pmap.c revision 1.94 1 /* $NetBSD: pmap.c,v 1.94 2016/12/23 07:15:28 cherry Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.94 2016/12/23 07:15:28 cherry Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/pool.h>
78 #include <sys/queue.h>
79 #include <sys/device.h> /* for evcnt */
80 #include <sys/systm.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_physseg.h>
85
86 #include <machine/powerpc.h>
87 #include <powerpc/bat.h>
88 #include <powerpc/pcb.h>
89 #include <powerpc/psl.h>
90 #include <powerpc/spr.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 extern int pmap_use_altivec;
96 #endif
97
98 #ifdef PMAP_MEMLIMIT
99 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
100 #else
101 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
102 #endif
103
104 extern struct pmap kernel_pmap_;
105 static unsigned int pmap_pages_stolen;
106 static u_long pmap_pte_valid;
107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
108 static u_long pmap_pvo_enter_depth;
109 static u_long pmap_pvo_remove_depth;
110 #endif
111
112 #ifndef MSGBUFADDR
113 extern paddr_t msgbuf_paddr;
114 #endif
115
116 static struct mem_region *mem, *avail;
117 static u_int mem_cnt, avail_cnt;
118
119 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
120 # define PMAP_OEA 1
121 #endif
122
123 #if defined(PMAP_OEA)
124 #define _PRIxpte "lx"
125 #else
126 #define _PRIxpte PRIx64
127 #endif
128 #define _PRIxpa "lx"
129 #define _PRIxva "lx"
130 #define _PRIsr "lx"
131
132 #ifdef PMAP_NEEDS_FIXUP
133 #if defined(PMAP_OEA)
134 #define PMAPNAME(name) pmap32_##name
135 #elif defined(PMAP_OEA64)
136 #define PMAPNAME(name) pmap64_##name
137 #elif defined(PMAP_OEA64_BRIDGE)
138 #define PMAPNAME(name) pmap64bridge_##name
139 #else
140 #error unknown variant for pmap
141 #endif
142 #endif /* PMAP_NEEDS_FIXUP */
143
144 #ifdef PMAPNAME
145 #define STATIC static
146 #define pmap_pte_spill PMAPNAME(pte_spill)
147 #define pmap_real_memory PMAPNAME(real_memory)
148 #define pmap_init PMAPNAME(init)
149 #define pmap_virtual_space PMAPNAME(virtual_space)
150 #define pmap_create PMAPNAME(create)
151 #define pmap_reference PMAPNAME(reference)
152 #define pmap_destroy PMAPNAME(destroy)
153 #define pmap_copy PMAPNAME(copy)
154 #define pmap_update PMAPNAME(update)
155 #define pmap_enter PMAPNAME(enter)
156 #define pmap_remove PMAPNAME(remove)
157 #define pmap_kenter_pa PMAPNAME(kenter_pa)
158 #define pmap_kremove PMAPNAME(kremove)
159 #define pmap_extract PMAPNAME(extract)
160 #define pmap_protect PMAPNAME(protect)
161 #define pmap_unwire PMAPNAME(unwire)
162 #define pmap_page_protect PMAPNAME(page_protect)
163 #define pmap_query_bit PMAPNAME(query_bit)
164 #define pmap_clear_bit PMAPNAME(clear_bit)
165
166 #define pmap_activate PMAPNAME(activate)
167 #define pmap_deactivate PMAPNAME(deactivate)
168
169 #define pmap_pinit PMAPNAME(pinit)
170 #define pmap_procwr PMAPNAME(procwr)
171
172 #define pmap_pool PMAPNAME(pool)
173 #define pmap_upvo_pool PMAPNAME(upvo_pool)
174 #define pmap_mpvo_pool PMAPNAME(mpvo_pool)
175 #define pmap_pvo_table PMAPNAME(pvo_table)
176 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
177 #define pmap_pte_print PMAPNAME(pte_print)
178 #define pmap_pteg_check PMAPNAME(pteg_check)
179 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
180 #define pmap_print_pte PMAPNAME(print_pte)
181 #define pmap_pteg_dist PMAPNAME(pteg_dist)
182 #endif
183 #if defined(DEBUG) || defined(PMAPCHECK)
184 #define pmap_pvo_verify PMAPNAME(pvo_verify)
185 #define pmapcheck PMAPNAME(check)
186 #endif
187 #if defined(DEBUG) || defined(PMAPDEBUG)
188 #define pmapdebug PMAPNAME(debug)
189 #endif
190 #define pmap_steal_memory PMAPNAME(steal_memory)
191 #define pmap_bootstrap PMAPNAME(bootstrap)
192 #else
193 #define STATIC /* nothing */
194 #endif /* PMAPNAME */
195
196 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
197 STATIC void pmap_real_memory(paddr_t *, psize_t *);
198 STATIC void pmap_init(void);
199 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
200 STATIC pmap_t pmap_create(void);
201 STATIC void pmap_reference(pmap_t);
202 STATIC void pmap_destroy(pmap_t);
203 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
204 STATIC void pmap_update(pmap_t);
205 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
206 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
207 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_kremove(vaddr_t, vsize_t);
209 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
210
211 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
212 STATIC void pmap_unwire(pmap_t, vaddr_t);
213 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
214 STATIC bool pmap_query_bit(struct vm_page *, int);
215 STATIC bool pmap_clear_bit(struct vm_page *, int);
216
217 STATIC void pmap_activate(struct lwp *);
218 STATIC void pmap_deactivate(struct lwp *);
219
220 STATIC void pmap_pinit(pmap_t pm);
221 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
222
223 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
224 STATIC void pmap_pte_print(volatile struct pte *);
225 STATIC void pmap_pteg_check(void);
226 STATIC void pmap_print_mmuregs(void);
227 STATIC void pmap_print_pte(pmap_t, vaddr_t);
228 STATIC void pmap_pteg_dist(void);
229 #endif
230 #if defined(DEBUG) || defined(PMAPCHECK)
231 STATIC void pmap_pvo_verify(void);
232 #endif
233 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
234 STATIC void pmap_bootstrap(paddr_t, paddr_t);
235
236 #ifdef PMAPNAME
237 const struct pmap_ops PMAPNAME(ops) = {
238 .pmapop_pte_spill = pmap_pte_spill,
239 .pmapop_real_memory = pmap_real_memory,
240 .pmapop_init = pmap_init,
241 .pmapop_virtual_space = pmap_virtual_space,
242 .pmapop_create = pmap_create,
243 .pmapop_reference = pmap_reference,
244 .pmapop_destroy = pmap_destroy,
245 .pmapop_copy = pmap_copy,
246 .pmapop_update = pmap_update,
247 .pmapop_enter = pmap_enter,
248 .pmapop_remove = pmap_remove,
249 .pmapop_kenter_pa = pmap_kenter_pa,
250 .pmapop_kremove = pmap_kremove,
251 .pmapop_extract = pmap_extract,
252 .pmapop_protect = pmap_protect,
253 .pmapop_unwire = pmap_unwire,
254 .pmapop_page_protect = pmap_page_protect,
255 .pmapop_query_bit = pmap_query_bit,
256 .pmapop_clear_bit = pmap_clear_bit,
257 .pmapop_activate = pmap_activate,
258 .pmapop_deactivate = pmap_deactivate,
259 .pmapop_pinit = pmap_pinit,
260 .pmapop_procwr = pmap_procwr,
261 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
262 .pmapop_pte_print = pmap_pte_print,
263 .pmapop_pteg_check = pmap_pteg_check,
264 .pmapop_print_mmuregs = pmap_print_mmuregs,
265 .pmapop_print_pte = pmap_print_pte,
266 .pmapop_pteg_dist = pmap_pteg_dist,
267 #else
268 .pmapop_pte_print = NULL,
269 .pmapop_pteg_check = NULL,
270 .pmapop_print_mmuregs = NULL,
271 .pmapop_print_pte = NULL,
272 .pmapop_pteg_dist = NULL,
273 #endif
274 #if defined(DEBUG) || defined(PMAPCHECK)
275 .pmapop_pvo_verify = pmap_pvo_verify,
276 #else
277 .pmapop_pvo_verify = NULL,
278 #endif
279 .pmapop_steal_memory = pmap_steal_memory,
280 .pmapop_bootstrap = pmap_bootstrap,
281 };
282 #endif /* !PMAPNAME */
283
284 /*
285 * The following structure is aligned to 32 bytes
286 */
287 struct pvo_entry {
288 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
289 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
290 struct pte pvo_pte; /* Prebuilt PTE */
291 pmap_t pvo_pmap; /* ptr to owning pmap */
292 vaddr_t pvo_vaddr; /* VA of entry */
293 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
294 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
295 #define PVO_WIRED 0x0010 /* PVO entry is wired */
296 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
297 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
298 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
299 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
300 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
301 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
302 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
303 #define PVO_SPILL_SET 2 /* PVO has been spilled */
304 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
305 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
306 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
307 #define PVO_REMOVE 6 /* PVO has been removed */
308 #define PVO_WHERE_MASK 15
309 #define PVO_WHERE_SHFT 8
310 } __attribute__ ((aligned (32)));
311 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
312 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
313 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
314 #define PVO_PTEGIDX_CLR(pvo) \
315 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
316 #define PVO_PTEGIDX_SET(pvo,i) \
317 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
318 #define PVO_WHERE(pvo,w) \
319 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
320 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
321
322 TAILQ_HEAD(pvo_tqhead, pvo_entry);
323 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
324 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
325 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
326
327 struct pool pmap_pool; /* pool for pmap structures */
328 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
329 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
330
331 /*
332 * We keep a cache of unmanaged pages to be used for pvo entries for
333 * unmanaged pages.
