Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.94
      1 /*	$NetBSD: pmap.c,v 1.94 2016/12/23 07:15:28 cherry Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.94 2016/12/23 07:15:28 cherry Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #include "opt_ppcarch.h"
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 
     75 #include <sys/param.h>
     76 #include <sys/proc.h>
     77 #include <sys/pool.h>
     78 #include <sys/queue.h>
     79 #include <sys/device.h>		/* for evcnt */
     80 #include <sys/systm.h>
     81 #include <sys/atomic.h>
     82 
     83 #include <uvm/uvm.h>
     84 #include <uvm/uvm_physseg.h>
     85 
     86 #include <machine/powerpc.h>
     87 #include <powerpc/bat.h>
     88 #include <powerpc/pcb.h>
     89 #include <powerpc/psl.h>
     90 #include <powerpc/spr.h>
     91 #include <powerpc/oea/spr.h>
     92 #include <powerpc/oea/sr_601.h>
     93 
     94 #ifdef ALTIVEC
     95 extern int pmap_use_altivec;
     96 #endif
     97 
     98 #ifdef PMAP_MEMLIMIT
     99 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    100 #else
    101 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    102 #endif
    103 
    104 extern struct pmap kernel_pmap_;
    105 static unsigned int pmap_pages_stolen;
    106 static u_long pmap_pte_valid;
    107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    108 static u_long pmap_pvo_enter_depth;
    109 static u_long pmap_pvo_remove_depth;
    110 #endif
    111 
    112 #ifndef MSGBUFADDR
    113 extern paddr_t msgbuf_paddr;
    114 #endif
    115 
    116 static struct mem_region *mem, *avail;
    117 static u_int mem_cnt, avail_cnt;
    118 
    119 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    120 # define	PMAP_OEA 1
    121 #endif
    122 
    123 #if defined(PMAP_OEA)
    124 #define	_PRIxpte	"lx"
    125 #else
    126 #define	_PRIxpte	PRIx64
    127 #endif
    128 #define	_PRIxpa		"lx"
    129 #define	_PRIxva		"lx"
    130 #define	_PRIsr  	"lx"
    131 
    132 #ifdef PMAP_NEEDS_FIXUP
    133 #if defined(PMAP_OEA)
    134 #define	PMAPNAME(name)	pmap32_##name
    135 #elif defined(PMAP_OEA64)
    136 #define	PMAPNAME(name)	pmap64_##name
    137 #elif defined(PMAP_OEA64_BRIDGE)
    138 #define	PMAPNAME(name)	pmap64bridge_##name
    139 #else
    140 #error unknown variant for pmap
    141 #endif
    142 #endif /* PMAP_NEEDS_FIXUP */
    143 
    144 #ifdef PMAPNAME
    145 #define	STATIC			static
    146 #define pmap_pte_spill		PMAPNAME(pte_spill)
    147 #define pmap_real_memory	PMAPNAME(real_memory)
    148 #define pmap_init		PMAPNAME(init)
    149 #define pmap_virtual_space	PMAPNAME(virtual_space)
    150 #define pmap_create		PMAPNAME(create)
    151 #define pmap_reference		PMAPNAME(reference)
    152 #define pmap_destroy		PMAPNAME(destroy)
    153 #define pmap_copy		PMAPNAME(copy)
    154 #define pmap_update		PMAPNAME(update)
    155 #define pmap_enter		PMAPNAME(enter)
    156 #define pmap_remove		PMAPNAME(remove)
    157 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    158 #define pmap_kremove		PMAPNAME(kremove)
    159 #define pmap_extract		PMAPNAME(extract)
    160 #define pmap_protect		PMAPNAME(protect)
    161 #define pmap_unwire		PMAPNAME(unwire)
    162 #define pmap_page_protect	PMAPNAME(page_protect)
    163 #define pmap_query_bit		PMAPNAME(query_bit)
    164 #define pmap_clear_bit		PMAPNAME(clear_bit)
    165 
    166 #define pmap_activate		PMAPNAME(activate)
    167 #define pmap_deactivate		PMAPNAME(deactivate)
    168 
    169 #define pmap_pinit		PMAPNAME(pinit)
    170 #define pmap_procwr		PMAPNAME(procwr)
    171 
    172 #define pmap_pool		PMAPNAME(pool)
    173 #define pmap_upvo_pool		PMAPNAME(upvo_pool)
    174 #define pmap_mpvo_pool		PMAPNAME(mpvo_pool)
    175 #define pmap_pvo_table		PMAPNAME(pvo_table)
    176 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    177 #define pmap_pte_print		PMAPNAME(pte_print)
    178 #define pmap_pteg_check		PMAPNAME(pteg_check)
    179 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    180 #define pmap_print_pte		PMAPNAME(print_pte)
    181 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    182 #endif
    183 #if defined(DEBUG) || defined(PMAPCHECK)
    184 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    185 #define pmapcheck		PMAPNAME(check)
    186 #endif
    187 #if defined(DEBUG) || defined(PMAPDEBUG)
    188 #define pmapdebug		PMAPNAME(debug)
    189 #endif
    190 #define pmap_steal_memory	PMAPNAME(steal_memory)
    191 #define pmap_bootstrap		PMAPNAME(bootstrap)
    192 #else
    193 #define	STATIC			/* nothing */
    194 #endif /* PMAPNAME */
    195 
    196 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    197 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    198 STATIC void pmap_init(void);
    199 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    200 STATIC pmap_t pmap_create(void);
    201 STATIC void pmap_reference(pmap_t);
    202 STATIC void pmap_destroy(pmap_t);
    203 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    204 STATIC void pmap_update(pmap_t);
    205 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    206 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    207 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    208 STATIC void pmap_kremove(vaddr_t, vsize_t);
    209 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    210 
    211 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    212 STATIC void pmap_unwire(pmap_t, vaddr_t);
    213 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    214 STATIC bool pmap_query_bit(struct vm_page *, int);
    215 STATIC bool pmap_clear_bit(struct vm_page *, int);
    216 
    217 STATIC void pmap_activate(struct lwp *);
    218 STATIC void pmap_deactivate(struct lwp *);
    219 
    220 STATIC void pmap_pinit(pmap_t pm);
    221 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    222 
    223 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    224 STATIC void pmap_pte_print(volatile struct pte *);
    225 STATIC void pmap_pteg_check(void);
    226 STATIC void pmap_print_mmuregs(void);
    227 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    228 STATIC void pmap_pteg_dist(void);
    229 #endif
    230 #if defined(DEBUG) || defined(PMAPCHECK)
    231 STATIC void pmap_pvo_verify(void);
    232 #endif
    233 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    234 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    235 
    236 #ifdef PMAPNAME
    237 const struct pmap_ops PMAPNAME(ops) = {
    238 	.pmapop_pte_spill = pmap_pte_spill,
    239 	.pmapop_real_memory = pmap_real_memory,
    240 	.pmapop_init = pmap_init,
    241 	.pmapop_virtual_space = pmap_virtual_space,
    242 	.pmapop_create = pmap_create,
    243 	.pmapop_reference = pmap_reference,
    244 	.pmapop_destroy = pmap_destroy,
    245 	.pmapop_copy = pmap_copy,
    246 	.pmapop_update = pmap_update,
    247 	.pmapop_enter = pmap_enter,
    248 	.pmapop_remove = pmap_remove,
    249 	.pmapop_kenter_pa = pmap_kenter_pa,
    250 	.pmapop_kremove = pmap_kremove,
    251 	.pmapop_extract = pmap_extract,
    252 	.pmapop_protect = pmap_protect,
    253 	.pmapop_unwire = pmap_unwire,
    254 	.pmapop_page_protect = pmap_page_protect,
    255 	.pmapop_query_bit = pmap_query_bit,
    256 	.pmapop_clear_bit = pmap_clear_bit,
    257 	.pmapop_activate = pmap_activate,
    258 	.pmapop_deactivate = pmap_deactivate,
    259 	.pmapop_pinit = pmap_pinit,
    260 	.pmapop_procwr = pmap_procwr,
    261 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    262 	.pmapop_pte_print = pmap_pte_print,
    263 	.pmapop_pteg_check = pmap_pteg_check,
    264 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    265 	.pmapop_print_pte = pmap_print_pte,
    266 	.pmapop_pteg_dist = pmap_pteg_dist,
    267 #else
    268 	.pmapop_pte_print = NULL,
    269 	.pmapop_pteg_check = NULL,
    270 	.pmapop_print_mmuregs = NULL,
    271 	.pmapop_print_pte = NULL,
    272 	.pmapop_pteg_dist = NULL,
    273 #endif
    274 #if defined(DEBUG) || defined(PMAPCHECK)
    275 	.pmapop_pvo_verify = pmap_pvo_verify,
    276 #else
    277 	.pmapop_pvo_verify = NULL,
    278 #endif
    279 	.pmapop_steal_memory = pmap_steal_memory,
    280 	.pmapop_bootstrap = pmap_bootstrap,
    281 };
    282 #endif /* !PMAPNAME */
    283 
    284 /*
    285  * The following structure is aligned to 32 bytes
    286  */
    287 struct pvo_entry {
    288 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    289 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    290 	struct pte pvo_pte;			/* Prebuilt PTE */
    291 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    292 	vaddr_t pvo_vaddr;			/* VA of entry */
    293 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    294 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    295 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    296 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    297 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    298 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    299 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    300 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    301 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    302 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    303 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    304 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    305 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    306 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    307 #define	PVO_REMOVE		6		/* PVO has been removed */
    308 #define	PVO_WHERE_MASK		15
    309 #define	PVO_WHERE_SHFT		8
    310 } __attribute__ ((aligned (32)));
    311 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    312 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    313 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    314 #define	PVO_PTEGIDX_CLR(pvo)	\
    315 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    316 #define	PVO_PTEGIDX_SET(pvo,i)	\
    317 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    318 #define	PVO_WHERE(pvo,w)	\
    319 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    320 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    321 
    322 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    323 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    324 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    325 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    326 
    327 struct pool pmap_pool;		/* pool for pmap structures */
    328 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    329 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    330 
    331 /*
    332  * We keep a cache of unmanaged pages to be used for pvo entries for
    333  * unmanaged pages.
