Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.93
      1 /*	$NetBSD: pmap.c,v 1.93 2016/02/14 18:07:49 dholland Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.93 2016/02/14 18:07:49 dholland Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/pool.h>
     78 #include <sys/queue.h>
     79 #include <sys/device.h>		/* for evcnt */
     80 #include <sys/systm.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 
     85 #include <machine/powerpc.h>
     86 #include <powerpc/bat.h>
     87 #include <powerpc/pcb.h>
     88 #include <powerpc/psl.h>
     89 #include <powerpc/spr.h>
     90 #include <powerpc/oea/spr.h>
     91 #include <powerpc/oea/sr_601.h>
     92 
     93 #ifdef ALTIVEC
     94 extern int pmap_use_altivec;
     95 #endif
     96 
     97 #ifdef PMAP_MEMLIMIT
     98 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
     99 #else
    100 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    101 #endif
    102 
    103 extern struct pmap kernel_pmap_;
    104 static unsigned int pmap_pages_stolen;
    105 static u_long pmap_pte_valid;
    106 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    107 static u_long pmap_pvo_enter_depth;
    108 static u_long pmap_pvo_remove_depth;
    109 #endif
    110 
    111 #ifndef MSGBUFADDR
    112 extern paddr_t msgbuf_paddr;
    113 #endif
    114 
    115 static struct mem_region *mem, *avail;
    116 static u_int mem_cnt, avail_cnt;
    117 
    118 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    119 # define	PMAP_OEA 1
    120 #endif
    121 
    122 #if defined(PMAP_OEA)
    123 #define	_PRIxpte	"lx"
    124 #else
    125 #define	_PRIxpte	PRIx64
    126 #endif
    127 #define	_PRIxpa		"lx"
    128 #define	_PRIxva		"lx"
    129 #define	_PRIsr  	"lx"
    130 
    131 #ifdef PMAP_NEEDS_FIXUP
    132 #if defined(PMAP_OEA)
    133 #define	PMAPNAME(name)	pmap32_##name
    134 #elif defined(PMAP_OEA64)
    135 #define	PMAPNAME(name)	pmap64_##name
    136 #elif defined(PMAP_OEA64_BRIDGE)
    137 #define	PMAPNAME(name)	pmap64bridge_##name
    138 #else
    139 #error unknown variant for pmap
    140 #endif
    141 #endif /* PMAP_NEEDS_FIXUP */
    142 
    143 #ifdef PMAPNAME
    144 #define	STATIC			static
    145 #define pmap_pte_spill		PMAPNAME(pte_spill)
    146 #define pmap_real_memory	PMAPNAME(real_memory)
    147 #define pmap_init		PMAPNAME(init)
    148 #define pmap_virtual_space	PMAPNAME(virtual_space)
    149 #define pmap_create		PMAPNAME(create)
    150 #define pmap_reference		PMAPNAME(reference)
    151 #define pmap_destroy		PMAPNAME(destroy)
    152 #define pmap_copy		PMAPNAME(copy)
    153 #define pmap_update		PMAPNAME(update)
    154 #define pmap_enter		PMAPNAME(enter)
    155 #define pmap_remove		PMAPNAME(remove)
    156 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    157 #define pmap_kremove		PMAPNAME(kremove)
    158 #define pmap_extract		PMAPNAME(extract)
    159 #define pmap_protect		PMAPNAME(protect)
    160 #define pmap_unwire		PMAPNAME(unwire)
    161 #define pmap_page_protect	PMAPNAME(page_protect)
    162 #define pmap_query_bit		PMAPNAME(query_bit)
    163 #define pmap_clear_bit		PMAPNAME(clear_bit)
    164 
    165 #define pmap_activate		PMAPNAME(activate)
    166 #define pmap_deactivate		PMAPNAME(deactivate)
    167 
    168 #define pmap_pinit		PMAPNAME(pinit)
    169 #define pmap_procwr		PMAPNAME(procwr)
    170 
    171 #define pmap_pool		PMAPNAME(pool)
    172 #define pmap_upvo_pool		PMAPNAME(upvo_pool)
    173 #define pmap_mpvo_pool		PMAPNAME(mpvo_pool)
    174 #define pmap_pvo_table		PMAPNAME(pvo_table)
    175 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    176 #define pmap_pte_print		PMAPNAME(pte_print)
    177 #define pmap_pteg_check		PMAPNAME(pteg_check)
    178 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    179 #define pmap_print_pte		PMAPNAME(print_pte)
    180 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    181 #endif
    182 #if defined(DEBUG) || defined(PMAPCHECK)
    183 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    184 #define pmapcheck		PMAPNAME(check)
    185 #endif
    186 #if defined(DEBUG) || defined(PMAPDEBUG)
    187 #define pmapdebug		PMAPNAME(debug)
    188 #endif
    189 #define pmap_steal_memory	PMAPNAME(steal_memory)
    190 #define pmap_bootstrap		PMAPNAME(bootstrap)
    191 #else
    192 #define	STATIC			/* nothing */
    193 #endif /* PMAPNAME */
    194 
    195 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    196 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    197 STATIC void pmap_init(void);
    198 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    199 STATIC pmap_t pmap_create(void);
    200 STATIC void pmap_reference(pmap_t);
    201 STATIC void pmap_destroy(pmap_t);
    202 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    203 STATIC void pmap_update(pmap_t);
    204 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    205 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    206 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    207 STATIC void pmap_kremove(vaddr_t, vsize_t);
    208 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    209 
    210 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    211 STATIC void pmap_unwire(pmap_t, vaddr_t);
    212 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    213 STATIC bool pmap_query_bit(struct vm_page *, int);
    214 STATIC bool pmap_clear_bit(struct vm_page *, int);
    215 
    216 STATIC void pmap_activate(struct lwp *);
    217 STATIC void pmap_deactivate(struct lwp *);
    218 
    219 STATIC void pmap_pinit(pmap_t pm);
    220 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    221 
    222 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    223 STATIC void pmap_pte_print(volatile struct pte *);
    224 STATIC void pmap_pteg_check(void);
    225 STATIC void pmap_print_mmuregs(void);
    226 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    227 STATIC void pmap_pteg_dist(void);
    228 #endif
    229 #if defined(DEBUG) || defined(PMAPCHECK)
    230 STATIC void pmap_pvo_verify(void);
    231 #endif
    232 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    233 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    234 
    235 #ifdef PMAPNAME
    236 const struct pmap_ops PMAPNAME(ops) = {
    237 	.pmapop_pte_spill = pmap_pte_spill,
    238 	.pmapop_real_memory = pmap_real_memory,
    239 	.pmapop_init = pmap_init,
    240 	.pmapop_virtual_space = pmap_virtual_space,
    241 	.pmapop_create = pmap_create,
    242 	.pmapop_reference = pmap_reference,
    243 	.pmapop_destroy = pmap_destroy,
    244 	.pmapop_copy = pmap_copy,
    245 	.pmapop_update = pmap_update,
    246 	.pmapop_enter = pmap_enter,
    247 	.pmapop_remove = pmap_remove,
    248 	.pmapop_kenter_pa = pmap_kenter_pa,
    249 	.pmapop_kremove = pmap_kremove,
    250 	.pmapop_extract = pmap_extract,
    251 	.pmapop_protect = pmap_protect,
    252 	.pmapop_unwire = pmap_unwire,
    253 	.pmapop_page_protect = pmap_page_protect,
    254 	.pmapop_query_bit = pmap_query_bit,
    255 	.pmapop_clear_bit = pmap_clear_bit,
    256 	.pmapop_activate = pmap_activate,
    257 	.pmapop_deactivate = pmap_deactivate,
    258 	.pmapop_pinit = pmap_pinit,
    259 	.pmapop_procwr = pmap_procwr,
    260 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    261 	.pmapop_pte_print = pmap_pte_print,
    262 	.pmapop_pteg_check = pmap_pteg_check,
    263 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    264 	.pmapop_print_pte = pmap_print_pte,
    265 	.pmapop_pteg_dist = pmap_pteg_dist,
    266 #else
    267 	.pmapop_pte_print = NULL,
    268 	.pmapop_pteg_check = NULL,
    269 	.pmapop_print_mmuregs = NULL,
    270 	.pmapop_print_pte = NULL,
    271 	.pmapop_pteg_dist = NULL,
    272 #endif
    273 #if defined(DEBUG) || defined(PMAPCHECK)
    274 	.pmapop_pvo_verify = pmap_pvo_verify,
    275 #else
    276 	.pmapop_pvo_verify = NULL,
    277 #endif
    278 	.pmapop_steal_memory = pmap_steal_memory,
    279 	.pmapop_bootstrap = pmap_bootstrap,
    280 };
    281 #endif /* !PMAPNAME */
    282 
    283 /*
    284  * The following structure is aligned to 32 bytes
    285  */
    286 struct pvo_entry {
    287 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    288 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    289 	struct pte pvo_pte;			/* Prebuilt PTE */
    290 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    291 	vaddr_t pvo_vaddr;			/* VA of entry */
    292 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    293 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    294 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    295 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    296 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    297 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    298 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    299 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    300 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    301 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    302 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    303 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    304 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    305 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    306 #define	PVO_REMOVE		6		/* PVO has been removed */
    307 #define	PVO_WHERE_MASK		15
    308 #define	PVO_WHERE_SHFT		8
    309 } __attribute__ ((aligned (32)));
    310 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    311 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    312 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    313 #define	PVO_PTEGIDX_CLR(pvo)	\
    314 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    315 #define	PVO_PTEGIDX_SET(pvo,i)	\
    316 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    317 #define	PVO_WHERE(pvo,w)	\
    318 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    319 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    320 
    321 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    322 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    323 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    324 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    325 
    326 struct pool pmap_pool;		/* pool for pmap structures */
    327 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    328 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    329 
    330 /*
    331  * We keep a cache of unmanaged pages to be used for pvo entries for
    332  * unmanaged pages.
