pmap.c revision 1.98 1 /* $NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $ */
2 /*-
3 * Copyright (c) 2001 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas <matt (at) 3am-software.com> of Allegro Networks, Inc.
8 *
9 * Support for PPC64 Bridge mode added by Sanjay Lal <sanjayl (at) kymasys.com>
10 * of Kyma Systems LLC.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
36 * Copyright (C) 1995, 1996 TooLs GmbH.
37 * All rights reserved.
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by TooLs GmbH.
50 * 4. The name of TooLs GmbH may not be used to endorse or promote products
51 * derived from this software without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
54 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
55 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
56 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
57 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
58 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
59 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
60 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
61 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
62 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.98 2020/07/06 09:34:17 rin Exp $");
67
68 #define PMAP_NOOPNAMES
69
70 #ifdef _KERNEL_OPT
71 #include "opt_altivec.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_pmap.h"
74 #include "opt_ppcarch.h"
75 #endif
76
77 #include <sys/param.h>
78 #include <sys/proc.h>
79 #include <sys/pool.h>
80 #include <sys/queue.h>
81 #include <sys/device.h> /* for evcnt */
82 #include <sys/systm.h>
83 #include <sys/atomic.h>
84
85 #include <uvm/uvm.h>
86 #include <uvm/uvm_physseg.h>
87
88 #include <machine/powerpc.h>
89 #include <powerpc/bat.h>
90 #include <powerpc/pcb.h>
91 #include <powerpc/psl.h>
92 #include <powerpc/spr.h>
93 #include <powerpc/oea/spr.h>
94 #include <powerpc/oea/sr_601.h>
95
96 #ifdef ALTIVEC
97 extern int pmap_use_altivec;
98 #endif
99
100 #ifdef PMAP_MEMLIMIT
101 static paddr_t pmap_memlimit = PMAP_MEMLIMIT;
102 #else
103 static paddr_t pmap_memlimit = -PAGE_SIZE; /* there is no limit */
104 #endif
105
106 extern struct pmap kernel_pmap_;
107 static unsigned int pmap_pages_stolen;
108 static u_long pmap_pte_valid;
109 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
110 static u_long pmap_pvo_enter_depth;
111 static u_long pmap_pvo_remove_depth;
112 #endif
113
114 #ifndef MSGBUFADDR
115 extern paddr_t msgbuf_paddr;
116 #endif
117
118 static struct mem_region *mem, *avail;
119 static u_int mem_cnt, avail_cnt;
120
121 #if !defined(PMAP_OEA64) && !defined(PMAP_OEA64_BRIDGE)
122 # define PMAP_OEA 1
123 #endif
124
125 #if defined(PMAP_OEA)
126 #define _PRIxpte "lx"
127 #else
128 #define _PRIxpte PRIx64
129 #endif
130 #define _PRIxpa "lx"
131 #define _PRIxva "lx"
132 #define _PRIsr "lx"
133
134 #ifdef PMAP_NEEDS_FIXUP
135 #if defined(PMAP_OEA)
136 #define PMAPNAME(name) pmap32_##name
137 #elif defined(PMAP_OEA64)
138 #define PMAPNAME(name) pmap64_##name
139 #elif defined(PMAP_OEA64_BRIDGE)
140 #define PMAPNAME(name) pmap64bridge_##name
141 #else
142 #error unknown variant for pmap
143 #endif
144 #endif /* PMAP_NEEDS_FIXUP */
145
146 #ifdef PMAPNAME
147 #define STATIC static
148 #define pmap_pte_spill PMAPNAME(pte_spill)
149 #define pmap_real_memory PMAPNAME(real_memory)
150 #define pmap_init PMAPNAME(init)
151 #define pmap_virtual_space PMAPNAME(virtual_space)
152 #define pmap_create PMAPNAME(create)
153 #define pmap_reference PMAPNAME(reference)
154 #define pmap_destroy PMAPNAME(destroy)
155 #define pmap_copy PMAPNAME(copy)
156 #define pmap_update PMAPNAME(update)
157 #define pmap_enter PMAPNAME(enter)
158 #define pmap_remove PMAPNAME(remove)
159 #define pmap_kenter_pa PMAPNAME(kenter_pa)
160 #define pmap_kremove PMAPNAME(kremove)
161 #define pmap_extract PMAPNAME(extract)
162 #define pmap_protect PMAPNAME(protect)
163 #define pmap_unwire PMAPNAME(unwire)
164 #define pmap_page_protect PMAPNAME(page_protect)
165 #define pmap_query_bit PMAPNAME(query_bit)
166 #define pmap_clear_bit PMAPNAME(clear_bit)
167
168 #define pmap_activate PMAPNAME(activate)
169 #define pmap_deactivate PMAPNAME(deactivate)
170
171 #define pmap_pinit PMAPNAME(pinit)
172 #define pmap_procwr PMAPNAME(procwr)
173
174 #define pmap_pool PMAPNAME(pool)
175 #define pmap_upvo_pool PMAPNAME(upvo_pool)
176 #define pmap_mpvo_pool PMAPNAME(mpvo_pool)
177 #define pmap_pvo_table PMAPNAME(pvo_table)
178 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
179 #define pmap_pte_print PMAPNAME(pte_print)
180 #define pmap_pteg_check PMAPNAME(pteg_check)
181 #define pmap_print_mmruregs PMAPNAME(print_mmuregs)
182 #define pmap_print_pte PMAPNAME(print_pte)
183 #define pmap_pteg_dist PMAPNAME(pteg_dist)
184 #endif
185 #if defined(DEBUG) || defined(PMAPCHECK)
186 #define pmap_pvo_verify PMAPNAME(pvo_verify)
187 #define pmapcheck PMAPNAME(check)
188 #endif
189 #if defined(DEBUG) || defined(PMAPDEBUG)
190 #define pmapdebug PMAPNAME(debug)
191 #endif
192 #define pmap_steal_memory PMAPNAME(steal_memory)
193 #define pmap_bootstrap PMAPNAME(bootstrap)
194 #else
195 #define STATIC /* nothing */
196 #endif /* PMAPNAME */
197
198 STATIC int pmap_pte_spill(struct pmap *, vaddr_t, bool);
199 STATIC void pmap_real_memory(paddr_t *, psize_t *);
200 STATIC void pmap_init(void);
201 STATIC void pmap_virtual_space(vaddr_t *, vaddr_t *);
202 STATIC pmap_t pmap_create(void);
203 STATIC void pmap_reference(pmap_t);
204 STATIC void pmap_destroy(pmap_t);
205 STATIC void pmap_copy(pmap_t, pmap_t, vaddr_t, vsize_t, vaddr_t);
206 STATIC void pmap_update(pmap_t);
207 STATIC int pmap_enter(pmap_t, vaddr_t, paddr_t, vm_prot_t, u_int);
208 STATIC void pmap_remove(pmap_t, vaddr_t, vaddr_t);
209 STATIC void pmap_kenter_pa(vaddr_t, paddr_t, vm_prot_t, u_int);
210 STATIC void pmap_kremove(vaddr_t, vsize_t);
211 STATIC bool pmap_extract(pmap_t, vaddr_t, paddr_t *);
212
213 STATIC void pmap_protect(pmap_t, vaddr_t, vaddr_t, vm_prot_t);
214 STATIC void pmap_unwire(pmap_t, vaddr_t);
215 STATIC void pmap_page_protect(struct vm_page *, vm_prot_t);
216 STATIC bool pmap_query_bit(struct vm_page *, int);
217 STATIC bool pmap_clear_bit(struct vm_page *, int);
218
219 STATIC void pmap_activate(struct lwp *);
220 STATIC void pmap_deactivate(struct lwp *);
221
222 STATIC void pmap_pinit(pmap_t pm);
223 STATIC void pmap_procwr(struct proc *, vaddr_t, size_t);
224
225 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
226 STATIC void pmap_pte_print(volatile struct pte *);
227 STATIC void pmap_pteg_check(void);
228 STATIC void pmap_print_mmuregs(void);
229 STATIC void pmap_print_pte(pmap_t, vaddr_t);
230 STATIC void pmap_pteg_dist(void);
231 #endif
232 #if defined(DEBUG) || defined(PMAPCHECK)
233 STATIC void pmap_pvo_verify(void);
234 #endif
235 STATIC vaddr_t pmap_steal_memory(vsize_t, vaddr_t *, vaddr_t *);
236 STATIC void pmap_bootstrap(paddr_t, paddr_t);
237
238 #ifdef PMAPNAME
239 const struct pmap_ops PMAPNAME(ops) = {
240 .pmapop_pte_spill = pmap_pte_spill,
241 .pmapop_real_memory = pmap_real_memory,
242 .pmapop_init = pmap_init,
243 .pmapop_virtual_space = pmap_virtual_space,
244 .pmapop_create = pmap_create,
245 .pmapop_reference = pmap_reference,
246 .pmapop_destroy = pmap_destroy,
247 .pmapop_copy = pmap_copy,
248 .pmapop_update = pmap_update,
249 .pmapop_enter = pmap_enter,
250 .pmapop_remove = pmap_remove,
251 .pmapop_kenter_pa = pmap_kenter_pa,
252 .pmapop_kremove = pmap_kremove,
253 .pmapop_extract = pmap_extract,
254 .pmapop_protect = pmap_protect,
255 .pmapop_unwire = pmap_unwire,
256 .pmapop_page_protect = pmap_page_protect,
257 .pmapop_query_bit = pmap_query_bit,
258 .pmapop_clear_bit = pmap_clear_bit,
259 .pmapop_activate = pmap_activate,
260 .pmapop_deactivate = pmap_deactivate,
261 .pmapop_pinit = pmap_pinit,
262 .pmapop_procwr = pmap_procwr,
263 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
264 .pmapop_pte_print = pmap_pte_print,
265 .pmapop_pteg_check = pmap_pteg_check,
266 .pmapop_print_mmuregs = pmap_print_mmuregs,
267 .pmapop_print_pte = pmap_print_pte,
268 .pmapop_pteg_dist = pmap_pteg_dist,
269 #else
270 .pmapop_pte_print = NULL,
271 .pmapop_pteg_check = NULL,
272 .pmapop_print_mmuregs = NULL,
273 .pmapop_print_pte = NULL,
274 .pmapop_pteg_dist = NULL,
275 #endif
276 #if defined(DEBUG) || defined(PMAPCHECK)
277 .pmapop_pvo_verify = pmap_pvo_verify,
278 #else
279 .pmapop_pvo_verify = NULL,
280 #endif
281 .pmapop_steal_memory = pmap_steal_memory,
282 .pmapop_bootstrap = pmap_bootstrap,
283 };
284 #endif /* !PMAPNAME */
285
286 /*
287 * The following structure is aligned to 32 bytes
288 */
289 struct pvo_entry {
290 LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
291 TAILQ_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
292 struct pte pvo_pte; /* Prebuilt PTE */
293 pmap_t pvo_pmap; /* ptr to owning pmap */
294 vaddr_t pvo_vaddr; /* VA of entry */
295 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */
296 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */
297 #define PVO_WIRED 0x0010 /* PVO entry is wired */
298 #define PVO_MANAGED 0x0020 /* PVO e. for managed page */
299 #define PVO_EXECUTABLE 0x0040 /* PVO e. for executable page */
300 #define PVO_WIRED_P(pvo) ((pvo)->pvo_vaddr & PVO_WIRED)
301 #define PVO_MANAGED_P(pvo) ((pvo)->pvo_vaddr & PVO_MANAGED)
302 #define PVO_EXECUTABLE_P(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE)
303 #define PVO_ENTER_INSERT 0 /* PVO has been removed */
304 #define PVO_SPILL_UNSET 1 /* PVO has been evicted */
305 #define PVO_SPILL_SET 2 /* PVO has been spilled */
306 #define PVO_SPILL_INSERT 3 /* PVO has been inserted */
307 #define PVO_PMAP_PAGE_PROTECT 4 /* PVO has changed */
308 #define PVO_PMAP_PROTECT 5 /* PVO has changed */
309 #define PVO_REMOVE 6 /* PVO has been removed */
310 #define PVO_WHERE_MASK 15
311 #define PVO_WHERE_SHFT 8
312 } __attribute__ ((aligned (32)));
313 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF)
314 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
315 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
316 #define PVO_PTEGIDX_CLR(pvo) \
317 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
318 #define PVO_PTEGIDX_SET(pvo,i) \
319 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
320 #define PVO_WHERE(pvo,w) \
321 ((pvo)->pvo_vaddr &= ~(PVO_WHERE_MASK << PVO_WHERE_SHFT), \
322 (pvo)->pvo_vaddr |= ((PVO_ ## w) << PVO_WHERE_SHFT))
323
324 TAILQ_HEAD(pvo_tqhead, pvo_entry);
325 struct pvo_tqhead *pmap_pvo_table; /* pvo entries by ptegroup index */
326 static struct pvo_head pmap_pvo_kunmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */
327 static struct pvo_head pmap_pvo_unmanaged = LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */
328
329 struct pool pmap_pool; /* pool for pmap structures */
330 struct pool pmap_upvo_pool; /* pool for pvo entries for unmanaged pages */
331 struct pool pmap_mpvo_pool; /* pool for pvo entries for managed pages */
332
333 /*
334 * We keep a cache of unmanaged pages to be used for pvo entries for
335 * unmanaged pages.