    334  */
    335 struct pvo_page {
    336 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    337 };
    338 SIMPLEQ_HEAD(pvop_head, pvo_page);
    339 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    340 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    341 static u_long pmap_upvop_free;
    342 static u_long pmap_upvop_maxfree;
    343 static u_long pmap_mpvop_free;
    344 static u_long pmap_mpvop_maxfree;
    345 
    346 static void *pmap_pool_ualloc(struct pool *, int);
    347 static void *pmap_pool_malloc(struct pool *, int);
    348 
    349 static void pmap_pool_ufree(struct pool *, void *);
    350 static void pmap_pool_mfree(struct pool *, void *);
    351 
    352 static struct pool_allocator pmap_pool_mallocator = {
    353 	.pa_alloc = pmap_pool_malloc,
    354 	.pa_free = pmap_pool_mfree,
    355 	.pa_pagesz = 0,
    356 };
    357 
    358 static struct pool_allocator pmap_pool_uallocator = {
    359 	.pa_alloc = pmap_pool_ualloc,
    360 	.pa_free = pmap_pool_ufree,
    361 	.pa_pagesz = 0,
    362 };
    363 
    364 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    365 void pmap_pte_print(volatile struct pte *);
    366 void pmap_pteg_check(void);
    367 void pmap_pteg_dist(void);
    368 void pmap_print_pte(pmap_t, vaddr_t);
    369 void pmap_print_mmuregs(void);
    370 #endif
    371 
    372 #if defined(DEBUG) || defined(PMAPCHECK)
    373 #ifdef PMAPCHECK
    374 int pmapcheck = 1;
    375 #else
    376 int pmapcheck = 0;
    377 #endif
    378 void pmap_pvo_verify(void);
    379 static void pmap_pvo_check(const struct pvo_entry *);
    380 #define	PMAP_PVO_CHECK(pvo)	 		\
    381 	do {					\
    382 		if (pmapcheck)			\
    383 			pmap_pvo_check(pvo);	\
    384 	} while (0)
    385 #else
    386 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    387 #endif
    388 static int pmap_pte_insert(int, struct pte *);
    389 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    390 	vaddr_t, paddr_t, register_t, int);
    391 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    392 static void pmap_pvo_free(struct pvo_entry *);
    393 static void pmap_pvo_free_list(struct pvo_head *);
    394 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    395 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    396 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    397 static void pvo_set_exec(struct pvo_entry *);
    398 static void pvo_clear_exec(struct pvo_entry *);
    399 
    400 static void tlbia(void);
    401 
    402 static void pmap_release(pmap_t);
    403 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    404 
    405 static uint32_t pmap_pvo_reclaim_nextidx;
    406 #ifdef DEBUG
    407 static int pmap_pvo_reclaim_debugctr;
    408 #endif
    409 
    410 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    411 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    412 
    413 static int pmap_initialized;
    414 
    415 #if defined(DEBUG) || defined(PMAPDEBUG)
    416 #define	PMAPDEBUG_BOOT		0x0001
    417 #define	PMAPDEBUG_PTE		0x0002
    418 #define	PMAPDEBUG_EXEC		0x0008
    419 #define	PMAPDEBUG_PVOENTER	0x0010
    420 #define	PMAPDEBUG_PVOREMOVE	0x0020
    421 #define	PMAPDEBUG_ACTIVATE	0x0100
    422 #define	PMAPDEBUG_CREATE	0x0200
    423 #define	PMAPDEBUG_ENTER		0x1000
    424 #define	PMAPDEBUG_KENTER	0x2000
    425 #define	PMAPDEBUG_KREMOVE	0x4000
    426 #define	PMAPDEBUG_REMOVE	0x8000
    427 
    428 unsigned int pmapdebug = 0;
    429 
    430 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    431 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    432 #else
    433 # define DPRINTF(x, ...)	do { } while (0)
    434 # define DPRINTFN(n, x, ...)	do { } while (0)
    435 #endif
    436 
    437 
    438 #ifdef PMAPCOUNTERS
    439 /*
    440  * From pmap_subr.c
    441  */
    442 extern struct evcnt pmap_evcnt_mappings;
    443 extern struct evcnt pmap_evcnt_unmappings;
    444 
    445 extern struct evcnt pmap_evcnt_kernel_mappings;
    446 extern struct evcnt pmap_evcnt_kernel_unmappings;
    447 
    448 extern struct evcnt pmap_evcnt_mappings_replaced;
    449 
    450 extern struct evcnt pmap_evcnt_exec_mappings;
    451 extern struct evcnt pmap_evcnt_exec_cached;
    452 
    453 extern struct evcnt pmap_evcnt_exec_synced;
    454 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    455 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    456 
    457 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    458 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    459 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    460 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    461 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    462 
    463 extern struct evcnt pmap_evcnt_updates;
    464 extern struct evcnt pmap_evcnt_collects;
    465 extern struct evcnt pmap_evcnt_copies;
    466 
    467 extern struct evcnt pmap_evcnt_ptes_spilled;
    468 extern struct evcnt pmap_evcnt_ptes_unspilled;
    469 extern struct evcnt pmap_evcnt_ptes_evicted;
    470 
    471 extern struct evcnt pmap_evcnt_ptes_primary[8];
    472 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    473 extern struct evcnt pmap_evcnt_ptes_removed;
    474 extern struct evcnt pmap_evcnt_ptes_changed;
    475 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    476 extern struct evcnt pmap_evcnt_pvos_failed;
    477 
    478 extern struct evcnt pmap_evcnt_zeroed_pages;
    479 extern struct evcnt pmap_evcnt_copied_pages;
    480 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    481 
    482 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    483 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    484 #else
    485 #define	PMAPCOUNT(ev)	((void) 0)
    486 #define	PMAPCOUNT2(ev)	((void) 0)
    487 #endif
    488 
    489 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    490 
    491 /* XXXSL: this needs to be moved to assembler */
    492 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    493 
    494 #ifdef MD_TLBSYNC
    495 #define TLBSYNC()	MD_TLBSYNC()
    496 #else
    497 #define	TLBSYNC()	__asm volatile("tlbsync")
    498 #endif
    499 #define	SYNC()		__asm volatile("sync")
    500 #define	EIEIO()		__asm volatile("eieio")
    501 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    502 #define	MFMSR()		mfmsr()
    503 #define	MTMSR(psl)	mtmsr(psl)
    504 #define	MFPVR()		mfpvr()
    505 #define	MFSRIN(va)	mfsrin(va)
    506 #define	MFTB()		mfrtcltbl()
    507 
    508 #if defined(DDB) && !defined(PMAP_OEA64)
    509 static inline register_t
    510 mfsrin(vaddr_t va)
    511 {
    512 	register_t sr;
    513 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    514 	return sr;
    515 }
    516 #endif	/* DDB && !PMAP_OEA64 */
    517 
    518 #if defined (PMAP_OEA64_BRIDGE)
    519 extern void mfmsr64 (register64_t *result);
    520 #endif /* PMAP_OEA64_BRIDGE */
    521 
    522 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    523 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    524 
    525 static inline register_t
    526 pmap_interrupts_off(void)
    527 {
    528 	register_t msr = MFMSR();
    529 	if (msr & PSL_EE)
    530 		MTMSR(msr & ~PSL_EE);
    531 	return msr;
    532 }
    533 
    534 static void
    535 pmap_interrupts_restore(register_t msr)
    536 {
    537 	if (msr & PSL_EE)
    538 		MTMSR(msr);
    539 }
    540 
    541 static inline u_int32_t
    542 mfrtcltbl(void)
    543 {
    544 #ifdef PPC_OEA601
    545 	if ((MFPVR() >> 16) == MPC601)
    546 		return (mfrtcl() >> 7);
    547 	else
    548 #endif
    549 		return (mftbl());
    550 }
    551 
    552 /*
    553  * These small routines may have to be replaced,
    554  * if/when we support processors other that the 604.
    555  */
    556 
    557 void
    558 tlbia(void)
    559 {
    560 	char *i;
    561 
    562 	SYNC();
    563 #if defined(PMAP_OEA)
    564 	/*
    565 	 * Why not use "tlbia"?  Because not all processors implement it.
    566 	 *
    567 	 * This needs to be a per-CPU callback to do the appropriate thing
    568 	 * for the CPU. XXX
    569 	 */
    570 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    571 		TLBIE(i);
    572 		EIEIO();
    573 		SYNC();
    574 	}
    575 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    576 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    577 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    578 		TLBIEL(i);
    579 		EIEIO();
    580 		SYNC();
    581 	}
    582 #endif
    583 	TLBSYNC();
    584 	SYNC();
    585 }
    586 
    587 static inline register_t
    588 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    589 {
    590 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    591 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    592 #else /* PMAP_OEA64 */
    593 #if 0
    594 	const struct ste *ste;
    595 	register_t hash;
    596 	int i;
    597 
    598 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    599 
    600 	/*
    601 	 * Try the primary group first
    602 	 */
    603 	ste = pm->pm_stes[hash].stes;
    604 	for (i = 0; i < 8; i++, ste++) {
    605 		if (ste->ste_hi & STE_V) &&
    606 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    607 			return ste;
    608 	}
    609 
    610 	/*
    611 	 * Then the secondary group.
    612 	 */
    613 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    614 	for (i = 0; i < 8; i++, ste++) {
    615 		if (ste->ste_hi & STE_V) &&
    616 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    617 			return addr;
    618 	}
    619 
    620 	return NULL;
    621 #else
    622 	/*
    623 	 * Rather than searching the STE groups for the VSID, we know
    624 	 * how we generate that from the ESID and so do that.
    625 	 */
    626 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    627 #endif
    628 #endif /* PMAP_OEA */
    629 }
    630 
    631 static inline register_t
    632 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    633 {
    634 	register_t hash;
    635 
    636 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    637 	return hash & pmap_pteg_mask;
    638 }
    639 
    640 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    641 /*
    642  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    643  * The only bit of magic is that the top 4 bits of the address doesn't
    644  * technically exist in the PTE.  But we know we reserved 4 bits of the
    645  * VSID for it so that's how we get it.
    646  */
    647 static vaddr_t
    648 pmap_pte_to_va(volatile const struct pte *pt)
    649 {
    650 	vaddr_t va;
    651 	uintptr_t ptaddr = (uintptr_t) pt;
    652 
    653 	if (pt->pte_hi & PTE_HID)
    654 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    655 
    656 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    657 #if defined(PMAP_OEA)
    658 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    659 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    660 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    661 #endif
    662 	va <<= ADDR_PIDX_SHFT;
    663 
    664 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    665 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    666 
    667 #if defined(PMAP_OEA64)
    668 	/* PPC63 Bits 0-35 */
    669 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    670 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    671 	/* PPC Bits 0-3 */
    672 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    673 #endif
    674 
    675 	return va;
    676 }
    677 #endif
    678 
    679 static inline struct pvo_head *
    680 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    681 {
    682 	struct vm_page *pg;
    683 	struct vm_page_md *md;
    684 
    685 	pg = PHYS_TO_VM_PAGE(pa);
    686 	if (pg_p != NULL)
    687 		*pg_p = pg;
    688 	if (pg == NULL)
    689 		return &pmap_pvo_unmanaged;
    690 	md = VM_PAGE_TO_MD(pg);
    691 	return &md->mdpg_pvoh;
    692 }
    693 
    694 static inline struct pvo_head *
    695 vm_page_to_pvoh(struct vm_page *pg)
    696 {
    697 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    698 
    699 	return &md->mdpg_pvoh;
    700 }
    701 
    702 
    703 static inline void
    704 pmap_attr_clear(struct vm_page *pg, int ptebit)
    705 {
    706 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    707 
    708 	md->mdpg_attrs &= ~ptebit;
    709 }
    710 
    711 static inline int
    712 pmap_attr_fetch(struct vm_page *pg)
    713 {
    714 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    715 
    716 	return md->mdpg_attrs;
    717 }
    718 
    719 static inline void
    720 pmap_attr_save(struct vm_page *pg, int ptebit)
    721 {
    722 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    723 
    724 	md->mdpg_attrs |= ptebit;
    725 }
    726 
    727 static inline int
    728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    729 {
    730 	if (pt->pte_hi == pvo_pt->pte_hi
    731 #if 0
    732 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    733 	        ~(PTE_REF|PTE_CHG)) == 0
    734 #endif
    735 	    )
    736 		return 1;
    737 	return 0;
    738 }
    739 
    740 static inline void
    741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    742 {
    743 	/*
    744 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    745 	 * only gets set when the real pte is set in memory.
    746 	 *
    747 	 * Note: Don't set the valid bit for correct operation of tlb update.
    748 	 */
    749 #if defined(PMAP_OEA)
    750 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    751 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    752 	pt->pte_lo = pte_lo;
    753 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    754 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    755 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    756 	pt->pte_lo = (u_int64_t) pte_lo;
    757 #endif /* PMAP_OEA */
    758 }
    759 
    760 static inline void
    761 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    762 {
    763 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    764 }
    765 
    766 static inline void
    767 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    768 {
    769 	/*
    770 	 * As shown in Section 7.6.3.2.3
    771 	 */
    772 	pt->pte_lo &= ~ptebit;
    773 	TLBIE(va);
    774 	SYNC();
    775 	EIEIO();
    776 	TLBSYNC();
    777 	SYNC();
    778 #ifdef MULTIPROCESSOR
    779 	DCBST(pt);
    780 #endif
    781 }
    782 
    783 static inline void
    784 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    785 {
    786 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    787 	if (pvo_pt->pte_hi & PTE_VALID)
    788 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    789 #endif
    790 	pvo_pt->pte_hi |= PTE_VALID;
    791 
    792 	/*
    793 	 * Update the PTE as defined in section 7.6.3.1
    794 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    795 	 * have been saved so this routine can restore them (if desired).
    796 	 */
    797 	pt->pte_lo = pvo_pt->pte_lo;
    798 	EIEIO();
    799 	pt->pte_hi = pvo_pt->pte_hi;
    800 	TLBSYNC();
    801 	SYNC();
    802 #ifdef MULTIPROCESSOR
    803 	DCBST(pt);
    804 #endif
    805 	pmap_pte_valid++;
    806 }
    807 
    808 static inline void
    809 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    810 {
    811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    812 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    813 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    814 	if ((pt->pte_hi & PTE_VALID) == 0)
    815 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    816 #endif
    817 
    818 	pvo_pt->pte_hi &= ~PTE_VALID;
    819 	/*
    820 	 * Force the ref & chg bits back into the PTEs.
    821 	 */
    822 	SYNC();
    823 	/*
    824 	 * Invalidate the pte ... (Section 7.6.3.3)
    825 	 */
    826 	pt->pte_hi &= ~PTE_VALID;
    827 	SYNC();
    828 	TLBIE(va);
    829 	SYNC();
    830 	EIEIO();
    831 	TLBSYNC();
    832 	SYNC();
    833 	/*
    834 	 * Save the ref & chg bits ...
    835 	 */
    836 	pmap_pte_synch(pt, pvo_pt);
    837 	pmap_pte_valid--;
    838 }
    839 
    840 static inline void
    841 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    842 {
    843 	/*
    844 	 * Invalidate the PTE
    845 	 */
    846 	pmap_pte_unset(pt, pvo_pt, va);
    847 	pmap_pte_set(pt, pvo_pt);
    848 }
    849 
    850 /*
    851  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    852  * (either primary or secondary location).
    853  *
    854  * Note: both the destination and source PTEs must not have PTE_VALID set.
    855  */
    856 
    857 static int
    858 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    859 {
    860 	volatile struct pte *pt;
    861 	int i;
    862 
    863 #if defined(DEBUG)
    864 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    865 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    866 #endif
    867 	/*
    868 	 * First try primary hash.
    869 	 */
    870 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    871 		if ((pt->pte_hi & PTE_VALID) == 0) {
    872 			pvo_pt->pte_hi &= ~PTE_HID;
    873 			pmap_pte_set(pt, pvo_pt);
    874 			return i;
    875 		}
    876 	}
    877 
    878 	/*
    879 	 * Now try secondary hash.
    880 	 */
    881 	ptegidx ^= pmap_pteg_mask;
    882 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    883 		if ((pt->pte_hi & PTE_VALID) == 0) {
    884 			pvo_pt->pte_hi |= PTE_HID;
    885 			pmap_pte_set(pt, pvo_pt);
    886 			return i;
    887 		}
    888 	}
    889 	return -1;
    890 }
    891 
    892 /*
    893  * Spill handler.
    894  *
    895  * Tries to spill a page table entry from the overflow area.
    896  * This runs in either real mode (if dealing with a exception spill)
    897  * or virtual mode when dealing with manually spilling one of the
    898  * kernel's pte entries.  In either case, interrupts are already
    899  * disabled.