    333  */
    334 struct pvo_page {
    335 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    336 };
    337 SIMPLEQ_HEAD(pvop_head, pvo_page);
    338 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    339 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    340 static u_long pmap_upvop_free;
    341 static u_long pmap_upvop_maxfree;
    342 static u_long pmap_mpvop_free;
    343 static u_long pmap_mpvop_maxfree;
    344 
    345 static void *pmap_pool_ualloc(struct pool *, int);
    346 static void *pmap_pool_malloc(struct pool *, int);
    347 
    348 static void pmap_pool_ufree(struct pool *, void *);
    349 static void pmap_pool_mfree(struct pool *, void *);
    350 
    351 static struct pool_allocator pmap_pool_mallocator = {
    352 	.pa_alloc = pmap_pool_malloc,
    353 	.pa_free = pmap_pool_mfree,
    354 	.pa_pagesz = 0,
    355 };
    356 
    357 static struct pool_allocator pmap_pool_uallocator = {
    358 	.pa_alloc = pmap_pool_ualloc,
    359 	.pa_free = pmap_pool_ufree,
    360 	.pa_pagesz = 0,
    361 };
    362 
    363 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    364 void pmap_pte_print(volatile struct pte *);
    365 void pmap_pteg_check(void);
    366 void pmap_pteg_dist(void);
    367 void pmap_print_pte(pmap_t, vaddr_t);
    368 void pmap_print_mmuregs(void);
    369 #endif
    370 
    371 #if defined(DEBUG) || defined(PMAPCHECK)
    372 #ifdef PMAPCHECK
    373 int pmapcheck = 1;
    374 #else
    375 int pmapcheck = 0;
    376 #endif
    377 void pmap_pvo_verify(void);
    378 static void pmap_pvo_check(const struct pvo_entry *);
    379 #define	PMAP_PVO_CHECK(pvo)	 		\
    380 	do {					\
    381 		if (pmapcheck)			\
    382 			pmap_pvo_check(pvo);	\
    383 	} while (0)
    384 #else
    385 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    386 #endif
    387 static int pmap_pte_insert(int, struct pte *);
    388 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    389 	vaddr_t, paddr_t, register_t, int);
    390 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    391 static void pmap_pvo_free(struct pvo_entry *);
    392 static void pmap_pvo_free_list(struct pvo_head *);
    393 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    394 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    395 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    396 static void pvo_set_exec(struct pvo_entry *);
    397 static void pvo_clear_exec(struct pvo_entry *);
    398 
    399 static void tlbia(void);
    400 
    401 static void pmap_release(pmap_t);
    402 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    403 
    404 static uint32_t pmap_pvo_reclaim_nextidx;
    405 #ifdef DEBUG
    406 static int pmap_pvo_reclaim_debugctr;
    407 #endif
    408 
    409 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    410 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    411 
    412 static int pmap_initialized;
    413 
    414 #if defined(DEBUG) || defined(PMAPDEBUG)
    415 #define	PMAPDEBUG_BOOT		0x0001
    416 #define	PMAPDEBUG_PTE		0x0002
    417 #define	PMAPDEBUG_EXEC		0x0008
    418 #define	PMAPDEBUG_PVOENTER	0x0010
    419 #define	PMAPDEBUG_PVOREMOVE	0x0020
    420 #define	PMAPDEBUG_ACTIVATE	0x0100
    421 #define	PMAPDEBUG_CREATE	0x0200
    422 #define	PMAPDEBUG_ENTER		0x1000
    423 #define	PMAPDEBUG_KENTER	0x2000
    424 #define	PMAPDEBUG_KREMOVE	0x4000
    425 #define	PMAPDEBUG_REMOVE	0x8000
    426 
    427 unsigned int pmapdebug = 0;
    428 
    429 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    430 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    431 #else
    432 # define DPRINTF(x, ...)	do { } while (0)
    433 # define DPRINTFN(n, x, ...)	do { } while (0)
    434 #endif
    435 
    436 
    437 #ifdef PMAPCOUNTERS
    438 /*
    439  * From pmap_subr.c
    440  */
    441 extern struct evcnt pmap_evcnt_mappings;
    442 extern struct evcnt pmap_evcnt_unmappings;
    443 
    444 extern struct evcnt pmap_evcnt_kernel_mappings;
    445 extern struct evcnt pmap_evcnt_kernel_unmappings;
    446 
    447 extern struct evcnt pmap_evcnt_mappings_replaced;
    448 
    449 extern struct evcnt pmap_evcnt_exec_mappings;
    450 extern struct evcnt pmap_evcnt_exec_cached;
    451 
    452 extern struct evcnt pmap_evcnt_exec_synced;
    453 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    454 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    455 
    456 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    457 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    458 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    459 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    460 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    461 
    462 extern struct evcnt pmap_evcnt_updates;
    463 extern struct evcnt pmap_evcnt_collects;
    464 extern struct evcnt pmap_evcnt_copies;
    465 
    466 extern struct evcnt pmap_evcnt_ptes_spilled;
    467 extern struct evcnt pmap_evcnt_ptes_unspilled;
    468 extern struct evcnt pmap_evcnt_ptes_evicted;
    469 
    470 extern struct evcnt pmap_evcnt_ptes_primary[8];
    471 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    472 extern struct evcnt pmap_evcnt_ptes_removed;
    473 extern struct evcnt pmap_evcnt_ptes_changed;
    474 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    475 extern struct evcnt pmap_evcnt_pvos_failed;
    476 
    477 extern struct evcnt pmap_evcnt_zeroed_pages;
    478 extern struct evcnt pmap_evcnt_copied_pages;
    479 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    480 
    481 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    482 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    483 #else
    484 #define	PMAPCOUNT(ev)	((void) 0)
    485 #define	PMAPCOUNT2(ev)	((void) 0)
    486 #endif
    487 
    488 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    489 
    490 /* XXXSL: this needs to be moved to assembler */
    491 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    492 
    493 #ifdef MD_TLBSYNC
    494 #define TLBSYNC()	MD_TLBSYNC()
    495 #else
    496 #define	TLBSYNC()	__asm volatile("tlbsync")
    497 #endif
    498 #define	SYNC()		__asm volatile("sync")
    499 #define	EIEIO()		__asm volatile("eieio")
    500 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    501 #define	MFMSR()		mfmsr()
    502 #define	MTMSR(psl)	mtmsr(psl)
    503 #define	MFPVR()		mfpvr()
    504 #define	MFSRIN(va)	mfsrin(va)
    505 #define	MFTB()		mfrtcltbl()
    506 
    507 #if defined(DDB) && !defined(PMAP_OEA64)
    508 static inline register_t
    509 mfsrin(vaddr_t va)
    510 {
    511 	register_t sr;
    512 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    513 	return sr;
    514 }
    515 #endif	/* DDB && !PMAP_OEA64 */
    516 
    517 #if defined (PMAP_OEA64_BRIDGE)
    518 extern void mfmsr64 (register64_t *result);
    519 #endif /* PMAP_OEA64_BRIDGE */
    520 
    521 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    522 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    523 
    524 static inline register_t
    525 pmap_interrupts_off(void)
    526 {
    527 	register_t msr = MFMSR();
    528 	if (msr & PSL_EE)
    529 		MTMSR(msr & ~PSL_EE);
    530 	return msr;
    531 }
    532 
    533 static void
    534 pmap_interrupts_restore(register_t msr)
    535 {
    536 	if (msr & PSL_EE)
    537 		MTMSR(msr);
    538 }
    539 
    540 static inline u_int32_t
    541 mfrtcltbl(void)
    542 {
    543 #ifdef PPC_OEA601
    544 	if ((MFPVR() >> 16) == MPC601)
    545 		return (mfrtcl() >> 7);
    546 	else
    547 #endif
    548 		return (mftbl());
    549 }
    550 
    551 /*
    552  * These small routines may have to be replaced,
    553  * if/when we support processors other that the 604.
    554  */
    555 
    556 void
    557 tlbia(void)
    558 {
    559 	char *i;
    560 
    561 	SYNC();
    562 #if defined(PMAP_OEA)
    563 	/*
    564 	 * Why not use "tlbia"?  Because not all processors implement it.
    565 	 *
    566 	 * This needs to be a per-CPU callback to do the appropriate thing
    567 	 * for the CPU. XXX
    568 	 */
    569 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    570 		TLBIE(i);
    571 		EIEIO();
    572 		SYNC();
    573 	}
    574 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    575 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    576 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    577 		TLBIEL(i);
    578 		EIEIO();
    579 		SYNC();
    580 	}
    581 #endif
    582 	TLBSYNC();
    583 	SYNC();
    584 }
    585 
    586 static inline register_t
    587 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    588 {
    589 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    590 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    591 #else /* PMAP_OEA64 */
    592 #if 0
    593 	const struct ste *ste;
    594 	register_t hash;
    595 	int i;
    596 
    597 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    598 
    599 	/*
    600 	 * Try the primary group first
    601 	 */
    602 	ste = pm->pm_stes[hash].stes;
    603 	for (i = 0; i < 8; i++, ste++) {
    604 		if (ste->ste_hi & STE_V) &&
    605 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    606 			return ste;
    607 	}
    608 
    609 	/*
    610 	 * Then the secondary group.
    611 	 */
    612 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    613 	for (i = 0; i < 8; i++, ste++) {
    614 		if (ste->ste_hi & STE_V) &&
    615 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    616 			return addr;
    617 	}
    618 
    619 	return NULL;
    620 #else
    621 	/*
    622 	 * Rather than searching the STE groups for the VSID, we know
    623 	 * how we generate that from the ESID and so do that.
    624 	 */
    625 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    626 #endif
    627 #endif /* PMAP_OEA */
    628 }
    629 
    630 static inline register_t
    631 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    632 {
    633 	register_t hash;
    634 
    635 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    636 	return hash & pmap_pteg_mask;
    637 }
    638 
    639 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    640 /*
    641  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    642  * The only bit of magic is that the top 4 bits of the address doesn't
    643  * technically exist in the PTE.  But we know we reserved 4 bits of the
    644  * VSID for it so that's how we get it.
    645  */
    646 static vaddr_t
    647 pmap_pte_to_va(volatile const struct pte *pt)
    648 {
    649 	vaddr_t va;
    650 	uintptr_t ptaddr = (uintptr_t) pt;
    651 
    652 	if (pt->pte_hi & PTE_HID)
    653 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    654 
    655 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    656 #if defined(PMAP_OEA)
    657 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    658 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    659 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    660 #endif
    661 	va <<= ADDR_PIDX_SHFT;
    662 
    663 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    664 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    665 
    666 #if defined(PMAP_OEA64)
    667 	/* PPC63 Bits 0-35 */
    668 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    669 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    670 	/* PPC Bits 0-3 */
    671 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    672 #endif
    673 
    674 	return va;
    675 }
    676 #endif
    677 
    678 static inline struct pvo_head *
    679 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    680 {
    681 	struct vm_page *pg;
    682 	struct vm_page_md *md;
    683 
    684 	pg = PHYS_TO_VM_PAGE(pa);
    685 	if (pg_p != NULL)
    686 		*pg_p = pg;
    687 	if (pg == NULL)
    688 		return &pmap_pvo_unmanaged;
    689 	md = VM_PAGE_TO_MD(pg);
    690 	return &md->mdpg_pvoh;
    691 }
    692 
    693 static inline struct pvo_head *
    694 vm_page_to_pvoh(struct vm_page *pg)
    695 {
    696 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    697 
    698 	return &md->mdpg_pvoh;
    699 }
    700 
    701 
    702 static inline void
    703 pmap_attr_clear(struct vm_page *pg, int ptebit)
    704 {
    705 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    706 
    707 	md->mdpg_attrs &= ~ptebit;
    708 }
    709 
    710 static inline int
    711 pmap_attr_fetch(struct vm_page *pg)
    712 {
    713 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    714 
    715 	return md->mdpg_attrs;
    716 }
    717 
    718 static inline void
    719 pmap_attr_save(struct vm_page *pg, int ptebit)
    720 {
    721 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    722 
    723 	md->mdpg_attrs |= ptebit;
    724 }
    725 
    726 static inline int
    727 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    728 {
    729 	if (pt->pte_hi == pvo_pt->pte_hi
    730 #if 0
    731 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    732 	        ~(PTE_REF|PTE_CHG)) == 0
    733 #endif
    734 	    )
    735 		return 1;
    736 	return 0;
    737 }
    738 
    739 static inline void
    740 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    741 {
    742 	/*
    743 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    744 	 * only gets set when the real pte is set in memory.
    745 	 *
    746 	 * Note: Don't set the valid bit for correct operation of tlb update.
    747 	 */
    748 #if defined(PMAP_OEA)
    749 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    750 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    751 	pt->pte_lo = pte_lo;
    752 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    753 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    754 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    755 	pt->pte_lo = (u_int64_t) pte_lo;
    756 #endif /* PMAP_OEA */
    757 }
    758 
    759 static inline void
    760 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    761 {
    762 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    763 }
    764 
    765 static inline void
    766 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    767 {
    768 	/*
    769 	 * As shown in Section 7.6.3.2.3
    770 	 */
    771 	pt->pte_lo &= ~ptebit;
    772 	TLBIE(va);
    773 	SYNC();
    774 	EIEIO();
    775 	TLBSYNC();
    776 	SYNC();
    777 #ifdef MULTIPROCESSOR
    778 	DCBST(pt);
    779 #endif
    780 }
    781 
    782 static inline void
    783 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    784 {
    785 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    786 	if (pvo_pt->pte_hi & PTE_VALID)
    787 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    788 #endif
    789 	pvo_pt->pte_hi |= PTE_VALID;
    790 
    791 	/*
    792 	 * Update the PTE as defined in section 7.6.3.1
    793 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    794 	 * have been saved so this routine can restore them (if desired).
    795 	 */
    796 	pt->pte_lo = pvo_pt->pte_lo;
    797 	EIEIO();
    798 	pt->pte_hi = pvo_pt->pte_hi;
    799 	TLBSYNC();
    800 	SYNC();
    801 #ifdef MULTIPROCESSOR
    802 	DCBST(pt);
    803 #endif
    804 	pmap_pte_valid++;
    805 }
    806 
    807 static inline void
    808 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    809 {
    810 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    811 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    812 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    813 	if ((pt->pte_hi & PTE_VALID) == 0)
    814 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    815 #endif
    816 
    817 	pvo_pt->pte_hi &= ~PTE_VALID;
    818 	/*
    819 	 * Force the ref & chg bits back into the PTEs.
    820 	 */
    821 	SYNC();
    822 	/*
    823 	 * Invalidate the pte ... (Section 7.6.3.3)
    824 	 */
    825 	pt->pte_hi &= ~PTE_VALID;
    826 	SYNC();
    827 	TLBIE(va);
    828 	SYNC();
    829 	EIEIO();
    830 	TLBSYNC();
    831 	SYNC();
    832 	/*
    833 	 * Save the ref & chg bits ...
    834 	 */
    835 	pmap_pte_synch(pt, pvo_pt);
    836 	pmap_pte_valid--;
    837 }
    838 
    839 static inline void
    840 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    841 {
    842 	/*
    843 	 * Invalidate the PTE
    844 	 */
    845 	pmap_pte_unset(pt, pvo_pt, va);
    846 	pmap_pte_set(pt, pvo_pt);
    847 }
    848 
    849 /*
    850  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    851  * (either primary or secondary location).
    852  *
    853  * Note: both the destination and source PTEs must not have PTE_VALID set.
    854  */
    855 
    856 static int
    857 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    858 {
    859 	volatile struct pte *pt;
    860 	int i;
    861 
    862 #if defined(DEBUG)
    863 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    864 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    865 #endif
    866 	/*
    867 	 * First try primary hash.
    868 	 */
    869 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    870 		if ((pt->pte_hi & PTE_VALID) == 0) {
    871 			pvo_pt->pte_hi &= ~PTE_HID;
    872 			pmap_pte_set(pt, pvo_pt);
    873 			return i;
    874 		}
    875 	}
    876 
    877 	/*
    878 	 * Now try secondary hash.
    879 	 */
    880 	ptegidx ^= pmap_pteg_mask;
    881 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    882 		if ((pt->pte_hi & PTE_VALID) == 0) {
    883 			pvo_pt->pte_hi |= PTE_HID;
    884 			pmap_pte_set(pt, pvo_pt);
    885 			return i;
    886 		}
    887 	}
    888 	return -1;
    889 }
    890 
    891 /*
    892  * Spill handler.
    893  *
    894  * Tries to spill a page table entry from the overflow area.
    895  * This runs in either real mode (if dealing with a exception spill)
    896  * or virtual mode when dealing with manually spilling one of the
    897  * kernel's pte entries.  In either case, interrupts are already
    898  * disabled.
    899  */
    900 
    901 int
    902 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    903 {
    904 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    905 	struct pvo_entry *pvo;
    906 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    907 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    908 	int ptegidx, i, j;
    909 	volatile struct pteg *pteg;
    910 	volatile struct pte *pt;
    911 
    912 	PMAP_LOCK();
    913 
    914 	ptegidx = va_to_pteg(pm, addr);
    915 
    916 	/*
    917 	 * Have to substitute some entry. Use the primary hash for this.
