pmap.c revision 1.96 1 /* $NetBSD: pmap.c,v 1.96 2020/05/31 10:49:39 rin Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.96 2020/05/31 10:49:39 rin Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #include "opt_ppcarch.h"
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74
75 #include <sys/param.h>
76 #include <sys/proc.h>
77 #include <sys/pool.h>
78 #include <sys/queue.h>
79 #include <sys/device.h> /* for evcnt */
80 #include <sys/systm.h>
81 #include <sys/atomic.h>
82
83 #include <uvm/uvm.h>
84 #include <uvm/uvm_physseg.h>
85
86 #include <machine/powerpc.h>
87 #include <powerpc/bat.h>
88 #include <powerpc/pcb.h>
89 #include <powerpc/psl.h>
90 #include <powerpc/spr.h>
91 #include <powerpc/oea/spr.h>
92 #include <powerpc/oea/sr_601.h>
93
94 #ifdef ALTIVEC
95 extern int pmap_use_altivec;
96 #endif
97
98 #ifdef PMAP_MEMLIMIT
99 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
100 #else
101 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
102 #endif
103
104 extern struct pmap kernel_pmap_;
105 static unsigned int pmap_pages_stolen;
106 static u_long pmap_pte_valid;
107 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
108 static u_long pmap_pvo_enter_depth;
109 static u_long pmap_pvo_remove_depth;
110 #endif
111
112 #ifndef MSGBUFADDR
113 extern paddr_t msgbuf_paddr;
114 #endif
115
116 static struct mem_region *mem, *avail;
117 static u_int mem_cnt, avail_cnt;
118
119 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
120 # define PMAP_OEA 1
121 #endif
122
123 #if defined(PMAP_OEA)
124 #define _PRIxpte "lx"
125 #else
126 #define _PRIxpte PRIx64
127 #endif
128 #define _PRIxpa "lx"
129 #define _PRIxva "lx"
130 #define _PRIsr "lx"
131
132 #ifdef PMAP_NEEDS_FIXUP
133 #if defined(PMAP_OEA)
134 #define PMAPNAME(name) pmap32_##name
135 #elif defined(PMAP_OEA64)
136 #define PMAPNAME(name) pmap64_##name
137 #elif defined(PMAP_OEA64_BRIDGE)
138 #define PMAPNAME(name) pmap64bridge_##name
139 #else
140 #error unknown variant for pmap
141 #endif
142 #endif /* PMAP_NEEDS_FIXUP */
143
144 #ifdef PMAPNAME
145 #define STATIC static
146 #define pmap_pte_spill PMAPNAME(pte_spill)
147 #define pmap_real_memory PMAPNAME(real_memory)
148 #define pmap_init PMAPNAME(init)
149 #define pmap_virtual_space PMAPNAME(virtual_space)
150 #define pmap_create PMAPNAME(create)
151 #define pmap_reference PMAPNAME(reference)
152 #define pmap_destroy PMAPNAME(destroy)
153 #define pmap_copy PMAPNAME(copy)
154 #define pmap_update PMAPNAME(update)
155 #define pmap_enter PMAPNAME(enter)
156 #define pmap_remove PMAPNAME(remove)
157 #define pmap_kenter_pa PMAPNAME(kenter_pa)
158 #define pmap_kremove PMAPNAME(kremove)
159 #define pmap_extract PMAPNAME(extract)
160 #define pmap_protect PMAPNAME(protect)
161 #define pmap_unwire PMAPNAME(unwire)
162 #define pmap_page_protect PMAPNAME(page_protect)
163 #define pmap_query_bit PMAPNAME(query_bit)
164 #define pmap_clear_bit PMAPNAME(clear_bit)
165
166 #define pmap_activate PMAPNAME(activate)
167 #define pmap_deactivate PMAPNAME(deactivate)
168
169 #define pmap_pinit PMAPNAME(pinit)
170 #define pmap_procwr PMAPNAME(procwr)
171
172 #define pmap_pool PMAPNAME(pool)
173 #define pmap_upvo_pool PMAPNAME(upvo_pool)
174 #define pmap_mpvo_pool PMAPNAME(mpvo_pool)
175 #define pmap_pvo_table PMAPNAME(pvo_table)
176 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
177 #define pmap_pte_print PMAPNAME(pte_print)
178 #define pmap_pteg_check PMAPNAME(pteg_check)
179 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
180 #define pmap_print_pte PMAPNAME(print_pte)
181 #define pmap_pteg_dist PMAPNAME(pteg_dist)
182 #endif
183 #if defined(DEBUG) || defined(PMAPCHECK)
184 #define pmap_pvo_verify PMAPNAME(pvo_verify)
185 #define pmapcheck PMAPNAME(check)
186 #endif
187 #if defined(DEBUG) || defined(PMAPDEBUG)
188 #define pmapdebug PMAPNAME(debug)
189 #endif
190 #define pmap_steal_memory PMAPNAME(steal_memory)
191 #define pmap_bootstrap PMAPNAME(bootstrap)
192 #else
193 #define STATIC /* nothing */
194 #endif /* PMAPNAME */
195
196 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
197 STATIC void pmap_real_memory(paddr_t *, psize_t *);
198 STATIC void pmap_init(void);
199 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
200 STATIC pmap_t pmap_create(void);
201 STATIC void pmap_reference(pmap_t);
202 STATIC void pmap_destroy(pmap_t);
203 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
204 STATIC void pmap_update(pmap_t);
205 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
206 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
207 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_kremove(vaddr_t, vsize_t);
209 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
210
211 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
212 STATIC void pmap_unwire(pmap_t, vaddr_t);
213 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
214 STATIC bool pmap_query_bit(struct vm_page *, int);
215 STATIC bool pmap_clear_bit(struct vm_page *, int);
216
217 STATIC void pmap_activate(struct lwp *);
218 STATIC void pmap_deactivate(struct lwp *);
219
220 STATIC void pmap_pinit(pmap_t pm);
221 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
222
223 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
224 STATIC void pmap_pte_print(volatile struct pte *);
225 STATIC void pmap_pteg_check(void);
226 STATIC void pmap_print_mmuregs(void);
227 STATIC void pmap_print_pte(pmap_t, vaddr_t);
228 STATIC void pmap_pteg_dist(void);
229 #endif
230 #if defined(DEBUG) || defined(PMAPCHECK)
231 STATIC void pmap_pvo_verify(void);
232 #endif
233 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
234 STATIC void pmap_bootstrap(paddr_t, paddr_t);
235
236 #ifdef PMAPNAME
237 const struct pmap_ops PMAPNAME(ops) = {
238 .pmapop_pte_spill = pmap_pte_spill,
239 .pmapop_real_memory = pmap_real_memory,
240 .pmapop_init = pmap_init,
241 .pmapop_virtual_space = pmap_virtual_space,
242 .pmapop_create = pmap_create,
243 .pmapop_reference = pmap_reference,
244 .pmapop_destroy = pmap_destroy,
245 .pmapop_copy = pmap_copy,
246 .pmapop_update = pmap_update,
247 .pmapop_enter = pmap_enter,
248 .pmapop_remove = pmap_remove,
249 .pmapop_kenter_pa = pmap_kenter_pa,
250 .pmapop_kremove = pmap_kremove,
251 .pmapop_extract = pmap_extract,
252 .pmapop_protect = pmap_protect,
253 .pmapop_unwire = pmap_unwire,
254 .pmapop_page_protect = pmap_page_protect,
255 .pmapop_query_bit = pmap_query_bit,
256 .pmapop_clear_bit = pmap_clear_bit,
257 .pmapop_activate = pmap_activate,
258 .pmapop_deactivate = pmap_deactivate,
259 .pmapop_pinit = pmap_pinit,
260 .pmapop_procwr = pmap_procwr,
261 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
262 .pmapop_pte_print = pmap_pte_print,
263 .pmapop_pteg_check = pmap_pteg_check,
264 .pmapop_print_mmuregs = pmap_print_mmuregs,
265 .pmapop_print_pte = pmap_print_pte,
266 .pmapop_pteg_dist = pmap_pteg_dist,
267 #else
268 .pmapop_pte_print = NULL,
269 .pmapop_pteg_check = NULL,
270 .pmapop_print_mmuregs = NULL,
271 .pmapop_print_pte = NULL,
272 .pmapop_pteg_dist = NULL,
273 #endif
274 #if defined(DEBUG) || defined(PMAPCHECK)
275 .pmapop_pvo_verify = pmap_pvo_verify,
276 #else
277 .pmapop_pvo_verify = NULL,
278 #endif
279 .pmapop_steal_memory = pmap_steal_memory,
280 .pmapop_bootstrap = pmap_bootstrap,
281 };
282 #endif /* !PMAPNAME */
283
284 /*
285 * The following structure is aligned to 32 bytes
286 */
287 struct pvo_entry {
288 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
289 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
290 struct pte pvo_pte; /* Prebuilt PTE */
291 pmap_t pvo_pmap; /* ptr to owning pmap */
292 vaddr_t pvo_vaddr; /* VA of entry */
293 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
294 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
295 #define PVO_WIRED 0x0010 /* PVO entry is wired */
296 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
297 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
298 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
299 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
300 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
301 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
302 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
303 #define PVO_SPILL_SET 2 /* PVO has been spilled */
304 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
305 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
306 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
307 #define PVO_REMOVE 6 /* PVO has been removed */
308 #define PVO_WHERE_MASK 15
309 #define PVO_WHERE_SHFT 8
310 } __attribute__ ((aligned (32)));
311 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
312 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
313 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
314 #define PVO_PTEGIDX_CLR(pvo) \
315 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
316 #define PVO_PTEGIDX_SET(pvo,i) \
317 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
318 #define PVO_WHERE(pvo,w) \
319 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
320 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
321
322 TAILQ_HEAD(pvo_tqhead, pvo_entry);
323 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
324 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
325 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
326
327 struct pool pmap_pool; /* pool for pmap structures */
328 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
329 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
330
331 /*
332 * We keep a cache of unmanaged pages to be used for pvo entries for
333 * unmanaged pages.
