pmap.c revision 1.95 1 /* $NetBSD: pmap.c,v 1.95 2018/01/27 23:07:36 chs Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.95 2018/01/27 23:07:36 chs Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/pool.h>
78 #include <sys/queue.h>
79 #include <sys/device.h> /* for evcnt */
80 #include <sys/systm.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_physseg.h>
85
86 #include <machine/powerpc.h>
87 #include <powerpc/bat.h>
88 #include <powerpc/pcb.h>
89 #include <powerpc/psl.h>
90 #include <powerpc/spr.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 extern int pmap_use_altivec;
96 #endif
97
98 #ifdef PMAP_MEMLIMIT
99 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
100 #else
101 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
102 #endif
103
104 extern struct pmap kernel_pmap_;
105 static unsigned int pmap_pages_stolen;
106 static u_long pmap_pte_valid;
107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
108 static u_long pmap_pvo_enter_depth;
109 static u_long pmap_pvo_remove_depth;
110 #endif
111
112 #ifndef MSGBUFADDR
113 extern paddr_t msgbuf_paddr;
114 #endif
115
116 static struct mem_region *mem, *avail;
117 static u_int mem_cnt, avail_cnt;
118
119 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
120 # define PMAP_OEA 1
121 #endif
122
123 #if defined(PMAP_OEA)
124 #define _PRIxpte "lx"
125 #else
126 #define _PRIxpte PRIx64
127 #endif
128 #define _PRIxpa "lx"
129 #define _PRIxva "lx"
130 #define _PRIsr "lx"
131
132 #ifdef PMAP_NEEDS_FIXUP
133 #if defined(PMAP_OEA)
134 #define PMAPNAME(name) pmap32_##name
135 #elif defined(PMAP_OEA64)
136 #define PMAPNAME(name) pmap64_##name
137 #elif defined(PMAP_OEA64_BRIDGE)
138 #define PMAPNAME(name) pmap64bridge_##name
139 #else
140 #error unknown variant for pmap
141 #endif
142 #endif /* PMAP_NEEDS_FIXUP */
143
144 #ifdef PMAPNAME
145 #define STATIC static
146 #define pmap_pte_spill PMAPNAME(pte_spill)
147 #define pmap_real_memory PMAPNAME(real_memory)
148 #define pmap_init PMAPNAME(init)
149 #define pmap_virtual_space PMAPNAME(virtual_space)
150 #define pmap_create PMAPNAME(create)
151 #define pmap_reference PMAPNAME(reference)
152 #define pmap_destroy PMAPNAME(destroy)
153 #define pmap_copy PMAPNAME(copy)
154 #define pmap_update PMAPNAME(update)
155 #define pmap_enter PMAPNAME(enter)
156 #define pmap_remove PMAPNAME(remove)
157 #define pmap_kenter_pa PMAPNAME(kenter_pa)
158 #define pmap_kremove PMAPNAME(kremove)
159 #define pmap_extract PMAPNAME(extract)
160 #define pmap_protect PMAPNAME(protect)
161 #define pmap_unwire PMAPNAME(unwire)
162 #define pmap_page_protect PMAPNAME(page_protect)
163 #define pmap_query_bit PMAPNAME(query_bit)
164 #define pmap_clear_bit PMAPNAME(clear_bit)
165
166 #define pmap_activate PMAPNAME(activate)
167 #define pmap_deactivate PMAPNAME(deactivate)
168
169 #define pmap_pinit PMAPNAME(pinit)
170 #define pmap_procwr PMAPNAME(procwr)
171
172 #define pmap_pool PMAPNAME(pool)
173 #define pmap_upvo_pool PMAPNAME(upvo_pool)
174 #define pmap_mpvo_pool PMAPNAME(mpvo_pool)
175 #define pmap_pvo_table PMAPNAME(pvo_table)
176 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
177 #define pmap_pte_print PMAPNAME(pte_print)
178 #define pmap_pteg_check PMAPNAME(pteg_check)
179 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
180 #define pmap_print_pte PMAPNAME(print_pte)
181 #define pmap_pteg_dist PMAPNAME(pteg_dist)
182 #endif
183 #if defined(DEBUG) || defined(PMAPCHECK)
184 #define pmap_pvo_verify PMAPNAME(pvo_verify)
185 #define pmapcheck PMAPNAME(check)
186 #endif
187 #if defined(DEBUG) || defined(PMAPDEBUG)
188 #define pmapdebug PMAPNAME(debug)
189 #endif
190 #define pmap_steal_memory PMAPNAME(steal_memory)
191 #define pmap_bootstrap PMAPNAME(bootstrap)
192 #else
193 #define STATIC /* nothing */
194 #endif /* PMAPNAME */
195
196 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
197 STATIC void pmap_real_memory(paddr_t *, psize_t *);
198 STATIC void pmap_init(void);
199 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
200 STATIC pmap_t pmap_create(void);
201 STATIC void pmap_reference(pmap_t);
202 STATIC void pmap_destroy(pmap_t);
203 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
204 STATIC void pmap_update(pmap_t);
205 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
206 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
207 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_kremove(vaddr_t, vsize_t);
209 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
210
211 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
212 STATIC void pmap_unwire(pmap_t, vaddr_t);
213 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
214 STATIC bool pmap_query_bit(struct vm_page *, int);
215 STATIC bool pmap_clear_bit(struct vm_page *, int);
216
217 STATIC void pmap_activate(struct lwp *);
218 STATIC void pmap_deactivate(struct lwp *);
219
220 STATIC void pmap_pinit(pmap_t pm);
221 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
222
223 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
224 STATIC void pmap_pte_print(volatile struct pte *);
225 STATIC void pmap_pteg_check(void);
226 STATIC void pmap_print_mmuregs(void);
227 STATIC void pmap_print_pte(pmap_t, vaddr_t);
228 STATIC void pmap_pteg_dist(void);
229 #endif
230 #if defined(DEBUG) || defined(PMAPCHECK)
231 STATIC void pmap_pvo_verify(void);
232 #endif
233 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
234 STATIC void pmap_bootstrap(paddr_t, paddr_t);
235
236 #ifdef PMAPNAME
237 const struct pmap_ops PMAPNAME(ops) = {
238 .pmapop_pte_spill = pmap_pte_spill,
239 .pmapop_real_memory = pmap_real_memory,
240 .pmapop_init = pmap_init,
241 .pmapop_virtual_space = pmap_virtual_space,
242 .pmapop_create = pmap_create,
243 .pmapop_reference = pmap_reference,
244 .pmapop_destroy = pmap_destroy,
245 .pmapop_copy = pmap_copy,
246 .pmapop_update = pmap_update,
247 .pmapop_enter = pmap_enter,
248 .pmapop_remove = pmap_remove,
249 .pmapop_kenter_pa = pmap_kenter_pa,
250 .pmapop_kremove = pmap_kremove,
251 .pmapop_extract = pmap_extract,
252 .pmapop_protect = pmap_protect,
253 .pmapop_unwire = pmap_unwire,
254 .pmapop_page_protect = pmap_page_protect,
255 .pmapop_query_bit = pmap_query_bit,
256 .pmapop_clear_bit = pmap_clear_bit,
257 .pmapop_activate = pmap_activate,
258 .pmapop_deactivate = pmap_deactivate,
259 .pmapop_pinit = pmap_pinit,
260 .pmapop_procwr = pmap_procwr,
261 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
262 .pmapop_pte_print = pmap_pte_print,
263 .pmapop_pteg_check = pmap_pteg_check,
264 .pmapop_print_mmuregs = pmap_print_mmuregs,
265 .pmapop_print_pte = pmap_print_pte,
266 .pmapop_pteg_dist = pmap_pteg_dist,
267 #else
268 .pmapop_pte_print = NULL,
269 .pmapop_pteg_check = NULL,
270 .pmapop_print_mmuregs = NULL,
271 .pmapop_print_pte = NULL,
272 .pmapop_pteg_dist = NULL,
273 #endif
274 #if defined(DEBUG) || defined(PMAPCHECK)
275 .pmapop_pvo_verify = pmap_pvo_verify,
276 #else
277 .pmapop_pvo_verify = NULL,
278 #endif
279 .pmapop_steal_memory = pmap_steal_memory,
280 .pmapop_bootstrap = pmap_bootstrap,
281 };
282 #endif /* !PMAPNAME */
283
284 /*
285 * The following structure is aligned to 32 bytes
286 */
287 struct pvo_entry {
288 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
289 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
290 struct pte pvo_pte; /* Prebuilt PTE */
291 pmap_t pvo_pmap; /* ptr to owning pmap */
292 vaddr_t pvo_vaddr; /* VA of entry */
293 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
294 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
295 #define PVO_WIRED 0x0010 /* PVO entry is wired */
296 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
297 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
298 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
299 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
300 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
301 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
302 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
303 #define PVO_SPILL_SET 2 /* PVO has been spilled */
304 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
305 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
306 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
307 #define PVO_REMOVE 6 /* PVO has been removed */
308 #define PVO_WHERE_MASK 15
309 #define PVO_WHERE_SHFT 8
310 } __attribute__ ((aligned (32)));
311 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
312 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
313 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
314 #define PVO_PTEGIDX_CLR(pvo) \
315 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
316 #define PVO_PTEGIDX_SET(pvo,i) \
317 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
318 #define PVO_WHERE(pvo,w) \
319 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
320 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
321
322 TAILQ_HEAD(pvo_tqhead, pvo_entry);
323 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
324 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
325 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
326
327 struct pool pmap_pool; /* pool for pmap structures */
328 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
329 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
330
331 /*
332 * We keep a cache of unmanaged pages to be used for pvo entries for
333 * unmanaged pages.