334 */
335 struct pvo_page {
336 SIMPLEQ_ENTRY(pvo_page) pvop_link;
337 };
338 SIMPLEQ_HEAD(pvop_head, pvo_page);
339 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
340 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
341 static u_long pmap_upvop_free;
342 static u_long pmap_upvop_maxfree;
343 static u_long pmap_mpvop_free;
344 static u_long pmap_mpvop_maxfree;
345
346 static void *pmap_pool_ualloc(struct pool *, int);
347 static void *pmap_pool_malloc(struct pool *, int);
348
349 static void pmap_pool_ufree(struct pool *, void *);
350 static void pmap_pool_mfree(struct pool *, void *);
351
352 static struct pool_allocator pmap_pool_mallocator = {
353 .pa_alloc = pmap_pool_malloc,
354 .pa_free = pmap_pool_mfree,
355 .pa_pagesz = 0,
356 };
357
358 static struct pool_allocator pmap_pool_uallocator = {
359 .pa_alloc = pmap_pool_ualloc,
360 .pa_free = pmap_pool_ufree,
361 .pa_pagesz = 0,
362 };
363
364 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
365 void pmap_pte_print(volatile struct pte *);
366 void pmap_pteg_check(void);
367 void pmap_pteg_dist(void);
368 void pmap_print_pte(pmap_t, vaddr_t);
369 void pmap_print_mmuregs(void);
370 #endif
371
372 #if defined(DEBUG) || defined(PMAPCHECK)
373 #ifdef PMAPCHECK
374 int pmapcheck = 1;
375 #else
376 int pmapcheck = 0;
377 #endif
378 void pmap_pvo_verify(void);
379 static void pmap_pvo_check(const struct pvo_entry *);
380 #define PMAP_PVO_CHECK(pvo) \
381 do { \
382 if (pmapcheck) \
383 pmap_pvo_check(pvo); \
384 } while (0)
385 #else
386 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
387 #endif
388 static int pmap_pte_insert(int, struct pte *);
389 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
390 vaddr_t, paddr_t, register_t, int);
391 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
392 static void pmap_pvo_free(struct pvo_entry *);
393 static void pmap_pvo_free_list(struct pvo_head *);
394 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
395 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
396 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
397 static void pvo_set_exec(struct pvo_entry *);
398 static void pvo_clear_exec(struct pvo_entry *);
399
400 static void tlbia(void);
401
402 static void pmap_release(pmap_t);
403 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
404
405 static uint32_t pmap_pvo_reclaim_nextidx;
406 #ifdef DEBUG
407 static int pmap_pvo_reclaim_debugctr;
408 #endif
409
410 #define VSID_NBPW (sizeof(uint32_t) * 8)
411 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
412
413 static int pmap_initialized;
414
415 #if defined(DEBUG) || defined(PMAPDEBUG)
416 #define PMAPDEBUG_BOOT 0x0001
417 #define PMAPDEBUG_PTE 0x0002
418 #define PMAPDEBUG_EXEC 0x0008
419 #define PMAPDEBUG_PVOENTER 0x0010
420 #define PMAPDEBUG_PVOREMOVE 0x0020
421 #define PMAPDEBUG_ACTIVATE 0x0100
422 #define PMAPDEBUG_CREATE 0x0200
423 #define PMAPDEBUG_ENTER 0x1000
424 #define PMAPDEBUG_KENTER 0x2000
425 #define PMAPDEBUG_KREMOVE 0x4000
426 #define PMAPDEBUG_REMOVE 0x8000
427
428 unsigned int pmapdebug = 0;
429
430 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
431 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
432 #else
433 # define DPRINTF(x, ...) do { } while (0)
434 # define DPRINTFN(n, x, ...) do { } while (0)
435 #endif
436
437
438 #ifdef PMAPCOUNTERS
439 /*
440 * From pmap_subr.c
441 */
442 extern struct evcnt pmap_evcnt_mappings;
443 extern struct evcnt pmap_evcnt_unmappings;
444
445 extern struct evcnt pmap_evcnt_kernel_mappings;
446 extern struct evcnt pmap_evcnt_kernel_unmappings;
447
448 extern struct evcnt pmap_evcnt_mappings_replaced;
449
450 extern struct evcnt pmap_evcnt_exec_mappings;
451 extern struct evcnt pmap_evcnt_exec_cached;
452
453 extern struct evcnt pmap_evcnt_exec_synced;
454 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
455 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
456
457 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
458 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
459 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
461 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
462
463 extern struct evcnt pmap_evcnt_updates;
464 extern struct evcnt pmap_evcnt_collects;
465 extern struct evcnt pmap_evcnt_copies;
466
467 extern struct evcnt pmap_evcnt_ptes_spilled;
468 extern struct evcnt pmap_evcnt_ptes_unspilled;
469 extern struct evcnt pmap_evcnt_ptes_evicted;
470
471 extern struct evcnt pmap_evcnt_ptes_primary[8];
472 extern struct evcnt pmap_evcnt_ptes_secondary[8];
473 extern struct evcnt pmap_evcnt_ptes_removed;
474 extern struct evcnt pmap_evcnt_ptes_changed;
475 extern struct evcnt pmap_evcnt_pvos_reclaimed;
476 extern struct evcnt pmap_evcnt_pvos_failed;
477
478 extern struct evcnt pmap_evcnt_zeroed_pages;
479 extern struct evcnt pmap_evcnt_copied_pages;
480 extern struct evcnt pmap_evcnt_idlezeroed_pages;
481
482 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
483 #define PMAPCOUNT2(ev) ((ev).ev_count++)
484 #else
485 #define PMAPCOUNT(ev) ((void) 0)
486 #define PMAPCOUNT2(ev) ((void) 0)
487 #endif
488
489 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
490
491 /* XXXSL: this needs to be moved to assembler */
492 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
493
494 #ifdef MD_TLBSYNC
495 #define TLBSYNC() MD_TLBSYNC()
496 #else
497 #define TLBSYNC() __asm volatile("tlbsync")
498 #endif
499 #define SYNC() __asm volatile("sync")
500 #define EIEIO() __asm volatile("eieio")
501 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
502 #define MFMSR() mfmsr()
503 #define MTMSR(psl) mtmsr(psl)
504 #define MFPVR() mfpvr()
505 #define MFSRIN(va) mfsrin(va)
506 #define MFTB() mfrtcltbl()
507
508 #if defined(DDB) && !defined(PMAP_OEA64)
509 static inline register_t
510 mfsrin(vaddr_t va)
511 {
512 register_t sr;
513 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
514 return sr;
515 }
516 #endif /* DDB && !PMAP_OEA64 */
517
518 #if defined (PMAP_OEA64_BRIDGE)
519 extern void mfmsr64 (register64_t *result);
520 #endif /* PMAP_OEA64_BRIDGE */
521
522 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
523 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
524
525 static inline register_t
526 pmap_interrupts_off(void)
527 {
528 register_t msr = MFMSR();
529 if (msr & PSL_EE)
530 MTMSR(msr & ~PSL_EE);
531 return msr;
532 }
533
534 static void
535 pmap_interrupts_restore(register_t msr)
536 {
537 if (msr & PSL_EE)
538 MTMSR(msr);
539 }
540
541 static inline u_int32_t
542 mfrtcltbl(void)
543 {
544 #ifdef PPC_OEA601
545 if ((MFPVR() >> 16) == MPC601)
546 return (mfrtcl() >> 7);
547 else
548 #endif
549 return (mftbl());
550 }
551
552 /*
553 * These small routines may have to be replaced,
554 * if/when we support processors other that the 604.
555 */
556
557 void
558 tlbia(void)
559 {
560 char *i;
561
562 SYNC();
563 #if defined(PMAP_OEA)
564 /*
565 * Why not use "tlbia"? Because not all processors implement it.
566 *
567 * This needs to be a per-CPU callback to do the appropriate thing
568 * for the CPU. XXX
569 */
570 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
571 TLBIE(i);
572 EIEIO();
573 SYNC();
574 }
575 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
576 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
577 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
578 TLBIEL(i);
579 EIEIO();
580 SYNC();
581 }
582 #endif
583 TLBSYNC();
584 SYNC();
585 }
586
587 static inline register_t
588 va_to_vsid(const struct pmap *pm, vaddr_t addr)
589 {
590 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
591 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
592 #else /* PMAP_OEA64 */
593 #if 0
594 const struct ste *ste;
595 register_t hash;
596 int i;
597
598 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
599
600 /*
601 * Try the primary group first
602 */
603 ste = pm->pm_stes[hash].stes;
604 for (i = 0; i < 8; i++, ste++) {
605 if (ste->ste_hi & STE_V) &&
606 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
607 return ste;
608 }
609
610 /*
611 * Then the secondary group.
612 */
613 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
614 for (i = 0; i < 8; i++, ste++) {
615 if (ste->ste_hi & STE_V) &&
616 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
617 return addr;
618 }
619
620 return NULL;
621 #else
622 /*
623 * Rather than searching the STE groups for the VSID, we know
624 * how we generate that from the ESID and so do that.
625 */
626 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
627 #endif
628 #endif /* PMAP_OEA */
629 }
630
631 static inline register_t
632 va_to_pteg(const struct pmap *pm, vaddr_t addr)
633 {
634 register_t hash;
635
636 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
637 return hash & pmap_pteg_mask;
638 }
639
640 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
641 /*
642 * Given a PTE in the page table, calculate the VADDR that hashes to it.
643 * The only bit of magic is that the top 4 bits of the address doesn't
644 * technically exist in the PTE. But we know we reserved 4 bits of the
645 * VSID for it so that's how we get it.
646 */
647 static vaddr_t
648 pmap_pte_to_va(volatile const struct pte *pt)
649 {
650 vaddr_t va;
651 uintptr_t ptaddr = (uintptr_t) pt;
652
653 if (pt->pte_hi & PTE_HID)
654 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
655
656 /* PPC Bits 10-19 PPC64 Bits 42-51 */
657 #if defined(PMAP_OEA)
658 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
659 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
660 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
661 #endif
662 va <<= ADDR_PIDX_SHFT;
663
664 /* PPC Bits 4-9 PPC64 Bits 36-41 */
665 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
666
667 #if defined(PMAP_OEA64)
668 /* PPC63 Bits 0-35 */
669 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
670 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
671 /* PPC Bits 0-3 */
672 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
673 #endif
674
675 return va;
676 }
677 #endif
678
679 static inline struct pvo_head *
680 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
681 {
682 struct vm_page *pg;
683 struct vm_page_md *md;
684
685 pg = PHYS_TO_VM_PAGE(pa);
686 if (pg_p != NULL)
687 *pg_p = pg;
688 if (pg == NULL)
689 return &pmap_pvo_unmanaged;
690 md = VM_PAGE_TO_MD(pg);
691 return &md->mdpg_pvoh;
692 }
693
694 static inline struct pvo_head *
695 vm_page_to_pvoh(struct vm_page *pg)
696 {
697 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
698
699 return &md->mdpg_pvoh;
700 }
701
702
703 static inline void
704 pmap_attr_clear(struct vm_page *pg, int ptebit)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 md->mdpg_attrs &= ~ptebit;
709 }
710
711 static inline int
712 pmap_attr_fetch(struct vm_page *pg)
713 {
714 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
715
716 return md->mdpg_attrs;
717 }
718
719 static inline void
720 pmap_attr_save(struct vm_page *pg, int ptebit)
721 {
722 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
723
724 md->mdpg_attrs |= ptebit;
725 }
726
727 static inline int
728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
729 {
730 if (pt->pte_hi == pvo_pt->pte_hi
731 #if 0
732 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
733 ~(PTE_REF|PTE_CHG)) == 0
734 #endif
735 )
736 return 1;
737 return 0;
738 }
739
740 static inline void
741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
742 {
743 /*
744 * Construct the PTE. Default to IMB initially. Valid bit
745 * only gets set when the real pte is set in memory.
746 *
747 * Note: Don't set the valid bit for correct operation of tlb update.
748 */
749 #if defined(PMAP_OEA)
750 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
751 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
752 pt->pte_lo = pte_lo;
753 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
754 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = (u_int64_t) pte_lo;
757 #endif /* PMAP_OEA */
758 }
759
760 static inline void
761 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
762 {
763 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
764 }
765
766 static inline void
767 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
768 {
769 /*
770 * As shown in Section 7.6.3.2.3
771 */
772 pt->pte_lo &= ~ptebit;
773 TLBIE(va);
774 SYNC();
775 EIEIO();
776 TLBSYNC();
777 SYNC();
778 #ifdef MULTIPROCESSOR
779 DCBST(pt);
780 #endif
781 }
782
783 static inline void
784 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
785 {
786 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
787 if (pvo_pt->pte_hi & PTE_VALID)
788 panic("pte_set: setting an already valid pte %p", pvo_pt);
789 #endif
790 pvo_pt->pte_hi |= PTE_VALID;
791
792 /*
793 * Update the PTE as defined in section 7.6.3.1
794 * Note that the REF/CHG bits are from pvo_pt and thus should
795 * have been saved so this routine can restore them (if desired).
796 */
797 pt->pte_lo = pvo_pt->pte_lo;
798 EIEIO();
799 pt->pte_hi = pvo_pt->pte_hi;
800 TLBSYNC();
801 SYNC();
802 #ifdef MULTIPROCESSOR
803 DCBST(pt);
804 #endif
805 pmap_pte_valid++;
806 }
807
808 static inline void
809 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
810 {
811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
812 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
813 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
814 if ((pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
816 #endif
817
818 pvo_pt->pte_hi &= ~PTE_VALID;
819 /*
820 * Force the ref & chg bits back into the PTEs.
821 */
822 SYNC();
823 /*
824 * Invalidate the pte ... (Section 7.6.3.3)
825 */
826 pt->pte_hi &= ~PTE_VALID;
827 SYNC();
828 TLBIE(va);
829 SYNC();
830 EIEIO();
831 TLBSYNC();
832 SYNC();
833 /*
834 * Save the ref & chg bits ...
835 */
836 pmap_pte_synch(pt, pvo_pt);
837 pmap_pte_valid--;
838 }
839
840 static inline void
841 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
842 {
843 /*
844 * Invalidate the PTE
845 */
846 pmap_pte_unset(pt, pvo_pt, va);
847 pmap_pte_set(pt, pvo_pt);
848 }
849
850 /*
851 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
852 * (either primary or secondary location).
853 *
854 * Note: both the destination and source PTEs must not have PTE_VALID set.
855 */
856
857 static int
858 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
859 {
860 volatile struct pte *pt;
861 int i;
862
863 #if defined(DEBUG)
864 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
865 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
866 #endif
867 /*
868 * First try primary hash.
869 */
870 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
871 if ((pt->pte_hi & PTE_VALID) == 0) {
872 pvo_pt->pte_hi &= ~PTE_HID;
873 pmap_pte_set(pt, pvo_pt);
874 return i;
875 }
876 }
877
878 /*
879 * Now try secondary hash.
880 */
881 ptegidx ^= pmap_pteg_mask;
882 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
883 if ((pt->pte_hi & PTE_VALID) == 0) {
884 pvo_pt->pte_hi |= PTE_HID;
885 pmap_pte_set(pt, pvo_pt);
886 return i;
887 }
888 }
889 return -1;
890 }
891
892 /*
893 * Spill handler.
894 *
895 * Tries to spill a page table entry from the overflow area.
896 * This runs in either real mode (if dealing with a exception spill)
897 * or virtual mode when dealing with manually spilling one of the
898 * kernel's pte entries. In either case, interrupts are already
899 * disabled.