336 */
337 struct pvo_page {
338 SIMPLEQ_ENTRY(pvo_page) pvop_link;
339 };
340 SIMPLEQ_HEAD(pvop_head, pvo_page);
341 static struct pvop_head pmap_upvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_upvop_head);
342 static struct pvop_head pmap_mpvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_mpvop_head);
343 static u_long pmap_upvop_free;
344 static u_long pmap_upvop_maxfree;
345 static u_long pmap_mpvop_free;
346 static u_long pmap_mpvop_maxfree;
347
348 static void *pmap_pool_ualloc(struct pool *, int);
349 static void *pmap_pool_malloc(struct pool *, int);
350
351 static void pmap_pool_ufree(struct pool *, void *);
352 static void pmap_pool_mfree(struct pool *, void *);
353
354 static struct pool_allocator pmap_pool_mallocator = {
355 .pa_alloc = pmap_pool_malloc,
356 .pa_free = pmap_pool_mfree,
357 .pa_pagesz = 0,
358 };
359
360 static struct pool_allocator pmap_pool_uallocator = {
361 .pa_alloc = pmap_pool_ualloc,
362 .pa_free = pmap_pool_ufree,
363 .pa_pagesz = 0,
364 };
365
366 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
367 void pmap_pte_print(volatile struct pte *);
368 void pmap_pteg_check(void);
369 void pmap_pteg_dist(void);
370 void pmap_print_pte(pmap_t, vaddr_t);
371 void pmap_print_mmuregs(void);
372 #endif
373
374 #if defined(DEBUG) || defined(PMAPCHECK)
375 #ifdef PMAPCHECK
376 int pmapcheck = 1;
377 #else
378 int pmapcheck = 0;
379 #endif
380 void pmap_pvo_verify(void);
381 static void pmap_pvo_check(const struct pvo_entry *);
382 #define PMAP_PVO_CHECK(pvo) \
383 do { \
384 if (pmapcheck) \
385 pmap_pvo_check(pvo); \
386 } while (0)
387 #else
388 #define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
389 #endif
390 static int pmap_pte_insert(int, struct pte *);
391 static int pmap_pvo_enter(pmap_t, struct pool *, struct pvo_head *,
392 vaddr_t, paddr_t, register_t, int);
393 static void pmap_pvo_remove(struct pvo_entry *, int, struct pvo_head *);
394 static void pmap_pvo_free(struct pvo_entry *);
395 static void pmap_pvo_free_list(struct pvo_head *);
396 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
397 static volatile struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
398 static struct pvo_entry *pmap_pvo_reclaim(struct pmap *);
399 static void pvo_set_exec(struct pvo_entry *);
400 static void pvo_clear_exec(struct pvo_entry *);
401
402 static void tlbia(void);
403
404 static void pmap_release(pmap_t);
405 static paddr_t pmap_boot_find_memory(psize_t, psize_t, int);
406
407 static uint32_t pmap_pvo_reclaim_nextidx;
408 #ifdef DEBUG
409 static int pmap_pvo_reclaim_debugctr;
410 #endif
411
412 #define VSID_NBPW (sizeof(uint32_t) * 8)
413 static uint32_t pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
414
415 static int pmap_initialized;
416
417 #if defined(DEBUG) || defined(PMAPDEBUG)
418 #define PMAPDEBUG_BOOT 0x0001
419 #define PMAPDEBUG_PTE 0x0002
420 #define PMAPDEBUG_EXEC 0x0008
421 #define PMAPDEBUG_PVOENTER 0x0010
422 #define PMAPDEBUG_PVOREMOVE 0x0020
423 #define PMAPDEBUG_ACTIVATE 0x0100
424 #define PMAPDEBUG_CREATE 0x0200
425 #define PMAPDEBUG_ENTER 0x1000
426 #define PMAPDEBUG_KENTER 0x2000
427 #define PMAPDEBUG_KREMOVE 0x4000
428 #define PMAPDEBUG_REMOVE 0x8000
429
430 unsigned int pmapdebug = 0;
431
432 # define DPRINTF(x, ...) printf(x, __VA_ARGS__)
433 # define DPRINTFN(n, x, ...) do if (pmapdebug & PMAPDEBUG_ ## n) printf(x, __VA_ARGS__); while (0)
434 #else
435 # define DPRINTF(x, ...) do { } while (0)
436 # define DPRINTFN(n, x, ...) do { } while (0)
437 #endif
438
439
440 #ifdef PMAPCOUNTERS
441 /*
442 * From pmap_subr.c
443 */
444 extern struct evcnt pmap_evcnt_mappings;
445 extern struct evcnt pmap_evcnt_unmappings;
446
447 extern struct evcnt pmap_evcnt_kernel_mappings;
448 extern struct evcnt pmap_evcnt_kernel_unmappings;
449
450 extern struct evcnt pmap_evcnt_mappings_replaced;
451
452 extern struct evcnt pmap_evcnt_exec_mappings;
453 extern struct evcnt pmap_evcnt_exec_cached;
454
455 extern struct evcnt pmap_evcnt_exec_synced;
456 extern struct evcnt pmap_evcnt_exec_synced_clear_modify;
457 extern struct evcnt pmap_evcnt_exec_synced_pvo_remove;
458
459 extern struct evcnt pmap_evcnt_exec_uncached_page_protect;
460 extern struct evcnt pmap_evcnt_exec_uncached_clear_modify;
461 extern struct evcnt pmap_evcnt_exec_uncached_zero_page;
462 extern struct evcnt pmap_evcnt_exec_uncached_copy_page;
463 extern struct evcnt pmap_evcnt_exec_uncached_pvo_remove;
464
465 extern struct evcnt pmap_evcnt_updates;
466 extern struct evcnt pmap_evcnt_collects;
467 extern struct evcnt pmap_evcnt_copies;
468
469 extern struct evcnt pmap_evcnt_ptes_spilled;
470 extern struct evcnt pmap_evcnt_ptes_unspilled;
471 extern struct evcnt pmap_evcnt_ptes_evicted;
472
473 extern struct evcnt pmap_evcnt_ptes_primary[8];
474 extern struct evcnt pmap_evcnt_ptes_secondary[8];
475 extern struct evcnt pmap_evcnt_ptes_removed;
476 extern struct evcnt pmap_evcnt_ptes_changed;
477 extern struct evcnt pmap_evcnt_pvos_reclaimed;
478 extern struct evcnt pmap_evcnt_pvos_failed;
479
480 extern struct evcnt pmap_evcnt_zeroed_pages;
481 extern struct evcnt pmap_evcnt_copied_pages;
482 extern struct evcnt pmap_evcnt_idlezeroed_pages;
483
484 #define PMAPCOUNT(ev) ((pmap_evcnt_ ## ev).ev_count++)
485 #define PMAPCOUNT2(ev) ((ev).ev_count++)
486 #else
487 #define PMAPCOUNT(ev) ((void) 0)
488 #define PMAPCOUNT2(ev) ((void) 0)
489 #endif
490
491 #define TLBIE(va) __asm volatile("tlbie %0" :: "r"(va))
492
493 /* XXXSL: this needs to be moved to assembler */
494 #define TLBIEL(va) __asm __volatile("tlbie %0" :: "r"(va))
495
496 #ifdef MD_TLBSYNC
497 #define TLBSYNC() MD_TLBSYNC()
498 #else
499 #define TLBSYNC() __asm volatile("tlbsync")
500 #endif
501 #define SYNC() __asm volatile("sync")
502 #define EIEIO() __asm volatile("eieio")
503 #define DCBST(va) __asm __volatile("dcbst 0,%0" :: "r"(va))
504 #define MFMSR() mfmsr()
505 #define MTMSR(psl) mtmsr(psl)
506 #define MFPVR() mfpvr()
507 #define MFSRIN(va) mfsrin(va)
508 #define MFTB() mfrtcltbl()
509
510 #if defined(DDB) && !defined(PMAP_OEA64)
511 static inline register_t
512 mfsrin(vaddr_t va)
513 {
514 register_t sr;
515 __asm volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(va));
516 return sr;
517 }
518 #endif /* DDB && !PMAP_OEA64 */
519
520 #if defined (PMAP_OEA64_BRIDGE)
521 extern void mfmsr64 (register64_t *result);
522 #endif /* PMAP_OEA64_BRIDGE */
523
524 #define PMAP_LOCK() KERNEL_LOCK(1, NULL)
525 #define PMAP_UNLOCK() KERNEL_UNLOCK_ONE(NULL)
526
527 static inline register_t
528 pmap_interrupts_off(void)
529 {
530 register_t msr = MFMSR();
531 if (msr & PSL_EE)
532 MTMSR(msr & ~PSL_EE);
533 return msr;
534 }
535
536 static void
537 pmap_interrupts_restore(register_t msr)
538 {
539 if (msr & PSL_EE)
540 MTMSR(msr);
541 }
542
543 static inline u_int32_t
544 mfrtcltbl(void)
545 {
546 #ifdef PPC_OEA601
547 if ((MFPVR() >> 16) == MPC601)
548 return (mfrtcl() >> 7);
549 else
550 #endif
551 return (mftbl());
552 }
553
554 /*
555 * These small routines may have to be replaced,
556 * if/when we support processors other that the 604.
557 */
558
559 void
560 tlbia(void)
561 {
562 char *i;
563
564 SYNC();
565 #if defined(PMAP_OEA)
566 /*
567 * Why not use "tlbia"? Because not all processors implement it.