334 */
335 struct pvo_page {
336 SIMPLEQ_ENTRY(pvo_page) pvop_link;
337 };
338 SIMPLEQ_HEAD(pvop_head, pvo_page);
339 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
340 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
341 static u_long pmap_upvop_free;
342 static u_long pmap_upvop_maxfree;
343 static u_long pmap_mpvop_free;
344 static u_long pmap_mpvop_maxfree;
345
346 static void *pmap_pool_ualloc(struct pool *, int);
347 static void *pmap_pool_malloc(struct pool *, int);
348
349 static void pmap_pool_ufree(struct pool *, void *);
350 static void pmap_pool_mfree(struct pool *, void *);
351
352 static struct pool_allocator pmap_pool_mallocator = {
353 .pa_alloc = pmap_pool_malloc,
354 .pa_free = pmap_pool_mfree,
355 .pa_pagesz = 0,
356 };
357
358 static struct pool_allocator pmap_pool_uallocator = {
359 .pa_alloc = pmap_pool_ualloc,
360 .pa_free = pmap_pool_ufree,
361 .pa_pagesz = 0,
362 };
363
364 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
365 void pmap_pte_print(volatile struct pte *);
366 void pmap_pteg_check(void);
367 void pmap_pteg_dist(void);
368 void pmap_print_pte(pmap_t, vaddr_t);
369 void pmap_print_mmuregs(void);
370 #endif
371
372 #if defined(DEBUG) || defined(PMAPCHECK)
373 #ifdef PMAPCHECK
374 int pmapcheck = 1;
375 #else
376 int pmapcheck = 0;
377 #endif
378 void pmap_pvo_verify(void);
379 static void pmap_pvo_check(const struct pvo_entry *);
380 #define PMAP_PVO_CHECK(pvo) \
381 do { \
382 if (pmapcheck) \
383 pmap_pvo_check(pvo); \
384 } while (0)
385 #else
386 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
387 #endif
388 static int pmap_pte_insert(int, struct pte *);
389 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
390 vaddr_t, paddr_t, register_t, int);
391 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
392 static void pmap_pvo_free(struct pvo_entry *);
393 static void pmap_pvo_free_list(struct pvo_head *);
394 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
395 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
396 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
397 static void pvo_set_exec(struct pvo_entry *);
398 static void pvo_clear_exec(struct pvo_entry *);
399
400 static void tlbia(void);
401
402 static void pmap_release(pmap_t);
403 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
404
405 static uint32_t pmap_pvo_reclaim_nextidx;
406 #ifdef DEBUG
407 static int pmap_pvo_reclaim_debugctr;
408 #endif
409
410 #define VSID_NBPW (sizeof(uint32_t) * 8)
411 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
412
413 static int pmap_initialized;
414
415 #if defined(DEBUG) || defined(PMAPDEBUG)
416 #define PMAPDEBUG_BOOT 0x0001
417 #define PMAPDEBUG_PTE 0x0002
418 #define PMAPDEBUG_EXEC 0x0008
419 #define PMAPDEBUG_PVOENTER 0x0010
420 #define PMAPDEBUG_PVOREMOVE 0x0020
421 #define PMAPDEBUG_ACTIVATE 0x0100
422 #define PMAPDEBUG_CREATE 0x0200
423 #define PMAPDEBUG_ENTER 0x1000
424 #define PMAPDEBUG_KENTER 0x2000
425 #define PMAPDEBUG_KREMOVE 0x4000
426 #define PMAPDEBUG_REMOVE 0x8000
427
428 unsigned int pmapdebug = 0;
429
430 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
431 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
432 #else
433 # define DPRINTF(x, ...) do { } while (0)
434 # define DPRINTFN(n, x, ...) do { } while (0)
435 #endif
436
437
438 #ifdef PMAPCOUNTERS
439 /*
440 * From pmap_subr.c
441 */
442 extern struct evcnt pmap_evcnt_mappings;
443 extern struct evcnt pmap_evcnt_unmappings;
444
445 extern struct evcnt pmap_evcnt_kernel_mappings;
446 extern struct evcnt pmap_evcnt_kernel_unmappings;
447
448 extern struct evcnt pmap_evcnt_mappings_replaced;
449
450 extern struct evcnt pmap_evcnt_exec_mappings;
451 extern struct evcnt pmap_evcnt_exec_cached;
452
453 extern struct evcnt pmap_evcnt_exec_synced;
454 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
455 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
456
457 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
458 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
459 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
461 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
462
463 extern struct evcnt pmap_evcnt_updates;
464 extern struct evcnt pmap_evcnt_collects;
465 extern struct evcnt pmap_evcnt_copies;
466
467 extern struct evcnt pmap_evcnt_ptes_spilled;
468 extern struct evcnt pmap_evcnt_ptes_unspilled;
469 extern struct evcnt pmap_evcnt_ptes_evicted;
470
471 extern struct evcnt pmap_evcnt_ptes_primary[8];
472 extern struct evcnt pmap_evcnt_ptes_secondary[8];
473 extern struct evcnt pmap_evcnt_ptes_removed;
474 extern struct evcnt pmap_evcnt_ptes_changed;
475 extern struct evcnt pmap_evcnt_pvos_reclaimed;
476 extern struct evcnt pmap_evcnt_pvos_failed;
477
478 extern struct evcnt pmap_evcnt_zeroed_pages;
479 extern struct evcnt pmap_evcnt_copied_pages;
480 extern struct evcnt pmap_evcnt_idlezeroed_pages;
481
482 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
483 #define PMAPCOUNT2(ev) ((ev).ev_count++)
484 #else
485 #define PMAPCOUNT(ev) ((void) 0)
486 #define PMAPCOUNT2(ev) ((void) 0)
487 #endif
488
489 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
490
491 /* XXXSL: this needs to be moved to assembler */
492 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
493
494 #ifdef MD_TLBSYNC
495 #define TLBSYNC() MD_TLBSYNC()
496 #else
497 #define TLBSYNC() __asm volatile("tlbsync")
498 #endif
499 #define SYNC() __asm volatile("sync")
500 #define EIEIO() __asm volatile("eieio")
501 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
502 #define MFMSR() mfmsr()
503 #define MTMSR(psl) mtmsr(psl)
504 #define MFPVR() mfpvr()
505 #define MFSRIN(va) mfsrin(va)
506 #define MFTB() mfrtcltbl()
507
508 #if defined(DDB) && !defined(PMAP_OEA64)
509 static inline register_t
510 mfsrin(vaddr_t va)
511 {
512 register_t sr;
513 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
514 return sr;
515 }
516 #endif /* DDB && !PMAP_OEA64 */
517
518 #if defined (PMAP_OEA64_BRIDGE)
519 extern void mfmsr64 (register64_t *result);
520 #endif /* PMAP_OEA64_BRIDGE */
521
522 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
523 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
524
525 static inline register_t
526 pmap_interrupts_off(void)
527 {
528 register_t msr = MFMSR();
529 if (msr & PSL_EE)
530 MTMSR(msr & ~PSL_EE);
531 return msr;
532 }
533
534 static void
535 pmap_interrupts_restore(register_t msr)
536 {
537 if (msr & PSL_EE)
538 MTMSR(msr);
539 }
540
541 static inline u_int32_t
542 mfrtcltbl(void)
543 {
544 #ifdef PPC_OEA601
545 if ((MFPVR() >> 16) == MPC601)
546 return (mfrtcl() >> 7);
547 else
548 #endif
549 return (mftbl());
550 }
551
552 /*
553 * These small routines may have to be replaced,
554 * if/when we support processors other that the 604.
555 */
556
557 void
558 tlbia(void)
559 {
560 char *i;
561
562 SYNC();
563 #if defined(PMAP_OEA)
564 /*
565 * Why not use "tlbia"? Because not all processors implement it.
566 *
567 * This needs to be a per-CPU callback to do the appropriate thing
568 * for the CPU. XXX
569 */
570 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
571 TLBIE(i);
572 EIEIO();
573 SYNC();
574 }
575 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
576 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
577 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
578 TLBIEL(i);
579 EIEIO();
580 SYNC();
581 }
582 #endif
583 TLBSYNC();
584 SYNC();
585 }
586
587 static inline register_t
588 va_to_vsid(const struct pmap *pm, vaddr_t addr)
589 {
590 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
591 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
592 #else /* PMAP_OEA64 */
593 #if 0
594 const struct ste *ste;
595 register_t hash;
596 int i;
597
598 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
599
600 /*
601 * Try the primary group first
602 */
603 ste = pm->pm_stes[hash].stes;
604 for (i = 0; i < 8; i++, ste++) {
605 if (ste->ste_hi & STE_V) &&
606 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
607 return ste;
608 }
609
610 /*
611 * Then the secondary group.
612 */
613 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
614 for (i = 0; i < 8; i++, ste++) {
615 if (ste->ste_hi & STE_V) &&
616 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
617 return addr;
618 }
619
620 return NULL;
621 #else
622 /*
623 * Rather than searching the STE groups for the VSID, we know
624 * how we generate that from the ESID and so do that.
625 */
626 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
627 #endif
628 #endif /* PMAP_OEA */
629 }
630
631 static inline register_t
632 va_to_pteg(const struct pmap *pm, vaddr_t addr)
633 {
634 register_t hash;
635
636 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
637 return hash & pmap_pteg_mask;
638 }
639
640 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
641 /*
642 * Given a PTE in the page table, calculate the VADDR that hashes to it.
643 * The only bit of magic is that the top 4 bits of the address doesn't
644 * technically exist in the PTE. But we know we reserved 4 bits of the
645 * VSID for it so that's how we get it.
646 */
647 static vaddr_t
648 pmap_pte_to_va(volatile const struct pte *pt)
649 {
650 vaddr_t va;
651 uintptr_t ptaddr = (uintptr_t) pt;
652
653 if (pt->pte_hi & PTE_HID)
654 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
655
656 /* PPC Bits 10-19 PPC64 Bits 42-51 */
657 #if defined(PMAP_OEA)
658 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
659 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
660 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
661 #endif
662 va <<= ADDR_PIDX_SHFT;
663
664 /* PPC Bits 4-9 PPC64 Bits 36-41 */
665 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
666
667 #if defined(PMAP_OEA64)
668 /* PPC63 Bits 0-35 */
669 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
670 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
671 /* PPC Bits 0-3 */
672 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
673 #endif
674
675 return va;
676 }
677 #endif
678
679 static inline struct pvo_head *
680 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
681 {
682 struct vm_page *pg;
683 struct vm_page_md *md;
684
685 pg = PHYS_TO_VM_PAGE(pa);
686 if (pg_p != NULL)
687 *pg_p = pg;
688 if (pg == NULL)
689 return &pmap_pvo_unmanaged;
690 md = VM_PAGE_TO_MD(pg);
691 return &md->mdpg_pvoh;
692 }
693
694 static inline struct pvo_head *
695 vm_page_to_pvoh(struct vm_page *pg)
696 {
697 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
698
699 return &md->mdpg_pvoh;
700 }
701
702
703 static inline void
704 pmap_attr_clear(struct vm_page *pg, int ptebit)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 md->mdpg_attrs &= ~ptebit;
709 }
710
711 static inline int
712 pmap_attr_fetch(struct vm_page *pg)
713 {
714 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
715
716 return md->mdpg_attrs;
717 }
718
719 static inline void
720 pmap_attr_save(struct vm_page *pg, int ptebit)
721 {
722 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
723
724 md->mdpg_attrs |= ptebit;
725 }
726
727 static inline int
728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
729 {
730 if (pt->pte_hi == pvo_pt->pte_hi
731 #if 0
732 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
733 ~(PTE_REF|PTE_CHG)) == 0
734 #endif
735 )
736 return 1;
737 return 0;
738 }
739
740 static inline void
741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
742 {
743 /*
744 * Construct the PTE. Default to IMB initially. Valid bit
745 * only gets set when the real pte is set in memory.
746 *
747 * Note: Don't set the valid bit for correct operation of tlb update.
748 */
749 #if defined(PMAP_OEA)
750 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
751 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
752 pt->pte_lo = pte_lo;
753 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
754 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = (u_int64_t) pte_lo;
757 #endif /* PMAP_OEA */
758 }
759
760 static inline void
761 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
762 {
763 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
764 }
765
766 static inline void
767 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
768 {
769 /*
770 * As shown in Section 7.6.3.2.3
771 */
772 pt->pte_lo &= ~ptebit;
773 TLBIE(va);
774 SYNC();
775 EIEIO();
776 TLBSYNC();
777 SYNC();
778 #ifdef MULTIPROCESSOR
779 DCBST(pt);
780 #endif
781 }
782
783 static inline void
784 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
785 {
786 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
787 if (pvo_pt->pte_hi & PTE_VALID)
788 panic("pte_set: setting an already valid pte %p", pvo_pt);
789 #endif
790 pvo_pt->pte_hi |= PTE_VALID;
791
792 /*
793 * Update the PTE as defined in section 7.6.3.1
794 * Note that the REF/CHG bits are from pvo_pt and thus should
795 * have been saved so this routine can restore them (if desired).
796 */
797 pt->pte_lo = pvo_pt->pte_lo;
798 EIEIO();
799 pt->pte_hi = pvo_pt->pte_hi;
800 TLBSYNC();
801 SYNC();
802 #ifdef MULTIPROCESSOR
803 DCBST(pt);
804 #endif
805 pmap_pte_valid++;
806 }
807
808 static inline void
809 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
810 {
811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
812 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
813 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
814 if ((pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
816 #endif
817
818 pvo_pt->pte_hi &= ~PTE_VALID;
819 /*
820 * Force the ref & chg bits back into the PTEs.
821 */
822 SYNC();
823 /*
824 * Invalidate the pte ... (Section 7.6.3.3)
825 */
826 pt->pte_hi &= ~PTE_VALID;
827 SYNC();
828 TLBIE(va);
829 SYNC();
830 EIEIO();
831 TLBSYNC();
832 SYNC();
833 /*
834 * Save the ref & chg bits ...
835 */
836 pmap_pte_synch(pt, pvo_pt);
837 pmap_pte_valid--;
838 }
839
840 static inline void
841 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
842 {
843 /*
844 * Invalidate the PTE
845 */
846 pmap_pte_unset(pt, pvo_pt, va);
847 pmap_pte_set(pt, pvo_pt);
848 }
849
850 /*
851 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
852 * (either primary or secondary location).
853 *
854 * Note: both the destination and source PTEs must not have PTE_VALID set.
855 */
856
857 static int
858 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
859 {
860 volatile struct pte *pt;
861 int i;
862
863 #if defined(DEBUG)
864 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
865 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
866 #endif
867 /*
868 * First try primary hash.
869 */
870 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
871 if ((pt->pte_hi & PTE_VALID) == 0) {
872 pvo_pt->pte_hi &= ~PTE_HID;
873 pmap_pte_set(pt, pvo_pt);
874 return i;
875 }
876 }
877
878 /*
879 * Now try secondary hash.
880 */
881 ptegidx ^= pmap_pteg_mask;
882 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
883 if ((pt->pte_hi & PTE_VALID) == 0) {
884 pvo_pt->pte_hi |= PTE_HID;
885 pmap_pte_set(pt, pvo_pt);
886 return i;
887 }
888 }
889 return -1;
890 }
891
892 /*
893 * Spill handler.
894 *
895 * Tries to spill a page table entry from the overflow area.
896 * This runs in either real mode (if dealing with a exception spill)
897 * or virtual mode when dealing with manually spilling one of the
898 * kernel's pte entries. In either case, interrupts are already
899 * disabled.