    918 	 * Use low bits of timebase as random generator.  Make sure we are
    919 	 * not picking a kernel pte for replacement.
    920 	 */
    921 	pteg = &pmap_pteg_table[ptegidx];
    922 	i = MFTB() & 7;
    923 	for (j = 0; j < 8; j++) {
    924 		pt = &pteg->pt[i];
    925 		if ((pt->pte_hi & PTE_VALID) == 0)
    926 			break;
    927 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    928 				< PHYSMAP_VSIDBITS)
    929 			break;
    930 		i = (i + 1) & 7;
    931 	}
    932 	KASSERT(j < 8);
    933 
    934 	source_pvo = NULL;
    935 	victim_pvo = NULL;
    936 	pvoh = &pmap_pvo_table[ptegidx];
    937 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    938 
    939 		/*
    940 		 * We need to find pvo entry for this address...
    941 		 */
    942 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    943 
    944 		/*
    945 		 * If we haven't found the source and we come to a PVO with
    946 		 * a valid PTE, then we know we can't find it because all
    947 		 * evicted PVOs always are first in the list.
    948 		 */
    949 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    950 			break;
    951 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    952 		    addr == PVO_VADDR(pvo)) {
    953 
    954 			/*
    955 			 * Now we have found the entry to be spilled into the
    956 			 * pteg.  Attempt to insert it into the page table.
    957 			 */
    958 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    959 			if (j >= 0) {
    960 				PVO_PTEGIDX_SET(pvo, j);
    961 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    962 				PVO_WHERE(pvo, SPILL_INSERT);
    963 				pvo->pvo_pmap->pm_evictions--;
    964 				PMAPCOUNT(ptes_spilled);
    965 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    966 				    ? pmap_evcnt_ptes_secondary
    967 				    : pmap_evcnt_ptes_primary)[j]);
    968 
    969 				/*
    970 				 * Since we keep the evicted entries at the
    971 				 * from of the PVO list, we need move this
    972 				 * (now resident) PVO after the evicted
    973 				 * entries.
    974 				 */
    975 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    976 
    977 				/*
    978 				 * If we don't have to move (either we were the
    979 				 * last entry or the next entry was valid),
    980 				 * don't change our position.  Otherwise
    981 				 * move ourselves to the tail of the queue.
    982 				 */
    983 				if (next_pvo != NULL &&
    984 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    985 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    986 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    987 				}
    988 				PMAP_UNLOCK();
    989 				return 1;
    990 			}
    991 			source_pvo = pvo;
    992 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    993 				return 0;
    994 			}
    995 			if (victim_pvo != NULL)
    996 				break;
    997 		}
    998 
    999 		/*
   1000 		 * We also need the pvo entry of the victim we are replacing
   1001 		 * so save the R & C bits of the PTE.
   1002 		 */
   1003 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1004 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1005 			vpvoh = pvoh;			/* *1* */
   1006 			victim_pvo = pvo;
   1007 			if (source_pvo != NULL)
   1008 				break;
   1009 		}
   1010 	}
   1011 
   1012 	if (source_pvo == NULL) {
   1013 		PMAPCOUNT(ptes_unspilled);
   1014 		PMAP_UNLOCK();
   1015 		return 0;
   1016 	}
   1017 
   1018 	if (victim_pvo == NULL) {
   1019 		if ((pt->pte_hi & PTE_HID) == 0)
   1020 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1021 			    "no pvo entry!", pt);
   1022 
   1023 		/*
   1024 		 * If this is a secondary PTE, we need to search
   1025 		 * its primary pvo bucket for the matching PVO.
   1026 		 */
   1027 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1028 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1029 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1030 
   1031 			/*
   1032 			 * We also need the pvo entry of the victim we are
   1033 			 * replacing so save the R & C bits of the PTE.
   1034 			 */
   1035 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1036 				victim_pvo = pvo;
   1037 				break;
   1038 			}
   1039 		}
   1040 		if (victim_pvo == NULL)
   1041 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1042 			    "no pvo entry!", pt);
   1043 	}
   1044 
   1045 	/*
   1046 	 * The victim should be not be a kernel PVO/PTE entry.
   1047 	 */
   1048 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1049 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1050 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1051 
   1052 	/*
   1053 	 * We are invalidating the TLB entry for the EA for the
   1054 	 * we are replacing even though its valid; If we don't
   1055 	 * we lose any ref/chg bit changes contained in the TLB
   1056 	 * entry.
   1057 	 */
   1058 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1059 
   1060 	/*
   1061 	 * To enforce the PVO list ordering constraint that all
   1062 	 * evicted entries should come before all valid entries,
   1063 	 * move the source PVO to the tail of its list and the
   1064 	 * victim PVO to the head of its list (which might not be
   1065 	 * the same list, if the victim was using the secondary hash).
   1066 	 */
   1067 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1068 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1069 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1070 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1071 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1072 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1073 	victim_pvo->pvo_pmap->pm_evictions++;
   1074 	source_pvo->pvo_pmap->pm_evictions--;
   1075 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1076 	PVO_WHERE(source_pvo, SPILL_SET);
   1077 
   1078 	PVO_PTEGIDX_CLR(victim_pvo);
   1079 	PVO_PTEGIDX_SET(source_pvo, i);
   1080 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1081 	PMAPCOUNT(ptes_spilled);
   1082 	PMAPCOUNT(ptes_evicted);
   1083 	PMAPCOUNT(ptes_removed);
   1084 
   1085 	PMAP_PVO_CHECK(victim_pvo);
   1086 	PMAP_PVO_CHECK(source_pvo);
   1087 
   1088 	PMAP_UNLOCK();
   1089 	return 1;
   1090 }
   1091 
   1092 /*
   1093  * Restrict given range to physical memory
   1094  */
   1095 void
   1096 pmap_real_memory(paddr_t *start, psize_t *size)
   1097 {
   1098 	struct mem_region *mp;
   1099 
   1100 	for (mp = mem; mp->size; mp++) {
   1101 		if (*start + *size > mp->start
   1102 		    && *start < mp->start + mp->size) {
   1103 			if (*start < mp->start) {
   1104 				*size -= mp->start - *start;
   1105 				*start = mp->start;
   1106 			}
   1107 			if (*start + *size > mp->start + mp->size)
   1108 				*size = mp->start + mp->size - *start;
   1109 			return;
   1110 		}
   1111 	}
   1112 	*size = 0;
   1113 }
   1114 
   1115 /*
   1116  * Initialize anything else for pmap handling.
   1117  * Called during vm_init().
   1118  */
   1119 void
   1120 pmap_init(void)
   1121 {
   1122 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1123 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1124 	    &pmap_pool_mallocator, IPL_NONE);
   1125 
   1126 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1127 
   1128 	pmap_initialized = 1;
   1129 
   1130 }
   1131 
   1132 /*
   1133  * How much virtual space does the kernel get?
   1134  */
   1135 void
   1136 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1137 {
   1138 	/*
   1139 	 * For now, reserve one segment (minus some overhead) for kernel
   1140 	 * virtual memory
   1141 	 */
   1142 	*start = VM_MIN_KERNEL_ADDRESS;
   1143 	*end = VM_MAX_KERNEL_ADDRESS;
   1144 }
   1145 
   1146 /*
   1147  * Allocate, initialize, and return a new physical map.
   1148  */
   1149 pmap_t
   1150 pmap_create(void)
   1151 {
   1152 	pmap_t pm;
   1153 
   1154 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1155 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
   1156 	memset((void *)pm, 0, sizeof *pm);
   1157 	pmap_pinit(pm);
   1158 
   1159 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1160 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1161 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1162 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1163 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1164 	    pm,
   1165 	    pm->pm_sr[0], pm->pm_sr[1],
   1166 	    pm->pm_sr[2], pm->pm_sr[3],
   1167 	    pm->pm_sr[4], pm->pm_sr[5],
   1168 	    pm->pm_sr[6], pm->pm_sr[7],
   1169 	    pm->pm_sr[8], pm->pm_sr[9],
   1170 	    pm->pm_sr[10], pm->pm_sr[11],
   1171 	    pm->pm_sr[12], pm->pm_sr[13],
   1172 	    pm->pm_sr[14], pm->pm_sr[15]);
   1173 	return pm;
   1174 }
   1175 
   1176 /*
   1177  * Initialize a preallocated and zeroed pmap structure.
   1178  */
   1179 void
   1180 pmap_pinit(pmap_t pm)
   1181 {
   1182 	register_t entropy = MFTB();
   1183 	register_t mask;
   1184 	int i;
   1185 
   1186 	/*
   1187 	 * Allocate some segment registers for this pmap.
   1188 	 */
   1189 	pm->pm_refs = 1;
   1190 	PMAP_LOCK();
   1191 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1192 		static register_t pmap_vsidcontext;
   1193 		register_t hash;
   1194 		unsigned int n;
   1195 
   1196 		/* Create a new value by multiplying by a prime adding in
   1197 		 * entropy from the timebase register.  This is to make the
   1198 		 * VSID more random so that the PT Hash function collides
   1199 		 * less often. (note that the prime causes gcc to do shifts
   1200 		 * instead of a multiply)
   1201 		 */
   1202 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1203 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1204 		if (hash == 0) {		/* 0 is special, avoid it */
   1205 			entropy += 0xbadf00d;
   1206 			continue;
   1207 		}
   1208 		n = hash >> 5;
   1209 		mask = 1L << (hash & (VSID_NBPW-1));
   1210 		hash = pmap_vsidcontext;
   1211 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1212 			/* anything free in this bucket? */
   1213 			if (~pmap_vsid_bitmap[n] == 0) {
   1214 				entropy = hash ^ (hash >> 16);
   1215 				continue;
   1216 			}
   1217 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1218 			mask = 1L << i;
   1219 			hash &= ~(VSID_NBPW-1);
   1220 			hash |= i;
   1221 		}
   1222 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1223 		pmap_vsid_bitmap[n] |= mask;
   1224 		pm->pm_vsid = hash;
   1225 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1226 		for (i = 0; i < 16; i++)
   1227 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1228 			    SR_NOEXEC;
   1229 #endif
   1230 		PMAP_UNLOCK();
   1231 		return;
   1232 	}
   1233 	PMAP_UNLOCK();
   1234 	panic("pmap_pinit: out of segments");
   1235 }
   1236 
   1237 /*
   1238  * Add a reference to the given pmap.
   1239  */
   1240 void
   1241 pmap_reference(pmap_t pm)
   1242 {
   1243 	atomic_inc_uint(&pm->pm_refs);
   1244 }
   1245 
   1246 /*
   1247  * Retire the given pmap from service.
   1248  * Should only be called if the map contains no valid mappings.
   1249  */
   1250 void
   1251 pmap_destroy(pmap_t pm)
   1252 {
   1253 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1254 		pmap_release(pm);
   1255 		pool_put(&pmap_pool, pm);
   1256 	}
   1257 }
   1258 
   1259 /*
   1260  * Release any resources held by the given physical map.
   1261  * Called when a pmap initialized by pmap_pinit is being released.
   1262  */
   1263 void
   1264 pmap_release(pmap_t pm)
   1265 {
   1266 	int idx, mask;
   1267 
   1268 	KASSERT(pm->pm_stats.resident_count == 0);
   1269 	KASSERT(pm->pm_stats.wired_count == 0);
   1270 
   1271 	PMAP_LOCK();
   1272 	if (pm->pm_sr[0] == 0)
   1273 		panic("pmap_release");
   1274 	idx = pm->pm_vsid & (NPMAPS-1);
   1275 	mask = 1 << (idx % VSID_NBPW);
   1276 	idx /= VSID_NBPW;
   1277 
   1278 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1279 	pmap_vsid_bitmap[idx] &= ~mask;
   1280 	PMAP_UNLOCK();
   1281 }
   1282 
   1283 /*
   1284  * Copy the range specified by src_addr/len
   1285  * from the source map to the range dst_addr/len
   1286  * in the destination map.
   1287  *
   1288  * This routine is only advisory and need not do anything.
   1289  */
   1290 void
   1291 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1292 	vsize_t len, vaddr_t src_addr)
   1293 {
   1294 	PMAPCOUNT(copies);
   1295 }
   1296 
   1297 /*
   1298  * Require that all active physical maps contain no
   1299  * incorrect entries NOW.
   1300  */
   1301 void
   1302 pmap_update(struct pmap *pmap)
   1303 {
   1304 	PMAPCOUNT(updates);
   1305 	TLBSYNC();
   1306 }
   1307 
   1308 static inline int
   1309 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1310 {
   1311 	int pteidx;
   1312 	/*
   1313 	 * We can find the actual pte entry without searching by
   1314 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1315 	 * and by noticing the HID bit.
   1316 	 */
   1317 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1318 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1319 		pteidx ^= pmap_pteg_mask * 8;
   1320 	return pteidx;
   1321 }
   1322 
   1323 volatile struct pte *
   1324 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1325 {
   1326 	volatile struct pte *pt;
   1327 
   1328 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1329 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1330 		return NULL;
   1331 #endif
   1332 
   1333 	/*
   1334 	 * If we haven't been supplied the ptegidx, calculate it.
