Home | History | Annotate | Line # | Download | only in oea
pmap.c revision 1.98
      1 /*	$NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $	*/
      2 /*-
      3  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
      8  *
      9  * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
     10  * of Kyma Systems LLC.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
     36  * Copyright (C) 1995, 1996 TooLs GmbH.
     37  * All rights reserved.
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *	This product includes software developed by TooLs GmbH.
     50  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     51  *    derived from this software without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     54  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     55  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     56  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     57  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     58  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     59  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     60  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     61  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     62  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $");
     67 
     68 #define	PMAP_NOOPNAMES
     69 
     70 #ifdef _KERNEL_OPT
     71 #include "opt_altivec.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_pmap.h"
     74 #include "opt_ppcarch.h"
     75 #endif
     76 
     77 #include <sys/param.h>
     78 #include <sys/proc.h>
     79 #include <sys/pool.h>
     80 #include <sys/queue.h>
     81 #include <sys/device.h>		/* for evcnt */
     82 #include <sys/systm.h>
     83 #include <sys/atomic.h>
     84 
     85 #include <uvm/uvm.h>
     86 #include <uvm/uvm_physseg.h>
     87 
     88 #include <machine/powerpc.h>
     89 #include <powerpc/bat.h>
     90 #include <powerpc/pcb.h>
     91 #include <powerpc/psl.h>
     92 #include <powerpc/spr.h>
     93 #include <powerpc/oea/spr.h>
     94 #include <powerpc/oea/sr_601.h>
     95 
     96 #ifdef ALTIVEC
     97 extern int pmap_use_altivec;
     98 #endif
     99 
    100 #ifdef PMAP_MEMLIMIT
    101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
    102 #else
    103 static paddr_t pmap_memlimit = -PAGE_SIZE;		/* there is no limit */
    104 #endif
    105 
    106 extern struct pmap kernel_pmap_;
    107 static unsigned int pmap_pages_stolen;
    108 static u_long pmap_pte_valid;
    109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    110 static u_long pmap_pvo_enter_depth;
    111 static u_long pmap_pvo_remove_depth;
    112 #endif
    113 
    114 #ifndef MSGBUFADDR
    115 extern paddr_t msgbuf_paddr;
    116 #endif
    117 
    118 static struct mem_region *mem, *avail;
    119 static u_int mem_cnt, avail_cnt;
    120 
    121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
    122 # define	PMAP_OEA 1
    123 #endif
    124 
    125 #if defined(PMAP_OEA)
    126 #define	_PRIxpte	"lx"
    127 #else
    128 #define	_PRIxpte	PRIx64
    129 #endif
    130 #define	_PRIxpa		"lx"
    131 #define	_PRIxva		"lx"
    132 #define	_PRIsr  	"lx"
    133 
    134 #ifdef PMAP_NEEDS_FIXUP
    135 #if defined(PMAP_OEA)
    136 #define	PMAPNAME(name)	pmap32_##name
    137 #elif defined(PMAP_OEA64)
    138 #define	PMAPNAME(name)	pmap64_##name
    139 #elif defined(PMAP_OEA64_BRIDGE)
    140 #define	PMAPNAME(name)	pmap64bridge_##name
    141 #else
    142 #error unknown variant for pmap
    143 #endif
    144 #endif /* PMAP_NEEDS_FIXUP */
    145 
    146 #ifdef PMAPNAME
    147 #define	STATIC			static
    148 #define pmap_pte_spill		PMAPNAME(pte_spill)
    149 #define pmap_real_memory	PMAPNAME(real_memory)
    150 #define pmap_init		PMAPNAME(init)
    151 #define pmap_virtual_space	PMAPNAME(virtual_space)
    152 #define pmap_create		PMAPNAME(create)
    153 #define pmap_reference		PMAPNAME(reference)
    154 #define pmap_destroy		PMAPNAME(destroy)
    155 #define pmap_copy		PMAPNAME(copy)
    156 #define pmap_update		PMAPNAME(update)
    157 #define pmap_enter		PMAPNAME(enter)
    158 #define pmap_remove		PMAPNAME(remove)
    159 #define pmap_kenter_pa		PMAPNAME(kenter_pa)
    160 #define pmap_kremove		PMAPNAME(kremove)
    161 #define pmap_extract		PMAPNAME(extract)
    162 #define pmap_protect		PMAPNAME(protect)
    163 #define pmap_unwire		PMAPNAME(unwire)
    164 #define pmap_page_protect	PMAPNAME(page_protect)
    165 #define pmap_query_bit		PMAPNAME(query_bit)
    166 #define pmap_clear_bit		PMAPNAME(clear_bit)
    167 
    168 #define pmap_activate		PMAPNAME(activate)
    169 #define pmap_deactivate		PMAPNAME(deactivate)
    170 
    171 #define pmap_pinit		PMAPNAME(pinit)
    172 #define pmap_procwr		PMAPNAME(procwr)
    173 
    174 #define pmap_pool		PMAPNAME(pool)
    175 #define pmap_upvo_pool		PMAPNAME(upvo_pool)
    176 #define pmap_mpvo_pool		PMAPNAME(mpvo_pool)
    177 #define pmap_pvo_table		PMAPNAME(pvo_table)
    178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    179 #define pmap_pte_print		PMAPNAME(pte_print)
    180 #define pmap_pteg_check		PMAPNAME(pteg_check)
    181 #define pmap_print_mmruregs	PMAPNAME(print_mmuregs)
    182 #define pmap_print_pte		PMAPNAME(print_pte)
    183 #define pmap_pteg_dist		PMAPNAME(pteg_dist)
    184 #endif
    185 #if defined(DEBUG) || defined(PMAPCHECK)
    186 #define	pmap_pvo_verify		PMAPNAME(pvo_verify)
    187 #define pmapcheck		PMAPNAME(check)
    188 #endif
    189 #if defined(DEBUG) || defined(PMAPDEBUG)
    190 #define pmapdebug		PMAPNAME(debug)
    191 #endif
    192 #define pmap_steal_memory	PMAPNAME(steal_memory)
    193 #define pmap_bootstrap		PMAPNAME(bootstrap)
    194 #else
    195 #define	STATIC			/* nothing */
    196 #endif /* PMAPNAME */
    197 
    198 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
    199 STATIC void pmap_real_memory(paddr_t *, psize_t *);
    200 STATIC void pmap_init(void);
    201 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
    202 STATIC pmap_t pmap_create(void);
    203 STATIC void pmap_reference(pmap_t);
    204 STATIC void pmap_destroy(pmap_t);
    205 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
    206 STATIC void pmap_update(pmap_t);
    207 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
    208 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
    209 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
    210 STATIC void pmap_kremove(vaddr_t, vsize_t);
    211 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
    212 
    213 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
    214 STATIC void pmap_unwire(pmap_t, vaddr_t);
    215 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
    216 STATIC bool pmap_query_bit(struct vm_page *, int);
    217 STATIC bool pmap_clear_bit(struct vm_page *, int);
    218 
    219 STATIC void pmap_activate(struct lwp *);
    220 STATIC void pmap_deactivate(struct lwp *);
    221 
    222 STATIC void pmap_pinit(pmap_t pm);
    223 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
    224 
    225 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    226 STATIC void pmap_pte_print(volatile struct pte *);
    227 STATIC void pmap_pteg_check(void);
    228 STATIC void pmap_print_mmuregs(void);
    229 STATIC void pmap_print_pte(pmap_t, vaddr_t);
    230 STATIC void pmap_pteg_dist(void);
    231 #endif
    232 #if defined(DEBUG) || defined(PMAPCHECK)
    233 STATIC void pmap_pvo_verify(void);
    234 #endif
    235 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
    236 STATIC void pmap_bootstrap(paddr_t, paddr_t);
    237 
    238 #ifdef PMAPNAME
    239 const struct pmap_ops PMAPNAME(ops) = {
    240 	.pmapop_pte_spill = pmap_pte_spill,
    241 	.pmapop_real_memory = pmap_real_memory,
    242 	.pmapop_init = pmap_init,
    243 	.pmapop_virtual_space = pmap_virtual_space,
    244 	.pmapop_create = pmap_create,
    245 	.pmapop_reference = pmap_reference,
    246 	.pmapop_destroy = pmap_destroy,
    247 	.pmapop_copy = pmap_copy,
    248 	.pmapop_update = pmap_update,
    249 	.pmapop_enter = pmap_enter,
    250 	.pmapop_remove = pmap_remove,
    251 	.pmapop_kenter_pa = pmap_kenter_pa,
    252 	.pmapop_kremove = pmap_kremove,
    253 	.pmapop_extract = pmap_extract,
    254 	.pmapop_protect = pmap_protect,
    255 	.pmapop_unwire = pmap_unwire,
    256 	.pmapop_page_protect = pmap_page_protect,
    257 	.pmapop_query_bit = pmap_query_bit,
    258 	.pmapop_clear_bit = pmap_clear_bit,
    259 	.pmapop_activate = pmap_activate,
    260 	.pmapop_deactivate = pmap_deactivate,
    261 	.pmapop_pinit = pmap_pinit,
    262 	.pmapop_procwr = pmap_procwr,
    263 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    264 	.pmapop_pte_print = pmap_pte_print,
    265 	.pmapop_pteg_check = pmap_pteg_check,
    266 	.pmapop_print_mmuregs = pmap_print_mmuregs,
    267 	.pmapop_print_pte = pmap_print_pte,
    268 	.pmapop_pteg_dist = pmap_pteg_dist,
    269 #else
    270 	.pmapop_pte_print = NULL,
    271 	.pmapop_pteg_check = NULL,
    272 	.pmapop_print_mmuregs = NULL,
    273 	.pmapop_print_pte = NULL,
    274 	.pmapop_pteg_dist = NULL,
    275 #endif
    276 #if defined(DEBUG) || defined(PMAPCHECK)
    277 	.pmapop_pvo_verify = pmap_pvo_verify,
    278 #else
    279 	.pmapop_pvo_verify = NULL,
    280 #endif
    281 	.pmapop_steal_memory = pmap_steal_memory,
    282 	.pmapop_bootstrap = pmap_bootstrap,
    283 };
    284 #endif /* !PMAPNAME */
    285 
    286 /*
    287  * The following structure is aligned to 32 bytes
    288  */
    289 struct pvo_entry {
    290 	LIST_ENTRY(pvo_entry) pvo_vlink;	/* Link to common virt page */
    291 	TAILQ_ENTRY(pvo_entry) pvo_olink;	/* Link to overflow entry */
    292 	struct pte pvo_pte;			/* Prebuilt PTE */
    293 	pmap_t pvo_pmap;			/* ptr to owning pmap */
    294 	vaddr_t pvo_vaddr;			/* VA of entry */
    295 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
    296 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
    297 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
    298 #define	PVO_MANAGED		0x0020		/* PVO e. for managed page */
    299 #define	PVO_EXECUTABLE		0x0040		/* PVO e. for executable page */
    300 #define	PVO_WIRED_P(pvo)	((pvo)->pvo_vaddr & PVO_WIRED)
    301 #define	PVO_MANAGED_P(pvo)	((pvo)->pvo_vaddr & PVO_MANAGED)
    302 #define	PVO_EXECUTABLE_P(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
    303 #define	PVO_ENTER_INSERT	0		/* PVO has been removed */
    304 #define	PVO_SPILL_UNSET		1		/* PVO has been evicted */
    305 #define	PVO_SPILL_SET		2		/* PVO has been spilled */
    306 #define	PVO_SPILL_INSERT	3		/* PVO has been inserted */
    307 #define	PVO_PMAP_PAGE_PROTECT	4		/* PVO has changed */
    308 #define	PVO_PMAP_PROTECT	5		/* PVO has changed */
    309 #define	PVO_REMOVE		6		/* PVO has been removed */
    310 #define	PVO_WHERE_MASK		15
    311 #define	PVO_WHERE_SHFT		8
    312 } __attribute__ ((aligned (32)));
    313 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
    314 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
    315 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
    316 #define	PVO_PTEGIDX_CLR(pvo)	\
    317 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
    318 #define	PVO_PTEGIDX_SET(pvo,i)	\
    319 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
    320 #define	PVO_WHERE(pvo,w)	\
    321 	((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
    322 	 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
    323 
    324 TAILQ_HEAD(pvo_tqhead, pvo_entry);
    325 struct pvo_tqhead *pmap_pvo_table;	/* pvo entries by ptegroup index */
    326 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
    327 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
    328 
    329 struct pool pmap_pool;		/* pool for pmap structures */
    330 struct pool pmap_upvo_pool;	/* pool for pvo entries for unmanaged pages */
    331 struct pool pmap_mpvo_pool;	/* pool for pvo entries for managed pages */
    332 
    333 /*
    334  * We keep a cache of unmanaged pages to be used for pvo entries for
    335  * unmanaged pages.