900 */
901
902 int
903 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
904 {
905 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
906 struct pvo_entry *pvo;
907 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
908 struct pvo_tqhead *pvoh, *vpvoh = NULL;
909 int ptegidx, i, j;
910 volatile struct pteg *pteg;
911 volatile struct pte *pt;
912
913 PMAP_LOCK();
914
915 ptegidx = va_to_pteg(pm, addr);
916
917 /*
918 * Have to substitute some entry. Use the primary hash for this.
919 * Use low bits of timebase as random generator. Make sure we are
920 * not picking a kernel pte for replacement.
921 */
922 pteg = &pmap_pteg_table[ptegidx];
923 i = MFTB() & 7;
924 for (j = 0; j < 8; j++) {
925 pt = &pteg->pt[i];
926 if ((pt->pte_hi & PTE_VALID) == 0)
927 break;
928 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
929 < PHYSMAP_VSIDBITS)
930 break;
931 i = (i + 1) & 7;
932 }
933 KASSERT(j < 8);
934
935 source_pvo = NULL;
936 victim_pvo = NULL;
937 pvoh = &pmap_pvo_table[ptegidx];
938 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
939
940 /*
941 * We need to find pvo entry for this address...
942 */
943 PMAP_PVO_CHECK(pvo); /* sanity check */
944
945 /*
946 * If we haven't found the source and we come to a PVO with
947 * a valid PTE, then we know we can't find it because all
948 * evicted PVOs always are first in the list.
949 */
950 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
951 break;
952 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
953 addr == PVO_VADDR(pvo)) {
954
955 /*
956 * Now we have found the entry to be spilled into the
957 * pteg. Attempt to insert it into the page table.
958 */
959 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
960 if (j >= 0) {
961 PVO_PTEGIDX_SET(pvo, j);
962 PMAP_PVO_CHECK(pvo); /* sanity check */
963 PVO_WHERE(pvo, SPILL_INSERT);
964 pvo->pvo_pmap->pm_evictions--;
965 PMAPCOUNT(ptes_spilled);
966 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
967 ? pmap_evcnt_ptes_secondary
968 : pmap_evcnt_ptes_primary)[j]);
969
970 /*
971 * Since we keep the evicted entries at the
972 * from of the PVO list, we need move this
973 * (now resident) PVO after the evicted
974 * entries.
975 */
976 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
977
978 /*
979 * If we don't have to move (either we were the
980 * last entry or the next entry was valid),
981 * don't change our position. Otherwise
982 * move ourselves to the tail of the queue.
983 */
984 if (next_pvo != NULL &&
985 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
986 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
987 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
988 }
989 PMAP_UNLOCK();
990 return 1;
991 }
992 source_pvo = pvo;
993 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
994 return 0;
995 }
996 if (victim_pvo != NULL)
997 break;
998 }
999
1000 /*
1001 * We also need the pvo entry of the victim we are replacing
1002 * so save the R & C bits of the PTE.
1003 */
1004 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1005 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1006 vpvoh = pvoh; /* *1* */
1007 victim_pvo = pvo;
1008 if (source_pvo != NULL)
1009 break;
1010 }
1011 }
1012
1013 if (source_pvo == NULL) {
1014 PMAPCOUNT(ptes_unspilled);
1015 PMAP_UNLOCK();
1016 return 0;
1017 }
1018
1019 if (victim_pvo == NULL) {
1020 if ((pt->pte_hi & PTE_HID) == 0)
1021 panic("pmap_pte_spill: victim p-pte (%p) has "
1022 "no pvo entry!", pt);
1023
1024 /*
1025 * If this is a secondary PTE, we need to search
1026 * its primary pvo bucket for the matching PVO.
1027 */
1028 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1029 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1030 PMAP_PVO_CHECK(pvo); /* sanity check */
1031
1032 /*
1033 * We also need the pvo entry of the victim we are
1034 * replacing so save the R & C bits of the PTE.
1035 */
1036 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1037 victim_pvo = pvo;
1038 break;
1039 }
1040 }
1041 if (victim_pvo == NULL)
1042 panic("pmap_pte_spill: victim s-pte (%p) has "
1043 "no pvo entry!", pt);
1044 }
1045
1046 /*
1047 * The victim should be not be a kernel PVO/PTE entry.
1048 */
1049 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1050 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1051 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1052
1053 /*
1054 * We are invalidating the TLB entry for the EA for the
1055 * we are replacing even though its valid; If we don't
1056 * we lose any ref/chg bit changes contained in the TLB
1057 * entry.
1058 */
1059 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1060
1061 /*
1062 * To enforce the PVO list ordering constraint that all
1063 * evicted entries should come before all valid entries,
1064 * move the source PVO to the tail of its list and the
1065 * victim PVO to the head of its list (which might not be
1066 * the same list, if the victim was using the secondary hash).
1067 */
1068 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1069 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1070 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1071 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1072 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1073 pmap_pte_set(pt, &source_pvo->pvo_pte);
1074 victim_pvo->pvo_pmap->pm_evictions++;
1075 source_pvo->pvo_pmap->pm_evictions--;
1076 PVO_WHERE(victim_pvo, SPILL_UNSET);
1077 PVO_WHERE(source_pvo, SPILL_SET);
1078
1079 PVO_PTEGIDX_CLR(victim_pvo);
1080 PVO_PTEGIDX_SET(source_pvo, i);
1081 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1082 PMAPCOUNT(ptes_spilled);
1083 PMAPCOUNT(ptes_evicted);
1084 PMAPCOUNT(ptes_removed);
1085
1086 PMAP_PVO_CHECK(victim_pvo);
1087 PMAP_PVO_CHECK(source_pvo);
1088
1089 PMAP_UNLOCK();
1090 return 1;
1091 }
1092
1093 /*
1094 * Restrict given range to physical memory
1095 */
1096 void
1097 pmap_real_memory(paddr_t *start, psize_t *size)
1098 {
1099 struct mem_region *mp;
1100
1101 for (mp = mem; mp->size; mp++) {
1102 if (*start + *size > mp->start
1103 && *start < mp->start + mp->size) {
1104 if (*start < mp->start) {
1105 *size -= mp->start - *start;
1106 *start = mp->start;
1107 }
1108 if (*start + *size > mp->start + mp->size)
1109 *size = mp->start + mp->size - *start;
1110 return;
1111 }
1112 }
1113 *size = 0;
1114 }
1115
1116 /*
1117 * Initialize anything else for pmap handling.
1118 * Called during vm_init().
1119 */
1120 void
1121 pmap_init(void)
1122 {
1123 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1124 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1125 &pmap_pool_mallocator, IPL_NONE);
1126
1127 pool_setlowat(&pmap_mpvo_pool, 1008);
1128
1129 pmap_initialized = 1;
1130
1131 }
1132
1133 /*
1134 * How much virtual space does the kernel get?
1135 */
1136 void
1137 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1138 {
1139 /*
1140 * For now, reserve one segment (minus some overhead) for kernel
1141 * virtual memory
1142 */
1143 *start = VM_MIN_KERNEL_ADDRESS;
1144 *end = VM_MAX_KERNEL_ADDRESS;
1145 }
1146
1147 /*
1148 * Allocate, initialize, and return a new physical map.
1149 */
1150 pmap_t
1151 pmap_create(void)
1152 {
1153 pmap_t pm;
1154
1155 pm = pool_get(&pmap_pool, PR_WAITOK);
1156 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1157 memset((void *)pm, 0, sizeof *pm);
1158 pmap_pinit(pm);
1159
1160 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1161 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1162 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1163 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1164 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1165 pm,
1166 pm->pm_sr[0], pm->pm_sr[1],
1167 pm->pm_sr[2], pm->pm_sr[3],
1168 pm->pm_sr[4], pm->pm_sr[5],
1169 pm->pm_sr[6], pm->pm_sr[7],
1170 pm->pm_sr[8], pm->pm_sr[9],
1171 pm->pm_sr[10], pm->pm_sr[11],
1172 pm->pm_sr[12], pm->pm_sr[13],
1173 pm->pm_sr[14], pm->pm_sr[15]);
1174 return pm;
1175 }
1176
1177 /*
1178 * Initialize a preallocated and zeroed pmap structure.
1179 */
1180 void
1181 pmap_pinit(pmap_t pm)
1182 {
1183 register_t entropy = MFTB();
1184 register_t mask;
1185 int i;
1186
1187 /*
1188 * Allocate some segment registers for this pmap.
1189 */
1190 pm->pm_refs = 1;
1191 PMAP_LOCK();
1192 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1193 static register_t pmap_vsidcontext;
1194 register_t hash;
1195 unsigned int n;
1196
1197 /* Create a new value by multiplying by a prime adding in
1198 * entropy from the timebase register. This is to make the
1199 * VSID more random so that the PT Hash function collides
1200 * less often. (note that the prime causes gcc to do shifts
1201 * instead of a multiply)
1202 */
1203 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1204 hash = pmap_vsidcontext & (NPMAPS - 1);
1205 if (hash == 0) { /* 0 is special, avoid it */
1206 entropy += 0xbadf00d;
1207 continue;
1208 }
1209 n = hash >> 5;
1210 mask = 1L << (hash & (VSID_NBPW-1));
1211 hash = pmap_vsidcontext;
1212 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1213 /* anything free in this bucket? */
1214 if (~pmap_vsid_bitmap[n] == 0) {
1215 entropy = hash ^ (hash >> 16);
1216 continue;
1217 }
1218 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1219 mask = 1L << i;
1220 hash &= ~(VSID_NBPW-1);
1221 hash |= i;
1222 }
1223 hash &= PTE_VSID >> PTE_VSID_SHFT;
1224 pmap_vsid_bitmap[n] |= mask;
1225 pm->pm_vsid = hash;
1226 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1227 for (i = 0; i < 16; i++)
1228 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1229 SR_NOEXEC;
1230 #endif
1231 PMAP_UNLOCK();
1232 return;
1233 }
1234 PMAP_UNLOCK();
1235 panic("pmap_pinit: out of segments");
1236 }
1237
1238 /*
1239 * Add a reference to the given pmap.
1240 */
1241 void
1242 pmap_reference(pmap_t pm)
1243 {
1244 atomic_inc_uint(&pm->pm_refs);
1245 }
1246
1247 /*
1248 * Retire the given pmap from service.
1249 * Should only be called if the map contains no valid mappings.
1250 */
1251 void
1252 pmap_destroy(pmap_t pm)
1253 {
1254 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1255 pmap_release(pm);
1256 pool_put(&pmap_pool, pm);
1257 }
1258 }
1259
1260 /*
1261 * Release any resources held by the given physical map.
1262 * Called when a pmap initialized by pmap_pinit is being released.
1263 */
1264 void
1265 pmap_release(pmap_t pm)
1266 {
1267 int idx, mask;
1268
1269 KASSERT(pm->pm_stats.resident_count == 0);
1270 KASSERT(pm->pm_stats.wired_count == 0);
1271
1272 PMAP_LOCK();
1273 if (pm->pm_sr[0] == 0)
1274 panic("pmap_release");
1275 idx = pm->pm_vsid & (NPMAPS-1);
1276 mask = 1 << (idx % VSID_NBPW);
1277 idx /= VSID_NBPW;
1278
1279 KASSERT(pmap_vsid_bitmap[idx] & mask);
1280 pmap_vsid_bitmap[idx] &= ~mask;
1281 PMAP_UNLOCK();
1282 }
1283
1284 /*
1285 * Copy the range specified by src_addr/len
1286 * from the source map to the range dst_addr/len
1287 * in the destination map.
1288 *
1289 * This routine is only advisory and need not do anything.
1290 */
1291 void
1292 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1293 vsize_t len, vaddr_t src_addr)
1294 {
1295 PMAPCOUNT(copies);
1296 }
1297
1298 /*
1299 * Require that all active physical maps contain no
1300 * incorrect entries NOW.
1301 */
1302 void
1303 pmap_update(struct pmap *pmap)
1304 {
1305 PMAPCOUNT(updates);
1306 TLBSYNC();
1307 }
1308
1309 static inline int
1310 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1311 {
1312 int pteidx;
1313 /*
1314 * We can find the actual pte entry without searching by
1315 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1316 * and by noticing the HID bit.
1317 */
1318 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1319 if (pvo->pvo_pte.pte_hi & PTE_HID)
1320 pteidx ^= pmap_pteg_mask * 8;
1321 return pteidx;
1322 }
1323
1324 volatile struct pte *
1325 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1326 {
1327 volatile struct pte *pt;
1328
1329 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1330 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1331 return NULL;
1332 #endif
1333
1334 /*
1335 * If we haven't been supplied the ptegidx, calculate it.
