3278 avail[avail_cnt] = avail[i];
3279 }
3280 }
3281
3282 /*
3283 * (Bubble)sort them into ascending order.
3284 */
3285 for (i = 0; i < avail_cnt; i++) {
3286 for (j = i + 1; j < avail_cnt; j++) {
3287 if (avail[i].start > avail[j].start) {
3288 tmp = avail[i];
3289 avail[i] = avail[j];
3290 avail[j] = tmp;
3291 }
3292 }
3293 }
3294
3295 /*
3296 * Make sure they don't overlap.
3297 */
3298 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3299 if (mp[0].start + mp[0].size > mp[1].start) {
3300 mp[0].size = mp[1].start - mp[0].start;
3301 }
3302 DPRINTFN(BOOT,
3303 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3304 i, mp->start, mp->size);
3305 }
3306 DPRINTFN(BOOT,
3307 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3308 i, mp->start, mp->size);
3309
3310 #ifdef PTEGCOUNT
3311 pmap_pteg_cnt = PTEGCOUNT;
3312 #else /* PTEGCOUNT */
3313
3314 pmap_pteg_cnt = 0x1000;
3315
3316 while (pmap_pteg_cnt < physmem)
3317 pmap_pteg_cnt <<= 1;
3318
3319 pmap_pteg_cnt >>= 1;
3320 #endif /* PTEGCOUNT */
3321
3322 #ifdef DEBUG
3323 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3324 #endif
3325
3326 /*
3327 * Find suitably aligned memory for PTEG hash table.
3328 */
3329 size = pmap_pteg_cnt * sizeof(struct pteg);
3330 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3331
3332 #ifdef DEBUG
3333 DPRINTFN(BOOT,
3334 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3335 #endif
3336
3337
3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3339 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3340 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3341 pmap_pteg_table, size);
3342 #endif
3343
3344 memset(__UNVOLATILE(pmap_pteg_table), 0,
3345 pmap_pteg_cnt * sizeof(struct pteg));
3346 pmap_pteg_mask = pmap_pteg_cnt - 1;
3347
3348 /*
3349 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3350 * with pages. So we just steal them before giving them to UVM.
3351 */
3352 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3353 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3354 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3355 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3356 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3357 pmap_pvo_table, size);
3358 #endif
3359
3360 for (i = 0; i < pmap_pteg_cnt; i++)
3361 TAILQ_INIT(&pmap_pvo_table[i]);
3362
3363 #ifndef MSGBUFADDR
3364 /*
3365 * Allocate msgbuf in high memory.
3366 */
3367 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3368 #endif
3369
3370 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3371 paddr_t pfstart = atop(mp->start);
3372 paddr_t pfend = atop(mp->start + mp->size);
3373 if (mp->size == 0)
3374 continue;
3375 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3376 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3377 VM_FREELIST_FIRST256);
3378 } else if (mp->start >= SEGMENT_LENGTH) {
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_DEFAULT);
3381 } else {
3382 pfend = atop(SEGMENT_LENGTH);
3383 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3384 VM_FREELIST_FIRST256);
3385 pfstart = atop(SEGMENT_LENGTH);
3386 pfend = atop(mp->start + mp->size);
3387 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3388 VM_FREELIST_DEFAULT);
3389 }
3390 }
3391
3392 /*
3393 * Make sure kernel vsid is allocated as well as VSID 0.
3394 */
3395 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3396 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3397 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[0] |= 1;
3400
3401 /*
3402 * Initialize kernel pmap and hardware.