900 */
901
902 int
903 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
904 {
905 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
906 struct pvo_entry *pvo;
907 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
908 struct pvo_tqhead *pvoh, *vpvoh = NULL;
909 int ptegidx, i, j;
910 volatile struct pteg *pteg;
911 volatile struct pte *pt;
912
913 PMAP_LOCK();
914
915 ptegidx = va_to_pteg(pm, addr);
916
917 /*
918 * Have to substitute some entry. Use the primary hash for this.
919 * Use low bits of timebase as random generator. Make sure we are
920 * not picking a kernel pte for replacement.
921 */
922 pteg = &pmap_pteg_table[ptegidx];
923 i = MFTB() & 7;
924 for (j = 0; j < 8; j++) {
925 pt = &pteg->pt[i];
926 if ((pt->pte_hi & PTE_VALID) == 0)
927 break;
928 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
929 < PHYSMAP_VSIDBITS)
930 break;
931 i = (i + 1) & 7;
932 }
933 KASSERT(j < 8);
934
935 source_pvo = NULL;
936 victim_pvo = NULL;
937 pvoh = &pmap_pvo_table[ptegidx];
938 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
939
940 /*
941 * We need to find pvo entry for this address...
942 */
943 PMAP_PVO_CHECK(pvo); /* sanity check */
944
945 /*
946 * If we haven't found the source and we come to a PVO with
947 * a valid PTE, then we know we can't find it because all
948 * evicted PVOs always are first in the list.
949 */
950 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
951 break;
952 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
953 addr == PVO_VADDR(pvo)) {
954
955 /*
956 * Now we have found the entry to be spilled into the
957 * pteg. Attempt to insert it into the page table.
958 */
959 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
960 if (j >= 0) {
961 PVO_PTEGIDX_SET(pvo, j);
962 PMAP_PVO_CHECK(pvo); /* sanity check */
963 PVO_WHERE(pvo, SPILL_INSERT);
964 pvo->pvo_pmap->pm_evictions--;
965 PMAPCOUNT(ptes_spilled);
966 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
967 ? pmap_evcnt_ptes_secondary
968 : pmap_evcnt_ptes_primary)[j]);
969
970 /*
971 * Since we keep the evicted entries at the
972 * from of the PVO list, we need move this
973 * (now resident) PVO after the evicted
974 * entries.
975 */
976 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
977
978 /*
979 * If we don't have to move (either we were the
980 * last entry or the next entry was valid),
981 * don't change our position. Otherwise
982 * move ourselves to the tail of the queue.
983 */
984 if (next_pvo != NULL &&
985 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
986 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
987 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
988 }
989 PMAP_UNLOCK();
990 return 1;
991 }
992 source_pvo = pvo;
993 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
994 return 0;
995 }
996 if (victim_pvo != NULL)
997 break;
998 }
999
1000 /*
1001 * We also need the pvo entry of the victim we are replacing
1002 * so save the R & C bits of the PTE.
1003 */
1004 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1005 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 vpvoh = pvoh; /* *1* */
1007 victim_pvo = pvo;
1008 if (source_pvo != NULL)
1009 break;
1010 }
1011 }
1012
1013 if (source_pvo == NULL) {
1014 PMAPCOUNT(ptes_unspilled);
1015 PMAP_UNLOCK();
1016 return 0;
1017 }
1018
1019 if (victim_pvo == NULL) {
1020 if ((pt->pte_hi & PTE_HID) == 0)
1021 panic("pmap_pte_spill: victim p-pte (%p) has "
1022 "no pvo entry!", pt);
1023
1024 /*
1025 * If this is a secondary PTE, we need to search
1026 * its primary pvo bucket for the matching PVO.
1027 */
1028 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1029 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1030 PMAP_PVO_CHECK(pvo); /* sanity check */
1031
1032 /*
1033 * We also need the pvo entry of the victim we are
1034 * replacing so save the R & C bits of the PTE.
1035 */
1036 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1037 victim_pvo = pvo;
1038 break;
1039 }
1040 }
1041 if (victim_pvo == NULL)
1042 panic("pmap_pte_spill: victim s-pte (%p) has "
1043 "no pvo entry!", pt);
1044 }
1045
1046 /*
1047 * The victim should be not be a kernel PVO/PTE entry.
1048 */
1049 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1050 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1051 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1052
1053 /*
1054 * We are invalidating the TLB entry for the EA for the
1055 * we are replacing even though its valid; If we don't
1056 * we lose any ref/chg bit changes contained in the TLB
1057 * entry.
1058 */
1059 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1060
1061 /*
1062 * To enforce the PVO list ordering constraint that all
1063 * evicted entries should come before all valid entries,
1064 * move the source PVO to the tail of its list and the
1065 * victim PVO to the head of its list (which might not be
1066 * the same list, if the victim was using the secondary hash).
1067 */
1068 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1069 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1070 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1071 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1072 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1073 pmap_pte_set(pt, &source_pvo->pvo_pte);
1074 victim_pvo->pvo_pmap->pm_evictions++;
1075 source_pvo->pvo_pmap->pm_evictions--;
1076 PVO_WHERE(victim_pvo, SPILL_UNSET);
1077 PVO_WHERE(source_pvo, SPILL_SET);
1078
1079 PVO_PTEGIDX_CLR(victim_pvo);
1080 PVO_PTEGIDX_SET(source_pvo, i);
1081 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1082 PMAPCOUNT(ptes_spilled);
1083 PMAPCOUNT(ptes_evicted);
1084 PMAPCOUNT(ptes_removed);
1085
1086 PMAP_PVO_CHECK(victim_pvo);
1087 PMAP_PVO_CHECK(source_pvo);
1088
1089 PMAP_UNLOCK();
1090 return 1;
1091 }
1092
1093 /*
1094 * Restrict given range to physical memory
1095 */
1096 void
1097 pmap_real_memory(paddr_t *start, psize_t *size)
1098 {
1099 struct mem_region *mp;
1100
1101 for (mp = mem; mp->size; mp++) {
1102 if (*start + *size > mp->start
1103 && *start < mp->start + mp->size) {
1104 if (*start < mp->start) {
1105 *size -= mp->start - *start;
1106 *start = mp->start;
1107 }
1108 if (*start + *size > mp->start + mp->size)
1109 *size = mp->start + mp->size - *start;
1110 return;
1111 }
1112 }
1113 *size = 0;
1114 }
1115
1116 /*
1117 * Initialize anything else for pmap handling.
1118 * Called during vm_init().
1119 */
1120 void
1121 pmap_init(void)
1122 {
1123 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1124 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1125 &pmap_pool_mallocator, IPL_NONE);
1126
1127 pool_setlowat(&pmap_mpvo_pool, 1008);
1128
1129 pmap_initialized = 1;
1130
1131 }
1132
1133 /*
1134 * How much virtual space does the kernel get?
1135 */
1136 void
1137 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1138 {
1139 /*
1140 * For now, reserve one segment (minus some overhead) for kernel
1141 * virtual memory
1142 */
1143 *start = VM_MIN_KERNEL_ADDRESS;
1144 *end = VM_MAX_KERNEL_ADDRESS;
1145 }
1146
1147 /*
1148 * Allocate, initialize, and return a new physical map.
1149 */
1150 pmap_t
1151 pmap_create(void)
1152 {
1153 pmap_t pm;
1154
1155 pm = pool_get(&pmap_pool, PR_WAITOK);
1156 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1157 memset((void *)pm, 0, sizeof *pm);
1158 pmap_pinit(pm);
1159
1160 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1161 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1162 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1163 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1164 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1165 pm,
1166 pm->pm_sr[0], pm->pm_sr[1],
1167 pm->pm_sr[2], pm->pm_sr[3],
1168 pm->pm_sr[4], pm->pm_sr[5],
1169 pm->pm_sr[6], pm->pm_sr[7],
1170 pm->pm_sr[8], pm->pm_sr[9],
1171 pm->pm_sr[10], pm->pm_sr[11],
1172 pm->pm_sr[12], pm->pm_sr[13],
1173 pm->pm_sr[14], pm->pm_sr[15]);
1174 return pm;
1175 }
1176
1177 /*
1178 * Initialize a preallocated and zeroed pmap structure.
1179 */
1180 void
1181 pmap_pinit(pmap_t pm)
1182 {
1183 register_t entropy = MFTB();
1184 register_t mask;
1185 int i;
1186
1187 /*
1188 * Allocate some segment registers for this pmap.
1189 */
1190 pm->pm_refs = 1;
1191 PMAP_LOCK();
1192 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1193 static register_t pmap_vsidcontext;
1194 register_t hash;
1195 unsigned int n;
1196
1197 /* Create a new value by multiplying by a prime adding in
1198 * entropy from the timebase register. This is to make the
1199 * VSID more random so that the PT Hash function collides
1200 * less often. (note that the prime causes gcc to do shifts
1201 * instead of a multiply)
1202 */
1203 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1204 hash = pmap_vsidcontext & (NPMAPS - 1);
1205 if (hash == 0) { /* 0 is special, avoid it */
1206 entropy += 0xbadf00d;
1207 continue;
1208 }
1209 n = hash >> 5;
1210 mask = 1L << (hash & (VSID_NBPW-1));
1211 hash = pmap_vsidcontext;
1212 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1213 /* anything free in this bucket? */
1214 if (~pmap_vsid_bitmap[n] == 0) {
1215 entropy = hash ^ (hash >> 16);
1216 continue;
1217 }
1218 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1219 mask = 1L << i;
1220 hash &= ~(VSID_NBPW-1);
1221 hash |= i;
1222 }
1223 hash &= PTE_VSID >> PTE_VSID_SHFT;
1224 pmap_vsid_bitmap[n] |= mask;
1225 pm->pm_vsid = hash;
1226 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1227 for (i = 0; i < 16; i++)
1228 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1229 SR_NOEXEC;
1230 #endif
1231 PMAP_UNLOCK();
1232 return;
1233 }
1234 PMAP_UNLOCK();
1235 panic("pmap_pinit: out of segments");
1236 }
1237
1238 /*
1239 * Add a reference to the given pmap.
1240 */
1241 void
1242 pmap_reference(pmap_t pm)
1243 {
1244 atomic_inc_uint(&pm->pm_refs);
1245 }
1246
1247 /*
1248 * Retire the given pmap from service.
1249 * Should only be called if the map contains no valid mappings.
1250 */
1251 void
1252 pmap_destroy(pmap_t pm)
1253 {
1254 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1255 pmap_release(pm);
1256 pool_put(&pmap_pool, pm);
1257 }
1258 }
1259
1260 /*
1261 * Release any resources held by the given physical map.
1262 * Called when a pmap initialized by pmap_pinit is being released.
1263 */
1264 void
1265 pmap_release(pmap_t pm)
1266 {
1267 int idx, mask;
1268
1269 KASSERT(pm->pm_stats.resident_count == 0);
1270 KASSERT(pm->pm_stats.wired_count == 0);
1271
1272 PMAP_LOCK();
1273 if (pm->pm_sr[0] == 0)
1274 panic("pmap_release");
1275 idx = pm->pm_vsid & (NPMAPS-1);
1276 mask = 1 << (idx % VSID_NBPW);
1277 idx /= VSID_NBPW;
1278
1279 KASSERT(pmap_vsid_bitmap[idx] & mask);
1280 pmap_vsid_bitmap[idx] &= ~mask;
1281 PMAP_UNLOCK();
1282 }
1283
1284 /*
1285 * Copy the range specified by src_addr/len
1286 * from the source map to the range dst_addr/len
1287 * in the destination map.
1288 *
1289 * This routine is only advisory and need not do anything.
1290 */
1291 void
1292 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1293 vsize_t len, vaddr_t src_addr)
1294 {
1295 PMAPCOUNT(copies);
1296 }
1297
1298 /*
1299 * Require that all active physical maps contain no
1300 * incorrect entries NOW.
1301 */
1302 void
1303 pmap_update(struct pmap *pmap)
1304 {
1305 PMAPCOUNT(updates);
1306 TLBSYNC();
1307 }
1308
1309 static inline int
1310 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1311 {
1312 int pteidx;
1313 /*
1314 * We can find the actual pte entry without searching by
1315 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1316 * and by noticing the HID bit.
1317 */
1318 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1319 if (pvo->pvo_pte.pte_hi & PTE_HID)
1320 pteidx ^= pmap_pteg_mask * 8;
1321 return pteidx;
1322 }
1323
1324 volatile struct pte *
1325 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1326 {
1327 volatile struct pte *pt;
1328
1329 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1330 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1331 return NULL;
1332 #endif
1333
1334 /*
1335 * If we haven't been supplied the ptegidx, calculate it.