    336  */
    337 struct pvo_page {
    338 	SIMPLEQ_ENTRY(pvo_page) pvop_link;
    339 };
    340 SIMPLEQ_HEAD(pvop_head, pvo_page);
    341 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
    342 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
    343 static u_long pmap_upvop_free;
    344 static u_long pmap_upvop_maxfree;
    345 static u_long pmap_mpvop_free;
    346 static u_long pmap_mpvop_maxfree;
    347 
    348 static void *pmap_pool_ualloc(struct pool *, int);
    349 static void *pmap_pool_malloc(struct pool *, int);
    350 
    351 static void pmap_pool_ufree(struct pool *, void *);
    352 static void pmap_pool_mfree(struct pool *, void *);
    353 
    354 static struct pool_allocator pmap_pool_mallocator = {
    355 	.pa_alloc = pmap_pool_malloc,
    356 	.pa_free = pmap_pool_mfree,
    357 	.pa_pagesz = 0,
    358 };
    359 
    360 static struct pool_allocator pmap_pool_uallocator = {
    361 	.pa_alloc = pmap_pool_ualloc,
    362 	.pa_free = pmap_pool_ufree,
    363 	.pa_pagesz = 0,
    364 };
    365 
    366 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    367 void pmap_pte_print(volatile struct pte *);
    368 void pmap_pteg_check(void);
    369 void pmap_pteg_dist(void);
    370 void pmap_print_pte(pmap_t, vaddr_t);
    371 void pmap_print_mmuregs(void);
    372 #endif
    373 
    374 #if defined(DEBUG) || defined(PMAPCHECK)
    375 #ifdef PMAPCHECK
    376 int pmapcheck = 1;
    377 #else
    378 int pmapcheck = 0;
    379 #endif
    380 void pmap_pvo_verify(void);
    381 static void pmap_pvo_check(const struct pvo_entry *);
    382 #define	PMAP_PVO_CHECK(pvo)	 		\
    383 	do {					\
    384 		if (pmapcheck)			\
    385 			pmap_pvo_check(pvo);	\
    386 	} while (0)
    387 #else
    388 #define	PMAP_PVO_CHECK(pvo)	do { } while (/*CONSTCOND*/0)
    389 #endif
    390 static int pmap_pte_insert(int, struct pte *);
    391 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
    392 	vaddr_t, paddr_t, register_t, int);
    393 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
    394 static void pmap_pvo_free(struct pvo_entry *);
    395 static void pmap_pvo_free_list(struct pvo_head *);
    396 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
    397 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
    398 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
    399 static void pvo_set_exec(struct pvo_entry *);
    400 static void pvo_clear_exec(struct pvo_entry *);
    401 
    402 static void tlbia(void);
    403 
    404 static void pmap_release(pmap_t);
    405 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
    406 
    407 static uint32_t pmap_pvo_reclaim_nextidx;
    408 #ifdef DEBUG
    409 static int pmap_pvo_reclaim_debugctr;
    410 #endif
    411 
    412 #define	VSID_NBPW	(sizeof(uint32_t) * 8)
    413 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
    414 
    415 static int pmap_initialized;
    416 
    417 #if defined(DEBUG) || defined(PMAPDEBUG)
    418 #define	PMAPDEBUG_BOOT		0x0001
    419 #define	PMAPDEBUG_PTE		0x0002
    420 #define	PMAPDEBUG_EXEC		0x0008
    421 #define	PMAPDEBUG_PVOENTER	0x0010
    422 #define	PMAPDEBUG_PVOREMOVE	0x0020
    423 #define	PMAPDEBUG_ACTIVATE	0x0100
    424 #define	PMAPDEBUG_CREATE	0x0200
    425 #define	PMAPDEBUG_ENTER		0x1000
    426 #define	PMAPDEBUG_KENTER	0x2000
    427 #define	PMAPDEBUG_KREMOVE	0x4000
    428 #define	PMAPDEBUG_REMOVE	0x8000
    429 
    430 unsigned int pmapdebug = 0;
    431 
    432 # define DPRINTF(x, ...)	printf(x, __VA_ARGS__)
    433 # define DPRINTFN(n, x, ...)	do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
    434 #else
    435 # define DPRINTF(x, ...)	do { } while (0)
    436 # define DPRINTFN(n, x, ...)	do { } while (0)
    437 #endif
    438 
    439 
    440 #ifdef PMAPCOUNTERS
    441 /*
    442  * From pmap_subr.c
    443  */
    444 extern struct evcnt pmap_evcnt_mappings;
    445 extern struct evcnt pmap_evcnt_unmappings;
    446 
    447 extern struct evcnt pmap_evcnt_kernel_mappings;
    448 extern struct evcnt pmap_evcnt_kernel_unmappings;
    449 
    450 extern struct evcnt pmap_evcnt_mappings_replaced;
    451 
    452 extern struct evcnt pmap_evcnt_exec_mappings;
    453 extern struct evcnt pmap_evcnt_exec_cached;
    454 
    455 extern struct evcnt pmap_evcnt_exec_synced;
    456 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
    457 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
    458 
    459 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
    460 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
    461 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
    462 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
    463 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
    464 
    465 extern struct evcnt pmap_evcnt_updates;
    466 extern struct evcnt pmap_evcnt_collects;
    467 extern struct evcnt pmap_evcnt_copies;
    468 
    469 extern struct evcnt pmap_evcnt_ptes_spilled;
    470 extern struct evcnt pmap_evcnt_ptes_unspilled;
    471 extern struct evcnt pmap_evcnt_ptes_evicted;
    472 
    473 extern struct evcnt pmap_evcnt_ptes_primary[8];
    474 extern struct evcnt pmap_evcnt_ptes_secondary[8];
    475 extern struct evcnt pmap_evcnt_ptes_removed;
    476 extern struct evcnt pmap_evcnt_ptes_changed;
    477 extern struct evcnt pmap_evcnt_pvos_reclaimed;
    478 extern struct evcnt pmap_evcnt_pvos_failed;
    479 
    480 extern struct evcnt pmap_evcnt_zeroed_pages;
    481 extern struct evcnt pmap_evcnt_copied_pages;
    482 extern struct evcnt pmap_evcnt_idlezeroed_pages;
    483 
    484 #define	PMAPCOUNT(ev)	((pmap_evcnt_ ## ev).ev_count++)
    485 #define	PMAPCOUNT2(ev)	((ev).ev_count++)
    486 #else
    487 #define	PMAPCOUNT(ev)	((void) 0)
    488 #define	PMAPCOUNT2(ev)	((void) 0)
    489 #endif
    490 
    491 #define	TLBIE(va)	__asm volatile("tlbie %0" :: "r"(va))
    492 
    493 /* XXXSL: this needs to be moved to assembler */
    494 #define	TLBIEL(va)	__asm __volatile("tlbie %0" :: "r"(va))
    495 
    496 #ifdef MD_TLBSYNC
    497 #define TLBSYNC()	MD_TLBSYNC()
    498 #else
    499 #define	TLBSYNC()	__asm volatile("tlbsync")
    500 #endif
    501 #define	SYNC()		__asm volatile("sync")
    502 #define	EIEIO()		__asm volatile("eieio")
    503 #define	DCBST(va)	__asm __volatile("dcbst 0,%0" :: "r"(va))
    504 #define	MFMSR()		mfmsr()
    505 #define	MTMSR(psl)	mtmsr(psl)
    506 #define	MFPVR()		mfpvr()
    507 #define	MFSRIN(va)	mfsrin(va)
    508 #define	MFTB()		mfrtcltbl()
    509 
    510 #if defined(DDB) && !defined(PMAP_OEA64)
    511 static inline register_t
    512 mfsrin(vaddr_t va)
    513 {
    514 	register_t sr;
    515 	__asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
    516 	return sr;
    517 }
    518 #endif	/* DDB && !PMAP_OEA64 */
    519 
    520 #if defined (PMAP_OEA64_BRIDGE)
    521 extern void mfmsr64 (register64_t *result);
    522 #endif /* PMAP_OEA64_BRIDGE */
    523 
    524 #define	PMAP_LOCK()		KERNEL_LOCK(1, NULL)
    525 #define	PMAP_UNLOCK()		KERNEL_UNLOCK_ONE(NULL)
    526 
    527 static inline register_t
    528 pmap_interrupts_off(void)
    529 {
    530 	register_t msr = MFMSR();
    531 	if (msr & PSL_EE)
    532 		MTMSR(msr & ~PSL_EE);
    533 	return msr;
    534 }
    535 
    536 static void
    537 pmap_interrupts_restore(register_t msr)
    538 {
    539 	if (msr & PSL_EE)
    540 		MTMSR(msr);
    541 }
    542 
    543 static inline u_int32_t
    544 mfrtcltbl(void)
    545 {
    546 #ifdef PPC_OEA601
    547 	if ((MFPVR() >> 16) == MPC601)
    548 		return (mfrtcl() >> 7);
    549 	else
    550 #endif
    551 		return (mftbl());
    552 }
    553 
    554 /*
    555  * These small routines may have to be replaced,
    556  * if/when we support processors other that the 604.
    557  */
    558 
    559 void
    560 tlbia(void)
    561 {
    562 	char *i;
    563 
    564 	SYNC();
    565 #if defined(PMAP_OEA)
    566 	/*
    567 	 * Why not use "tlbia"?  Because not all processors implement it.
    568 	 *
    569 	 * This needs to be a per-CPU callback to do the appropriate thing
    570 	 * for the CPU. XXX
    571 	 */
    572 	for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
    573 		TLBIE(i);
    574 		EIEIO();
    575 		SYNC();
    576 	}
    577 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    578 	/* This is specifically for the 970, 970UM v1.6 pp. 140. */
    579 	for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
    580 		TLBIEL(i);
    581 		EIEIO();
    582 		SYNC();
    583 	}
    584 #endif
    585 	TLBSYNC();
    586 	SYNC();
    587 }
    588 
    589 static inline register_t
    590 va_to_vsid(const struct pmap *pm, vaddr_t addr)
    591 {
    592 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
    593 	return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
    594 #else /* PMAP_OEA64 */
    595 #if 0
    596 	const struct ste *ste;
    597 	register_t hash;
    598 	int i;
    599 
    600 	hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
    601 
    602 	/*
    603 	 * Try the primary group first
    604 	 */
    605 	ste = pm->pm_stes[hash].stes;
    606 	for (i = 0; i < 8; i++, ste++) {
    607 		if (ste->ste_hi & STE_V) &&
    608 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    609 			return ste;
    610 	}
    611 
    612 	/*
    613 	 * Then the secondary group.
    614 	 */
    615 	ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
    616 	for (i = 0; i < 8; i++, ste++) {
    617 		if (ste->ste_hi & STE_V) &&
    618 		   (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
    619 			return addr;
    620 	}
    621 
    622 	return NULL;
    623 #else
    624 	/*
    625 	 * Rather than searching the STE groups for the VSID, we know
    626 	 * how we generate that from the ESID and so do that.
    627 	 */
    628 	return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
    629 #endif
    630 #endif /* PMAP_OEA */
    631 }
    632 
    633 static inline register_t
    634 va_to_pteg(const struct pmap *pm, vaddr_t addr)
    635 {
    636 	register_t hash;
    637 
    638 	hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
    639 	return hash & pmap_pteg_mask;
    640 }
    641 
    642 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
    643 /*
    644  * Given a PTE in the page table, calculate the VADDR that hashes to it.
    645  * The only bit of magic is that the top 4 bits of the address doesn't
    646  * technically exist in the PTE.  But we know we reserved 4 bits of the
    647  * VSID for it so that's how we get it.
    648  */
    649 static vaddr_t
    650 pmap_pte_to_va(volatile const struct pte *pt)
    651 {
    652 	vaddr_t va;
    653 	uintptr_t ptaddr = (uintptr_t) pt;
    654 
    655 	if (pt->pte_hi & PTE_HID)
    656 		ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
    657 
    658 	/* PPC Bits 10-19  PPC64 Bits 42-51 */
    659 #if defined(PMAP_OEA)
    660 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
    661 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
    662 	va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
    663 #endif
    664 	va <<= ADDR_PIDX_SHFT;
    665 
    666 	/* PPC Bits 4-9  PPC64 Bits 36-41 */
    667 	va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
    668 
    669 #if defined(PMAP_OEA64)
    670 	/* PPC63 Bits 0-35 */
    671 	/* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
    672 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
    673 	/* PPC Bits 0-3 */
    674 	va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
    675 #endif
    676 
    677 	return va;
    678 }
    679 #endif
    680 
    681 static inline struct pvo_head *
    682 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
    683 {
    684 	struct vm_page *pg;
    685 	struct vm_page_md *md;
    686 
    687 	pg = PHYS_TO_VM_PAGE(pa);
    688 	if (pg_p != NULL)
    689 		*pg_p = pg;
    690 	if (pg == NULL)
    691 		return &pmap_pvo_unmanaged;
    692 	md = VM_PAGE_TO_MD(pg);
    693 	return &md->mdpg_pvoh;
    694 }
    695 
    696 static inline struct pvo_head *
    697 vm_page_to_pvoh(struct vm_page *pg)
    698 {
    699 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    700 
    701 	return &md->mdpg_pvoh;
    702 }
    703 
    704 
    705 static inline void
    706 pmap_attr_clear(struct vm_page *pg, int ptebit)
    707 {
    708 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    709 
    710 	md->mdpg_attrs &= ~ptebit;
    711 }
    712 
    713 static inline int
    714 pmap_attr_fetch(struct vm_page *pg)
    715 {
    716 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    717 
    718 	return md->mdpg_attrs;
    719 }
    720 
    721 static inline void
    722 pmap_attr_save(struct vm_page *pg, int ptebit)
    723 {
    724 	struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
    725 
    726 	md->mdpg_attrs |= ptebit;
    727 }
    728 
    729 static inline int
    730 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
    731 {
    732 	if (pt->pte_hi == pvo_pt->pte_hi
    733 #if 0
    734 	    && ((pt->pte_lo ^ pvo_pt->pte_lo) &
    735 	        ~(PTE_REF|PTE_CHG)) == 0
    736 #endif
    737 	    )
    738 		return 1;
    739 	return 0;
    740 }
    741 
    742 static inline void
    743 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
    744 {
    745 	/*
    746 	 * Construct the PTE.  Default to IMB initially.  Valid bit
    747 	 * only gets set when the real pte is set in memory.
    748 	 *
    749 	 * Note: Don't set the valid bit for correct operation of tlb update.
    750 	 */
    751 #if defined(PMAP_OEA)
    752 	pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
    753 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    754 	pt->pte_lo = pte_lo;
    755 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
    756 	pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
    757 	    | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
    758 	pt->pte_lo = (u_int64_t) pte_lo;
    759 #endif /* PMAP_OEA */
    760 }
    761 
    762 static inline void
    763 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
    764 {
    765 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
    766 }
    767 
    768 static inline void
    769 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
    770 {
    771 	/*
    772 	 * As shown in Section 7.6.3.2.3
    773 	 */
    774 	pt->pte_lo &= ~ptebit;
    775 	TLBIE(va);
    776 	SYNC();
    777 	EIEIO();
    778 	TLBSYNC();
    779 	SYNC();
    780 #ifdef MULTIPROCESSOR
    781 	DCBST(pt);
    782 #endif
    783 }
    784 
    785 static inline void
    786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
    787 {
    788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    789 	if (pvo_pt->pte_hi & PTE_VALID)
    790 		panic("pte_set: setting an already valid pte %p", pvo_pt);
    791 #endif
    792 	pvo_pt->pte_hi |= PTE_VALID;
    793 
    794 	/*
    795 	 * Update the PTE as defined in section 7.6.3.1
    796 	 * Note that the REF/CHG bits are from pvo_pt and thus should
    797 	 * have been saved so this routine can restore them (if desired).
    798 	 */
    799 	pt->pte_lo = pvo_pt->pte_lo;
    800 	EIEIO();
    801 	pt->pte_hi = pvo_pt->pte_hi;
    802 	TLBSYNC();
    803 	SYNC();
    804 #ifdef MULTIPROCESSOR
    805 	DCBST(pt);
    806 #endif
    807 	pmap_pte_valid++;
    808 }
    809 
    810 static inline void
    811 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    812 {
    813 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
    814 	if ((pvo_pt->pte_hi & PTE_VALID) == 0)
    815 		panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
    816 	if ((pt->pte_hi & PTE_VALID) == 0)
    817 		panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
    818 #endif
    819 
    820 	pvo_pt->pte_hi &= ~PTE_VALID;
    821 	/*
    822 	 * Force the ref & chg bits back into the PTEs.
    823 	 */
    824 	SYNC();
    825 	/*
    826 	 * Invalidate the pte ... (Section 7.6.3.3)
    827 	 */
    828 	pt->pte_hi &= ~PTE_VALID;
    829 	SYNC();
    830 	TLBIE(va);
    831 	SYNC();
    832 	EIEIO();
    833 	TLBSYNC();
    834 	SYNC();
    835 	/*
    836 	 * Save the ref & chg bits ...
    837 	 */
    838 	pmap_pte_synch(pt, pvo_pt);
    839 	pmap_pte_valid--;
    840 }
    841 
    842 static inline void
    843 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
    844 {
    845 	/*
    846 	 * Invalidate the PTE
    847 	 */
    848 	pmap_pte_unset(pt, pvo_pt, va);
    849 	pmap_pte_set(pt, pvo_pt);
    850 }
    851 
    852 /*
    853  * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
    854  * (either primary or secondary location).
    855  *
    856  * Note: both the destination and source PTEs must not have PTE_VALID set.
    857  */
    858 
    859 static int
    860 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
    861 {
    862 	volatile struct pte *pt;
    863 	int i;
    864 
    865 #if defined(DEBUG)
    866 	DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
    867 		ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
    868 #endif
    869 	/*
    870 	 * First try primary hash.