1336 */
1337 if (pteidx == -1) {
1338 int ptegidx;
1339 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1340 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1341 }
1342
1343 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1344
1345 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1346 return pt;
1347 #else
1348 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1349 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1350 "pvo but no valid pte index", pvo);
1351 }
1352 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1353 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1354 "pvo but no valid pte", pvo);
1355 }
1356
1357 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1358 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1359 #if defined(DEBUG) || defined(PMAPCHECK)
1360 pmap_pte_print(pt);
1361 #endif
1362 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1363 "pmap_pteg_table %p but invalid in pvo",
1364 pvo, pt);
1365 }
1366 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1367 #if defined(DEBUG) || defined(PMAPCHECK)
1368 pmap_pte_print(pt);
1369 #endif
1370 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1371 "not match pte %p in pmap_pteg_table",
1372 pvo, pt);
1373 }
1374 return pt;
1375 }
1376
1377 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1378 #if defined(DEBUG) || defined(PMAPCHECK)
1379 pmap_pte_print(pt);
1380 #endif
1381 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1382 "pmap_pteg_table but valid in pvo", pvo, pt);
1383 }
1384 return NULL;
1385 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1386 }
1387
1388 struct pvo_entry *
1389 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1390 {
1391 struct pvo_entry *pvo;
1392 int ptegidx;
1393
1394 va &= ~ADDR_POFF;
1395 ptegidx = va_to_pteg(pm, va);
1396
1397 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1398 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1399 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1400 panic("pmap_pvo_find_va: invalid pvo %p on "
1401 "list %#x (%p)", pvo, ptegidx,
1402 &pmap_pvo_table[ptegidx]);
1403 #endif
1404 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1405 if (pteidx_p)
1406 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1407 return pvo;
1408 }
1409 }
1410 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1411 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1412 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1413 return NULL;
1414 }
1415
1416 #if defined(DEBUG) || defined(PMAPCHECK)
1417 void
1418 pmap_pvo_check(const struct pvo_entry *pvo)
1419 {
1420 struct pvo_head *pvo_head;
1421 struct pvo_entry *pvo0;
1422 volatile struct pte *pt;
1423 int failed = 0;
1424
1425 PMAP_LOCK();
1426
1427 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1428 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1429
1430 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1431 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1432 pvo, pvo->pvo_pmap);
1433 failed = 1;
1434 }
1435
1436 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1437 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1438 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1439 pvo, TAILQ_NEXT(pvo, pvo_olink));
1440 failed = 1;
1441 }
1442
1443 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1444 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1445 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1446 pvo, LIST_NEXT(pvo, pvo_vlink));
1447 failed = 1;
1448 }
1449
1450 if (PVO_MANAGED_P(pvo)) {
1451 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1452 } else {
1453 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1454 printf("pmap_pvo_check: pvo %p: non kernel address "
1455 "on kernel unmanaged list\n", pvo);
1456 failed = 1;
1457 }
1458 pvo_head = &pmap_pvo_kunmanaged;
1459 }
1460 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1461 if (pvo0 == pvo)
1462 break;
1463 }
1464 if (pvo0 == NULL) {
1465 printf("pmap_pvo_check: pvo %p: not present "
1466 "on its vlist head %p\n", pvo, pvo_head);
1467 failed = 1;
1468 }
1469 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1470 printf("pmap_pvo_check: pvo %p: not present "
1471 "on its olist head\n", pvo);
1472 failed = 1;
1473 }
1474 pt = pmap_pvo_to_pte(pvo, -1);
1475 if (pt == NULL) {
1476 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1477 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1478 "no PTE\n", pvo);
1479 failed = 1;
1480 }
1481 } else {
1482 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1483 (uintptr_t) pt >=
1484 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1485 printf("pmap_pvo_check: pvo %p: pte %p not in "
1486 "pteg table\n", pvo, pt);
1487 failed = 1;
1488 }
1489 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1490 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1491 "no PTE\n", pvo);
1492 failed = 1;
1493 }
1494 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1495 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1496 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1497 pvo->pvo_pte.pte_hi,
1498 pt->pte_hi);
1499 failed = 1;
1500 }
1501 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1502 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1503 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1504 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1505 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1506 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1507 failed = 1;
1508 }
1509 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1510 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1511 " doesn't not match PVO's VA %#" _PRIxva "\n",
1512 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1513 failed = 1;
1514 }
1515 if (failed)
1516 pmap_pte_print(pt);
1517 }
1518 if (failed)
1519 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1520 pvo->pvo_pmap);
1521
1522 PMAP_UNLOCK();
1523 }
1524 #endif /* DEBUG || PMAPCHECK */
1525
1526 /*
1527 * Search the PVO table looking for a non-wired entry.
1528 * If we find one, remove it and return it.
1529 */
1530
1531 struct pvo_entry *
1532 pmap_pvo_reclaim(struct pmap *pm)
1533 {
1534 struct pvo_tqhead *pvoh;
1535 struct pvo_entry *pvo;
1536 uint32_t idx, endidx;
1537
1538 endidx = pmap_pvo_reclaim_nextidx;
1539 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1540 idx = (idx + 1) & pmap_pteg_mask) {
1541 pvoh = &pmap_pvo_table[idx];
1542 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1543 if (!PVO_WIRED_P(pvo)) {
1544 pmap_pvo_remove(pvo, -1, NULL);
1545 pmap_pvo_reclaim_nextidx = idx;
1546 PMAPCOUNT(pvos_reclaimed);
1547 return pvo;
1548 }
1549 }
1550 }
1551 return NULL;
1552 }
1553
1554 static struct pool *
1555 pmap_pvo_pl(struct pvo_entry *pvo)
1556 {
1557
1558 return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
1559 }
1560
1561 /*
1562 * This returns whether this is the first mapping of a page.
1563 */
1564 int
1565 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1566 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1567 {
1568 struct pvo_entry *pvo;
1569 struct pvo_tqhead *pvoh;
1570 register_t msr;
1571 int ptegidx;
1572 int i;
1573 int poolflags = PR_NOWAIT;
1574
1575 /*
1576 * Compute the PTE Group index.
1577 */
1578 va &= ~ADDR_POFF;
1579 ptegidx = va_to_pteg(pm, va);
1580
1581 msr = pmap_interrupts_off();
1582
1583 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1584 if (pmap_pvo_remove_depth > 0)
1585 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1586 if (++pmap_pvo_enter_depth > 1)
1587 panic("pmap_pvo_enter: called recursively!");
1588 #endif
1589
1590 /*
1591 * Remove any existing mapping for this page. Reuse the
1592 * pvo entry if there a mapping.
1593 */
1594 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1595 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1596 #ifdef DEBUG
1597 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1598 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1599 ~(PTE_REF|PTE_CHG)) == 0 &&
1600 va < VM_MIN_KERNEL_ADDRESS) {
1601 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1602 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1603 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1604 pvo->pvo_pte.pte_hi,
1605 pm->pm_sr[va >> ADDR_SR_SHFT]);
1606 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1607 #ifdef DDBX
1608 Debugger();
1609 #endif
1610 }
1611 #endif
1612 PMAPCOUNT(mappings_replaced);
1613 pmap_pvo_remove(pvo, -1, NULL);
1614 break;
1615 }
1616 }
1617
1618 /*
1619 * If we aren't overwriting an mapping, try to allocate
1620 */
1621 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1622 --pmap_pvo_enter_depth;
1623 #endif
1624 pmap_interrupts_restore(msr);
1625 if (pvo) {
1626 KASSERT(pmap_pvo_pl(pvo) == pl);
1627 } else {
1628 pvo = pool_get(pl, poolflags);
1629 }
1630 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1631
1632 #ifdef DEBUG
1633 /*
1634 * Exercise pmap_pvo_reclaim() a little.
1635 */
1636 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1637 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1638 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1639 pool_put(pl, pvo);
1640 pvo = NULL;
1641 }
1642 #endif
1643
1644 msr = pmap_interrupts_off();
1645 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1646 ++pmap_pvo_enter_depth;
1647 #endif
1648 if (pvo == NULL) {
1649 pvo = pmap_pvo_reclaim(pm);
1650 if (pvo == NULL) {
1651 if ((flags & PMAP_CANFAIL) == 0)
1652 panic("pmap_pvo_enter: failed");
1653 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1654 pmap_pvo_enter_depth--;
1655 #endif
1656 PMAPCOUNT(pvos_failed);
1657 pmap_interrupts_restore(msr);
1658 return ENOMEM;
1659 }
1660 }
1661
1662 pvo->pvo_vaddr = va;
1663 pvo->pvo_pmap = pm;
1664 pvo->pvo_vaddr &= ~ADDR_POFF;
1665 if (flags & VM_PROT_EXECUTE) {
1666 PMAPCOUNT(exec_mappings);
1667 pvo_set_exec(pvo);
1668 }
1669 if (flags & PMAP_WIRED)
1670 pvo->pvo_vaddr |= PVO_WIRED;
1671 if (pvo_head != &pmap_pvo_kunmanaged) {
1672 pvo->pvo_vaddr |= PVO_MANAGED;
1673 PMAPCOUNT(mappings);
1674 } else {
1675 PMAPCOUNT(kernel_mappings);
1676 }
1677 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1678
1679 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1680 if (PVO_WIRED_P(pvo))
1681 pvo->pvo_pmap->pm_stats.wired_count++;
1682 pvo->pvo_pmap->pm_stats.resident_count++;
1683 #if defined(DEBUG)
1684 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1685 DPRINTFN(PVOENTER,
1686 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1687 pvo, pm, va, pa);
1688 #endif
1689
1690 /*
1691 * We hope this succeeds but it isn't required.
1692 */
1693 pvoh = &pmap_pvo_table[ptegidx];
1694 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1695 if (i >= 0) {
1696 PVO_PTEGIDX_SET(pvo, i);
1697 PVO_WHERE(pvo, ENTER_INSERT);
1698 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1699 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1700 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1701
1702 } else {
1703 /*
1704 * Since we didn't have room for this entry (which makes it
1705 * and evicted entry), place it at the head of the list.
1706 */
1707 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1708 PMAPCOUNT(ptes_evicted);
1709 pm->pm_evictions++;
1710 /*
1711 * If this is a kernel page, make sure it's active.
1712 */
1713 if (pm == pmap_kernel()) {
1714 i = pmap_pte_spill(pm, va, false);
1715 KASSERT(i);
1716 }
1717 }
1718 PMAP_PVO_CHECK(pvo); /* sanity check */
1719 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1720 pmap_pvo_enter_depth--;
1721 #endif
1722 pmap_interrupts_restore(msr);
1723 return 0;
1724 }
1725
1726 static void
1727 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1728 {
1729 volatile struct pte *pt;
1730 int ptegidx;
1731
1732 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1733 if (++pmap_pvo_remove_depth > 1)
1734 panic("pmap_pvo_remove: called recursively!");
1735 #endif
1736
1737 /*
1738 * If we haven't been supplied the ptegidx, calculate it.
1739 */
1740 if (pteidx == -1) {
1741 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1742 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1743 } else {
1744 ptegidx = pteidx >> 3;
1745 if (pvo->pvo_pte.pte_hi & PTE_HID)
1746 ptegidx ^= pmap_pteg_mask;
1747 }
1748 PMAP_PVO_CHECK(pvo); /* sanity check */
1749
1750 /*
1751 * If there is an active pte entry, we need to deactivate it
1752 * (and save the ref & chg bits).
1753 */
1754 pt = pmap_pvo_to_pte(pvo, pteidx);
1755 if (pt != NULL) {
1756 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1757 PVO_WHERE(pvo, REMOVE);
1758 PVO_PTEGIDX_CLR(pvo);
1759 PMAPCOUNT(ptes_removed);
1760 } else {
1761 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1762 pvo->pvo_pmap->pm_evictions--;
1763 }
1764
1765 /*
1766 * Account for executable mappings.
1767 */
1768 if (PVO_EXECUTABLE_P(pvo))
1769 pvo_clear_exec(pvo);
1770
1771 /*
1772 * Update our statistics.
1773 */
1774 pvo->pvo_pmap->pm_stats.resident_count--;
1775 if (PVO_WIRED_P(pvo))
1776 pvo->pvo_pmap->pm_stats.wired_count--;
1777
1778 /*
1779 * Save the REF/CHG bits into their cache if the page is managed.
1780 */
1781 if (PVO_MANAGED_P(pvo)) {
1782 register_t ptelo = pvo->pvo_pte.pte_lo;
1783 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1784
1785 if (pg != NULL) {
1786 /*
1787 * If this page was changed and it is mapped exec,
1788 * invalidate it.