    900  */
    901 
    902 int
    903 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    904 {
    905 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    906 	struct pvo_entry *pvo;
    907 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    908 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    909 	int ptegidx, i, j;
    910 	volatile struct pteg *pteg;
    911 	volatile struct pte *pt;
    912 
    913 	PMAP_LOCK();
    914 
    915 	ptegidx = va_to_pteg(pm, addr);
    916 
    917 	/*
    918 	 * Have to substitute some entry. Use the primary hash for this.
    919 	 * Use low bits of timebase as random generator.  Make sure we are
    920 	 * not picking a kernel pte for replacement.
    921 	 */
    922 	pteg = &pmap_pteg_table[ptegidx];
    923 	i = MFTB() & 7;
    924 	for (j = 0; j < 8; j++) {
    925 		pt = &pteg->pt[i];
    926 		if ((pt->pte_hi & PTE_VALID) == 0)
    927 			break;
    928 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    929 				< PHYSMAP_VSIDBITS)
    930 			break;
    931 		i = (i + 1) & 7;
    932 	}
    933 	KASSERT(j < 8);
    934 
    935 	source_pvo = NULL;
    936 	victim_pvo = NULL;
    937 	pvoh = &pmap_pvo_table[ptegidx];
    938 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    939 
    940 		/*
    941 		 * We need to find pvo entry for this address...
    942 		 */
    943 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    944 
    945 		/*
    946 		 * If we haven't found the source and we come to a PVO with
    947 		 * a valid PTE, then we know we can't find it because all
    948 		 * evicted PVOs always are first in the list.
    949 		 */
    950 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    951 			break;
    952 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    953 		    addr == PVO_VADDR(pvo)) {
    954 
    955 			/*
    956 			 * Now we have found the entry to be spilled into the
    957 			 * pteg.  Attempt to insert it into the page table.
    958 			 */
    959 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    960 			if (j >= 0) {
    961 				PVO_PTEGIDX_SET(pvo, j);
    962 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    963 				PVO_WHERE(pvo, SPILL_INSERT);
    964 				pvo->pvo_pmap->pm_evictions--;
    965 				PMAPCOUNT(ptes_spilled);
    966 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    967 				    ? pmap_evcnt_ptes_secondary
    968 				    : pmap_evcnt_ptes_primary)[j]);
    969 
    970 				/*
    971 				 * Since we keep the evicted entries at the
    972 				 * from of the PVO list, we need move this
    973 				 * (now resident) PVO after the evicted
    974 				 * entries.
    975 				 */
    976 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    977 
    978 				/*
    979 				 * If we don't have to move (either we were the
    980 				 * last entry or the next entry was valid),
    981 				 * don't change our position.  Otherwise
    982 				 * move ourselves to the tail of the queue.
    983 				 */
    984 				if (next_pvo != NULL &&
    985 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    986 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    987 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    988 				}
    989 				PMAP_UNLOCK();
    990 				return 1;
    991 			}
    992 			source_pvo = pvo;
    993 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    994 				return 0;
    995 			}
    996 			if (victim_pvo != NULL)
    997 				break;
    998 		}
    999 
   1000 		/*
   1001 		 * We also need the pvo entry of the victim we are replacing
   1002 		 * so save the R & C bits of the PTE.
   1003 		 */
   1004 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1005 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1006 			vpvoh = pvoh;			/* *1* */
   1007 			victim_pvo = pvo;
   1008 			if (source_pvo != NULL)
   1009 				break;
   1010 		}
   1011 	}
   1012 
   1013 	if (source_pvo == NULL) {
   1014 		PMAPCOUNT(ptes_unspilled);
   1015 		PMAP_UNLOCK();
   1016 		return 0;
   1017 	}
   1018 
   1019 	if (victim_pvo == NULL) {
   1020 		if ((pt->pte_hi & PTE_HID) == 0)
   1021 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1022 			    "no pvo entry!", pt);
   1023 
   1024 		/*
   1025 		 * If this is a secondary PTE, we need to search
   1026 		 * its primary pvo bucket for the matching PVO.
   1027 		 */
   1028 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1029 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1030 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1031 
   1032 			/*
   1033 			 * We also need the pvo entry of the victim we are
   1034 			 * replacing so save the R & C bits of the PTE.
   1035 			 */
   1036 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1037 				victim_pvo = pvo;
   1038 				break;
   1039 			}
   1040 		}
   1041 		if (victim_pvo == NULL)
   1042 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1043 			    "no pvo entry!", pt);
   1044 	}
   1045 
   1046 	/*
   1047 	 * The victim should be not be a kernel PVO/PTE entry.
   1048 	 */
   1049 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1050 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1051 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1052 
   1053 	/*
   1054 	 * We are invalidating the TLB entry for the EA for the
   1055 	 * we are replacing even though its valid; If we don't
   1056 	 * we lose any ref/chg bit changes contained in the TLB
   1057 	 * entry.
   1058 	 */
   1059 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1060 
   1061 	/*
   1062 	 * To enforce the PVO list ordering constraint that all
   1063 	 * evicted entries should come before all valid entries,
   1064 	 * move the source PVO to the tail of its list and the
   1065 	 * victim PVO to the head of its list (which might not be
   1066 	 * the same list, if the victim was using the secondary hash).
   1067 	 */
   1068 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1069 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1070 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1071 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1072 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1073 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1074 	victim_pvo->pvo_pmap->pm_evictions++;
   1075 	source_pvo->pvo_pmap->pm_evictions--;
   1076 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1077 	PVO_WHERE(source_pvo, SPILL_SET);
   1078 
   1079 	PVO_PTEGIDX_CLR(victim_pvo);
   1080 	PVO_PTEGIDX_SET(source_pvo, i);
   1081 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1082 	PMAPCOUNT(ptes_spilled);
   1083 	PMAPCOUNT(ptes_evicted);
   1084 	PMAPCOUNT(ptes_removed);
   1085 
   1086 	PMAP_PVO_CHECK(victim_pvo);
   1087 	PMAP_PVO_CHECK(source_pvo);
   1088 
   1089 	PMAP_UNLOCK();
   1090 	return 1;
   1091 }
   1092 
   1093 /*
   1094  * Restrict given range to physical memory
   1095  */
   1096 void
   1097 pmap_real_memory(paddr_t *start, psize_t *size)
   1098 {
   1099 	struct mem_region *mp;
   1100 
   1101 	for (mp = mem; mp->size; mp++) {
   1102 		if (*start + *size > mp->start
   1103 		    && *start < mp->start + mp->size) {
   1104 			if (*start < mp->start) {
   1105 				*size -= mp->start - *start;
   1106 				*start = mp->start;
   1107 			}
   1108 			if (*start + *size > mp->start + mp->size)
   1109 				*size = mp->start + mp->size - *start;
   1110 			return;
   1111 		}
   1112 	}
   1113 	*size = 0;
   1114 }
   1115 
   1116 /*
   1117  * Initialize anything else for pmap handling.
   1118  * Called during vm_init().
   1119  */
   1120 void
   1121 pmap_init(void)
   1122 {
   1123 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1124 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1125 	    &pmap_pool_mallocator, IPL_NONE);
   1126 
   1127 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1128 
   1129 	pmap_initialized = 1;
   1130 
   1131 }
   1132 
   1133 /*
   1134  * How much virtual space does the kernel get?
   1135  */
   1136 void
   1137 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1138 {
   1139 	/*
   1140 	 * For now, reserve one segment (minus some overhead) for kernel
   1141 	 * virtual memory
   1142 	 */
   1143 	*start = VM_MIN_KERNEL_ADDRESS;
   1144 	*end = VM_MAX_KERNEL_ADDRESS;
   1145 }
   1146 
   1147 /*
   1148  * Allocate, initialize, and return a new physical map.
   1149  */
   1150 pmap_t
   1151 pmap_create(void)
   1152 {
   1153 	pmap_t pm;
   1154 
   1155 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1156 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
   1157 	memset((void *)pm, 0, sizeof *pm);
   1158 	pmap_pinit(pm);
   1159 
   1160 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1161 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1162 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1163 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1164 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1165 	    pm,
   1166 	    pm->pm_sr[0], pm->pm_sr[1],
   1167 	    pm->pm_sr[2], pm->pm_sr[3],
   1168 	    pm->pm_sr[4], pm->pm_sr[5],
   1169 	    pm->pm_sr[6], pm->pm_sr[7],
   1170 	    pm->pm_sr[8], pm->pm_sr[9],
   1171 	    pm->pm_sr[10], pm->pm_sr[11],
   1172 	    pm->pm_sr[12], pm->pm_sr[13],
   1173 	    pm->pm_sr[14], pm->pm_sr[15]);
   1174 	return pm;
   1175 }
   1176 
   1177 /*
   1178  * Initialize a preallocated and zeroed pmap structure.
   1179  */
   1180 void
   1181 pmap_pinit(pmap_t pm)
   1182 {
   1183 	register_t entropy = MFTB();
   1184 	register_t mask;
   1185 	int i;
   1186 
   1187 	/*
   1188 	 * Allocate some segment registers for this pmap.
   1189 	 */
   1190 	pm->pm_refs = 1;
   1191 	PMAP_LOCK();
   1192 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1193 		static register_t pmap_vsidcontext;
   1194 		register_t hash;
   1195 		unsigned int n;
   1196 
   1197 		/* Create a new value by multiplying by a prime adding in
   1198 		 * entropy from the timebase register.  This is to make the
   1199 		 * VSID more random so that the PT Hash function collides
   1200 		 * less often. (note that the prime causes gcc to do shifts
   1201 		 * instead of a multiply)
   1202 		 */
   1203 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1204 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1205 		if (hash == 0) {		/* 0 is special, avoid it */
   1206 			entropy += 0xbadf00d;
   1207 			continue;
   1208 		}
   1209 		n = hash >> 5;
   1210 		mask = 1L << (hash & (VSID_NBPW-1));
   1211 		hash = pmap_vsidcontext;
   1212 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1213 			/* anything free in this bucket? */
   1214 			if (~pmap_vsid_bitmap[n] == 0) {
   1215 				entropy = hash ^ (hash >> 16);
   1216 				continue;
   1217 			}
   1218 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1219 			mask = 1L << i;
   1220 			hash &= ~(VSID_NBPW-1);
   1221 			hash |= i;
   1222 		}
   1223 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1224 		pmap_vsid_bitmap[n] |= mask;
   1225 		pm->pm_vsid = hash;
   1226 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1227 		for (i = 0; i < 16; i++)
   1228 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1229 			    SR_NOEXEC;
   1230 #endif
   1231 		PMAP_UNLOCK();
   1232 		return;
   1233 	}
   1234 	PMAP_UNLOCK();
   1235 	panic("pmap_pinit: out of segments");
   1236 }
   1237 
   1238 /*
   1239  * Add a reference to the given pmap.
   1240  */
   1241 void
   1242 pmap_reference(pmap_t pm)
   1243 {
   1244 	atomic_inc_uint(&pm->pm_refs);
   1245 }
   1246 
   1247 /*
   1248  * Retire the given pmap from service.
   1249  * Should only be called if the map contains no valid mappings.
   1250  */
   1251 void
   1252 pmap_destroy(pmap_t pm)
   1253 {
   1254 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1255 		pmap_release(pm);
   1256 		pool_put(&pmap_pool, pm);
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Release any resources held by the given physical map.
   1262  * Called when a pmap initialized by pmap_pinit is being released.
   1263  */
   1264 void
   1265 pmap_release(pmap_t pm)
   1266 {
   1267 	int idx, mask;
   1268 
   1269 	KASSERT(pm->pm_stats.resident_count == 0);
   1270 	KASSERT(pm->pm_stats.wired_count == 0);
   1271 
   1272 	PMAP_LOCK();
   1273 	if (pm->pm_sr[0] == 0)
   1274 		panic("pmap_release");
   1275 	idx = pm->pm_vsid & (NPMAPS-1);
   1276 	mask = 1 << (idx % VSID_NBPW);
   1277 	idx /= VSID_NBPW;
   1278 
   1279 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1280 	pmap_vsid_bitmap[idx] &= ~mask;
   1281 	PMAP_UNLOCK();
   1282 }
   1283 
   1284 /*
   1285  * Copy the range specified by src_addr/len
   1286  * from the source map to the range dst_addr/len
   1287  * in the destination map.
   1288  *
   1289  * This routine is only advisory and need not do anything.
   1290  */
   1291 void
   1292 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1293 	vsize_t len, vaddr_t src_addr)
   1294 {
   1295 	PMAPCOUNT(copies);
   1296 }
   1297 
   1298 /*
   1299  * Require that all active physical maps contain no
   1300  * incorrect entries NOW.
   1301  */
   1302 void
   1303 pmap_update(struct pmap *pmap)
   1304 {
   1305 	PMAPCOUNT(updates);
   1306 	TLBSYNC();
   1307 }
   1308 
   1309 static inline int
   1310 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1311 {
   1312 	int pteidx;
   1313 	/*
   1314 	 * We can find the actual pte entry without searching by
   1315 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1316 	 * and by noticing the HID bit.
   1317 	 */
   1318 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1319 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1320 		pteidx ^= pmap_pteg_mask * 8;
   1321 	return pteidx;
   1322 }
   1323 
   1324 volatile struct pte *
   1325 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1326 {
   1327 	volatile struct pte *pt;
   1328 
   1329 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1330 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1331 		return NULL;
   1332 #endif
   1333 
   1334 	/*
   1335 	 * If we haven't been supplied the ptegidx, calculate it.