    871 	 */
    872 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    873 		if ((pt->pte_hi & PTE_VALID) == 0) {
    874 			pvo_pt->pte_hi &= ~PTE_HID;
    875 			pmap_pte_set(pt, pvo_pt);
    876 			return i;
    877 		}
    878 	}
    879 
    880 	/*
    881 	 * Now try secondary hash.
    882 	 */
    883 	ptegidx ^= pmap_pteg_mask;
    884 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
    885 		if ((pt->pte_hi & PTE_VALID) == 0) {
    886 			pvo_pt->pte_hi |= PTE_HID;
    887 			pmap_pte_set(pt, pvo_pt);
    888 			return i;
    889 		}
    890 	}
    891 	return -1;
    892 }
    893 
    894 /*
    895  * Spill handler.
    896  *
    897  * Tries to spill a page table entry from the overflow area.
    898  * This runs in either real mode (if dealing with a exception spill)
    899  * or virtual mode when dealing with manually spilling one of the
    900  * kernel's pte entries.  In either case, interrupts are already
    901  * disabled.
    902  */
    903 
    904 int
    905 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
    906 {
    907 	struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
    908 	struct pvo_entry *pvo;
    909 	/* XXX: gcc -- vpvoh is always set at either *1* or *2* */
    910 	struct pvo_tqhead *pvoh, *vpvoh = NULL;
    911 	int ptegidx, i, j;
    912 	volatile struct pteg *pteg;
    913 	volatile struct pte *pt;
    914 
    915 	PMAP_LOCK();
    916 
    917 	ptegidx = va_to_pteg(pm, addr);
    918 
    919 	/*
    920 	 * Have to substitute some entry. Use the primary hash for this.
    921 	 * Use low bits of timebase as random generator.  Make sure we are
    922 	 * not picking a kernel pte for replacement.
    923 	 */
    924 	pteg = &pmap_pteg_table[ptegidx];
    925 	i = MFTB() & 7;
    926 	for (j = 0; j < 8; j++) {
    927 		pt = &pteg->pt[i];
    928 		if ((pt->pte_hi & PTE_VALID) == 0)
    929 			break;
    930 		if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
    931 				< PHYSMAP_VSIDBITS)
    932 			break;
    933 		i = (i + 1) & 7;
    934 	}
    935 	KASSERT(j < 8);
    936 
    937 	source_pvo = NULL;
    938 	victim_pvo = NULL;
    939 	pvoh = &pmap_pvo_table[ptegidx];
    940 	TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
    941 
    942 		/*
    943 		 * We need to find pvo entry for this address...
    944 		 */
    945 		PMAP_PVO_CHECK(pvo);		/* sanity check */
    946 
    947 		/*
    948 		 * If we haven't found the source and we come to a PVO with
    949 		 * a valid PTE, then we know we can't find it because all
    950 		 * evicted PVOs always are first in the list.
    951 		 */
    952 		if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
    953 			break;
    954 		if (source_pvo == NULL && pm == pvo->pvo_pmap &&
    955 		    addr == PVO_VADDR(pvo)) {
    956 
    957 			/*
    958 			 * Now we have found the entry to be spilled into the
    959 			 * pteg.  Attempt to insert it into the page table.
    960 			 */
    961 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
    962 			if (j >= 0) {
    963 				PVO_PTEGIDX_SET(pvo, j);
    964 				PMAP_PVO_CHECK(pvo);	/* sanity check */
    965 				PVO_WHERE(pvo, SPILL_INSERT);
    966 				pvo->pvo_pmap->pm_evictions--;
    967 				PMAPCOUNT(ptes_spilled);
    968 				PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
    969 				    ? pmap_evcnt_ptes_secondary
    970 				    : pmap_evcnt_ptes_primary)[j]);
    971 
    972 				/*
    973 				 * Since we keep the evicted entries at the
    974 				 * from of the PVO list, we need move this
    975 				 * (now resident) PVO after the evicted
    976 				 * entries.
    977 				 */
    978 				next_pvo = TAILQ_NEXT(pvo, pvo_olink);
    979 
    980 				/*
    981 				 * If we don't have to move (either we were the
    982 				 * last entry or the next entry was valid),
    983 				 * don't change our position.  Otherwise
    984 				 * move ourselves to the tail of the queue.
    985 				 */
    986 				if (next_pvo != NULL &&
    987 				    !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
    988 					TAILQ_REMOVE(pvoh, pvo, pvo_olink);
    989 					TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
    990 				}
    991 				PMAP_UNLOCK();
    992 				return 1;
    993 			}
    994 			source_pvo = pvo;
    995 			if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
    996 				PMAP_UNLOCK();
    997 				return 0;
    998 			}
    999 			if (victim_pvo != NULL)
   1000 				break;
   1001 		}
   1002 
   1003 		/*
   1004 		 * We also need the pvo entry of the victim we are replacing
   1005 		 * so save the R & C bits of the PTE.
   1006 		 */
   1007 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
   1008 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1009 			vpvoh = pvoh;			/* *1* */
   1010 			victim_pvo = pvo;
   1011 			if (source_pvo != NULL)
   1012 				break;
   1013 		}
   1014 	}
   1015 
   1016 	if (source_pvo == NULL) {
   1017 		PMAPCOUNT(ptes_unspilled);
   1018 		PMAP_UNLOCK();
   1019 		return 0;
   1020 	}
   1021 
   1022 	if (victim_pvo == NULL) {
   1023 		if ((pt->pte_hi & PTE_HID) == 0)
   1024 			panic("pmap_pte_spill: victim p-pte (%p) has "
   1025 			    "no pvo entry!", pt);
   1026 
   1027 		/*
   1028 		 * If this is a secondary PTE, we need to search
   1029 		 * its primary pvo bucket for the matching PVO.
   1030 		 */
   1031 		vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
   1032 		TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
   1033 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   1034 
   1035 			/*
   1036 			 * We also need the pvo entry of the victim we are
   1037 			 * replacing so save the R & C bits of the PTE.
   1038 			 */
   1039 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
   1040 				victim_pvo = pvo;
   1041 				break;
   1042 			}
   1043 		}
   1044 		if (victim_pvo == NULL)
   1045 			panic("pmap_pte_spill: victim s-pte (%p) has "
   1046 			    "no pvo entry!", pt);
   1047 	}
   1048 
   1049 	/*
   1050 	 * The victim should be not be a kernel PVO/PTE entry.
   1051 	 */
   1052 	KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
   1053 	KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
   1054 	KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
   1055 
   1056 	/*
   1057 	 * We are invalidating the TLB entry for the EA for the
   1058 	 * we are replacing even though its valid; If we don't
   1059 	 * we lose any ref/chg bit changes contained in the TLB
   1060 	 * entry.
   1061 	 */
   1062 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
   1063 
   1064 	/*
   1065 	 * To enforce the PVO list ordering constraint that all
   1066 	 * evicted entries should come before all valid entries,
   1067 	 * move the source PVO to the tail of its list and the
   1068 	 * victim PVO to the head of its list (which might not be
   1069 	 * the same list, if the victim was using the secondary hash).
   1070 	 */
   1071 	TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
   1072 	TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
   1073 	TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
   1074 	TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
   1075 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
   1076 	pmap_pte_set(pt, &source_pvo->pvo_pte);
   1077 	victim_pvo->pvo_pmap->pm_evictions++;
   1078 	source_pvo->pvo_pmap->pm_evictions--;
   1079 	PVO_WHERE(victim_pvo, SPILL_UNSET);
   1080 	PVO_WHERE(source_pvo, SPILL_SET);
   1081 
   1082 	PVO_PTEGIDX_CLR(victim_pvo);
   1083 	PVO_PTEGIDX_SET(source_pvo, i);
   1084 	PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
   1085 	PMAPCOUNT(ptes_spilled);
   1086 	PMAPCOUNT(ptes_evicted);
   1087 	PMAPCOUNT(ptes_removed);
   1088 
   1089 	PMAP_PVO_CHECK(victim_pvo);
   1090 	PMAP_PVO_CHECK(source_pvo);
   1091 
   1092 	PMAP_UNLOCK();
   1093 	return 1;
   1094 }
   1095 
   1096 /*
   1097  * Restrict given range to physical memory
   1098  */
   1099 void
   1100 pmap_real_memory(paddr_t *start, psize_t *size)
   1101 {
   1102 	struct mem_region *mp;
   1103 
   1104 	for (mp = mem; mp->size; mp++) {
   1105 		if (*start + *size > mp->start
   1106 		    && *start < mp->start + mp->size) {
   1107 			if (*start < mp->start) {
   1108 				*size -= mp->start - *start;
   1109 				*start = mp->start;
   1110 			}
   1111 			if (*start + *size > mp->start + mp->size)
   1112 				*size = mp->start + mp->size - *start;
   1113 			return;
   1114 		}
   1115 	}
   1116 	*size = 0;
   1117 }
   1118 
   1119 /*
   1120  * Initialize anything else for pmap handling.
   1121  * Called during vm_init().
   1122  */
   1123 void
   1124 pmap_init(void)
   1125 {
   1126 	pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
   1127 	    sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
   1128 	    &pmap_pool_mallocator, IPL_NONE);
   1129 
   1130 	pool_setlowat(&pmap_mpvo_pool, 1008);
   1131 
   1132 	pmap_initialized = 1;
   1133 
   1134 }
   1135 
   1136 /*
   1137  * How much virtual space does the kernel get?
   1138  */
   1139 void
   1140 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1141 {
   1142 	/*
   1143 	 * For now, reserve one segment (minus some overhead) for kernel
   1144 	 * virtual memory
   1145 	 */
   1146 	*start = VM_MIN_KERNEL_ADDRESS;
   1147 	*end = VM_MAX_KERNEL_ADDRESS;
   1148 }
   1149 
   1150 /*
   1151  * Allocate, initialize, and return a new physical map.
   1152  */
   1153 pmap_t
   1154 pmap_create(void)
   1155 {
   1156 	pmap_t pm;
   1157 
   1158 	pm = pool_get(&pmap_pool, PR_WAITOK);
   1159 	KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
   1160 	memset((void *)pm, 0, sizeof *pm);
   1161 	pmap_pinit(pm);
   1162 
   1163 	DPRINTFN(CREATE, "pmap_create: pm %p:\n"
   1164 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1165 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
   1166 	    "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
   1167 	    "    %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
   1168 	    pm,
   1169 	    pm->pm_sr[0], pm->pm_sr[1],
   1170 	    pm->pm_sr[2], pm->pm_sr[3],
   1171 	    pm->pm_sr[4], pm->pm_sr[5],
   1172 	    pm->pm_sr[6], pm->pm_sr[7],
   1173 	    pm->pm_sr[8], pm->pm_sr[9],
   1174 	    pm->pm_sr[10], pm->pm_sr[11],
   1175 	    pm->pm_sr[12], pm->pm_sr[13],
   1176 	    pm->pm_sr[14], pm->pm_sr[15]);
   1177 	return pm;
   1178 }
   1179 
   1180 /*
   1181  * Initialize a preallocated and zeroed pmap structure.
   1182  */
   1183 void
   1184 pmap_pinit(pmap_t pm)
   1185 {
   1186 	register_t entropy = MFTB();
   1187 	register_t mask;
   1188 	int i;
   1189 
   1190 	/*
   1191 	 * Allocate some segment registers for this pmap.
   1192 	 */
   1193 	pm->pm_refs = 1;
   1194 	PMAP_LOCK();
   1195 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
   1196 		static register_t pmap_vsidcontext;
   1197 		register_t hash;
   1198 		unsigned int n;
   1199 
   1200 		/* Create a new value by multiplying by a prime adding in
   1201 		 * entropy from the timebase register.  This is to make the
   1202 		 * VSID more random so that the PT Hash function collides
   1203 		 * less often. (note that the prime causes gcc to do shifts
   1204 		 * instead of a multiply)
   1205 		 */
   1206 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
   1207 		hash = pmap_vsidcontext & (NPMAPS - 1);
   1208 		if (hash == 0) {		/* 0 is special, avoid it */
   1209 			entropy += 0xbadf00d;
   1210 			continue;
   1211 		}
   1212 		n = hash >> 5;
   1213 		mask = 1L << (hash & (VSID_NBPW-1));
   1214 		hash = pmap_vsidcontext;
   1215 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
   1216 			/* anything free in this bucket? */
   1217 			if (~pmap_vsid_bitmap[n] == 0) {
   1218 				entropy = hash ^ (hash >> 16);
   1219 				continue;
   1220 			}
   1221 			i = ffs(~pmap_vsid_bitmap[n]) - 1;
   1222 			mask = 1L << i;
   1223 			hash &= ~(VSID_NBPW-1);
   1224 			hash |= i;
   1225 		}
   1226 		hash &= PTE_VSID >> PTE_VSID_SHFT;
   1227 		pmap_vsid_bitmap[n] |= mask;
   1228 		pm->pm_vsid = hash;
   1229 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1230 		for (i = 0; i < 16; i++)
   1231 			pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
   1232 			    SR_NOEXEC;
   1233 #endif
   1234 		PMAP_UNLOCK();
   1235 		return;
   1236 	}
   1237 	PMAP_UNLOCK();
   1238 	panic("pmap_pinit: out of segments");
   1239 }
   1240 
   1241 /*
   1242  * Add a reference to the given pmap.
   1243  */
   1244 void
   1245 pmap_reference(pmap_t pm)
   1246 {
   1247 	atomic_inc_uint(&pm->pm_refs);
   1248 }
   1249 
   1250 /*
   1251  * Retire the given pmap from service.
   1252  * Should only be called if the map contains no valid mappings.
   1253  */
   1254 void
   1255 pmap_destroy(pmap_t pm)
   1256 {
   1257 	if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
   1258 		pmap_release(pm);
   1259 		pool_put(&pmap_pool, pm);
   1260 	}
   1261 }
   1262 
   1263 /*
   1264  * Release any resources held by the given physical map.
   1265  * Called when a pmap initialized by pmap_pinit is being released.
   1266  */
   1267 void
   1268 pmap_release(pmap_t pm)
   1269 {
   1270 	int idx, mask;
   1271 
   1272 	KASSERT(pm->pm_stats.resident_count == 0);
   1273 	KASSERT(pm->pm_stats.wired_count == 0);
   1274 
   1275 	PMAP_LOCK();
   1276 	if (pm->pm_sr[0] == 0)
   1277 		panic("pmap_release");
   1278 	idx = pm->pm_vsid & (NPMAPS-1);
   1279 	mask = 1 << (idx % VSID_NBPW);
   1280 	idx /= VSID_NBPW;
   1281 
   1282 	KASSERT(pmap_vsid_bitmap[idx] & mask);
   1283 	pmap_vsid_bitmap[idx] &= ~mask;
   1284 	PMAP_UNLOCK();
   1285 }
   1286 
   1287 /*
   1288  * Copy the range specified by src_addr/len
   1289  * from the source map to the range dst_addr/len
   1290  * in the destination map.
   1291  *
   1292  * This routine is only advisory and need not do anything.
   1293  */
   1294 void
   1295 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
   1296 	vsize_t len, vaddr_t src_addr)
   1297 {
   1298 	PMAPCOUNT(copies);
   1299 }
   1300 
   1301 /*
   1302  * Require that all active physical maps contain no
   1303  * incorrect entries NOW.
   1304  */
   1305 void
   1306 pmap_update(struct pmap *pmap)
   1307 {
   1308 	PMAPCOUNT(updates);
   1309 	TLBSYNC();
   1310 }
   1311 
   1312 static inline int
   1313 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
   1314 {
   1315 	int pteidx;
   1316 	/*
   1317 	 * We can find the actual pte entry without searching by
   1318 	 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
   1319 	 * and by noticing the HID bit.