   1335 	 */
   1336 	if (pteidx == -1) {
   1337 		int ptegidx;
   1338 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1339 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1340 	}
   1341 
   1342 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1343 
   1344 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1345 	return pt;
   1346 #else
   1347 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1348 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1349 		    "pvo but no valid pte index", pvo);
   1350 	}
   1351 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1352 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1353 		    "pvo but no valid pte", pvo);
   1354 	}
   1355 
   1356 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1357 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1358 #if defined(DEBUG) || defined(PMAPCHECK)
   1359 			pmap_pte_print(pt);
   1360 #endif
   1361 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1362 			    "pmap_pteg_table %p but invalid in pvo",
   1363 			    pvo, pt);
   1364 		}
   1365 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1366 #if defined(DEBUG) || defined(PMAPCHECK)
   1367 			pmap_pte_print(pt);
   1368 #endif
   1369 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1370 			    "not match pte %p in pmap_pteg_table",
   1371 			    pvo, pt);
   1372 		}
   1373 		return pt;
   1374 	}
   1375 
   1376 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1377 #if defined(DEBUG) || defined(PMAPCHECK)
   1378 		pmap_pte_print(pt);
   1379 #endif
   1380 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1381 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1382 	}
   1383 	return NULL;
   1384 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1385 }
   1386 
   1387 struct pvo_entry *
   1388 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1389 {
   1390 	struct pvo_entry *pvo;
   1391 	int ptegidx;
   1392 
   1393 	va &= ~ADDR_POFF;
   1394 	ptegidx = va_to_pteg(pm, va);
   1395 
   1396 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1397 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1398 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1399 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1400 			    "list %#x (%p)", pvo, ptegidx,
   1401 			     &pmap_pvo_table[ptegidx]);
   1402 #endif
   1403 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1404 			if (pteidx_p)
   1405 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1406 			return pvo;
   1407 		}
   1408 	}
   1409 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1410 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1411 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1412 	return NULL;
   1413 }
   1414 
   1415 #if defined(DEBUG) || defined(PMAPCHECK)
   1416 void
   1417 pmap_pvo_check(const struct pvo_entry *pvo)
   1418 {
   1419 	struct pvo_head *pvo_head;
   1420 	struct pvo_entry *pvo0;
   1421 	volatile struct pte *pt;
   1422 	int failed = 0;
   1423 
   1424 	PMAP_LOCK();
   1425 
   1426 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1427 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1428 
   1429 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1430 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1431 		    pvo, pvo->pvo_pmap);
   1432 		failed = 1;
   1433 	}
   1434 
   1435 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1436 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1437 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1438 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1439 		failed = 1;
   1440 	}
   1441 
   1442 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1443 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1444 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1445 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1446 		failed = 1;
   1447 	}
   1448 
   1449 	if (PVO_MANAGED_P(pvo)) {
   1450 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1451 	} else {
   1452 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1453 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1454 			    "on kernel unmanaged list\n", pvo);
   1455 			failed = 1;
   1456 		}
   1457 		pvo_head = &pmap_pvo_kunmanaged;
   1458 	}
   1459 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1460 		if (pvo0 == pvo)
   1461 			break;
   1462 	}
   1463 	if (pvo0 == NULL) {
   1464 		printf("pmap_pvo_check: pvo %p: not present "
   1465 		    "on its vlist head %p\n", pvo, pvo_head);
   1466 		failed = 1;
   1467 	}
   1468 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1469 		printf("pmap_pvo_check: pvo %p: not present "
   1470 		    "on its olist head\n", pvo);
   1471 		failed = 1;
   1472 	}
   1473 	pt = pmap_pvo_to_pte(pvo, -1);
   1474 	if (pt == NULL) {
   1475 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1476 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1477 			    "no PTE\n", pvo);
   1478 			failed = 1;
   1479 		}
   1480 	} else {
   1481 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1482 		    (uintptr_t) pt >=
   1483 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1484 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1485 			    "pteg table\n", pvo, pt);
   1486 			failed = 1;
   1487 		}
   1488 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1489 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1490 			    "no PTE\n", pvo);
   1491 			failed = 1;
   1492 		}
   1493 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1494 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1495 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1496 			    pvo->pvo_pte.pte_hi,
   1497 			    pt->pte_hi);
   1498 			failed = 1;
   1499 		}
   1500 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1501 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1502 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1503 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1504 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1505 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1506 			failed = 1;
   1507 		}
   1508 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1509 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1510 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1511 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1512 			failed = 1;
   1513 		}
   1514 		if (failed)
   1515 			pmap_pte_print(pt);
   1516 	}
   1517 	if (failed)
   1518 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1519 		    pvo->pvo_pmap);
   1520 
   1521 	PMAP_UNLOCK();
   1522 }
   1523 #endif /* DEBUG || PMAPCHECK */
   1524 
   1525 /*
   1526  * Search the PVO table looking for a non-wired entry.
   1527  * If we find one, remove it and return it.
   1528  */
   1529 
   1530 struct pvo_entry *
   1531 pmap_pvo_reclaim(struct pmap *pm)
   1532 {
   1533 	struct pvo_tqhead *pvoh;
   1534 	struct pvo_entry *pvo;
   1535 	uint32_t idx, endidx;
   1536 
   1537 	endidx = pmap_pvo_reclaim_nextidx;
   1538 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1539 	     idx = (idx + 1) & pmap_pteg_mask) {
   1540 		pvoh = &pmap_pvo_table[idx];
   1541 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1542 			if (!PVO_WIRED_P(pvo)) {
   1543 				pmap_pvo_remove(pvo, -1, NULL);
   1544 				pmap_pvo_reclaim_nextidx = idx;
   1545 				PMAPCOUNT(pvos_reclaimed);
   1546 				return pvo;
   1547 			}
   1548 		}
   1549 	}
   1550 	return NULL;
   1551 }
   1552 
   1553 /*
   1554  * This returns whether this is the first mapping of a page.
   1555  */
   1556 int
   1557 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1558 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1559 {
   1560 	struct pvo_entry *pvo;
   1561 	struct pvo_tqhead *pvoh;
   1562 	register_t msr;
   1563 	int ptegidx;
   1564 	int i;
   1565 	int poolflags = PR_NOWAIT;
   1566 
   1567 	/*
   1568 	 * Compute the PTE Group index.
   1569 	 */
   1570 	va &= ~ADDR_POFF;
   1571 	ptegidx = va_to_pteg(pm, va);
   1572 
   1573 	msr = pmap_interrupts_off();
   1574 
   1575 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1576 	if (pmap_pvo_remove_depth > 0)
   1577 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1578 	if (++pmap_pvo_enter_depth > 1)
   1579 		panic("pmap_pvo_enter: called recursively!");
   1580 #endif
   1581 
   1582 	/*
   1583 	 * Remove any existing mapping for this page.  Reuse the
   1584 	 * pvo entry if there a mapping.
   1585 	 */
   1586 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1587 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1588 #ifdef DEBUG
   1589 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1590 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1591 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1592 			   va < VM_MIN_KERNEL_ADDRESS) {
   1593 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1594 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1595 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1596 				    pvo->pvo_pte.pte_hi,
   1597 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1598 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1599 #ifdef DDBX
   1600 				Debugger();
   1601 #endif
   1602 			}
   1603 #endif
   1604 			PMAPCOUNT(mappings_replaced);
   1605 			pmap_pvo_remove(pvo, -1, NULL);
   1606 			break;
   1607 		}
   1608 	}
   1609 
   1610 	/*
   1611 	 * If we aren't overwriting an mapping, try to allocate
   1612 	 */
   1613 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1614 	--pmap_pvo_enter_depth;
   1615 #endif
   1616 	pmap_interrupts_restore(msr);
   1617 	if (pvo) {
   1618 		pmap_pvo_free(pvo);
   1619 	}
   1620 	pvo = pool_get(pl, poolflags);
   1621 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1622 
   1623 #ifdef DEBUG
   1624 	/*
   1625 	 * Exercise pmap_pvo_reclaim() a little.
   1626 	 */
   1627 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1628 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1629 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1630 		pool_put(pl, pvo);
   1631 		pvo = NULL;
   1632 	}
   1633 #endif
   1634 
   1635 	msr = pmap_interrupts_off();
   1636 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1637 	++pmap_pvo_enter_depth;
   1638 #endif
   1639 	if (pvo == NULL) {
   1640 		pvo = pmap_pvo_reclaim(pm);
   1641 		if (pvo == NULL) {
   1642 			if ((flags & PMAP_CANFAIL) == 0)
   1643 				panic("pmap_pvo_enter: failed");
   1644 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1645 			pmap_pvo_enter_depth--;
   1646 #endif
   1647 			PMAPCOUNT(pvos_failed);
   1648 			pmap_interrupts_restore(msr);
   1649 			return ENOMEM;
   1650 		}
   1651 	}
   1652 
   1653 	pvo->pvo_vaddr = va;
   1654 	pvo->pvo_pmap = pm;
   1655 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1656 	if (flags & VM_PROT_EXECUTE) {
   1657 		PMAPCOUNT(exec_mappings);
   1658 		pvo_set_exec(pvo);
   1659 	}
   1660 	if (flags & PMAP_WIRED)
   1661 		pvo->pvo_vaddr |= PVO_WIRED;
   1662 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1663 		pvo->pvo_vaddr |= PVO_MANAGED;
   1664 		PMAPCOUNT(mappings);
   1665 	} else {
   1666 		PMAPCOUNT(kernel_mappings);
   1667 	}
   1668 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1669 
   1670 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1671 	if (PVO_WIRED_P(pvo))
   1672 		pvo->pvo_pmap->pm_stats.wired_count++;
   1673 	pvo->pvo_pmap->pm_stats.resident_count++;
   1674 #if defined(DEBUG)
   1675 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1676 		DPRINTFN(PVOENTER,
   1677 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1678 		    pvo, pm, va, pa);
   1679 #endif
   1680 
   1681 	/*
   1682 	 * We hope this succeeds but it isn't required.
   1683 	 */
   1684 	pvoh = &pmap_pvo_table[ptegidx];
   1685 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1686 	if (i >= 0) {
   1687 		PVO_PTEGIDX_SET(pvo, i);
   1688 		PVO_WHERE(pvo, ENTER_INSERT);
   1689 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1690 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1691 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1692 
   1693 	} else {
   1694 		/*
   1695 		 * Since we didn't have room for this entry (which makes it
   1696 		 * and evicted entry), place it at the head of the list.
   1697 		 */
   1698 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1699 		PMAPCOUNT(ptes_evicted);
   1700 		pm->pm_evictions++;
   1701 		/*
   1702 		 * If this is a kernel page, make sure it's active.
   1703 		 */
   1704 		if (pm == pmap_kernel()) {
   1705 			i = pmap_pte_spill(pm, va, false);
   1706 			KASSERT(i);
   1707 		}
   1708 	}
   1709 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1710 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1711 	pmap_pvo_enter_depth--;
   1712 #endif
   1713 	pmap_interrupts_restore(msr);
   1714 	return 0;
   1715 }
   1716 
   1717 static void
   1718 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1719 {
   1720 	volatile struct pte *pt;
   1721 	int ptegidx;
   1722 
   1723 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1724 	if (++pmap_pvo_remove_depth > 1)
   1725 		panic("pmap_pvo_remove: called recursively!");
   1726 #endif
   1727 
   1728 	/*
   1729 	 * If we haven't been supplied the ptegidx, calculate it.
   1730 	 */
   1731 	if (pteidx == -1) {
   1732 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1733 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1734 	} else {
   1735 		ptegidx = pteidx >> 3;
   1736 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1737 			ptegidx ^= pmap_pteg_mask;
   1738 	}
   1739 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1740 
   1741 	/*
   1742 	 * If there is an active pte entry, we need to deactivate it
   1743 	 * (and save the ref & chg bits).
   1744 	 */
   1745 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1746 	if (pt != NULL) {
   1747 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1748 		PVO_WHERE(pvo, REMOVE);
   1749 		PVO_PTEGIDX_CLR(pvo);
   1750 		PMAPCOUNT(ptes_removed);
   1751 	} else {
   1752 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1753 		pvo->pvo_pmap->pm_evictions--;
   1754 	}
   1755 
   1756 	/*
   1757 	 * Account for executable mappings.
   1758 	 */
   1759 	if (PVO_EXECUTABLE_P(pvo))
   1760 		pvo_clear_exec(pvo);
   1761 
   1762 	/*
   1763 	 * Update our statistics.
   1764 	 */
   1765 	pvo->pvo_pmap->pm_stats.resident_count--;
   1766 	if (PVO_WIRED_P(pvo))
   1767 		pvo->pvo_pmap->pm_stats.wired_count--;
   1768 
   1769 	/*
   1770 	 * Save the REF/CHG bits into their cache if the page is managed.
   1771 	 */
   1772 	if (PVO_MANAGED_P(pvo)) {
   1773 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1774 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1775 
   1776 		if (pg != NULL) {
   1777 			/*
   1778 			 * If this page was changed and it is mapped exec,
   1779 			 * invalidate it.
   1780 			 */
   1781 			if ((ptelo & PTE_CHG) &&
   1782 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1783 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1784 				if (LIST_EMPTY(pvoh)) {
   1785 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1786 					    "%#" _PRIxpa ": clear-exec]\n",
   1787 					    VM_PAGE_TO_PHYS(pg));
   1788 					pmap_attr_clear(pg, PTE_EXEC);
   1789 					PMAPCOUNT(exec_uncached_pvo_remove);
   1790 				} else {
   1791 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1792 					    "%#" _PRIxpa ": syncicache]\n",
   1793 					    VM_PAGE_TO_PHYS(pg));
   1794 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1795 					    PAGE_SIZE);
   1796 					PMAPCOUNT(exec_synced_pvo_remove);
   1797 				}
   1798 			}
   1799 
   1800 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1801 		}
   1802 		PMAPCOUNT(unmappings);
   1803 	} else {
   1804 		PMAPCOUNT(kernel_unmappings);
   1805 	}
   1806 
   1807 	/*
   1808 	 * Remove the PVO from its lists and return it to the pool.