1336 */
1337 if (pteidx == -1) {
1338 int ptegidx;
1339 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1340 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1341 }
1342
1343 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1344
1345 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1346 return pt;
1347 #else
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1349 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1350 "pvo but no valid pte index", pvo);
1351 }
1352 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1353 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1354 "pvo but no valid pte", pvo);
1355 }
1356
1357 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1358 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1359 #if defined(DEBUG) || defined(PMAPCHECK)
1360 pmap_pte_print(pt);
1361 #endif
1362 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1363 "pmap_pteg_table %p but invalid in pvo",
1364 pvo, pt);
1365 }
1366 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1367 #if defined(DEBUG) || defined(PMAPCHECK)
1368 pmap_pte_print(pt);
1369 #endif
1370 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1371 "not match pte %p in pmap_pteg_table",
1372 pvo, pt);
1373 }
1374 return pt;
1375 }
1376
1377 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1378 #if defined(DEBUG) || defined(PMAPCHECK)
1379 pmap_pte_print(pt);
1380 #endif
1381 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1382 "pmap_pteg_table but valid in pvo", pvo, pt);
1383 }
1384 return NULL;
1385 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1386 }
1387
1388 struct pvo_entry *
1389 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1390 {
1391 struct pvo_entry *pvo;
1392 int ptegidx;
1393
1394 va &= ~ADDR_POFF;
1395 ptegidx = va_to_pteg(pm, va);
1396
1397 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1399 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1400 panic("pmap_pvo_find_va: invalid pvo %p on "
1401 "list %#x (%p)", pvo, ptegidx,
1402 &pmap_pvo_table[ptegidx]);
1403 #endif
1404 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1405 if (pteidx_p)
1406 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1407 return pvo;
1408 }
1409 }
1410 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1411 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1412 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1413 return NULL;
1414 }
1415
1416 #if defined(DEBUG) || defined(PMAPCHECK)
1417 void
1418 pmap_pvo_check(const struct pvo_entry *pvo)
1419 {
1420 struct pvo_head *pvo_head;
1421 struct pvo_entry *pvo0;
1422 volatile struct pte *pt;
1423 int failed = 0;
1424
1425 PMAP_LOCK();
1426
1427 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1428 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1429
1430 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1431 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1432 pvo, pvo->pvo_pmap);
1433 failed = 1;
1434 }
1435
1436 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1437 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1438 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1439 pvo, TAILQ_NEXT(pvo, pvo_olink));
1440 failed = 1;
1441 }
1442
1443 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1444 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1445 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1446 pvo, LIST_NEXT(pvo, pvo_vlink));
1447 failed = 1;
1448 }
1449
1450 if (PVO_MANAGED_P(pvo)) {
1451 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1452 } else {
1453 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1454 printf("pmap_pvo_check: pvo %p: non kernel address "
1455 "on kernel unmanaged list\n", pvo);
1456 failed = 1;
1457 }
1458 pvo_head = &pmap_pvo_kunmanaged;
1459 }
1460 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1461 if (pvo0 == pvo)
1462 break;
1463 }
1464 if (pvo0 == NULL) {
1465 printf("pmap_pvo_check: pvo %p: not present "
1466 "on its vlist head %p\n", pvo, pvo_head);
1467 failed = 1;
1468 }
1469 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1470 printf("pmap_pvo_check: pvo %p: not present "
1471 "on its olist head\n", pvo);
1472 failed = 1;
1473 }
1474 pt = pmap_pvo_to_pte(pvo, -1);
1475 if (pt == NULL) {
1476 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1477 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1478 "no PTE\n", pvo);
1479 failed = 1;
1480 }
1481 } else {
1482 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1483 (uintptr_t) pt >=
1484 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1485 printf("pmap_pvo_check: pvo %p: pte %p not in "
1486 "pteg table\n", pvo, pt);
1487 failed = 1;
1488 }
1489 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1491 "no PTE\n", pvo);
1492 failed = 1;
1493 }
1494 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1495 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1496 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1497 pvo->pvo_pte.pte_hi,
1498 pt->pte_hi);
1499 failed = 1;
1500 }
1501 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1502 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1503 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1504 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1505 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1506 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1507 failed = 1;
1508 }
1509 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1510 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1511 " doesn't not match PVO's VA %#" _PRIxva "\n",
1512 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1513 failed = 1;
1514 }
1515 if (failed)
1516 pmap_pte_print(pt);
1517 }
1518 if (failed)
1519 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1520 pvo->pvo_pmap);
1521
1522 PMAP_UNLOCK();
1523 }
1524 #endif /* DEBUG || PMAPCHECK */
1525
1526 /*
1527 * Search the PVO table looking for a non-wired entry.
1528 * If we find one, remove it and return it.
1529 */
1530
1531 struct pvo_entry *
1532 pmap_pvo_reclaim(struct pmap *pm)
1533 {
1534 struct pvo_tqhead *pvoh;
1535 struct pvo_entry *pvo;
1536 uint32_t idx, endidx;
1537
1538 endidx = pmap_pvo_reclaim_nextidx;
1539 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1540 idx = (idx + 1) & pmap_pteg_mask) {
1541 pvoh = &pmap_pvo_table[idx];
1542 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1543 if (!PVO_WIRED_P(pvo)) {
1544 pmap_pvo_remove(pvo, -1, NULL);
1545 pmap_pvo_reclaim_nextidx = idx;
1546 PMAPCOUNT(pvos_reclaimed);
1547 return pvo;
1548 }
1549 }
1550 }
1551 return NULL;
1552 }
1553
1554 /*
1555 * This returns whether this is the first mapping of a page.
1556 */
1557 int
1558 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1559 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1560 {
1561 struct pvo_entry *pvo;
1562 struct pvo_tqhead *pvoh;
1563 register_t msr;
1564 int ptegidx;
1565 int i;
1566 int poolflags = PR_NOWAIT;
1567
1568 /*
1569 * Compute the PTE Group index.
1570 */
1571 va &= ~ADDR_POFF;
1572 ptegidx = va_to_pteg(pm, va);
1573
1574 msr = pmap_interrupts_off();
1575
1576 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1577 if (pmap_pvo_remove_depth > 0)
1578 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1579 if (++pmap_pvo_enter_depth > 1)
1580 panic("pmap_pvo_enter: called recursively!");
1581 #endif
1582
1583 /*
1584 * Remove any existing mapping for this page. Reuse the
1585 * pvo entry if there a mapping.
1586 */
1587 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1588 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1589 #ifdef DEBUG
1590 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1591 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1592 ~(PTE_REF|PTE_CHG)) == 0 &&
1593 va < VM_MIN_KERNEL_ADDRESS) {
1594 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1595 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1596 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1597 pvo->pvo_pte.pte_hi,
1598 pm->pm_sr[va >> ADDR_SR_SHFT]);
1599 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1600 #ifdef DDBX
1601 Debugger();
1602 #endif
1603 }
1604 #endif
1605 PMAPCOUNT(mappings_replaced);
1606 pmap_pvo_remove(pvo, -1, NULL);
1607 break;
1608 }
1609 }
1610
1611 /*
1612 * If we aren't overwriting an mapping, try to allocate
1613 */
1614 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1615 --pmap_pvo_enter_depth;
1616 #endif
1617 pmap_interrupts_restore(msr);
1618 if (pvo) {
1619 pmap_pvo_free(pvo);
1620 }
1621 pvo = pool_get(pl, poolflags);
1622 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1623
1624 #ifdef DEBUG
1625 /*
1626 * Exercise pmap_pvo_reclaim() a little.
1627 */
1628 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1629 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1630 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1631 pool_put(pl, pvo);
1632 pvo = NULL;
1633 }
1634 #endif
1635
1636 msr = pmap_interrupts_off();
1637 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1638 ++pmap_pvo_enter_depth;
1639 #endif
1640 if (pvo == NULL) {
1641 pvo = pmap_pvo_reclaim(pm);
1642 if (pvo == NULL) {
1643 if ((flags & PMAP_CANFAIL) == 0)
1644 panic("pmap_pvo_enter: failed");
1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1646 pmap_pvo_enter_depth--;
1647 #endif
1648 PMAPCOUNT(pvos_failed);
1649 pmap_interrupts_restore(msr);
1650 return ENOMEM;
1651 }
1652 }
1653
1654 pvo->pvo_vaddr = va;
1655 pvo->pvo_pmap = pm;
1656 pvo->pvo_vaddr &= ~ADDR_POFF;
1657 if (flags & VM_PROT_EXECUTE) {
1658 PMAPCOUNT(exec_mappings);
1659 pvo_set_exec(pvo);
1660 }
1661 if (flags & PMAP_WIRED)
1662 pvo->pvo_vaddr |= PVO_WIRED;
1663 if (pvo_head != &pmap_pvo_kunmanaged) {
1664 pvo->pvo_vaddr |= PVO_MANAGED;
1665 PMAPCOUNT(mappings);
1666 } else {
1667 PMAPCOUNT(kernel_mappings);
1668 }
1669 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1670
1671 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1672 if (PVO_WIRED_P(pvo))
1673 pvo->pvo_pmap->pm_stats.wired_count++;
1674 pvo->pvo_pmap->pm_stats.resident_count++;
1675 #if defined(DEBUG)
1676 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1677 DPRINTFN(PVOENTER,
1678 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1679 pvo, pm, va, pa);
1680 #endif
1681
1682 /*
1683 * We hope this succeeds but it isn't required.
1684 */
1685 pvoh = &pmap_pvo_table[ptegidx];
1686 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1687 if (i >= 0) {
1688 PVO_PTEGIDX_SET(pvo, i);
1689 PVO_WHERE(pvo, ENTER_INSERT);
1690 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1691 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1692 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1693
1694 } else {
1695 /*
1696 * Since we didn't have room for this entry (which makes it
1697 * and evicted entry), place it at the head of the list.
1698 */
1699 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1700 PMAPCOUNT(ptes_evicted);
1701 pm->pm_evictions++;
1702 /*
1703 * If this is a kernel page, make sure it's active.
1704 */
1705 if (pm == pmap_kernel()) {
1706 i = pmap_pte_spill(pm, va, false);
1707 KASSERT(i);
1708 }
1709 }
1710 PMAP_PVO_CHECK(pvo); /* sanity check */
1711 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1712 pmap_pvo_enter_depth--;
1713 #endif
1714 pmap_interrupts_restore(msr);
1715 return 0;
1716 }
1717
1718 static void
1719 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1720 {
1721 volatile struct pte *pt;
1722 int ptegidx;
1723
1724 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1725 if (++pmap_pvo_remove_depth > 1)
1726 panic("pmap_pvo_remove: called recursively!");
1727 #endif
1728
1729 /*
1730 * If we haven't been supplied the ptegidx, calculate it.
1731 */
1732 if (pteidx == -1) {
1733 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1734 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1735 } else {
1736 ptegidx = pteidx >> 3;
1737 if (pvo->pvo_pte.pte_hi & PTE_HID)
1738 ptegidx ^= pmap_pteg_mask;
1739 }
1740 PMAP_PVO_CHECK(pvo); /* sanity check */
1741
1742 /*
1743 * If there is an active pte entry, we need to deactivate it
1744 * (and save the ref & chg bits).
1745 */
1746 pt = pmap_pvo_to_pte(pvo, pteidx);
1747 if (pt != NULL) {
1748 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1749 PVO_WHERE(pvo, REMOVE);
1750 PVO_PTEGIDX_CLR(pvo);
1751 PMAPCOUNT(ptes_removed);
1752 } else {
1753 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1754 pvo->pvo_pmap->pm_evictions--;
1755 }
1756
1757 /*
1758 * Account for executable mappings.
1759 */
1760 if (PVO_EXECUTABLE_P(pvo))
1761 pvo_clear_exec(pvo);
1762
1763 /*
1764 * Update our statistics.
1765 */
1766 pvo->pvo_pmap->pm_stats.resident_count--;
1767 if (PVO_WIRED_P(pvo))
1768 pvo->pvo_pmap->pm_stats.wired_count--;
1769
1770 /*
1771 * Save the REF/CHG bits into their cache if the page is managed.
1772 */
1773 if (PVO_MANAGED_P(pvo)) {
1774 register_t ptelo = pvo->pvo_pte.pte_lo;
1775 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1776
1777 if (pg != NULL) {
1778 /*
1779 * If this page was changed and it is mapped exec,
1780 * invalidate it.
1781 */
1782 if ((ptelo & PTE_CHG) &&
1783 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1784 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1785 if (LIST_EMPTY(pvoh)) {
1786 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1787 "%#" _PRIxpa ": clear-exec]\n",
1788 VM_PAGE_TO_PHYS(pg));
1789 pmap_attr_clear(pg, PTE_EXEC);
1790 PMAPCOUNT(exec_uncached_pvo_remove);
1791 } else {
1792 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1793 "%#" _PRIxpa ": syncicache]\n",
1794 VM_PAGE_TO_PHYS(pg));
1795 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1796 PAGE_SIZE);
1797 PMAPCOUNT(exec_synced_pvo_remove);
1798 }
1799 }
1800
1801 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1802 }
1803 PMAPCOUNT(unmappings);
1804 } else {
1805 PMAPCOUNT(kernel_unmappings);
1806 }
1807
1808 /*
1809 * Remove the PVO from its lists and return it to the pool.