   1320 	 */
   1321 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
   1322 	if (pvo->pvo_pte.pte_hi & PTE_HID)
   1323 		pteidx ^= pmap_pteg_mask * 8;
   1324 	return pteidx;
   1325 }
   1326 
   1327 volatile struct pte *
   1328 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
   1329 {
   1330 	volatile struct pte *pt;
   1331 
   1332 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1333 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
   1334 		return NULL;
   1335 #endif
   1336 
   1337 	/*
   1338 	 * If we haven't been supplied the ptegidx, calculate it.
   1339 	 */
   1340 	if (pteidx == -1) {
   1341 		int ptegidx;
   1342 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1343 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1344 	}
   1345 
   1346 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
   1347 
   1348 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
   1349 	return pt;
   1350 #else
   1351 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
   1352 		panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1353 		    "pvo but no valid pte index", pvo);
   1354 	}
   1355 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
   1356 		panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
   1357 		    "pvo but no valid pte", pvo);
   1358 	}
   1359 
   1360 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
   1361 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
   1362 #if defined(DEBUG) || defined(PMAPCHECK)
   1363 			pmap_pte_print(pt);
   1364 #endif
   1365 			panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
   1366 			    "pmap_pteg_table %p but invalid in pvo",
   1367 			    pvo, pt);
   1368 		}
   1369 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
   1370 #if defined(DEBUG) || defined(PMAPCHECK)
   1371 			pmap_pte_print(pt);
   1372 #endif
   1373 			panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
   1374 			    "not match pte %p in pmap_pteg_table",
   1375 			    pvo, pt);
   1376 		}
   1377 		return pt;
   1378 	}
   1379 
   1380 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1381 #if defined(DEBUG) || defined(PMAPCHECK)
   1382 		pmap_pte_print(pt);
   1383 #endif
   1384 		panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
   1385 		    "pmap_pteg_table but valid in pvo", pvo, pt);
   1386 	}
   1387 	return NULL;
   1388 #endif	/* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
   1389 }
   1390 
   1391 struct pvo_entry *
   1392 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
   1393 {
   1394 	struct pvo_entry *pvo;
   1395 	int ptegidx;
   1396 
   1397 	va &= ~ADDR_POFF;
   1398 	ptegidx = va_to_pteg(pm, va);
   1399 
   1400 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1401 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1402 		if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   1403 			panic("pmap_pvo_find_va: invalid pvo %p on "
   1404 			    "list %#x (%p)", pvo, ptegidx,
   1405 			     &pmap_pvo_table[ptegidx]);
   1406 #endif
   1407 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1408 			if (pteidx_p)
   1409 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
   1410 			return pvo;
   1411 		}
   1412 	}
   1413 	if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
   1414 		panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
   1415 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   1416 	return NULL;
   1417 }
   1418 
   1419 #if defined(DEBUG) || defined(PMAPCHECK)
   1420 void
   1421 pmap_pvo_check(const struct pvo_entry *pvo)
   1422 {
   1423 	struct pvo_head *pvo_head;
   1424 	struct pvo_entry *pvo0;
   1425 	volatile struct pte *pt;
   1426 	int failed = 0;
   1427 
   1428 	PMAP_LOCK();
   1429 
   1430 	if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
   1431 		panic("pmap_pvo_check: pvo %p: invalid address", pvo);
   1432 
   1433 	if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
   1434 		printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
   1435 		    pvo, pvo->pvo_pmap);
   1436 		failed = 1;
   1437 	}
   1438 
   1439 	if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
   1440 	    (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
   1441 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1442 		    pvo, TAILQ_NEXT(pvo, pvo_olink));
   1443 		failed = 1;
   1444 	}
   1445 
   1446 	if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
   1447 	    (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
   1448 		printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
   1449 		    pvo, LIST_NEXT(pvo, pvo_vlink));
   1450 		failed = 1;
   1451 	}
   1452 
   1453 	if (PVO_MANAGED_P(pvo)) {
   1454 		pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
   1455 	} else {
   1456 		if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
   1457 			printf("pmap_pvo_check: pvo %p: non kernel address "
   1458 			    "on kernel unmanaged list\n", pvo);
   1459 			failed = 1;
   1460 		}
   1461 		pvo_head = &pmap_pvo_kunmanaged;
   1462 	}
   1463 	LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
   1464 		if (pvo0 == pvo)
   1465 			break;
   1466 	}
   1467 	if (pvo0 == NULL) {
   1468 		printf("pmap_pvo_check: pvo %p: not present "
   1469 		    "on its vlist head %p\n", pvo, pvo_head);
   1470 		failed = 1;
   1471 	}
   1472 	if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
   1473 		printf("pmap_pvo_check: pvo %p: not present "
   1474 		    "on its olist head\n", pvo);
   1475 		failed = 1;
   1476 	}
   1477 	pt = pmap_pvo_to_pte(pvo, -1);
   1478 	if (pt == NULL) {
   1479 		if (pvo->pvo_pte.pte_hi & PTE_VALID) {
   1480 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1481 			    "no PTE\n", pvo);
   1482 			failed = 1;
   1483 		}
   1484 	} else {
   1485 		if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
   1486 		    (uintptr_t) pt >=
   1487 		    (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
   1488 			printf("pmap_pvo_check: pvo %p: pte %p not in "
   1489 			    "pteg table\n", pvo, pt);
   1490 			failed = 1;
   1491 		}
   1492 		if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
   1493 			printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
   1494 			    "no PTE\n", pvo);
   1495 			failed = 1;
   1496 		}
   1497 		if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
   1498 			printf("pmap_pvo_check: pvo %p: pte_hi differ: "
   1499 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1500 			    pvo->pvo_pte.pte_hi,
   1501 			    pt->pte_hi);
   1502 			failed = 1;
   1503 		}
   1504 		if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
   1505 		    (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
   1506 			printf("pmap_pvo_check: pvo %p: pte_lo differ: "
   1507 			    "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
   1508 			    (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
   1509 			    (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
   1510 			failed = 1;
   1511 		}
   1512 		if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
   1513 			printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
   1514 			    " doesn't not match PVO's VA %#" _PRIxva "\n",
   1515 			    pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
   1516 			failed = 1;
   1517 		}
   1518 		if (failed)
   1519 			pmap_pte_print(pt);
   1520 	}
   1521 	if (failed)
   1522 		panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
   1523 		    pvo->pvo_pmap);
   1524 
   1525 	PMAP_UNLOCK();
   1526 }
   1527 #endif /* DEBUG || PMAPCHECK */
   1528 
   1529 /*
   1530  * Search the PVO table looking for a non-wired entry.
   1531  * If we find one, remove it and return it.
   1532  */
   1533 
   1534 struct pvo_entry *
   1535 pmap_pvo_reclaim(struct pmap *pm)
   1536 {
   1537 	struct pvo_tqhead *pvoh;
   1538 	struct pvo_entry *pvo;
   1539 	uint32_t idx, endidx;
   1540 
   1541 	endidx = pmap_pvo_reclaim_nextidx;
   1542 	for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
   1543 	     idx = (idx + 1) & pmap_pteg_mask) {
   1544 		pvoh = &pmap_pvo_table[idx];
   1545 		TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
   1546 			if (!PVO_WIRED_P(pvo)) {
   1547 				pmap_pvo_remove(pvo, -1, NULL);
   1548 				pmap_pvo_reclaim_nextidx = idx;
   1549 				PMAPCOUNT(pvos_reclaimed);
   1550 				return pvo;
   1551 			}
   1552 		}
   1553 	}
   1554 	return NULL;
   1555 }
   1556 
   1557 static struct pool *
   1558 pmap_pvo_pl(struct pvo_entry *pvo)
   1559 {
   1560 
   1561 	return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
   1562 }
   1563 
   1564 /*
   1565  * This returns whether this is the first mapping of a page.
   1566  */
   1567 int
   1568 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
   1569 	vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
   1570 {
   1571 	struct pvo_entry *pvo;
   1572 	struct pvo_tqhead *pvoh;
   1573 	register_t msr;
   1574 	int ptegidx;
   1575 	int i;
   1576 	int poolflags = PR_NOWAIT;
   1577 
   1578 	/*
   1579 	 * Compute the PTE Group index.
   1580 	 */
   1581 	va &= ~ADDR_POFF;
   1582 	ptegidx = va_to_pteg(pm, va);
   1583 
   1584 	msr = pmap_interrupts_off();
   1585 
   1586 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1587 	if (pmap_pvo_remove_depth > 0)
   1588 		panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
   1589 	if (++pmap_pvo_enter_depth > 1)
   1590 		panic("pmap_pvo_enter: called recursively!");
   1591 #endif
   1592 
   1593 	/*
   1594 	 * Remove any existing mapping for this page.  Reuse the
   1595 	 * pvo entry if there a mapping.
   1596 	 */
   1597 	TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   1598 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
   1599 #ifdef DEBUG
   1600 			if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
   1601 			    ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
   1602 			    ~(PTE_REF|PTE_CHG)) == 0 &&
   1603 			   va < VM_MIN_KERNEL_ADDRESS) {
   1604 				printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
   1605 				    pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
   1606 				printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
   1607 				    pvo->pvo_pte.pte_hi,
   1608 				    pm->pm_sr[va >> ADDR_SR_SHFT]);
   1609 				pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
   1610 #ifdef DDBX
   1611 				Debugger();
   1612 #endif
   1613 			}
   1614 #endif
   1615 			PMAPCOUNT(mappings_replaced);
   1616 			pmap_pvo_remove(pvo, -1, NULL);
   1617 			break;
   1618 		}
   1619 	}
   1620 
   1621 	/*
   1622 	 * If we aren't overwriting an mapping, try to allocate
   1623 	 */
   1624 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1625 	--pmap_pvo_enter_depth;
   1626 #endif
   1627 	pmap_interrupts_restore(msr);
   1628 	if (pvo) {
   1629 		KASSERT(pmap_pvo_pl(pvo) == pl);
   1630 	} else {
   1631 		pvo = pool_get(pl, poolflags);
   1632 	}
   1633 	KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
   1634 
   1635 #ifdef DEBUG
   1636 	/*
   1637 	 * Exercise pmap_pvo_reclaim() a little.
   1638 	 */
   1639 	if (pvo && (flags & PMAP_CANFAIL) != 0 &&
   1640 	    pmap_pvo_reclaim_debugctr++ > 0x1000 &&
   1641 	    (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
   1642 		pool_put(pl, pvo);
   1643 		pvo = NULL;
   1644 	}
   1645 #endif
   1646 
   1647 	msr = pmap_interrupts_off();
   1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1649 	++pmap_pvo_enter_depth;
   1650 #endif
   1651 	if (pvo == NULL) {
   1652 		pvo = pmap_pvo_reclaim(pm);
   1653 		if (pvo == NULL) {
   1654 			if ((flags & PMAP_CANFAIL) == 0)
   1655 				panic("pmap_pvo_enter: failed");
   1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1657 			pmap_pvo_enter_depth--;
   1658 #endif
   1659 			PMAPCOUNT(pvos_failed);
   1660 			pmap_interrupts_restore(msr);
   1661 			return ENOMEM;
   1662 		}
   1663 	}
   1664 
   1665 	pvo->pvo_vaddr = va;
   1666 	pvo->pvo_pmap = pm;
   1667 	pvo->pvo_vaddr &= ~ADDR_POFF;
   1668 	if (flags & VM_PROT_EXECUTE) {
   1669 		PMAPCOUNT(exec_mappings);
   1670 		pvo_set_exec(pvo);
   1671 	}
   1672 	if (flags & PMAP_WIRED)
   1673 		pvo->pvo_vaddr |= PVO_WIRED;
   1674 	if (pvo_head != &pmap_pvo_kunmanaged) {
   1675 		pvo->pvo_vaddr |= PVO_MANAGED;
   1676 		PMAPCOUNT(mappings);
   1677 	} else {
   1678 		PMAPCOUNT(kernel_mappings);
   1679 	}
   1680 	pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
   1681 
   1682 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
   1683 	if (PVO_WIRED_P(pvo))
   1684 		pvo->pvo_pmap->pm_stats.wired_count++;
   1685 	pvo->pvo_pmap->pm_stats.resident_count++;
   1686 #if defined(DEBUG)
   1687 /*	if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
   1688 		DPRINTFN(PVOENTER,
   1689 		    "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
   1690 		    pvo, pm, va, pa);
   1691 #endif
   1692 
   1693 	/*
   1694 	 * We hope this succeeds but it isn't required.
   1695 	 */
   1696 	pvoh = &pmap_pvo_table[ptegidx];
   1697 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
   1698 	if (i >= 0) {
   1699 		PVO_PTEGIDX_SET(pvo, i);
   1700 		PVO_WHERE(pvo, ENTER_INSERT);
   1701 		PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
   1702 		    ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
   1703 		TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
   1704 
   1705 	} else {
   1706 		/*
   1707 		 * Since we didn't have room for this entry (which makes it
   1708 		 * and evicted entry), place it at the head of the list.
   1709 		 */
   1710 		TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
   1711 		PMAPCOUNT(ptes_evicted);
   1712 		pm->pm_evictions++;
   1713 		/*
   1714 		 * If this is a kernel page, make sure it's active.
   1715 		 */
   1716 		if (pm == pmap_kernel()) {
   1717 			i = pmap_pte_spill(pm, va, false);
   1718 			KASSERT(i);
   1719 		}
   1720 	}
   1721 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1722 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1723 	pmap_pvo_enter_depth--;
   1724 #endif
   1725 	pmap_interrupts_restore(msr);
   1726 	return 0;
   1727 }
   1728 
   1729 static void
   1730 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
   1731 {
   1732 	volatile struct pte *pt;
   1733 	int ptegidx;
   1734 
   1735 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1736 	if (++pmap_pvo_remove_depth > 1)
   1737 		panic("pmap_pvo_remove: called recursively!");
   1738 #endif
   1739 
   1740 	/*
   1741 	 * If we haven't been supplied the ptegidx, calculate it.
   1742 	 */
   1743 	if (pteidx == -1) {
   1744 		ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
   1745 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
   1746 	} else {
   1747 		ptegidx = pteidx >> 3;
   1748 		if (pvo->pvo_pte.pte_hi & PTE_HID)
   1749 			ptegidx ^= pmap_pteg_mask;
   1750 	}
   1751 	PMAP_PVO_CHECK(pvo);		/* sanity check */
   1752 
   1753 	/*
   1754 	 * If there is an active pte entry, we need to deactivate it
   1755 	 * (and save the ref & chg bits).
   1756 	 */
   1757 	pt = pmap_pvo_to_pte(pvo, pteidx);
   1758 	if (pt != NULL) {
   1759 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   1760 		PVO_WHERE(pvo, REMOVE);
   1761 		PVO_PTEGIDX_CLR(pvo);
   1762 		PMAPCOUNT(ptes_removed);
   1763 	} else {
   1764 		KASSERT(pvo->pvo_pmap->pm_evictions > 0);
   1765 		pvo->pvo_pmap->pm_evictions--;
   1766 	}
   1767 
   1768 	/*
   1769 	 * Account for executable mappings.
   1770 	 */
   1771 	if (PVO_EXECUTABLE_P(pvo))
   1772 		pvo_clear_exec(pvo);
   1773 
   1774 	/*
   1775 	 * Update our statistics.