1789 */
1790 if ((ptelo & PTE_CHG) &&
1791 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1792 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1793 if (LIST_EMPTY(pvoh)) {
1794 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1795 "%#" _PRIxpa ": clear-exec]\n",
1796 VM_PAGE_TO_PHYS(pg));
1797 pmap_attr_clear(pg, PTE_EXEC);
1798 PMAPCOUNT(exec_uncached_pvo_remove);
1799 } else {
1800 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1801 "%#" _PRIxpa ": syncicache]\n",
1802 VM_PAGE_TO_PHYS(pg));
1803 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1804 PAGE_SIZE);
1805 PMAPCOUNT(exec_synced_pvo_remove);
1806 }
1807 }
1808
1809 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1810 }
1811 PMAPCOUNT(unmappings);
1812 } else {
1813 PMAPCOUNT(kernel_unmappings);
1814 }
1815
1816 /*
1817 * Remove the PVO from its lists and return it to the pool.
1818 */
1819 LIST_REMOVE(pvo, pvo_vlink);
1820 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1821 if (pvol) {
1822 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1823 }
1824 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1825 pmap_pvo_remove_depth--;
1826 #endif
1827 }
1828
1829 void
1830 pmap_pvo_free(struct pvo_entry *pvo)
1831 {
1832
1833 pool_put(pmap_pvo_pl(pvo), pvo);
1834 }
1835
1836 void
1837 pmap_pvo_free_list(struct pvo_head *pvol)
1838 {
1839 struct pvo_entry *pvo, *npvo;
1840
1841 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1842 npvo = LIST_NEXT(pvo, pvo_vlink);
1843 LIST_REMOVE(pvo, pvo_vlink);
1844 pmap_pvo_free(pvo);
1845 }
1846 }
1847
1848 /*
1849 * Mark a mapping as executable.
1850 * If this is the first executable mapping in the segment,
1851 * clear the noexec flag.
1852 */
1853 static void
1854 pvo_set_exec(struct pvo_entry *pvo)
1855 {
1856 struct pmap *pm = pvo->pvo_pmap;
1857
1858 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1859 return;
1860 }
1861 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1862 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1863 {
1864 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1865 if (pm->pm_exec[sr]++ == 0) {
1866 pm->pm_sr[sr] &= ~SR_NOEXEC;
1867 }
1868 }
1869 #endif
1870 }
1871
1872 /*
1873 * Mark a mapping as non-executable.
1874 * If this was the last executable mapping in the segment,
1875 * set the noexec flag.
1876 */
1877 static void
1878 pvo_clear_exec(struct pvo_entry *pvo)
1879 {
1880 struct pmap *pm = pvo->pvo_pmap;
1881
1882 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1883 return;
1884 }
1885 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1886 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1887 {
1888 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1889 if (--pm->pm_exec[sr] == 0) {
1890 pm->pm_sr[sr] |= SR_NOEXEC;
1891 }
1892 }
1893 #endif
1894 }
1895
1896 /*
1897 * Insert physical page at pa into the given pmap at virtual address va.
1898 */
1899 int
1900 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1901 {
1902 struct mem_region *mp;
1903 struct pvo_head *pvo_head;
1904 struct vm_page *pg;
1905 struct pool *pl;
1906 register_t pte_lo;
1907 int error;
1908 u_int was_exec = 0;
1909
1910 PMAP_LOCK();
1911
1912 if (__predict_false(!pmap_initialized)) {
1913 pvo_head = &pmap_pvo_kunmanaged;
1914 pl = &pmap_upvo_pool;
1915 pg = NULL;
1916 was_exec = PTE_EXEC;
1917 } else {
1918 pvo_head = pa_to_pvoh(pa, &pg);
1919 pl = &pmap_mpvo_pool;
1920 }
1921
1922 DPRINTFN(ENTER,
1923 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1924 pm, va, pa, prot, flags);
1925
1926 /*
1927 * If this is a managed page, and it's the first reference to the
1928 * page clear the execness of the page. Otherwise fetch the execness.
1929 */
1930 if (pg != NULL)
1931 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1932
1933 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1934
1935 /*
1936 * Assume the page is cache inhibited and access is guarded unless
1937 * it's in our available memory array. If it is in the memory array,
1938 * asssume it's in memory coherent memory.
1939 */
1940 if (flags & PMAP_MD_PREFETCHABLE) {
1941 pte_lo = 0;
1942 } else
1943 pte_lo = PTE_G;
1944
1945 if ((flags & PMAP_NOCACHE) == 0) {
1946 for (mp = mem; mp->size; mp++) {
1947 if (pa >= mp->start && pa < mp->start + mp->size) {
1948 pte_lo = PTE_M;
1949 break;
1950 }
1951 }
1952 #ifdef MULTIPROCESSOR
1953 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1954 pte_lo = PTE_M;
1955 #endif
1956 } else {
1957 pte_lo |= PTE_I;
1958 }
1959
1960 if (prot & VM_PROT_WRITE)
1961 pte_lo |= PTE_BW;
1962 else
1963 pte_lo |= PTE_BR;
1964
1965 /*
1966 * If this was in response to a fault, "pre-fault" the PTE's
1967 * changed/referenced bit appropriately.
1968 */
1969 if (flags & VM_PROT_WRITE)
1970 pte_lo |= PTE_CHG;
1971 if (flags & VM_PROT_ALL)
1972 pte_lo |= PTE_REF;
1973
1974 /*
1975 * We need to know if this page can be executable
1976 */
1977 flags |= (prot & VM_PROT_EXECUTE);
1978
1979 /*
1980 * Record mapping for later back-translation and pte spilling.
1981 * This will overwrite any existing mapping.
1982 */
1983 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1984
1985 /*
1986 * Flush the real page from the instruction cache if this page is
1987 * mapped executable and cacheable and has not been flushed since
1988 * the last time it was modified.
1989 */
1990 if (error == 0 &&
1991 (flags & VM_PROT_EXECUTE) &&
1992 (pte_lo & PTE_I) == 0 &&
1993 was_exec == 0) {
1994 DPRINTFN(ENTER, " %s", "syncicache");
1995 PMAPCOUNT(exec_synced);
1996 pmap_syncicache(pa, PAGE_SIZE);
1997 if (pg != NULL) {
1998 pmap_attr_save(pg, PTE_EXEC);
1999 PMAPCOUNT(exec_cached);
2000 #if defined(DEBUG) || defined(PMAPDEBUG)
2001 if (pmapdebug & PMAPDEBUG_ENTER)
2002 printf(" marked-as-exec");
2003 else if (pmapdebug & PMAPDEBUG_EXEC)
2004 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2005 VM_PAGE_TO_PHYS(pg));
2006
2007 #endif
2008 }
2009 }
2010
2011 DPRINTFN(ENTER, ": error=%d\n", error);
2012
2013 PMAP_UNLOCK();
2014
2015 return error;
2016 }
2017
2018 void
2019 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2020 {
2021 struct mem_region *mp;
2022 register_t pte_lo;
2023 int error;
2024
2025 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2026 if (va < VM_MIN_KERNEL_ADDRESS)
2027 panic("pmap_kenter_pa: attempt to enter "
2028 "non-kernel address %#" _PRIxva "!", va);
2029 #endif
2030
2031 DPRINTFN(KENTER,
2032 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2033
2034 PMAP_LOCK();
2035
2036 /*
2037 * Assume the page is cache inhibited and access is guarded unless
2038 * it's in our available memory array. If it is in the memory array,
2039 * asssume it's in memory coherent memory.
2040 */
2041 pte_lo = PTE_IG;
2042 if ((flags & PMAP_NOCACHE) == 0) {
2043 for (mp = mem; mp->size; mp++) {
2044 if (pa >= mp->start && pa < mp->start + mp->size) {
2045 pte_lo = PTE_M;
2046 break;
2047 }
2048 }
2049 #ifdef MULTIPROCESSOR
2050 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2051 pte_lo = PTE_M;
2052 #endif
2053 }
2054
2055 if (prot & VM_PROT_WRITE)
2056 pte_lo |= PTE_BW;
2057 else
2058 pte_lo |= PTE_BR;
2059
2060 /*
2061 * We don't care about REF/CHG on PVOs on the unmanaged list.
2062 */
2063 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2064 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2065
2066 if (error != 0)
2067 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2068 va, pa, error);
2069
2070 PMAP_UNLOCK();
2071 }
2072
2073 void
2074 pmap_kremove(vaddr_t va, vsize_t len)
2075 {
2076 if (va < VM_MIN_KERNEL_ADDRESS)
2077 panic("pmap_kremove: attempt to remove "
2078 "non-kernel address %#" _PRIxva "!", va);
2079
2080 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2081 pmap_remove(pmap_kernel(), va, va + len);
2082 }
2083
2084 /*
2085 * Remove the given range of mapping entries.
2086 */
2087 void
2088 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2089 {
2090 struct pvo_head pvol;
2091 struct pvo_entry *pvo;
2092 register_t msr;
2093 int pteidx;
2094
2095 PMAP_LOCK();
2096 LIST_INIT(&pvol);
2097 msr = pmap_interrupts_off();
2098 for (; va < endva; va += PAGE_SIZE) {
2099 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2100 if (pvo != NULL) {
2101 pmap_pvo_remove(pvo, pteidx, &pvol);
2102 }
2103 }
2104 pmap_interrupts_restore(msr);
2105 pmap_pvo_free_list(&pvol);
2106 PMAP_UNLOCK();
2107 }
2108
2109 /*
2110 * Get the physical page address for the given pmap/virtual address.
2111 */
2112 bool
2113 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2114 {
2115 struct pvo_entry *pvo;
2116 register_t msr;
2117
2118 PMAP_LOCK();
2119
2120 /*
2121 * If this is a kernel pmap lookup, also check the battable
2122 * and if we get a hit, translate the VA to a PA using the
2123 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2124 * that will wrap back to 0.
2125 */
2126 if (pm == pmap_kernel() &&
2127 (va < VM_MIN_KERNEL_ADDRESS ||
2128 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2129 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2130 #if defined (PMAP_OEA)
2131 #ifdef PPC_OEA601
2132 if ((MFPVR() >> 16) == MPC601) {
2133 register_t batu = battable[va >> 23].batu;
2134 register_t batl = battable[va >> 23].batl;
2135 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2136 if (BAT601_VALID_P(batl) &&
2137 BAT601_VA_MATCH_P(batu, batl, va)) {
2138 register_t mask =
2139 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2140 if (pap)
2141 *pap = (batl & mask) | (va & ~mask);
2142 PMAP_UNLOCK();
2143 return true;
2144 } else if (SR601_VALID_P(sr) &&
2145 SR601_PA_MATCH_P(sr, va)) {
2146 if (pap)
2147 *pap = va;
2148 PMAP_UNLOCK();
2149 return true;
2150 }
2151 } else
2152 #endif /* PPC_OEA601 */
2153 {
2154 register_t batu = battable[BAT_VA2IDX(va)].batu;
2155 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2156 register_t batl = battable[BAT_VA2IDX(va)].batl;
2157 register_t mask =
2158 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2159 if (pap)
2160 *pap = (batl & mask) | (va & ~mask);
2161 PMAP_UNLOCK();
2162 return true;
2163 }
2164 }
2165 return false;
2166 #elif defined (PMAP_OEA64_BRIDGE)
2167 if (va >= SEGMENT_LENGTH)
2168 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2169 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2170 else {
2171 if (pap)
2172 *pap = va;
2173 PMAP_UNLOCK();
2174 return true;
2175 }
2176 #elif defined (PMAP_OEA64)
2177 #error PPC_OEA64 not supported
2178 #endif /* PPC_OEA */
2179 }
2180
2181 msr = pmap_interrupts_off();
2182 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2183 if (pvo != NULL) {
2184 PMAP_PVO_CHECK(pvo); /* sanity check */
2185 if (pap)
2186 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2187 | (va & ADDR_POFF);
2188 }
2189 pmap_interrupts_restore(msr);
2190 PMAP_UNLOCK();
2191 return pvo != NULL;
2192 }
2193
2194 /*
2195 * Lower the protection on the specified range of this pmap.
2196 */
2197 void
2198 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2199 {
2200 struct pvo_entry *pvo;
2201 volatile struct pte *pt;
2202 register_t msr;
2203 int pteidx;
2204
2205 /*
2206 * Since this routine only downgrades protection, we should
2207 * always be called with at least one bit not set.
2208 */
2209 KASSERT(prot != VM_PROT_ALL);
2210
2211 /*
2212 * If there is no protection, this is equivalent to
2213 * remove the pmap from the pmap.
2214 */
2215 if ((prot & VM_PROT_READ) == 0) {
2216 pmap_remove(pm, va, endva);
2217 return;
2218 }
2219
2220 PMAP_LOCK();
2221
2222 msr = pmap_interrupts_off();
2223 for (; va < endva; va += PAGE_SIZE) {
2224 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2225 if (pvo == NULL)
2226 continue;
2227 PMAP_PVO_CHECK(pvo); /* sanity check */
2228
2229 /*
2230 * Revoke executable if asked to do so.