   1336 	 */
   1337 	if (pteidx == -1) {
   1338 		int ptegidx;
   1339 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1340 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1341 	}
   1342 
   1343 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1344 
   1345 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1346 	return pt;
   1347 #else
   1348 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1349 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1350 		    "pvo but no valid pte index", pvo);
   1351 	}
   1352 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1353 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1354 		    "pvo but no valid pte", pvo);
   1355 	}
   1356 
   1357 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1358 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1359 #if defined(DEBUG) || defined(PMAPCHECK)
   1360 			pmap_pte_print(pt);
   1361 #endif
   1362 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1363 			    "pmap_pteg_table %p but invalid in pvo",
   1364 			    pvo, pt);
   1365 		}
   1366 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1367 #if defined(DEBUG) || defined(PMAPCHECK)
   1368 			pmap_pte_print(pt);
   1369 #endif
   1370 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1371 			    "not match pte %p in pmap_pteg_table",
   1372 			    pvo, pt);
   1373 		}
   1374 		return pt;
   1375 	}
   1376 
   1377 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1378 #if defined(DEBUG) || defined(PMAPCHECK)
   1379 		pmap_pte_print(pt);
   1380 #endif
   1381 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1382 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1383 	}
   1384 	return NULL;
   1385 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1386 }
   1387 
   1388 struct pvo_entry *
   1389 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1390 {
   1391 	struct pvo_entry *pvo;
   1392 	int ptegidx;
   1393 
   1394 	va &= ~ADDR_POFF;
   1395 	ptegidx = va_to_pteg(pm, va);
   1396 
   1397 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1399 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1400 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1401 			    "list %#x (%p)", pvo, ptegidx,
   1402 			     &pmap_pvo_table[ptegidx]);
   1403 #endif
   1404 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1405 			if (pteidx_p)
   1406 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1407 			return pvo;
   1408 		}
   1409 	}
   1410 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1411 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1412 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1413 	return NULL;
   1414 }
   1415 
   1416 #if defined(DEBUG) || defined(PMAPCHECK)
   1417 void
   1418 pmap_pvo_check(const struct pvo_entry *pvo)
   1419 {
   1420 	struct pvo_head *pvo_head;
   1421 	struct pvo_entry *pvo0;
   1422 	volatile struct pte *pt;
   1423 	int failed = 0;
   1424 
   1425 	PMAP_LOCK();
   1426 
   1427 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1428 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1429 
   1430 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1431 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1432 		    pvo, pvo->pvo_pmap);
   1433 		failed = 1;
   1434 	}
   1435 
   1436 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1437 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1438 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1439 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1440 		failed = 1;
   1441 	}
   1442 
   1443 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1444 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1445 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1446 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1447 		failed = 1;
   1448 	}
   1449 
   1450 	if (PVO_MANAGED_P(pvo)) {
   1451 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1452 	} else {
   1453 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1454 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1455 			    "on kernel unmanaged list\n", pvo);
   1456 			failed = 1;
   1457 		}
   1458 		pvo_head = &pmap_pvo_kunmanaged;
   1459 	}
   1460 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1461 		if (pvo0 == pvo)
   1462 			break;
   1463 	}
   1464 	if (pvo0 == NULL) {
   1465 		printf("pmap_pvo_check: pvo %p: not present "
   1466 		    "on its vlist head %p\n", pvo, pvo_head);
   1467 		failed = 1;
   1468 	}
   1469 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1470 		printf("pmap_pvo_check: pvo %p: not present "
   1471 		    "on its olist head\n", pvo);
   1472 		failed = 1;
   1473 	}
   1474 	pt = pmap_pvo_to_pte(pvo, -1);
   1475 	if (pt == NULL) {
   1476 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1477 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1478 			    "no PTE\n", pvo);
   1479 			failed = 1;
   1480 		}
   1481 	} else {
   1482 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1483 		    (uintptr_t) pt >=
   1484 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1485 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1486 			    "pteg table\n", pvo, pt);
   1487 			failed = 1;
   1488 		}
   1489 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1490 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1491 			    "no PTE\n", pvo);
   1492 			failed = 1;
   1493 		}
   1494 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1495 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1496 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1497 			    pvo->pvo_pte.pte_hi,
   1498 			    pt->pte_hi);
   1499 			failed = 1;
   1500 		}
   1501 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1502 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1503 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1504 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1505 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1506 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1507 			failed = 1;
   1508 		}
   1509 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1510 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1511 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1512 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1513 			failed = 1;
   1514 		}
   1515 		if (failed)
   1516 			pmap_pte_print(pt);
   1517 	}
   1518 	if (failed)
   1519 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1520 		    pvo->pvo_pmap);
   1521 
   1522 	PMAP_UNLOCK();
   1523 }
   1524 #endif /* DEBUG || PMAPCHECK */
   1525 
   1526 /*
   1527  * Search the PVO table looking for a non-wired entry.
   1528  * If we find one, remove it and return it.
   1529  */
   1530 
   1531 struct pvo_entry *
   1532 pmap_pvo_reclaim(struct pmap *pm)
   1533 {
   1534 	struct pvo_tqhead *pvoh;
   1535 	struct pvo_entry *pvo;
   1536 	uint32_t idx, endidx;
   1537 
   1538 	endidx = pmap_pvo_reclaim_nextidx;
   1539 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1540 	     idx = (idx + 1) & pmap_pteg_mask) {
   1541 		pvoh = &pmap_pvo_table[idx];
   1542 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1543 			if (!PVO_WIRED_P(pvo)) {
   1544 				pmap_pvo_remove(pvo, -1, NULL);
   1545 				pmap_pvo_reclaim_nextidx = idx;
   1546 				PMAPCOUNT(pvos_reclaimed);
   1547 				return pvo;
   1548 			}
   1549 		}
   1550 	}
   1551 	return NULL;
   1552 }
   1553 
   1554 /*
   1555  * This returns whether this is the first mapping of a page.
   1556  */
   1557 int
   1558 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1559 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1560 {
   1561 	struct pvo_entry *pvo;
   1562 	struct pvo_tqhead *pvoh;
   1563 	register_t msr;
   1564 	int ptegidx;
   1565 	int i;
   1566 	int poolflags = PR_NOWAIT;
   1567 
   1568 	/*
   1569 	 * Compute the PTE Group index.
   1570 	 */
   1571 	va &= ~ADDR_POFF;
   1572 	ptegidx = va_to_pteg(pm, va);
   1573 
   1574 	msr = pmap_interrupts_off();
   1575 
   1576 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1577 	if (pmap_pvo_remove_depth > 0)
   1578 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1579 	if (++pmap_pvo_enter_depth > 1)
   1580 		panic("pmap_pvo_enter: called recursively!");
   1581 #endif
   1582 
   1583 	/*
   1584 	 * Remove any existing mapping for this page.  Reuse the
   1585 	 * pvo entry if there a mapping.
   1586 	 */
   1587 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1588 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1589 #ifdef DEBUG
   1590 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1591 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1592 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1593 			   va < VM_MIN_KERNEL_ADDRESS) {
   1594 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1595 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1596 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1597 				    pvo->pvo_pte.pte_hi,
   1598 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1599 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1600 #ifdef DDBX
   1601 				Debugger();
   1602 #endif
   1603 			}
   1604 #endif
   1605 			PMAPCOUNT(mappings_replaced);
   1606 			pmap_pvo_remove(pvo, -1, NULL);
   1607 			break;
   1608 		}
   1609 	}
   1610 
   1611 	/*
   1612 	 * If we aren't overwriting an mapping, try to allocate
   1613 	 */
   1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1615 	--pmap_pvo_enter_depth;
   1616 #endif
   1617 	pmap_interrupts_restore(msr);
   1618 	if (pvo) {
   1619 		pmap_pvo_free(pvo);
   1620 	}
   1621 	pvo = pool_get(pl, poolflags);
   1622 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1623 
   1624 #ifdef DEBUG
   1625 	/*
   1626 	 * Exercise pmap_pvo_reclaim() a little.
   1627 	 */
   1628 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1629 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1630 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1631 		pool_put(pl, pvo);
   1632 		pvo = NULL;
   1633 	}
   1634 #endif
   1635 
   1636 	msr = pmap_interrupts_off();
   1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1638 	++pmap_pvo_enter_depth;
   1639 #endif
   1640 	if (pvo == NULL) {
   1641 		pvo = pmap_pvo_reclaim(pm);
   1642 		if (pvo == NULL) {
   1643 			if ((flags & PMAP_CANFAIL) == 0)
   1644 				panic("pmap_pvo_enter: failed");
   1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1646 			pmap_pvo_enter_depth--;
   1647 #endif
   1648 			PMAPCOUNT(pvos_failed);
   1649 			pmap_interrupts_restore(msr);
   1650 			return ENOMEM;
   1651 		}
   1652 	}
   1653 
   1654 	pvo->pvo_vaddr = va;
   1655 	pvo->pvo_pmap = pm;
   1656 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1657 	if (flags & VM_PROT_EXECUTE) {
   1658 		PMAPCOUNT(exec_mappings);
   1659 		pvo_set_exec(pvo);
   1660 	}
   1661 	if (flags & PMAP_WIRED)
   1662 		pvo->pvo_vaddr |= PVO_WIRED;
   1663 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1664 		pvo->pvo_vaddr |= PVO_MANAGED;
   1665 		PMAPCOUNT(mappings);
   1666 	} else {
   1667 		PMAPCOUNT(kernel_mappings);
   1668 	}
   1669 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1670 
   1671 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1672 	if (PVO_WIRED_P(pvo))
   1673 		pvo->pvo_pmap->pm_stats.wired_count++;
   1674 	pvo->pvo_pmap->pm_stats.resident_count++;
   1675 #if defined(DEBUG)
   1676 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1677 		DPRINTFN(PVOENTER,
   1678 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1679 		    pvo, pm, va, pa);
   1680 #endif
   1681 
   1682 	/*
   1683 	 * We hope this succeeds but it isn't required.
   1684 	 */
   1685 	pvoh = &pmap_pvo_table[ptegidx];
   1686 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1687 	if (i >= 0) {
   1688 		PVO_PTEGIDX_SET(pvo, i);
   1689 		PVO_WHERE(pvo, ENTER_INSERT);
   1690 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1691 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1692 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1693 
   1694 	} else {
   1695 		/*
   1696 		 * Since we didn't have room for this entry (which makes it
   1697 		 * and evicted entry), place it at the head of the list.
   1698 		 */
   1699 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1700 		PMAPCOUNT(ptes_evicted);
   1701 		pm->pm_evictions++;
   1702 		/*
   1703 		 * If this is a kernel page, make sure it's active.
   1704 		 */
   1705 		if (pm == pmap_kernel()) {
   1706 			i = pmap_pte_spill(pm, va, false);
   1707 			KASSERT(i);
   1708 		}
   1709 	}
   1710 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1712 	pmap_pvo_enter_depth--;
   1713 #endif
   1714 	pmap_interrupts_restore(msr);
   1715 	return 0;
   1716 }
   1717 
   1718 static void
   1719 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1720 {
   1721 	volatile struct pte *pt;
   1722 	int ptegidx;
   1723 
   1724 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1725 	if (++pmap_pvo_remove_depth > 1)
   1726 		panic("pmap_pvo_remove: called recursively!");
   1727 #endif
   1728 
   1729 	/*
   1730 	 * If we haven't been supplied the ptegidx, calculate it.
   1731 	 */
   1732 	if (pteidx == -1) {
   1733 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1734 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1735 	} else {
   1736 		ptegidx = pteidx >> 3;
   1737 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1738 			ptegidx ^= pmap_pteg_mask;
   1739 	}
   1740 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1741 
   1742 	/*
   1743 	 * If there is an active pte entry, we need to deactivate it
   1744 	 * (and save the ref & chg bits).
   1745 	 */
   1746 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1747 	if (pt != NULL) {
   1748 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1749 		PVO_WHERE(pvo, REMOVE);
   1750 		PVO_PTEGIDX_CLR(pvo);
   1751 		PMAPCOUNT(ptes_removed);
   1752 	} else {
   1753 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1754 		pvo->pvo_pmap->pm_evictions--;
   1755 	}
   1756 
   1757 	/*
   1758 	 * Account for executable mappings.
   1759 	 */
   1760 	if (PVO_EXECUTABLE_P(pvo))
   1761 		pvo_clear_exec(pvo);
   1762 
   1763 	/*
   1764 	 * Update our statistics.
   1765 	 */
   1766 	pvo->pvo_pmap->pm_stats.resident_count--;
   1767 	if (PVO_WIRED_P(pvo))
   1768 		pvo->pvo_pmap->pm_stats.wired_count--;
   1769 
   1770 	/*
   1771 	 * Save the REF/CHG bits into their cache if the page is managed.
   1772 	 */
   1773 	if (PVO_MANAGED_P(pvo)) {
   1774 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1775 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1776 
   1777 		if (pg != NULL) {
   1778 			/*
   1779 			 * If this page was changed and it is mapped exec,
   1780 			 * invalidate it.
   1781 			 */
   1782 			if ((ptelo & PTE_CHG) &&
   1783 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1784 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1785 				if (LIST_EMPTY(pvoh)) {
   1786 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1787 					    "%#" _PRIxpa ": clear-exec]\n",
   1788 					    VM_PAGE_TO_PHYS(pg));
   1789 					pmap_attr_clear(pg, PTE_EXEC);
   1790 					PMAPCOUNT(exec_uncached_pvo_remove);
   1791 				} else {
   1792 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1793 					    "%#" _PRIxpa ": syncicache]\n",
   1794 					    VM_PAGE_TO_PHYS(pg));
   1795 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1796 					    PAGE_SIZE);
   1797 					PMAPCOUNT(exec_synced_pvo_remove);
   1798 				}
   1799 			}
   1800 
   1801 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1802 		}
   1803 		PMAPCOUNT(unmappings);
   1804 	} else {
   1805 		PMAPCOUNT(kernel_unmappings);
   1806 	}
   1807 
   1808 	/*
   1809 	 * Remove the PVO from its lists and return it to the pool.