334 */
335 struct pvo_page {
336 SIMPLEQ_ENTRY(pvo_page) pvop_link;
337 };
338 SIMPLEQ_HEAD(pvop_head, pvo_page);
339 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
340 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
341 static u_long pmap_upvop_free;
342 static u_long pmap_upvop_maxfree;
343 static u_long pmap_mpvop_free;
344 static u_long pmap_mpvop_maxfree;
345
346 static void *pmap_pool_ualloc(struct pool *, int);
347 static void *pmap_pool_malloc(struct pool *, int);
348
349 static void pmap_pool_ufree(struct pool *, void *);
350 static void pmap_pool_mfree(struct pool *, void *);
351
352 static struct pool_allocator pmap_pool_mallocator = {
353 .pa_alloc = pmap_pool_malloc,
354 .pa_free = pmap_pool_mfree,
355 .pa_pagesz = 0,
356 };
357
358 static struct pool_allocator pmap_pool_uallocator = {
359 .pa_alloc = pmap_pool_ualloc,
360 .pa_free = pmap_pool_ufree,
361 .pa_pagesz = 0,
362 };
363
364 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
365 void pmap_pte_print(volatile struct pte *);
366 void pmap_pteg_check(void);
367 void pmap_pteg_dist(void);
368 void pmap_print_pte(pmap_t, vaddr_t);
369 void pmap_print_mmuregs(void);
370 #endif
371
372 #if defined(DEBUG) || defined(PMAPCHECK)
373 #ifdef PMAPCHECK
374 int pmapcheck = 1;
375 #else
376 int pmapcheck = 0;
377 #endif
378 void pmap_pvo_verify(void);
379 static void pmap_pvo_check(const struct pvo_entry *);
380 #define PMAP_PVO_CHECK(pvo) \
381 do { \
382 if (pmapcheck) \
383 pmap_pvo_check(pvo); \
384 } while (0)
385 #else
386 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
387 #endif
388 static int pmap_pte_insert(int, struct pte *);
389 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
390 vaddr_t, paddr_t, register_t, int);
391 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
392 static void pmap_pvo_free(struct pvo_entry *);
393 static void pmap_pvo_free_list(struct pvo_head *);
394 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
395 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
396 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
397 static void pvo_set_exec(struct pvo_entry *);
398 static void pvo_clear_exec(struct pvo_entry *);
399
400 static void tlbia(void);
401
402 static void pmap_release(pmap_t);
403 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
404
405 static uint32_t pmap_pvo_reclaim_nextidx;
406 #ifdef DEBUG
407 static int pmap_pvo_reclaim_debugctr;
408 #endif
409
410 #define VSID_NBPW (sizeof(uint32_t) * 8)
411 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
412
413 static int pmap_initialized;
414
415 #if defined(DEBUG) || defined(PMAPDEBUG)
416 #define PMAPDEBUG_BOOT 0x0001
417 #define PMAPDEBUG_PTE 0x0002
418 #define PMAPDEBUG_EXEC 0x0008
419 #define PMAPDEBUG_PVOENTER 0x0010
420 #define PMAPDEBUG_PVOREMOVE 0x0020
421 #define PMAPDEBUG_ACTIVATE 0x0100
422 #define PMAPDEBUG_CREATE 0x0200
423 #define PMAPDEBUG_ENTER 0x1000
424 #define PMAPDEBUG_KENTER 0x2000
425 #define PMAPDEBUG_KREMOVE 0x4000
426 #define PMAPDEBUG_REMOVE 0x8000
427
428 unsigned int pmapdebug = 0;
429
430 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
431 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
432 #else
433 # define DPRINTF(x, ...) do { } while (0)
434 # define DPRINTFN(n, x, ...) do { } while (0)
435 #endif
436
437
438 #ifdef PMAPCOUNTERS
439 /*
440 * From pmap_subr.c
441 */
442 extern struct evcnt pmap_evcnt_mappings;
443 extern struct evcnt pmap_evcnt_unmappings;
444
445 extern struct evcnt pmap_evcnt_kernel_mappings;
446 extern struct evcnt pmap_evcnt_kernel_unmappings;
447
448 extern struct evcnt pmap_evcnt_mappings_replaced;
449
450 extern struct evcnt pmap_evcnt_exec_mappings;
451 extern struct evcnt pmap_evcnt_exec_cached;
452
453 extern struct evcnt pmap_evcnt_exec_synced;
454 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
455 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
456
457 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
458 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
459 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
460 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
461 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
462
463 extern struct evcnt pmap_evcnt_updates;
464 extern struct evcnt pmap_evcnt_collects;
465 extern struct evcnt pmap_evcnt_copies;
466
467 extern struct evcnt pmap_evcnt_ptes_spilled;
468 extern struct evcnt pmap_evcnt_ptes_unspilled;
469 extern struct evcnt pmap_evcnt_ptes_evicted;
470
471 extern struct evcnt pmap_evcnt_ptes_primary[8];
472 extern struct evcnt pmap_evcnt_ptes_secondary[8];
473 extern struct evcnt pmap_evcnt_ptes_removed;
474 extern struct evcnt pmap_evcnt_ptes_changed;
475 extern struct evcnt pmap_evcnt_pvos_reclaimed;
476 extern struct evcnt pmap_evcnt_pvos_failed;
477
478 extern struct evcnt pmap_evcnt_zeroed_pages;
479 extern struct evcnt pmap_evcnt_copied_pages;
480 extern struct evcnt pmap_evcnt_idlezeroed_pages;
481
482 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
483 #define PMAPCOUNT2(ev) ((ev).ev_count++)
484 #else
485 #define PMAPCOUNT(ev) ((void) 0)
486 #define PMAPCOUNT2(ev) ((void) 0)
487 #endif
488
489 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
490
491 /* XXXSL: this needs to be moved to assembler */
492 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
493
494 #ifdef MD_TLBSYNC
495 #define TLBSYNC() MD_TLBSYNC()
496 #else
497 #define TLBSYNC() __asm volatile("tlbsync")
498 #endif
499 #define SYNC() __asm volatile("sync")
500 #define EIEIO() __asm volatile("eieio")
501 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
502 #define MFMSR() mfmsr()
503 #define MTMSR(psl) mtmsr(psl)
504 #define MFPVR() mfpvr()
505 #define MFSRIN(va) mfsrin(va)
506 #define MFTB() mfrtcltbl()
507
508 #if defined(DDB) && !defined(PMAP_OEA64)
509 static inline register_t
510 mfsrin(vaddr_t va)
511 {
512 register_t sr;
513 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
514 return sr;
515 }
516 #endif /* DDB && !PMAP_OEA64 */
517
518 #if defined (PMAP_OEA64_BRIDGE)
519 extern void mfmsr64 (register64_t *result);
520 #endif /* PMAP_OEA64_BRIDGE */
521
522 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
523 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
524
525 static inline register_t
526 pmap_interrupts_off(void)
527 {
528 register_t msr = MFMSR();
529 if (msr & PSL_EE)
530 MTMSR(msr & ~PSL_EE);
531 return msr;
532 }
533
534 static void
535 pmap_interrupts_restore(register_t msr)
536 {
537 if (msr & PSL_EE)
538 MTMSR(msr);
539 }
540
541 static inline u_int32_t
542 mfrtcltbl(void)
543 {
544 #ifdef PPC_OEA601
545 if ((MFPVR() >> 16) == MPC601)
546 return (mfrtcl() >> 7);
547 else
548 #endif
549 return (mftbl());
550 }
551
552 /*
553 * These small routines may have to be replaced,
554 * if/when we support processors other that the 604.
555 */
556
557 void
558 tlbia(void)
559 {
560 char *i;
561
562 SYNC();
563 #if defined(PMAP_OEA)
564 /*
565 * Why not use "tlbia"? Because not all processors implement it.
566 *
567 * This needs to be a per-CPU callback to do the appropriate thing
568 * for the CPU. XXX
569 */
570 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
571 TLBIE(i);
572 EIEIO();
573 SYNC();
574 }
575 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
576 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
577 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
578 TLBIEL(i);
579 EIEIO();
580 SYNC();
581 }
582 #endif
583 TLBSYNC();
584 SYNC();
585 }
586
587 static inline register_t
588 va_to_vsid(const struct pmap *pm, vaddr_t addr)
589 {
590 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
591 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
592 #else /* PMAP_OEA64 */
593 #if 0
594 const struct ste *ste;
595 register_t hash;
596 int i;
597
598 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
599
600 /*
601 * Try the primary group first
602 */
603 ste = pm->pm_stes[hash].stes;
604 for (i = 0; i < 8; i++, ste++) {
605 if (ste->ste_hi & STE_V) &&
606 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
607 return ste;
608 }
609
610 /*
611 * Then the secondary group.
612 */
613 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
614 for (i = 0; i < 8; i++, ste++) {
615 if (ste->ste_hi & STE_V) &&
616 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
617 return addr;
618 }
619
620 return NULL;
621 #else
622 /*
623 * Rather than searching the STE groups for the VSID, we know
624 * how we generate that from the ESID and so do that.
625 */
626 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
627 #endif
628 #endif /* PMAP_OEA */
629 }
630
631 static inline register_t
632 va_to_pteg(const struct pmap *pm, vaddr_t addr)
633 {
634 register_t hash;
635
636 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
637 return hash & pmap_pteg_mask;
638 }
639
640 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
641 /*
642 * Given a PTE in the page table, calculate the VADDR that hashes to it.
643 * The only bit of magic is that the top 4 bits of the address doesn't
644 * technically exist in the PTE. But we know we reserved 4 bits of the
645 * VSID for it so that's how we get it.
646 */
647 static vaddr_t
648 pmap_pte_to_va(volatile const struct pte *pt)
649 {
650 vaddr_t va;
651 uintptr_t ptaddr = (uintptr_t) pt;
652
653 if (pt->pte_hi & PTE_HID)
654 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
655
656 /* PPC Bits 10-19 PPC64 Bits 42-51 */
657 #if defined(PMAP_OEA)
658 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
659 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
660 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
661 #endif
662 va <<= ADDR_PIDX_SHFT;
663
664 /* PPC Bits 4-9 PPC64 Bits 36-41 */
665 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
666
667 #if defined(PMAP_OEA64)
668 /* PPC63 Bits 0-35 */
669 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
670 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
671 /* PPC Bits 0-3 */
672 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
673 #endif
674
675 return va;
676 }
677 #endif
678
679 static inline struct pvo_head *
680 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
681 {
682 struct vm_page *pg;
683 struct vm_page_md *md;
684
685 pg = PHYS_TO_VM_PAGE(pa);
686 if (pg_p != NULL)
687 *pg_p = pg;
688 if (pg == NULL)
689 return &pmap_pvo_unmanaged;
690 md = VM_PAGE_TO_MD(pg);
691 return &md->mdpg_pvoh;
692 }
693
694 static inline struct pvo_head *
695 vm_page_to_pvoh(struct vm_page *pg)
696 {
697 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
698
699 return &md->mdpg_pvoh;
700 }
701
702
703 static inline void
704 pmap_attr_clear(struct vm_page *pg, int ptebit)
705 {
706 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
707
708 md->mdpg_attrs &= ~ptebit;
709 }
710
711 static inline int
712 pmap_attr_fetch(struct vm_page *pg)
713 {
714 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
715
716 return md->mdpg_attrs;
717 }
718
719 static inline void
720 pmap_attr_save(struct vm_page *pg, int ptebit)
721 {
722 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
723
724 md->mdpg_attrs |= ptebit;
725 }
726
727 static inline int
728 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
729 {
730 if (pt->pte_hi == pvo_pt->pte_hi
731 #if 0
732 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
733 ~(PTE_REF|PTE_CHG)) == 0
734 #endif
735 )
736 return 1;
737 return 0;
738 }
739
740 static inline void
741 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
742 {
743 /*
744 * Construct the PTE. Default to IMB initially. Valid bit
745 * only gets set when the real pte is set in memory.
746 *
747 * Note: Don't set the valid bit for correct operation of tlb update.
748 */
749 #if defined(PMAP_OEA)
750 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
751 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
752 pt->pte_lo = pte_lo;
753 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
754 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
755 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
756 pt->pte_lo = (u_int64_t) pte_lo;
757 #endif /* PMAP_OEA */
758 }
759
760 static inline void
761 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
762 {
763 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
764 }
765
766 static inline void
767 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
768 {
769 /*
770 * As shown in Section 7.6.3.2.3
771 */
772 pt->pte_lo &= ~ptebit;
773 TLBIE(va);
774 SYNC();
775 EIEIO();
776 TLBSYNC();
777 SYNC();
778 #ifdef MULTIPROCESSOR
779 DCBST(pt);
780 #endif
781 }
782
783 static inline void
784 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
785 {
786 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
787 if (pvo_pt->pte_hi & PTE_VALID)
788 panic("pte_set: setting an already valid pte %p", pvo_pt);
789 #endif
790 pvo_pt->pte_hi |= PTE_VALID;
791
792 /*
793 * Update the PTE as defined in section 7.6.3.1
794 * Note that the REF/CHG bits are from pvo_pt and thus should
795 * have been saved so this routine can restore them (if desired).
796 */
797 pt->pte_lo = pvo_pt->pte_lo;
798 EIEIO();
799 pt->pte_hi = pvo_pt->pte_hi;
800 TLBSYNC();
801 SYNC();
802 #ifdef MULTIPROCESSOR
803 DCBST(pt);
804 #endif
805 pmap_pte_valid++;
806 }
807
808 static inline void
809 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
810 {
811 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
812 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
813 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
814 if ((pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
816 #endif
817
818 pvo_pt->pte_hi &= ~PTE_VALID;
819 /*
820 * Force the ref & chg bits back into the PTEs.
821 */
822 SYNC();
823 /*
824 * Invalidate the pte ... (Section 7.6.3.3)
825 */
826 pt->pte_hi &= ~PTE_VALID;
827 SYNC();
828 TLBIE(va);
829 SYNC();
830 EIEIO();
831 TLBSYNC();
832 SYNC();
833 /*
834 * Save the ref & chg bits ...
835 */
836 pmap_pte_synch(pt, pvo_pt);
837 pmap_pte_valid--;
838 }
839
840 static inline void
841 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
842 {
843 /*
844 * Invalidate the PTE
845 */
846 pmap_pte_unset(pt, pvo_pt, va);
847 pmap_pte_set(pt, pvo_pt);
848 }
849
850 /*
851 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
852 * (either primary or secondary location).
853 *
854 * Note: both the destination and source PTEs must not have PTE_VALID set.
855 */
856
857 static int
858 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
859 {
860 volatile struct pte *pt;
861 int i;
862
863 #if defined(DEBUG)
864 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
865 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
866 #endif
867 /*
868 * First try primary hash.
869 */
870 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
871 if ((pt->pte_hi & PTE_VALID) == 0) {
872 pvo_pt->pte_hi &= ~PTE_HID;
873 pmap_pte_set(pt, pvo_pt);
874 return i;
875 }
876 }
877
878 /*
879 * Now try secondary hash.
880 */
881 ptegidx ^= pmap_pteg_mask;
882 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
883 if ((pt->pte_hi & PTE_VALID) == 0) {
884 pvo_pt->pte_hi |= PTE_HID;
885 pmap_pte_set(pt, pvo_pt);
886 return i;
887 }
888 }
889 return -1;
890 }
891
892 /*
893 * Spill handler.
894 *
895 * Tries to spill a page table entry from the overflow area.
896 * This runs in either real mode (if dealing with a exception spill)
897 * or virtual mode when dealing with manually spilling one of the
898 * kernel's pte entries. In either case, interrupts are already
899 * disabled.