2231 */
2232 if ((prot & VM_PROT_EXECUTE) == 0)
2233 pvo_clear_exec(pvo);
2234
2235 #if 0
2236 /*
2237 * If the page is already read-only, no change
2238 * needs to be made.
2239 */
2240 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2241 continue;
2242 #endif
2243 /*
2244 * Grab the PTE pointer before we diddle with
2245 * the cached PTE copy.
2246 */
2247 pt = pmap_pvo_to_pte(pvo, pteidx);
2248 /*
2249 * Change the protection of the page.
2250 */
2251 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2252 pvo->pvo_pte.pte_lo |= PTE_BR;
2253
2254 /*
2255 * If the PVO is in the page table, update
2256 * that pte at well.
2257 */
2258 if (pt != NULL) {
2259 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2260 PVO_WHERE(pvo, PMAP_PROTECT);
2261 PMAPCOUNT(ptes_changed);
2262 }
2263
2264 PMAP_PVO_CHECK(pvo); /* sanity check */
2265 }
2266 pmap_interrupts_restore(msr);
2267 PMAP_UNLOCK();
2268 }
2269
2270 void
2271 pmap_unwire(pmap_t pm, vaddr_t va)
2272 {
2273 struct pvo_entry *pvo;
2274 register_t msr;
2275
2276 PMAP_LOCK();
2277 msr = pmap_interrupts_off();
2278 pvo = pmap_pvo_find_va(pm, va, NULL);
2279 if (pvo != NULL) {
2280 if (PVO_WIRED_P(pvo)) {
2281 pvo->pvo_vaddr &= ~PVO_WIRED;
2282 pm->pm_stats.wired_count--;
2283 }
2284 PMAP_PVO_CHECK(pvo); /* sanity check */
2285 }
2286 pmap_interrupts_restore(msr);
2287 PMAP_UNLOCK();
2288 }
2289
2290 /*
2291 * Lower the protection on the specified physical page.
2292 */
2293 void
2294 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2295 {
2296 struct pvo_head *pvo_head, pvol;
2297 struct pvo_entry *pvo, *next_pvo;
2298 volatile struct pte *pt;
2299 register_t msr;
2300
2301 PMAP_LOCK();
2302
2303 KASSERT(prot != VM_PROT_ALL);
2304 LIST_INIT(&pvol);
2305 msr = pmap_interrupts_off();
2306
2307 /*
2308 * When UVM reuses a page, it does a pmap_page_protect with
2309 * VM_PROT_NONE. At that point, we can clear the exec flag
2310 * since we know the page will have different contents.
2311 */
2312 if ((prot & VM_PROT_READ) == 0) {
2313 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2314 VM_PAGE_TO_PHYS(pg));
2315 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2316 PMAPCOUNT(exec_uncached_page_protect);
2317 pmap_attr_clear(pg, PTE_EXEC);
2318 }
2319 }
2320
2321 pvo_head = vm_page_to_pvoh(pg);
2322 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2323 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2324 PMAP_PVO_CHECK(pvo); /* sanity check */
2325
2326 /*
2327 * Downgrading to no mapping at all, we just remove the entry.
2328 */
2329 if ((prot & VM_PROT_READ) == 0) {
2330 pmap_pvo_remove(pvo, -1, &pvol);
2331 continue;
2332 }
2333
2334 /*
2335 * If EXEC permission is being revoked, just clear the
2336 * flag in the PVO.
2337 */
2338 if ((prot & VM_PROT_EXECUTE) == 0)
2339 pvo_clear_exec(pvo);
2340
2341 /*
2342 * If this entry is already RO, don't diddle with the
2343 * page table.
2344 */
2345 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2346 PMAP_PVO_CHECK(pvo);
2347 continue;
2348 }
2349
2350 /*
2351 * Grab the PTE before the we diddle the bits so
2352 * pvo_to_pte can verify the pte contents are as
2353 * expected.
2354 */
2355 pt = pmap_pvo_to_pte(pvo, -1);
2356 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2357 pvo->pvo_pte.pte_lo |= PTE_BR;
2358 if (pt != NULL) {
2359 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2360 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2361 PMAPCOUNT(ptes_changed);
2362 }
2363 PMAP_PVO_CHECK(pvo); /* sanity check */
2364 }
2365 pmap_interrupts_restore(msr);
2366 pmap_pvo_free_list(&pvol);
2367
2368 PMAP_UNLOCK();
2369 }
2370
2371 /*
2372 * Activate the address space for the specified process. If the process
2373 * is the current process, load the new MMU context.
2374 */
2375 void
2376 pmap_activate(struct lwp *l)
2377 {
2378 struct pcb *pcb = lwp_getpcb(l);
2379 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2380
2381 DPRINTFN(ACTIVATE,
2382 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2383
2384 /*
2385 * XXX Normally performed in cpu_lwp_fork().
2386 */
2387 pcb->pcb_pm = pmap;
2388
2389 /*
2390 * In theory, the SR registers need only be valid on return
2391 * to user space wait to do them there.
2392 */
2393 if (l == curlwp) {
2394 /* Store pointer to new current pmap. */
2395 curpm = pmap;
2396 }
2397 }
2398
2399 /*
2400 * Deactivate the specified process's address space.
2401 */
2402 void
2403 pmap_deactivate(struct lwp *l)
2404 {
2405 }
2406
2407 bool
2408 pmap_query_bit(struct vm_page *pg, int ptebit)
2409 {
2410 struct pvo_entry *pvo;
2411 volatile struct pte *pt;
2412 register_t msr;
2413
2414 PMAP_LOCK();
2415
2416 if (pmap_attr_fetch(pg) & ptebit) {
2417 PMAP_UNLOCK();
2418 return true;
2419 }
2420
2421 msr = pmap_interrupts_off();
2422 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2423 PMAP_PVO_CHECK(pvo); /* sanity check */
2424 /*
2425 * See if we saved the bit off. If so cache, it and return
2426 * success.
2427 */
2428 if (pvo->pvo_pte.pte_lo & ptebit) {
2429 pmap_attr_save(pg, ptebit);
2430 PMAP_PVO_CHECK(pvo); /* sanity check */
2431 pmap_interrupts_restore(msr);
2432 PMAP_UNLOCK();
2433 return true;
2434 }
2435 }
2436 /*
2437 * No luck, now go thru the hard part of looking at the ptes
2438 * themselves. Sync so any pending REF/CHG bits are flushed
2439 * to the PTEs.
2440 */
2441 SYNC();
2442 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2443 PMAP_PVO_CHECK(pvo); /* sanity check */
2444 /*
2445 * See if this pvo have a valid PTE. If so, fetch the
2446 * REF/CHG bits from the valid PTE. If the appropriate
2447 * ptebit is set, cache, it and return success.
2448 */
2449 pt = pmap_pvo_to_pte(pvo, -1);
2450 if (pt != NULL) {
2451 pmap_pte_synch(pt, &pvo->pvo_pte);
2452 if (pvo->pvo_pte.pte_lo & ptebit) {
2453 pmap_attr_save(pg, ptebit);
2454 PMAP_PVO_CHECK(pvo); /* sanity check */
2455 pmap_interrupts_restore(msr);
2456 PMAP_UNLOCK();
2457 return true;
2458 }
2459 }
2460 }
2461 pmap_interrupts_restore(msr);
2462 PMAP_UNLOCK();
2463 return false;
2464 }
2465
2466 bool
2467 pmap_clear_bit(struct vm_page *pg, int ptebit)
2468 {
2469 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2470 struct pvo_entry *pvo;
2471 volatile struct pte *pt;
2472 register_t msr;
2473 int rv = 0;
2474
2475 PMAP_LOCK();
2476 msr = pmap_interrupts_off();
2477
2478 /*
2479 * Fetch the cache value
2480 */
2481 rv |= pmap_attr_fetch(pg);
2482
2483 /*
2484 * Clear the cached value.
2485 */
2486 pmap_attr_clear(pg, ptebit);
2487
2488 /*
2489 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2490 * can reset the right ones). Note that since the pvo entries and
2491 * list heads are accessed via BAT0 and are never placed in the
2492 * page table, we don't have to worry about further accesses setting
2493 * the REF/CHG bits.
2494 */
2495 SYNC();
2496
2497 /*
2498 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2499 * valid PTE. If so, clear the ptebit from the valid PTE.
2500 */
2501 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2502 PMAP_PVO_CHECK(pvo); /* sanity check */
2503 pt = pmap_pvo_to_pte(pvo, -1);
2504 if (pt != NULL) {
2505 /*
2506 * Only sync the PTE if the bit we are looking
2507 * for is not already set.
2508 */
2509 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2510 pmap_pte_synch(pt, &pvo->pvo_pte);
2511 /*
2512 * If the bit we are looking for was already set,
2513 * clear that bit in the pte.
2514 */
2515 if (pvo->pvo_pte.pte_lo & ptebit)
2516 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2517 }
2518 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2519 pvo->pvo_pte.pte_lo &= ~ptebit;
2520 PMAP_PVO_CHECK(pvo); /* sanity check */
2521 }
2522 pmap_interrupts_restore(msr);
2523
2524 /*
2525 * If we are clearing the modify bit and this page was marked EXEC
2526 * and the user of the page thinks the page was modified, then we
2527 * need to clean it from the icache if it's mapped or clear the EXEC
2528 * bit if it's not mapped. The page itself might not have the CHG
2529 * bit set if the modification was done via DMA to the page.