   1776 	 */
   1777 	pvo->pvo_pmap->pm_stats.resident_count--;
   1778 	if (PVO_WIRED_P(pvo))
   1779 		pvo->pvo_pmap->pm_stats.wired_count--;
   1780 
   1781 	/*
   1782 	 * Save the REF/CHG bits into their cache if the page is managed.
   1783 	 */
   1784 	if (PVO_MANAGED_P(pvo)) {
   1785 		register_t ptelo = pvo->pvo_pte.pte_lo;
   1786 		struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
   1787 
   1788 		if (pg != NULL) {
   1789 			/*
   1790 			 * If this page was changed and it is mapped exec,
   1791 			 * invalidate it.
   1792 			 */
   1793 			if ((ptelo & PTE_CHG) &&
   1794 			    (pmap_attr_fetch(pg) & PTE_EXEC)) {
   1795 				struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   1796 				if (LIST_EMPTY(pvoh)) {
   1797 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1798 					    "%#" _PRIxpa ": clear-exec]\n",
   1799 					    VM_PAGE_TO_PHYS(pg));
   1800 					pmap_attr_clear(pg, PTE_EXEC);
   1801 					PMAPCOUNT(exec_uncached_pvo_remove);
   1802 				} else {
   1803 					DPRINTFN(EXEC, "[pmap_pvo_remove: "
   1804 					    "%#" _PRIxpa ": syncicache]\n",
   1805 					    VM_PAGE_TO_PHYS(pg));
   1806 					pmap_syncicache(VM_PAGE_TO_PHYS(pg),
   1807 					    PAGE_SIZE);
   1808 					PMAPCOUNT(exec_synced_pvo_remove);
   1809 				}
   1810 			}
   1811 
   1812 			pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
   1813 		}
   1814 		PMAPCOUNT(unmappings);
   1815 	} else {
   1816 		PMAPCOUNT(kernel_unmappings);
   1817 	}
   1818 
   1819 	/*
   1820 	 * Remove the PVO from its lists and return it to the pool.
   1821 	 */
   1822 	LIST_REMOVE(pvo, pvo_vlink);
   1823 	TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
   1824 	if (pvol) {
   1825 		LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
   1826 	}
   1827 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   1828 	pmap_pvo_remove_depth--;
   1829 #endif
   1830 }
   1831 
   1832 void
   1833 pmap_pvo_free(struct pvo_entry *pvo)
   1834 {
   1835 
   1836 	pool_put(pmap_pvo_pl(pvo), pvo);
   1837 }
   1838 
   1839 void
   1840 pmap_pvo_free_list(struct pvo_head *pvol)
   1841 {
   1842 	struct pvo_entry *pvo, *npvo;
   1843 
   1844 	for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
   1845 		npvo = LIST_NEXT(pvo, pvo_vlink);
   1846 		LIST_REMOVE(pvo, pvo_vlink);
   1847 		pmap_pvo_free(pvo);
   1848 	}
   1849 }
   1850 
   1851 /*
   1852  * Mark a mapping as executable.
   1853  * If this is the first executable mapping in the segment,
   1854  * clear the noexec flag.
   1855  */
   1856 static void
   1857 pvo_set_exec(struct pvo_entry *pvo)
   1858 {
   1859 	struct pmap *pm = pvo->pvo_pmap;
   1860 
   1861 	if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
   1862 		return;
   1863 	}
   1864 	pvo->pvo_vaddr |= PVO_EXECUTABLE;
   1865 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1866 	{
   1867 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1868 		if (pm->pm_exec[sr]++ == 0) {
   1869 			pm->pm_sr[sr] &= ~SR_NOEXEC;
   1870 		}
   1871 	}
   1872 #endif
   1873 }
   1874 
   1875 /*
   1876  * Mark a mapping as non-executable.
   1877  * If this was the last executable mapping in the segment,
   1878  * set the noexec flag.
   1879  */
   1880 static void
   1881 pvo_clear_exec(struct pvo_entry *pvo)
   1882 {
   1883 	struct pmap *pm = pvo->pvo_pmap;
   1884 
   1885 	if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
   1886 		return;
   1887 	}
   1888 	pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
   1889 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   1890 	{
   1891 		int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
   1892 		if (--pm->pm_exec[sr] == 0) {
   1893 			pm->pm_sr[sr] |= SR_NOEXEC;
   1894 		}
   1895 	}
   1896 #endif
   1897 }
   1898 
   1899 /*
   1900  * Insert physical page at pa into the given pmap at virtual address va.
   1901  */
   1902 int
   1903 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1904 {
   1905 	struct mem_region *mp;
   1906 	struct pvo_head *pvo_head;
   1907 	struct vm_page *pg;
   1908 	struct pool *pl;
   1909 	register_t pte_lo;
   1910 	int error;
   1911 	u_int was_exec = 0;
   1912 
   1913 	PMAP_LOCK();
   1914 
   1915 	if (__predict_false(!pmap_initialized)) {
   1916 		pvo_head = &pmap_pvo_kunmanaged;
   1917 		pl = &pmap_upvo_pool;
   1918 		pg = NULL;
   1919 		was_exec = PTE_EXEC;
   1920 	} else {
   1921 		pvo_head = pa_to_pvoh(pa, &pg);
   1922 		pl = &pmap_mpvo_pool;
   1923 	}
   1924 
   1925 	DPRINTFN(ENTER,
   1926 	    "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
   1927 	    pm, va, pa, prot, flags);
   1928 
   1929 	/*
   1930 	 * If this is a managed page, and it's the first reference to the
   1931 	 * page clear the execness of the page.  Otherwise fetch the execness.
   1932 	 */
   1933 	if (pg != NULL)
   1934 		was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
   1935 
   1936 	DPRINTFN(ENTER, " was_exec=%d", was_exec);
   1937 
   1938 	/*
   1939 	 * Assume the page is cache inhibited and access is guarded unless
   1940 	 * it's in our available memory array.  If it is in the memory array,
   1941 	 * asssume it's in memory coherent memory.
   1942 	 */
   1943 	if (flags & PMAP_MD_PREFETCHABLE) {
   1944 		pte_lo = 0;
   1945 	} else
   1946 		pte_lo = PTE_G;
   1947 
   1948 	if ((flags & PMAP_NOCACHE) == 0) {
   1949 		for (mp = mem; mp->size; mp++) {
   1950 			if (pa >= mp->start && pa < mp->start + mp->size) {
   1951 				pte_lo = PTE_M;
   1952 				break;
   1953 			}
   1954 		}
   1955 #ifdef MULTIPROCESSOR
   1956 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   1957 			pte_lo = PTE_M;
   1958 #endif
   1959 	} else {
   1960 		pte_lo |= PTE_I;
   1961 	}
   1962 
   1963 	if (prot & VM_PROT_WRITE)
   1964 		pte_lo |= PTE_BW;
   1965 	else
   1966 		pte_lo |= PTE_BR;
   1967 
   1968 	/*
   1969 	 * If this was in response to a fault, "pre-fault" the PTE's
   1970 	 * changed/referenced bit appropriately.
   1971 	 */
   1972 	if (flags & VM_PROT_WRITE)
   1973 		pte_lo |= PTE_CHG;
   1974 	if (flags & VM_PROT_ALL)
   1975 		pte_lo |= PTE_REF;
   1976 
   1977 	/*
   1978 	 * We need to know if this page can be executable
   1979 	 */
   1980 	flags |= (prot & VM_PROT_EXECUTE);
   1981 
   1982 	/*
   1983 	 * Record mapping for later back-translation and pte spilling.
   1984 	 * This will overwrite any existing mapping.
   1985 	 */
   1986 	error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
   1987 
   1988 	/*
   1989 	 * Flush the real page from the instruction cache if this page is
   1990 	 * mapped executable and cacheable and has not been flushed since
   1991 	 * the last time it was modified.
   1992 	 */
   1993 	if (error == 0 &&
   1994             (flags & VM_PROT_EXECUTE) &&
   1995             (pte_lo & PTE_I) == 0 &&
   1996 	    was_exec == 0) {
   1997 		DPRINTFN(ENTER, " %s", "syncicache");
   1998 		PMAPCOUNT(exec_synced);
   1999 		pmap_syncicache(pa, PAGE_SIZE);
   2000 		if (pg != NULL) {
   2001 			pmap_attr_save(pg, PTE_EXEC);
   2002 			PMAPCOUNT(exec_cached);
   2003 #if defined(DEBUG) || defined(PMAPDEBUG)
   2004 			if (pmapdebug & PMAPDEBUG_ENTER)
   2005 				printf(" marked-as-exec");
   2006 			else if (pmapdebug & PMAPDEBUG_EXEC)
   2007 				printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
   2008 				    VM_PAGE_TO_PHYS(pg));
   2009 
   2010 #endif
   2011 		}
   2012 	}
   2013 
   2014 	DPRINTFN(ENTER, ": error=%d\n", error);
   2015 
   2016 	PMAP_UNLOCK();
   2017 
   2018 	return error;
   2019 }
   2020 
   2021 void
   2022 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   2023 {
   2024 	struct mem_region *mp;
   2025 	register_t pte_lo;
   2026 	int error;
   2027 
   2028 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
   2029 	if (va < VM_MIN_KERNEL_ADDRESS)
   2030 		panic("pmap_kenter_pa: attempt to enter "
   2031 		    "non-kernel address %#" _PRIxva "!", va);
   2032 #endif
   2033 
   2034 	DPRINTFN(KENTER,
   2035 	    "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
   2036 
   2037 	PMAP_LOCK();
   2038 
   2039 	/*
   2040 	 * Assume the page is cache inhibited and access is guarded unless
   2041 	 * it's in our available memory array.  If it is in the memory array,
   2042 	 * asssume it's in memory coherent memory.
   2043 	 */
   2044 	pte_lo = PTE_IG;
   2045 	if ((flags & PMAP_NOCACHE) == 0) {
   2046 		for (mp = mem; mp->size; mp++) {
   2047 			if (pa >= mp->start && pa < mp->start + mp->size) {
   2048 				pte_lo = PTE_M;
   2049 				break;
   2050 			}
   2051 		}
   2052 #ifdef MULTIPROCESSOR
   2053 		if (((mfpvr() >> 16) & 0xffff) == MPC603e)
   2054 			pte_lo = PTE_M;
   2055 #endif
   2056 	}
   2057 
   2058 	if (prot & VM_PROT_WRITE)
   2059 		pte_lo |= PTE_BW;
   2060 	else
   2061 		pte_lo |= PTE_BR;
   2062 
   2063 	/*
   2064 	 * We don't care about REF/CHG on PVOs on the unmanaged list.
   2065 	 */
   2066 	error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
   2067 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
   2068 
   2069 	if (error != 0)
   2070 		panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
   2071 		      va, pa, error);
   2072 
   2073 	PMAP_UNLOCK();
   2074 }
   2075 
   2076 void
   2077 pmap_kremove(vaddr_t va, vsize_t len)
   2078 {
   2079 	if (va < VM_MIN_KERNEL_ADDRESS)
   2080 		panic("pmap_kremove: attempt to remove "
   2081 		    "non-kernel address %#" _PRIxva "!", va);
   2082 
   2083 	DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
   2084 	pmap_remove(pmap_kernel(), va, va + len);
   2085 }
   2086 
   2087 /*
   2088  * Remove the given range of mapping entries.
   2089  */
   2090 void
   2091 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
   2092 {
   2093 	struct pvo_head pvol;
   2094 	struct pvo_entry *pvo;
   2095 	register_t msr;
   2096 	int pteidx;
   2097 
   2098 	PMAP_LOCK();
   2099 	LIST_INIT(&pvol);
   2100 	msr = pmap_interrupts_off();
   2101 	for (; va < endva; va += PAGE_SIZE) {
   2102 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2103 		if (pvo != NULL) {
   2104 			pmap_pvo_remove(pvo, pteidx, &pvol);
   2105 		}
   2106 	}
   2107 	pmap_interrupts_restore(msr);
   2108 	pmap_pvo_free_list(&pvol);
   2109 	PMAP_UNLOCK();
   2110 }
   2111 
   2112 /*
   2113  * Get the physical page address for the given pmap/virtual address.
   2114  */
   2115 bool
   2116 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
   2117 {
   2118 	struct pvo_entry *pvo;
   2119 	register_t msr;
   2120 
   2121 	PMAP_LOCK();
   2122 
   2123 	/*
   2124 	 * If this is a kernel pmap lookup, also check the battable
   2125 	 * and if we get a hit, translate the VA to a PA using the
   2126 	 * BAT entries.  Don't check for VM_MAX_KERNEL_ADDRESS is
   2127 	 * that will wrap back to 0.
   2128 	 */
   2129 	if (pm == pmap_kernel() &&
   2130 	    (va < VM_MIN_KERNEL_ADDRESS ||
   2131 	     (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
   2132 		KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
   2133 #if defined (PMAP_OEA)
   2134 #ifdef PPC_OEA601
   2135 		if ((MFPVR() >> 16) == MPC601) {
   2136 			register_t batu = battable[va >> 23].batu;
   2137 			register_t batl = battable[va >> 23].batl;
   2138 			register_t sr = iosrtable[va >> ADDR_SR_SHFT];
   2139 			if (BAT601_VALID_P(batl) &&
   2140 			    BAT601_VA_MATCH_P(batu, batl, va)) {
   2141 				register_t mask =
   2142 				    (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
   2143 				if (pap)
   2144 					*pap = (batl & mask) | (va & ~mask);
   2145 				PMAP_UNLOCK();
   2146 				return true;
   2147 			} else if (SR601_VALID_P(sr) &&
   2148 				   SR601_PA_MATCH_P(sr, va)) {
   2149 				if (pap)
   2150 					*pap = va;
   2151 				PMAP_UNLOCK();
   2152 				return true;
   2153 			}
   2154 		} else
   2155 #endif /* PPC_OEA601 */
   2156 		{
   2157 			register_t batu = battable[BAT_VA2IDX(va)].batu;
   2158 			if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
   2159 				register_t batl = battable[BAT_VA2IDX(va)].batl;
   2160 				register_t mask =
   2161 				    (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
   2162 				if (pap)
   2163 					*pap = (batl & mask) | (va & ~mask);
   2164 				PMAP_UNLOCK();
   2165 				return true;
   2166 			}
   2167 		}
   2168 		PMAP_UNLOCK();
   2169 		return false;
   2170 #elif defined (PMAP_OEA64_BRIDGE)
   2171 	if (va >= SEGMENT_LENGTH)
   2172 		panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
   2173 		    __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
   2174 	else {
   2175 		if (pap)
   2176 			*pap = va;
   2177 			PMAP_UNLOCK();
   2178 			return true;
   2179 	}
   2180 #elif defined (PMAP_OEA64)
   2181 #error PPC_OEA64 not supported
   2182 #endif /* PPC_OEA */
   2183 	}
   2184 
   2185 	msr = pmap_interrupts_off();
   2186 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
   2187 	if (pvo != NULL) {
   2188 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2189 		if (pap)
   2190 			*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
   2191 			    | (va & ADDR_POFF);
   2192 	}
   2193 	pmap_interrupts_restore(msr);
   2194 	PMAP_UNLOCK();
   2195 	return pvo != NULL;
   2196 }
   2197 
   2198 /*
   2199  * Lower the protection on the specified range of this pmap.