   1810 	 */
   1811 	LIST_REMOVE(pvo, pvo_vlink);
   1812 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1813 	if (pvol) {
   1814 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1815 	}
   1816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1817 	pmap_pvo_remove_depth--;
   1818 #endif
   1819 }
   1820 
   1821 void
   1822 pmap_pvo_free(struct pvo_entry *pvo)
   1823 {
   1824 
   1825 	pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
   1826 }
   1827 
   1828 void
   1829 pmap_pvo_free_list(struct pvo_head *pvol)
   1830 {
   1831 	struct pvo_entry *pvo, *npvo;
   1832 
   1833 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1834 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1835 		LIST_REMOVE(pvo, pvo_vlink);
   1836 		pmap_pvo_free(pvo);
   1837 	}
   1838 }
   1839 
   1840 /*
   1841  * Mark a mapping as executable.
   1842  * If this is the first executable mapping in the segment,
   1843  * clear the noexec flag.
   1844  */
   1845 static void
   1846 pvo_set_exec(struct pvo_entry *pvo)
   1847 {
   1848 	struct pmap *pm = pvo->pvo_pmap;
   1849 
   1850 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1851 		return;
   1852 	}
   1853 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1854 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1855 	{
   1856 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1857 		if (pm->pm_exec[sr]++ == 0) {
   1858 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1859 		}
   1860 	}
   1861 #endif
   1862 }
   1863 
   1864 /*
   1865  * Mark a mapping as non-executable.
   1866  * If this was the last executable mapping in the segment,
   1867  * set the noexec flag.
   1868  */
   1869 static void
   1870 pvo_clear_exec(struct pvo_entry *pvo)
   1871 {
   1872 	struct pmap *pm = pvo->pvo_pmap;
   1873 
   1874 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1875 		return;
   1876 	}
   1877 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1878 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1879 	{
   1880 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1881 		if (--pm->pm_exec[sr] == 0) {
   1882 			pm->pm_sr[sr] |= SR_NOEXEC;
   1883 		}
   1884 	}
   1885 #endif
   1886 }
   1887 
   1888 /*
   1889  * Insert physical page at pa into the given pmap at virtual address va.
   1890  */
   1891 int
   1892 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1893 {
   1894 	struct mem_region *mp;
   1895 	struct pvo_head *pvo_head;
   1896 	struct vm_page *pg;
   1897 	struct pool *pl;
   1898 	register_t pte_lo;
   1899 	int error;
   1900 	u_int was_exec = 0;
   1901 
   1902 	PMAP_LOCK();
   1903 
   1904 	if (__predict_false(!pmap_initialized)) {
   1905 		pvo_head = &pmap_pvo_kunmanaged;
   1906 		pl = &pmap_upvo_pool;
   1907 		pg = NULL;
   1908 		was_exec = PTE_EXEC;
   1909 	} else {
   1910 		pvo_head = pa_to_pvoh(pa, &pg);
   1911 		pl = &pmap_mpvo_pool;
   1912 	}
   1913 
   1914 	DPRINTFN(ENTER,
   1915 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1916 	    pm, va, pa, prot, flags);
   1917 
   1918 	/*
   1919 	 * If this is a managed page, and it's the first reference to the
   1920 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1921 	 */
   1922 	if (pg != NULL)
   1923 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1924 
   1925 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1926 
   1927 	/*
   1928 	 * Assume the page is cache inhibited and access is guarded unless
   1929 	 * it's in our available memory array.  If it is in the memory array,
   1930 	 * asssume it's in memory coherent memory.
   1931 	 */
   1932 	if (flags & PMAP_MD_PREFETCHABLE) {
   1933 		pte_lo = 0;
   1934 	} else
   1935 		pte_lo = PTE_G;
   1936 
   1937 	if ((flags & PMAP_NOCACHE) == 0) {
   1938 		for (mp = mem; mp->size; mp++) {
   1939 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1940 				pte_lo = PTE_M;
   1941 				break;
   1942 			}
   1943 		}
   1944 #ifdef MULTIPROCESSOR
   1945 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1946 			pte_lo = PTE_M;
   1947 #endif
   1948 	} else {
   1949 		pte_lo |= PTE_I;
   1950 	}
   1951 
   1952 	if (prot & VM_PROT_WRITE)
   1953 		pte_lo |= PTE_BW;
   1954 	else
   1955 		pte_lo |= PTE_BR;
   1956 
   1957 	/*
   1958 	 * If this was in response to a fault, "pre-fault" the PTE's
   1959 	 * changed/referenced bit appropriately.
   1960 	 */
   1961 	if (flags & VM_PROT_WRITE)
   1962 		pte_lo |= PTE_CHG;
   1963 	if (flags & VM_PROT_ALL)
   1964 		pte_lo |= PTE_REF;
   1965 
   1966 	/*
   1967 	 * We need to know if this page can be executable
   1968 	 */
   1969 	flags |= (prot & VM_PROT_EXECUTE);
   1970 
   1971 	/*
   1972 	 * Record mapping for later back-translation and pte spilling.
   1973 	 * This will overwrite any existing mapping.
   1974 	 */
   1975 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1976 
   1977 	/*
   1978 	 * Flush the real page from the instruction cache if this page is
   1979 	 * mapped executable and cacheable and has not been flushed since
   1980 	 * the last time it was modified.
   1981 	 */
   1982 	if (error == 0 &&
   1983             (flags & VM_PROT_EXECUTE) &&
   1984             (pte_lo & PTE_I) == 0 &&
   1985 	    was_exec == 0) {
   1986 		DPRINTFN(ENTER, " %s", "syncicache");
   1987 		PMAPCOUNT(exec_synced);
   1988 		pmap_syncicache(pa, PAGE_SIZE);
   1989 		if (pg != NULL) {
   1990 			pmap_attr_save(pg, PTE_EXEC);
   1991 			PMAPCOUNT(exec_cached);
   1992 #if defined(DEBUG) || defined(PMAPDEBUG)
   1993 			if (pmapdebug & PMAPDEBUG_ENTER)
   1994 				printf(" marked-as-exec");
   1995 			else if (pmapdebug & PMAPDEBUG_EXEC)
   1996 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   1997 				    VM_PAGE_TO_PHYS(pg));
   1998 
   1999 #endif
   2000 		}
   2001 	}
   2002 
   2003 	DPRINTFN(ENTER, ": error=%d\n", error);
   2004 
   2005 	PMAP_UNLOCK();
   2006 
   2007 	return error;
   2008 }
   2009 
   2010 void
   2011 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2012 {
   2013 	struct mem_region *mp;
   2014 	register_t pte_lo;
   2015 	int error;
   2016 
   2017 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   2018 	if (va < VM_MIN_KERNEL_ADDRESS)
   2019 		panic("pmap_kenter_pa: attempt to enter "
   2020 		    "non-kernel address %#" _PRIxva "!", va);
   2021 #endif
   2022 
   2023 	DPRINTFN(KENTER,
   2024 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   2025 
   2026 	PMAP_LOCK();
   2027 
   2028 	/*
   2029 	 * Assume the page is cache inhibited and access is guarded unless
   2030 	 * it's in our available memory array.  If it is in the memory array,
   2031 	 * asssume it's in memory coherent memory.
   2032 	 */
   2033 	pte_lo = PTE_IG;
   2034 	if ((flags & PMAP_NOCACHE) == 0) {
   2035 		for (mp = mem; mp->size; mp++) {
   2036 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2037 				pte_lo = PTE_M;
   2038 				break;
   2039 			}
   2040 		}
   2041 #ifdef MULTIPROCESSOR
   2042 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2043 			pte_lo = PTE_M;
   2044 #endif
   2045 	}
   2046 
   2047 	if (prot & VM_PROT_WRITE)
   2048 		pte_lo |= PTE_BW;
   2049 	else
   2050 		pte_lo |= PTE_BR;
   2051 
   2052 	/*
   2053 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2054 	 */
   2055 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2056 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2057 
   2058 	if (error != 0)
   2059 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2060 		      va, pa, error);
   2061 
   2062 	PMAP_UNLOCK();
   2063 }
   2064 
   2065 void
   2066 pmap_kremove(vaddr_t va, vsize_t len)
   2067 {
   2068 	if (va < VM_MIN_KERNEL_ADDRESS)
   2069 		panic("pmap_kremove: attempt to remove "
   2070 		    "non-kernel address %#" _PRIxva "!", va);
   2071 
   2072 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2073 	pmap_remove(pmap_kernel(), va, va + len);
   2074 }
   2075 
   2076 /*
   2077  * Remove the given range of mapping entries.
   2078  */
   2079 void
   2080 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2081 {
   2082 	struct pvo_head pvol;
   2083 	struct pvo_entry *pvo;
   2084 	register_t msr;
   2085 	int pteidx;
   2086 
   2087 	PMAP_LOCK();
   2088 	LIST_INIT(&pvol);
   2089 	msr = pmap_interrupts_off();
   2090 	for (; va < endva; va += PAGE_SIZE) {
   2091 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2092 		if (pvo != NULL) {
   2093 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2094 		}
   2095 	}
   2096 	pmap_interrupts_restore(msr);
   2097 	pmap_pvo_free_list(&pvol);
   2098 	PMAP_UNLOCK();
   2099 }
   2100 
   2101 /*
   2102  * Get the physical page address for the given pmap/virtual address.
   2103  */
   2104 bool
   2105 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2106 {
   2107 	struct pvo_entry *pvo;
   2108 	register_t msr;
   2109 
   2110 	PMAP_LOCK();
   2111 
   2112 	/*
   2113 	 * If this is a kernel pmap lookup, also check the battable
   2114 	 * and if we get a hit, translate the VA to a PA using the
   2115 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2116 	 * that will wrap back to 0.
   2117 	 */
   2118 	if (pm == pmap_kernel() &&
   2119 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2120 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2121 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2122 #if defined (PMAP_OEA)
   2123 #ifdef PPC_OEA601
   2124 		if ((MFPVR() >> 16) == MPC601) {
   2125 			register_t batu = battable[va >> 23].batu;
   2126 			register_t batl = battable[va >> 23].batl;
   2127 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2128 			if (BAT601_VALID_P(batl) &&
   2129 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2130 				register_t mask =
   2131 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2132 				if (pap)
   2133 					*pap = (batl & mask) | (va & ~mask);
   2134 				PMAP_UNLOCK();
   2135 				return true;
   2136 			} else if (SR601_VALID_P(sr) &&
   2137 				   SR601_PA_MATCH_P(sr, va)) {
   2138 				if (pap)
   2139 					*pap = va;
   2140 				PMAP_UNLOCK();
   2141 				return true;
   2142 			}
   2143 		} else
   2144 #endif /* PPC_OEA601 */
   2145 		{
   2146 			register_t batu = battable[BAT_VA2IDX(va)].batu;
   2147 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2148 				register_t batl = battable[BAT_VA2IDX(va)].batl;
   2149 				register_t mask =
   2150 				    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2151 				if (pap)
   2152 					*pap = (batl & mask) | (va & ~mask);
   2153 				PMAP_UNLOCK();
   2154 				return true;
   2155 			}
   2156 		}
   2157 		return false;
   2158 #elif defined (PMAP_OEA64_BRIDGE)
   2159 	if (va >= SEGMENT_LENGTH)
   2160 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2161 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2162 	else {
   2163 		if (pap)
   2164 			*pap = va;
   2165 			PMAP_UNLOCK();
   2166 			return true;
   2167 	}
   2168 #elif defined (PMAP_OEA64)
   2169 #error PPC_OEA64 not supported
   2170 #endif /* PPC_OEA */
   2171 	}
   2172 
   2173 	msr = pmap_interrupts_off();
   2174 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2175 	if (pvo != NULL) {
   2176 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2177 		if (pap)
   2178 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2179 			    | (va & ADDR_POFF);
   2180 	}
   2181 	pmap_interrupts_restore(msr);
   2182 	PMAP_UNLOCK();
   2183 	return pvo != NULL;
   2184 }
   2185 
   2186 /*
   2187  * Lower the protection on the specified range of this pmap.
   2188  */
   2189 void
   2190 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2191 {
   2192 	struct pvo_entry *pvo;
   2193 	volatile struct pte *pt;
   2194 	register_t msr;
   2195 	int pteidx;
   2196 
   2197 	/*
   2198 	 * Since this routine only downgrades protection, we should
   2199 	 * always be called with at least one bit not set.
   2200 	 */
   2201 	KASSERT(prot != VM_PROT_ALL);
   2202 
   2203 	/*
   2204 	 * If there is no protection, this is equivalent to
   2205 	 * remove the pmap from the pmap.
   2206 	 */
   2207 	if ((prot & VM_PROT_READ) == 0) {
   2208 		pmap_remove(pm, va, endva);
   2209 		return;
   2210 	}
   2211 
   2212 	PMAP_LOCK();
   2213 
   2214 	msr = pmap_interrupts_off();
   2215 	for (; va < endva; va += PAGE_SIZE) {
   2216 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2217 		if (pvo == NULL)
   2218 			continue;
   2219 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2220 
   2221 		/*
   2222 		 * Revoke executable if asked to do so.