1810 */
1811 LIST_REMOVE(pvo, pvo_vlink);
1812 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1813 if (pvol) {
1814 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1815 }
1816 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1817 pmap_pvo_remove_depth--;
1818 #endif
1819 }
1820
1821 void
1822 pmap_pvo_free(struct pvo_entry *pvo)
1823 {
1824
1825 pool_put(PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool, pvo);
1826 }
1827
1828 void
1829 pmap_pvo_free_list(struct pvo_head *pvol)
1830 {
1831 struct pvo_entry *pvo, *npvo;
1832
1833 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1834 npvo = LIST_NEXT(pvo, pvo_vlink);
1835 LIST_REMOVE(pvo, pvo_vlink);
1836 pmap_pvo_free(pvo);
1837 }
1838 }
1839
1840 /*
1841 * Mark a mapping as executable.
1842 * If this is the first executable mapping in the segment,
1843 * clear the noexec flag.
1844 */
1845 static void
1846 pvo_set_exec(struct pvo_entry *pvo)
1847 {
1848 struct pmap *pm = pvo->pvo_pmap;
1849
1850 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1851 return;
1852 }
1853 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1854 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1855 {
1856 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1857 if (pm->pm_exec[sr]++ == 0) {
1858 pm->pm_sr[sr] &= ~SR_NOEXEC;
1859 }
1860 }
1861 #endif
1862 }
1863
1864 /*
1865 * Mark a mapping as non-executable.
1866 * If this was the last executable mapping in the segment,
1867 * set the noexec flag.
1868 */
1869 static void
1870 pvo_clear_exec(struct pvo_entry *pvo)
1871 {
1872 struct pmap *pm = pvo->pvo_pmap;
1873
1874 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1875 return;
1876 }
1877 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1878 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1879 {
1880 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1881 if (--pm->pm_exec[sr] == 0) {
1882 pm->pm_sr[sr] |= SR_NOEXEC;
1883 }
1884 }
1885 #endif
1886 }
1887
1888 /*
1889 * Insert physical page at pa into the given pmap at virtual address va.
1890 */
1891 int
1892 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1893 {
1894 struct mem_region *mp;
1895 struct pvo_head *pvo_head;
1896 struct vm_page *pg;
1897 struct pool *pl;
1898 register_t pte_lo;
1899 int error;
1900 u_int was_exec = 0;
1901
1902 PMAP_LOCK();
1903
1904 if (__predict_false(!pmap_initialized)) {
1905 pvo_head = &pmap_pvo_kunmanaged;
1906 pl = &pmap_upvo_pool;
1907 pg = NULL;
1908 was_exec = PTE_EXEC;
1909 } else {
1910 pvo_head = pa_to_pvoh(pa, &pg);
1911 pl = &pmap_mpvo_pool;
1912 }
1913
1914 DPRINTFN(ENTER,
1915 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1916 pm, va, pa, prot, flags);
1917
1918 /*
1919 * If this is a managed page, and it's the first reference to the
1920 * page clear the execness of the page. Otherwise fetch the execness.
1921 */
1922 if (pg != NULL)
1923 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1924
1925 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1926
1927 /*
1928 * Assume the page is cache inhibited and access is guarded unless
1929 * it's in our available memory array. If it is in the memory array,
1930 * asssume it's in memory coherent memory.
1931 */
1932 if (flags & PMAP_MD_PREFETCHABLE) {
1933 pte_lo = 0;
1934 } else
1935 pte_lo = PTE_G;
1936
1937 if ((flags & PMAP_NOCACHE) == 0) {
1938 for (mp = mem; mp->size; mp++) {
1939 if (pa >= mp->start && pa < mp->start + mp->size) {
1940 pte_lo = PTE_M;
1941 break;
1942 }
1943 }
1944 #ifdef MULTIPROCESSOR
1945 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1946 pte_lo = PTE_M;
1947 #endif
1948 } else {
1949 pte_lo |= PTE_I;
1950 }
1951
1952 if (prot & VM_PROT_WRITE)
1953 pte_lo |= PTE_BW;
1954 else
1955 pte_lo |= PTE_BR;
1956
1957 /*
1958 * If this was in response to a fault, "pre-fault" the PTE's
1959 * changed/referenced bit appropriately.
1960 */
1961 if (flags & VM_PROT_WRITE)
1962 pte_lo |= PTE_CHG;
1963 if (flags & VM_PROT_ALL)
1964 pte_lo |= PTE_REF;
1965
1966 /*
1967 * We need to know if this page can be executable
1968 */
1969 flags |= (prot & VM_PROT_EXECUTE);
1970
1971 /*
1972 * Record mapping for later back-translation and pte spilling.
1973 * This will overwrite any existing mapping.
1974 */
1975 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1976
1977 /*
1978 * Flush the real page from the instruction cache if this page is
1979 * mapped executable and cacheable and has not been flushed since
1980 * the last time it was modified.
1981 */
1982 if (error == 0 &&
1983 (flags & VM_PROT_EXECUTE) &&
1984 (pte_lo & PTE_I) == 0 &&
1985 was_exec == 0) {
1986 DPRINTFN(ENTER, " %s", "syncicache");
1987 PMAPCOUNT(exec_synced);
1988 pmap_syncicache(pa, PAGE_SIZE);
1989 if (pg != NULL) {
1990 pmap_attr_save(pg, PTE_EXEC);
1991 PMAPCOUNT(exec_cached);
1992 #if defined(DEBUG) || defined(PMAPDEBUG)
1993 if (pmapdebug & PMAPDEBUG_ENTER)
1994 printf(" marked-as-exec");
1995 else if (pmapdebug & PMAPDEBUG_EXEC)
1996 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
1997 VM_PAGE_TO_PHYS(pg));
1998
1999 #endif
2000 }
2001 }
2002
2003 DPRINTFN(ENTER, ": error=%d\n", error);
2004
2005 PMAP_UNLOCK();
2006
2007 return error;
2008 }
2009
2010 void
2011 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2012 {
2013 struct mem_region *mp;
2014 register_t pte_lo;
2015 int error;
2016
2017 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2018 if (va < VM_MIN_KERNEL_ADDRESS)
2019 panic("pmap_kenter_pa: attempt to enter "
2020 "non-kernel address %#" _PRIxva "!", va);
2021 #endif
2022
2023 DPRINTFN(KENTER,
2024 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2025
2026 PMAP_LOCK();
2027
2028 /*
2029 * Assume the page is cache inhibited and access is guarded unless
2030 * it's in our available memory array. If it is in the memory array,
2031 * asssume it's in memory coherent memory.
2032 */
2033 pte_lo = PTE_IG;
2034 if ((flags & PMAP_NOCACHE) == 0) {
2035 for (mp = mem; mp->size; mp++) {
2036 if (pa >= mp->start && pa < mp->start + mp->size) {
2037 pte_lo = PTE_M;
2038 break;
2039 }
2040 }
2041 #ifdef MULTIPROCESSOR
2042 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2043 pte_lo = PTE_M;
2044 #endif
2045 }
2046
2047 if (prot & VM_PROT_WRITE)
2048 pte_lo |= PTE_BW;
2049 else
2050 pte_lo |= PTE_BR;
2051
2052 /*
2053 * We don't care about REF/CHG on PVOs on the unmanaged list.
2054 */
2055 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2056 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2057
2058 if (error != 0)
2059 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2060 va, pa, error);
2061
2062 PMAP_UNLOCK();
2063 }
2064
2065 void
2066 pmap_kremove(vaddr_t va, vsize_t len)
2067 {
2068 if (va < VM_MIN_KERNEL_ADDRESS)
2069 panic("pmap_kremove: attempt to remove "
2070 "non-kernel address %#" _PRIxva "!", va);
2071
2072 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2073 pmap_remove(pmap_kernel(), va, va + len);
2074 }
2075
2076 /*
2077 * Remove the given range of mapping entries.
2078 */
2079 void
2080 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2081 {
2082 struct pvo_head pvol;
2083 struct pvo_entry *pvo;
2084 register_t msr;
2085 int pteidx;
2086
2087 PMAP_LOCK();
2088 LIST_INIT(&pvol);
2089 msr = pmap_interrupts_off();
2090 for (; va < endva; va += PAGE_SIZE) {
2091 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2092 if (pvo != NULL) {
2093 pmap_pvo_remove(pvo, pteidx, &pvol);
2094 }
2095 }
2096 pmap_interrupts_restore(msr);
2097 pmap_pvo_free_list(&pvol);
2098 PMAP_UNLOCK();
2099 }
2100
2101 /*
2102 * Get the physical page address for the given pmap/virtual address.
2103 */
2104 bool
2105 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2106 {
2107 struct pvo_entry *pvo;
2108 register_t msr;
2109
2110 PMAP_LOCK();
2111
2112 /*
2113 * If this is a kernel pmap lookup, also check the battable
2114 * and if we get a hit, translate the VA to a PA using the
2115 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2116 * that will wrap back to 0.
2117 */
2118 if (pm == pmap_kernel() &&
2119 (va < VM_MIN_KERNEL_ADDRESS ||
2120 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2121 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2122 #if defined (PMAP_OEA)
2123 #ifdef PPC_OEA601
2124 if ((MFPVR() >> 16) == MPC601) {
2125 register_t batu = battable[va >> 23].batu;
2126 register_t batl = battable[va >> 23].batl;
2127 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2128 if (BAT601_VALID_P(batl) &&
2129 BAT601_VA_MATCH_P(batu, batl, va)) {
2130 register_t mask =
2131 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2132 if (pap)
2133 *pap = (batl & mask) | (va & ~mask);
2134 PMAP_UNLOCK();
2135 return true;
2136 } else if (SR601_VALID_P(sr) &&
2137 SR601_PA_MATCH_P(sr, va)) {
2138 if (pap)
2139 *pap = va;
2140 PMAP_UNLOCK();
2141 return true;
2142 }
2143 } else
2144 #endif /* PPC_OEA601 */
2145 {
2146 register_t batu = battable[BAT_VA2IDX(va)].batu;
2147 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2148 register_t batl = battable[BAT_VA2IDX(va)].batl;
2149 register_t mask =
2150 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2151 if (pap)
2152 *pap = (batl & mask) | (va & ~mask);
2153 PMAP_UNLOCK();
2154 return true;
2155 }
2156 }
2157 return false;
2158 #elif defined (PMAP_OEA64_BRIDGE)
2159 if (va >= SEGMENT_LENGTH)
2160 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2161 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2162 else {
2163 if (pap)
2164 *pap = va;
2165 PMAP_UNLOCK();
2166 return true;
2167 }
2168 #elif defined (PMAP_OEA64)
2169 #error PPC_OEA64 not supported
2170 #endif /* PPC_OEA */
2171 }
2172
2173 msr = pmap_interrupts_off();
2174 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2175 if (pvo != NULL) {
2176 PMAP_PVO_CHECK(pvo); /* sanity check */
2177 if (pap)
2178 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2179 | (va & ADDR_POFF);
2180 }
2181 pmap_interrupts_restore(msr);
2182 PMAP_UNLOCK();
2183 return pvo != NULL;
2184 }
2185
2186 /*
2187 * Lower the protection on the specified range of this pmap.
2188 */
2189 void
2190 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2191 {
2192 struct pvo_entry *pvo;
2193 volatile struct pte *pt;
2194 register_t msr;
2195 int pteidx;
2196
2197 /*
2198 * Since this routine only downgrades protection, we should
2199 * always be called with at least one bit not set.
2200 */
2201 KASSERT(prot != VM_PROT_ALL);
2202
2203 /*
2204 * If there is no protection, this is equivalent to
2205 * remove the pmap from the pmap.
2206 */
2207 if ((prot & VM_PROT_READ) == 0) {
2208 pmap_remove(pm, va, endva);
2209 return;
2210 }
2211
2212 PMAP_LOCK();
2213
2214 msr = pmap_interrupts_off();
2215 for (; va < endva; va += PAGE_SIZE) {
2216 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2217 if (pvo == NULL)
2218 continue;
2219 PMAP_PVO_CHECK(pvo); /* sanity check */
2220
2221 /*
2222 * Revoke executable if asked to do so.
2223 */
2224 if ((prot & VM_PROT_EXECUTE) == 0)
2225 pvo_clear_exec(pvo);
2226
2227 #if 0
2228 /*
2229 * If the page is already read-only, no change
2230 * needs to be made.