   2200  */
   2201 void
   2202 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
   2203 {
   2204 	struct pvo_entry *pvo;
   2205 	volatile struct pte *pt;
   2206 	register_t msr;
   2207 	int pteidx;
   2208 
   2209 	/*
   2210 	 * Since this routine only downgrades protection, we should
   2211 	 * always be called with at least one bit not set.
   2212 	 */
   2213 	KASSERT(prot != VM_PROT_ALL);
   2214 
   2215 	/*
   2216 	 * If there is no protection, this is equivalent to
   2217 	 * remove the pmap from the pmap.
   2218 	 */
   2219 	if ((prot & VM_PROT_READ) == 0) {
   2220 		pmap_remove(pm, va, endva);
   2221 		return;
   2222 	}
   2223 
   2224 	PMAP_LOCK();
   2225 
   2226 	msr = pmap_interrupts_off();
   2227 	for (; va < endva; va += PAGE_SIZE) {
   2228 		pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2229 		if (pvo == NULL)
   2230 			continue;
   2231 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2232 
   2233 		/*
   2234 		 * Revoke executable if asked to do so.
   2235 		 */
   2236 		if ((prot & VM_PROT_EXECUTE) == 0)
   2237 			pvo_clear_exec(pvo);
   2238 
   2239 #if 0
   2240 		/*
   2241 		 * If the page is already read-only, no change
   2242 		 * needs to be made.
   2243 		 */
   2244 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
   2245 			continue;
   2246 #endif
   2247 		/*
   2248 		 * Grab the PTE pointer before we diddle with
   2249 		 * the cached PTE copy.
   2250 		 */
   2251 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2252 		/*
   2253 		 * Change the protection of the page.
   2254 		 */
   2255 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2256 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2257 
   2258 		/*
   2259 		 * If the PVO is in the page table, update
   2260 		 * that pte at well.
   2261 		 */
   2262 		if (pt != NULL) {
   2263 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2264 			PVO_WHERE(pvo, PMAP_PROTECT);
   2265 			PMAPCOUNT(ptes_changed);
   2266 		}
   2267 
   2268 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2269 	}
   2270 	pmap_interrupts_restore(msr);
   2271 	PMAP_UNLOCK();
   2272 }
   2273 
   2274 void
   2275 pmap_unwire(pmap_t pm, vaddr_t va)
   2276 {
   2277 	struct pvo_entry *pvo;
   2278 	register_t msr;
   2279 
   2280 	PMAP_LOCK();
   2281 	msr = pmap_interrupts_off();
   2282 	pvo = pmap_pvo_find_va(pm, va, NULL);
   2283 	if (pvo != NULL) {
   2284 		if (PVO_WIRED_P(pvo)) {
   2285 			pvo->pvo_vaddr &= ~PVO_WIRED;
   2286 			pm->pm_stats.wired_count--;
   2287 		}
   2288 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2289 	}
   2290 	pmap_interrupts_restore(msr);
   2291 	PMAP_UNLOCK();
   2292 }
   2293 
   2294 /*
   2295  * Lower the protection on the specified physical page.
   2296  */
   2297 void
   2298 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2299 {
   2300 	struct pvo_head *pvo_head, pvol;
   2301 	struct pvo_entry *pvo, *next_pvo;
   2302 	volatile struct pte *pt;
   2303 	register_t msr;
   2304 
   2305 	PMAP_LOCK();
   2306 
   2307 	KASSERT(prot != VM_PROT_ALL);
   2308 	LIST_INIT(&pvol);
   2309 	msr = pmap_interrupts_off();
   2310 
   2311 	/*
   2312 	 * When UVM reuses a page, it does a pmap_page_protect with
   2313 	 * VM_PROT_NONE.  At that point, we can clear the exec flag
   2314 	 * since we know the page will have different contents.
   2315 	 */
   2316 	if ((prot & VM_PROT_READ) == 0) {
   2317 		DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
   2318 		    VM_PAGE_TO_PHYS(pg));
   2319 		if (pmap_attr_fetch(pg) & PTE_EXEC) {
   2320 			PMAPCOUNT(exec_uncached_page_protect);
   2321 			pmap_attr_clear(pg, PTE_EXEC);
   2322 		}
   2323 	}
   2324 
   2325 	pvo_head = vm_page_to_pvoh(pg);
   2326 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
   2327 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
   2328 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2329 
   2330 		/*
   2331 		 * Downgrading to no mapping at all, we just remove the entry.
   2332 		 */
   2333 		if ((prot & VM_PROT_READ) == 0) {
   2334 			pmap_pvo_remove(pvo, -1, &pvol);
   2335 			continue;
   2336 		}
   2337 
   2338 		/*
   2339 		 * If EXEC permission is being revoked, just clear the
   2340 		 * flag in the PVO.
   2341 		 */
   2342 		if ((prot & VM_PROT_EXECUTE) == 0)
   2343 			pvo_clear_exec(pvo);
   2344 
   2345 		/*
   2346 		 * If this entry is already RO, don't diddle with the
   2347 		 * page table.
   2348 		 */
   2349 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
   2350 			PMAP_PVO_CHECK(pvo);
   2351 			continue;
   2352 		}
   2353 
   2354 		/*
   2355 		 * Grab the PTE before the we diddle the bits so
   2356 		 * pvo_to_pte can verify the pte contents are as
   2357 		 * expected.
   2358 		 */
   2359 		pt = pmap_pvo_to_pte(pvo, -1);
   2360 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
   2361 		pvo->pvo_pte.pte_lo |= PTE_BR;
   2362 		if (pt != NULL) {
   2363 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
   2364 			PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
   2365 			PMAPCOUNT(ptes_changed);
   2366 		}
   2367 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2368 	}
   2369 	pmap_interrupts_restore(msr);
   2370 	pmap_pvo_free_list(&pvol);
   2371 
   2372 	PMAP_UNLOCK();
   2373 }
   2374 
   2375 /*
   2376  * Activate the address space for the specified process.  If the process
   2377  * is the current process, load the new MMU context.
   2378  */
   2379 void
   2380 pmap_activate(struct lwp *l)
   2381 {
   2382 	struct pcb *pcb = lwp_getpcb(l);
   2383 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
   2384 
   2385 	DPRINTFN(ACTIVATE,
   2386 	    "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
   2387 
   2388 	/*
   2389 	 * XXX Normally performed in cpu_lwp_fork().
   2390 	 */
   2391 	pcb->pcb_pm = pmap;
   2392 
   2393 	/*
   2394 	* In theory, the SR registers need only be valid on return
   2395 	* to user space wait to do them there.
   2396 	*/
   2397 	if (l == curlwp) {
   2398 		/* Store pointer to new current pmap. */
   2399 		curpm = pmap;
   2400 	}
   2401 }
   2402 
   2403 /*
   2404  * Deactivate the specified process's address space.
   2405  */
   2406 void
   2407 pmap_deactivate(struct lwp *l)
   2408 {
   2409 }
   2410 
   2411 bool
   2412 pmap_query_bit(struct vm_page *pg, int ptebit)
   2413 {
   2414 	struct pvo_entry *pvo;
   2415 	volatile struct pte *pt;
   2416 	register_t msr;
   2417 
   2418 	PMAP_LOCK();
   2419 
   2420 	if (pmap_attr_fetch(pg) & ptebit) {
   2421 		PMAP_UNLOCK();
   2422 		return true;
   2423 	}
   2424 
   2425 	msr = pmap_interrupts_off();
   2426 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2427 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2428 		/*
   2429 		 * See if we saved the bit off.  If so cache, it and return
   2430 		 * success.
   2431 		 */
   2432 		if (pvo->pvo_pte.pte_lo & ptebit) {
   2433 			pmap_attr_save(pg, ptebit);
   2434 			PMAP_PVO_CHECK(pvo);		/* sanity check */
   2435 			pmap_interrupts_restore(msr);
   2436 			PMAP_UNLOCK();
   2437 			return true;
   2438 		}
   2439 	}
   2440 	/*
   2441 	 * No luck, now go thru the hard part of looking at the ptes
   2442 	 * themselves.  Sync so any pending REF/CHG bits are flushed
   2443 	 * to the PTEs.
   2444 	 */
   2445 	SYNC();
   2446 	LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
   2447 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2448 		/*
   2449 		 * See if this pvo have a valid PTE.  If so, fetch the
   2450 		 * REF/CHG bits from the valid PTE.  If the appropriate
   2451 		 * ptebit is set, cache, it and return success.
   2452 		 */
   2453 		pt = pmap_pvo_to_pte(pvo, -1);
   2454 		if (pt != NULL) {
   2455 			pmap_pte_synch(pt, &pvo->pvo_pte);
   2456 			if (pvo->pvo_pte.pte_lo & ptebit) {
   2457 				pmap_attr_save(pg, ptebit);
   2458 				PMAP_PVO_CHECK(pvo);		/* sanity check */
   2459 				pmap_interrupts_restore(msr);
   2460 				PMAP_UNLOCK();
   2461 				return true;
   2462 			}
   2463 		}
   2464 	}
   2465 	pmap_interrupts_restore(msr);
   2466 	PMAP_UNLOCK();
   2467 	return false;
   2468 }
   2469 
   2470 bool
   2471 pmap_clear_bit(struct vm_page *pg, int ptebit)
   2472 {
   2473 	struct pvo_head *pvoh = vm_page_to_pvoh(pg);
   2474 	struct pvo_entry *pvo;
   2475 	volatile struct pte *pt;
   2476 	register_t msr;
   2477 	int rv = 0;
   2478 
   2479 	PMAP_LOCK();
   2480 	msr = pmap_interrupts_off();
   2481 
   2482 	/*
   2483 	 * Fetch the cache value
   2484 	 */
   2485 	rv |= pmap_attr_fetch(pg);
   2486 
   2487 	/*
   2488 	 * Clear the cached value.
   2489 	 */
   2490 	pmap_attr_clear(pg, ptebit);
   2491 
   2492 	/*
   2493 	 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
   2494 	 * can reset the right ones).  Note that since the pvo entries and
   2495 	 * list heads are accessed via BAT0 and are never placed in the
   2496 	 * page table, we don't have to worry about further accesses setting
   2497 	 * the REF/CHG bits.
   2498 	 */
   2499 	SYNC();
   2500 
   2501 	/*
   2502 	 * For each pvo entry, clear pvo's ptebit.  If this pvo have a
   2503 	 * valid PTE.  If so, clear the ptebit from the valid PTE.
   2504 	 */
   2505 	LIST_FOREACH(pvo, pvoh, pvo_vlink) {
   2506 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2507 		pt = pmap_pvo_to_pte(pvo, -1);
   2508 		if (pt != NULL) {
   2509 			/*
   2510 			 * Only sync the PTE if the bit we are looking
   2511 			 * for is not already set.
   2512 			 */
   2513 			if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
   2514 				pmap_pte_synch(pt, &pvo->pvo_pte);
   2515 			/*
   2516 			 * If the bit we are looking for was already set,
   2517 			 * clear that bit in the pte.
   2518 			 */
   2519 			if (pvo->pvo_pte.pte_lo & ptebit)
   2520 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
   2521 		}
   2522 		rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
   2523 		pvo->pvo_pte.pte_lo &= ~ptebit;
   2524 		PMAP_PVO_CHECK(pvo);		/* sanity check */
   2525 	}
   2526 	pmap_interrupts_restore(msr);
   2527 
   2528 	/*
   2529 	 * If we are clearing the modify bit and this page was marked EXEC
   2530 	 * and the user of the page thinks the page was modified, then we
   2531 	 * need to clean it from the icache if it's mapped or clear the EXEC
   2532 	 * bit if it's not mapped.  The page itself might not have the CHG
   2533 	 * bit set if the modification was done via DMA to the page.