   1809 	 */
   1810 	LIST_REMOVE(pvo, pvo_vlink);
   1811 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1812 	if (pvol) {
   1813 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1814 	}
   1815 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1816 	pmap_pvo_remove_depth--;
   1817 #endif
   1818 }
   1819 
   1820 void
   1821 pmap_pvo_free(struct pvo_entry *pvo)
   1822 {
   1823 
   1824 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1825 }
   1826 
   1827 void
   1828 pmap_pvo_free_list(struct pvo_head *pvol)
   1829 {
   1830 	struct pvo_entry *pvo, *npvo;
   1831 
   1832 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1833 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1834 		LIST_REMOVE(pvo, pvo_vlink);
   1835 		pmap_pvo_free(pvo);
   1836 	}
   1837 }
   1838 
   1839 /*
   1840  * Mark a mapping as executable.
   1841  * If this is the first executable mapping in the segment,
   1842  * clear the noexec flag.
   1843  */
   1844 static void
   1845 pvo_set_exec(struct pvo_entry *pvo)
   1846 {
   1847 	struct pmap *pm = pvo->pvo_pmap;
   1848 
   1849 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1850 		return;
   1851 	}
   1852 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1853 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1854 	{
   1855 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1856 		if (pm->pm_exec[sr]++ == 0) {
   1857 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1858 		}
   1859 	}
   1860 #endif
   1861 }
   1862 
   1863 /*
   1864  * Mark a mapping as non-executable.
   1865  * If this was the last executable mapping in the segment,
   1866  * set the noexec flag.
   1867  */
   1868 static void
   1869 pvo_clear_exec(struct pvo_entry *pvo)
   1870 {
   1871 	struct pmap *pm = pvo->pvo_pmap;
   1872 
   1873 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1874 		return;
   1875 	}
   1876 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1877 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1878 	{
   1879 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1880 		if (--pm->pm_exec[sr] == 0) {
   1881 			pm->pm_sr[sr] |= SR_NOEXEC;
   1882 		}
   1883 	}
   1884 #endif
   1885 }
   1886 
   1887 /*
   1888  * Insert physical page at pa into the given pmap at virtual address va.
   1889  */
   1890 int
   1891 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1892 {
   1893 	struct mem_region *mp;
   1894 	struct pvo_head *pvo_head;
   1895 	struct vm_page *pg;
   1896 	struct pool *pl;
   1897 	register_t pte_lo;
   1898 	int error;
   1899 	u_int was_exec = 0;
   1900 
   1901 	PMAP_LOCK();
   1902 
   1903 	if (__predict_false(!pmap_initialized)) {
   1904 		pvo_head = &pmap_pvo_kunmanaged;
   1905 		pl = &pmap_upvo_pool;
   1906 		pg = NULL;
   1907 		was_exec = PTE_EXEC;
   1908 	} else {
   1909 		pvo_head = pa_to_pvoh(pa, &pg);
   1910 		pl = &pmap_mpvo_pool;
   1911 	}
   1912 
   1913 	DPRINTFN(ENTER,
   1914 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1915 	    pm, va, pa, prot, flags);
   1916 
   1917 	/*
   1918 	 * If this is a managed page, and it's the first reference to the
   1919 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1920 	 */
   1921 	if (pg != NULL)
   1922 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1923 
   1924 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1925 
   1926 	/*
   1927 	 * Assume the page is cache inhibited and access is guarded unless
   1928 	 * it's in our available memory array.  If it is in the memory array,
   1929 	 * asssume it's in memory coherent memory.
   1930 	 */
   1931 	if (flags & PMAP_MD_PREFETCHABLE) {
   1932 		pte_lo = 0;
   1933 	} else
   1934 		pte_lo = PTE_G;
   1935 
   1936 	if ((flags & PMAP_NOCACHE) == 0) {
   1937 		for (mp = mem; mp->size; mp++) {
   1938 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1939 				pte_lo = PTE_M;
   1940 				break;
   1941 			}
   1942 		}
   1943 #ifdef MULTIPROCESSOR
   1944 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1945 			pte_lo = PTE_M;
   1946 #endif
   1947 	} else {
   1948 		pte_lo |= PTE_I;
   1949 	}
   1950 
   1951 	if (prot & VM_PROT_WRITE)
   1952 		pte_lo |= PTE_BW;
   1953 	else
   1954 		pte_lo |= PTE_BR;
   1955 
   1956 	/*
   1957 	 * If this was in response to a fault, "pre-fault" the PTE's
   1958 	 * changed/referenced bit appropriately.
   1959 	 */
   1960 	if (flags & VM_PROT_WRITE)
   1961 		pte_lo |= PTE_CHG;
   1962 	if (flags & VM_PROT_ALL)
   1963 		pte_lo |= PTE_REF;
   1964 
   1965 	/*
   1966 	 * We need to know if this page can be executable
   1967 	 */
   1968 	flags |= (prot & VM_PROT_EXECUTE);
   1969 
   1970 	/*
   1971 	 * Record mapping for later back-translation and pte spilling.
   1972 	 * This will overwrite any existing mapping.
   1973 	 */
   1974 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1975 
   1976 	/*
   1977 	 * Flush the real page from the instruction cache if this page is
   1978 	 * mapped executable and cacheable and has not been flushed since
   1979 	 * the last time it was modified.
   1980 	 */
   1981 	if (error == 0 &&
   1982             (flags & VM_PROT_EXECUTE) &&
   1983             (pte_lo & PTE_I) == 0 &&
   1984 	    was_exec == 0) {
   1985 		DPRINTFN(ENTER, " %s", "syncicache");
   1986 		PMAPCOUNT(exec_synced);
   1987 		pmap_syncicache(pa, PAGE_SIZE);
   1988 		if (pg != NULL) {
   1989 			pmap_attr_save(pg, PTE_EXEC);
   1990 			PMAPCOUNT(exec_cached);
   1991 #if defined(DEBUG) || defined(PMAPDEBUG)
   1992 			if (pmapdebug & PMAPDEBUG_ENTER)
   1993 				printf(" marked-as-exec");
   1994 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1995 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1996 				    VM_PAGE_TO_PHYS(pg));
   1997 
   1998 #endif
   1999 		}
   2000 	}
   2001 
   2002 	DPRINTFN(ENTER, ": error=%d\n", error);
   2003 
   2004 	PMAP_UNLOCK();
   2005 
   2006 	return error;
   2007 }
   2008 
   2009 void
   2010 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2011 {
   2012 	struct mem_region *mp;
   2013 	register_t pte_lo;
   2014 	int error;
   2015 
   2016 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   2017 	if (va < VM_MIN_KERNEL_ADDRESS)
   2018 		panic("pmap_kenter_pa: attempt to enter "
   2019 		    "non-kernel address %#" _PRIxva "!", va);
   2020 #endif
   2021 
   2022 	DPRINTFN(KENTER,
   2023 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   2024 
   2025 	PMAP_LOCK();
   2026 
   2027 	/*
   2028 	 * Assume the page is cache inhibited and access is guarded unless
   2029 	 * it's in our available memory array.  If it is in the memory array,
   2030 	 * asssume it's in memory coherent memory.
   2031 	 */
   2032 	pte_lo = PTE_IG;
   2033 	if ((flags & PMAP_NOCACHE) == 0) {
   2034 		for (mp = mem; mp->size; mp++) {
   2035 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2036 				pte_lo = PTE_M;
   2037 				break;
   2038 			}
   2039 		}
   2040 #ifdef MULTIPROCESSOR
   2041 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2042 			pte_lo = PTE_M;
   2043 #endif
   2044 	}
   2045 
   2046 	if (prot & VM_PROT_WRITE)
   2047 		pte_lo |= PTE_BW;
   2048 	else
   2049 		pte_lo |= PTE_BR;
   2050 
   2051 	/*
   2052 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2053 	 */
   2054 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2055 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2056 
   2057 	if (error != 0)
   2058 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2059 		      va, pa, error);
   2060 
   2061 	PMAP_UNLOCK();
   2062 }
   2063 
   2064 void
   2065 pmap_kremove(vaddr_t va, vsize_t len)
   2066 {
   2067 	if (va < VM_MIN_KERNEL_ADDRESS)
   2068 		panic("pmap_kremove: attempt to remove "
   2069 		    "non-kernel address %#" _PRIxva "!", va);
   2070 
   2071 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2072 	pmap_remove(pmap_kernel(), va, va + len);
   2073 }
   2074 
   2075 /*
   2076  * Remove the given range of mapping entries.
   2077  */
   2078 void
   2079 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2080 {
   2081 	struct pvo_head pvol;
   2082 	struct pvo_entry *pvo;
   2083 	register_t msr;
   2084 	int pteidx;
   2085 
   2086 	PMAP_LOCK();
   2087 	LIST_INIT(&pvol);
   2088 	msr = pmap_interrupts_off();
   2089 	for (; va < endva; va += PAGE_SIZE) {
   2090 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2091 		if (pvo != NULL) {
   2092 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2093 		}
   2094 	}
   2095 	pmap_interrupts_restore(msr);
   2096 	pmap_pvo_free_list(&pvol);
   2097 	PMAP_UNLOCK();
   2098 }
   2099 
   2100 /*
   2101  * Get the physical page address for the given pmap/virtual address.
   2102  */
   2103 bool
   2104 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2105 {
   2106 	struct pvo_entry *pvo;
   2107 	register_t msr;
   2108 
   2109 	PMAP_LOCK();
   2110 
   2111 	/*
   2112 	 * If this is a kernel pmap lookup, also check the battable
   2113 	 * and if we get a hit, translate the VA to a PA using the
   2114 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2115 	 * that will wrap back to 0.
   2116 	 */
   2117 	if (pm == pmap_kernel() &&
   2118 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2119 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2120 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2121 #if defined (PMAP_OEA)
   2122 #ifdef PPC_OEA601
   2123 		if ((MFPVR() >> 16) == MPC601) {
   2124 			register_t batu = battable[va >> 23].batu;
   2125 			register_t batl = battable[va >> 23].batl;
   2126 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2127 			if (BAT601_VALID_P(batl) &&
   2128 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2129 				register_t mask =
   2130 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2131 				if (pap)
   2132 					*pap = (batl & mask) | (va & ~mask);
   2133 				PMAP_UNLOCK();
   2134 				return true;
   2135 			} else if (SR601_VALID_P(sr) &&
   2136 				   SR601_PA_MATCH_P(sr, va)) {
   2137 				if (pap)
   2138 					*pap = va;
   2139 				PMAP_UNLOCK();
   2140 				return true;
   2141 			}
   2142 		} else
   2143 #endif /* PPC_OEA601 */
   2144 		{
   2145 			register_t batu = battable[BAT_VA2IDX(va)].batu;
   2146 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2147 				register_t batl = battable[BAT_VA2IDX(va)].batl;
   2148 				register_t mask =
   2149 				    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2150 				if (pap)
   2151 					*pap = (batl & mask) | (va & ~mask);
   2152 				PMAP_UNLOCK();
   2153 				return true;
   2154 			}
   2155 		}
   2156 		return false;
   2157 #elif defined (PMAP_OEA64_BRIDGE)
   2158 	if (va >= SEGMENT_LENGTH)
   2159 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2160 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2161 	else {
   2162 		if (pap)
   2163 			*pap = va;
   2164 			PMAP_UNLOCK();
   2165 			return true;
   2166 	}
   2167 #elif defined (PMAP_OEA64)
   2168 #error PPC_OEA64 not supported
   2169 #endif /* PPC_OEA */
   2170 	}
   2171 
   2172 	msr = pmap_interrupts_off();
   2173 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2174 	if (pvo != NULL) {
   2175 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2176 		if (pap)
   2177 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2178 			    | (va & ADDR_POFF);
   2179 	}
   2180 	pmap_interrupts_restore(msr);
   2181 	PMAP_UNLOCK();
   2182 	return pvo != NULL;
   2183 }
   2184 
   2185 /*
   2186  * Lower the protection on the specified range of this pmap.
   2187  */
   2188 void
   2189 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2190 {
   2191 	struct pvo_entry *pvo;
   2192 	volatile struct pte *pt;
   2193 	register_t msr;
   2194 	int pteidx;
   2195 
   2196 	/*
   2197 	 * Since this routine only downgrades protection, we should
   2198 	 * always be called with at least one bit not set.
   2199 	 */
   2200 	KASSERT(prot != VM_PROT_ALL);
   2201 
   2202 	/*
   2203 	 * If there is no protection, this is equivalent to
   2204 	 * remove the pmap from the pmap.
   2205 	 */
   2206 	if ((prot & VM_PROT_READ) == 0) {
   2207 		pmap_remove(pm, va, endva);
   2208 		return;
   2209 	}
   2210 
   2211 	PMAP_LOCK();
   2212 
   2213 	msr = pmap_interrupts_off();
   2214 	for (; va < endva; va += PAGE_SIZE) {
   2215 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2216 		if (pvo == NULL)
   2217 			continue;
   2218 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2219 
   2220 		/*
   2221 		 * Revoke executable if asked to do so.