2530 */
2531 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2532 if (LIST_EMPTY(pvoh)) {
2533 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2534 VM_PAGE_TO_PHYS(pg));
2535 pmap_attr_clear(pg, PTE_EXEC);
2536 PMAPCOUNT(exec_uncached_clear_modify);
2537 } else {
2538 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2539 VM_PAGE_TO_PHYS(pg));
2540 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2541 PMAPCOUNT(exec_synced_clear_modify);
2542 }
2543 }
2544 PMAP_UNLOCK();
2545 return (rv & ptebit) != 0;
2546 }
2547
2548 void
2549 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2550 {
2551 struct pvo_entry *pvo;
2552 size_t offset = va & ADDR_POFF;
2553 int s;
2554
2555 PMAP_LOCK();
2556 s = splvm();
2557 while (len > 0) {
2558 size_t seglen = PAGE_SIZE - offset;
2559 if (seglen > len)
2560 seglen = len;
2561 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2562 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2563 pmap_syncicache(
2564 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2565 PMAP_PVO_CHECK(pvo);
2566 }
2567 va += seglen;
2568 len -= seglen;
2569 offset = 0;
2570 }
2571 splx(s);
2572 PMAP_UNLOCK();
2573 }
2574
2575 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2576 void
2577 pmap_pte_print(volatile struct pte *pt)
2578 {
2579 printf("PTE %p: ", pt);
2580
2581 #if defined(PMAP_OEA)
2582 /* High word: */
2583 printf("%#" _PRIxpte ": [", pt->pte_hi);
2584 #else
2585 printf("%#" _PRIxpte ": [", pt->pte_hi);
2586 #endif /* PMAP_OEA */
2587
2588 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2589 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2590
2591 printf("%#" _PRIxpte " %#" _PRIxpte "",
2592 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2593 pt->pte_hi & PTE_API);
2594 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2595 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2596 #else
2597 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2598 #endif /* PMAP_OEA */
2599
2600 /* Low word: */
2601 #if defined (PMAP_OEA)
2602 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2603 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2604 #else
2605 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2606 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2607 #endif
2608 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2609 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2610 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2611 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2612 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2613 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2614 switch (pt->pte_lo & PTE_PP) {
2615 case PTE_BR: printf("br]\n"); break;
2616 case PTE_BW: printf("bw]\n"); break;
2617 case PTE_SO: printf("so]\n"); break;
2618 case PTE_SW: printf("sw]\n"); break;
2619 }
2620 }
2621 #endif
2622
2623 #if defined(DDB)
2624 void
2625 pmap_pteg_check(void)
2626 {
2627 volatile struct pte *pt;
2628 int i;
2629 int ptegidx;
2630 u_int p_valid = 0;
2631 u_int s_valid = 0;
2632 u_int invalid = 0;
2633
2634 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2635 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2636 if (pt->pte_hi & PTE_VALID) {
2637 if (pt->pte_hi & PTE_HID)
2638 s_valid++;
2639 else
2640 {
2641 p_valid++;
2642 }
2643 } else
2644 invalid++;
2645 }
2646 }
2647 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2648 p_valid, p_valid, s_valid, s_valid,
2649 invalid, invalid);
2650 }
2651
2652 void
2653 pmap_print_mmuregs(void)
2654 {
2655 int i;
2656 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2657 u_int cpuvers;
2658 #endif
2659 #ifndef PMAP_OEA64
2660 vaddr_t addr;
2661 register_t soft_sr[16];
2662 #endif
2663 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2664 struct bat soft_ibat[4];
2665 struct bat soft_dbat[4];
2666 #endif
2667 paddr_t sdr1;
2668
2669 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2670 cpuvers = MFPVR() >> 16;
2671 #endif
2672 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2673 #ifndef PMAP_OEA64
2674 addr = 0;
2675 for (i = 0; i < 16; i++) {
2676 soft_sr[i] = MFSRIN(addr);
2677 addr += (1 << ADDR_SR_SHFT);
2678 }
2679 #endif
2680
2681 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2682 /* read iBAT (601: uBAT) registers */
2683 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2684 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2685 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2686 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2687 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2688 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2689 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2690 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2691
2692
2693 if (cpuvers != MPC601) {
2694 /* read dBAT registers */
2695 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2696 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2697 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2698 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2699 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2700 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2701 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2702 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2703 }
2704 #endif
2705
2706 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2707 #ifndef PMAP_OEA64
2708 printf("SR[]:\t");
2709 for (i = 0; i < 4; i++)
2710 printf("0x%08lx, ", soft_sr[i]);
2711 printf("\n\t");
2712 for ( ; i < 8; i++)
2713 printf("0x%08lx, ", soft_sr[i]);
2714 printf("\n\t");
2715 for ( ; i < 12; i++)
2716 printf("0x%08lx, ", soft_sr[i]);
2717 printf("\n\t");
2718 for ( ; i < 16; i++)
2719 printf("0x%08lx, ", soft_sr[i]);
2720 printf("\n");
2721 #endif
2722
2723 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2724 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2725 for (i = 0; i < 4; i++) {
2726 printf("0x%08lx 0x%08lx, ",
2727 soft_ibat[i].batu, soft_ibat[i].batl);
2728 if (i == 1)
2729 printf("\n\t");
2730 }
2731 if (cpuvers != MPC601) {
2732 printf("\ndBAT[]:\t");
2733 for (i = 0; i < 4; i++) {
2734 printf("0x%08lx 0x%08lx, ",
2735 soft_dbat[i].batu, soft_dbat[i].batl);
2736 if (i == 1)
2737 printf("\n\t");
2738 }
2739 }
2740 printf("\n");
2741 #endif /* PMAP_OEA... */
2742 }
2743
2744 void
2745 pmap_print_pte(pmap_t pm, vaddr_t va)
2746 {
2747 struct pvo_entry *pvo;
2748 volatile struct pte *pt;
2749 int pteidx;
2750
2751 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2752 if (pvo != NULL) {
2753 pt = pmap_pvo_to_pte(pvo, pteidx);
2754 if (pt != NULL) {
2755 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2756 va, pt,
2757 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2758 pt->pte_hi, pt->pte_lo);
2759 } else {
2760 printf("No valid PTE found\n");
2761 }
2762 } else {
2763 printf("Address not in pmap\n");
2764 }
2765 }
2766
2767 void
2768 pmap_pteg_dist(void)
2769 {
2770 struct pvo_entry *pvo;
2771 int ptegidx;
2772 int depth;
2773 int max_depth = 0;
2774 unsigned int depths[64];
2775
2776 memset(depths, 0, sizeof(depths));
2777 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2778 depth = 0;
2779 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2780 depth++;
2781 }
2782 if (depth > max_depth)
2783 max_depth = depth;
2784 if (depth > 63)
2785 depth = 63;
2786 depths[depth]++;
2787 }
2788
2789 for (depth = 0; depth < 64; depth++) {
2790 printf(" [%2d]: %8u", depth, depths[depth]);
2791 if ((depth & 3) == 3)
2792 printf("\n");
2793 if (depth == max_depth)
2794 break;
2795 }
2796 if ((depth & 3) != 3)
2797 printf("\n");
2798 printf("Max depth found was %d\n", max_depth);
2799 }
2800 #endif /* DEBUG */
2801
2802 #if defined(PMAPCHECK) || defined(DEBUG)
2803 void
2804 pmap_pvo_verify(void)
2805 {
2806 int ptegidx;
2807 int s;
2808
2809 s = splvm();
2810 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2811 struct pvo_entry *pvo;
2812 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2813 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2814 panic("pmap_pvo_verify: invalid pvo %p "
2815 "on list %#x", pvo, ptegidx);
2816 pmap_pvo_check(pvo);
2817 }
2818 }
2819 splx(s);
2820 }
2821 #endif /* PMAPCHECK */
2822
2823
2824 void *
2825 pmap_pool_ualloc(struct pool *pp, int flags)
2826 {
2827 struct pvo_page *pvop;
2828
2829 if (uvm.page_init_done != true) {
2830 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2831 }
2832
2833 PMAP_LOCK();
2834 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2835 if (pvop != NULL) {
2836 pmap_upvop_free--;
2837 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2838 PMAP_UNLOCK();
2839 return pvop;
2840 }
2841 PMAP_UNLOCK();
2842 return pmap_pool_malloc(pp, flags);
2843 }
2844
2845 void *
2846 pmap_pool_malloc(struct pool *pp, int flags)
2847 {
2848 struct pvo_page *pvop;
2849 struct vm_page *pg;
2850
2851 PMAP_LOCK();
2852 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2853 if (pvop != NULL) {
2854 pmap_mpvop_free--;
2855 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2856 PMAP_UNLOCK();
2857 return pvop;
2858 }
2859 PMAP_UNLOCK();
2860 again:
2861 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2862 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2863 if (__predict_false(pg == NULL)) {
2864 if (flags & PR_WAITOK) {
2865 uvm_wait("plpg");
2866 goto again;
2867 } else {
2868 return (0);
2869 }
2870 }
2871 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2872 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2873 }
2874
2875 void
2876 pmap_pool_ufree(struct pool *pp, void *va)
2877 {
2878 struct pvo_page *pvop;
2879 #if 0
2880 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2881 pmap_pool_mfree(va, size, tag);
2882 return;
2883 }
2884 #endif
2885 PMAP_LOCK();
2886 pvop = va;
2887 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2888 pmap_upvop_free++;
2889 if (pmap_upvop_free > pmap_upvop_maxfree)
2890 pmap_upvop_maxfree = pmap_upvop_free;
2891 PMAP_UNLOCK();
2892 }
2893
2894 void
2895 pmap_pool_mfree(struct pool *pp, void *va)
2896 {
2897 struct pvo_page *pvop;
2898
2899 PMAP_LOCK();
2900 pvop = va;
2901 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2902 pmap_mpvop_free++;
2903 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2904 pmap_mpvop_maxfree = pmap_mpvop_free;
2905 PMAP_UNLOCK();
2906 #if 0
2907 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2908 #endif
2909 }
2910
2911 /*
2912 * This routine in bootstraping to steal to-be-managed memory (which will
2913 * then be unmanaged). We use it to grab from the first 256MB for our
2914 * pmap needs and above 256MB for other stuff.
2915 */
2916 vaddr_t
2917 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2918 {
2919 vsize_t size;
2920 vaddr_t va;
2921 paddr_t start, end, pa = 0;
2922 int npgs, freelist;
2923 uvm_physseg_t bank;
2924
2925 if (uvm.page_init_done == true)
2926 panic("pmap_steal_memory: called _after_ bootstrap");
2927
2928 *vstartp = VM_MIN_KERNEL_ADDRESS;
2929 *vendp = VM_MAX_KERNEL_ADDRESS;
2930
2931 size = round_page(vsize);
2932 npgs = atop(size);
2933
2934 /*
2935 * PA 0 will never be among those given to UVM so we can use it
2936 * to indicate we couldn't steal any memory.
2937 */
2938
2939 for (bank = uvm_physseg_get_first();
2940 uvm_physseg_valid_p(bank);
2941 bank = uvm_physseg_get_next(bank)) {
2942
2943 freelist = uvm_physseg_get_free_list(bank);
2944 start = uvm_physseg_get_start(bank);
2945 end = uvm_physseg_get_end(bank);
2946
2947 if (freelist == VM_FREELIST_FIRST256 &&
2948 (end - start) >= npgs) {
2949 pa = ptoa(start);
2950 break;
2951 }
2952 }
2953
2954 if (pa == 0)
2955 panic("pmap_steal_memory: no approriate memory to steal!");
2956
2957 uvm_physseg_unplug(start, npgs);
2958
2959 va = (vaddr_t) pa;
2960 memset((void *) va, 0, size);
2961 pmap_pages_stolen += npgs;
2962 #ifdef DEBUG
2963 if (pmapdebug && npgs > 1) {
2964 u_int cnt = 0;
2965 for (bank = uvm_physseg_get_first();
2966 uvm_physseg_valid_p(bank);
2967 bank = uvm_physseg_get_next(bank)) {
2968 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2969 }
2970 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2971 npgs, pmap_pages_stolen, cnt);
2972 }
2973 #endif
2974
2975 return va;
2976 }
2977
2978 /*
2979 * Find a chuck of memory with right size and alignment.
2980 */
2981 paddr_t
2982 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2983 {
2984 struct mem_region *mp;
2985 paddr_t s, e;
2986 int i, j;
2987
2988 size = round_page(size);
2989
2990 DPRINTFN(BOOT,
2991 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2992 size, alignment, at_end);
2993
2994 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2995 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2996 alignment);
2997
2998 if (at_end) {
2999 if (alignment != PAGE_SIZE)
3000 panic("pmap_boot_find_memory: invalid ending "
3001 "alignment %#" _PRIxpa, alignment);
3002
3003 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3004 s = mp->start + mp->size - size;
3005 if (s >= mp->start && mp->size >= size) {
3006 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3007 DPRINTFN(BOOT,
3008 "pmap_boot_find_memory: b-avail[%d] start "
3009 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3010 mp->start, mp->size);
3011 mp->size -= size;
3012 DPRINTFN(BOOT,
3013 "pmap_boot_find_memory: a-avail[%d] start "
3014 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3015 mp->start, mp->size);
3016 return s;
3017 }
3018 }
3019 panic("pmap_boot_find_memory: no available memory");
3020 }
3021
3022 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3023 s = (mp->start + alignment - 1) & ~(alignment-1);
3024 e = s + size;
3025
3026 /*
3027 * Is the calculated region entirely within the region?
3028 */
3029 if (s < mp->start || e > mp->start + mp->size)
3030 continue;
3031
3032 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3033 if (s == mp->start) {
3034 /*
3035 * If the block starts at the beginning of region,
3036 * adjust the size & start. (the region may now be
3037 * zero in length)
3038 */
3039 DPRINTFN(BOOT,
3040 "pmap_boot_find_memory: b-avail[%d] start "
3041 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3042 mp->start += size;
3043 mp->size -= size;
3044 DPRINTFN(BOOT,
3045 "pmap_boot_find_memory: a-avail[%d] start "
3046 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3047 } else if (e == mp->start + mp->size) {
3048 /*
3049 * If the block starts at the beginning of region,
3050 * adjust only the size.
3051 */
3052 DPRINTFN(BOOT,
3053 "pmap_boot_find_memory: b-avail[%d] start "
3054 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3055 mp->size -= size;
3056 DPRINTFN(BOOT,
3057 "pmap_boot_find_memory: a-avail[%d] start "
3058 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3059 } else {
3060 /*
3061 * Block is in the middle of the region, so we
3062 * have to split it in two.
3063 */
3064 for (j = avail_cnt; j > i + 1; j--) {
3065 avail[j] = avail[j-1];
3066 }
3067 DPRINTFN(BOOT,
3068 "pmap_boot_find_memory: b-avail[%d] start "
3069 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3070 mp[1].start = e;
3071 mp[1].size = mp[0].start + mp[0].size - e;
3072 mp[0].size = s - mp[0].start;
3073 avail_cnt++;
3074 for (; i < avail_cnt; i++) {
3075 DPRINTFN(BOOT,
3076 "pmap_boot_find_memory: a-avail[%d] "
3077 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3078 avail[i].start, avail[i].size);
3079 }
3080 }
3081 KASSERT(s == (uintptr_t) s);
3082 return s;
3083 }
3084 panic("pmap_boot_find_memory: not enough memory for "
3085 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3086 }
3087
3088 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3089 #if defined (PMAP_OEA64_BRIDGE)
3090 int
3091 pmap_setup_segment0_map(int use_large_pages, ...)
3092 {
3093 vaddr_t va, va_end;
3094
3095 register_t pte_lo = 0x0;
3096 int ptegidx = 0;
3097 struct pte pte;
3098 va_list ap;
3099
3100 /* Coherent + Supervisor RW, no user access */
3101 pte_lo = PTE_M;
3102
3103 /* XXXSL
3104 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3105 * these have to take priority.