900 */
901
902 int
903 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
904 {
905 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
906 struct pvo_entry *pvo;
907 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
908 struct pvo_tqhead *pvoh, *vpvoh = NULL;
909 int ptegidx, i, j;
910 volatile struct pteg *pteg;
911 volatile struct pte *pt;
912
913 PMAP_LOCK();
914
915 ptegidx = va_to_pteg(pm, addr);
916
917 /*
918 * Have to substitute some entry. Use the primary hash for this.
919 * Use low bits of timebase as random generator. Make sure we are
920 * not picking a kernel pte for replacement.
921 */
922 pteg = &pmap_pteg_table[ptegidx];
923 i = MFTB() & 7;
924 for (j = 0; j < 8; j++) {
925 pt = &pteg->pt[i];
926 if ((pt->pte_hi & PTE_VALID) == 0)
927 break;
928 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
929 < PHYSMAP_VSIDBITS)
930 break;
931 i = (i + 1) & 7;
932 }
933 KASSERT(j < 8);
934
935 source_pvo = NULL;
936 victim_pvo = NULL;
937 pvoh = &pmap_pvo_table[ptegidx];
938 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
939
940 /*
941 * We need to find pvo entry for this address...
942 */
943 PMAP_PVO_CHECK(pvo); /* sanity check */
944
945 /*
946 * If we haven't found the source and we come to a PVO with
947 * a valid PTE, then we know we can't find it because all
948 * evicted PVOs always are first in the list.
949 */
950 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
951 break;
952 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
953 addr == PVO_VADDR(pvo)) {
954
955 /*
956 * Now we have found the entry to be spilled into the
957 * pteg. Attempt to insert it into the page table.
958 */
959 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
960 if (j >= 0) {
961 PVO_PTEGIDX_SET(pvo, j);
962 PMAP_PVO_CHECK(pvo); /* sanity check */
963 PVO_WHERE(pvo, SPILL_INSERT);
964 pvo->pvo_pmap->pm_evictions--;
965 PMAPCOUNT(ptes_spilled);
966 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
967 ? pmap_evcnt_ptes_secondary
968 : pmap_evcnt_ptes_primary)[j]);
969
970 /*
971 * Since we keep the evicted entries at the
972 * from of the PVO list, we need move this
973 * (now resident) PVO after the evicted
974 * entries.
975 */
976 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
977
978 /*
979 * If we don't have to move (either we were the
980 * last entry or the next entry was valid),
981 * don't change our position. Otherwise
982 * move ourselves to the tail of the queue.
983 */
984 if (next_pvo != NULL &&
985 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
986 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
987 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
988 }
989 PMAP_UNLOCK();
990 return 1;
991 }
992 source_pvo = pvo;
993 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
994 PMAP_UNLOCK();
995 return 0;
996 }
997 if (victim_pvo != NULL)
998 break;
999 }
1000
1001 /*
1002 * We also need the pvo entry of the victim we are replacing
1003 * so save the R & C bits of the PTE.
1004 */
1005 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1006 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1007 vpvoh = pvoh; /* *1* */
1008 victim_pvo = pvo;
1009 if (source_pvo != NULL)
1010 break;
1011 }
1012 }
1013
1014 if (source_pvo == NULL) {
1015 PMAPCOUNT(ptes_unspilled);
1016 PMAP_UNLOCK();
1017 return 0;
1018 }
1019
1020 if (victim_pvo == NULL) {
1021 if ((pt->pte_hi & PTE_HID) == 0)
1022 panic("pmap_pte_spill: victim p-pte (%p) has "
1023 "no pvo entry!", pt);
1024
1025 /*
1026 * If this is a secondary PTE, we need to search
1027 * its primary pvo bucket for the matching PVO.
1028 */
1029 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1030 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1031 PMAP_PVO_CHECK(pvo); /* sanity check */
1032
1033 /*
1034 * We also need the pvo entry of the victim we are
1035 * replacing so save the R & C bits of the PTE.
1036 */
1037 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1038 victim_pvo = pvo;
1039 break;
1040 }
1041 }
1042 if (victim_pvo == NULL)
1043 panic("pmap_pte_spill: victim s-pte (%p) has "
1044 "no pvo entry!", pt);
1045 }
1046
1047 /*
1048 * The victim should be not be a kernel PVO/PTE entry.
1049 */
1050 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1051 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1052 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1053
1054 /*
1055 * We are invalidating the TLB entry for the EA for the
1056 * we are replacing even though its valid; If we don't
1057 * we lose any ref/chg bit changes contained in the TLB
1058 * entry.
1059 */
1060 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1061
1062 /*
1063 * To enforce the PVO list ordering constraint that all
1064 * evicted entries should come before all valid entries,
1065 * move the source PVO to the tail of its list and the
1066 * victim PVO to the head of its list (which might not be
1067 * the same list, if the victim was using the secondary hash).
1068 */
1069 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1070 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1071 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1072 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1073 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1074 pmap_pte_set(pt, &source_pvo->pvo_pte);
1075 victim_pvo->pvo_pmap->pm_evictions++;
1076 source_pvo->pvo_pmap->pm_evictions--;
1077 PVO_WHERE(victim_pvo, SPILL_UNSET);
1078 PVO_WHERE(source_pvo, SPILL_SET);
1079
1080 PVO_PTEGIDX_CLR(victim_pvo);
1081 PVO_PTEGIDX_SET(source_pvo, i);
1082 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1083 PMAPCOUNT(ptes_spilled);
1084 PMAPCOUNT(ptes_evicted);
1085 PMAPCOUNT(ptes_removed);
1086
1087 PMAP_PVO_CHECK(victim_pvo);
1088 PMAP_PVO_CHECK(source_pvo);
1089
1090 PMAP_UNLOCK();
1091 return 1;
1092 }
1093
1094 /*
1095 * Restrict given range to physical memory
1096 */
1097 void
1098 pmap_real_memory(paddr_t *start, psize_t *size)
1099 {
1100 struct mem_region *mp;
1101
1102 for (mp = mem; mp->size; mp++) {
1103 if (*start + *size > mp->start
1104 && *start < mp->start + mp->size) {
1105 if (*start < mp->start) {
1106 *size -= mp->start - *start;
1107 *start = mp->start;
1108 }
1109 if (*start + *size > mp->start + mp->size)
1110 *size = mp->start + mp->size - *start;
1111 return;
1112 }
1113 }
1114 *size = 0;
1115 }
1116
1117 /*
1118 * Initialize anything else for pmap handling.
1119 * Called during vm_init().
1120 */
1121 void
1122 pmap_init(void)
1123 {
1124 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1125 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1126 &pmap_pool_mallocator, IPL_NONE);
1127
1128 pool_setlowat(&pmap_mpvo_pool, 1008);
1129
1130 pmap_initialized = 1;
1131
1132 }
1133
1134 /*
1135 * How much virtual space does the kernel get?
1136 */
1137 void
1138 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1139 {
1140 /*
1141 * For now, reserve one segment (minus some overhead) for kernel
1142 * virtual memory
1143 */
1144 *start = VM_MIN_KERNEL_ADDRESS;
1145 *end = VM_MAX_KERNEL_ADDRESS;
1146 }
1147
1148 /*
1149 * Allocate, initialize, and return a new physical map.
1150 */
1151 pmap_t
1152 pmap_create(void)
1153 {
1154 pmap_t pm;
1155
1156 pm = pool_get(&pmap_pool, PR_WAITOK);
1157 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1158 memset((void *)pm, 0, sizeof *pm);
1159 pmap_pinit(pm);
1160
1161 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1162 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1163 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1164 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1165 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1166 pm,
1167 pm->pm_sr[0], pm->pm_sr[1],
1168 pm->pm_sr[2], pm->pm_sr[3],
1169 pm->pm_sr[4], pm->pm_sr[5],
1170 pm->pm_sr[6], pm->pm_sr[7],
1171 pm->pm_sr[8], pm->pm_sr[9],
1172 pm->pm_sr[10], pm->pm_sr[11],
1173 pm->pm_sr[12], pm->pm_sr[13],
1174 pm->pm_sr[14], pm->pm_sr[15]);
1175 return pm;
1176 }
1177
1178 /*
1179 * Initialize a preallocated and zeroed pmap structure.
1180 */
1181 void
1182 pmap_pinit(pmap_t pm)
1183 {
1184 register_t entropy = MFTB();
1185 register_t mask;
1186 int i;
1187
1188 /*
1189 * Allocate some segment registers for this pmap.
1190 */
1191 pm->pm_refs = 1;
1192 PMAP_LOCK();
1193 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1194 static register_t pmap_vsidcontext;
1195 register_t hash;
1196 unsigned int n;
1197
1198 /* Create a new value by multiplying by a prime adding in
1199 * entropy from the timebase register. This is to make the
1200 * VSID more random so that the PT Hash function collides
1201 * less often. (note that the prime causes gcc to do shifts
1202 * instead of a multiply)
1203 */
1204 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1205 hash = pmap_vsidcontext & (NPMAPS - 1);
1206 if (hash == 0) { /* 0 is special, avoid it */
1207 entropy += 0xbadf00d;
1208 continue;
1209 }
1210 n = hash >> 5;
1211 mask = 1L << (hash & (VSID_NBPW-1));
1212 hash = pmap_vsidcontext;
1213 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1214 /* anything free in this bucket? */
1215 if (~pmap_vsid_bitmap[n] == 0) {
1216 entropy = hash ^ (hash >> 16);
1217 continue;
1218 }
1219 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1220 mask = 1L << i;
1221 hash &= ~(VSID_NBPW-1);
1222 hash |= i;
1223 }
1224 hash &= PTE_VSID >> PTE_VSID_SHFT;
1225 pmap_vsid_bitmap[n] |= mask;
1226 pm->pm_vsid = hash;
1227 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1228 for (i = 0; i < 16; i++)
1229 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1230 SR_NOEXEC;
1231 #endif
1232 PMAP_UNLOCK();
1233 return;
1234 }
1235 PMAP_UNLOCK();
1236 panic("pmap_pinit: out of segments");
1237 }
1238
1239 /*
1240 * Add a reference to the given pmap.
1241 */
1242 void
1243 pmap_reference(pmap_t pm)
1244 {
1245 atomic_inc_uint(&pm->pm_refs);
1246 }
1247
1248 /*
1249 * Retire the given pmap from service.
1250 * Should only be called if the map contains no valid mappings.
1251 */
1252 void
1253 pmap_destroy(pmap_t pm)
1254 {
1255 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1256 pmap_release(pm);
1257 pool_put(&pmap_pool, pm);
1258 }
1259 }
1260
1261 /*
1262 * Release any resources held by the given physical map.
1263 * Called when a pmap initialized by pmap_pinit is being released.
1264 */
1265 void
1266 pmap_release(pmap_t pm)
1267 {
1268 int idx, mask;
1269
1270 KASSERT(pm->pm_stats.resident_count == 0);
1271 KASSERT(pm->pm_stats.wired_count == 0);
1272
1273 PMAP_LOCK();
1274 if (pm->pm_sr[0] == 0)
1275 panic("pmap_release");
1276 idx = pm->pm_vsid & (NPMAPS-1);
1277 mask = 1 << (idx % VSID_NBPW);
1278 idx /= VSID_NBPW;
1279
1280 KASSERT(pmap_vsid_bitmap[idx] & mask);
1281 pmap_vsid_bitmap[idx] &= ~mask;
1282 PMAP_UNLOCK();
1283 }
1284
1285 /*
1286 * Copy the range specified by src_addr/len
1287 * from the source map to the range dst_addr/len
1288 * in the destination map.
1289 *
1290 * This routine is only advisory and need not do anything.
1291 */
1292 void
1293 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1294 vsize_t len, vaddr_t src_addr)
1295 {
1296 PMAPCOUNT(copies);
1297 }
1298
1299 /*
1300 * Require that all active physical maps contain no
1301 * incorrect entries NOW.
1302 */
1303 void
1304 pmap_update(struct pmap *pmap)
1305 {
1306 PMAPCOUNT(updates);
1307 TLBSYNC();
1308 }
1309
1310 static inline int
1311 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1312 {
1313 int pteidx;
1314 /*
1315 * We can find the actual pte entry without searching by
1316 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1317 * and by noticing the HID bit.
1318 */
1319 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1320 if (pvo->pvo_pte.pte_hi & PTE_HID)
1321 pteidx ^= pmap_pteg_mask * 8;
1322 return pteidx;
1323 }
1324
1325 volatile struct pte *
1326 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1327 {
1328 volatile struct pte *pt;
1329
1330 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1331 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1332 return NULL;
1333 #endif
1334
1335 /*
1336 * If we haven't been supplied the ptegidx, calculate it.