   2222 		 */
   2223 		if ((prot & VM_PROT_EXECUTE) == 0)
   2224 			pvo_clear_exec(pvo);
   2225 
   2226 #if 0
   2227 		/*
   2228 		 * If the page is already read-only, no change
   2229 		 * needs to be made.
   2230 		 */
   2231 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2232 			continue;
   2233 #endif
   2234 		/*
   2235 		 * Grab the PTE pointer before we diddle with
   2236 		 * the cached PTE copy.
   2237 		 */
   2238 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2239 		/*
   2240 		 * Change the protection of the page.
   2241 		 */
   2242 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2243 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2244 
   2245 		/*
   2246 		 * If the PVO is in the page table, update
   2247 		 * that pte at well.
   2248 		 */
   2249 		if (pt != NULL) {
   2250 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2251 			PVO_WHERE(pvo, PMAP_PROTECT);
   2252 			PMAPCOUNT(ptes_changed);
   2253 		}
   2254 
   2255 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2256 	}
   2257 	pmap_interrupts_restore(msr);
   2258 	PMAP_UNLOCK();
   2259 }
   2260 
   2261 void
   2262 pmap_unwire(pmap_t pm, vaddr_t va)
   2263 {
   2264 	struct pvo_entry *pvo;
   2265 	register_t msr;
   2266 
   2267 	PMAP_LOCK();
   2268 	msr = pmap_interrupts_off();
   2269 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2270 	if (pvo != NULL) {
   2271 		if (PVO_WIRED_P(pvo)) {
   2272 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2273 			pm->pm_stats.wired_count--;
   2274 		}
   2275 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2276 	}
   2277 	pmap_interrupts_restore(msr);
   2278 	PMAP_UNLOCK();
   2279 }
   2280 
   2281 /*
   2282  * Lower the protection on the specified physical page.
   2283  */
   2284 void
   2285 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2286 {
   2287 	struct pvo_head *pvo_head, pvol;
   2288 	struct pvo_entry *pvo, *next_pvo;
   2289 	volatile struct pte *pt;
   2290 	register_t msr;
   2291 
   2292 	PMAP_LOCK();
   2293 
   2294 	KASSERT(prot != VM_PROT_ALL);
   2295 	LIST_INIT(&pvol);
   2296 	msr = pmap_interrupts_off();
   2297 
   2298 	/*
   2299 	 * When UVM reuses a page, it does a pmap_page_protect with
   2300 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2301 	 * since we know the page will have different contents.
   2302 	 */
   2303 	if ((prot & VM_PROT_READ) == 0) {
   2304 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2305 		    VM_PAGE_TO_PHYS(pg));
   2306 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2307 			PMAPCOUNT(exec_uncached_page_protect);
   2308 			pmap_attr_clear(pg, PTE_EXEC);
   2309 		}
   2310 	}
   2311 
   2312 	pvo_head = vm_page_to_pvoh(pg);
   2313 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2314 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2315 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2316 
   2317 		/*
   2318 		 * Downgrading to no mapping at all, we just remove the entry.
   2319 		 */
   2320 		if ((prot & VM_PROT_READ) == 0) {
   2321 			pmap_pvo_remove(pvo, -1, &pvol);
   2322 			continue;
   2323 		}
   2324 
   2325 		/*
   2326 		 * If EXEC permission is being revoked, just clear the
   2327 		 * flag in the PVO.
   2328 		 */
   2329 		if ((prot & VM_PROT_EXECUTE) == 0)
   2330 			pvo_clear_exec(pvo);
   2331 
   2332 		/*
   2333 		 * If this entry is already RO, don't diddle with the
   2334 		 * page table.
   2335 		 */
   2336 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2337 			PMAP_PVO_CHECK(pvo);
   2338 			continue;
   2339 		}
   2340 
   2341 		/*
   2342 		 * Grab the PTE before the we diddle the bits so
   2343 		 * pvo_to_pte can verify the pte contents are as
   2344 		 * expected.
   2345 		 */
   2346 		pt = pmap_pvo_to_pte(pvo, -1);
   2347 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2348 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2349 		if (pt != NULL) {
   2350 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2351 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2352 			PMAPCOUNT(ptes_changed);
   2353 		}
   2354 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2355 	}
   2356 	pmap_interrupts_restore(msr);
   2357 	pmap_pvo_free_list(&pvol);
   2358 
   2359 	PMAP_UNLOCK();
   2360 }
   2361 
   2362 /*
   2363  * Activate the address space for the specified process.  If the process
   2364  * is the current process, load the new MMU context.
   2365  */
   2366 void
   2367 pmap_activate(struct lwp *l)
   2368 {
   2369 	struct pcb *pcb = lwp_getpcb(l);
   2370 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2371 
   2372 	DPRINTFN(ACTIVATE,
   2373 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2374 
   2375 	/*
   2376 	 * XXX Normally performed in cpu_lwp_fork().
   2377 	 */
   2378 	pcb->pcb_pm = pmap;
   2379 
   2380 	/*
   2381 	* In theory, the SR registers need only be valid on return
   2382 	* to user space wait to do them there.
   2383 	*/
   2384 	if (l == curlwp) {
   2385 		/* Store pointer to new current pmap. */
   2386 		curpm = pmap;
   2387 	}
   2388 }
   2389 
   2390 /*
   2391  * Deactivate the specified process's address space.
   2392  */
   2393 void
   2394 pmap_deactivate(struct lwp *l)
   2395 {
   2396 }
   2397 
   2398 bool
   2399 pmap_query_bit(struct vm_page *pg, int ptebit)
   2400 {
   2401 	struct pvo_entry *pvo;
   2402 	volatile struct pte *pt;
   2403 	register_t msr;
   2404 
   2405 	PMAP_LOCK();
   2406 
   2407 	if (pmap_attr_fetch(pg) & ptebit) {
   2408 		PMAP_UNLOCK();
   2409 		return true;
   2410 	}
   2411 
   2412 	msr = pmap_interrupts_off();
   2413 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2414 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2415 		/*
   2416 		 * See if we saved the bit off.  If so cache, it and return
   2417 		 * success.
   2418 		 */
   2419 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2420 			pmap_attr_save(pg, ptebit);
   2421 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2422 			pmap_interrupts_restore(msr);
   2423 			PMAP_UNLOCK();
   2424 			return true;
   2425 		}
   2426 	}
   2427 	/*
   2428 	 * No luck, now go thru the hard part of looking at the ptes
   2429 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2430 	 * to the PTEs.
   2431 	 */
   2432 	SYNC();
   2433 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2434 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2435 		/*
   2436 		 * See if this pvo have a valid PTE.  If so, fetch the
   2437 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2438 		 * ptebit is set, cache, it and return success.
   2439 		 */
   2440 		pt = pmap_pvo_to_pte(pvo, -1);
   2441 		if (pt != NULL) {
   2442 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2443 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2444 				pmap_attr_save(pg, ptebit);
   2445 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2446 				pmap_interrupts_restore(msr);
   2447 				PMAP_UNLOCK();
   2448 				return true;
   2449 			}
   2450 		}
   2451 	}
   2452 	pmap_interrupts_restore(msr);
   2453 	PMAP_UNLOCK();
   2454 	return false;
   2455 }
   2456 
   2457 bool
   2458 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2459 {
   2460 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2461 	struct pvo_entry *pvo;
   2462 	volatile struct pte *pt;
   2463 	register_t msr;
   2464 	int rv = 0;
   2465 
   2466 	PMAP_LOCK();
   2467 	msr = pmap_interrupts_off();
   2468 
   2469 	/*
   2470 	 * Fetch the cache value
   2471 	 */
   2472 	rv |= pmap_attr_fetch(pg);
   2473 
   2474 	/*
   2475 	 * Clear the cached value.
   2476 	 */
   2477 	pmap_attr_clear(pg, ptebit);
   2478 
   2479 	/*
   2480 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2481 	 * can reset the right ones).  Note that since the pvo entries and
   2482 	 * list heads are accessed via BAT0 and are never placed in the
   2483 	 * page table, we don't have to worry about further accesses setting
   2484 	 * the REF/CHG bits.
   2485 	 */
   2486 	SYNC();
   2487 
   2488 	/*
   2489 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2490 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2491 	 */
   2492 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2493 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2494 		pt = pmap_pvo_to_pte(pvo, -1);
   2495 		if (pt != NULL) {
   2496 			/*
   2497 			 * Only sync the PTE if the bit we are looking
   2498 			 * for is not already set.
   2499 			 */
   2500 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2501 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2502 			/*
   2503 			 * If the bit we are looking for was already set,
   2504 			 * clear that bit in the pte.
   2505 			 */
   2506 			if (pvo->pvo_pte.pte_lo & ptebit)
   2507 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2508 		}
   2509 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2510 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2511 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2512 	}
   2513 	pmap_interrupts_restore(msr);
   2514 
   2515 	/*
   2516 	 * If we are clearing the modify bit and this page was marked EXEC
   2517 	 * and the user of the page thinks the page was modified, then we
   2518 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2519 	 * bit if it's not mapped.  The page itself might not have the CHG
   2520 	 * bit set if the modification was done via DMA to the page.
   2521 	 */
   2522 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2523 		if (LIST_EMPTY(pvoh)) {
   2524 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2525 			    VM_PAGE_TO_PHYS(pg));
   2526 			pmap_attr_clear(pg, PTE_EXEC);
   2527 			PMAPCOUNT(exec_uncached_clear_modify);
   2528 		} else {
   2529 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2530 			    VM_PAGE_TO_PHYS(pg));
   2531 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2532 			PMAPCOUNT(exec_synced_clear_modify);
   2533 		}
   2534 	}
   2535 	PMAP_UNLOCK();
   2536 	return (rv & ptebit) != 0;
   2537 }
   2538 
   2539 void
   2540 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2541 {
   2542 	struct pvo_entry *pvo;
   2543 	size_t offset = va & ADDR_POFF;
   2544 	int s;
   2545 
   2546 	PMAP_LOCK();
   2547 	s = splvm();
   2548 	while (len > 0) {
   2549 		size_t seglen = PAGE_SIZE - offset;
   2550 		if (seglen > len)
   2551 			seglen = len;
   2552 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2553 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2554 			pmap_syncicache(
   2555 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2556 			PMAP_PVO_CHECK(pvo);
   2557 		}
   2558 		va += seglen;
   2559 		len -= seglen;
   2560 		offset = 0;
   2561 	}
   2562 	splx(s);
   2563 	PMAP_UNLOCK();
   2564 }
   2565 
   2566 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2567 void
   2568 pmap_pte_print(volatile struct pte *pt)
   2569 {
   2570 	printf("PTE %p: ", pt);
   2571 
   2572 #if defined(PMAP_OEA)
   2573 	/* High word: */
   2574 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2575 #else
   2576 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2577 #endif /* PMAP_OEA */
   2578 
   2579 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2580 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2581 
   2582 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2583 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2584 	    pt->pte_hi & PTE_API);
   2585 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2586 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2587 #else
   2588 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2589 #endif /* PMAP_OEA */
   2590 
   2591 	/* Low word: */
   2592 #if defined (PMAP_OEA)
   2593 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2594 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2595 #else
   2596 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2597 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2598 #endif
   2599 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2600 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2601 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2602 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2603 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2604 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2605 	switch (pt->pte_lo & PTE_PP) {
   2606 	case PTE_BR: printf("br]\n"); break;
   2607 	case PTE_BW: printf("bw]\n"); break;
   2608 	case PTE_SO: printf("so]\n"); break;
   2609 	case PTE_SW: printf("sw]\n"); break;
   2610 	}
   2611 }
   2612 #endif
   2613 
   2614 #if defined(DDB)
   2615 void
   2616 pmap_pteg_check(void)
   2617 {
   2618 	volatile struct pte *pt;
   2619 	int i;
   2620 	int ptegidx;
   2621 	u_int p_valid = 0;
   2622 	u_int s_valid = 0;
   2623 	u_int invalid = 0;
   2624 
   2625 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2626 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2627 			if (pt->pte_hi & PTE_VALID) {
   2628 				if (pt->pte_hi & PTE_HID)
   2629 					s_valid++;
   2630 				else
   2631 				{
   2632 					p_valid++;
   2633 				}
   2634 			} else
   2635 				invalid++;
   2636 		}
   2637 	}
   2638 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2639 		p_valid, p_valid, s_valid, s_valid,
   2640 		invalid, invalid);
   2641 }
   2642 
   2643 void
   2644 pmap_print_mmuregs(void)
   2645 {
   2646 	int i;
   2647 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2648 	u_int cpuvers;
   2649 #endif
   2650 #ifndef PMAP_OEA64
   2651 	vaddr_t addr;
   2652 	register_t soft_sr[16];
   2653 #endif
   2654 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2655 	struct bat soft_ibat[4];
   2656 	struct bat soft_dbat[4];
   2657 #endif
   2658 	paddr_t sdr1;
   2659 
   2660 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2661 	cpuvers = MFPVR() >> 16;
   2662 #endif
   2663 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2664 #ifndef PMAP_OEA64
   2665 	addr = 0;
   2666 	for (i = 0; i < 16; i++) {