   2534 	 */
   2535 	if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
   2536 		if (LIST_EMPTY(pvoh)) {
   2537 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
   2538 			    VM_PAGE_TO_PHYS(pg));
   2539 			pmap_attr_clear(pg, PTE_EXEC);
   2540 			PMAPCOUNT(exec_uncached_clear_modify);
   2541 		} else {
   2542 			DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
   2543 			    VM_PAGE_TO_PHYS(pg));
   2544 			pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
   2545 			PMAPCOUNT(exec_synced_clear_modify);
   2546 		}
   2547 	}
   2548 	PMAP_UNLOCK();
   2549 	return (rv & ptebit) != 0;
   2550 }
   2551 
   2552 void
   2553 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
   2554 {
   2555 	struct pvo_entry *pvo;
   2556 	size_t offset = va & ADDR_POFF;
   2557 	int s;
   2558 
   2559 	PMAP_LOCK();
   2560 	s = splvm();
   2561 	while (len > 0) {
   2562 		size_t seglen = PAGE_SIZE - offset;
   2563 		if (seglen > len)
   2564 			seglen = len;
   2565 		pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
   2566 		if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
   2567 			pmap_syncicache(
   2568 			    (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
   2569 			PMAP_PVO_CHECK(pvo);
   2570 		}
   2571 		va += seglen;
   2572 		len -= seglen;
   2573 		offset = 0;
   2574 	}
   2575 	splx(s);
   2576 	PMAP_UNLOCK();
   2577 }
   2578 
   2579 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
   2580 void
   2581 pmap_pte_print(volatile struct pte *pt)
   2582 {
   2583 	printf("PTE %p: ", pt);
   2584 
   2585 #if defined(PMAP_OEA)
   2586 	/* High word: */
   2587 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2588 #else
   2589 	printf("%#" _PRIxpte ": [", pt->pte_hi);
   2590 #endif /* PMAP_OEA */
   2591 
   2592 	printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
   2593 	printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
   2594 
   2595 	printf("%#" _PRIxpte " %#" _PRIxpte "",
   2596 	    (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
   2597 	    pt->pte_hi & PTE_API);
   2598 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2599 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2600 #else
   2601 	printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
   2602 #endif /* PMAP_OEA */
   2603 
   2604 	/* Low word: */
   2605 #if defined (PMAP_OEA)
   2606 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2607 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2608 #else
   2609 	printf(" %#" _PRIxpte ": [", pt->pte_lo);
   2610 	printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
   2611 #endif
   2612 	printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
   2613 	printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
   2614 	printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
   2615 	printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
   2616 	printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
   2617 	printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
   2618 	switch (pt->pte_lo & PTE_PP) {
   2619 	case PTE_BR: printf("br]\n"); break;
   2620 	case PTE_BW: printf("bw]\n"); break;
   2621 	case PTE_SO: printf("so]\n"); break;
   2622 	case PTE_SW: printf("sw]\n"); break;
   2623 	}
   2624 }
   2625 #endif
   2626 
   2627 #if defined(DDB)
   2628 void
   2629 pmap_pteg_check(void)
   2630 {
   2631 	volatile struct pte *pt;
   2632 	int i;
   2633 	int ptegidx;
   2634 	u_int p_valid = 0;
   2635 	u_int s_valid = 0;
   2636 	u_int invalid = 0;
   2637 
   2638 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2639 		for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
   2640 			if (pt->pte_hi & PTE_VALID) {
   2641 				if (pt->pte_hi & PTE_HID)
   2642 					s_valid++;
   2643 				else
   2644 				{
   2645 					p_valid++;
   2646 				}
   2647 			} else
   2648 				invalid++;
   2649 		}
   2650 	}
   2651 	printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
   2652 		p_valid, p_valid, s_valid, s_valid,
   2653 		invalid, invalid);
   2654 }
   2655 
   2656 void
   2657 pmap_print_mmuregs(void)
   2658 {
   2659 	int i;
   2660 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2661 	u_int cpuvers;
   2662 #endif
   2663 #ifndef PMAP_OEA64
   2664 	vaddr_t addr;
   2665 	register_t soft_sr[16];
   2666 #endif
   2667 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2668 	struct bat soft_ibat[4];
   2669 	struct bat soft_dbat[4];
   2670 #endif
   2671 	paddr_t sdr1;
   2672 
   2673 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2674 	cpuvers = MFPVR() >> 16;
   2675 #endif
   2676 	__asm volatile ("mfsdr1 %0" : "=r"(sdr1));
   2677 #ifndef PMAP_OEA64
   2678 	addr = 0;
   2679 	for (i = 0; i < 16; i++) {
   2680 		soft_sr[i] = MFSRIN(addr);
   2681 		addr += (1 << ADDR_SR_SHFT);
   2682 	}
   2683 #endif
   2684 
   2685 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   2686 	/* read iBAT (601: uBAT) registers */
   2687 	__asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
   2688 	__asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
   2689 	__asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
   2690 	__asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
   2691 	__asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
   2692 	__asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
   2693 	__asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
   2694 	__asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
   2695 
   2696 
   2697 	if (cpuvers != MPC601) {
   2698 		/* read dBAT registers */
   2699 		__asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
   2700 		__asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
   2701 		__asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
   2702 		__asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
   2703 		__asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
   2704 		__asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
   2705 		__asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
   2706 		__asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
   2707 	}
   2708 #endif
   2709 
   2710 	printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
   2711 #ifndef PMAP_OEA64
   2712 	printf("SR[]:\t");
   2713 	for (i = 0; i < 4; i++)
   2714 		printf("0x%08lx,   ", soft_sr[i]);
   2715 	printf("\n\t");
   2716 	for ( ; i < 8; i++)
   2717 		printf("0x%08lx,   ", soft_sr[i]);
   2718 	printf("\n\t");
   2719 	for ( ; i < 12; i++)
   2720 		printf("0x%08lx,   ", soft_sr[i]);
   2721 	printf("\n\t");
   2722 	for ( ; i < 16; i++)
   2723 		printf("0x%08lx,   ", soft_sr[i]);
   2724 	printf("\n");
   2725 #endif
   2726 
   2727 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
   2728 	printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
   2729 	for (i = 0; i < 4; i++) {
   2730 		printf("0x%08lx 0x%08lx, ",
   2731 			soft_ibat[i].batu, soft_ibat[i].batl);
   2732 		if (i == 1)
   2733 			printf("\n\t");
   2734 	}
   2735 	if (cpuvers != MPC601) {
   2736 		printf("\ndBAT[]:\t");
   2737 		for (i = 0; i < 4; i++) {
   2738 			printf("0x%08lx 0x%08lx, ",
   2739 				soft_dbat[i].batu, soft_dbat[i].batl);
   2740 			if (i == 1)
   2741 				printf("\n\t");
   2742 		}
   2743 	}
   2744 	printf("\n");
   2745 #endif /* PMAP_OEA... */
   2746 }
   2747 
   2748 void
   2749 pmap_print_pte(pmap_t pm, vaddr_t va)
   2750 {
   2751 	struct pvo_entry *pvo;
   2752 	volatile struct pte *pt;
   2753 	int pteidx;
   2754 
   2755 	pvo = pmap_pvo_find_va(pm, va, &pteidx);
   2756 	if (pvo != NULL) {
   2757 		pt = pmap_pvo_to_pte(pvo, pteidx);
   2758 		if (pt != NULL) {
   2759 			printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
   2760 				va, pt,
   2761 				pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
   2762 				pt->pte_hi, pt->pte_lo);
   2763 		} else {
   2764 			printf("No valid PTE found\n");
   2765 		}
   2766 	} else {
   2767 		printf("Address not in pmap\n");
   2768 	}
   2769 }
   2770 
   2771 void
   2772 pmap_pteg_dist(void)
   2773 {
   2774 	struct pvo_entry *pvo;
   2775 	int ptegidx;
   2776 	int depth;
   2777 	int max_depth = 0;
   2778 	unsigned int depths[64];
   2779 
   2780 	memset(depths, 0, sizeof(depths));
   2781 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2782 		depth = 0;
   2783 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2784 			depth++;
   2785 		}
   2786 		if (depth > max_depth)
   2787 			max_depth = depth;
   2788 		if (depth > 63)
   2789 			depth = 63;
   2790 		depths[depth]++;
   2791 	}
   2792 
   2793 	for (depth = 0; depth < 64; depth++) {
   2794 		printf("  [%2d]: %8u", depth, depths[depth]);
   2795 		if ((depth & 3) == 3)
   2796 			printf("\n");
   2797 		if (depth == max_depth)
   2798 			break;
   2799 	}
   2800 	if ((depth & 3) != 3)
   2801 		printf("\n");
   2802 	printf("Max depth found was %d\n", max_depth);
   2803 }
   2804 #endif /* DEBUG */
   2805 
   2806 #if defined(PMAPCHECK) || defined(DEBUG)
   2807 void
   2808 pmap_pvo_verify(void)
   2809 {
   2810 	int ptegidx;
   2811 	int s;
   2812 
   2813 	s = splvm();
   2814 	for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
   2815 		struct pvo_entry *pvo;
   2816 		TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
   2817 			if ((uintptr_t) pvo >= SEGMENT_LENGTH)
   2818 				panic("pmap_pvo_verify: invalid pvo %p "
   2819 				    "on list %#x", pvo, ptegidx);
   2820 			pmap_pvo_check(pvo);
   2821 		}
   2822 	}
   2823 	splx(s);
   2824 }
   2825 #endif /* PMAPCHECK */
   2826 
   2827 
   2828 void *
   2829 pmap_pool_ualloc(struct pool *pp, int flags)
   2830 {
   2831 	struct pvo_page *pvop;
   2832 
   2833 	if (uvm.page_init_done != true) {
   2834 		return (void *) uvm_pageboot_alloc(PAGE_SIZE);
   2835 	}
   2836 
   2837 	PMAP_LOCK();
   2838 	pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
   2839 	if (pvop != NULL) {
   2840 		pmap_upvop_free--;
   2841 		SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
   2842 		PMAP_UNLOCK();
   2843 		return pvop;
   2844 	}
   2845 	PMAP_UNLOCK();
   2846 	return pmap_pool_malloc(pp, flags);
   2847 }
   2848 
   2849 void *
   2850 pmap_pool_malloc(struct pool *pp, int flags)
   2851 {
   2852 	struct pvo_page *pvop;
   2853 	struct vm_page *pg;
   2854 
   2855 	PMAP_LOCK();
   2856 	pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
   2857 	if (pvop != NULL) {
   2858 		pmap_mpvop_free--;
   2859 		SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
   2860 		PMAP_UNLOCK();
   2861 		return pvop;
   2862 	}
   2863 	PMAP_UNLOCK();
   2864  again:
   2865 	pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
   2866 	    UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
   2867 	if (__predict_false(pg == NULL)) {
   2868 		if (flags & PR_WAITOK) {
   2869 			uvm_wait("plpg");
   2870 			goto again;
   2871 		} else {
   2872 			return (0);
   2873 		}
   2874 	}
   2875 	KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
   2876 	return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
   2877 }
   2878 
   2879 void
   2880 pmap_pool_ufree(struct pool *pp, void *va)
   2881 {
   2882 	struct pvo_page *pvop;
   2883 #if 0
   2884 	if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
   2885 		pmap_pool_mfree(va, size, tag);
   2886 		return;
   2887 	}
   2888 #endif
   2889 	PMAP_LOCK();
   2890 	pvop = va;
   2891 	SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
   2892 	pmap_upvop_free++;
   2893 	if (pmap_upvop_free > pmap_upvop_maxfree)
   2894 		pmap_upvop_maxfree = pmap_upvop_free;
   2895 	PMAP_UNLOCK();
   2896 }
   2897 
   2898 void
   2899 pmap_pool_mfree(struct pool *pp, void *va)
   2900 {
   2901 	struct pvo_page *pvop;
   2902 
   2903 	PMAP_LOCK();
   2904 	pvop = va;
   2905 	SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
   2906 	pmap_mpvop_free++;
   2907 	if (pmap_mpvop_free > pmap_mpvop_maxfree)
   2908 		pmap_mpvop_maxfree = pmap_mpvop_free;
   2909 	PMAP_UNLOCK();
   2910 #if 0
   2911 	uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
   2912 #endif
   2913 }
   2914 
   2915 /*
   2916  * This routine in bootstraping to steal to-be-managed memory (which will
   2917  * then be unmanaged).  We use it to grab from the first 256MB for our
   2918  * pmap needs and above 256MB for other stuff.
   2919  */
   2920 vaddr_t
   2921 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
   2922 {
   2923 	vsize_t size;
   2924 	vaddr_t va;
   2925 	paddr_t start, end, pa = 0;
   2926 	int npgs, freelist;
   2927 	uvm_physseg_t bank;
   2928 
   2929 	if (uvm.page_init_done == true)
   2930 		panic("pmap_steal_memory: called _after_ bootstrap");
   2931 
   2932 	*vstartp = VM_MIN_KERNEL_ADDRESS;
   2933 	*vendp = VM_MAX_KERNEL_ADDRESS;
   2934 
   2935 	size = round_page(vsize);
   2936 	npgs = atop(size);
   2937 
   2938 	/*
   2939 	 * PA 0 will never be among those given to UVM so we can use it
   2940 	 * to indicate we couldn't steal any memory.
   2941 	 */
   2942 
   2943 	for (bank = uvm_physseg_get_first();
   2944 	     uvm_physseg_valid_p(bank);
   2945 	     bank = uvm_physseg_get_next(bank)) {
   2946 
   2947 		freelist = uvm_physseg_get_free_list(bank);
   2948 		start = uvm_physseg_get_start(bank);
   2949 		end = uvm_physseg_get_end(bank);
   2950 
   2951 		if (freelist == VM_FREELIST_FIRST256 &&
   2952 		    (end - start) >= npgs) {
   2953 			pa = ptoa(start);
   2954 			break;
   2955 		}
   2956 	}
   2957 
   2958 	if (pa == 0)
   2959 		panic("pmap_steal_memory: no approriate memory to steal!");
   2960 
   2961 	uvm_physseg_unplug(start, npgs);
   2962 
   2963 	va = (vaddr_t) pa;
   2964 	memset((void *) va, 0, size);
   2965 	pmap_pages_stolen += npgs;
   2966 #ifdef DEBUG
   2967 	if (pmapdebug && npgs > 1) {
   2968 		u_int cnt = 0;
   2969 	for (bank = uvm_physseg_get_first();
   2970 	     uvm_physseg_valid_p(bank);
   2971 	     bank = uvm_physseg_get_next(bank)) {
   2972 		cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
   2973 		}
   2974 		printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
   2975 		    npgs, pmap_pages_stolen, cnt);
   2976 	}
   2977 #endif
   2978 
   2979 	return va;
   2980 }
   2981 
   2982 /*
   2983  * Find a chuck of memory with right size and alignment.
   2984  */
   2985 paddr_t
   2986 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
   2987 {
   2988 	struct mem_region *mp;
   2989 	paddr_t s, e;
   2990 	int i, j;
   2991 
   2992 	size = round_page(size);
   2993 
   2994 	DPRINTFN(BOOT,
   2995 	    "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
   2996 	    size, alignment, at_end);
   2997 
   2998 	if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
   2999 		panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
   3000 		    alignment);
   3001 
   3002 	if (at_end) {
   3003 		if (alignment != PAGE_SIZE)
   3004 			panic("pmap_boot_find_memory: invalid ending "
   3005 			    "alignment %#" _PRIxpa, alignment);
   3006 
   3007 		for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
   3008 			s = mp->start + mp->size - size;
   3009 			if (s >= mp->start && mp->size >= size) {
   3010 				DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3011 				DPRINTFN(BOOT,
   3012 				    "pmap_boot_find_memory: b-avail[%d] start "
   3013 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3014 				     mp->start, mp->size);
   3015 				mp->size -= size;
   3016 				DPRINTFN(BOOT,
   3017 				    "pmap_boot_find_memory: a-avail[%d] start "
   3018 				    "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
   3019 				     mp->start, mp->size);
   3020 				return s;
   3021 			}
   3022 		}
   3023 		panic("pmap_boot_find_memory: no available memory");
   3024 	}
   3025 
   3026 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3027 		s = (mp->start + alignment - 1) & ~(alignment-1);
   3028 		e = s + size;
   3029 
   3030 		/*
   3031 		 * Is the calculated region entirely within the region?
   3032 		 */
   3033 		if (s < mp->start || e > mp->start + mp->size)
   3034 			continue;
   3035 
   3036 		DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
   3037 		if (s == mp->start) {
   3038 			/*
   3039 			 * If the block starts at the beginning of region,
   3040 			 * adjust the size & start. (the region may now be
   3041 			 * zero in length)
   3042 			 */
   3043 			DPRINTFN(BOOT,
   3044 			    "pmap_boot_find_memory: b-avail[%d] start "
   3045 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3046 			mp->start += size;
   3047 			mp->size -= size;
   3048 			DPRINTFN(BOOT,
   3049 			    "pmap_boot_find_memory: a-avail[%d] start "
   3050 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3051 		} else if (e == mp->start + mp->size) {
   3052 			/*
   3053 			 * If the block starts at the beginning of region,
   3054 			 * adjust only the size.
   3055 			 */
   3056 			DPRINTFN(BOOT,
   3057 			    "pmap_boot_find_memory: b-avail[%d] start "
   3058 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3059 			mp->size -= size;
   3060 			DPRINTFN(BOOT,
   3061 			    "pmap_boot_find_memory: a-avail[%d] start "
   3062 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3063 		} else {
   3064 			/*
   3065 			 * Block is in the middle of the region, so we
   3066 			 * have to split it in two.
   3067 			 */
   3068 			for (j = avail_cnt; j > i + 1; j--) {
   3069 				avail[j] = avail[j-1];
   3070 			}
   3071 			DPRINTFN(BOOT,
   3072 			    "pmap_boot_find_memory: b-avail[%d] start "
   3073 			    "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
   3074 			mp[1].start = e;
   3075 			mp[1].size = mp[0].start + mp[0].size - e;
   3076 			mp[0].size = s - mp[0].start;
   3077 			avail_cnt++;
   3078 			for (; i < avail_cnt; i++) {
   3079 				DPRINTFN(BOOT,
   3080 				    "pmap_boot_find_memory: a-avail[%d] "
   3081 				    "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
   3082 				     avail[i].start, avail[i].size);
   3083 			}
   3084 		}
   3085 		KASSERT(s == (uintptr_t) s);
   3086 		return s;
   3087 	}
   3088 	panic("pmap_boot_find_memory: not enough memory for "
   3089 	    "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
   3090 }
   3091 
   3092 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
   3093 #if defined (PMAP_OEA64_BRIDGE)
   3094 int
   3095 pmap_setup_segment0_map(int use_large_pages, ...)
   3096 {
   3097     vaddr_t va, va_end;
   3098 
   3099     register_t pte_lo = 0x0;
   3100     int ptegidx = 0;
   3101     struct pte pte;
   3102     va_list ap;
   3103 
   3104     /* Coherent + Supervisor RW, no user access */
   3105     pte_lo = PTE_M;
   3106 
   3107     /* XXXSL
   3108      * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
   3109      * these have to take priority.