1337 */
1338 if (pteidx == -1) {
1339 int ptegidx;
1340 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1341 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1342 }
1343
1344 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1345
1346 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1347 return pt;
1348 #else
1349 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1350 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1351 "pvo but no valid pte index", pvo);
1352 }
1353 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1354 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1355 "pvo but no valid pte", pvo);
1356 }
1357
1358 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1359 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1360 #if defined(DEBUG) || defined(PMAPCHECK)
1361 pmap_pte_print(pt);
1362 #endif
1363 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1364 "pmap_pteg_table %p but invalid in pvo",
1365 pvo, pt);
1366 }
1367 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1368 #if defined(DEBUG) || defined(PMAPCHECK)
1369 pmap_pte_print(pt);
1370 #endif
1371 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1372 "not match pte %p in pmap_pteg_table",
1373 pvo, pt);
1374 }
1375 return pt;
1376 }
1377
1378 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1379 #if defined(DEBUG) || defined(PMAPCHECK)
1380 pmap_pte_print(pt);
1381 #endif
1382 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1383 "pmap_pteg_table but valid in pvo", pvo, pt);
1384 }
1385 return NULL;
1386 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1387 }
1388
1389 struct pvo_entry *
1390 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1391 {
1392 struct pvo_entry *pvo;
1393 int ptegidx;
1394
1395 va &= ~ADDR_POFF;
1396 ptegidx = va_to_pteg(pm, va);
1397
1398 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1399 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1400 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1401 panic("pmap_pvo_find_va: invalid pvo %p on "
1402 "list %#x (%p)", pvo, ptegidx,
1403 &pmap_pvo_table[ptegidx]);
1404 #endif
1405 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1406 if (pteidx_p)
1407 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1408 return pvo;
1409 }
1410 }
1411 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1412 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1413 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1414 return NULL;
1415 }
1416
1417 #if defined(DEBUG) || defined(PMAPCHECK)
1418 void
1419 pmap_pvo_check(const struct pvo_entry *pvo)
1420 {
1421 struct pvo_head *pvo_head;
1422 struct pvo_entry *pvo0;
1423 volatile struct pte *pt;
1424 int failed = 0;
1425
1426 PMAP_LOCK();
1427
1428 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1429 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1430
1431 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1432 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1433 pvo, pvo->pvo_pmap);
1434 failed = 1;
1435 }
1436
1437 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1438 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1439 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1440 pvo, TAILQ_NEXT(pvo, pvo_olink));
1441 failed = 1;
1442 }
1443
1444 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1445 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1446 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1447 pvo, LIST_NEXT(pvo, pvo_vlink));
1448 failed = 1;
1449 }
1450
1451 if (PVO_MANAGED_P(pvo)) {
1452 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1453 } else {
1454 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1455 printf("pmap_pvo_check: pvo %p: non kernel address "
1456 "on kernel unmanaged list\n", pvo);
1457 failed = 1;
1458 }
1459 pvo_head = &pmap_pvo_kunmanaged;
1460 }
1461 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1462 if (pvo0 == pvo)
1463 break;
1464 }
1465 if (pvo0 == NULL) {
1466 printf("pmap_pvo_check: pvo %p: not present "
1467 "on its vlist head %p\n", pvo, pvo_head);
1468 failed = 1;
1469 }
1470 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1471 printf("pmap_pvo_check: pvo %p: not present "
1472 "on its olist head\n", pvo);
1473 failed = 1;
1474 }
1475 pt = pmap_pvo_to_pte(pvo, -1);
1476 if (pt == NULL) {
1477 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1478 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1479 "no PTE\n", pvo);
1480 failed = 1;
1481 }
1482 } else {
1483 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1484 (uintptr_t) pt >=
1485 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1486 printf("pmap_pvo_check: pvo %p: pte %p not in "
1487 "pteg table\n", pvo, pt);
1488 failed = 1;
1489 }
1490 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1491 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1492 "no PTE\n", pvo);
1493 failed = 1;
1494 }
1495 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1496 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1497 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1498 pvo->pvo_pte.pte_hi,
1499 pt->pte_hi);
1500 failed = 1;
1501 }
1502 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1503 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1504 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1505 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1506 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1507 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1508 failed = 1;
1509 }
1510 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1511 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1512 " doesn't not match PVO's VA %#" _PRIxva "\n",
1513 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1514 failed = 1;
1515 }
1516 if (failed)
1517 pmap_pte_print(pt);
1518 }
1519 if (failed)
1520 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1521 pvo->pvo_pmap);
1522
1523 PMAP_UNLOCK();
1524 }
1525 #endif /* DEBUG || PMAPCHECK */
1526
1527 /*
1528 * Search the PVO table looking for a non-wired entry.
1529 * If we find one, remove it and return it.
1530 */
1531
1532 struct pvo_entry *
1533 pmap_pvo_reclaim(struct pmap *pm)
1534 {
1535 struct pvo_tqhead *pvoh;
1536 struct pvo_entry *pvo;
1537 uint32_t idx, endidx;
1538
1539 endidx = pmap_pvo_reclaim_nextidx;
1540 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1541 idx = (idx + 1) & pmap_pteg_mask) {
1542 pvoh = &pmap_pvo_table[idx];
1543 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1544 if (!PVO_WIRED_P(pvo)) {
1545 pmap_pvo_remove(pvo, -1, NULL);
1546 pmap_pvo_reclaim_nextidx = idx;
1547 PMAPCOUNT(pvos_reclaimed);
1548 return pvo;
1549 }
1550 }
1551 }
1552 return NULL;
1553 }
1554
1555 static struct pool *
1556 pmap_pvo_pl(struct pvo_entry *pvo)
1557 {
1558
1559 return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
1560 }
1561
1562 /*
1563 * This returns whether this is the first mapping of a page.
1564 */
1565 int
1566 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1567 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1568 {
1569 struct pvo_entry *pvo;
1570 struct pvo_tqhead *pvoh;
1571 register_t msr;
1572 int ptegidx;
1573 int i;
1574 int poolflags = PR_NOWAIT;
1575
1576 /*
1577 * Compute the PTE Group index.
1578 */
1579 va &= ~ADDR_POFF;
1580 ptegidx = va_to_pteg(pm, va);
1581
1582 msr = pmap_interrupts_off();
1583
1584 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1585 if (pmap_pvo_remove_depth > 0)
1586 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1587 if (++pmap_pvo_enter_depth > 1)
1588 panic("pmap_pvo_enter: called recursively!");
1589 #endif
1590
1591 /*
1592 * Remove any existing mapping for this page. Reuse the
1593 * pvo entry if there a mapping.
1594 */
1595 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1596 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1597 #ifdef DEBUG
1598 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1599 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1600 ~(PTE_REF|PTE_CHG)) == 0 &&
1601 va < VM_MIN_KERNEL_ADDRESS) {
1602 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1603 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1604 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1605 pvo->pvo_pte.pte_hi,
1606 pm->pm_sr[va >> ADDR_SR_SHFT]);
1607 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1608 #ifdef DDBX
1609 Debugger();
1610 #endif
1611 }
1612 #endif
1613 PMAPCOUNT(mappings_replaced);
1614 pmap_pvo_remove(pvo, -1, NULL);
1615 break;
1616 }
1617 }
1618
1619 /*
1620 * If we aren't overwriting an mapping, try to allocate
1621 */
1622 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1623 --pmap_pvo_enter_depth;
1624 #endif
1625 pmap_interrupts_restore(msr);
1626 if (pvo) {
1627 KASSERT(pmap_pvo_pl(pvo) == pl);
1628 } else {
1629 pvo = pool_get(pl, poolflags);
1630 }
1631 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1632
1633 #ifdef DEBUG
1634 /*
1635 * Exercise pmap_pvo_reclaim() a little.
1636 */
1637 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1638 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1639 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1640 pool_put(pl, pvo);
1641 pvo = NULL;
1642 }
1643 #endif
1644
1645 msr = pmap_interrupts_off();
1646 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1647 ++pmap_pvo_enter_depth;
1648 #endif
1649 if (pvo == NULL) {
1650 pvo = pmap_pvo_reclaim(pm);
1651 if (pvo == NULL) {
1652 if ((flags & PMAP_CANFAIL) == 0)
1653 panic("pmap_pvo_enter: failed");
1654 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1655 pmap_pvo_enter_depth--;
1656 #endif
1657 PMAPCOUNT(pvos_failed);
1658 pmap_interrupts_restore(msr);
1659 return ENOMEM;
1660 }
1661 }
1662
1663 pvo->pvo_vaddr = va;
1664 pvo->pvo_pmap = pm;
1665 pvo->pvo_vaddr &= ~ADDR_POFF;
1666 if (flags & VM_PROT_EXECUTE) {
1667 PMAPCOUNT(exec_mappings);
1668 pvo_set_exec(pvo);
1669 }
1670 if (flags & PMAP_WIRED)
1671 pvo->pvo_vaddr |= PVO_WIRED;
1672 if (pvo_head != &pmap_pvo_kunmanaged) {
1673 pvo->pvo_vaddr |= PVO_MANAGED;
1674 PMAPCOUNT(mappings);
1675 } else {
1676 PMAPCOUNT(kernel_mappings);
1677 }
1678 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1679
1680 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1681 if (PVO_WIRED_P(pvo))
1682 pvo->pvo_pmap->pm_stats.wired_count++;
1683 pvo->pvo_pmap->pm_stats.resident_count++;
1684 #if defined(DEBUG)
1685 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1686 DPRINTFN(PVOENTER,
1687 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1688 pvo, pm, va, pa);
1689 #endif
1690
1691 /*
1692 * We hope this succeeds but it isn't required.
1693 */
1694 pvoh = &pmap_pvo_table[ptegidx];
1695 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1696 if (i >= 0) {
1697 PVO_PTEGIDX_SET(pvo, i);
1698 PVO_WHERE(pvo, ENTER_INSERT);
1699 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1700 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1701 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1702
1703 } else {
1704 /*
1705 * Since we didn't have room for this entry (which makes it
1706 * and evicted entry), place it at the head of the list.
1707 */
1708 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1709 PMAPCOUNT(ptes_evicted);
1710 pm->pm_evictions++;
1711 /*
1712 * If this is a kernel page, make sure it's active.
1713 */
1714 if (pm == pmap_kernel()) {
1715 i = pmap_pte_spill(pm, va, false);
1716 KASSERT(i);
1717 }
1718 }
1719 PMAP_PVO_CHECK(pvo); /* sanity check */
1720 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1721 pmap_pvo_enter_depth--;
1722 #endif
1723 pmap_interrupts_restore(msr);
1724 return 0;
1725 }
1726
1727 static void
1728 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1729 {
1730 volatile struct pte *pt;
1731 int ptegidx;
1732
1733 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1734 if (++pmap_pvo_remove_depth > 1)
1735 panic("pmap_pvo_remove: called recursively!");
1736 #endif
1737
1738 /*
1739 * If we haven't been supplied the ptegidx, calculate it.
1740 */
1741 if (pteidx == -1) {
1742 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1743 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1744 } else {
1745 ptegidx = pteidx >> 3;
1746 if (pvo->pvo_pte.pte_hi & PTE_HID)
1747 ptegidx ^= pmap_pteg_mask;
1748 }
1749 PMAP_PVO_CHECK(pvo); /* sanity check */
1750
1751 /*
1752 * If there is an active pte entry, we need to deactivate it
1753 * (and save the ref & chg bits).
1754 */
1755 pt = pmap_pvo_to_pte(pvo, pteidx);
1756 if (pt != NULL) {
1757 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1758 PVO_WHERE(pvo, REMOVE);
1759 PVO_PTEGIDX_CLR(pvo);
1760 PMAPCOUNT(ptes_removed);
1761 } else {
1762 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1763 pvo->pvo_pmap->pm_evictions--;
1764 }
1765
1766 /*
1767 * Account for executable mappings.
1768 */
1769 if (PVO_EXECUTABLE_P(pvo))
1770 pvo_clear_exec(pvo);
1771
1772 /*
1773 * Update our statistics.
1774 */
1775 pvo->pvo_pmap->pm_stats.resident_count--;
1776 if (PVO_WIRED_P(pvo))
1777 pvo->pvo_pmap->pm_stats.wired_count--;
1778
1779 /*
1780 * Save the REF/CHG bits into their cache if the page is managed.
1781 */
1782 if (PVO_MANAGED_P(pvo)) {
1783 register_t ptelo = pvo->pvo_pte.pte_lo;
1784 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1785
1786 if (pg != NULL) {
1787 /*
1788 * If this page was changed and it is mapped exec,
1789 * invalidate it.