3106 */
3107 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3108 ptegidx = va_to_pteg(pmap_kernel(), va);
3109 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3110 (void)pmap_pte_insert(ptegidx, &pte);
3111 }
3112
3113 va_start(ap, use_large_pages);
3114 while (1) {
3115 paddr_t pa;
3116 size_t size;
3117
3118 va = va_arg(ap, vaddr_t);
3119
3120 if (va == 0)
3121 break;
3122
3123 pa = va_arg(ap, paddr_t);
3124 size = va_arg(ap, size_t);
3125
3126 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3127 #if 0
3128 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3129 #endif
3130 ptegidx = va_to_pteg(pmap_kernel(), va);
3131 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3132 (void)pmap_pte_insert(ptegidx, &pte);
3133 }
3134 }
3135 va_end(ap);
3136
3137 TLBSYNC();
3138 SYNC();
3139 return (0);
3140 }
3141 #endif /* PMAP_OEA64_BRIDGE */
3142
3143 /*
3144 * This is not part of the defined PMAP interface and is specific to the
3145 * PowerPC architecture. This is called during initppc, before the system
3146 * is really initialized.
3147 */
3148 void
3149 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3150 {
3151 struct mem_region *mp, tmp;
3152 paddr_t s, e;
3153 psize_t size;
3154 int i, j;
3155
3156 /*
3157 * Get memory.
3158 */
3159 mem_regions(&mem, &avail);
3160 #if defined(DEBUG)
3161 if (pmapdebug & PMAPDEBUG_BOOT) {
3162 printf("pmap_bootstrap: memory configuration:\n");
3163 for (mp = mem; mp->size; mp++) {
3164 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3165 mp->start, mp->size);
3166 }
3167 for (mp = avail; mp->size; mp++) {
3168 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3169 mp->start, mp->size);
3170 }
3171 }
3172 #endif
3173
3174 /*
3175 * Find out how much physical memory we have and in how many chunks.
3176 */
3177 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3178 if (mp->start >= pmap_memlimit)
3179 continue;
3180 if (mp->start + mp->size > pmap_memlimit) {
3181 size = pmap_memlimit - mp->start;
3182 physmem += btoc(size);
3183 } else {
3184 physmem += btoc(mp->size);
3185 }
3186 mem_cnt++;
3187 }
3188
3189 /*
3190 * Count the number of available entries.
3191 */
3192 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3193 avail_cnt++;
3194
3195 /*
3196 * Page align all regions.
3197 */
3198 kernelstart = trunc_page(kernelstart);
3199 kernelend = round_page(kernelend);
3200 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3201 s = round_page(mp->start);
3202 mp->size -= (s - mp->start);
3203 mp->size = trunc_page(mp->size);
3204 mp->start = s;
3205 e = mp->start + mp->size;
3206
3207 DPRINTFN(BOOT,
3208 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3209 i, mp->start, mp->size);
3210
3211 /*
3212 * Don't allow the end to run beyond our artificial limit
3213 */
3214 if (e > pmap_memlimit)
3215 e = pmap_memlimit;
3216
3217 /*
3218 * Is this region empty or strange? skip it.
3219 */
3220 if (e <= s) {
3221 mp->start = 0;
3222 mp->size = 0;
3223 continue;
3224 }
3225
3226 /*
3227 * Does this overlap the beginning of kernel?
3228 * Does extend past the end of the kernel?
3229 */
3230 else if (s < kernelstart && e > kernelstart) {
3231 if (e > kernelend) {
3232 avail[avail_cnt].start = kernelend;
3233 avail[avail_cnt].size = e - kernelend;
3234 avail_cnt++;
3235 }
3236 mp->size = kernelstart - s;
3237 }
3238 /*
3239 * Check whether this region overlaps the end of the kernel.
3240 */
3241 else if (s < kernelend && e > kernelend) {
3242 mp->start = kernelend;
3243 mp->size = e - kernelend;
3244 }
3245 /*
3246 * Look whether this regions is completely inside the kernel.
3247 * Nuke it if it does.
3248 */
3249 else if (s >= kernelstart && e <= kernelend) {
3250 mp->start = 0;
3251 mp->size = 0;
3252 }
3253 /*
3254 * If the user imposed a memory limit, enforce it.
3255 */
3256 else if (s >= pmap_memlimit) {
3257 mp->start = -PAGE_SIZE; /* let's know why */
3258 mp->size = 0;
3259 }
3260 else {
3261 mp->start = s;
3262 mp->size = e - s;
3263 }
3264 DPRINTFN(BOOT,
3265 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3266 i, mp->start, mp->size);
3267 }
3268
3269 /*
3270 * Move (and uncount) all the null return to the end.
3271 */
3272 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3273 if (mp->size == 0) {
3274 tmp = avail[i];
3275 avail[i] = avail[--avail_cnt];
3276 avail[avail_cnt] = avail[i];
3277 }
3278 }
3279
3280 /*
3281 * (Bubble)sort them into ascending order.
3282 */
3283 for (i = 0; i < avail_cnt; i++) {
3284 for (j = i + 1; j < avail_cnt; j++) {
3285 if (avail[i].start > avail[j].start) {
3286 tmp = avail[i];
3287 avail[i] = avail[j];
3288 avail[j] = tmp;
3289 }
3290 }
3291 }
3292
3293 /*
3294 * Make sure they don't overlap.
3295 */
3296 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3297 if (mp[0].start + mp[0].size > mp[1].start) {
3298 mp[0].size = mp[1].start - mp[0].start;
3299 }
3300 DPRINTFN(BOOT,
3301 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3302 i, mp->start, mp->size);
3303 }
3304 DPRINTFN(BOOT,
3305 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3306 i, mp->start, mp->size);
3307
3308 #ifdef PTEGCOUNT
3309 pmap_pteg_cnt = PTEGCOUNT;
3310 #else /* PTEGCOUNT */
3311
3312 pmap_pteg_cnt = 0x1000;
3313
3314 while (pmap_pteg_cnt < physmem)
3315 pmap_pteg_cnt <<= 1;
3316
3317 pmap_pteg_cnt >>= 1;
3318 #endif /* PTEGCOUNT */
3319
3320 #ifdef DEBUG
3321 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3322 #endif
3323
3324 /*
3325 * Find suitably aligned memory for PTEG hash table.
3326 */
3327 size = pmap_pteg_cnt * sizeof(struct pteg);
3328 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3329
3330 #ifdef DEBUG
3331 DPRINTFN(BOOT,
3332 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3333 #endif
3334
3335
3336 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3337 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3338 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3339 pmap_pteg_table, size);
3340 #endif
3341
3342 memset(__UNVOLATILE(pmap_pteg_table), 0,
3343 pmap_pteg_cnt * sizeof(struct pteg));
3344 pmap_pteg_mask = pmap_pteg_cnt - 1;
3345
3346 /*
3347 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3348 * with pages. So we just steal them before giving them to UVM.
3349 */
3350 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3351 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3352 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3353 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3354 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3355 pmap_pvo_table, size);
3356 #endif
3357
3358 for (i = 0; i < pmap_pteg_cnt; i++)
3359 TAILQ_INIT(&pmap_pvo_table[i]);
3360
3361 #ifndef MSGBUFADDR
3362 /*
3363 * Allocate msgbuf in high memory.
3364 */
3365 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3366 #endif
3367
3368 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3369 paddr_t pfstart = atop(mp->start);
3370 paddr_t pfend = atop(mp->start + mp->size);
3371 if (mp->size == 0)
3372 continue;
3373 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3374 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3375 VM_FREELIST_FIRST256);
3376 } else if (mp->start >= SEGMENT_LENGTH) {
3377 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3378 VM_FREELIST_DEFAULT);
3379 } else {
3380 pfend = atop(SEGMENT_LENGTH);
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_FIRST256);
3383 pfstart = atop(SEGMENT_LENGTH);
3384 pfend = atop(mp->start + mp->size);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_DEFAULT);
3387 }
3388 }
3389
3390 /*
3391 * Make sure kernel vsid is allocated as well as VSID 0.
3392 */
3393 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3394 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3395 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3396 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3397 pmap_vsid_bitmap[0] |= 1;
3398
3399 /*
3400 * Initialize kernel pmap and hardware.
3401 */
3402
3403 /* PMAP_OEA64_BRIDGE does support these instructions */
3404 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3405 for (i = 0; i < 16; i++) {
3406 #if defined(PPC_OEA601)
3407 /* XXX wedges for segment register 0xf , so set later */
3408 if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3409 continue;
3410 #endif
3411 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3412 __asm volatile ("mtsrin %0,%1"
3413 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3414 }
3415
3416 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3417 __asm volatile ("mtsr %0,%1"
3418 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3419 #ifdef KERNEL2_SR
3420 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3421 __asm volatile ("mtsr %0,%1"
3422 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3423 #endif
3424 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3425 #if defined (PMAP_OEA)
3426 for (i = 0; i < 16; i++) {
3427 if (iosrtable[i] & SR601_T) {
3428 pmap_kernel()->pm_sr[i] = iosrtable[i];
3429 __asm volatile ("mtsrin %0,%1"
3430 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3431 }
3432 }
3433 __asm volatile ("sync; mtsdr1 %0; isync"
3434 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3435 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3436 __asm __volatile ("sync; mtsdr1 %0; isync"
3437 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3438 #endif
3439 tlbia();
3440
3441 #ifdef ALTIVEC
3442 pmap_use_altivec = cpu_altivec;
3443 #endif
3444
3445 #ifdef DEBUG
3446 if (pmapdebug & PMAPDEBUG_BOOT) {
3447 u_int cnt;
3448 uvm_physseg_t bank;
3449 char pbuf[9];
3450 for (cnt = 0, bank = uvm_physseg_get_first();
3451 uvm_physseg_valid_p(bank);
3452 bank = uvm_physseg_get_next(bank)) {
3453 cnt += uvm_physseg_get_avail_end(bank) -
3454 uvm_physseg_get_avail_start(bank);
3455 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3456 bank,
3457 ptoa(uvm_physseg_get_avail_start(bank)),
3458 ptoa(uvm_physseg_get_avail_end(bank)),
3459 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3460 }
3461 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3462 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3463 pbuf, cnt);
3464 }
3465 #endif
3466
3467 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3468 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3469 &pmap_pool_uallocator, IPL_VM);
3470
3471 pool_setlowat(&pmap_upvo_pool, 252);
3472
3473 pool_init(&pmap_pool, sizeof(struct pmap),
3474 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3475 IPL_NONE);
3476
3477 #if defined(PMAP_NEED_MAPKERNEL)
3478 {
3479 struct pmap *pm = pmap_kernel();
3480 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3481 extern int etext[], kernel_text[];
3482 vaddr_t va, va_etext = (paddr_t) etext;
3483 #endif
3484 paddr_t pa, pa_end;
3485 register_t sr;
3486 struct pte pt;
3487 unsigned int ptegidx;
3488 int bank;
3489
3490 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3491 pm->pm_sr[0] = sr;
3492
3493 for (bank = 0; bank < vm_nphysseg; bank++) {
3494 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3495 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3496 for (; pa < pa_end; pa += PAGE_SIZE) {
3497 ptegidx = va_to_pteg(pm, pa);
3498 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3499 pmap_pte_insert(ptegidx, &pt);
3500 }
3501 }
3502
3503 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3504 va = (vaddr_t) kernel_text;
3505
3506 for (pa = kernelstart; va < va_etext;
3507 pa += PAGE_SIZE, va += PAGE_SIZE) {
3508 ptegidx = va_to_pteg(pm, va);
3509 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3510 pmap_pte_insert(ptegidx, &pt);
3511 }
3512
3513 for (; pa < kernelend;
3514 pa += PAGE_SIZE, va += PAGE_SIZE) {
3515 ptegidx = va_to_pteg(pm, va);
3516 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3517 pmap_pte_insert(ptegidx, &pt);
3518 }
3519
3520 for (va = 0, pa = 0; va < kernelstart;
3521 pa += PAGE_SIZE, va += PAGE_SIZE) {
3522 ptegidx = va_to_pteg(pm, va);
3523 if (va < 0x3000)
3524 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3525 else
3526 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3527 pmap_pte_insert(ptegidx, &pt);
3528 }
3529 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3530 pa += PAGE_SIZE, va += PAGE_SIZE) {
3531 ptegidx = va_to_pteg(pm, va);
3532 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3533 pmap_pte_insert(ptegidx, &pt);
3534 }
3535 #endif
3536
3537 __asm volatile ("mtsrin %0,%1"
3538 :: "r"(sr), "r"(kernelstart));
3539 }
3540 #endif
3541
3542 #if defined(PMAPDEBUG)
3543 if ( pmapdebug )
3544 pmap_print_mmuregs();
3545 #endif
3546 }
3547