3403 */
3404
3405 /* PMAP_OEA64_BRIDGE does support these instructions */
3406 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3407 for (i = 0; i < 16; i++) {
3408 #if defined(PPC_OEA601)
3409 /* XXX wedges for segment register 0xf , so set later */
3410 if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3411 continue;
3412 #endif
3413 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3414 __asm volatile ("mtsrin %0,%1"
3415 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3416 }
3417
3418 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3419 __asm volatile ("mtsr %0,%1"
3420 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3421 #ifdef KERNEL2_SR
3422 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3423 __asm volatile ("mtsr %0,%1"
3424 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3425 #endif
3426 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3427 #if defined (PMAP_OEA)
3428 for (i = 0; i < 16; i++) {
3429 if (iosrtable[i] & SR601_T) {
3430 pmap_kernel()->pm_sr[i] = iosrtable[i];
3431 __asm volatile ("mtsrin %0,%1"
3432 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3433 }
3434 }
3435 __asm volatile ("sync; mtsdr1 %0; isync"
3436 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3437 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3438 __asm __volatile ("sync; mtsdr1 %0; isync"
3439 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3440 #endif
3441 tlbia();
3442
3443 #ifdef ALTIVEC
3444 pmap_use_altivec = cpu_altivec;
3445 #endif
3446
3447 #ifdef DEBUG
3448 if (pmapdebug & PMAPDEBUG_BOOT) {
3449 u_int cnt;
3450 int bank;
3451 char pbuf[9];
3452 for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
3453 cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
3454 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3455 bank,
3456 ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
3457 ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
3458 ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
3459 }
3460 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3461 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3462 pbuf, cnt);
3463 }
3464 #endif
3465
3466 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3467 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3468 &pmap_pool_uallocator, IPL_VM);
3469
3470 pool_setlowat(&pmap_upvo_pool, 252);
3471
3472 pool_init(&pmap_pool, sizeof(struct pmap),
3473 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3474 IPL_NONE);
3475
3476 #if defined(PMAP_NEED_MAPKERNEL)
3477 {
3478 struct pmap *pm = pmap_kernel();
3479 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3480 extern int etext[], kernel_text[];
3481 vaddr_t va, va_etext = (paddr_t) etext;
3482 #endif
3483 paddr_t pa, pa_end;
3484 register_t sr;
3485 struct pte pt;
3486 unsigned int ptegidx;
3487 int bank;
3488
3489 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3490 pm->pm_sr[0] = sr;
3491
3492 for (bank = 0; bank < vm_nphysseg; bank++) {
3493 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3494 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3495 for (; pa < pa_end; pa += PAGE_SIZE) {
3496 ptegidx = va_to_pteg(pm, pa);
3497 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3498 pmap_pte_insert(ptegidx, &pt);
3499 }
3500 }
3501
3502 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3503 va = (vaddr_t) kernel_text;
3504
3505 for (pa = kernelstart; va < va_etext;
3506 pa += PAGE_SIZE, va += PAGE_SIZE) {
3507 ptegidx = va_to_pteg(pm, va);
3508 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3509 pmap_pte_insert(ptegidx, &pt);
3510 }
3511
3512 for (; pa < kernelend;
3513 pa += PAGE_SIZE, va += PAGE_SIZE) {
3514 ptegidx = va_to_pteg(pm, va);
3515 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3516 pmap_pte_insert(ptegidx, &pt);
3517 }
3518
3519 for (va = 0, pa = 0; va < kernelstart;
3520 pa += PAGE_SIZE, va += PAGE_SIZE) {
3521 ptegidx = va_to_pteg(pm, va);
3522 if (va < 0x3000)
3523 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3524 else
3525 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3526 pmap_pte_insert(ptegidx, &pt);
3527 }
3528 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3529 pa += PAGE_SIZE, va += PAGE_SIZE) {
3530 ptegidx = va_to_pteg(pm, va);
3531 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3532 pmap_pte_insert(ptegidx, &pt);
3533 }
3534 #endif
3535
3536 __asm volatile ("mtsrin %0,%1"
3537 :: "r"(sr), "r"(kernelstart));
3538 }
3539 #endif
3540
3541 #if defined(PMAPDEBUG)
3542 if ( pmapdebug )
3543 pmap_print_mmuregs();
3544 #endif
3545 }
3546