568 *
569 * This needs to be a per-CPU callback to do the appropriate thing
570 * for the CPU. XXX
571 */
572 for (i = 0; i < (char *)0x00040000; i += 0x00001000) {
573 TLBIE(i);
574 EIEIO();
575 SYNC();
576 }
577 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
578 /* This is specifically for the 970, 970UM v1.6 pp. 140. */
579 for (i = 0; i <= (char *)0xFF000; i += 0x00001000) {
580 TLBIEL(i);
581 EIEIO();
582 SYNC();
583 }
584 #endif
585 TLBSYNC();
586 SYNC();
587 }
588
589 static inline register_t
590 va_to_vsid(const struct pmap *pm, vaddr_t addr)
591 {
592 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
593 return (pm->pm_sr[addr >> ADDR_SR_SHFT] & SR_VSID) >> SR_VSID_SHFT;
594 #else /* PMAP_OEA64 */
595 #if 0
596 const struct ste *ste;
597 register_t hash;
598 int i;
599
600 hash = (addr >> ADDR_ESID_SHFT) & ADDR_ESID_HASH;
601
602 /*
603 * Try the primary group first
604 */
605 ste = pm->pm_stes[hash].stes;
606 for (i = 0; i < 8; i++, ste++) {
607 if (ste->ste_hi & STE_V) &&
608 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
609 return ste;
610 }
611
612 /*
613 * Then the secondary group.
614 */
615 ste = pm->pm_stes[hash ^ ADDR_ESID_HASH].stes;
616 for (i = 0; i < 8; i++, ste++) {
617 if (ste->ste_hi & STE_V) &&
618 (addr & ~(ADDR_POFF|ADDR_PIDX)) == (ste->ste_hi & STE_ESID))
619 return addr;
620 }
621
622 return NULL;
623 #else
624 /*
625 * Rather than searching the STE groups for the VSID, we know
626 * how we generate that from the ESID and so do that.
627 */
628 return VSID_MAKE(addr >> ADDR_SR_SHFT, pm->pm_vsid) >> SR_VSID_SHFT;
629 #endif
630 #endif /* PMAP_OEA */
631 }
632
633 static inline register_t
634 va_to_pteg(const struct pmap *pm, vaddr_t addr)
635 {
636 register_t hash;
637
638 hash = va_to_vsid(pm, addr) ^ ((addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
639 return hash & pmap_pteg_mask;
640 }
641
642 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
643 /*
644 * Given a PTE in the page table, calculate the VADDR that hashes to it.
645 * The only bit of magic is that the top 4 bits of the address doesn't
646 * technically exist in the PTE. But we know we reserved 4 bits of the
647 * VSID for it so that's how we get it.
648 */
649 static vaddr_t
650 pmap_pte_to_va(volatile const struct pte *pt)
651 {
652 vaddr_t va;
653 uintptr_t ptaddr = (uintptr_t) pt;
654
655 if (pt->pte_hi & PTE_HID)
656 ptaddr ^= (pmap_pteg_mask * sizeof(struct pteg));
657
658 /* PPC Bits 10-19 PPC64 Bits 42-51 */
659 #if defined(PMAP_OEA)
660 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x3ff;
661 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
662 va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ (ptaddr / sizeof(struct pteg))) & 0x7ff;
663 #endif
664 va <<= ADDR_PIDX_SHFT;
665
666 /* PPC Bits 4-9 PPC64 Bits 36-41 */
667 va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
668
669 #if defined(PMAP_OEA64)
670 /* PPC63 Bits 0-35 */
671 /* va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT; */
672 #elif defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
673 /* PPC Bits 0-3 */
674 va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
675 #endif
676
677 return va;
678 }
679 #endif
680
681 static inline struct pvo_head *
682 pa_to_pvoh(paddr_t pa, struct vm_page **pg_p)
683 {
684 struct vm_page *pg;
685 struct vm_page_md *md;
686
687 pg = PHYS_TO_VM_PAGE(pa);
688 if (pg_p != NULL)
689 *pg_p = pg;
690 if (pg == NULL)
691 return &pmap_pvo_unmanaged;
692 md = VM_PAGE_TO_MD(pg);
693 return &md->mdpg_pvoh;
694 }
695
696 static inline struct pvo_head *
697 vm_page_to_pvoh(struct vm_page *pg)
698 {
699 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
700
701 return &md->mdpg_pvoh;
702 }
703
704
705 static inline void
706 pmap_attr_clear(struct vm_page *pg, int ptebit)
707 {
708 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
709
710 md->mdpg_attrs &= ~ptebit;
711 }
712
713 static inline int
714 pmap_attr_fetch(struct vm_page *pg)
715 {
716 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
717
718 return md->mdpg_attrs;
719 }
720
721 static inline void
722 pmap_attr_save(struct vm_page *pg, int ptebit)
723 {
724 struct vm_page_md * const md = VM_PAGE_TO_MD(pg);
725
726 md->mdpg_attrs |= ptebit;
727 }
728
729 static inline int
730 pmap_pte_compare(const volatile struct pte *pt, const struct pte *pvo_pt)
731 {
732 if (pt->pte_hi == pvo_pt->pte_hi
733 #if 0
734 && ((pt->pte_lo ^ pvo_pt->pte_lo) &
735 ~(PTE_REF|PTE_CHG)) == 0
736 #endif
737 )
738 return 1;
739 return 0;
740 }
741
742 static inline void
743 pmap_pte_create(struct pte *pt, const struct pmap *pm, vaddr_t va, register_t pte_lo)
744 {
745 /*
746 * Construct the PTE. Default to IMB initially. Valid bit
747 * only gets set when the real pte is set in memory.
748 *
749 * Note: Don't set the valid bit for correct operation of tlb update.
750 */
751 #if defined(PMAP_OEA)
752 pt->pte_hi = (va_to_vsid(pm, va) << PTE_VSID_SHFT)
753 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
754 pt->pte_lo = pte_lo;
755 #elif defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA64)
756 pt->pte_hi = ((u_int64_t)va_to_vsid(pm, va) << PTE_VSID_SHFT)
757 | (((va & ADDR_PIDX) >> (ADDR_API_SHFT - PTE_API_SHFT)) & PTE_API);
758 pt->pte_lo = (u_int64_t) pte_lo;
759 #endif /* PMAP_OEA */
760 }
761
762 static inline void
763 pmap_pte_synch(volatile struct pte *pt, struct pte *pvo_pt)
764 {
765 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
766 }
767
768 static inline void
769 pmap_pte_clear(volatile struct pte *pt, vaddr_t va, int ptebit)
770 {
771 /*
772 * As shown in Section 7.6.3.2.3
773 */
774 pt->pte_lo &= ~ptebit;
775 TLBIE(va);
776 SYNC();
777 EIEIO();
778 TLBSYNC();
779 SYNC();
780 #ifdef MULTIPROCESSOR
781 DCBST(pt);
782 #endif
783 }
784
785 static inline void
786 pmap_pte_set(volatile struct pte *pt, struct pte *pvo_pt)
787 {
788 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
789 if (pvo_pt->pte_hi & PTE_VALID)
790 panic("pte_set: setting an already valid pte %p", pvo_pt);
791 #endif
792 pvo_pt->pte_hi |= PTE_VALID;
793
794 /*
795 * Update the PTE as defined in section 7.6.3.1
796 * Note that the REF/CHG bits are from pvo_pt and thus should
797 * have been saved so this routine can restore them (if desired).
798 */
799 pt->pte_lo = pvo_pt->pte_lo;
800 EIEIO();
801 pt->pte_hi = pvo_pt->pte_hi;
802 TLBSYNC();
803 SYNC();
804 #ifdef MULTIPROCESSOR
805 DCBST(pt);
806 #endif
807 pmap_pte_valid++;
808 }
809
810 static inline void
811 pmap_pte_unset(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
812 {
813 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
814 if ((pvo_pt->pte_hi & PTE_VALID) == 0)
815 panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
816 if ((pt->pte_hi & PTE_VALID) == 0)
817 panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
818 #endif
819
820 pvo_pt->pte_hi &= ~PTE_VALID;
821 /*
822 * Force the ref & chg bits back into the PTEs.
823 */
824 SYNC();
825 /*
826 * Invalidate the pte ... (Section 7.6.3.3)
827 */
828 pt->pte_hi &= ~PTE_VALID;
829 SYNC();
830 TLBIE(va);
831 SYNC();
832 EIEIO();
833 TLBSYNC();
834 SYNC();
835 /*
836 * Save the ref & chg bits ...
837 */
838 pmap_pte_synch(pt, pvo_pt);
839 pmap_pte_valid--;
840 }
841
842 static inline void
843 pmap_pte_change(volatile struct pte *pt, struct pte *pvo_pt, vaddr_t va)
844 {
845 /*
846 * Invalidate the PTE
847 */
848 pmap_pte_unset(pt, pvo_pt, va);
849 pmap_pte_set(pt, pvo_pt);
850 }
851
852 /*
853 * Try to insert the PTE @ *pvo_pt into the pmap_pteg_table at ptegidx
854 * (either primary or secondary location).
855 *
856 * Note: both the destination and source PTEs must not have PTE_VALID set.
857 */
858
859 static int
860 pmap_pte_insert(int ptegidx, struct pte *pvo_pt)
861 {
862 volatile struct pte *pt;
863 int i;
864
865 #if defined(DEBUG)
866 DPRINTFN(PTE, "pmap_pte_insert: idx %#x, pte %#" _PRIxpte " %#" _PRIxpte "\n",
867 ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo);
868 #endif
869 /*
870 * First try primary hash.
871 */
872 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
873 if ((pt->pte_hi & PTE_VALID) == 0) {
874 pvo_pt->pte_hi &= ~PTE_HID;
875 pmap_pte_set(pt, pvo_pt);
876 return i;
877 }
878 }
879
880 /*
881 * Now try secondary hash.
882 */
883 ptegidx ^= pmap_pteg_mask;
884 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
885 if ((pt->pte_hi & PTE_VALID) == 0) {
886 pvo_pt->pte_hi |= PTE_HID;
887 pmap_pte_set(pt, pvo_pt);
888 return i;
889 }
890 }
891 return -1;
892 }
893
894 /*
895 * Spill handler.
896 *
897 * Tries to spill a page table entry from the overflow area.
898 * This runs in either real mode (if dealing with a exception spill)
899 * or virtual mode when dealing with manually spilling one of the
900 * kernel's pte entries. In either case, interrupts are already
901 * disabled.
902 */
903
904 int
905 pmap_pte_spill(struct pmap *pm, vaddr_t addr, bool exec)
906 {
907 struct pvo_entry *source_pvo, *victim_pvo, *next_pvo;
908 struct pvo_entry *pvo;
909 /* XXX: gcc -- vpvoh is always set at either *1* or *2* */
910 struct pvo_tqhead *pvoh, *vpvoh = NULL;
911 int ptegidx, i, j;
912 volatile struct pteg *pteg;
913 volatile struct pte *pt;
914
915 PMAP_LOCK();
916
917 ptegidx = va_to_pteg(pm, addr);
918
919 /*
920 * Have to substitute some entry. Use the primary hash for this.
921 * Use low bits of timebase as random generator. Make sure we are
922 * not picking a kernel pte for replacement.
923 */
924 pteg = &pmap_pteg_table[ptegidx];
925 i = MFTB() & 7;
926 for (j = 0; j < 8; j++) {
927 pt = &pteg->pt[i];
928 if ((pt->pte_hi & PTE_VALID) == 0)
929 break;
930 if (VSID_TO_HASH((pt->pte_hi & PTE_VSID) >> PTE_VSID_SHFT)
931 < PHYSMAP_VSIDBITS)
932 break;
933 i = (i + 1) & 7;
934 }
935 KASSERT(j < 8);
936
937 source_pvo = NULL;
938 victim_pvo = NULL;
939 pvoh = &pmap_pvo_table[ptegidx];
940 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
941
942 /*
943 * We need to find pvo entry for this address...