   3110      */
   3111     for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
   3112         ptegidx = va_to_pteg(pmap_kernel(), va);
   3113         pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
   3114         (void)pmap_pte_insert(ptegidx, &pte);
   3115     }
   3116 
   3117     va_start(ap, use_large_pages);
   3118     while (1) {
   3119         paddr_t pa;
   3120         size_t size;
   3121 
   3122         va = va_arg(ap, vaddr_t);
   3123 
   3124         if (va == 0)
   3125             break;
   3126 
   3127         pa = va_arg(ap, paddr_t);
   3128         size = va_arg(ap, size_t);
   3129 
   3130         for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
   3131 #if 0
   3132 	    printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__,  va, pa);
   3133 #endif
   3134             ptegidx = va_to_pteg(pmap_kernel(), va);
   3135             pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
   3136             (void)pmap_pte_insert(ptegidx, &pte);
   3137         }
   3138     }
   3139     va_end(ap);
   3140 
   3141     TLBSYNC();
   3142     SYNC();
   3143     return (0);
   3144 }
   3145 #endif /* PMAP_OEA64_BRIDGE */
   3146 
   3147 /*
   3148  * This is not part of the defined PMAP interface and is specific to the
   3149  * PowerPC architecture.  This is called during initppc, before the system
   3150  * is really initialized.
   3151  */
   3152 void
   3153 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
   3154 {
   3155 	struct mem_region *mp, tmp;
   3156 	paddr_t s, e;
   3157 	psize_t size;
   3158 	int i, j;
   3159 
   3160 	/*
   3161 	 * Get memory.
   3162 	 */
   3163 	mem_regions(&mem, &avail);
   3164 #if defined(DEBUG)
   3165 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3166 		printf("pmap_bootstrap: memory configuration:\n");
   3167 		for (mp = mem; mp->size; mp++) {
   3168 			printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3169 				mp->start, mp->size);
   3170 		}
   3171 		for (mp = avail; mp->size; mp++) {
   3172 			printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3173 				mp->start, mp->size);
   3174 		}
   3175 	}
   3176 #endif
   3177 
   3178 	/*
   3179 	 * Find out how much physical memory we have and in how many chunks.
   3180 	 */
   3181 	for (mem_cnt = 0, mp = mem; mp->size; mp++) {
   3182 		if (mp->start >= pmap_memlimit)
   3183 			continue;
   3184 		if (mp->start + mp->size > pmap_memlimit) {
   3185 			size = pmap_memlimit - mp->start;
   3186 			physmem += btoc(size);
   3187 		} else {
   3188 			physmem += btoc(mp->size);
   3189 		}
   3190 		mem_cnt++;
   3191 	}
   3192 
   3193 	/*
   3194 	 * Count the number of available entries.
   3195 	 */
   3196 	for (avail_cnt = 0, mp = avail; mp->size; mp++)
   3197 		avail_cnt++;
   3198 
   3199 	/*
   3200 	 * Page align all regions.
   3201 	 */
   3202 	kernelstart = trunc_page(kernelstart);
   3203 	kernelend = round_page(kernelend);
   3204 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3205 		s = round_page(mp->start);
   3206 		mp->size -= (s - mp->start);
   3207 		mp->size = trunc_page(mp->size);
   3208 		mp->start = s;
   3209 		e = mp->start + mp->size;
   3210 
   3211 		DPRINTFN(BOOT,
   3212 		    "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3213 		    i, mp->start, mp->size);
   3214 
   3215 		/*
   3216 		 * Don't allow the end to run beyond our artificial limit
   3217 		 */
   3218 		if (e > pmap_memlimit)
   3219 			e = pmap_memlimit;
   3220 
   3221 		/*
   3222 		 * Is this region empty or strange?  skip it.
   3223 		 */
   3224 		if (e <= s) {
   3225 			mp->start = 0;
   3226 			mp->size = 0;
   3227 			continue;
   3228 		}
   3229 
   3230 		/*
   3231 		 * Does this overlap the beginning of kernel?
   3232 		 *   Does extend past the end of the kernel?
   3233 		 */
   3234 		else if (s < kernelstart && e > kernelstart) {
   3235 			if (e > kernelend) {
   3236 				avail[avail_cnt].start = kernelend;
   3237 				avail[avail_cnt].size = e - kernelend;
   3238 				avail_cnt++;
   3239 			}
   3240 			mp->size = kernelstart - s;
   3241 		}
   3242 		/*
   3243 		 * Check whether this region overlaps the end of the kernel.
   3244 		 */
   3245 		else if (s < kernelend && e > kernelend) {
   3246 			mp->start = kernelend;
   3247 			mp->size = e - kernelend;
   3248 		}
   3249 		/*
   3250 		 * Look whether this regions is completely inside the kernel.
   3251 		 * Nuke it if it does.
   3252 		 */
   3253 		else if (s >= kernelstart && e <= kernelend) {
   3254 			mp->start = 0;
   3255 			mp->size = 0;
   3256 		}
   3257 		/*
   3258 		 * If the user imposed a memory limit, enforce it.
   3259 		 */
   3260 		else if (s >= pmap_memlimit) {
   3261 			mp->start = -PAGE_SIZE;	/* let's know why */
   3262 			mp->size = 0;
   3263 		}
   3264 		else {
   3265 			mp->start = s;
   3266 			mp->size = e - s;
   3267 		}
   3268 		DPRINTFN(BOOT,
   3269 		    "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3270 		    i, mp->start, mp->size);
   3271 	}
   3272 
   3273 	/*
   3274 	 * Move (and uncount) all the null return to the end.
   3275 	 */
   3276 	for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
   3277 		if (mp->size == 0) {
   3278 			tmp = avail[i];
   3279 			avail[i] = avail[--avail_cnt];
   3280 			avail[avail_cnt] = avail[i];
   3281 		}
   3282 	}
   3283 
   3284 	/*
   3285 	 * (Bubble)sort them into ascending order.
   3286 	 */
   3287 	for (i = 0; i < avail_cnt; i++) {
   3288 		for (j = i + 1; j < avail_cnt; j++) {
   3289 			if (avail[i].start > avail[j].start) {
   3290 				tmp = avail[i];
   3291 				avail[i] = avail[j];
   3292 				avail[j] = tmp;
   3293 			}
   3294 		}
   3295 	}
   3296 
   3297 	/*
   3298 	 * Make sure they don't overlap.
   3299 	 */
   3300 	for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
   3301 		if (mp[0].start + mp[0].size > mp[1].start) {
   3302 			mp[0].size = mp[1].start - mp[0].start;
   3303 		}
   3304 		DPRINTFN(BOOT,
   3305 		    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3306 		    i, mp->start, mp->size);
   3307 	}
   3308 	DPRINTFN(BOOT,
   3309 	    "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
   3310 	    i, mp->start, mp->size);
   3311 
   3312 #ifdef	PTEGCOUNT
   3313 	pmap_pteg_cnt = PTEGCOUNT;
   3314 #else /* PTEGCOUNT */
   3315 
   3316 	pmap_pteg_cnt = 0x1000;
   3317 
   3318 	while (pmap_pteg_cnt < physmem)
   3319 		pmap_pteg_cnt <<= 1;
   3320 
   3321 	pmap_pteg_cnt >>= 1;
   3322 #endif /* PTEGCOUNT */
   3323 
   3324 #ifdef DEBUG
   3325 	DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
   3326 #endif
   3327 
   3328 	/*
   3329 	 * Find suitably aligned memory for PTEG hash table.
   3330 	 */
   3331 	size = pmap_pteg_cnt * sizeof(struct pteg);
   3332 	pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
   3333 
   3334 #ifdef DEBUG
   3335 	DPRINTFN(BOOT,
   3336 		"PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
   3337 #endif
   3338 
   3339 
   3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3341 	if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
   3342 		panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
   3343 		    pmap_pteg_table, size);
   3344 #endif
   3345 
   3346 	memset(__UNVOLATILE(pmap_pteg_table), 0,
   3347 		pmap_pteg_cnt * sizeof(struct pteg));
   3348 	pmap_pteg_mask = pmap_pteg_cnt - 1;
   3349 
   3350 	/*
   3351 	 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
   3352 	 * with pages.  So we just steal them before giving them to UVM.
   3353 	 */
   3354 	size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
   3355 	pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
   3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
   3357 	if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
   3358 		panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
   3359 		    pmap_pvo_table, size);
   3360 #endif
   3361 
   3362 	for (i = 0; i < pmap_pteg_cnt; i++)
   3363 		TAILQ_INIT(&pmap_pvo_table[i]);
   3364 
   3365 #ifndef MSGBUFADDR
   3366 	/*
   3367 	 * Allocate msgbuf in high memory.
   3368 	 */
   3369 	msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
   3370 #endif
   3371 
   3372 	for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
   3373 		paddr_t pfstart = atop(mp->start);
   3374 		paddr_t pfend = atop(mp->start + mp->size);
   3375 		if (mp->size == 0)
   3376 			continue;
   3377 		if (mp->start + mp->size <= SEGMENT_LENGTH) {
   3378 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3379 				VM_FREELIST_FIRST256);
   3380 		} else if (mp->start >= SEGMENT_LENGTH) {
   3381 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3382 				VM_FREELIST_DEFAULT);
   3383 		} else {
   3384 			pfend = atop(SEGMENT_LENGTH);
   3385 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3386 				VM_FREELIST_FIRST256);
   3387 			pfstart = atop(SEGMENT_LENGTH);
   3388 			pfend = atop(mp->start + mp->size);
   3389 			uvm_page_physload(pfstart, pfend, pfstart, pfend,
   3390 				VM_FREELIST_DEFAULT);
   3391 		}
   3392 	}
   3393 
   3394 	/*
   3395 	 * Make sure kernel vsid is allocated as well as VSID 0.
   3396 	 */
   3397 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3398 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
   3399 	pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
   3400 		|= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
   3401 	pmap_vsid_bitmap[0] |= 1;
   3402 
   3403 	/*
   3404 	 * Initialize kernel pmap and hardware.
   3405 	 */
   3406 
   3407 /* PMAP_OEA64_BRIDGE does support these instructions */
   3408 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
   3409 	for (i = 0; i < 16; i++) {
   3410 #if defined(PPC_OEA601)
   3411 	    /* XXX wedges for segment register 0xf , so set later */
   3412 	    if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
   3413 		    continue;
   3414 #endif
   3415  		pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
   3416 		__asm volatile ("mtsrin %0,%1"
   3417  			      :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
   3418 	}
   3419 
   3420 	pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
   3421 	__asm volatile ("mtsr %0,%1"
   3422 		      :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
   3423 #ifdef KERNEL2_SR
   3424 	pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
   3425 	__asm volatile ("mtsr %0,%1"
   3426 		      :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
   3427 #endif
   3428 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
   3429 #if defined (PMAP_OEA)
   3430 	for (i = 0; i < 16; i++) {
   3431 		if (iosrtable[i] & SR601_T) {
   3432 			pmap_kernel()->pm_sr[i] = iosrtable[i];
   3433 			__asm volatile ("mtsrin %0,%1"
   3434 			    :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
   3435 		}
   3436 	}
   3437 	__asm volatile ("sync; mtsdr1 %0; isync"
   3438 		      :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
   3439 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
   3440  	__asm __volatile ("sync; mtsdr1 %0; isync"
   3441  		      :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
   3442 #endif
   3443 	tlbia();
   3444 
   3445 #ifdef ALTIVEC
   3446 	pmap_use_altivec = cpu_altivec;
   3447 #endif
   3448 
   3449 #ifdef DEBUG
   3450 	if (pmapdebug & PMAPDEBUG_BOOT) {
   3451 		u_int cnt;
   3452 		uvm_physseg_t bank;
   3453 		char pbuf[9];
   3454 		for (cnt = 0, bank = uvm_physseg_get_first();
   3455 		     uvm_physseg_valid_p(bank);
   3456 		     bank = uvm_physseg_get_next(bank)) {
   3457 			cnt += uvm_physseg_get_avail_end(bank) -
   3458 			    uvm_physseg_get_avail_start(bank);
   3459 			printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
   3460 			    bank,
   3461 			    ptoa(uvm_physseg_get_avail_start(bank)),
   3462 			    ptoa(uvm_physseg_get_avail_end(bank)),
   3463 			    ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
   3464 		}
   3465 		format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
   3466 		printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
   3467 		    pbuf, cnt);
   3468 	}
   3469 #endif
   3470 
   3471 	pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
   3472 	    sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
   3473 	    &pmap_pool_uallocator, IPL_VM);
   3474 
   3475 	pool_setlowat(&pmap_upvo_pool, 252);
   3476 
   3477 	pool_init(&pmap_pool, sizeof(struct pmap),
   3478 	    sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
   3479 	    IPL_NONE);
   3480 
   3481 #if defined(PMAP_NEED_MAPKERNEL)
   3482 	{
   3483 		struct pmap *pm = pmap_kernel();
   3484 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3485 		extern int etext[], kernel_text[];
   3486 		vaddr_t va, va_etext = (paddr_t) etext;
   3487 #endif
   3488 		paddr_t pa, pa_end;
   3489 		register_t sr;
   3490 		struct pte pt;
   3491 		unsigned int ptegidx;
   3492 		int bank;
   3493 
   3494 		sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
   3495 		pm->pm_sr[0] = sr;
   3496 
   3497 		for (bank = 0; bank < vm_nphysseg; bank++) {
   3498 			pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
   3499 			pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
   3500 			for (; pa < pa_end; pa += PAGE_SIZE) {
   3501 				ptegidx = va_to_pteg(pm, pa);
   3502 				pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
   3503 				pmap_pte_insert(ptegidx, &pt);
   3504 			}
   3505 		}
   3506 
   3507 #if defined(PMAP_NEED_FULL_MAPKERNEL)
   3508 		va = (vaddr_t) kernel_text;
   3509 
   3510 		for (pa = kernelstart; va < va_etext;
   3511 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3512 			ptegidx = va_to_pteg(pm, va);
   3513 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3514 			pmap_pte_insert(ptegidx, &pt);
   3515 		}
   3516 
   3517 		for (; pa < kernelend;
   3518 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3519 			ptegidx = va_to_pteg(pm, va);
   3520 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3521 			pmap_pte_insert(ptegidx, &pt);
   3522 		}
   3523 
   3524 		for (va = 0, pa = 0; va < kernelstart;
   3525 		     pa += PAGE_SIZE, va += PAGE_SIZE) {
   3526 			ptegidx = va_to_pteg(pm, va);
   3527 			if (va < 0x3000)
   3528 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
   3529 			else
   3530 				pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3531 			pmap_pte_insert(ptegidx, &pt);
   3532 		}
   3533 		for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
   3534 		    pa += PAGE_SIZE, va += PAGE_SIZE) {
   3535 			ptegidx = va_to_pteg(pm, va);
   3536 			pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
   3537 			pmap_pte_insert(ptegidx, &pt);
   3538 		}
   3539 #endif
   3540 
   3541 		__asm volatile ("mtsrin %0,%1"
   3542  			      :: "r"(sr), "r"(kernelstart));
   3543 	}
   3544 #endif
   3545 
   3546 #if defined(PMAPDEBUG)
   3547 	if ( pmapdebug )
   3548 	    pmap_print_mmuregs();
   3549 #endif
   3550 }
   3551