2231 */
2232 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2233 continue;
2234 #endif
2235 /*
2236 * Grab the PTE pointer before we diddle with
2237 * the cached PTE copy.
2238 */
2239 pt = pmap_pvo_to_pte(pvo, pteidx);
2240 /*
2241 * Change the protection of the page.
2242 */
2243 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2244 pvo->pvo_pte.pte_lo |= PTE_BR;
2245
2246 /*
2247 * If the PVO is in the page table, update
2248 * that pte at well.
2249 */
2250 if (pt != NULL) {
2251 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2252 PVO_WHERE(pvo, PMAP_PROTECT);
2253 PMAPCOUNT(ptes_changed);
2254 }
2255
2256 PMAP_PVO_CHECK(pvo); /* sanity check */
2257 }
2258 pmap_interrupts_restore(msr);
2259 PMAP_UNLOCK();
2260 }
2261
2262 void
2263 pmap_unwire(pmap_t pm, vaddr_t va)
2264 {
2265 struct pvo_entry *pvo;
2266 register_t msr;
2267
2268 PMAP_LOCK();
2269 msr = pmap_interrupts_off();
2270 pvo = pmap_pvo_find_va(pm, va, NULL);
2271 if (pvo != NULL) {
2272 if (PVO_WIRED_P(pvo)) {
2273 pvo->pvo_vaddr &= ~PVO_WIRED;
2274 pm->pm_stats.wired_count--;
2275 }
2276 PMAP_PVO_CHECK(pvo); /* sanity check */
2277 }
2278 pmap_interrupts_restore(msr);
2279 PMAP_UNLOCK();
2280 }
2281
2282 /*
2283 * Lower the protection on the specified physical page.
2284 */
2285 void
2286 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2287 {
2288 struct pvo_head *pvo_head, pvol;
2289 struct pvo_entry *pvo, *next_pvo;
2290 volatile struct pte *pt;
2291 register_t msr;
2292
2293 PMAP_LOCK();
2294
2295 KASSERT(prot != VM_PROT_ALL);
2296 LIST_INIT(&pvol);
2297 msr = pmap_interrupts_off();
2298
2299 /*
2300 * When UVM reuses a page, it does a pmap_page_protect with
2301 * VM_PROT_NONE. At that point, we can clear the exec flag
2302 * since we know the page will have different contents.
2303 */
2304 if ((prot & VM_PROT_READ) == 0) {
2305 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2306 VM_PAGE_TO_PHYS(pg));
2307 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2308 PMAPCOUNT(exec_uncached_page_protect);
2309 pmap_attr_clear(pg, PTE_EXEC);
2310 }
2311 }
2312
2313 pvo_head = vm_page_to_pvoh(pg);
2314 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2315 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2316 PMAP_PVO_CHECK(pvo); /* sanity check */
2317
2318 /*
2319 * Downgrading to no mapping at all, we just remove the entry.
2320 */
2321 if ((prot & VM_PROT_READ) == 0) {
2322 pmap_pvo_remove(pvo, -1, &pvol);
2323 continue;
2324 }
2325
2326 /*
2327 * If EXEC permission is being revoked, just clear the
2328 * flag in the PVO.
2329 */
2330 if ((prot & VM_PROT_EXECUTE) == 0)
2331 pvo_clear_exec(pvo);
2332
2333 /*
2334 * If this entry is already RO, don't diddle with the
2335 * page table.
2336 */
2337 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2338 PMAP_PVO_CHECK(pvo);
2339 continue;
2340 }
2341
2342 /*
2343 * Grab the PTE before the we diddle the bits so
2344 * pvo_to_pte can verify the pte contents are as
2345 * expected.
2346 */
2347 pt = pmap_pvo_to_pte(pvo, -1);
2348 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2349 pvo->pvo_pte.pte_lo |= PTE_BR;
2350 if (pt != NULL) {
2351 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2352 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2353 PMAPCOUNT(ptes_changed);
2354 }
2355 PMAP_PVO_CHECK(pvo); /* sanity check */
2356 }
2357 pmap_interrupts_restore(msr);
2358 pmap_pvo_free_list(&pvol);
2359
2360 PMAP_UNLOCK();
2361 }
2362
2363 /*
2364 * Activate the address space for the specified process. If the process
2365 * is the current process, load the new MMU context.
2366 */
2367 void
2368 pmap_activate(struct lwp *l)
2369 {
2370 struct pcb *pcb = lwp_getpcb(l);
2371 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2372
2373 DPRINTFN(ACTIVATE,
2374 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2375
2376 /*
2377 * XXX Normally performed in cpu_lwp_fork().
2378 */
2379 pcb->pcb_pm = pmap;
2380
2381 /*
2382 * In theory, the SR registers need only be valid on return
2383 * to user space wait to do them there.
2384 */
2385 if (l == curlwp) {
2386 /* Store pointer to new current pmap. */
2387 curpm = pmap;
2388 }
2389 }
2390
2391 /*
2392 * Deactivate the specified process's address space.
2393 */
2394 void
2395 pmap_deactivate(struct lwp *l)
2396 {
2397 }
2398
2399 bool
2400 pmap_query_bit(struct vm_page *pg, int ptebit)
2401 {
2402 struct pvo_entry *pvo;
2403 volatile struct pte *pt;
2404 register_t msr;
2405
2406 PMAP_LOCK();
2407
2408 if (pmap_attr_fetch(pg) & ptebit) {
2409 PMAP_UNLOCK();
2410 return true;
2411 }
2412
2413 msr = pmap_interrupts_off();
2414 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2415 PMAP_PVO_CHECK(pvo); /* sanity check */
2416 /*
2417 * See if we saved the bit off. If so cache, it and return
2418 * success.
2419 */
2420 if (pvo->pvo_pte.pte_lo & ptebit) {
2421 pmap_attr_save(pg, ptebit);
2422 PMAP_PVO_CHECK(pvo); /* sanity check */
2423 pmap_interrupts_restore(msr);
2424 PMAP_UNLOCK();
2425 return true;
2426 }
2427 }
2428 /*
2429 * No luck, now go thru the hard part of looking at the ptes
2430 * themselves. Sync so any pending REF/CHG bits are flushed
2431 * to the PTEs.
2432 */
2433 SYNC();
2434 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2435 PMAP_PVO_CHECK(pvo); /* sanity check */
2436 /*
2437 * See if this pvo have a valid PTE. If so, fetch the
2438 * REF/CHG bits from the valid PTE. If the appropriate
2439 * ptebit is set, cache, it and return success.
2440 */
2441 pt = pmap_pvo_to_pte(pvo, -1);
2442 if (pt != NULL) {
2443 pmap_pte_synch(pt, &pvo->pvo_pte);
2444 if (pvo->pvo_pte.pte_lo & ptebit) {
2445 pmap_attr_save(pg, ptebit);
2446 PMAP_PVO_CHECK(pvo); /* sanity check */
2447 pmap_interrupts_restore(msr);
2448 PMAP_UNLOCK();
2449 return true;
2450 }
2451 }
2452 }
2453 pmap_interrupts_restore(msr);
2454 PMAP_UNLOCK();
2455 return false;
2456 }
2457
2458 bool
2459 pmap_clear_bit(struct vm_page *pg, int ptebit)
2460 {
2461 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2462 struct pvo_entry *pvo;
2463 volatile struct pte *pt;
2464 register_t msr;
2465 int rv = 0;
2466
2467 PMAP_LOCK();
2468 msr = pmap_interrupts_off();
2469
2470 /*
2471 * Fetch the cache value
2472 */
2473 rv |= pmap_attr_fetch(pg);
2474
2475 /*
2476 * Clear the cached value.
2477 */
2478 pmap_attr_clear(pg, ptebit);
2479
2480 /*
2481 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2482 * can reset the right ones). Note that since the pvo entries and
2483 * list heads are accessed via BAT0 and are never placed in the
2484 * page table, we don't have to worry about further accesses setting
2485 * the REF/CHG bits.
2486 */
2487 SYNC();
2488
2489 /*
2490 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2491 * valid PTE. If so, clear the ptebit from the valid PTE.
2492 */
2493 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2494 PMAP_PVO_CHECK(pvo); /* sanity check */
2495 pt = pmap_pvo_to_pte(pvo, -1);
2496 if (pt != NULL) {
2497 /*
2498 * Only sync the PTE if the bit we are looking
2499 * for is not already set.
2500 */
2501 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2502 pmap_pte_synch(pt, &pvo->pvo_pte);
2503 /*
2504 * If the bit we are looking for was already set,
2505 * clear that bit in the pte.
2506 */
2507 if (pvo->pvo_pte.pte_lo & ptebit)
2508 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2509 }
2510 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2511 pvo->pvo_pte.pte_lo &= ~ptebit;
2512 PMAP_PVO_CHECK(pvo); /* sanity check */
2513 }
2514 pmap_interrupts_restore(msr);
2515
2516 /*
2517 * If we are clearing the modify bit and this page was marked EXEC
2518 * and the user of the page thinks the page was modified, then we
2519 * need to clean it from the icache if it's mapped or clear the EXEC
2520 * bit if it's not mapped. The page itself might not have the CHG
2521 * bit set if the modification was done via DMA to the page.