944 */
945 PMAP_PVO_CHECK(pvo); /* sanity check */
946
947 /*
948 * If we haven't found the source and we come to a PVO with
949 * a valid PTE, then we know we can't find it because all
950 * evicted PVOs always are first in the list.
951 */
952 if (source_pvo == NULL && (pvo->pvo_pte.pte_hi & PTE_VALID))
953 break;
954 if (source_pvo == NULL && pm == pvo->pvo_pmap &&
955 addr == PVO_VADDR(pvo)) {
956
957 /*
958 * Now we have found the entry to be spilled into the
959 * pteg. Attempt to insert it into the page table.
960 */
961 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
962 if (j >= 0) {
963 PVO_PTEGIDX_SET(pvo, j);
964 PMAP_PVO_CHECK(pvo); /* sanity check */
965 PVO_WHERE(pvo, SPILL_INSERT);
966 pvo->pvo_pmap->pm_evictions--;
967 PMAPCOUNT(ptes_spilled);
968 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
969 ? pmap_evcnt_ptes_secondary
970 : pmap_evcnt_ptes_primary)[j]);
971
972 /*
973 * Since we keep the evicted entries at the
974 * from of the PVO list, we need move this
975 * (now resident) PVO after the evicted
976 * entries.
977 */
978 next_pvo = TAILQ_NEXT(pvo, pvo_olink);
979
980 /*
981 * If we don't have to move (either we were the
982 * last entry or the next entry was valid),
983 * don't change our position. Otherwise
984 * move ourselves to the tail of the queue.
985 */
986 if (next_pvo != NULL &&
987 !(next_pvo->pvo_pte.pte_hi & PTE_VALID)) {
988 TAILQ_REMOVE(pvoh, pvo, pvo_olink);
989 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
990 }
991 PMAP_UNLOCK();
992 return 1;
993 }
994 source_pvo = pvo;
995 if (exec && !PVO_EXECUTABLE_P(source_pvo)) {
996 PMAP_UNLOCK();
997 return 0;
998 }
999 if (victim_pvo != NULL)
1000 break;
1001 }
1002
1003 /*
1004 * We also need the pvo entry of the victim we are replacing
1005 * so save the R & C bits of the PTE.
1006 */
1007 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1008 pmap_pte_compare(pt, &pvo->pvo_pte)) {
1009 vpvoh = pvoh; /* *1* */
1010 victim_pvo = pvo;
1011 if (source_pvo != NULL)
1012 break;
1013 }
1014 }
1015
1016 if (source_pvo == NULL) {
1017 PMAPCOUNT(ptes_unspilled);
1018 PMAP_UNLOCK();
1019 return 0;
1020 }
1021
1022 if (victim_pvo == NULL) {
1023 if ((pt->pte_hi & PTE_HID) == 0)
1024 panic("pmap_pte_spill: victim p-pte (%p) has "
1025 "no pvo entry!", pt);
1026
1027 /*
1028 * If this is a secondary PTE, we need to search
1029 * its primary pvo bucket for the matching PVO.
1030 */
1031 vpvoh = &pmap_pvo_table[ptegidx ^ pmap_pteg_mask]; /* *2* */
1032 TAILQ_FOREACH(pvo, vpvoh, pvo_olink) {
1033 PMAP_PVO_CHECK(pvo); /* sanity check */
1034
1035 /*
1036 * We also need the pvo entry of the victim we are
1037 * replacing so save the R & C bits of the PTE.
1038 */
1039 if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1040 victim_pvo = pvo;
1041 break;
1042 }
1043 }
1044 if (victim_pvo == NULL)
1045 panic("pmap_pte_spill: victim s-pte (%p) has "
1046 "no pvo entry!", pt);
1047 }
1048
1049 /*
1050 * The victim should be not be a kernel PVO/PTE entry.
1051 */
1052 KASSERT(victim_pvo->pvo_pmap != pmap_kernel());
1053 KASSERT(PVO_PTEGIDX_ISSET(victim_pvo));
1054 KASSERT(PVO_PTEGIDX_GET(victim_pvo) == i);
1055
1056 /*
1057 * We are invalidating the TLB entry for the EA for the
1058 * we are replacing even though its valid; If we don't
1059 * we lose any ref/chg bit changes contained in the TLB
1060 * entry.
1061 */
1062 source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1063
1064 /*
1065 * To enforce the PVO list ordering constraint that all
1066 * evicted entries should come before all valid entries,
1067 * move the source PVO to the tail of its list and the
1068 * victim PVO to the head of its list (which might not be
1069 * the same list, if the victim was using the secondary hash).
1070 */
1071 TAILQ_REMOVE(pvoh, source_pvo, pvo_olink);
1072 TAILQ_INSERT_TAIL(pvoh, source_pvo, pvo_olink);
1073 TAILQ_REMOVE(vpvoh, victim_pvo, pvo_olink);
1074 TAILQ_INSERT_HEAD(vpvoh, victim_pvo, pvo_olink);
1075 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1076 pmap_pte_set(pt, &source_pvo->pvo_pte);
1077 victim_pvo->pvo_pmap->pm_evictions++;
1078 source_pvo->pvo_pmap->pm_evictions--;
1079 PVO_WHERE(victim_pvo, SPILL_UNSET);
1080 PVO_WHERE(source_pvo, SPILL_SET);
1081
1082 PVO_PTEGIDX_CLR(victim_pvo);
1083 PVO_PTEGIDX_SET(source_pvo, i);
1084 PMAPCOUNT2(pmap_evcnt_ptes_primary[i]);
1085 PMAPCOUNT(ptes_spilled);
1086 PMAPCOUNT(ptes_evicted);
1087 PMAPCOUNT(ptes_removed);
1088
1089 PMAP_PVO_CHECK(victim_pvo);
1090 PMAP_PVO_CHECK(source_pvo);
1091
1092 PMAP_UNLOCK();
1093 return 1;
1094 }
1095
1096 /*
1097 * Restrict given range to physical memory
1098 */
1099 void
1100 pmap_real_memory(paddr_t *start, psize_t *size)
1101 {
1102 struct mem_region *mp;
1103
1104 for (mp = mem; mp->size; mp++) {
1105 if (*start + *size > mp->start
1106 && *start < mp->start + mp->size) {
1107 if (*start < mp->start) {
1108 *size -= mp->start - *start;
1109 *start = mp->start;
1110 }
1111 if (*start + *size > mp->start + mp->size)
1112 *size = mp->start + mp->size - *start;
1113 return;
1114 }
1115 }
1116 *size = 0;
1117 }
1118
1119 /*
1120 * Initialize anything else for pmap handling.
1121 * Called during vm_init().
1122 */
1123 void
1124 pmap_init(void)
1125 {
1126 pool_init(&pmap_mpvo_pool, sizeof(struct pvo_entry),
1127 sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl",
1128 &pmap_pool_mallocator, IPL_NONE);
1129
1130 pool_setlowat(&pmap_mpvo_pool, 1008);
1131
1132 pmap_initialized = 1;
1133
1134 }
1135
1136 /*
1137 * How much virtual space does the kernel get?
1138 */
1139 void
1140 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1141 {
1142 /*
1143 * For now, reserve one segment (minus some overhead) for kernel
1144 * virtual memory
1145 */
1146 *start = VM_MIN_KERNEL_ADDRESS;
1147 *end = VM_MAX_KERNEL_ADDRESS;
1148 }
1149
1150 /*
1151 * Allocate, initialize, and return a new physical map.
1152 */
1153 pmap_t
1154 pmap_create(void)
1155 {
1156 pmap_t pm;
1157
1158 pm = pool_get(&pmap_pool, PR_WAITOK);
1159 KASSERT((vaddr_t)pm < VM_MIN_KERNEL_ADDRESS);
1160 memset((void *)pm, 0, sizeof *pm);
1161 pmap_pinit(pm);
1162
1163 DPRINTFN(CREATE, "pmap_create: pm %p:\n"
1164 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1165 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n"
1166 "\t%#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr
1167 " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr " %#" _PRIsr "\n",
1168 pm,
1169 pm->pm_sr[0], pm->pm_sr[1],
1170 pm->pm_sr[2], pm->pm_sr[3],
1171 pm->pm_sr[4], pm->pm_sr[5],
1172 pm->pm_sr[6], pm->pm_sr[7],
1173 pm->pm_sr[8], pm->pm_sr[9],
1174 pm->pm_sr[10], pm->pm_sr[11],
1175 pm->pm_sr[12], pm->pm_sr[13],
1176 pm->pm_sr[14], pm->pm_sr[15]);
1177 return pm;
1178 }
1179
1180 /*
1181 * Initialize a preallocated and zeroed pmap structure.
1182 */
1183 void
1184 pmap_pinit(pmap_t pm)
1185 {
1186 register_t entropy = MFTB();
1187 register_t mask;
1188 int i;
1189
1190 /*
1191 * Allocate some segment registers for this pmap.
1192 */
1193 pm->pm_refs = 1;
1194 PMAP_LOCK();
1195 for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1196 static register_t pmap_vsidcontext;
1197 register_t hash;
1198 unsigned int n;
1199
1200 /* Create a new value by multiplying by a prime adding in
1201 * entropy from the timebase register. This is to make the
1202 * VSID more random so that the PT Hash function collides
1203 * less often. (note that the prime causes gcc to do shifts
1204 * instead of a multiply)
1205 */
1206 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1207 hash = pmap_vsidcontext & (NPMAPS - 1);
1208 if (hash == 0) { /* 0 is special, avoid it */
1209 entropy += 0xbadf00d;
1210 continue;
1211 }
1212 n = hash >> 5;
1213 mask = 1L << (hash & (VSID_NBPW-1));
1214 hash = pmap_vsidcontext;
1215 if (pmap_vsid_bitmap[n] & mask) { /* collision? */
1216 /* anything free in this bucket? */
1217 if (~pmap_vsid_bitmap[n] == 0) {
1218 entropy = hash ^ (hash >> 16);
1219 continue;
1220 }
1221 i = ffs(~pmap_vsid_bitmap[n]) - 1;
1222 mask = 1L << i;
1223 hash &= ~(VSID_NBPW-1);
1224 hash |= i;
1225 }
1226 hash &= PTE_VSID >> PTE_VSID_SHFT;
1227 pmap_vsid_bitmap[n] |= mask;
1228 pm->pm_vsid = hash;
1229 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1230 for (i = 0; i < 16; i++)
1231 pm->pm_sr[i] = VSID_MAKE(i, hash) | SR_PRKEY |
1232 SR_NOEXEC;
1233 #endif
1234 PMAP_UNLOCK();
1235 return;
1236 }
1237 PMAP_UNLOCK();
1238 panic("pmap_pinit: out of segments");
1239 }
1240
1241 /*
1242 * Add a reference to the given pmap.
1243 */
1244 void
1245 pmap_reference(pmap_t pm)
1246 {
1247 atomic_inc_uint(&pm->pm_refs);
1248 }
1249
1250 /*
1251 * Retire the given pmap from service.
1252 * Should only be called if the map contains no valid mappings.
1253 */
1254 void
1255 pmap_destroy(pmap_t pm)
1256 {
1257 if (atomic_dec_uint_nv(&pm->pm_refs) == 0) {
1258 pmap_release(pm);
1259 pool_put(&pmap_pool, pm);
1260 }
1261 }
1262
1263 /*
1264 * Release any resources held by the given physical map.
1265 * Called when a pmap initialized by pmap_pinit is being released.