1790 */
1791 if ((ptelo & PTE_CHG) &&
1792 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1793 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1794 if (LIST_EMPTY(pvoh)) {
1795 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1796 "%#" _PRIxpa ": clear-exec]\n",
1797 VM_PAGE_TO_PHYS(pg));
1798 pmap_attr_clear(pg, PTE_EXEC);
1799 PMAPCOUNT(exec_uncached_pvo_remove);
1800 } else {
1801 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1802 "%#" _PRIxpa ": syncicache]\n",
1803 VM_PAGE_TO_PHYS(pg));
1804 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1805 PAGE_SIZE);
1806 PMAPCOUNT(exec_synced_pvo_remove);
1807 }
1808 }
1809
1810 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1811 }
1812 PMAPCOUNT(unmappings);
1813 } else {
1814 PMAPCOUNT(kernel_unmappings);
1815 }
1816
1817 /*
1818 * Remove the PVO from its lists and return it to the pool.
1819 */
1820 LIST_REMOVE(pvo, pvo_vlink);
1821 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1822 if (pvol) {
1823 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1824 }
1825 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1826 pmap_pvo_remove_depth--;
1827 #endif
1828 }
1829
1830 void
1831 pmap_pvo_free(struct pvo_entry *pvo)
1832 {
1833
1834 pool_put(pmap_pvo_pl(pvo), pvo);
1835 }
1836
1837 void
1838 pmap_pvo_free_list(struct pvo_head *pvol)
1839 {
1840 struct pvo_entry *pvo, *npvo;
1841
1842 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1843 npvo = LIST_NEXT(pvo, pvo_vlink);
1844 LIST_REMOVE(pvo, pvo_vlink);
1845 pmap_pvo_free(pvo);
1846 }
1847 }
1848
1849 /*
1850 * Mark a mapping as executable.
1851 * If this is the first executable mapping in the segment,
1852 * clear the noexec flag.
1853 */
1854 static void
1855 pvo_set_exec(struct pvo_entry *pvo)
1856 {
1857 struct pmap *pm = pvo->pvo_pmap;
1858
1859 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1860 return;
1861 }
1862 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1863 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1864 {
1865 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1866 if (pm->pm_exec[sr]++ == 0) {
1867 pm->pm_sr[sr] &= ~SR_NOEXEC;
1868 }
1869 }
1870 #endif
1871 }
1872
1873 /*
1874 * Mark a mapping as non-executable.
1875 * If this was the last executable mapping in the segment,
1876 * set the noexec flag.
1877 */
1878 static void
1879 pvo_clear_exec(struct pvo_entry *pvo)
1880 {
1881 struct pmap *pm = pvo->pvo_pmap;
1882
1883 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1884 return;
1885 }
1886 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1887 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1888 {
1889 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1890 if (--pm->pm_exec[sr] == 0) {
1891 pm->pm_sr[sr] |= SR_NOEXEC;
1892 }
1893 }
1894 #endif
1895 }
1896
1897 /*
1898 * Insert physical page at pa into the given pmap at virtual address va.
1899 */
1900 int
1901 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1902 {
1903 struct mem_region *mp;
1904 struct pvo_head *pvo_head;
1905 struct vm_page *pg;
1906 struct pool *pl;
1907 register_t pte_lo;
1908 int error;
1909 u_int was_exec = 0;
1910
1911 PMAP_LOCK();
1912
1913 if (__predict_false(!pmap_initialized)) {
1914 pvo_head = &pmap_pvo_kunmanaged;
1915 pl = &pmap_upvo_pool;
1916 pg = NULL;
1917 was_exec = PTE_EXEC;
1918 } else {
1919 pvo_head = pa_to_pvoh(pa, &pg);
1920 pl = &pmap_mpvo_pool;
1921 }
1922
1923 DPRINTFN(ENTER,
1924 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1925 pm, va, pa, prot, flags);
1926
1927 /*
1928 * If this is a managed page, and it's the first reference to the
1929 * page clear the execness of the page. Otherwise fetch the execness.
1930 */
1931 if (pg != NULL)
1932 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1933
1934 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1935
1936 /*
1937 * Assume the page is cache inhibited and access is guarded unless
1938 * it's in our available memory array. If it is in the memory array,
1939 * asssume it's in memory coherent memory.
1940 */
1941 if (flags & PMAP_MD_PREFETCHABLE) {
1942 pte_lo = 0;
1943 } else
1944 pte_lo = PTE_G;
1945
1946 if ((flags & PMAP_NOCACHE) == 0) {
1947 for (mp = mem; mp->size; mp++) {
1948 if (pa >= mp->start && pa < mp->start + mp->size) {
1949 pte_lo = PTE_M;
1950 break;
1951 }
1952 }
1953 #ifdef MULTIPROCESSOR
1954 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1955 pte_lo = PTE_M;
1956 #endif
1957 } else {
1958 pte_lo |= PTE_I;
1959 }
1960
1961 if (prot & VM_PROT_WRITE)
1962 pte_lo |= PTE_BW;
1963 else
1964 pte_lo |= PTE_BR;
1965
1966 /*
1967 * If this was in response to a fault, "pre-fault" the PTE's
1968 * changed/referenced bit appropriately.
1969 */
1970 if (flags & VM_PROT_WRITE)
1971 pte_lo |= PTE_CHG;
1972 if (flags & VM_PROT_ALL)
1973 pte_lo |= PTE_REF;
1974
1975 /*
1976 * We need to know if this page can be executable
1977 */
1978 flags |= (prot & VM_PROT_EXECUTE);
1979
1980 /*
1981 * Record mapping for later back-translation and pte spilling.
1982 * This will overwrite any existing mapping.
1983 */
1984 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1985
1986 /*
1987 * Flush the real page from the instruction cache if this page is
1988 * mapped executable and cacheable and has not been flushed since
1989 * the last time it was modified.
1990 */
1991 if (error == 0 &&
1992 (flags & VM_PROT_EXECUTE) &&
1993 (pte_lo & PTE_I) == 0 &&
1994 was_exec == 0) {
1995 DPRINTFN(ENTER, " %s", "syncicache");
1996 PMAPCOUNT(exec_synced);
1997 pmap_syncicache(pa, PAGE_SIZE);
1998 if (pg != NULL) {
1999 pmap_attr_save(pg, PTE_EXEC);
2000 PMAPCOUNT(exec_cached);
2001 #if defined(DEBUG) || defined(PMAPDEBUG)
2002 if (pmapdebug & PMAPDEBUG_ENTER)
2003 printf(" marked-as-exec");
2004 else if (pmapdebug & PMAPDEBUG_EXEC)
2005 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2006 VM_PAGE_TO_PHYS(pg));
2007
2008 #endif
2009 }
2010 }
2011
2012 DPRINTFN(ENTER, ": error=%d\n", error);
2013
2014 PMAP_UNLOCK();
2015
2016 return error;
2017 }
2018
2019 void
2020 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2021 {
2022 struct mem_region *mp;
2023 register_t pte_lo;
2024 int error;
2025
2026 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2027 if (va < VM_MIN_KERNEL_ADDRESS)
2028 panic("pmap_kenter_pa: attempt to enter "
2029 "non-kernel address %#" _PRIxva "!", va);
2030 #endif
2031
2032 DPRINTFN(KENTER,
2033 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2034
2035 PMAP_LOCK();
2036
2037 /*
2038 * Assume the page is cache inhibited and access is guarded unless
2039 * it's in our available memory array. If it is in the memory array,
2040 * asssume it's in memory coherent memory.
2041 */
2042 pte_lo = PTE_IG;
2043 if ((flags & PMAP_NOCACHE) == 0) {
2044 for (mp = mem; mp->size; mp++) {
2045 if (pa >= mp->start && pa < mp->start + mp->size) {
2046 pte_lo = PTE_M;
2047 break;
2048 }
2049 }
2050 #ifdef MULTIPROCESSOR
2051 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2052 pte_lo = PTE_M;
2053 #endif
2054 }
2055
2056 if (prot & VM_PROT_WRITE)
2057 pte_lo |= PTE_BW;
2058 else
2059 pte_lo |= PTE_BR;
2060
2061 /*
2062 * We don't care about REF/CHG on PVOs on the unmanaged list.
2063 */
2064 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2065 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2066
2067 if (error != 0)
2068 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2069 va, pa, error);
2070
2071 PMAP_UNLOCK();
2072 }
2073
2074 void
2075 pmap_kremove(vaddr_t va, vsize_t len)
2076 {
2077 if (va < VM_MIN_KERNEL_ADDRESS)
2078 panic("pmap_kremove: attempt to remove "
2079 "non-kernel address %#" _PRIxva "!", va);
2080
2081 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2082 pmap_remove(pmap_kernel(), va, va + len);
2083 }
2084
2085 /*
2086 * Remove the given range of mapping entries.
2087 */
2088 void
2089 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2090 {
2091 struct pvo_head pvol;
2092 struct pvo_entry *pvo;
2093 register_t msr;
2094 int pteidx;
2095
2096 PMAP_LOCK();
2097 LIST_INIT(&pvol);
2098 msr = pmap_interrupts_off();
2099 for (; va < endva; va += PAGE_SIZE) {
2100 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2101 if (pvo != NULL) {
2102 pmap_pvo_remove(pvo, pteidx, &pvol);
2103 }
2104 }
2105 pmap_interrupts_restore(msr);
2106 pmap_pvo_free_list(&pvol);
2107 PMAP_UNLOCK();
2108 }
2109
2110 /*
2111 * Get the physical page address for the given pmap/virtual address.
2112 */
2113 bool
2114 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2115 {
2116 struct pvo_entry *pvo;
2117 register_t msr;
2118
2119 PMAP_LOCK();
2120
2121 /*
2122 * If this is a kernel pmap lookup, also check the battable
2123 * and if we get a hit, translate the VA to a PA using the
2124 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2125 * that will wrap back to 0.
2126 */
2127 if (pm == pmap_kernel() &&
2128 (va < VM_MIN_KERNEL_ADDRESS ||
2129 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2130 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2131 #if defined (PMAP_OEA)
2132 #ifdef PPC_OEA601
2133 if ((MFPVR() >> 16) == MPC601) {
2134 register_t batu = battable[va >> 23].batu;
2135 register_t batl = battable[va >> 23].batl;
2136 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2137 if (BAT601_VALID_P(batl) &&
2138 BAT601_VA_MATCH_P(batu, batl, va)) {
2139 register_t mask =
2140 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2141 if (pap)
2142 *pap = (batl & mask) | (va & ~mask);
2143 PMAP_UNLOCK();
2144 return true;
2145 } else if (SR601_VALID_P(sr) &&
2146 SR601_PA_MATCH_P(sr, va)) {
2147 if (pap)
2148 *pap = va;
2149 PMAP_UNLOCK();
2150 return true;
2151 }
2152 } else
2153 #endif /* PPC_OEA601 */
2154 {
2155 register_t batu = battable[BAT_VA2IDX(va)].batu;
2156 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2157 register_t batl = battable[BAT_VA2IDX(va)].batl;
2158 register_t mask =
2159 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2160 if (pap)
2161 *pap = (batl & mask) | (va & ~mask);
2162 PMAP_UNLOCK();
2163 return true;
2164 }
2165 }
2166 PMAP_UNLOCK();
2167 return false;
2168 #elif defined (PMAP_OEA64_BRIDGE)
2169 if (va >= SEGMENT_LENGTH)
2170 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2171 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2172 else {
2173 if (pap)
2174 *pap = va;
2175 PMAP_UNLOCK();
2176 return true;
2177 }
2178 #elif defined (PMAP_OEA64)
2179 #error PPC_OEA64 not supported
2180 #endif /* PPC_OEA */
2181 }
2182
2183 msr = pmap_interrupts_off();
2184 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2185 if (pvo != NULL) {
2186 PMAP_PVO_CHECK(pvo); /* sanity check */
2187 if (pap)
2188 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2189 | (va & ADDR_POFF);
2190 }
2191 pmap_interrupts_restore(msr);
2192 PMAP_UNLOCK();
2193 return pvo != NULL;
2194 }
2195
2196 /*
2197 * Lower the protection on the specified range of this pmap.
2198 */
2199 void
2200 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2201 {
2202 struct pvo_entry *pvo;
2203 volatile struct pte *pt;
2204 register_t msr;
2205 int pteidx;
2206
2207 /*
2208 * Since this routine only downgrades protection, we should
2209 * always be called with at least one bit not set.
2210 */
2211 KASSERT(prot != VM_PROT_ALL);
2212
2213 /*
2214 * If there is no protection, this is equivalent to
2215 * remove the pmap from the pmap.
2216 */
2217 if ((prot & VM_PROT_READ) == 0) {
2218 pmap_remove(pm, va, endva);
2219 return;
2220 }
2221
2222 PMAP_LOCK();
2223
2224 msr = pmap_interrupts_off();
2225 for (; va < endva; va += PAGE_SIZE) {
2226 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2227 if (pvo == NULL)
2228 continue;
2229 PMAP_PVO_CHECK(pvo); /* sanity check */
2230
2231 /*
2232 * Revoke executable if asked to do so.