2522 */
2523 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2524 if (LIST_EMPTY(pvoh)) {
2525 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2526 VM_PAGE_TO_PHYS(pg));
2527 pmap_attr_clear(pg, PTE_EXEC);
2528 PMAPCOUNT(exec_uncached_clear_modify);
2529 } else {
2530 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2531 VM_PAGE_TO_PHYS(pg));
2532 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2533 PMAPCOUNT(exec_synced_clear_modify);
2534 }
2535 }
2536 PMAP_UNLOCK();
2537 return (rv & ptebit) != 0;
2538 }
2539
2540 void
2541 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2542 {
2543 struct pvo_entry *pvo;
2544 size_t offset = va & ADDR_POFF;
2545 int s;
2546
2547 PMAP_LOCK();
2548 s = splvm();
2549 while (len > 0) {
2550 size_t seglen = PAGE_SIZE - offset;
2551 if (seglen > len)
2552 seglen = len;
2553 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2554 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2555 pmap_syncicache(
2556 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2557 PMAP_PVO_CHECK(pvo);
2558 }
2559 va += seglen;
2560 len -= seglen;
2561 offset = 0;
2562 }
2563 splx(s);
2564 PMAP_UNLOCK();
2565 }
2566
2567 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2568 void
2569 pmap_pte_print(volatile struct pte *pt)
2570 {
2571 printf("PTE %p: ", pt);
2572
2573 #if defined(PMAP_OEA)
2574 /* High word: */
2575 printf("%#" _PRIxpte ": [", pt->pte_hi);
2576 #else
2577 printf("%#" _PRIxpte ": [", pt->pte_hi);
2578 #endif /* PMAP_OEA */
2579
2580 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2581 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2582
2583 printf("%#" _PRIxpte " %#" _PRIxpte "",
2584 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2585 pt->pte_hi & PTE_API);
2586 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2587 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2588 #else
2589 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2590 #endif /* PMAP_OEA */
2591
2592 /* Low word: */
2593 #if defined (PMAP_OEA)
2594 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2595 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2596 #else
2597 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2598 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2599 #endif
2600 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2601 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2602 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2603 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2604 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2605 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2606 switch (pt->pte_lo & PTE_PP) {
2607 case PTE_BR: printf("br]\n"); break;
2608 case PTE_BW: printf("bw]\n"); break;
2609 case PTE_SO: printf("so]\n"); break;
2610 case PTE_SW: printf("sw]\n"); break;
2611 }
2612 }
2613 #endif
2614
2615 #if defined(DDB)
2616 void
2617 pmap_pteg_check(void)
2618 {
2619 volatile struct pte *pt;
2620 int i;
2621 int ptegidx;
2622 u_int p_valid = 0;
2623 u_int s_valid = 0;
2624 u_int invalid = 0;
2625
2626 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2627 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2628 if (pt->pte_hi & PTE_VALID) {
2629 if (pt->pte_hi & PTE_HID)
2630 s_valid++;
2631 else
2632 {
2633 p_valid++;
2634 }
2635 } else
2636 invalid++;
2637 }
2638 }
2639 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2640 p_valid, p_valid, s_valid, s_valid,
2641 invalid, invalid);
2642 }
2643
2644 void
2645 pmap_print_mmuregs(void)
2646 {
2647 int i;
2648 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2649 u_int cpuvers;
2650 #endif
2651 #ifndef PMAP_OEA64
2652 vaddr_t addr;
2653 register_t soft_sr[16];
2654 #endif
2655 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2656 struct bat soft_ibat[4];
2657 struct bat soft_dbat[4];
2658 #endif
2659 paddr_t sdr1;
2660
2661 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2662 cpuvers = MFPVR() >> 16;
2663 #endif
2664 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2665 #ifndef PMAP_OEA64
2666 addr = 0;
2667 for (i = 0; i < 16; i++) {
2668 soft_sr[i] = MFSRIN(addr);
2669 addr += (1 << ADDR_SR_SHFT);
2670 }
2671 #endif
2672
2673 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2674 /* read iBAT (601: uBAT) registers */
2675 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2676 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2677 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2678 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2679 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2680 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2681 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2682 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2683
2684
2685 if (cpuvers != MPC601) {
2686 /* read dBAT registers */
2687 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2688 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2689 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2690 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2691 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2692 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2693 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2694 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2695 }
2696 #endif
2697
2698 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2699 #ifndef PMAP_OEA64
2700 printf("SR[]:\t");
2701 for (i = 0; i < 4; i++)
2702 printf("0x%08lx, ", soft_sr[i]);
2703 printf("\n\t");
2704 for ( ; i < 8; i++)
2705 printf("0x%08lx, ", soft_sr[i]);
2706 printf("\n\t");
2707 for ( ; i < 12; i++)
2708 printf("0x%08lx, ", soft_sr[i]);
2709 printf("\n\t");
2710 for ( ; i < 16; i++)
2711 printf("0x%08lx, ", soft_sr[i]);
2712 printf("\n");
2713 #endif
2714
2715 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2716 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2717 for (i = 0; i < 4; i++) {
2718 printf("0x%08lx 0x%08lx, ",
2719 soft_ibat[i].batu, soft_ibat[i].batl);
2720 if (i == 1)
2721 printf("\n\t");
2722 }
2723 if (cpuvers != MPC601) {
2724 printf("\ndBAT[]:\t");
2725 for (i = 0; i < 4; i++) {
2726 printf("0x%08lx 0x%08lx, ",
2727 soft_dbat[i].batu, soft_dbat[i].batl);
2728 if (i == 1)
2729 printf("\n\t");
2730 }
2731 }
2732 printf("\n");
2733 #endif /* PMAP_OEA... */
2734 }
2735
2736 void
2737 pmap_print_pte(pmap_t pm, vaddr_t va)
2738 {
2739 struct pvo_entry *pvo;
2740 volatile struct pte *pt;
2741 int pteidx;
2742
2743 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2744 if (pvo != NULL) {
2745 pt = pmap_pvo_to_pte(pvo, pteidx);
2746 if (pt != NULL) {
2747 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2748 va, pt,
2749 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2750 pt->pte_hi, pt->pte_lo);
2751 } else {
2752 printf("No valid PTE found\n");
2753 }
2754 } else {
2755 printf("Address not in pmap\n");
2756 }
2757 }
2758
2759 void
2760 pmap_pteg_dist(void)
2761 {
2762 struct pvo_entry *pvo;
2763 int ptegidx;
2764 int depth;
2765 int max_depth = 0;
2766 unsigned int depths[64];
2767
2768 memset(depths, 0, sizeof(depths));
2769 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2770 depth = 0;
2771 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2772 depth++;
2773 }
2774 if (depth > max_depth)
2775 max_depth = depth;
2776 if (depth > 63)
2777 depth = 63;
2778 depths[depth]++;
2779 }
2780
2781 for (depth = 0; depth < 64; depth++) {
2782 printf(" [%2d]: %8u", depth, depths[depth]);
2783 if ((depth & 3) == 3)
2784 printf("\n");
2785 if (depth == max_depth)
2786 break;
2787 }
2788 if ((depth & 3) != 3)
2789 printf("\n");
2790 printf("Max depth found was %d\n", max_depth);
2791 }
2792 #endif /* DEBUG */
2793
2794 #if defined(PMAPCHECK) || defined(DEBUG)
2795 void
2796 pmap_pvo_verify(void)
2797 {
2798 int ptegidx;
2799 int s;
2800
2801 s = splvm();
2802 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2803 struct pvo_entry *pvo;
2804 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2805 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2806 panic("pmap_pvo_verify: invalid pvo %p "
2807 "on list %#x", pvo, ptegidx);
2808 pmap_pvo_check(pvo);
2809 }
2810 }
2811 splx(s);
2812 }
2813 #endif /* PMAPCHECK */
2814
2815
2816 void *
2817 pmap_pool_ualloc(struct pool *pp, int flags)
2818 {
2819 struct pvo_page *pvop;
2820
2821 if (uvm.page_init_done != true) {
2822 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2823 }
2824
2825 PMAP_LOCK();
2826 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2827 if (pvop != NULL) {
2828 pmap_upvop_free--;
2829 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2830 PMAP_UNLOCK();
2831 return pvop;
2832 }
2833 PMAP_UNLOCK();
2834 return pmap_pool_malloc(pp, flags);
2835 }
2836
2837 void *
2838 pmap_pool_malloc(struct pool *pp, int flags)
2839 {
2840 struct pvo_page *pvop;
2841 struct vm_page *pg;
2842
2843 PMAP_LOCK();
2844 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2845 if (pvop != NULL) {
2846 pmap_mpvop_free--;
2847 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2848 PMAP_UNLOCK();
2849 return pvop;
2850 }
2851 PMAP_UNLOCK();
2852 again:
2853 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2854 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2855 if (__predict_false(pg == NULL)) {
2856 if (flags & PR_WAITOK) {
2857 uvm_wait("plpg");
2858 goto again;
2859 } else {
2860 return (0);
2861 }
2862 }
2863 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2864 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2865 }
2866
2867 void
2868 pmap_pool_ufree(struct pool *pp, void *va)
2869 {
2870 struct pvo_page *pvop;
2871 #if 0
2872 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2873 pmap_pool_mfree(va, size, tag);
2874 return;
2875 }
2876 #endif
2877 PMAP_LOCK();
2878 pvop = va;
2879 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2880 pmap_upvop_free++;
2881 if (pmap_upvop_free > pmap_upvop_maxfree)
2882 pmap_upvop_maxfree = pmap_upvop_free;
2883 PMAP_UNLOCK();
2884 }
2885
2886 void
2887 pmap_pool_mfree(struct pool *pp, void *va)
2888 {
2889 struct pvo_page *pvop;
2890
2891 PMAP_LOCK();
2892 pvop = va;
2893 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2894 pmap_mpvop_free++;
2895 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2896 pmap_mpvop_maxfree = pmap_mpvop_free;
2897 PMAP_UNLOCK();
2898 #if 0
2899 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2900 #endif
2901 }
2902
2903 /*
2904 * This routine in bootstraping to steal to-be-managed memory (which will
2905 * then be unmanaged). We use it to grab from the first 256MB for our
2906 * pmap needs and above 256MB for other stuff.
2907 */
2908 vaddr_t
2909 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2910 {
2911 vsize_t size;
2912 vaddr_t va;
2913 paddr_t start, end, pa = 0;
2914 int npgs, freelist;
2915 uvm_physseg_t bank;
2916
2917 if (uvm.page_init_done == true)
2918 panic("pmap_steal_memory: called _after_ bootstrap");
2919
2920 *vstartp = VM_MIN_KERNEL_ADDRESS;
2921 *vendp = VM_MAX_KERNEL_ADDRESS;
2922
2923 size = round_page(vsize);
2924 npgs = atop(size);
2925
2926 /*
2927 * PA 0 will never be among those given to UVM so we can use it
2928 * to indicate we couldn't steal any memory.
2929 */
2930
2931 for (bank = uvm_physseg_get_first();
2932 uvm_physseg_valid_p(bank);
2933 bank = uvm_physseg_get_next(bank)) {
2934
2935 freelist = uvm_physseg_get_free_list(bank);
2936 start = uvm_physseg_get_start(bank);
2937 end = uvm_physseg_get_end(bank);
2938
2939 if (freelist == VM_FREELIST_FIRST256 &&
2940 (end - start) >= npgs) {
2941 pa = ptoa(start);
2942 break;
2943 }
2944 }
2945
2946 if (pa == 0)
2947 panic("pmap_steal_memory: no approriate memory to steal!");
2948
2949 uvm_physseg_unplug(start, npgs);
2950
2951 va = (vaddr_t) pa;
2952 memset((void *) va, 0, size);
2953 pmap_pages_stolen += npgs;
2954 #ifdef DEBUG
2955 if (pmapdebug && npgs > 1) {
2956 u_int cnt = 0;
2957 for (bank = uvm_physseg_get_first();
2958 uvm_physseg_valid_p(bank);
2959 bank = uvm_physseg_get_next(bank)) {
2960 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2961 }
2962 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2963 npgs, pmap_pages_stolen, cnt);
2964 }
2965 #endif
2966
2967 return va;
2968 }
2969
2970 /*
2971 * Find a chuck of memory with right size and alignment.
2972 */
2973 paddr_t
2974 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2975 {
2976 struct mem_region *mp;
2977 paddr_t s, e;
2978 int i, j;
2979
2980 size = round_page(size);
2981
2982 DPRINTFN(BOOT,
2983 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2984 size, alignment, at_end);
2985
2986 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2987 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2988 alignment);
2989
2990 if (at_end) {
2991 if (alignment != PAGE_SIZE)
2992 panic("pmap_boot_find_memory: invalid ending "
2993 "alignment %#" _PRIxpa, alignment);
2994
2995 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
2996 s = mp->start + mp->size - size;
2997 if (s >= mp->start && mp->size >= size) {
2998 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
2999 DPRINTFN(BOOT,
3000 "pmap_boot_find_memory: b-avail[%d] start "
3001 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3002 mp->start, mp->size);
3003 mp->size -= size;
3004 DPRINTFN(BOOT,
3005 "pmap_boot_find_memory: a-avail[%d] start "
3006 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3007 mp->start, mp->size);
3008 return s;
3009 }
3010 }
3011 panic("pmap_boot_find_memory: no available memory");
3012 }
3013
3014 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3015 s = (mp->start + alignment - 1) & ~(alignment-1);
3016 e = s + size;
3017
3018 /*
3019 * Is the calculated region entirely within the region?
3020 */
3021 if (s < mp->start || e > mp->start + mp->size)
3022 continue;
3023
3024 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3025 if (s == mp->start) {
3026 /*
3027 * If the block starts at the beginning of region,
3028 * adjust the size & start. (the region may now be
3029 * zero in length)
3030 */
3031 DPRINTFN(BOOT,
3032 "pmap_boot_find_memory: b-avail[%d] start "
3033 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3034 mp->start += size;
3035 mp->size -= size;
3036 DPRINTFN(BOOT,
3037 "pmap_boot_find_memory: a-avail[%d] start "
3038 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3039 } else if (e == mp->start + mp->size) {
3040 /*
3041 * If the block starts at the beginning of region,
3042 * adjust only the size.
3043 */
3044 DPRINTFN(BOOT,
3045 "pmap_boot_find_memory: b-avail[%d] start "
3046 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3047 mp->size -= size;
3048 DPRINTFN(BOOT,
3049 "pmap_boot_find_memory: a-avail[%d] start "
3050 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3051 } else {
3052 /*
3053 * Block is in the middle of the region, so we
3054 * have to split it in two.
3055 */
3056 for (j = avail_cnt; j > i + 1; j--) {
3057 avail[j] = avail[j-1];
3058 }
3059 DPRINTFN(BOOT,
3060 "pmap_boot_find_memory: b-avail[%d] start "
3061 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3062 mp[1].start = e;
3063 mp[1].size = mp[0].start + mp[0].size - e;
3064 mp[0].size = s - mp[0].start;
3065 avail_cnt++;
3066 for (; i < avail_cnt; i++) {
3067 DPRINTFN(BOOT,
3068 "pmap_boot_find_memory: a-avail[%d] "
3069 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3070 avail[i].start, avail[i].size);
3071 }
3072 }
3073 KASSERT(s == (uintptr_t) s);
3074 return s;
3075 }
3076 panic("pmap_boot_find_memory: not enough memory for "
3077 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3078 }
3079
3080 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3081 #if defined (PMAP_OEA64_BRIDGE)
3082 int
3083 pmap_setup_segment0_map(int use_large_pages, ...)
3084 {
3085 vaddr_t va, va_end;
3086
3087 register_t pte_lo = 0x0;
3088 int ptegidx = 0;
3089 struct pte pte;
3090 va_list ap;
3091
3092 /* Coherent + Supervisor RW, no user access */
3093 pte_lo = PTE_M;
3094
3095 /* XXXSL
3096 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3097 * these have to take priority.