1266 */
1267 void
1268 pmap_release(pmap_t pm)
1269 {
1270 int idx, mask;
1271
1272 KASSERT(pm->pm_stats.resident_count == 0);
1273 KASSERT(pm->pm_stats.wired_count == 0);
1274
1275 PMAP_LOCK();
1276 if (pm->pm_sr[0] == 0)
1277 panic("pmap_release");
1278 idx = pm->pm_vsid & (NPMAPS-1);
1279 mask = 1 << (idx % VSID_NBPW);
1280 idx /= VSID_NBPW;
1281
1282 KASSERT(pmap_vsid_bitmap[idx] & mask);
1283 pmap_vsid_bitmap[idx] &= ~mask;
1284 PMAP_UNLOCK();
1285 }
1286
1287 /*
1288 * Copy the range specified by src_addr/len
1289 * from the source map to the range dst_addr/len
1290 * in the destination map.
1291 *
1292 * This routine is only advisory and need not do anything.
1293 */
1294 void
1295 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
1296 vsize_t len, vaddr_t src_addr)
1297 {
1298 PMAPCOUNT(copies);
1299 }
1300
1301 /*
1302 * Require that all active physical maps contain no
1303 * incorrect entries NOW.
1304 */
1305 void
1306 pmap_update(struct pmap *pmap)
1307 {
1308 PMAPCOUNT(updates);
1309 TLBSYNC();
1310 }
1311
1312 static inline int
1313 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1314 {
1315 int pteidx;
1316 /*
1317 * We can find the actual pte entry without searching by
1318 * grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
1319 * and by noticing the HID bit.
1320 */
1321 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1322 if (pvo->pvo_pte.pte_hi & PTE_HID)
1323 pteidx ^= pmap_pteg_mask * 8;
1324 return pteidx;
1325 }
1326
1327 volatile struct pte *
1328 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1329 {
1330 volatile struct pte *pt;
1331
1332 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1333 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
1334 return NULL;
1335 #endif
1336
1337 /*
1338 * If we haven't been supplied the ptegidx, calculate it.
1339 */
1340 if (pteidx == -1) {
1341 int ptegidx;
1342 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1343 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1344 }
1345
1346 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1347
1348 #if !defined(DIAGNOSTIC) && !defined(DEBUG) && !defined(PMAPCHECK)
1349 return pt;
1350 #else
1351 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1352 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1353 "pvo but no valid pte index", pvo);
1354 }
1355 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1356 panic("pmap_pvo_to_pte: pvo %p: has valid pte index in "
1357 "pvo but no valid pte", pvo);
1358 }
1359
1360 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1361 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1362 #if defined(DEBUG) || defined(PMAPCHECK)
1363 pmap_pte_print(pt);
1364 #endif
1365 panic("pmap_pvo_to_pte: pvo %p: has valid pte in "
1366 "pmap_pteg_table %p but invalid in pvo",
1367 pvo, pt);
1368 }
1369 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) != 0) {
1370 #if defined(DEBUG) || defined(PMAPCHECK)
1371 pmap_pte_print(pt);
1372 #endif
1373 panic("pmap_pvo_to_pte: pvo %p: pvo pte does "
1374 "not match pte %p in pmap_pteg_table",
1375 pvo, pt);
1376 }
1377 return pt;
1378 }
1379
1380 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1381 #if defined(DEBUG) || defined(PMAPCHECK)
1382 pmap_pte_print(pt);
1383 #endif
1384 panic("pmap_pvo_to_pte: pvo %p: has nomatching pte %p in "
1385 "pmap_pteg_table but valid in pvo", pvo, pt);
1386 }
1387 return NULL;
1388 #endif /* !(!DIAGNOSTIC && !DEBUG && !PMAPCHECK) */
1389 }
1390
1391 struct pvo_entry *
1392 pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
1393 {
1394 struct pvo_entry *pvo;
1395 int ptegidx;
1396
1397 va &= ~ADDR_POFF;
1398 ptegidx = va_to_pteg(pm, va);
1399
1400 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1401 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1402 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
1403 panic("pmap_pvo_find_va: invalid pvo %p on "
1404 "list %#x (%p)", pvo, ptegidx,
1405 &pmap_pvo_table[ptegidx]);
1406 #endif
1407 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1408 if (pteidx_p)
1409 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1410 return pvo;
1411 }
1412 }
1413 if ((pm == pmap_kernel()) && (va < SEGMENT_LENGTH))
1414 panic("%s: returning NULL for %s pmap, va: %#" _PRIxva "\n",
1415 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
1416 return NULL;
1417 }
1418
1419 #if defined(DEBUG) || defined(PMAPCHECK)
1420 void
1421 pmap_pvo_check(const struct pvo_entry *pvo)
1422 {
1423 struct pvo_head *pvo_head;
1424 struct pvo_entry *pvo0;
1425 volatile struct pte *pt;
1426 int failed = 0;
1427
1428 PMAP_LOCK();
1429
1430 if ((uintptr_t)(pvo+1) >= SEGMENT_LENGTH)
1431 panic("pmap_pvo_check: pvo %p: invalid address", pvo);
1432
1433 if ((uintptr_t)(pvo->pvo_pmap+1) >= SEGMENT_LENGTH) {
1434 printf("pmap_pvo_check: pvo %p: invalid pmap address %p\n",
1435 pvo, pvo->pvo_pmap);
1436 failed = 1;
1437 }
1438
1439 if ((uintptr_t)TAILQ_NEXT(pvo, pvo_olink) >= SEGMENT_LENGTH ||
1440 (((uintptr_t)TAILQ_NEXT(pvo, pvo_olink)) & 0x1f) != 0) {
1441 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1442 pvo, TAILQ_NEXT(pvo, pvo_olink));
1443 failed = 1;
1444 }
1445
1446 if ((uintptr_t)LIST_NEXT(pvo, pvo_vlink) >= SEGMENT_LENGTH ||
1447 (((uintptr_t)LIST_NEXT(pvo, pvo_vlink)) & 0x1f) != 0) {
1448 printf("pmap_pvo_check: pvo %p: invalid ovlink address %p\n",
1449 pvo, LIST_NEXT(pvo, pvo_vlink));
1450 failed = 1;
1451 }
1452
1453 if (PVO_MANAGED_P(pvo)) {
1454 pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN, NULL);
1455 } else {
1456 if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
1457 printf("pmap_pvo_check: pvo %p: non kernel address "
1458 "on kernel unmanaged list\n", pvo);
1459 failed = 1;
1460 }
1461 pvo_head = &pmap_pvo_kunmanaged;
1462 }
1463 LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
1464 if (pvo0 == pvo)
1465 break;
1466 }
1467 if (pvo0 == NULL) {
1468 printf("pmap_pvo_check: pvo %p: not present "
1469 "on its vlist head %p\n", pvo, pvo_head);
1470 failed = 1;
1471 }
1472 if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
1473 printf("pmap_pvo_check: pvo %p: not present "
1474 "on its olist head\n", pvo);
1475 failed = 1;
1476 }
1477 pt = pmap_pvo_to_pte(pvo, -1);
1478 if (pt == NULL) {
1479 if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1480 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1481 "no PTE\n", pvo);
1482 failed = 1;
1483 }
1484 } else {
1485 if ((uintptr_t) pt < (uintptr_t) &pmap_pteg_table[0] ||
1486 (uintptr_t) pt >=
1487 (uintptr_t) &pmap_pteg_table[pmap_pteg_cnt]) {
1488 printf("pmap_pvo_check: pvo %p: pte %p not in "
1489 "pteg table\n", pvo, pt);
1490 failed = 1;
1491 }
1492 if (((((uintptr_t) pt) >> 3) & 7) != PVO_PTEGIDX_GET(pvo)) {
1493 printf("pmap_pvo_check: pvo %p: pte_hi VALID but "
1494 "no PTE\n", pvo);
1495 failed = 1;
1496 }
1497 if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
1498 printf("pmap_pvo_check: pvo %p: pte_hi differ: "
1499 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1500 pvo->pvo_pte.pte_hi,
1501 pt->pte_hi);
1502 failed = 1;
1503 }
1504 if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
1505 (PTE_PP|PTE_WIMG|PTE_RPGN)) != 0) {
1506 printf("pmap_pvo_check: pvo %p: pte_lo differ: "
1507 "%#" _PRIxpte "/%#" _PRIxpte "\n", pvo,
1508 (pvo->pvo_pte.pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)),
1509 (pt->pte_lo & (PTE_PP|PTE_WIMG|PTE_RPGN)));
1510 failed = 1;
1511 }
1512 if ((pmap_pte_to_va(pt) ^ PVO_VADDR(pvo)) & 0x0fffffff) {
1513 printf("pmap_pvo_check: pvo %p: PTE %p derived VA %#" _PRIxva ""
1514 " doesn't not match PVO's VA %#" _PRIxva "\n",
1515 pvo, pt, pmap_pte_to_va(pt), PVO_VADDR(pvo));
1516 failed = 1;
1517 }
1518 if (failed)
1519 pmap_pte_print(pt);
1520 }
1521 if (failed)
1522 panic("pmap_pvo_check: pvo %p, pm %p: bugcheck!", pvo,
1523 pvo->pvo_pmap);
1524
1525 PMAP_UNLOCK();
1526 }
1527 #endif /* DEBUG || PMAPCHECK */
1528
1529 /*
1530 * Search the PVO table looking for a non-wired entry.
1531 * If we find one, remove it and return it.
1532 */
1533
1534 struct pvo_entry *
1535 pmap_pvo_reclaim(struct pmap *pm)
1536 {
1537 struct pvo_tqhead *pvoh;
1538 struct pvo_entry *pvo;
1539 uint32_t idx, endidx;
1540
1541 endidx = pmap_pvo_reclaim_nextidx;
1542 for (idx = (endidx + 1) & pmap_pteg_mask; idx != endidx;
1543 idx = (idx + 1) & pmap_pteg_mask) {
1544 pvoh = &pmap_pvo_table[idx];
1545 TAILQ_FOREACH(pvo, pvoh, pvo_olink) {
1546 if (!PVO_WIRED_P(pvo)) {
1547 pmap_pvo_remove(pvo, -1, NULL);
1548 pmap_pvo_reclaim_nextidx = idx;
1549 PMAPCOUNT(pvos_reclaimed);
1550 return pvo;
1551 }
1552 }
1553 }
1554 return NULL;
1555 }
1556
1557 static struct pool *
1558 pmap_pvo_pl(struct pvo_entry *pvo)
1559 {
1560
1561 return PVO_MANAGED_P(pvo) ? &pmap_mpvo_pool : &pmap_upvo_pool;
1562 }
1563
1564 /*
1565 * This returns whether this is the first mapping of a page.
1566 */
1567 int
1568 pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
1569 vaddr_t va, paddr_t pa, register_t pte_lo, int flags)
1570 {
1571 struct pvo_entry *pvo;
1572 struct pvo_tqhead *pvoh;
1573 register_t msr;
1574 int ptegidx;
1575 int i;
1576 int poolflags = PR_NOWAIT;
1577
1578 /*
1579 * Compute the PTE Group index.
1580 */
1581 va &= ~ADDR_POFF;
1582 ptegidx = va_to_pteg(pm, va);
1583
1584 msr = pmap_interrupts_off();
1585
1586 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1587 if (pmap_pvo_remove_depth > 0)
1588 panic("pmap_pvo_enter: called while pmap_pvo_remove active!");
1589 if (++pmap_pvo_enter_depth > 1)
1590 panic("pmap_pvo_enter: called recursively!");
1591 #endif
1592
1593 /*
1594 * Remove any existing mapping for this page. Reuse the
1595 * pvo entry if there a mapping.