   2667 		soft_sr[i] = MFSRIN(addr);
   2668 		addr += (1 << ADDR_SR_SHFT);
   2669 	}
   2670 #endif
   2671 
   2672 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2673 	/* read iBAT (601: uBAT) registers */
   2674 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2675 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2676 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2677 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2678 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2679 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2680 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2681 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2682 
   2683 
   2684 	if (cpuvers != MPC601) {
   2685 		/* read dBAT registers */
   2686 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2687 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2688 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2689 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2690 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2691 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2692 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2693 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2694 	}
   2695 #endif
   2696 
   2697 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2698 #ifndef PMAP_OEA64
   2699 	printf("SR[]:\t");
   2700 	for (i = 0; i < 4; i++)
   2701 		printf("0x%08lx,   ", soft_sr[i]);
   2702 	printf("\n\t");
   2703 	for ( ; i < 8; i++)
   2704 		printf("0x%08lx,   ", soft_sr[i]);
   2705 	printf("\n\t");
   2706 	for ( ; i < 12; i++)
   2707 		printf("0x%08lx,   ", soft_sr[i]);
   2708 	printf("\n\t");
   2709 	for ( ; i < 16; i++)
   2710 		printf("0x%08lx,   ", soft_sr[i]);
   2711 	printf("\n");
   2712 #endif
   2713 
   2714 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2715 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2716 	for (i = 0; i < 4; i++) {
   2717 		printf("0x%08lx 0x%08lx, ",
   2718 			soft_ibat[i].batu, soft_ibat[i].batl);
   2719 		if (i == 1)
   2720 			printf("\n\t");
   2721 	}
   2722 	if (cpuvers != MPC601) {
   2723 		printf("\ndBAT[]:\t");
   2724 		for (i = 0; i < 4; i++) {
   2725 			printf("0x%08lx 0x%08lx, ",
   2726 				soft_dbat[i].batu, soft_dbat[i].batl);
   2727 			if (i == 1)
   2728 				printf("\n\t");
   2729 		}
   2730 	}
   2731 	printf("\n");
   2732 #endif /* PMAP_OEA... */
   2733 }
   2734 
   2735 void
   2736 pmap_print_pte(pmap_t pm, vaddr_t va)
   2737 {
   2738 	struct pvo_entry *pvo;
   2739 	volatile struct pte *pt;
   2740 	int pteidx;
   2741 
   2742 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2743 	if (pvo != NULL) {
   2744 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2745 		if (pt != NULL) {
   2746 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2747 				va, pt,
   2748 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2749 				pt->pte_hi, pt->pte_lo);
   2750 		} else {
   2751 			printf("No valid PTE found\n");
   2752 		}
   2753 	} else {
   2754 		printf("Address not in pmap\n");
   2755 	}
   2756 }
   2757 
   2758 void
   2759 pmap_pteg_dist(void)
   2760 {
   2761 	struct pvo_entry *pvo;
   2762 	int ptegidx;
   2763 	int depth;
   2764 	int max_depth = 0;
   2765 	unsigned int depths[64];
   2766 
   2767 	memset(depths, 0, sizeof(depths));
   2768 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2769 		depth = 0;
   2770 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2771 			depth++;
   2772 		}
   2773 		if (depth > max_depth)
   2774 			max_depth = depth;
   2775 		if (depth > 63)
   2776 			depth = 63;
   2777 		depths[depth]++;
   2778 	}
   2779 
   2780 	for (depth = 0; depth < 64; depth++) {
   2781 		printf("  [%2d]: %8u", depth, depths[depth]);
   2782 		if ((depth & 3) == 3)
   2783 			printf("\n");
   2784 		if (depth == max_depth)
   2785 			break;
   2786 	}
   2787 	if ((depth & 3) != 3)
   2788 		printf("\n");
   2789 	printf("Max depth found was %d\n", max_depth);
   2790 }
   2791 #endif /* DEBUG */
   2792 
   2793 #if defined(PMAPCHECK) || defined(DEBUG)
   2794 void
   2795 pmap_pvo_verify(void)
   2796 {
   2797 	int ptegidx;
   2798 	int s;
   2799 
   2800 	s = splvm();
   2801 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2802 		struct pvo_entry *pvo;
   2803 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2804 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2805 				panic("pmap_pvo_verify: invalid pvo %p "
   2806 				    "on list %#x", pvo, ptegidx);
   2807 			pmap_pvo_check(pvo);
   2808 		}
   2809 	}
   2810 	splx(s);
   2811 }
   2812 #endif /* PMAPCHECK */
   2813 
   2814 
   2815 void *
   2816 pmap_pool_ualloc(struct pool *pp, int flags)
   2817 {
   2818 	struct pvo_page *pvop;
   2819 
   2820 	if (uvm.page_init_done != true) {
   2821 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2822 	}
   2823 
   2824 	PMAP_LOCK();
   2825 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2826 	if (pvop != NULL) {
   2827 		pmap_upvop_free--;
   2828 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2829 		PMAP_UNLOCK();
   2830 		return pvop;
   2831 	}
   2832 	PMAP_UNLOCK();
   2833 	return pmap_pool_malloc(pp, flags);
   2834 }
   2835 
   2836 void *
   2837 pmap_pool_malloc(struct pool *pp, int flags)
   2838 {
   2839 	struct pvo_page *pvop;
   2840 	struct vm_page *pg;
   2841 
   2842 	PMAP_LOCK();
   2843 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2844 	if (pvop != NULL) {
   2845 		pmap_mpvop_free--;
   2846 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2847 		PMAP_UNLOCK();
   2848 		return pvop;
   2849 	}
   2850 	PMAP_UNLOCK();
   2851  again:
   2852 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2853 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2854 	if (__predict_false(pg == NULL)) {
   2855 		if (flags & PR_WAITOK) {
   2856 			uvm_wait("plpg");
   2857 			goto again;
   2858 		} else {
   2859 			return (0);
   2860 		}
   2861 	}
   2862 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2863 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2864 }
   2865 
   2866 void
   2867 pmap_pool_ufree(struct pool *pp, void *va)
   2868 {
   2869 	struct pvo_page *pvop;
   2870 #if 0
   2871 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2872 		pmap_pool_mfree(va, size, tag);
   2873 		return;
   2874 	}
   2875 #endif
   2876 	PMAP_LOCK();
   2877 	pvop = va;
   2878 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2879 	pmap_upvop_free++;
   2880 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2881 		pmap_upvop_maxfree = pmap_upvop_free;
   2882 	PMAP_UNLOCK();
   2883 }
   2884 
   2885 void
   2886 pmap_pool_mfree(struct pool *pp, void *va)
   2887 {
   2888 	struct pvo_page *pvop;
   2889 
   2890 	PMAP_LOCK();
   2891 	pvop = va;
   2892 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2893 	pmap_mpvop_free++;
   2894 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2895 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2896 	PMAP_UNLOCK();
   2897 #if 0
   2898 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2899 #endif
   2900 }
   2901 
   2902 /*
   2903  * This routine in bootstraping to steal to-be-managed memory (which will
   2904  * then be unmanaged).  We use it to grab from the first 256MB for our
   2905  * pmap needs and above 256MB for other stuff.
   2906  */
   2907 vaddr_t
   2908 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2909 {
   2910 	vsize_t size;
   2911 	vaddr_t va;
   2912 	paddr_t pa = 0;
   2913 	int npgs, bank;
   2914 	struct vm_physseg *ps;
   2915 
   2916 	if (uvm.page_init_done == true)
   2917 		panic("pmap_steal_memory: called _after_ bootstrap");
   2918 
   2919 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2920 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2921 
   2922 	size = round_page(vsize);
   2923 	npgs = atop(size);
   2924 
   2925 	/*
   2926 	 * PA 0 will never be among those given to UVM so we can use it
   2927 	 * to indicate we couldn't steal any memory.
   2928 	 */
   2929 	for (bank = 0; bank < vm_nphysseg; bank++) {
   2930 		ps = VM_PHYSMEM_PTR(bank);
   2931 		if (ps->free_list == VM_FREELIST_FIRST256 &&
   2932 		    ps->avail_end - ps->avail_start >= npgs) {
   2933 			pa = ptoa(ps->avail_start);
   2934 			break;
   2935 		}
   2936 	}
   2937 
   2938 	if (pa == 0)
   2939 		panic("pmap_steal_memory: no approriate memory to steal!");
   2940 
   2941 	ps->avail_start += npgs;
   2942 	ps->start += npgs;
   2943 
   2944 	/*
   2945 	 * If we've used up all the pages in the segment, remove it and
   2946 	 * compact the list.
   2947 	 */
   2948 	if (ps->avail_start == ps->end) {
   2949 		/*
   2950 		 * If this was the last one, then a very bad thing has occurred
   2951 		 */
   2952 		if (--vm_nphysseg == 0)
   2953 			panic("pmap_steal_memory: out of memory!");
   2954 
   2955 		printf("pmap_steal_memory: consumed bank %d\n", bank);
   2956 		for (; bank < vm_nphysseg; bank++, ps++) {
   2957 			ps[0] = ps[1];
   2958 		}
   2959 	}
   2960 
   2961 	va = (vaddr_t) pa;
   2962 	memset((void *) va, 0, size);
   2963 	pmap_pages_stolen += npgs;
   2964 #ifdef DEBUG
   2965 	if (pmapdebug && npgs > 1) {
   2966 		u_int cnt = 0;
   2967 		for (bank = 0; bank < vm_nphysseg; bank++) {
   2968 			ps = VM_PHYSMEM_PTR(bank);
   2969 			cnt += ps->avail_end - ps->avail_start;
   2970 		}
   2971 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2972 		    npgs, pmap_pages_stolen, cnt);
   2973 	}
   2974 #endif
   2975 
   2976 	return va;
   2977 }
   2978 
   2979 /*
   2980  * Find a chuck of memory with right size and alignment.
   2981  */
   2982 paddr_t
   2983 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2984 {
   2985 	struct mem_region *mp;
   2986 	paddr_t s, e;
   2987 	int i, j;
   2988 
   2989 	size = round_page(size);
   2990 
   2991 	DPRINTFN(BOOT,
   2992 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2993 	    size, alignment, at_end);
   2994 
   2995 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2996 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2997 		    alignment);
   2998 
   2999 	if (at_end) {
   3000 		if (alignment != PAGE_SIZE)
   3001 			panic("pmap_boot_find_memory: invalid ending "
   3002 			    "alignment %#" _PRIxpa, alignment);
   3003 
   3004 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3005 			s = mp->start + mp->size - size;
   3006 			if (s >= mp->start && mp->size >= size) {
   3007 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3008 				DPRINTFN(BOOT,
   3009 				    "pmap_boot_find_memory: b-avail[%d] start "
   3010 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3011 				     mp->start, mp->size);
   3012 				mp->size -= size;
   3013 				DPRINTFN(BOOT,
   3014 				    "pmap_boot_find_memory: a-avail[%d] start "
   3015 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3016 				     mp->start, mp->size);
   3017 				return s;
   3018 			}
   3019 		}
   3020 		panic("pmap_boot_find_memory: no available memory");
   3021 	}
   3022 
   3023 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3024 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3025 		e = s + size;
   3026 
   3027 		/*
   3028 		 * Is the calculated region entirely within the region?
   3029 		 */
   3030 		if (s < mp->start || e > mp->start + mp->size)
   3031 			continue;
   3032 
   3033 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3034 		if (s == mp->start) {
   3035 			/*
   3036 			 * If the block starts at the beginning of region,
   3037 			 * adjust the size & start. (the region may now be
   3038 			 * zero in length)
   3039 			 */
   3040 			DPRINTFN(BOOT,
   3041 			    "pmap_boot_find_memory: b-avail[%d] start "
   3042 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3043 			mp->start += size;
   3044 			mp->size -= size;
   3045 			DPRINTFN(BOOT,
   3046 			    "pmap_boot_find_memory: a-avail[%d] start "
   3047 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3048 		} else if (e == mp->start + mp->size) {
   3049 			/*
   3050 			 * If the block starts at the beginning of region,
   3051 			 * adjust only the size.
   3052 			 */
   3053 			DPRINTFN(BOOT,
   3054 			    "pmap_boot_find_memory: b-avail[%d] start "
   3055 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3056 			mp->size -= size;
   3057 			DPRINTFN(BOOT,
   3058 			    "pmap_boot_find_memory: a-avail[%d] start "
   3059 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3060 		} else {
   3061 			/*
   3062 			 * Block is in the middle of the region, so we
   3063 			 * have to split it in two.
   3064 			 */
   3065 			for (j = avail_cnt; j > i + 1; j--) {
   3066 				avail[j] = avail[j-1];
   3067 			}
   3068 			DPRINTFN(BOOT,
   3069 			    "pmap_boot_find_memory: b-avail[%d] start "
   3070 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3071 			mp[1].start = e;
   3072 			mp[1].size = mp[0].start + mp[0].size - e;
   3073 			mp[0].size = s - mp[0].start;
   3074 			avail_cnt++;
   3075 			for (; i < avail_cnt; i++) {
   3076 				DPRINTFN(BOOT,
   3077 				    "pmap_boot_find_memory: a-avail[%d] "
   3078 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3079 				     avail[i].start, avail[i].size);
   3080 			}
   3081 		}
   3082 		KASSERT(s == (uintptr_t) s);
   3083 		return s;
   3084 	}
   3085 	panic("pmap_boot_find_memory: not enough memory for "
   3086 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3087 }
   3088 
   3089 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3090 #if defined (PMAP_OEA64_BRIDGE)
   3091 int
   3092 pmap_setup_segment0_map(int use_large_pages, ...)
   3093 {
   3094     vaddr_t va, va_end;
   3095 
   3096     register_t pte_lo = 0x0;
   3097     int ptegidx = 0;
   3098     struct pte pte;
   3099     va_list ap;
   3100 
   3101     /* Coherent + Supervisor RW, no user access */
   3102     pte_lo = PTE_M;
   3103 
   3104     /* XXXSL
   3105      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3106      * these have to take priority.