3098 */
3099 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3100 ptegidx = va_to_pteg(pmap_kernel(), va);
3101 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3102 (void)pmap_pte_insert(ptegidx, &pte);
3103 }
3104
3105 va_start(ap, use_large_pages);
3106 while (1) {
3107 paddr_t pa;
3108 size_t size;
3109
3110 va = va_arg(ap, vaddr_t);
3111
3112 if (va == 0)
3113 break;
3114
3115 pa = va_arg(ap, paddr_t);
3116 size = va_arg(ap, size_t);
3117
3118 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3119 #if 0
3120 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3121 #endif
3122 ptegidx = va_to_pteg(pmap_kernel(), va);
3123 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3124 (void)pmap_pte_insert(ptegidx, &pte);
3125 }
3126 }
3127 va_end(ap);
3128
3129 TLBSYNC();
3130 SYNC();
3131 return (0);
3132 }
3133 #endif /* PMAP_OEA64_BRIDGE */
3134
3135 /*
3136 * This is not part of the defined PMAP interface and is specific to the
3137 * PowerPC architecture. This is called during initppc, before the system
3138 * is really initialized.
3139 */
3140 void
3141 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3142 {
3143 struct mem_region *mp, tmp;
3144 paddr_t s, e;
3145 psize_t size;
3146 int i, j;
3147
3148 /*
3149 * Get memory.
3150 */
3151 mem_regions(&mem, &avail);
3152 #if defined(DEBUG)
3153 if (pmapdebug & PMAPDEBUG_BOOT) {
3154 printf("pmap_bootstrap: memory configuration:\n");
3155 for (mp = mem; mp->size; mp++) {
3156 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3157 mp->start, mp->size);
3158 }
3159 for (mp = avail; mp->size; mp++) {
3160 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3161 mp->start, mp->size);
3162 }
3163 }
3164 #endif
3165
3166 /*
3167 * Find out how much physical memory we have and in how many chunks.
3168 */
3169 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3170 if (mp->start >= pmap_memlimit)
3171 continue;
3172 if (mp->start + mp->size > pmap_memlimit) {
3173 size = pmap_memlimit - mp->start;
3174 physmem += btoc(size);
3175 } else {
3176 physmem += btoc(mp->size);
3177 }
3178 mem_cnt++;
3179 }
3180
3181 /*
3182 * Count the number of available entries.
3183 */
3184 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3185 avail_cnt++;
3186
3187 /*
3188 * Page align all regions.
3189 */
3190 kernelstart = trunc_page(kernelstart);
3191 kernelend = round_page(kernelend);
3192 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3193 s = round_page(mp->start);
3194 mp->size -= (s - mp->start);
3195 mp->size = trunc_page(mp->size);
3196 mp->start = s;
3197 e = mp->start + mp->size;
3198
3199 DPRINTFN(BOOT,
3200 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3201 i, mp->start, mp->size);
3202
3203 /*
3204 * Don't allow the end to run beyond our artificial limit
3205 */
3206 if (e > pmap_memlimit)
3207 e = pmap_memlimit;
3208
3209 /*
3210 * Is this region empty or strange? skip it.
3211 */
3212 if (e <= s) {
3213 mp->start = 0;
3214 mp->size = 0;
3215 continue;
3216 }
3217
3218 /*
3219 * Does this overlap the beginning of kernel?
3220 * Does extend past the end of the kernel?
3221 */
3222 else if (s < kernelstart && e > kernelstart) {
3223 if (e > kernelend) {
3224 avail[avail_cnt].start = kernelend;
3225 avail[avail_cnt].size = e - kernelend;
3226 avail_cnt++;
3227 }
3228 mp->size = kernelstart - s;
3229 }
3230 /*
3231 * Check whether this region overlaps the end of the kernel.
3232 */
3233 else if (s < kernelend && e > kernelend) {
3234 mp->start = kernelend;
3235 mp->size = e - kernelend;
3236 }
3237 /*
3238 * Look whether this regions is completely inside the kernel.
3239 * Nuke it if it does.
3240 */
3241 else if (s >= kernelstart && e <= kernelend) {
3242 mp->start = 0;
3243 mp->size = 0;
3244 }
3245 /*
3246 * If the user imposed a memory limit, enforce it.
3247 */
3248 else if (s >= pmap_memlimit) {
3249 mp->start = -PAGE_SIZE; /* let's know why */
3250 mp->size = 0;
3251 }
3252 else {
3253 mp->start = s;
3254 mp->size = e - s;
3255 }
3256 DPRINTFN(BOOT,
3257 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3258 i, mp->start, mp->size);
3259 }
3260
3261 /*
3262 * Move (and uncount) all the null return to the end.
3263 */
3264 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3265 if (mp->size == 0) {
3266 tmp = avail[i];
3267 avail[i] = avail[--avail_cnt];
3268 avail[avail_cnt] = avail[i];
3269 }
3270 }
3271
3272 /*
3273 * (Bubble)sort them into ascending order.
3274 */
3275 for (i = 0; i < avail_cnt; i++) {
3276 for (j = i + 1; j < avail_cnt; j++) {
3277 if (avail[i].start > avail[j].start) {
3278 tmp = avail[i];
3279 avail[i] = avail[j];
3280 avail[j] = tmp;
3281 }
3282 }
3283 }
3284
3285 /*
3286 * Make sure they don't overlap.
3287 */
3288 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3289 if (mp[0].start + mp[0].size > mp[1].start) {
3290 mp[0].size = mp[1].start - mp[0].start;
3291 }
3292 DPRINTFN(BOOT,
3293 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3294 i, mp->start, mp->size);
3295 }
3296 DPRINTFN(BOOT,
3297 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3298 i, mp->start, mp->size);
3299
3300 #ifdef PTEGCOUNT
3301 pmap_pteg_cnt = PTEGCOUNT;
3302 #else /* PTEGCOUNT */
3303
3304 pmap_pteg_cnt = 0x1000;
3305
3306 while (pmap_pteg_cnt < physmem)
3307 pmap_pteg_cnt <<= 1;
3308
3309 pmap_pteg_cnt >>= 1;
3310 #endif /* PTEGCOUNT */
3311
3312 #ifdef DEBUG
3313 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3314 #endif
3315
3316 /*
3317 * Find suitably aligned memory for PTEG hash table.
3318 */
3319 size = pmap_pteg_cnt * sizeof(struct pteg);
3320 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3321
3322 #ifdef DEBUG
3323 DPRINTFN(BOOT,
3324 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3325 #endif
3326
3327
3328 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3329 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3330 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3331 pmap_pteg_table, size);
3332 #endif
3333
3334 memset(__UNVOLATILE(pmap_pteg_table), 0,
3335 pmap_pteg_cnt * sizeof(struct pteg));
3336 pmap_pteg_mask = pmap_pteg_cnt - 1;
3337
3338 /*
3339 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3340 * with pages. So we just steal them before giving them to UVM.
3341 */
3342 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3343 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3344 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3345 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3346 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3347 pmap_pvo_table, size);
3348 #endif
3349
3350 for (i = 0; i < pmap_pteg_cnt; i++)
3351 TAILQ_INIT(&pmap_pvo_table[i]);
3352
3353 #ifndef MSGBUFADDR
3354 /*
3355 * Allocate msgbuf in high memory.
3356 */
3357 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3358 #endif
3359
3360 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3361 paddr_t pfstart = atop(mp->start);
3362 paddr_t pfend = atop(mp->start + mp->size);
3363 if (mp->size == 0)
3364 continue;
3365 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3366 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3367 VM_FREELIST_FIRST256);
3368 } else if (mp->start >= SEGMENT_LENGTH) {
3369 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3370 VM_FREELIST_DEFAULT);
3371 } else {
3372 pfend = atop(SEGMENT_LENGTH);
3373 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3374 VM_FREELIST_FIRST256);
3375 pfstart = atop(SEGMENT_LENGTH);
3376 pfend = atop(mp->start + mp->size);
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_DEFAULT);
3379 }
3380 }
3381
3382 /*
3383 * Make sure kernel vsid is allocated as well as VSID 0.
3384 */
3385 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3386 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3387 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3388 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3389 pmap_vsid_bitmap[0] |= 1;
3390
3391 /*
3392 * Initialize kernel pmap and hardware.
3393 */
3394
3395 /* PMAP_OEA64_BRIDGE does support these instructions */
3396 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3397 for (i = 0; i < 16; i++) {
3398 #if defined(PPC_OEA601)
3399 /* XXX wedges for segment register 0xf , so set later */
3400 if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3401 continue;
3402 #endif
3403 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3404 __asm volatile ("mtsrin %0,%1"
3405 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3406 }
3407
3408 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3409 __asm volatile ("mtsr %0,%1"
3410 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3411 #ifdef KERNEL2_SR
3412 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3413 __asm volatile ("mtsr %0,%1"
3414 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3415 #endif
3416 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3417 #if defined (PMAP_OEA)
3418 for (i = 0; i < 16; i++) {
3419 if (iosrtable[i] & SR601_T) {
3420 pmap_kernel()->pm_sr[i] = iosrtable[i];
3421 __asm volatile ("mtsrin %0,%1"
3422 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3423 }
3424 }
3425 __asm volatile ("sync; mtsdr1 %0; isync"
3426 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3427 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3428 __asm __volatile ("sync; mtsdr1 %0; isync"
3429 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3430 #endif
3431 tlbia();
3432
3433 #ifdef ALTIVEC
3434 pmap_use_altivec = cpu_altivec;
3435 #endif
3436
3437 #ifdef DEBUG
3438 if (pmapdebug & PMAPDEBUG_BOOT) {
3439 u_int cnt;
3440 uvm_physseg_t bank;
3441 char pbuf[9];
3442 for (cnt = 0, bank = uvm_physseg_get_first();
3443 uvm_physseg_valid_p(bank);
3444 bank = uvm_physseg_get_next(bank)) {
3445 cnt += uvm_physseg_get_avail_end(bank) -
3446 uvm_physseg_get_avail_start(bank);
3447 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3448 bank,
3449 ptoa(uvm_physseg_get_avail_start(bank)),
3450 ptoa(uvm_physseg_get_avail_end(bank)),
3451 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3452 }
3453 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3454 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3455 pbuf, cnt);
3456 }
3457 #endif
3458
3459 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3460 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3461 &pmap_pool_uallocator, IPL_VM);
3462
3463 pool_setlowat(&pmap_upvo_pool, 252);
3464
3465 pool_init(&pmap_pool, sizeof(struct pmap),
3466 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3467 IPL_NONE);
3468
3469 #if defined(PMAP_NEED_MAPKERNEL)
3470 {
3471 struct pmap *pm = pmap_kernel();
3472 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3473 extern int etext[], kernel_text[];
3474 vaddr_t va, va_etext = (paddr_t) etext;
3475 #endif
3476 paddr_t pa, pa_end;
3477 register_t sr;
3478 struct pte pt;
3479 unsigned int ptegidx;
3480 int bank;
3481
3482 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3483 pm->pm_sr[0] = sr;
3484
3485 for (bank = 0; bank < vm_nphysseg; bank++) {
3486 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3487 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3488 for (; pa < pa_end; pa += PAGE_SIZE) {
3489 ptegidx = va_to_pteg(pm, pa);
3490 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3491 pmap_pte_insert(ptegidx, &pt);
3492 }
3493 }
3494
3495 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3496 va = (vaddr_t) kernel_text;
3497
3498 for (pa = kernelstart; va < va_etext;
3499 pa += PAGE_SIZE, va += PAGE_SIZE) {
3500 ptegidx = va_to_pteg(pm, va);
3501 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3502 pmap_pte_insert(ptegidx, &pt);
3503 }
3504
3505 for (; pa < kernelend;
3506 pa += PAGE_SIZE, va += PAGE_SIZE) {
3507 ptegidx = va_to_pteg(pm, va);
3508 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3509 pmap_pte_insert(ptegidx, &pt);
3510 }
3511
3512 for (va = 0, pa = 0; va < kernelstart;
3513 pa += PAGE_SIZE, va += PAGE_SIZE) {
3514 ptegidx = va_to_pteg(pm, va);
3515 if (va < 0x3000)
3516 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3517 else
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3519 pmap_pte_insert(ptegidx, &pt);
3520 }
3521 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3522 pa += PAGE_SIZE, va += PAGE_SIZE) {
3523 ptegidx = va_to_pteg(pm, va);
3524 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3525 pmap_pte_insert(ptegidx, &pt);
3526 }
3527 #endif
3528
3529 __asm volatile ("mtsrin %0,%1"
3530 :: "r"(sr), "r"(kernelstart));
3531 }
3532 #endif
3533
3534 #if defined(PMAPDEBUG)
3535 if ( pmapdebug )
3536 pmap_print_mmuregs();
3537 #endif
3538 }
3539