1596 */
1597 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1598 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1599 #ifdef DEBUG
1600 if ((pmapdebug & PMAPDEBUG_PVOENTER) &&
1601 ((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
1602 ~(PTE_REF|PTE_CHG)) == 0 &&
1603 va < VM_MIN_KERNEL_ADDRESS) {
1604 printf("pmap_pvo_enter: pvo %p: dup %#" _PRIxpte "/%#" _PRIxpa "\n",
1605 pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
1606 printf("pmap_pvo_enter: pte_hi=%#" _PRIxpte " sr=%#" _PRIsr "\n",
1607 pvo->pvo_pte.pte_hi,
1608 pm->pm_sr[va >> ADDR_SR_SHFT]);
1609 pmap_pte_print(pmap_pvo_to_pte(pvo, -1));
1610 #ifdef DDBX
1611 Debugger();
1612 #endif
1613 }
1614 #endif
1615 PMAPCOUNT(mappings_replaced);
1616 pmap_pvo_remove(pvo, -1, NULL);
1617 break;
1618 }
1619 }
1620
1621 /*
1622 * If we aren't overwriting an mapping, try to allocate
1623 */
1624 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1625 --pmap_pvo_enter_depth;
1626 #endif
1627 pmap_interrupts_restore(msr);
1628 if (pvo) {
1629 KASSERT(pmap_pvo_pl(pvo) == pl);
1630 } else {
1631 pvo = pool_get(pl, poolflags);
1632 }
1633 KASSERT((vaddr_t)pvo < VM_MIN_KERNEL_ADDRESS);
1634
1635 #ifdef DEBUG
1636 /*
1637 * Exercise pmap_pvo_reclaim() a little.
1638 */
1639 if (pvo && (flags & PMAP_CANFAIL) != 0 &&
1640 pmap_pvo_reclaim_debugctr++ > 0x1000 &&
1641 (pmap_pvo_reclaim_debugctr & 0xff) == 0) {
1642 pool_put(pl, pvo);
1643 pvo = NULL;
1644 }
1645 #endif
1646
1647 msr = pmap_interrupts_off();
1648 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1649 ++pmap_pvo_enter_depth;
1650 #endif
1651 if (pvo == NULL) {
1652 pvo = pmap_pvo_reclaim(pm);
1653 if (pvo == NULL) {
1654 if ((flags & PMAP_CANFAIL) == 0)
1655 panic("pmap_pvo_enter: failed");
1656 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1657 pmap_pvo_enter_depth--;
1658 #endif
1659 PMAPCOUNT(pvos_failed);
1660 pmap_interrupts_restore(msr);
1661 return ENOMEM;
1662 }
1663 }
1664
1665 pvo->pvo_vaddr = va;
1666 pvo->pvo_pmap = pm;
1667 pvo->pvo_vaddr &= ~ADDR_POFF;
1668 if (flags & VM_PROT_EXECUTE) {
1669 PMAPCOUNT(exec_mappings);
1670 pvo_set_exec(pvo);
1671 }
1672 if (flags & PMAP_WIRED)
1673 pvo->pvo_vaddr |= PVO_WIRED;
1674 if (pvo_head != &pmap_pvo_kunmanaged) {
1675 pvo->pvo_vaddr |= PVO_MANAGED;
1676 PMAPCOUNT(mappings);
1677 } else {
1678 PMAPCOUNT(kernel_mappings);
1679 }
1680 pmap_pte_create(&pvo->pvo_pte, pm, va, pa | pte_lo);
1681
1682 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1683 if (PVO_WIRED_P(pvo))
1684 pvo->pvo_pmap->pm_stats.wired_count++;
1685 pvo->pvo_pmap->pm_stats.resident_count++;
1686 #if defined(DEBUG)
1687 /* if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS) */
1688 DPRINTFN(PVOENTER,
1689 "pmap_pvo_enter: pvo %p: pm %p va %#" _PRIxva " pa %#" _PRIxpa "\n",
1690 pvo, pm, va, pa);
1691 #endif
1692
1693 /*
1694 * We hope this succeeds but it isn't required.
1695 */
1696 pvoh = &pmap_pvo_table[ptegidx];
1697 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1698 if (i >= 0) {
1699 PVO_PTEGIDX_SET(pvo, i);
1700 PVO_WHERE(pvo, ENTER_INSERT);
1701 PMAPCOUNT2(((pvo->pvo_pte.pte_hi & PTE_HID)
1702 ? pmap_evcnt_ptes_secondary : pmap_evcnt_ptes_primary)[i]);
1703 TAILQ_INSERT_TAIL(pvoh, pvo, pvo_olink);
1704
1705 } else {
1706 /*
1707 * Since we didn't have room for this entry (which makes it
1708 * and evicted entry), place it at the head of the list.
1709 */
1710 TAILQ_INSERT_HEAD(pvoh, pvo, pvo_olink);
1711 PMAPCOUNT(ptes_evicted);
1712 pm->pm_evictions++;
1713 /*
1714 * If this is a kernel page, make sure it's active.
1715 */
1716 if (pm == pmap_kernel()) {
1717 i = pmap_pte_spill(pm, va, false);
1718 KASSERT(i);
1719 }
1720 }
1721 PMAP_PVO_CHECK(pvo); /* sanity check */
1722 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1723 pmap_pvo_enter_depth--;
1724 #endif
1725 pmap_interrupts_restore(msr);
1726 return 0;
1727 }
1728
1729 static void
1730 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, struct pvo_head *pvol)
1731 {
1732 volatile struct pte *pt;
1733 int ptegidx;
1734
1735 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1736 if (++pmap_pvo_remove_depth > 1)
1737 panic("pmap_pvo_remove: called recursively!");
1738 #endif
1739
1740 /*
1741 * If we haven't been supplied the ptegidx, calculate it.
1742 */
1743 if (pteidx == -1) {
1744 ptegidx = va_to_pteg(pvo->pvo_pmap, pvo->pvo_vaddr);
1745 pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1746 } else {
1747 ptegidx = pteidx >> 3;
1748 if (pvo->pvo_pte.pte_hi & PTE_HID)
1749 ptegidx ^= pmap_pteg_mask;
1750 }
1751 PMAP_PVO_CHECK(pvo); /* sanity check */
1752
1753 /*
1754 * If there is an active pte entry, we need to deactivate it
1755 * (and save the ref & chg bits).
1756 */
1757 pt = pmap_pvo_to_pte(pvo, pteidx);
1758 if (pt != NULL) {
1759 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1760 PVO_WHERE(pvo, REMOVE);
1761 PVO_PTEGIDX_CLR(pvo);
1762 PMAPCOUNT(ptes_removed);
1763 } else {
1764 KASSERT(pvo->pvo_pmap->pm_evictions > 0);
1765 pvo->pvo_pmap->pm_evictions--;
1766 }
1767
1768 /*
1769 * Account for executable mappings.
1770 */
1771 if (PVO_EXECUTABLE_P(pvo))
1772 pvo_clear_exec(pvo);
1773
1774 /*
1775 * Update our statistics.
1776 */
1777 pvo->pvo_pmap->pm_stats.resident_count--;
1778 if (PVO_WIRED_P(pvo))
1779 pvo->pvo_pmap->pm_stats.wired_count--;
1780
1781 /*
1782 * Save the REF/CHG bits into their cache if the page is managed.
1783 */
1784 if (PVO_MANAGED_P(pvo)) {
1785 register_t ptelo = pvo->pvo_pte.pte_lo;
1786 struct vm_page *pg = PHYS_TO_VM_PAGE(ptelo & PTE_RPGN);
1787
1788 if (pg != NULL) {
1789 /*
1790 * If this page was changed and it is mapped exec,
1791 * invalidate it.
1792 */
1793 if ((ptelo & PTE_CHG) &&
1794 (pmap_attr_fetch(pg) & PTE_EXEC)) {
1795 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
1796 if (LIST_EMPTY(pvoh)) {
1797 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1798 "%#" _PRIxpa ": clear-exec]\n",
1799 VM_PAGE_TO_PHYS(pg));
1800 pmap_attr_clear(pg, PTE_EXEC);
1801 PMAPCOUNT(exec_uncached_pvo_remove);
1802 } else {
1803 DPRINTFN(EXEC, "[pmap_pvo_remove: "
1804 "%#" _PRIxpa ": syncicache]\n",
1805 VM_PAGE_TO_PHYS(pg));
1806 pmap_syncicache(VM_PAGE_TO_PHYS(pg),
1807 PAGE_SIZE);
1808 PMAPCOUNT(exec_synced_pvo_remove);
1809 }
1810 }
1811
1812 pmap_attr_save(pg, ptelo & (PTE_REF|PTE_CHG));
1813 }
1814 PMAPCOUNT(unmappings);
1815 } else {
1816 PMAPCOUNT(kernel_unmappings);
1817 }
1818
1819 /*
1820 * Remove the PVO from its lists and return it to the pool.
1821 */
1822 LIST_REMOVE(pvo, pvo_vlink);
1823 TAILQ_REMOVE(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1824 if (pvol) {
1825 LIST_INSERT_HEAD(pvol, pvo, pvo_vlink);
1826 }
1827 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
1828 pmap_pvo_remove_depth--;
1829 #endif
1830 }
1831
1832 void
1833 pmap_pvo_free(struct pvo_entry *pvo)
1834 {
1835
1836 pool_put(pmap_pvo_pl(pvo), pvo);
1837 }
1838
1839 void
1840 pmap_pvo_free_list(struct pvo_head *pvol)
1841 {
1842 struct pvo_entry *pvo, *npvo;
1843
1844 for (pvo = LIST_FIRST(pvol); pvo != NULL; pvo = npvo) {
1845 npvo = LIST_NEXT(pvo, pvo_vlink);
1846 LIST_REMOVE(pvo, pvo_vlink);
1847 pmap_pvo_free(pvo);
1848 }
1849 }
1850
1851 /*
1852 * Mark a mapping as executable.
1853 * If this is the first executable mapping in the segment,
1854 * clear the noexec flag.
1855 */
1856 static void
1857 pvo_set_exec(struct pvo_entry *pvo)
1858 {
1859 struct pmap *pm = pvo->pvo_pmap;
1860
1861 if (pm == pmap_kernel() || PVO_EXECUTABLE_P(pvo)) {
1862 return;
1863 }
1864 pvo->pvo_vaddr |= PVO_EXECUTABLE;
1865 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1866 {
1867 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1868 if (pm->pm_exec[sr]++ == 0) {
1869 pm->pm_sr[sr] &= ~SR_NOEXEC;
1870 }
1871 }
1872 #endif
1873 }
1874
1875 /*
1876 * Mark a mapping as non-executable.
1877 * If this was the last executable mapping in the segment,
1878 * set the noexec flag.
1879 */
1880 static void
1881 pvo_clear_exec(struct pvo_entry *pvo)
1882 {
1883 struct pmap *pm = pvo->pvo_pmap;
1884
1885 if (pm == pmap_kernel() || !PVO_EXECUTABLE_P(pvo)) {
1886 return;
1887 }
1888 pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1889 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
1890 {
1891 int sr = PVO_VADDR(pvo) >> ADDR_SR_SHFT;
1892 if (--pm->pm_exec[sr] == 0) {
1893 pm->pm_sr[sr] |= SR_NOEXEC;
1894 }
1895 }
1896 #endif
1897 }
1898
1899 /*
1900 * Insert physical page at pa into the given pmap at virtual address va.