2233 */
2234 if ((prot & VM_PROT_EXECUTE) == 0)
2235 pvo_clear_exec(pvo);
2236
2237 #if 0
2238 /*
2239 * If the page is already read-only, no change
2240 * needs to be made.
2241 */
2242 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2243 continue;
2244 #endif
2245 /*
2246 * Grab the PTE pointer before we diddle with
2247 * the cached PTE copy.
2248 */
2249 pt = pmap_pvo_to_pte(pvo, pteidx);
2250 /*
2251 * Change the protection of the page.
2252 */
2253 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2254 pvo->pvo_pte.pte_lo |= PTE_BR;
2255
2256 /*
2257 * If the PVO is in the page table, update
2258 * that pte at well.
2259 */
2260 if (pt != NULL) {
2261 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2262 PVO_WHERE(pvo, PMAP_PROTECT);
2263 PMAPCOUNT(ptes_changed);
2264 }
2265
2266 PMAP_PVO_CHECK(pvo); /* sanity check */
2267 }
2268 pmap_interrupts_restore(msr);
2269 PMAP_UNLOCK();
2270 }
2271
2272 void
2273 pmap_unwire(pmap_t pm, vaddr_t va)
2274 {
2275 struct pvo_entry *pvo;
2276 register_t msr;
2277
2278 PMAP_LOCK();
2279 msr = pmap_interrupts_off();
2280 pvo = pmap_pvo_find_va(pm, va, NULL);
2281 if (pvo != NULL) {
2282 if (PVO_WIRED_P(pvo)) {
2283 pvo->pvo_vaddr &= ~PVO_WIRED;
2284 pm->pm_stats.wired_count--;
2285 }
2286 PMAP_PVO_CHECK(pvo); /* sanity check */
2287 }
2288 pmap_interrupts_restore(msr);
2289 PMAP_UNLOCK();
2290 }
2291
2292 /*
2293 * Lower the protection on the specified physical page.
2294 */
2295 void
2296 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2297 {
2298 struct pvo_head *pvo_head, pvol;
2299 struct pvo_entry *pvo, *next_pvo;
2300 volatile struct pte *pt;
2301 register_t msr;
2302
2303 PMAP_LOCK();
2304
2305 KASSERT(prot != VM_PROT_ALL);
2306 LIST_INIT(&pvol);
2307 msr = pmap_interrupts_off();
2308
2309 /*
2310 * When UVM reuses a page, it does a pmap_page_protect with
2311 * VM_PROT_NONE. At that point, we can clear the exec flag
2312 * since we know the page will have different contents.
2313 */
2314 if ((prot & VM_PROT_READ) == 0) {
2315 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2316 VM_PAGE_TO_PHYS(pg));
2317 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2318 PMAPCOUNT(exec_uncached_page_protect);
2319 pmap_attr_clear(pg, PTE_EXEC);
2320 }
2321 }
2322
2323 pvo_head = vm_page_to_pvoh(pg);
2324 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2325 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2326 PMAP_PVO_CHECK(pvo); /* sanity check */
2327
2328 /*
2329 * Downgrading to no mapping at all, we just remove the entry.
2330 */
2331 if ((prot & VM_PROT_READ) == 0) {
2332 pmap_pvo_remove(pvo, -1, &pvol);
2333 continue;
2334 }
2335
2336 /*
2337 * If EXEC permission is being revoked, just clear the
2338 * flag in the PVO.
2339 */
2340 if ((prot & VM_PROT_EXECUTE) == 0)
2341 pvo_clear_exec(pvo);
2342
2343 /*
2344 * If this entry is already RO, don't diddle with the
2345 * page table.
2346 */
2347 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2348 PMAP_PVO_CHECK(pvo);
2349 continue;
2350 }
2351
2352 /*
2353 * Grab the PTE before the we diddle the bits so
2354 * pvo_to_pte can verify the pte contents are as
2355 * expected.
2356 */
2357 pt = pmap_pvo_to_pte(pvo, -1);
2358 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2359 pvo->pvo_pte.pte_lo |= PTE_BR;
2360 if (pt != NULL) {
2361 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2362 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2363 PMAPCOUNT(ptes_changed);
2364 }
2365 PMAP_PVO_CHECK(pvo); /* sanity check */
2366 }
2367 pmap_interrupts_restore(msr);
2368 pmap_pvo_free_list(&pvol);
2369
2370 PMAP_UNLOCK();
2371 }
2372
2373 /*
2374 * Activate the address space for the specified process. If the process
2375 * is the current process, load the new MMU context.
2376 */
2377 void
2378 pmap_activate(struct lwp *l)
2379 {
2380 struct pcb *pcb = lwp_getpcb(l);
2381 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2382
2383 DPRINTFN(ACTIVATE,
2384 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2385
2386 /*
2387 * XXX Normally performed in cpu_lwp_fork().
2388 */
2389 pcb->pcb_pm = pmap;
2390
2391 /*
2392 * In theory, the SR registers need only be valid on return
2393 * to user space wait to do them there.
2394 */
2395 if (l == curlwp) {
2396 /* Store pointer to new current pmap. */
2397 curpm = pmap;
2398 }
2399 }
2400
2401 /*
2402 * Deactivate the specified process's address space.
2403 */
2404 void
2405 pmap_deactivate(struct lwp *l)
2406 {
2407 }
2408
2409 bool
2410 pmap_query_bit(struct vm_page *pg, int ptebit)
2411 {
2412 struct pvo_entry *pvo;
2413 volatile struct pte *pt;
2414 register_t msr;
2415
2416 PMAP_LOCK();
2417
2418 if (pmap_attr_fetch(pg) & ptebit) {
2419 PMAP_UNLOCK();
2420 return true;
2421 }
2422
2423 msr = pmap_interrupts_off();
2424 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2425 PMAP_PVO_CHECK(pvo); /* sanity check */
2426 /*
2427 * See if we saved the bit off. If so cache, it and return
2428 * success.
2429 */
2430 if (pvo->pvo_pte.pte_lo & ptebit) {
2431 pmap_attr_save(pg, ptebit);
2432 PMAP_PVO_CHECK(pvo); /* sanity check */
2433 pmap_interrupts_restore(msr);
2434 PMAP_UNLOCK();
2435 return true;
2436 }
2437 }
2438 /*
2439 * No luck, now go thru the hard part of looking at the ptes
2440 * themselves. Sync so any pending REF/CHG bits are flushed
2441 * to the PTEs.
2442 */
2443 SYNC();
2444 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2445 PMAP_PVO_CHECK(pvo); /* sanity check */
2446 /*
2447 * See if this pvo have a valid PTE. If so, fetch the
2448 * REF/CHG bits from the valid PTE. If the appropriate
2449 * ptebit is set, cache, it and return success.
2450 */
2451 pt = pmap_pvo_to_pte(pvo, -1);
2452 if (pt != NULL) {
2453 pmap_pte_synch(pt, &pvo->pvo_pte);
2454 if (pvo->pvo_pte.pte_lo & ptebit) {
2455 pmap_attr_save(pg, ptebit);
2456 PMAP_PVO_CHECK(pvo); /* sanity check */
2457 pmap_interrupts_restore(msr);
2458 PMAP_UNLOCK();
2459 return true;
2460 }
2461 }
2462 }
2463 pmap_interrupts_restore(msr);
2464 PMAP_UNLOCK();
2465 return false;
2466 }
2467
2468 bool
2469 pmap_clear_bit(struct vm_page *pg, int ptebit)
2470 {
2471 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2472 struct pvo_entry *pvo;
2473 volatile struct pte *pt;
2474 register_t msr;
2475 int rv = 0;
2476
2477 PMAP_LOCK();
2478 msr = pmap_interrupts_off();
2479
2480 /*
2481 * Fetch the cache value
2482 */
2483 rv |= pmap_attr_fetch(pg);
2484
2485 /*
2486 * Clear the cached value.
2487 */
2488 pmap_attr_clear(pg, ptebit);
2489
2490 /*
2491 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2492 * can reset the right ones). Note that since the pvo entries and
2493 * list heads are accessed via BAT0 and are never placed in the
2494 * page table, we don't have to worry about further accesses setting
2495 * the REF/CHG bits.
2496 */
2497 SYNC();
2498
2499 /*
2500 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2501 * valid PTE. If so, clear the ptebit from the valid PTE.
2502 */
2503 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2504 PMAP_PVO_CHECK(pvo); /* sanity check */
2505 pt = pmap_pvo_to_pte(pvo, -1);
2506 if (pt != NULL) {
2507 /*
2508 * Only sync the PTE if the bit we are looking
2509 * for is not already set.
2510 */
2511 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2512 pmap_pte_synch(pt, &pvo->pvo_pte);
2513 /*
2514 * If the bit we are looking for was already set,
2515 * clear that bit in the pte.
2516 */
2517 if (pvo->pvo_pte.pte_lo & ptebit)
2518 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2519 }
2520 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2521 pvo->pvo_pte.pte_lo &= ~ptebit;
2522 PMAP_PVO_CHECK(pvo); /* sanity check */
2523 }
2524 pmap_interrupts_restore(msr);
2525
2526 /*
2527 * If we are clearing the modify bit and this page was marked EXEC
2528 * and the user of the page thinks the page was modified, then we
2529 * need to clean it from the icache if it's mapped or clear the EXEC
2530 * bit if it's not mapped. The page itself might not have the CHG
2531 * bit set if the modification was done via DMA to the page.