   2223 		 */
   2224 		if ((prot & VM_PROT_EXECUTE) == 0)
   2225 			pvo_clear_exec(pvo);
   2226 
   2227 #if 0
   2228 		/*
   2229 		 * If the page is already read-only, no change
   2230 		 * needs to be made.
   2231 		 */
   2232 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2233 			continue;
   2234 #endif
   2235 		/*
   2236 		 * Grab the PTE pointer before we diddle with
   2237 		 * the cached PTE copy.
   2238 		 */
   2239 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2240 		/*
   2241 		 * Change the protection of the page.
   2242 		 */
   2243 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2244 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2245 
   2246 		/*
   2247 		 * If the PVO is in the page table, update
   2248 		 * that pte at well.
   2249 		 */
   2250 		if (pt != NULL) {
   2251 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2252 			PVO_WHERE(pvo, PMAP_PROTECT);
   2253 			PMAPCOUNT(ptes_changed);
   2254 		}
   2255 
   2256 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2257 	}
   2258 	pmap_interrupts_restore(msr);
   2259 	PMAP_UNLOCK();
   2260 }
   2261 
   2262 void
   2263 pmap_unwire(pmap_t pm, vaddr_t va)
   2264 {
   2265 	struct pvo_entry *pvo;
   2266 	register_t msr;
   2267 
   2268 	PMAP_LOCK();
   2269 	msr = pmap_interrupts_off();
   2270 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2271 	if (pvo != NULL) {
   2272 		if (PVO_WIRED_P(pvo)) {
   2273 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2274 			pm->pm_stats.wired_count--;
   2275 		}
   2276 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2277 	}
   2278 	pmap_interrupts_restore(msr);
   2279 	PMAP_UNLOCK();
   2280 }
   2281 
   2282 /*
   2283  * Lower the protection on the specified physical page.
   2284  */
   2285 void
   2286 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2287 {
   2288 	struct pvo_head *pvo_head, pvol;
   2289 	struct pvo_entry *pvo, *next_pvo;
   2290 	volatile struct pte *pt;
   2291 	register_t msr;
   2292 
   2293 	PMAP_LOCK();
   2294 
   2295 	KASSERT(prot != VM_PROT_ALL);
   2296 	LIST_INIT(&pvol);
   2297 	msr = pmap_interrupts_off();
   2298 
   2299 	/*
   2300 	 * When UVM reuses a page, it does a pmap_page_protect with
   2301 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2302 	 * since we know the page will have different contents.
   2303 	 */
   2304 	if ((prot & VM_PROT_READ) == 0) {
   2305 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2306 		    VM_PAGE_TO_PHYS(pg));
   2307 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2308 			PMAPCOUNT(exec_uncached_page_protect);
   2309 			pmap_attr_clear(pg, PTE_EXEC);
   2310 		}
   2311 	}
   2312 
   2313 	pvo_head = vm_page_to_pvoh(pg);
   2314 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2315 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2316 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2317 
   2318 		/*
   2319 		 * Downgrading to no mapping at all, we just remove the entry.
   2320 		 */
   2321 		if ((prot & VM_PROT_READ) == 0) {
   2322 			pmap_pvo_remove(pvo, -1, &pvol);
   2323 			continue;
   2324 		}
   2325 
   2326 		/*
   2327 		 * If EXEC permission is being revoked, just clear the
   2328 		 * flag in the PVO.
   2329 		 */
   2330 		if ((prot & VM_PROT_EXECUTE) == 0)
   2331 			pvo_clear_exec(pvo);
   2332 
   2333 		/*
   2334 		 * If this entry is already RO, don't diddle with the
   2335 		 * page table.
   2336 		 */
   2337 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2338 			PMAP_PVO_CHECK(pvo);
   2339 			continue;
   2340 		}
   2341 
   2342 		/*
   2343 		 * Grab the PTE before the we diddle the bits so
   2344 		 * pvo_to_pte can verify the pte contents are as
   2345 		 * expected.
   2346 		 */
   2347 		pt = pmap_pvo_to_pte(pvo, -1);
   2348 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2349 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2350 		if (pt != NULL) {
   2351 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2352 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2353 			PMAPCOUNT(ptes_changed);
   2354 		}
   2355 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2356 	}
   2357 	pmap_interrupts_restore(msr);
   2358 	pmap_pvo_free_list(&pvol);
   2359 
   2360 	PMAP_UNLOCK();
   2361 }
   2362 
   2363 /*
   2364  * Activate the address space for the specified process.  If the process
   2365  * is the current process, load the new MMU context.
   2366  */
   2367 void
   2368 pmap_activate(struct lwp *l)
   2369 {
   2370 	struct pcb *pcb = lwp_getpcb(l);
   2371 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2372 
   2373 	DPRINTFN(ACTIVATE,
   2374 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2375 
   2376 	/*
   2377 	 * XXX Normally performed in cpu_lwp_fork().
   2378 	 */
   2379 	pcb->pcb_pm = pmap;
   2380 
   2381 	/*
   2382 	* In theory, the SR registers need only be valid on return
   2383 	* to user space wait to do them there.
   2384 	*/
   2385 	if (l == curlwp) {
   2386 		/* Store pointer to new current pmap. */
   2387 		curpm = pmap;
   2388 	}
   2389 }
   2390 
   2391 /*
   2392  * Deactivate the specified process's address space.
   2393  */
   2394 void
   2395 pmap_deactivate(struct lwp *l)
   2396 {
   2397 }
   2398 
   2399 bool
   2400 pmap_query_bit(struct vm_page *pg, int ptebit)
   2401 {
   2402 	struct pvo_entry *pvo;
   2403 	volatile struct pte *pt;
   2404 	register_t msr;
   2405 
   2406 	PMAP_LOCK();
   2407 
   2408 	if (pmap_attr_fetch(pg) & ptebit) {
   2409 		PMAP_UNLOCK();
   2410 		return true;
   2411 	}
   2412 
   2413 	msr = pmap_interrupts_off();
   2414 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2415 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2416 		/*
   2417 		 * See if we saved the bit off.  If so cache, it and return
   2418 		 * success.
   2419 		 */
   2420 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2421 			pmap_attr_save(pg, ptebit);
   2422 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2423 			pmap_interrupts_restore(msr);
   2424 			PMAP_UNLOCK();
   2425 			return true;
   2426 		}
   2427 	}
   2428 	/*
   2429 	 * No luck, now go thru the hard part of looking at the ptes
   2430 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2431 	 * to the PTEs.
   2432 	 */
   2433 	SYNC();
   2434 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2435 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2436 		/*
   2437 		 * See if this pvo have a valid PTE.  If so, fetch the
   2438 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2439 		 * ptebit is set, cache, it and return success.
   2440 		 */
   2441 		pt = pmap_pvo_to_pte(pvo, -1);
   2442 		if (pt != NULL) {
   2443 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2444 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2445 				pmap_attr_save(pg, ptebit);
   2446 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2447 				pmap_interrupts_restore(msr);
   2448 				PMAP_UNLOCK();
   2449 				return true;
   2450 			}
   2451 		}
   2452 	}
   2453 	pmap_interrupts_restore(msr);
   2454 	PMAP_UNLOCK();
   2455 	return false;
   2456 }
   2457 
   2458 bool
   2459 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2460 {
   2461 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2462 	struct pvo_entry *pvo;
   2463 	volatile struct pte *pt;
   2464 	register_t msr;
   2465 	int rv = 0;
   2466 
   2467 	PMAP_LOCK();
   2468 	msr = pmap_interrupts_off();
   2469 
   2470 	/*
   2471 	 * Fetch the cache value
   2472 	 */
   2473 	rv |= pmap_attr_fetch(pg);
   2474 
   2475 	/*
   2476 	 * Clear the cached value.
   2477 	 */
   2478 	pmap_attr_clear(pg, ptebit);
   2479 
   2480 	/*
   2481 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2482 	 * can reset the right ones).  Note that since the pvo entries and
   2483 	 * list heads are accessed via BAT0 and are never placed in the
   2484 	 * page table, we don't have to worry about further accesses setting
   2485 	 * the REF/CHG bits.
   2486 	 */
   2487 	SYNC();
   2488 
   2489 	/*
   2490 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2491 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2492 	 */
   2493 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2494 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2495 		pt = pmap_pvo_to_pte(pvo, -1);
   2496 		if (pt != NULL) {
   2497 			/*
   2498 			 * Only sync the PTE if the bit we are looking
   2499 			 * for is not already set.
   2500 			 */
   2501 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2502 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2503 			/*
   2504 			 * If the bit we are looking for was already set,
   2505 			 * clear that bit in the pte.
   2506 			 */
   2507 			if (pvo->pvo_pte.pte_lo & ptebit)
   2508 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2509 		}
   2510 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2511 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2512 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2513 	}
   2514 	pmap_interrupts_restore(msr);
   2515 
   2516 	/*
   2517 	 * If we are clearing the modify bit and this page was marked EXEC
   2518 	 * and the user of the page thinks the page was modified, then we
   2519 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2520 	 * bit if it's not mapped.  The page itself might not have the CHG
   2521 	 * bit set if the modification was done via DMA to the page.
   2522 	 */
   2523 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2524 		if (LIST_EMPTY(pvoh)) {
   2525 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2526 			    VM_PAGE_TO_PHYS(pg));
   2527 			pmap_attr_clear(pg, PTE_EXEC);
   2528 			PMAPCOUNT(exec_uncached_clear_modify);
   2529 		} else {
   2530 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2531 			    VM_PAGE_TO_PHYS(pg));
   2532 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2533 			PMAPCOUNT(exec_synced_clear_modify);
   2534 		}
   2535 	}
   2536 	PMAP_UNLOCK();
   2537 	return (rv & ptebit) != 0;
   2538 }
   2539 
   2540 void
   2541 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2542 {
   2543 	struct pvo_entry *pvo;
   2544 	size_t offset = va & ADDR_POFF;
   2545 	int s;
   2546 
   2547 	PMAP_LOCK();
   2548 	s = splvm();
   2549 	while (len > 0) {
   2550 		size_t seglen = PAGE_SIZE - offset;
   2551 		if (seglen > len)
   2552 			seglen = len;
   2553 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2554 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2555 			pmap_syncicache(
   2556 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2557 			PMAP_PVO_CHECK(pvo);
   2558 		}
   2559 		va += seglen;
   2560 		len -= seglen;
   2561 		offset = 0;
   2562 	}
   2563 	splx(s);
   2564 	PMAP_UNLOCK();
   2565 }
   2566 
   2567 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2568 void
   2569 pmap_pte_print(volatile struct pte *pt)
   2570 {
   2571 	printf("PTE %p: ", pt);
   2572 
   2573 #if defined(PMAP_OEA)
   2574 	/* High word: */
   2575 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2576 #else
   2577 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2578 #endif /* PMAP_OEA */
   2579 
   2580 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2581 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2582 
   2583 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2584 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2585 	    pt->pte_hi & PTE_API);
   2586 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2587 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2588 #else
   2589 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2590 #endif /* PMAP_OEA */
   2591 
   2592 	/* Low word: */
   2593 #if defined (PMAP_OEA)
   2594 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2595 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2596 #else
   2597 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2598 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2599 #endif
   2600 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2601 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2602 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2603 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2604 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2605 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2606 	switch (pt->pte_lo & PTE_PP) {
   2607 	case PTE_BR: printf("br]\n"); break;
   2608 	case PTE_BW: printf("bw]\n"); break;
   2609 	case PTE_SO: printf("so]\n"); break;
   2610 	case PTE_SW: printf("sw]\n"); break;
   2611 	}
   2612 }
   2613 #endif
   2614 
   2615 #if defined(DDB)
   2616 void
   2617 pmap_pteg_check(void)
   2618 {
   2619 	volatile struct pte *pt;
   2620 	int i;
   2621 	int ptegidx;
   2622 	u_int p_valid = 0;
   2623 	u_int s_valid = 0;
   2624 	u_int invalid = 0;
   2625 
   2626 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2627 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2628 			if (pt->pte_hi & PTE_VALID) {
   2629 				if (pt->pte_hi & PTE_HID)
   2630 					s_valid++;
   2631 				else
   2632 				{
   2633 					p_valid++;
   2634 				}
   2635 			} else
   2636 				invalid++;
   2637 		}
   2638 	}
   2639 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2640 		p_valid, p_valid, s_valid, s_valid,
   2641 		invalid, invalid);
   2642 }
   2643 
   2644 void
   2645 pmap_print_mmuregs(void)
   2646 {
   2647 	int i;
   2648 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2649 	u_int cpuvers;
   2650 #endif
   2651 #ifndef PMAP_OEA64
   2652 	vaddr_t addr;
   2653 	register_t soft_sr[16];
   2654 #endif
   2655 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2656 	struct bat soft_ibat[4];
   2657 	struct bat soft_dbat[4];
   2658 #endif
   2659 	paddr_t sdr1;
   2660 
   2661 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2662 	cpuvers = MFPVR() >> 16;