1901 */
1902 int
1903 pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1904 {
1905 struct mem_region *mp;
1906 struct pvo_head *pvo_head;
1907 struct vm_page *pg;
1908 struct pool *pl;
1909 register_t pte_lo;
1910 int error;
1911 u_int was_exec = 0;
1912
1913 PMAP_LOCK();
1914
1915 if (__predict_false(!pmap_initialized)) {
1916 pvo_head = &pmap_pvo_kunmanaged;
1917 pl = &pmap_upvo_pool;
1918 pg = NULL;
1919 was_exec = PTE_EXEC;
1920 } else {
1921 pvo_head = pa_to_pvoh(pa, &pg);
1922 pl = &pmap_mpvo_pool;
1923 }
1924
1925 DPRINTFN(ENTER,
1926 "pmap_enter(%p, %#" _PRIxva ", %#" _PRIxpa ", 0x%x, 0x%x):",
1927 pm, va, pa, prot, flags);
1928
1929 /*
1930 * If this is a managed page, and it's the first reference to the
1931 * page clear the execness of the page. Otherwise fetch the execness.
1932 */
1933 if (pg != NULL)
1934 was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1935
1936 DPRINTFN(ENTER, " was_exec=%d", was_exec);
1937
1938 /*
1939 * Assume the page is cache inhibited and access is guarded unless
1940 * it's in our available memory array. If it is in the memory array,
1941 * asssume it's in memory coherent memory.
1942 */
1943 if (flags & PMAP_MD_PREFETCHABLE) {
1944 pte_lo = 0;
1945 } else
1946 pte_lo = PTE_G;
1947
1948 if ((flags & PMAP_NOCACHE) == 0) {
1949 for (mp = mem; mp->size; mp++) {
1950 if (pa >= mp->start && pa < mp->start + mp->size) {
1951 pte_lo = PTE_M;
1952 break;
1953 }
1954 }
1955 #ifdef MULTIPROCESSOR
1956 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
1957 pte_lo = PTE_M;
1958 #endif
1959 } else {
1960 pte_lo |= PTE_I;
1961 }
1962
1963 if (prot & VM_PROT_WRITE)
1964 pte_lo |= PTE_BW;
1965 else
1966 pte_lo |= PTE_BR;
1967
1968 /*
1969 * If this was in response to a fault, "pre-fault" the PTE's
1970 * changed/referenced bit appropriately.
1971 */
1972 if (flags & VM_PROT_WRITE)
1973 pte_lo |= PTE_CHG;
1974 if (flags & VM_PROT_ALL)
1975 pte_lo |= PTE_REF;
1976
1977 /*
1978 * We need to know if this page can be executable
1979 */
1980 flags |= (prot & VM_PROT_EXECUTE);
1981
1982 /*
1983 * Record mapping for later back-translation and pte spilling.
1984 * This will overwrite any existing mapping.
1985 */
1986 error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
1987
1988 /*
1989 * Flush the real page from the instruction cache if this page is
1990 * mapped executable and cacheable and has not been flushed since
1991 * the last time it was modified.
1992 */
1993 if (error == 0 &&
1994 (flags & VM_PROT_EXECUTE) &&
1995 (pte_lo & PTE_I) == 0 &&
1996 was_exec == 0) {
1997 DPRINTFN(ENTER, " %s", "syncicache");
1998 PMAPCOUNT(exec_synced);
1999 pmap_syncicache(pa, PAGE_SIZE);
2000 if (pg != NULL) {
2001 pmap_attr_save(pg, PTE_EXEC);
2002 PMAPCOUNT(exec_cached);
2003 #if defined(DEBUG) || defined(PMAPDEBUG)
2004 if (pmapdebug & PMAPDEBUG_ENTER)
2005 printf(" marked-as-exec");
2006 else if (pmapdebug & PMAPDEBUG_EXEC)
2007 printf("[pmap_enter: %#" _PRIxpa ": marked-as-exec]\n",
2008 VM_PAGE_TO_PHYS(pg));
2009
2010 #endif
2011 }
2012 }
2013
2014 DPRINTFN(ENTER, ": error=%d\n", error);
2015
2016 PMAP_UNLOCK();
2017
2018 return error;
2019 }
2020
2021 void
2022 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
2023 {
2024 struct mem_region *mp;
2025 register_t pte_lo;
2026 int error;
2027
2028 #if defined (PMAP_OEA64_BRIDGE) || defined (PMAP_OEA)
2029 if (va < VM_MIN_KERNEL_ADDRESS)
2030 panic("pmap_kenter_pa: attempt to enter "
2031 "non-kernel address %#" _PRIxva "!", va);
2032 #endif
2033
2034 DPRINTFN(KENTER,
2035 "pmap_kenter_pa(%#" _PRIxva ",%#" _PRIxpa ",%#x)\n", va, pa, prot);
2036
2037 PMAP_LOCK();
2038
2039 /*
2040 * Assume the page is cache inhibited and access is guarded unless
2041 * it's in our available memory array. If it is in the memory array,
2042 * asssume it's in memory coherent memory.
2043 */
2044 pte_lo = PTE_IG;
2045 if ((flags & PMAP_NOCACHE) == 0) {
2046 for (mp = mem; mp->size; mp++) {
2047 if (pa >= mp->start && pa < mp->start + mp->size) {
2048 pte_lo = PTE_M;
2049 break;
2050 }
2051 }
2052 #ifdef MULTIPROCESSOR
2053 if (((mfpvr() >> 16) & 0xffff) == MPC603e)
2054 pte_lo = PTE_M;
2055 #endif
2056 }
2057
2058 if (prot & VM_PROT_WRITE)
2059 pte_lo |= PTE_BW;
2060 else
2061 pte_lo |= PTE_BR;
2062
2063 /*
2064 * We don't care about REF/CHG on PVOs on the unmanaged list.
2065 */
2066 error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pool,
2067 &pmap_pvo_kunmanaged, va, pa, pte_lo, prot|PMAP_WIRED);
2068
2069 if (error != 0)
2070 panic("pmap_kenter_pa: failed to enter va %#" _PRIxva " pa %#" _PRIxpa ": %d",
2071 va, pa, error);
2072
2073 PMAP_UNLOCK();
2074 }
2075
2076 void
2077 pmap_kremove(vaddr_t va, vsize_t len)
2078 {
2079 if (va < VM_MIN_KERNEL_ADDRESS)
2080 panic("pmap_kremove: attempt to remove "
2081 "non-kernel address %#" _PRIxva "!", va);
2082
2083 DPRINTFN(KREMOVE, "pmap_kremove(%#" _PRIxva ",%#" _PRIxva ")\n", va, len);
2084 pmap_remove(pmap_kernel(), va, va + len);
2085 }
2086
2087 /*
2088 * Remove the given range of mapping entries.
2089 */
2090 void
2091 pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
2092 {
2093 struct pvo_head pvol;
2094 struct pvo_entry *pvo;
2095 register_t msr;
2096 int pteidx;
2097
2098 PMAP_LOCK();
2099 LIST_INIT(&pvol);
2100 msr = pmap_interrupts_off();
2101 for (; va < endva; va += PAGE_SIZE) {
2102 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2103 if (pvo != NULL) {
2104 pmap_pvo_remove(pvo, pteidx, &pvol);
2105 }
2106 }
2107 pmap_interrupts_restore(msr);
2108 pmap_pvo_free_list(&pvol);
2109 PMAP_UNLOCK();
2110 }
2111
2112 /*
2113 * Get the physical page address for the given pmap/virtual address.
2114 */
2115 bool
2116 pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
2117 {
2118 struct pvo_entry *pvo;
2119 register_t msr;
2120
2121 PMAP_LOCK();
2122
2123 /*
2124 * If this is a kernel pmap lookup, also check the battable
2125 * and if we get a hit, translate the VA to a PA using the
2126 * BAT entries. Don't check for VM_MAX_KERNEL_ADDRESS is
2127 * that will wrap back to 0.
2128 */
2129 if (pm == pmap_kernel() &&
2130 (va < VM_MIN_KERNEL_ADDRESS ||
2131 (KERNEL2_SR < 15 && VM_MAX_KERNEL_ADDRESS <= va))) {
2132 KASSERT((va >> ADDR_SR_SHFT) != USER_SR);
2133 #if defined (PMAP_OEA)
2134 #ifdef PPC_OEA601
2135 if ((MFPVR() >> 16) == MPC601) {
2136 register_t batu = battable[va >> 23].batu;
2137 register_t batl = battable[va >> 23].batl;
2138 register_t sr = iosrtable[va >> ADDR_SR_SHFT];
2139 if (BAT601_VALID_P(batl) &&
2140 BAT601_VA_MATCH_P(batu, batl, va)) {
2141 register_t mask =
2142 (~(batl & BAT601_BSM) << 17) & ~0x1ffffL;
2143 if (pap)
2144 *pap = (batl & mask) | (va & ~mask);
2145 PMAP_UNLOCK();
2146 return true;
2147 } else if (SR601_VALID_P(sr) &&
2148 SR601_PA_MATCH_P(sr, va)) {
2149 if (pap)
2150 *pap = va;
2151 PMAP_UNLOCK();
2152 return true;
2153 }
2154 } else
2155 #endif /* PPC_OEA601 */
2156 {
2157 register_t batu = battable[BAT_VA2IDX(va)].batu;
2158 if (BAT_VALID_P(batu,0) && BAT_VA_MATCH_P(batu,va)) {
2159 register_t batl = battable[BAT_VA2IDX(va)].batl;
2160 register_t mask =
2161 (~(batu & (BAT_XBL|BAT_BL)) << 15) & ~0x1ffffL;
2162 if (pap)
2163 *pap = (batl & mask) | (va & ~mask);
2164 PMAP_UNLOCK();
2165 return true;
2166 }
2167 }
2168 PMAP_UNLOCK();
2169 return false;
2170 #elif defined (PMAP_OEA64_BRIDGE)
2171 if (va >= SEGMENT_LENGTH)
2172 panic("%s: pm: %s va >= SEGMENT_LENGTH, va: 0x%08lx\n",
2173 __func__, (pm == pmap_kernel() ? "kernel" : "user"), va);
2174 else {
2175 if (pap)
2176 *pap = va;
2177 PMAP_UNLOCK();
2178 return true;
2179 }
2180 #elif defined (PMAP_OEA64)
2181 #error PPC_OEA64 not supported
2182 #endif /* PPC_OEA */
2183 }
2184
2185 msr = pmap_interrupts_off();
2186 pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2187 if (pvo != NULL) {
2188 PMAP_PVO_CHECK(pvo); /* sanity check */
2189 if (pap)
2190 *pap = (pvo->pvo_pte.pte_lo & PTE_RPGN)
2191 | (va & ADDR_POFF);
2192 }
2193 pmap_interrupts_restore(msr);
2194 PMAP_UNLOCK();
2195 return pvo != NULL;
2196 }
2197
2198 /*
2199 * Lower the protection on the specified range of this pmap.
2200 */
2201 void
2202 pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
2203 {
2204 struct pvo_entry *pvo;
2205 volatile struct pte *pt;
2206 register_t msr;
2207 int pteidx;
2208
2209 /*
2210 * Since this routine only downgrades protection, we should
2211 * always be called with at least one bit not set.
2212 */
2213 KASSERT(prot != VM_PROT_ALL);
2214
2215 /*
2216 * If there is no protection, this is equivalent to
2217 * remove the pmap from the pmap.