2532 */
2533 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2534 if (LIST_EMPTY(pvoh)) {
2535 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2536 VM_PAGE_TO_PHYS(pg));
2537 pmap_attr_clear(pg, PTE_EXEC);
2538 PMAPCOUNT(exec_uncached_clear_modify);
2539 } else {
2540 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2541 VM_PAGE_TO_PHYS(pg));
2542 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2543 PMAPCOUNT(exec_synced_clear_modify);
2544 }
2545 }
2546 PMAP_UNLOCK();
2547 return (rv & ptebit) != 0;
2548 }
2549
2550 void
2551 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2552 {
2553 struct pvo_entry *pvo;
2554 size_t offset = va & ADDR_POFF;
2555 int s;
2556
2557 PMAP_LOCK();
2558 s = splvm();
2559 while (len > 0) {
2560 size_t seglen = PAGE_SIZE - offset;
2561 if (seglen > len)
2562 seglen = len;
2563 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2564 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2565 pmap_syncicache(
2566 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2567 PMAP_PVO_CHECK(pvo);
2568 }
2569 va += seglen;
2570 len -= seglen;
2571 offset = 0;
2572 }
2573 splx(s);
2574 PMAP_UNLOCK();
2575 }
2576
2577 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2578 void
2579 pmap_pte_print(volatile struct pte *pt)
2580 {
2581 printf("PTE %p: ", pt);
2582
2583 #if defined(PMAP_OEA)
2584 /* High word: */
2585 printf("%#" _PRIxpte ": [", pt->pte_hi);
2586 #else
2587 printf("%#" _PRIxpte ": [", pt->pte_hi);
2588 #endif /* PMAP_OEA */
2589
2590 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2591 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2592
2593 printf("%#" _PRIxpte " %#" _PRIxpte "",
2594 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2595 pt->pte_hi & PTE_API);
2596 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2597 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2598 #else
2599 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2600 #endif /* PMAP_OEA */
2601
2602 /* Low word: */
2603 #if defined (PMAP_OEA)
2604 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2605 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2606 #else
2607 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2608 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2609 #endif
2610 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2611 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2612 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2613 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2614 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2615 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2616 switch (pt->pte_lo & PTE_PP) {
2617 case PTE_BR: printf("br]\n"); break;
2618 case PTE_BW: printf("bw]\n"); break;
2619 case PTE_SO: printf("so]\n"); break;
2620 case PTE_SW: printf("sw]\n"); break;
2621 }
2622 }
2623 #endif
2624
2625 #if defined(DDB)
2626 void
2627 pmap_pteg_check(void)
2628 {
2629 volatile struct pte *pt;
2630 int i;
2631 int ptegidx;
2632 u_int p_valid = 0;
2633 u_int s_valid = 0;
2634 u_int invalid = 0;
2635
2636 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2637 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2638 if (pt->pte_hi & PTE_VALID) {
2639 if (pt->pte_hi & PTE_HID)
2640 s_valid++;
2641 else
2642 {
2643 p_valid++;
2644 }
2645 } else
2646 invalid++;
2647 }
2648 }
2649 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2650 p_valid, p_valid, s_valid, s_valid,
2651 invalid, invalid);
2652 }
2653
2654 void
2655 pmap_print_mmuregs(void)
2656 {
2657 int i;
2658 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2659 u_int cpuvers;
2660 #endif
2661 #ifndef PMAP_OEA64
2662 vaddr_t addr;
2663 register_t soft_sr[16];
2664 #endif
2665 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2666 struct bat soft_ibat[4];
2667 struct bat soft_dbat[4];
2668 #endif
2669 paddr_t sdr1;
2670
2671 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2672 cpuvers = MFPVR() >> 16;
2673 #endif
2674 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2675 #ifndef PMAP_OEA64
2676 addr = 0;
2677 for (i = 0; i < 16; i++) {
2678 soft_sr[i] = MFSRIN(addr);
2679 addr += (1 << ADDR_SR_SHFT);
2680 }
2681 #endif
2682
2683 #if defined (PMAP_OEA) || defined (PMAP_OEA_BRIDGE)
2684 /* read iBAT (601: uBAT) registers */
2685 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2686 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2687 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2688 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2689 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2690 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2691 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2692 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2693
2694
2695 if (cpuvers != MPC601) {
2696 /* read dBAT registers */
2697 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2698 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2699 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2700 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2701 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2702 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2703 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2704 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2705 }
2706 #endif
2707
2708 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2709 #ifndef PMAP_OEA64
2710 printf("SR[]:\t");
2711 for (i = 0; i < 4; i++)
2712 printf("0x%08lx, ", soft_sr[i]);
2713 printf("\n\t");
2714 for ( ; i < 8; i++)
2715 printf("0x%08lx, ", soft_sr[i]);
2716 printf("\n\t");
2717 for ( ; i < 12; i++)
2718 printf("0x%08lx, ", soft_sr[i]);
2719 printf("\n\t");
2720 for ( ; i < 16; i++)
2721 printf("0x%08lx, ", soft_sr[i]);
2722 printf("\n");
2723 #endif
2724
2725 #if defined(PMAP_OEA) || defined(PMAP_OEA_BRIDGE)
2726 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2727 for (i = 0; i < 4; i++) {
2728 printf("0x%08lx 0x%08lx, ",
2729 soft_ibat[i].batu, soft_ibat[i].batl);
2730 if (i == 1)
2731 printf("\n\t");
2732 }
2733 if (cpuvers != MPC601) {
2734 printf("\ndBAT[]:\t");
2735 for (i = 0; i < 4; i++) {
2736 printf("0x%08lx 0x%08lx, ",
2737 soft_dbat[i].batu, soft_dbat[i].batl);
2738 if (i == 1)
2739 printf("\n\t");
2740 }
2741 }
2742 printf("\n");
2743 #endif /* PMAP_OEA... */
2744 }
2745
2746 void
2747 pmap_print_pte(pmap_t pm, vaddr_t va)
2748 {
2749 struct pvo_entry *pvo;
2750 volatile struct pte *pt;
2751 int pteidx;
2752
2753 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2754 if (pvo != NULL) {
2755 pt = pmap_pvo_to_pte(pvo, pteidx);
2756 if (pt != NULL) {
2757 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2758 va, pt,
2759 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2760 pt->pte_hi, pt->pte_lo);
2761 } else {
2762 printf("No valid PTE found\n");
2763 }
2764 } else {
2765 printf("Address not in pmap\n");
2766 }
2767 }
2768
2769 void
2770 pmap_pteg_dist(void)
2771 {
2772 struct pvo_entry *pvo;
2773 int ptegidx;
2774 int depth;
2775 int max_depth = 0;
2776 unsigned int depths[64];
2777
2778 memset(depths, 0, sizeof(depths));
2779 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2780 depth = 0;
2781 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2782 depth++;
2783 }
2784 if (depth > max_depth)
2785 max_depth = depth;
2786 if (depth > 63)
2787 depth = 63;
2788 depths[depth]++;
2789 }
2790
2791 for (depth = 0; depth < 64; depth++) {
2792 printf(" [%2d]: %8u", depth, depths[depth]);
2793 if ((depth & 3) == 3)
2794 printf("\n");
2795 if (depth == max_depth)
2796 break;
2797 }
2798 if ((depth & 3) != 3)
2799 printf("\n");
2800 printf("Max depth found was %d\n", max_depth);
2801 }
2802 #endif /* DEBUG */
2803
2804 #if defined(PMAPCHECK) || defined(DEBUG)
2805 void
2806 pmap_pvo_verify(void)
2807 {
2808 int ptegidx;
2809 int s;
2810
2811 s = splvm();
2812 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2813 struct pvo_entry *pvo;
2814 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2815 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2816 panic("pmap_pvo_verify: invalid pvo %p "
2817 "on list %#x", pvo, ptegidx);
2818 pmap_pvo_check(pvo);
2819 }
2820 }
2821 splx(s);
2822 }
2823 #endif /* PMAPCHECK */
2824
2825
2826 void *
2827 pmap_pool_ualloc(struct pool *pp, int flags)
2828 {
2829 struct pvo_page *pvop;
2830
2831 if (uvm.page_init_done != true) {
2832 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2833 }
2834
2835 PMAP_LOCK();
2836 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2837 if (pvop != NULL) {
2838 pmap_upvop_free--;
2839 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2840 PMAP_UNLOCK();
2841 return pvop;
2842 }
2843 PMAP_UNLOCK();
2844 return pmap_pool_malloc(pp, flags);
2845 }
2846
2847 void *
2848 pmap_pool_malloc(struct pool *pp, int flags)
2849 {
2850 struct pvo_page *pvop;
2851 struct vm_page *pg;
2852
2853 PMAP_LOCK();
2854 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2855 if (pvop != NULL) {
2856 pmap_mpvop_free--;
2857 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2858 PMAP_UNLOCK();
2859 return pvop;
2860 }
2861 PMAP_UNLOCK();
2862 again:
2863 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2864 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2865 if (__predict_false(pg == NULL)) {
2866 if (flags & PR_WAITOK) {
2867 uvm_wait("plpg");
2868 goto again;
2869 } else {
2870 return (0);
2871 }
2872 }
2873 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2874 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2875 }
2876
2877 void
2878 pmap_pool_ufree(struct pool *pp, void *va)
2879 {
2880 struct pvo_page *pvop;
2881 #if 0
2882 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2883 pmap_pool_mfree(va, size, tag);
2884 return;
2885 }
2886 #endif
2887 PMAP_LOCK();
2888 pvop = va;
2889 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2890 pmap_upvop_free++;
2891 if (pmap_upvop_free > pmap_upvop_maxfree)
2892 pmap_upvop_maxfree = pmap_upvop_free;
2893 PMAP_UNLOCK();
2894 }
2895
2896 void
2897 pmap_pool_mfree(struct pool *pp, void *va)
2898 {
2899 struct pvo_page *pvop;
2900
2901 PMAP_LOCK();
2902 pvop = va;
2903 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2904 pmap_mpvop_free++;
2905 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2906 pmap_mpvop_maxfree = pmap_mpvop_free;
2907 PMAP_UNLOCK();
2908 #if 0
2909 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2910 #endif
2911 }
2912
2913 /*
2914 * This routine in bootstraping to steal to-be-managed memory (which will
2915 * then be unmanaged). We use it to grab from the first 256MB for our
2916 * pmap needs and above 256MB for other stuff.
2917 */
2918 vaddr_t
2919 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2920 {
2921 vsize_t size;
2922 vaddr_t va;
2923 paddr_t start, end, pa = 0;
2924 int npgs, freelist;
2925 uvm_physseg_t bank;
2926
2927 if (uvm.page_init_done == true)
2928 panic("pmap_steal_memory: called _after_ bootstrap");
2929
2930 *vstartp = VM_MIN_KERNEL_ADDRESS;
2931 *vendp = VM_MAX_KERNEL_ADDRESS;
2932
2933 size = round_page(vsize);
2934 npgs = atop(size);
2935
2936 /*
2937 * PA 0 will never be among those given to UVM so we can use it
2938 * to indicate we couldn't steal any memory.
2939 */
2940
2941 for (bank = uvm_physseg_get_first();
2942 uvm_physseg_valid_p(bank);
2943 bank = uvm_physseg_get_next(bank)) {
2944
2945 freelist = uvm_physseg_get_free_list(bank);
2946 start = uvm_physseg_get_start(bank);
2947 end = uvm_physseg_get_end(bank);
2948
2949 if (freelist == VM_FREELIST_FIRST256 &&
2950 (end - start) >= npgs) {
2951 pa = ptoa(start);
2952 break;
2953 }
2954 }
2955
2956 if (pa == 0)
2957 panic("pmap_steal_memory: no approriate memory to steal!");
2958
2959 uvm_physseg_unplug(start, npgs);
2960
2961 va = (vaddr_t) pa;
2962 memset((void *) va, 0, size);
2963 pmap_pages_stolen += npgs;
2964 #ifdef DEBUG
2965 if (pmapdebug && npgs > 1) {
2966 u_int cnt = 0;
2967 for (bank = uvm_physseg_get_first();
2968 uvm_physseg_valid_p(bank);
2969 bank = uvm_physseg_get_next(bank)) {
2970 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2971 }
2972 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2973 npgs, pmap_pages_stolen, cnt);
2974 }
2975 #endif
2976
2977 return va;
2978 }
2979
2980 /*
2981 * Find a chuck of memory with right size and alignment.
2982 */
2983 paddr_t
2984 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2985 {
2986 struct mem_region *mp;
2987 paddr_t s, e;
2988 int i, j;
2989
2990 size = round_page(size);
2991
2992 DPRINTFN(BOOT,
2993 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2994 size, alignment, at_end);
2995
2996 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2997 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
2998 alignment);
2999
3000 if (at_end) {
3001 if (alignment != PAGE_SIZE)
3002 panic("pmap_boot_find_memory: invalid ending "
3003 "alignment %#" _PRIxpa, alignment);
3004
3005 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3006 s = mp->start + mp->size - size;
3007 if (s >= mp->start && mp->size >= size) {
3008 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3009 DPRINTFN(BOOT,
3010 "pmap_boot_find_memory: b-avail[%d] start "
3011 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3012 mp->start, mp->size);
3013 mp->size -= size;
3014 DPRINTFN(BOOT,
3015 "pmap_boot_find_memory: a-avail[%d] start "
3016 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3017 mp->start, mp->size);
3018 return s;
3019 }
3020 }
3021 panic("pmap_boot_find_memory: no available memory");
3022 }
3023
3024 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3025 s = (mp->start + alignment - 1) & ~(alignment-1);
3026 e = s + size;
3027
3028 /*
3029 * Is the calculated region entirely within the region?
3030 */
3031 if (s < mp->start || e > mp->start + mp->size)
3032 continue;
3033
3034 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3035 if (s == mp->start) {
3036 /*
3037 * If the block starts at the beginning of region,
3038 * adjust the size & start. (the region may now be
3039 * zero in length)
3040 */
3041 DPRINTFN(BOOT,
3042 "pmap_boot_find_memory: b-avail[%d] start "
3043 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3044 mp->start += size;
3045 mp->size -= size;
3046 DPRINTFN(BOOT,
3047 "pmap_boot_find_memory: a-avail[%d] start "
3048 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3049 } else if (e == mp->start + mp->size) {
3050 /*
3051 * If the block starts at the beginning of region,
3052 * adjust only the size.
3053 */
3054 DPRINTFN(BOOT,
3055 "pmap_boot_find_memory: b-avail[%d] start "
3056 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3057 mp->size -= size;
3058 DPRINTFN(BOOT,
3059 "pmap_boot_find_memory: a-avail[%d] start "
3060 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3061 } else {
3062 /*
3063 * Block is in the middle of the region, so we
3064 * have to split it in two.
3065 */
3066 for (j = avail_cnt; j > i + 1; j--) {
3067 avail[j] = avail[j-1];
3068 }
3069 DPRINTFN(BOOT,
3070 "pmap_boot_find_memory: b-avail[%d] start "
3071 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3072 mp[1].start = e;
3073 mp[1].size = mp[0].start + mp[0].size - e;
3074 mp[0].size = s - mp[0].start;
3075 avail_cnt++;
3076 for (; i < avail_cnt; i++) {
3077 DPRINTFN(BOOT,
3078 "pmap_boot_find_memory: a-avail[%d] "
3079 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3080 avail[i].start, avail[i].size);
3081 }
3082 }
3083 KASSERT(s == (uintptr_t) s);
3084 return s;
3085 }
3086 panic("pmap_boot_find_memory: not enough memory for "
3087 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3088 }
3089
3090 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3091 #if defined (PMAP_OEA64_BRIDGE)
3092 int
3093 pmap_setup_segment0_map(int use_large_pages, ...)
3094 {
3095 vaddr_t va, va_end;
3096
3097 register_t pte_lo = 0x0;
3098 int ptegidx = 0;
3099 struct pte pte;
3100 va_list ap;
3101
3102 /* Coherent + Supervisor RW, no user access */
3103 pte_lo = PTE_M;
3104
3105 /* XXXSL
3106 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3107 * these have to take priority.