   3107      */
   3108     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3109         ptegidx = va_to_pteg(pmap_kernel(), va);
   3110         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3111         (void)pmap_pte_insert(ptegidx, &pte);
   3112     }
   3113 
   3114     va_start(ap, use_large_pages);
   3115     while (1) {
   3116         paddr_t pa;
   3117         size_t size;
   3118 
   3119         va = va_arg(ap, vaddr_t);
   3120 
   3121         if (va == 0)
   3122             break;
   3123 
   3124         pa = va_arg(ap, paddr_t);
   3125         size = va_arg(ap, size_t);
   3126 
   3127         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3128 #if 0
   3129 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3130 #endif
   3131             ptegidx = va_to_pteg(pmap_kernel(), va);
   3132             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3133             (void)pmap_pte_insert(ptegidx, &pte);
   3134         }
   3135     }
   3136     va_end(ap);
   3137 
   3138     TLBSYNC();
   3139     SYNC();
   3140     return (0);
   3141 }
   3142 #endif /* PMAP_OEA64_BRIDGE */
   3143 
   3144 /*
   3145  * This is not part of the defined PMAP interface and is specific to the
   3146  * PowerPC architecture.  This is called during initppc, before the system
   3147  * is really initialized.
   3148  */
   3149 void
   3150 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3151 {
   3152 	struct mem_region *mp, tmp;
   3153 	paddr_t s, e;
   3154 	psize_t size;
   3155 	int i, j;
   3156 
   3157 	/*
   3158 	 * Get memory.
   3159 	 */
   3160 	mem_regions(&mem, &avail);
   3161 #if defined(DEBUG)
   3162 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3163 		printf("pmap_bootstrap: memory configuration:\n");
   3164 		for (mp = mem; mp->size; mp++) {
   3165 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3166 				mp->start, mp->size);
   3167 		}
   3168 		for (mp = avail; mp->size; mp++) {
   3169 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3170 				mp->start, mp->size);
   3171 		}
   3172 	}
   3173 #endif
   3174 
   3175 	/*
   3176 	 * Find out how much physical memory we have and in how many chunks.
   3177 	 */
   3178 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3179 		if (mp->start >= pmap_memlimit)
   3180 			continue;
   3181 		if (mp->start + mp->size > pmap_memlimit) {
   3182 			size = pmap_memlimit - mp->start;
   3183 			physmem += btoc(size);
   3184 		} else {
   3185 			physmem += btoc(mp->size);
   3186 		}
   3187 		mem_cnt++;
   3188 	}
   3189 
   3190 	/*
   3191 	 * Count the number of available entries.
   3192 	 */
   3193 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3194 		avail_cnt++;
   3195 
   3196 	/*
   3197 	 * Page align all regions.
   3198 	 */
   3199 	kernelstart = trunc_page(kernelstart);
   3200 	kernelend = round_page(kernelend);
   3201 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3202 		s = round_page(mp->start);
   3203 		mp->size -= (s - mp->start);
   3204 		mp->size = trunc_page(mp->size);
   3205 		mp->start = s;
   3206 		e = mp->start + mp->size;
   3207 
   3208 		DPRINTFN(BOOT,
   3209 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3210 		    i, mp->start, mp->size);
   3211 
   3212 		/*
   3213 		 * Don't allow the end to run beyond our artificial limit
   3214 		 */
   3215 		if (e > pmap_memlimit)
   3216 			e = pmap_memlimit;
   3217 
   3218 		/*
   3219 		 * Is this region empty or strange?  skip it.
   3220 		 */
   3221 		if (e <= s) {
   3222 			mp->start = 0;
   3223 			mp->size = 0;
   3224 			continue;
   3225 		}
   3226 
   3227 		/*
   3228 		 * Does this overlap the beginning of kernel?
   3229 		 *   Does extend past the end of the kernel?
   3230 		 */
   3231 		else if (s < kernelstart && e > kernelstart) {
   3232 			if (e > kernelend) {
   3233 				avail[avail_cnt].start = kernelend;
   3234 				avail[avail_cnt].size = e - kernelend;
   3235 				avail_cnt++;
   3236 			}
   3237 			mp->size = kernelstart - s;
   3238 		}
   3239 		/*
   3240 		 * Check whether this region overlaps the end of the kernel.
   3241 		 */
   3242 		else if (s < kernelend && e > kernelend) {
   3243 			mp->start = kernelend;
   3244 			mp->size = e - kernelend;
   3245 		}
   3246 		/*
   3247 		 * Look whether this regions is completely inside the kernel.
   3248 		 * Nuke it if it does.
   3249 		 */
   3250 		else if (s >= kernelstart && e <= kernelend) {
   3251 			mp->start = 0;
   3252 			mp->size = 0;
   3253 		}
   3254 		/*
   3255 		 * If the user imposed a memory limit, enforce it.
   3256 		 */
   3257 		else if (s >= pmap_memlimit) {
   3258 			mp->start = -PAGE_SIZE;	/* let's know why */
   3259 			mp->size = 0;
   3260 		}
   3261 		else {
   3262 			mp->start = s;
   3263 			mp->size = e - s;
   3264 		}
   3265 		DPRINTFN(BOOT,
   3266 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3267 		    i, mp->start, mp->size);
   3268 	}
   3269 
   3270 	/*
   3271 	 * Move (and uncount) all the null return to the end.
   3272 	 */
   3273 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3274 		if (mp->size == 0) {
   3275 			tmp = avail[i];
   3276 			avail[i] = avail[--avail_cnt];
   3277 			avail[avail_cnt] = avail[i];
   3278 		}
   3279 	}
   3280 
   3281 	/*
   3282 	 * (Bubble)sort them into ascending order.
   3283 	 */
   3284 	for (i = 0; i < avail_cnt; i++) {
   3285 		for (j = i + 1; j < avail_cnt; j++) {
   3286 			if (avail[i].start > avail[j].start) {
   3287 				tmp = avail[i];
   3288 				avail[i] = avail[j];
   3289 				avail[j] = tmp;
   3290 			}
   3291 		}
   3292 	}
   3293 
   3294 	/*
   3295 	 * Make sure they don't overlap.
   3296 	 */
   3297 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3298 		if (mp[0].start + mp[0].size > mp[1].start) {
   3299 			mp[0].size = mp[1].start - mp[0].start;
   3300 		}
   3301 		DPRINTFN(BOOT,
   3302 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3303 		    i, mp->start, mp->size);
   3304 	}
   3305 	DPRINTFN(BOOT,
   3306 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3307 	    i, mp->start, mp->size);
   3308 
   3309 #ifdef	PTEGCOUNT
   3310 	pmap_pteg_cnt = PTEGCOUNT;
   3311 #else /* PTEGCOUNT */
   3312 
   3313 	pmap_pteg_cnt = 0x1000;
   3314 
   3315 	while (pmap_pteg_cnt < physmem)
   3316 		pmap_pteg_cnt <<= 1;
   3317 
   3318 	pmap_pteg_cnt >>= 1;
   3319 #endif /* PTEGCOUNT */
   3320 
   3321 #ifdef DEBUG
   3322 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3323 #endif
   3324 
   3325 	/*
   3326 	 * Find suitably aligned memory for PTEG hash table.
   3327 	 */
   3328 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3329 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3330 
   3331 #ifdef DEBUG
   3332 	DPRINTFN(BOOT,
   3333 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3334 #endif
   3335 
   3336 
   3337 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3338 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3339 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3340 		    pmap_pteg_table, size);
   3341 #endif
   3342 
   3343 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3344 		pmap_pteg_cnt * sizeof(struct pteg));
   3345 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3346 
   3347 	/*
   3348 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3349 	 * with pages.  So we just steal them before giving them to UVM.
   3350 	 */
   3351 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3352 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3353 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3354 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3355 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3356 		    pmap_pvo_table, size);
   3357 #endif
   3358 
   3359 	for (i = 0; i < pmap_pteg_cnt; i++)
   3360 		TAILQ_INIT(&pmap_pvo_table[i]);
   3361 
   3362 #ifndef MSGBUFADDR
   3363 	/*
   3364 	 * Allocate msgbuf in high memory.
   3365 	 */
   3366 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3367 #endif
   3368 
   3369 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3370 		paddr_t pfstart = atop(mp->start);
   3371 		paddr_t pfend = atop(mp->start + mp->size);
   3372 		if (mp->size == 0)
   3373 			continue;
   3374 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3375 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3376 				VM_FREELIST_FIRST256);
   3377 		} else if (mp->start >= SEGMENT_LENGTH) {
   3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3379 				VM_FREELIST_DEFAULT);
   3380 		} else {
   3381 			pfend = atop(SEGMENT_LENGTH);
   3382 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3383 				VM_FREELIST_FIRST256);
   3384 			pfstart = atop(SEGMENT_LENGTH);
   3385 			pfend = atop(mp->start + mp->size);
   3386 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3387 				VM_FREELIST_DEFAULT);
   3388 		}
   3389 	}
   3390 
   3391 	/*
   3392 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3393 	 */
   3394 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3395 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3396 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3397 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3398 	pmap_vsid_bitmap[0] |= 1;
   3399 
   3400 	/*
   3401 	 * Initialize kernel pmap and hardware.
   3402 	 */
   3403 
   3404 /* PMAP_OEA64_BRIDGE does support these instructions */
   3405 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3406 	for (i = 0; i < 16; i++) {
   3407 #if defined(PPC_OEA601)
   3408 	    /* XXX wedges for segment register 0xf , so set later */
   3409 	    if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
   3410 		    continue;
   3411 #endif
   3412  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3413 		__asm volatile ("mtsrin %0,%1"
   3414  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3415 	}
   3416 
   3417 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3418 	__asm volatile ("mtsr %0,%1"
   3419 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3420 #ifdef KERNEL2_SR
   3421 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3422 	__asm volatile ("mtsr %0,%1"
   3423 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3424 #endif
   3425 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3426 #if defined (PMAP_OEA)
   3427 	for (i = 0; i < 16; i++) {
   3428 		if (iosrtable[i] & SR601_T) {
   3429 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3430 			__asm volatile ("mtsrin %0,%1"
   3431 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3432 		}
   3433 	}
   3434 	__asm volatile ("sync; mtsdr1 %0; isync"
   3435 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3436 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3437  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3438  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
   3439 #endif
   3440 	tlbia();
   3441 
   3442 #ifdef ALTIVEC
   3443 	pmap_use_altivec = cpu_altivec;
   3444 #endif
   3445 
   3446 #ifdef DEBUG
   3447 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3448 		u_int cnt;
   3449 		int bank;
   3450 		char pbuf[9];
   3451 		for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
   3452 			cnt += VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start;
   3453 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3454 			    bank,
   3455 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_start),
   3456 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end),
   3457 			    ptoa(VM_PHYSMEM_PTR(bank)->avail_end - VM_PHYSMEM_PTR(bank)->avail_start));
   3458 		}
   3459 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3460 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3461 		    pbuf, cnt);
   3462 	}
   3463 #endif
   3464 
   3465 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3466 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3467 	    &pmap_pool_uallocator, IPL_VM);
   3468 
   3469 	pool_setlowat(&pmap_upvo_pool, 252);
   3470 
   3471 	pool_init(&pmap_pool, sizeof(struct pmap),
   3472 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3473 	    IPL_NONE);
   3474 
   3475 #if defined(PMAP_NEED_MAPKERNEL)
   3476 	{
   3477 		struct pmap *pm = pmap_kernel();
   3478 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3479 		extern int etext[], kernel_text[];
   3480 		vaddr_t va, va_etext = (paddr_t) etext;
   3481 #endif
   3482 		paddr_t pa, pa_end;
   3483 		register_t sr;
   3484 		struct pte pt;
   3485 		unsigned int ptegidx;
   3486 		int bank;
   3487 
   3488 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3489 		pm->pm_sr[0] = sr;
   3490 
   3491 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3492 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3493 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3494 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3495 				ptegidx = va_to_pteg(pm, pa);
   3496 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3497 				pmap_pte_insert(ptegidx, &pt);
   3498 			}
   3499 		}
   3500 
   3501 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3502 		va = (vaddr_t) kernel_text;
   3503 
   3504 		for (pa = kernelstart; va < va_etext;
   3505 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3506 			ptegidx = va_to_pteg(pm, va);
   3507 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3508 			pmap_pte_insert(ptegidx, &pt);
   3509 		}
   3510 
   3511 		for (; pa < kernelend;
   3512 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3513 			ptegidx = va_to_pteg(pm, va);
   3514 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3515 			pmap_pte_insert(ptegidx, &pt);
   3516 		}
   3517 
   3518 		for (va = 0, pa = 0; va < kernelstart;
   3519 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3520 			ptegidx = va_to_pteg(pm, va);
   3521 			if (va < 0x3000)
   3522 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3523 			else
   3524 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3525 			pmap_pte_insert(ptegidx, &pt);
   3526 		}
   3527 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3528 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3529 			ptegidx = va_to_pteg(pm, va);
   3530 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3531 			pmap_pte_insert(ptegidx, &pt);
   3532 		}
   3533 #endif
   3534 
   3535 		__asm volatile ("mtsrin %0,%1"
   3536  			      :: "r"(sr), "r"(kernelstart));
   3537 	}
   3538 #endif
   3539 
   3540 #if defined(PMAPDEBUG)
   3541 	if ( pmapdebug )
   3542 	    pmap_print_mmuregs();
   3543 #endif
   3544 }
   3545