   2663 #endif
   2664 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2665 #ifndef PMAP_OEA64
   2666 	addr = 0;
   2667 	for (i = 0; i < 16; i++) {
   2668 		soft_sr[i] = MFSRIN(addr);
   2669 		addr += (1 << ADDR_SR_SHFT);
   2670 	}
   2671 #endif
   2672 
   2673 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
   2674 	/* read iBAT (601: uBAT) registers */
   2675 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2676 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2677 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2678 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2679 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2680 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2681 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2682 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2683 
   2684 
   2685 	if (cpuvers != MPC601) {
   2686 		/* read dBAT registers */
   2687 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2688 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2689 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2690 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2691 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2692 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2693 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2694 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2695 	}
   2696 #endif
   2697 
   2698 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2699 #ifndef PMAP_OEA64
   2700 	printf("SR[]:\t");
   2701 	for (i = 0; i < 4; i++)
   2702 		printf("0x%08lx,   ", soft_sr[i]);
   2703 	printf("\n\t");
   2704 	for ( ; i < 8; i++)
   2705 		printf("0x%08lx,   ", soft_sr[i]);
   2706 	printf("\n\t");
   2707 	for ( ; i < 12; i++)
   2708 		printf("0x%08lx,   ", soft_sr[i]);
   2709 	printf("\n\t");
   2710 	for ( ; i < 16; i++)
   2711 		printf("0x%08lx,   ", soft_sr[i]);
   2712 	printf("\n");
   2713 #endif
   2714 
   2715 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
   2716 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2717 	for (i = 0; i < 4; i++) {
   2718 		printf("0x%08lx 0x%08lx, ",
   2719 			soft_ibat[i].batu, soft_ibat[i].batl);
   2720 		if (i == 1)
   2721 			printf("\n\t");
   2722 	}
   2723 	if (cpuvers != MPC601) {
   2724 		printf("\ndBAT[]:\t");
   2725 		for (i = 0; i < 4; i++) {
   2726 			printf("0x%08lx 0x%08lx, ",
   2727 				soft_dbat[i].batu, soft_dbat[i].batl);
   2728 			if (i == 1)
   2729 				printf("\n\t");
   2730 		}
   2731 	}
   2732 	printf("\n");
   2733 #endif /* PMAP_OEA... */
   2734 }
   2735 
   2736 void
   2737 pmap_print_pte(pmap_t pm, vaddr_t va)
   2738 {
   2739 	struct pvo_entry *pvo;
   2740 	volatile struct pte *pt;
   2741 	int pteidx;
   2742 
   2743 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2744 	if (pvo != NULL) {
   2745 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2746 		if (pt != NULL) {
   2747 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2748 				va, pt,
   2749 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2750 				pt->pte_hi, pt->pte_lo);
   2751 		} else {
   2752 			printf("No valid PTE found\n");
   2753 		}
   2754 	} else {
   2755 		printf("Address not in pmap\n");
   2756 	}
   2757 }
   2758 
   2759 void
   2760 pmap_pteg_dist(void)
   2761 {
   2762 	struct pvo_entry *pvo;
   2763 	int ptegidx;
   2764 	int depth;
   2765 	int max_depth = 0;
   2766 	unsigned int depths[64];
   2767 
   2768 	memset(depths, 0, sizeof(depths));
   2769 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2770 		depth = 0;
   2771 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2772 			depth++;
   2773 		}
   2774 		if (depth > max_depth)
   2775 			max_depth = depth;
   2776 		if (depth > 63)
   2777 			depth = 63;
   2778 		depths[depth]++;
   2779 	}
   2780 
   2781 	for (depth = 0; depth < 64; depth++) {
   2782 		printf("  [%2d]: %8u", depth, depths[depth]);
   2783 		if ((depth & 3) == 3)
   2784 			printf("\n");
   2785 		if (depth == max_depth)
   2786 			break;
   2787 	}
   2788 	if ((depth & 3) != 3)
   2789 		printf("\n");
   2790 	printf("Max depth found was %d\n", max_depth);
   2791 }
   2792 #endif /* DEBUG */
   2793 
   2794 #if defined(PMAPCHECK) || defined(DEBUG)
   2795 void
   2796 pmap_pvo_verify(void)
   2797 {
   2798 	int ptegidx;
   2799 	int s;
   2800 
   2801 	s = splvm();
   2802 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2803 		struct pvo_entry *pvo;
   2804 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2805 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2806 				panic("pmap_pvo_verify: invalid pvo %p "
   2807 				    "on list %#x", pvo, ptegidx);
   2808 			pmap_pvo_check(pvo);
   2809 		}
   2810 	}
   2811 	splx(s);
   2812 }
   2813 #endif /* PMAPCHECK */
   2814 
   2815 
   2816 void *
   2817 pmap_pool_ualloc(struct pool *pp, int flags)
   2818 {
   2819 	struct pvo_page *pvop;
   2820 
   2821 	if (uvm.page_init_done != true) {
   2822 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2823 	}
   2824 
   2825 	PMAP_LOCK();
   2826 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2827 	if (pvop != NULL) {
   2828 		pmap_upvop_free--;
   2829 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2830 		PMAP_UNLOCK();
   2831 		return pvop;
   2832 	}
   2833 	PMAP_UNLOCK();
   2834 	return pmap_pool_malloc(pp, flags);
   2835 }
   2836 
   2837 void *
   2838 pmap_pool_malloc(struct pool *pp, int flags)
   2839 {
   2840 	struct pvo_page *pvop;
   2841 	struct vm_page *pg;
   2842 
   2843 	PMAP_LOCK();
   2844 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2845 	if (pvop != NULL) {
   2846 		pmap_mpvop_free--;
   2847 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2848 		PMAP_UNLOCK();
   2849 		return pvop;
   2850 	}
   2851 	PMAP_UNLOCK();
   2852  again:
   2853 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2854 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2855 	if (__predict_false(pg == NULL)) {
   2856 		if (flags & PR_WAITOK) {
   2857 			uvm_wait("plpg");
   2858 			goto again;
   2859 		} else {
   2860 			return (0);
   2861 		}
   2862 	}
   2863 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2864 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2865 }
   2866 
   2867 void
   2868 pmap_pool_ufree(struct pool *pp, void *va)
   2869 {
   2870 	struct pvo_page *pvop;
   2871 #if 0
   2872 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2873 		pmap_pool_mfree(va, size, tag);
   2874 		return;
   2875 	}
   2876 #endif
   2877 	PMAP_LOCK();
   2878 	pvop = va;
   2879 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2880 	pmap_upvop_free++;
   2881 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2882 		pmap_upvop_maxfree = pmap_upvop_free;
   2883 	PMAP_UNLOCK();
   2884 }
   2885 
   2886 void
   2887 pmap_pool_mfree(struct pool *pp, void *va)
   2888 {
   2889 	struct pvo_page *pvop;
   2890 
   2891 	PMAP_LOCK();
   2892 	pvop = va;
   2893 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2894 	pmap_mpvop_free++;
   2895 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2896 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2897 	PMAP_UNLOCK();
   2898 #if 0
   2899 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2900 #endif
   2901 }
   2902 
   2903 /*
   2904  * This routine in bootstraping to steal to-be-managed memory (which will
   2905  * then be unmanaged).  We use it to grab from the first 256MB for our
   2906  * pmap needs and above 256MB for other stuff.
   2907  */
   2908 vaddr_t
   2909 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2910 {
   2911 	vsize_t size;
   2912 	vaddr_t va;
   2913 	paddr_t start, end, pa = 0;
   2914 	int npgs, freelist;
   2915 	uvm_physseg_t bank;
   2916 
   2917 	if (uvm.page_init_done == true)
   2918 		panic("pmap_steal_memory: called _after_ bootstrap");
   2919 
   2920 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2921 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2922 
   2923 	size = round_page(vsize);
   2924 	npgs = atop(size);
   2925 
   2926 	/*
   2927 	 * PA 0 will never be among those given to UVM so we can use it
   2928 	 * to indicate we couldn't steal any memory.
   2929 	 */
   2930 
   2931 	for (bank = uvm_physseg_get_first();
   2932 	     uvm_physseg_valid_p(bank);
   2933 	     bank = uvm_physseg_get_next(bank)) {
   2934 
   2935 		freelist = uvm_physseg_get_free_list(bank);
   2936 		start = uvm_physseg_get_start(bank);
   2937 		end = uvm_physseg_get_end(bank);
   2938 
   2939 		if (freelist == VM_FREELIST_FIRST256 &&
   2940 		    (end - start) >= npgs) {
   2941 			pa = ptoa(start);
   2942 			break;
   2943 		}
   2944 	}
   2945 
   2946 	if (pa == 0)
   2947 		panic("pmap_steal_memory: no approriate memory to steal!");
   2948 
   2949 	uvm_physseg_unplug(start, npgs);
   2950 
   2951 	va = (vaddr_t) pa;
   2952 	memset((void *) va, 0, size);
   2953 	pmap_pages_stolen += npgs;
   2954 #ifdef DEBUG
   2955 	if (pmapdebug && npgs > 1) {
   2956 		u_int cnt = 0;
   2957 	for (bank = uvm_physseg_get_first();
   2958 	     uvm_physseg_valid_p(bank);
   2959 	     bank = uvm_physseg_get_next(bank)) {
   2960 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
   2961 		}
   2962 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2963 		    npgs, pmap_pages_stolen, cnt);
   2964 	}
   2965 #endif
   2966 
   2967 	return va;
   2968 }
   2969 
   2970 /*
   2971  * Find a chuck of memory with right size and alignment.
   2972  */
   2973 paddr_t
   2974 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2975 {
   2976 	struct mem_region *mp;
   2977 	paddr_t s, e;
   2978 	int i, j;
   2979 
   2980 	size = round_page(size);
   2981 
   2982 	DPRINTFN(BOOT,
   2983 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2984 	    size, alignment, at_end);
   2985 
   2986 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2987 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   2988 		    alignment);
   2989 
   2990 	if (at_end) {
   2991 		if (alignment != PAGE_SIZE)
   2992 			panic("pmap_boot_find_memory: invalid ending "
   2993 			    "alignment %#" _PRIxpa, alignment);
   2994 
   2995 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   2996 			s = mp->start + mp->size - size;
   2997 			if (s >= mp->start && mp->size >= size) {
   2998 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   2999 				DPRINTFN(BOOT,
   3000 				    "pmap_boot_find_memory: b-avail[%d] start "
   3001 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3002 				     mp->start, mp->size);
   3003 				mp->size -= size;
   3004 				DPRINTFN(BOOT,
   3005 				    "pmap_boot_find_memory: a-avail[%d] start "
   3006 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3007 				     mp->start, mp->size);
   3008 				return s;
   3009 			}
   3010 		}
   3011 		panic("pmap_boot_find_memory: no available memory");
   3012 	}
   3013 
   3014 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3015 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3016 		e = s + size;
   3017 
   3018 		/*
   3019 		 * Is the calculated region entirely within the region?
   3020 		 */
   3021 		if (s < mp->start || e > mp->start + mp->size)
   3022 			continue;
   3023 
   3024 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3025 		if (s == mp->start) {
   3026 			/*
   3027 			 * If the block starts at the beginning of region,
   3028 			 * adjust the size & start. (the region may now be
   3029 			 * zero in length)
   3030 			 */
   3031 			DPRINTFN(BOOT,
   3032 			    "pmap_boot_find_memory: b-avail[%d] start "
   3033 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3034 			mp->start += size;
   3035 			mp->size -= size;
   3036 			DPRINTFN(BOOT,
   3037 			    "pmap_boot_find_memory: a-avail[%d] start "
   3038 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3039 		} else if (e == mp->start + mp->size) {
   3040 			/*
   3041 			 * If the block starts at the beginning of region,
   3042 			 * adjust only the size.
   3043 			 */
   3044 			DPRINTFN(BOOT,
   3045 			    "pmap_boot_find_memory: b-avail[%d] start "
   3046 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3047 			mp->size -= size;
   3048 			DPRINTFN(BOOT,
   3049 			    "pmap_boot_find_memory: a-avail[%d] start "
   3050 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3051 		} else {
   3052 			/*
   3053 			 * Block is in the middle of the region, so we
   3054 			 * have to split it in two.
   3055 			 */
   3056 			for (j = avail_cnt; j > i + 1; j--) {
   3057 				avail[j] = avail[j-1];
   3058 			}
   3059 			DPRINTFN(BOOT,
   3060 			    "pmap_boot_find_memory: b-avail[%d] start "
   3061 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3062 			mp[1].start = e;
   3063 			mp[1].size = mp[0].start + mp[0].size - e;
   3064 			mp[0].size = s - mp[0].start;
   3065 			avail_cnt++;
   3066 			for (; i < avail_cnt; i++) {
   3067 				DPRINTFN(BOOT,
   3068 				    "pmap_boot_find_memory: a-avail[%d] "
   3069 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3070 				     avail[i].start, avail[i].size);
   3071 			}
   3072 		}
   3073 		KASSERT(s == (uintptr_t) s);
   3074 		return s;
   3075 	}
   3076 	panic("pmap_boot_find_memory: not enough memory for "
   3077 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3078 }
   3079 
   3080 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3081 #if defined (PMAP_OEA64_BRIDGE)
   3082 int
   3083 pmap_setup_segment0_map(int use_large_pages, ...)
   3084 {
   3085     vaddr_t va, va_end;
   3086 
   3087     register_t pte_lo = 0x0;
   3088     int ptegidx = 0;
   3089     struct pte pte;
   3090     va_list ap;
   3091 
   3092     /* Coherent + Supervisor RW, no user access */
   3093     pte_lo = PTE_M;
   3094 
   3095     /* XXXSL
   3096      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3097      * these have to take priority.