3108 */
3109 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3110 ptegidx = va_to_pteg(pmap_kernel(), va);
3111 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3112 (void)pmap_pte_insert(ptegidx, &pte);
3113 }
3114
3115 va_start(ap, use_large_pages);
3116 while (1) {
3117 paddr_t pa;
3118 size_t size;
3119
3120 va = va_arg(ap, vaddr_t);
3121
3122 if (va == 0)
3123 break;
3124
3125 pa = va_arg(ap, paddr_t);
3126 size = va_arg(ap, size_t);
3127
3128 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3129 #if 0
3130 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3131 #endif
3132 ptegidx = va_to_pteg(pmap_kernel(), va);
3133 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3134 (void)pmap_pte_insert(ptegidx, &pte);
3135 }
3136 }
3137 va_end(ap);
3138
3139 TLBSYNC();
3140 SYNC();
3141 return (0);
3142 }
3143 #endif /* PMAP_OEA64_BRIDGE */
3144
3145 /*
3146 * This is not part of the defined PMAP interface and is specific to the
3147 * PowerPC architecture. This is called during initppc, before the system
3148 * is really initialized.
3149 */
3150 void
3151 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3152 {
3153 struct mem_region *mp, tmp;
3154 paddr_t s, e;
3155 psize_t size;
3156 int i, j;
3157
3158 /*
3159 * Get memory.
3160 */
3161 mem_regions(&mem, &avail);
3162 #if defined(DEBUG)
3163 if (pmapdebug & PMAPDEBUG_BOOT) {
3164 printf("pmap_bootstrap: memory configuration:\n");
3165 for (mp = mem; mp->size; mp++) {
3166 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3167 mp->start, mp->size);
3168 }
3169 for (mp = avail; mp->size; mp++) {
3170 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3171 mp->start, mp->size);
3172 }
3173 }
3174 #endif
3175
3176 /*
3177 * Find out how much physical memory we have and in how many chunks.
3178 */
3179 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3180 if (mp->start >= pmap_memlimit)
3181 continue;
3182 if (mp->start + mp->size > pmap_memlimit) {
3183 size = pmap_memlimit - mp->start;
3184 physmem += btoc(size);
3185 } else {
3186 physmem += btoc(mp->size);
3187 }
3188 mem_cnt++;
3189 }
3190
3191 /*
3192 * Count the number of available entries.
3193 */
3194 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3195 avail_cnt++;
3196
3197 /*
3198 * Page align all regions.
3199 */
3200 kernelstart = trunc_page(kernelstart);
3201 kernelend = round_page(kernelend);
3202 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3203 s = round_page(mp->start);
3204 mp->size -= (s - mp->start);
3205 mp->size = trunc_page(mp->size);
3206 mp->start = s;
3207 e = mp->start + mp->size;
3208
3209 DPRINTFN(BOOT,
3210 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3211 i, mp->start, mp->size);
3212
3213 /*
3214 * Don't allow the end to run beyond our artificial limit
3215 */
3216 if (e > pmap_memlimit)
3217 e = pmap_memlimit;
3218
3219 /*
3220 * Is this region empty or strange? skip it.
3221 */
3222 if (e <= s) {
3223 mp->start = 0;
3224 mp->size = 0;
3225 continue;
3226 }
3227
3228 /*
3229 * Does this overlap the beginning of kernel?
3230 * Does extend past the end of the kernel?
3231 */
3232 else if (s < kernelstart && e > kernelstart) {
3233 if (e > kernelend) {
3234 avail[avail_cnt].start = kernelend;
3235 avail[avail_cnt].size = e - kernelend;
3236 avail_cnt++;
3237 }
3238 mp->size = kernelstart - s;
3239 }
3240 /*
3241 * Check whether this region overlaps the end of the kernel.
3242 */
3243 else if (s < kernelend && e > kernelend) {
3244 mp->start = kernelend;
3245 mp->size = e - kernelend;
3246 }
3247 /*
3248 * Look whether this regions is completely inside the kernel.
3249 * Nuke it if it does.
3250 */
3251 else if (s >= kernelstart && e <= kernelend) {
3252 mp->start = 0;
3253 mp->size = 0;
3254 }
3255 /*
3256 * If the user imposed a memory limit, enforce it.
3257 */
3258 else if (s >= pmap_memlimit) {
3259 mp->start = -PAGE_SIZE; /* let's know why */
3260 mp->size = 0;
3261 }
3262 else {
3263 mp->start = s;
3264 mp->size = e - s;
3265 }
3266 DPRINTFN(BOOT,
3267 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3268 i, mp->start, mp->size);
3269 }
3270
3271 /*
3272 * Move (and uncount) all the null return to the end.
3273 */
3274 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3275 if (mp->size == 0) {
3276 tmp = avail[i];
3277 avail[i] = avail[--avail_cnt];
3278 avail[avail_cnt] = avail[i];
3279 }
3280 }
3281
3282 /*
3283 * (Bubble)sort them into ascending order.
3284 */
3285 for (i = 0; i < avail_cnt; i++) {
3286 for (j = i + 1; j < avail_cnt; j++) {
3287 if (avail[i].start > avail[j].start) {
3288 tmp = avail[i];
3289 avail[i] = avail[j];
3290 avail[j] = tmp;
3291 }
3292 }
3293 }
3294
3295 /*
3296 * Make sure they don't overlap.
3297 */
3298 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3299 if (mp[0].start + mp[0].size > mp[1].start) {
3300 mp[0].size = mp[1].start - mp[0].start;
3301 }
3302 DPRINTFN(BOOT,
3303 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3304 i, mp->start, mp->size);
3305 }
3306 DPRINTFN(BOOT,
3307 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3308 i, mp->start, mp->size);
3309
3310 #ifdef PTEGCOUNT
3311 pmap_pteg_cnt = PTEGCOUNT;
3312 #else /* PTEGCOUNT */
3313
3314 pmap_pteg_cnt = 0x1000;
3315
3316 while (pmap_pteg_cnt < physmem)
3317 pmap_pteg_cnt <<= 1;
3318
3319 pmap_pteg_cnt >>= 1;
3320 #endif /* PTEGCOUNT */
3321
3322 #ifdef DEBUG
3323 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3324 #endif
3325
3326 /*
3327 * Find suitably aligned memory for PTEG hash table.
3328 */
3329 size = pmap_pteg_cnt * sizeof(struct pteg);
3330 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3331
3332 #ifdef DEBUG
3333 DPRINTFN(BOOT,
3334 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3335 #endif
3336
3337
3338 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3339 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3340 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3341 pmap_pteg_table, size);
3342 #endif
3343
3344 memset(__UNVOLATILE(pmap_pteg_table), 0,
3345 pmap_pteg_cnt * sizeof(struct pteg));
3346 pmap_pteg_mask = pmap_pteg_cnt - 1;
3347
3348 /*
3349 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3350 * with pages. So we just steal them before giving them to UVM.
3351 */
3352 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3353 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3354 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3355 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3356 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3357 pmap_pvo_table, size);
3358 #endif
3359
3360 for (i = 0; i < pmap_pteg_cnt; i++)
3361 TAILQ_INIT(&pmap_pvo_table[i]);
3362
3363 #ifndef MSGBUFADDR
3364 /*
3365 * Allocate msgbuf in high memory.
3366 */
3367 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3368 #endif
3369
3370 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3371 paddr_t pfstart = atop(mp->start);
3372 paddr_t pfend = atop(mp->start + mp->size);
3373 if (mp->size == 0)
3374 continue;
3375 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3376 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3377 VM_FREELIST_FIRST256);
3378 } else if (mp->start >= SEGMENT_LENGTH) {
3379 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3380 VM_FREELIST_DEFAULT);
3381 } else {
3382 pfend = atop(SEGMENT_LENGTH);
3383 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3384 VM_FREELIST_FIRST256);
3385 pfstart = atop(SEGMENT_LENGTH);
3386 pfend = atop(mp->start + mp->size);
3387 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3388 VM_FREELIST_DEFAULT);
3389 }
3390 }
3391
3392 /*
3393 * Make sure kernel vsid is allocated as well as VSID 0.
3394 */
3395 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3396 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3397 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[0] |= 1;
3400
3401 /*
3402 * Initialize kernel pmap and hardware.
3403 */
3404
3405 /* PMAP_OEA64_BRIDGE does support these instructions */
3406 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3407 for (i = 0; i < 16; i++) {
3408 #if defined(PPC_OEA601)
3409 /* XXX wedges for segment register 0xf , so set later */
3410 if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3411 continue;
3412 #endif
3413 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3414 __asm volatile ("mtsrin %0,%1"
3415 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3416 }
3417
3418 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3419 __asm volatile ("mtsr %0,%1"
3420 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3421 #ifdef KERNEL2_SR
3422 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3423 __asm volatile ("mtsr %0,%1"
3424 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3425 #endif
3426 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3427 #if defined (PMAP_OEA)
3428 for (i = 0; i < 16; i++) {
3429 if (iosrtable[i] & SR601_T) {
3430 pmap_kernel()->pm_sr[i] = iosrtable[i];
3431 __asm volatile ("mtsrin %0,%1"
3432 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3433 }
3434 }
3435 __asm volatile ("sync; mtsdr1 %0; isync"
3436 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3437 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3438 __asm __volatile ("sync; mtsdr1 %0; isync"
3439 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3440 #endif
3441 tlbia();
3442
3443 #ifdef ALTIVEC
3444 pmap_use_altivec = cpu_altivec;
3445 #endif
3446
3447 #ifdef DEBUG
3448 if (pmapdebug & PMAPDEBUG_BOOT) {
3449 u_int cnt;
3450 uvm_physseg_t bank;
3451 char pbuf[9];
3452 for (cnt = 0, bank = uvm_physseg_get_first();
3453 uvm_physseg_valid_p(bank);
3454 bank = uvm_physseg_get_next(bank)) {
3455 cnt += uvm_physseg_get_avail_end(bank) -
3456 uvm_physseg_get_avail_start(bank);
3457 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3458 bank,
3459 ptoa(uvm_physseg_get_avail_start(bank)),
3460 ptoa(uvm_physseg_get_avail_end(bank)),
3461 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3462 }
3463 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3464 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3465 pbuf, cnt);
3466 }
3467 #endif
3468
3469 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3470 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3471 &pmap_pool_uallocator, IPL_VM);
3472
3473 pool_setlowat(&pmap_upvo_pool, 252);
3474
3475 pool_init(&pmap_pool, sizeof(struct pmap),
3476 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3477 IPL_NONE);
3478
3479 #if defined(PMAP_NEED_MAPKERNEL)
3480 {
3481 struct pmap *pm = pmap_kernel();
3482 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3483 extern int etext[], kernel_text[];
3484 vaddr_t va, va_etext = (paddr_t) etext;
3485 #endif
3486 paddr_t pa, pa_end;
3487 register_t sr;
3488 struct pte pt;
3489 unsigned int ptegidx;
3490 int bank;
3491
3492 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3493 pm->pm_sr[0] = sr;
3494
3495 for (bank = 0; bank < vm_nphysseg; bank++) {
3496 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3497 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3498 for (; pa < pa_end; pa += PAGE_SIZE) {
3499 ptegidx = va_to_pteg(pm, pa);
3500 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3501 pmap_pte_insert(ptegidx, &pt);
3502 }
3503 }
3504
3505 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3506 va = (vaddr_t) kernel_text;
3507
3508 for (pa = kernelstart; va < va_etext;
3509 pa += PAGE_SIZE, va += PAGE_SIZE) {
3510 ptegidx = va_to_pteg(pm, va);
3511 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3512 pmap_pte_insert(ptegidx, &pt);
3513 }
3514
3515 for (; pa < kernelend;
3516 pa += PAGE_SIZE, va += PAGE_SIZE) {
3517 ptegidx = va_to_pteg(pm, va);
3518 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3519 pmap_pte_insert(ptegidx, &pt);
3520 }
3521
3522 for (va = 0, pa = 0; va < kernelstart;
3523 pa += PAGE_SIZE, va += PAGE_SIZE) {
3524 ptegidx = va_to_pteg(pm, va);
3525 if (va < 0x3000)
3526 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3527 else
3528 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3529 pmap_pte_insert(ptegidx, &pt);
3530 }
3531 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3532 pa += PAGE_SIZE, va += PAGE_SIZE) {
3533 ptegidx = va_to_pteg(pm, va);
3534 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3535 pmap_pte_insert(ptegidx, &pt);
3536 }
3537 #endif
3538
3539 __asm volatile ("mtsrin %0,%1"
3540 :: "r"(sr), "r"(kernelstart));
3541 }
3542 #endif
3543
3544 #if defined(PMAPDEBUG)
3545 if ( pmapdebug )
3546 pmap_print_mmuregs();
3547 #endif
3548 }
3549