   3098      */
   3099     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3100         ptegidx = va_to_pteg(pmap_kernel(), va);
   3101         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3102         (void)pmap_pte_insert(ptegidx, &pte);
   3103     }
   3104 
   3105     va_start(ap, use_large_pages);
   3106     while (1) {
   3107         paddr_t pa;
   3108         size_t size;
   3109 
   3110         va = va_arg(ap, vaddr_t);
   3111 
   3112         if (va == 0)
   3113             break;
   3114 
   3115         pa = va_arg(ap, paddr_t);
   3116         size = va_arg(ap, size_t);
   3117 
   3118         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3119 #if 0
   3120 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3121 #endif
   3122             ptegidx = va_to_pteg(pmap_kernel(), va);
   3123             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3124             (void)pmap_pte_insert(ptegidx, &pte);
   3125         }
   3126     }
   3127     va_end(ap);
   3128 
   3129     TLBSYNC();
   3130     SYNC();
   3131     return (0);
   3132 }
   3133 #endif /* PMAP_OEA64_BRIDGE */
   3134 
   3135 /*
   3136  * This is not part of the defined PMAP interface and is specific to the
   3137  * PowerPC architecture.  This is called during initppc, before the system
   3138  * is really initialized.
   3139  */
   3140 void
   3141 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3142 {
   3143 	struct mem_region *mp, tmp;
   3144 	paddr_t s, e;
   3145 	psize_t size;
   3146 	int i, j;
   3147 
   3148 	/*
   3149 	 * Get memory.
   3150 	 */
   3151 	mem_regions(&mem, &avail);
   3152 #if defined(DEBUG)
   3153 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3154 		printf("pmap_bootstrap: memory configuration:\n");
   3155 		for (mp = mem; mp->size; mp++) {
   3156 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3157 				mp->start, mp->size);
   3158 		}
   3159 		for (mp = avail; mp->size; mp++) {
   3160 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3161 				mp->start, mp->size);
   3162 		}
   3163 	}
   3164 #endif
   3165 
   3166 	/*
   3167 	 * Find out how much physical memory we have and in how many chunks.
   3168 	 */
   3169 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3170 		if (mp->start >= pmap_memlimit)
   3171 			continue;
   3172 		if (mp->start + mp->size > pmap_memlimit) {
   3173 			size = pmap_memlimit - mp->start;
   3174 			physmem += btoc(size);
   3175 		} else {
   3176 			physmem += btoc(mp->size);
   3177 		}
   3178 		mem_cnt++;
   3179 	}
   3180 
   3181 	/*
   3182 	 * Count the number of available entries.
   3183 	 */
   3184 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3185 		avail_cnt++;
   3186 
   3187 	/*
   3188 	 * Page align all regions.
   3189 	 */
   3190 	kernelstart = trunc_page(kernelstart);
   3191 	kernelend = round_page(kernelend);
   3192 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3193 		s = round_page(mp->start);
   3194 		mp->size -= (s - mp->start);
   3195 		mp->size = trunc_page(mp->size);
   3196 		mp->start = s;
   3197 		e = mp->start + mp->size;
   3198 
   3199 		DPRINTFN(BOOT,
   3200 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3201 		    i, mp->start, mp->size);
   3202 
   3203 		/*
   3204 		 * Don't allow the end to run beyond our artificial limit
   3205 		 */
   3206 		if (e > pmap_memlimit)
   3207 			e = pmap_memlimit;
   3208 
   3209 		/*
   3210 		 * Is this region empty or strange?  skip it.
   3211 		 */
   3212 		if (e <= s) {
   3213 			mp->start = 0;
   3214 			mp->size = 0;
   3215 			continue;
   3216 		}
   3217 
   3218 		/*
   3219 		 * Does this overlap the beginning of kernel?
   3220 		 *   Does extend past the end of the kernel?
   3221 		 */
   3222 		else if (s < kernelstart && e > kernelstart) {
   3223 			if (e > kernelend) {
   3224 				avail[avail_cnt].start = kernelend;
   3225 				avail[avail_cnt].size = e - kernelend;
   3226 				avail_cnt++;
   3227 			}
   3228 			mp->size = kernelstart - s;
   3229 		}
   3230 		/*
   3231 		 * Check whether this region overlaps the end of the kernel.
   3232 		 */
   3233 		else if (s < kernelend && e > kernelend) {
   3234 			mp->start = kernelend;
   3235 			mp->size = e - kernelend;
   3236 		}
   3237 		/*
   3238 		 * Look whether this regions is completely inside the kernel.
   3239 		 * Nuke it if it does.
   3240 		 */
   3241 		else if (s >= kernelstart && e <= kernelend) {
   3242 			mp->start = 0;
   3243 			mp->size = 0;
   3244 		}
   3245 		/*
   3246 		 * If the user imposed a memory limit, enforce it.
   3247 		 */
   3248 		else if (s >= pmap_memlimit) {
   3249 			mp->start = -PAGE_SIZE;	/* let's know why */
   3250 			mp->size = 0;
   3251 		}
   3252 		else {
   3253 			mp->start = s;
   3254 			mp->size = e - s;
   3255 		}
   3256 		DPRINTFN(BOOT,
   3257 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3258 		    i, mp->start, mp->size);
   3259 	}
   3260 
   3261 	/*
   3262 	 * Move (and uncount) all the null return to the end.
   3263 	 */
   3264 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3265 		if (mp->size == 0) {
   3266 			tmp = avail[i];
   3267 			avail[i] = avail[--avail_cnt];
   3268 			avail[avail_cnt] = avail[i];
   3269 		}
   3270 	}
   3271 
   3272 	/*
   3273 	 * (Bubble)sort them into ascending order.
   3274 	 */
   3275 	for (i = 0; i < avail_cnt; i++) {
   3276 		for (j = i + 1; j < avail_cnt; j++) {
   3277 			if (avail[i].start > avail[j].start) {
   3278 				tmp = avail[i];
   3279 				avail[i] = avail[j];
   3280 				avail[j] = tmp;
   3281 			}
   3282 		}
   3283 	}
   3284 
   3285 	/*
   3286 	 * Make sure they don't overlap.
   3287 	 */
   3288 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3289 		if (mp[0].start + mp[0].size > mp[1].start) {
   3290 			mp[0].size = mp[1].start - mp[0].start;
   3291 		}
   3292 		DPRINTFN(BOOT,
   3293 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3294 		    i, mp->start, mp->size);
   3295 	}
   3296 	DPRINTFN(BOOT,
   3297 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3298 	    i, mp->start, mp->size);
   3299 
   3300 #ifdef	PTEGCOUNT
   3301 	pmap_pteg_cnt = PTEGCOUNT;
   3302 #else /* PTEGCOUNT */
   3303 
   3304 	pmap_pteg_cnt = 0x1000;
   3305 
   3306 	while (pmap_pteg_cnt < physmem)
   3307 		pmap_pteg_cnt <<= 1;
   3308 
   3309 	pmap_pteg_cnt >>= 1;
   3310 #endif /* PTEGCOUNT */
   3311 
   3312 #ifdef DEBUG
   3313 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3314 #endif
   3315 
   3316 	/*
   3317 	 * Find suitably aligned memory for PTEG hash table.
   3318 	 */
   3319 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3320 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3321 
   3322 #ifdef DEBUG
   3323 	DPRINTFN(BOOT,
   3324 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3325 #endif
   3326 
   3327 
   3328 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3329 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3330 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3331 		    pmap_pteg_table, size);
   3332 #endif
   3333 
   3334 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3335 		pmap_pteg_cnt * sizeof(struct pteg));
   3336 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3337 
   3338 	/*
   3339 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3340 	 * with pages.  So we just steal them before giving them to UVM.
   3341 	 */
   3342 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3343 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3344 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3345 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3346 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3347 		    pmap_pvo_table, size);
   3348 #endif
   3349 
   3350 	for (i = 0; i < pmap_pteg_cnt; i++)
   3351 		TAILQ_INIT(&pmap_pvo_table[i]);
   3352 
   3353 #ifndef MSGBUFADDR
   3354 	/*
   3355 	 * Allocate msgbuf in high memory.
   3356 	 */
   3357 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3358 #endif
   3359 
   3360 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3361 		paddr_t pfstart = atop(mp->start);
   3362 		paddr_t pfend = atop(mp->start + mp->size);
   3363 		if (mp->size == 0)
   3364 			continue;
   3365 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3366 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3367 				VM_FREELIST_FIRST256);
   3368 		} else if (mp->start >= SEGMENT_LENGTH) {
   3369 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3370 				VM_FREELIST_DEFAULT);
   3371 		} else {
   3372 			pfend = atop(SEGMENT_LENGTH);
   3373 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3374 				VM_FREELIST_FIRST256);
   3375 			pfstart = atop(SEGMENT_LENGTH);
   3376 			pfend = atop(mp->start + mp->size);
   3377 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3378 				VM_FREELIST_DEFAULT);
   3379 		}
   3380 	}
   3381 
   3382 	/*
   3383 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3384 	 */
   3385 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3386 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3387 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3388 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3389 	pmap_vsid_bitmap[0] |= 1;
   3390 
   3391 	/*
   3392 	 * Initialize kernel pmap and hardware.
   3393 	 */
   3394 
   3395 /* PMAP_OEA64_BRIDGE does support these instructions */
   3396 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3397 	for (i = 0; i < 16; i++) {
   3398 #if defined(PPC_OEA601)
   3399 	    /* XXX wedges for segment register 0xf , so set later */
   3400 	    if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
   3401 		    continue;
   3402 #endif
   3403  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3404 		__asm volatile ("mtsrin %0,%1"
   3405  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3406 	}
   3407 
   3408 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3409 	__asm volatile ("mtsr %0,%1"
   3410 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3411 #ifdef KERNEL2_SR
   3412 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3413 	__asm volatile ("mtsr %0,%1"
   3414 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3415 #endif
   3416 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3417 #if defined (PMAP_OEA)
   3418 	for (i = 0; i < 16; i++) {
   3419 		if (iosrtable[i] & SR601_T) {
   3420 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3421 			__asm volatile ("mtsrin %0,%1"
   3422 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3423 		}
   3424 	}
   3425 	__asm volatile ("sync; mtsdr1 %0; isync"
   3426 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3427 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3428  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3429  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
   3430 #endif
   3431 	tlbia();
   3432 
   3433 #ifdef ALTIVEC
   3434 	pmap_use_altivec = cpu_altivec;
   3435 #endif
   3436 
   3437 #ifdef DEBUG
   3438 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3439 		u_int cnt;
   3440 		uvm_physseg_t bank;
   3441 		char pbuf[9];
   3442 		for (cnt = 0, bank = uvm_physseg_get_first();
   3443 		     uvm_physseg_valid_p(bank);
   3444 		     bank = uvm_physseg_get_next(bank)) {
   3445 			cnt += uvm_physseg_get_avail_end(bank) -
   3446 			    uvm_physseg_get_avail_start(bank);
   3447 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3448 			    bank,
   3449 			    ptoa(uvm_physseg_get_avail_start(bank)),
   3450 			    ptoa(uvm_physseg_get_avail_end(bank)),
   3451 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
   3452 		}
   3453 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3454 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3455 		    pbuf, cnt);
   3456 	}
   3457 #endif
   3458 
   3459 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3460 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3461 	    &pmap_pool_uallocator, IPL_VM);
   3462 
   3463 	pool_setlowat(&pmap_upvo_pool, 252);
   3464 
   3465 	pool_init(&pmap_pool, sizeof(struct pmap),
   3466 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3467 	    IPL_NONE);
   3468 
   3469 #if defined(PMAP_NEED_MAPKERNEL)
   3470 	{
   3471 		struct pmap *pm = pmap_kernel();
   3472 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3473 		extern int etext[], kernel_text[];
   3474 		vaddr_t va, va_etext = (paddr_t) etext;
   3475 #endif
   3476 		paddr_t pa, pa_end;
   3477 		register_t sr;
   3478 		struct pte pt;
   3479 		unsigned int ptegidx;
   3480 		int bank;
   3481 
   3482 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3483 		pm->pm_sr[0] = sr;
   3484 
   3485 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3486 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3487 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3488 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3489 				ptegidx = va_to_pteg(pm, pa);
   3490 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3491 				pmap_pte_insert(ptegidx, &pt);
   3492 			}
   3493 		}
   3494 
   3495 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3496 		va = (vaddr_t) kernel_text;
   3497 
   3498 		for (pa = kernelstart; va < va_etext;
   3499 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3500 			ptegidx = va_to_pteg(pm, va);
   3501 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3502 			pmap_pte_insert(ptegidx, &pt);
   3503 		}
   3504 
   3505 		for (; pa < kernelend;
   3506 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3507 			ptegidx = va_to_pteg(pm, va);
   3508 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3509 			pmap_pte_insert(ptegidx, &pt);
   3510 		}
   3511 
   3512 		for (va = 0, pa = 0; va < kernelstart;
   3513 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3514 			ptegidx = va_to_pteg(pm, va);
   3515 			if (va < 0x3000)
   3516 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3517 			else
   3518 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3519 			pmap_pte_insert(ptegidx, &pt);
   3520 		}
   3521 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3522 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3523 			ptegidx = va_to_pteg(pm, va);
   3524 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3525 			pmap_pte_insert(ptegidx, &pt);
   3526 		}
   3527 #endif
   3528 
   3529 		__asm volatile ("mtsrin %0,%1"
   3530  			      :: "r"(sr), "r"(kernelstart));
   3531 	}
   3532 #endif
   3533 
   3534 #if defined(PMAPDEBUG)
   3535 	if ( pmapdebug )
   3536 	    pmap_print_mmuregs();
   3537 #endif
   3538 }
   3539