2218 */
2219 if ((prot & VM_PROT_READ) == 0) {
2220 pmap_remove(pm, va, endva);
2221 return;
2222 }
2223
2224 PMAP_LOCK();
2225
2226 msr = pmap_interrupts_off();
2227 for (; va < endva; va += PAGE_SIZE) {
2228 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2229 if (pvo == NULL)
2230 continue;
2231 PMAP_PVO_CHECK(pvo); /* sanity check */
2232
2233 /*
2234 * Revoke executable if asked to do so.
2235 */
2236 if ((prot & VM_PROT_EXECUTE) == 0)
2237 pvo_clear_exec(pvo);
2238
2239 #if 0
2240 /*
2241 * If the page is already read-only, no change
2242 * needs to be made.
2243 */
2244 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR)
2245 continue;
2246 #endif
2247 /*
2248 * Grab the PTE pointer before we diddle with
2249 * the cached PTE copy.
2250 */
2251 pt = pmap_pvo_to_pte(pvo, pteidx);
2252 /*
2253 * Change the protection of the page.
2254 */
2255 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2256 pvo->pvo_pte.pte_lo |= PTE_BR;
2257
2258 /*
2259 * If the PVO is in the page table, update
2260 * that pte at well.
2261 */
2262 if (pt != NULL) {
2263 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2264 PVO_WHERE(pvo, PMAP_PROTECT);
2265 PMAPCOUNT(ptes_changed);
2266 }
2267
2268 PMAP_PVO_CHECK(pvo); /* sanity check */
2269 }
2270 pmap_interrupts_restore(msr);
2271 PMAP_UNLOCK();
2272 }
2273
2274 void
2275 pmap_unwire(pmap_t pm, vaddr_t va)
2276 {
2277 struct pvo_entry *pvo;
2278 register_t msr;
2279
2280 PMAP_LOCK();
2281 msr = pmap_interrupts_off();
2282 pvo = pmap_pvo_find_va(pm, va, NULL);
2283 if (pvo != NULL) {
2284 if (PVO_WIRED_P(pvo)) {
2285 pvo->pvo_vaddr &= ~PVO_WIRED;
2286 pm->pm_stats.wired_count--;
2287 }
2288 PMAP_PVO_CHECK(pvo); /* sanity check */
2289 }
2290 pmap_interrupts_restore(msr);
2291 PMAP_UNLOCK();
2292 }
2293
2294 /*
2295 * Lower the protection on the specified physical page.
2296 */
2297 void
2298 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2299 {
2300 struct pvo_head *pvo_head, pvol;
2301 struct pvo_entry *pvo, *next_pvo;
2302 volatile struct pte *pt;
2303 register_t msr;
2304
2305 PMAP_LOCK();
2306
2307 KASSERT(prot != VM_PROT_ALL);
2308 LIST_INIT(&pvol);
2309 msr = pmap_interrupts_off();
2310
2311 /*
2312 * When UVM reuses a page, it does a pmap_page_protect with
2313 * VM_PROT_NONE. At that point, we can clear the exec flag
2314 * since we know the page will have different contents.
2315 */
2316 if ((prot & VM_PROT_READ) == 0) {
2317 DPRINTFN(EXEC, "[pmap_page_protect: %#" _PRIxpa ": clear-exec]\n",
2318 VM_PAGE_TO_PHYS(pg));
2319 if (pmap_attr_fetch(pg) & PTE_EXEC) {
2320 PMAPCOUNT(exec_uncached_page_protect);
2321 pmap_attr_clear(pg, PTE_EXEC);
2322 }
2323 }
2324
2325 pvo_head = vm_page_to_pvoh(pg);
2326 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2327 next_pvo = LIST_NEXT(pvo, pvo_vlink);
2328 PMAP_PVO_CHECK(pvo); /* sanity check */
2329
2330 /*
2331 * Downgrading to no mapping at all, we just remove the entry.
2332 */
2333 if ((prot & VM_PROT_READ) == 0) {
2334 pmap_pvo_remove(pvo, -1, &pvol);
2335 continue;
2336 }
2337
2338 /*
2339 * If EXEC permission is being revoked, just clear the
2340 * flag in the PVO.
2341 */
2342 if ((prot & VM_PROT_EXECUTE) == 0)
2343 pvo_clear_exec(pvo);
2344
2345 /*
2346 * If this entry is already RO, don't diddle with the
2347 * page table.
2348 */
2349 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
2350 PMAP_PVO_CHECK(pvo);
2351 continue;
2352 }
2353
2354 /*
2355 * Grab the PTE before the we diddle the bits so
2356 * pvo_to_pte can verify the pte contents are as
2357 * expected.
2358 */
2359 pt = pmap_pvo_to_pte(pvo, -1);
2360 pvo->pvo_pte.pte_lo &= ~PTE_PP;
2361 pvo->pvo_pte.pte_lo |= PTE_BR;
2362 if (pt != NULL) {
2363 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2364 PVO_WHERE(pvo, PMAP_PAGE_PROTECT);
2365 PMAPCOUNT(ptes_changed);
2366 }
2367 PMAP_PVO_CHECK(pvo); /* sanity check */
2368 }
2369 pmap_interrupts_restore(msr);
2370 pmap_pvo_free_list(&pvol);
2371
2372 PMAP_UNLOCK();
2373 }
2374
2375 /*
2376 * Activate the address space for the specified process. If the process
2377 * is the current process, load the new MMU context.
2378 */
2379 void
2380 pmap_activate(struct lwp *l)
2381 {
2382 struct pcb *pcb = lwp_getpcb(l);
2383 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
2384
2385 DPRINTFN(ACTIVATE,
2386 "pmap_activate: lwp %p (curlwp %p)\n", l, curlwp);
2387
2388 /*
2389 * XXX Normally performed in cpu_lwp_fork().
2390 */
2391 pcb->pcb_pm = pmap;
2392
2393 /*
2394 * In theory, the SR registers need only be valid on return
2395 * to user space wait to do them there.
2396 */
2397 if (l == curlwp) {
2398 /* Store pointer to new current pmap. */
2399 curpm = pmap;
2400 }
2401 }
2402
2403 /*
2404 * Deactivate the specified process's address space.
2405 */
2406 void
2407 pmap_deactivate(struct lwp *l)
2408 {
2409 }
2410
2411 bool
2412 pmap_query_bit(struct vm_page *pg, int ptebit)
2413 {
2414 struct pvo_entry *pvo;
2415 volatile struct pte *pt;
2416 register_t msr;
2417
2418 PMAP_LOCK();
2419
2420 if (pmap_attr_fetch(pg) & ptebit) {
2421 PMAP_UNLOCK();
2422 return true;
2423 }
2424
2425 msr = pmap_interrupts_off();
2426 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2427 PMAP_PVO_CHECK(pvo); /* sanity check */
2428 /*
2429 * See if we saved the bit off. If so cache, it and return
2430 * success.
2431 */
2432 if (pvo->pvo_pte.pte_lo & ptebit) {
2433 pmap_attr_save(pg, ptebit);
2434 PMAP_PVO_CHECK(pvo); /* sanity check */
2435 pmap_interrupts_restore(msr);
2436 PMAP_UNLOCK();
2437 return true;
2438 }
2439 }
2440 /*
2441 * No luck, now go thru the hard part of looking at the ptes
2442 * themselves. Sync so any pending REF/CHG bits are flushed
2443 * to the PTEs.
2444 */
2445 SYNC();
2446 LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
2447 PMAP_PVO_CHECK(pvo); /* sanity check */
2448 /*
2449 * See if this pvo have a valid PTE. If so, fetch the
2450 * REF/CHG bits from the valid PTE. If the appropriate
2451 * ptebit is set, cache, it and return success.
2452 */
2453 pt = pmap_pvo_to_pte(pvo, -1);
2454 if (pt != NULL) {
2455 pmap_pte_synch(pt, &pvo->pvo_pte);
2456 if (pvo->pvo_pte.pte_lo & ptebit) {
2457 pmap_attr_save(pg, ptebit);
2458 PMAP_PVO_CHECK(pvo); /* sanity check */
2459 pmap_interrupts_restore(msr);
2460 PMAP_UNLOCK();
2461 return true;
2462 }
2463 }
2464 }
2465 pmap_interrupts_restore(msr);
2466 PMAP_UNLOCK();
2467 return false;
2468 }
2469
2470 bool
2471 pmap_clear_bit(struct vm_page *pg, int ptebit)
2472 {
2473 struct pvo_head *pvoh = vm_page_to_pvoh(pg);
2474 struct pvo_entry *pvo;
2475 volatile struct pte *pt;
2476 register_t msr;
2477 int rv = 0;
2478
2479 PMAP_LOCK();
2480 msr = pmap_interrupts_off();
2481
2482 /*
2483 * Fetch the cache value
2484 */
2485 rv |= pmap_attr_fetch(pg);
2486
2487 /*
2488 * Clear the cached value.
2489 */
2490 pmap_attr_clear(pg, ptebit);
2491
2492 /*
2493 * Sync so any pending REF/CHG bits are flushed to the PTEs (so we
2494 * can reset the right ones). Note that since the pvo entries and
2495 * list heads are accessed via BAT0 and are never placed in the
2496 * page table, we don't have to worry about further accesses setting
2497 * the REF/CHG bits.
2498 */
2499 SYNC();
2500
2501 /*
2502 * For each pvo entry, clear pvo's ptebit. If this pvo have a
2503 * valid PTE. If so, clear the ptebit from the valid PTE.
2504 */
2505 LIST_FOREACH(pvo, pvoh, pvo_vlink) {
2506 PMAP_PVO_CHECK(pvo); /* sanity check */
2507 pt = pmap_pvo_to_pte(pvo, -1);
2508 if (pt != NULL) {
2509 /*
2510 * Only sync the PTE if the bit we are looking
2511 * for is not already set.
2512 */
2513 if ((pvo->pvo_pte.pte_lo & ptebit) == 0)
2514 pmap_pte_synch(pt, &pvo->pvo_pte);
2515 /*
2516 * If the bit we are looking for was already set,
2517 * clear that bit in the pte.
2518 */
2519 if (pvo->pvo_pte.pte_lo & ptebit)
2520 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2521 }
2522 rv |= pvo->pvo_pte.pte_lo & (PTE_CHG|PTE_REF);
2523 pvo->pvo_pte.pte_lo &= ~ptebit;
2524 PMAP_PVO_CHECK(pvo); /* sanity check */
2525 }
2526 pmap_interrupts_restore(msr);
2527
2528 /*
2529 * If we are clearing the modify bit and this page was marked EXEC
2530 * and the user of the page thinks the page was modified, then we
2531 * need to clean it from the icache if it's mapped or clear the EXEC
2532 * bit if it's not mapped. The page itself might not have the CHG
2533 * bit set if the modification was done via DMA to the page.
2534 */
2535 if ((ptebit & PTE_CHG) && (rv & PTE_EXEC)) {
2536 if (LIST_EMPTY(pvoh)) {
2537 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": clear-exec]\n",
2538 VM_PAGE_TO_PHYS(pg));
2539 pmap_attr_clear(pg, PTE_EXEC);
2540 PMAPCOUNT(exec_uncached_clear_modify);
2541 } else {
2542 DPRINTFN(EXEC, "[pmap_clear_bit: %#" _PRIxpa ": syncicache]\n",
2543 VM_PAGE_TO_PHYS(pg));
2544 pmap_syncicache(VM_PAGE_TO_PHYS(pg), PAGE_SIZE);
2545 PMAPCOUNT(exec_synced_clear_modify);
2546 }
2547 }
2548 PMAP_UNLOCK();
2549 return (rv & ptebit) != 0;
2550 }
2551
2552 void
2553 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
2554 {
2555 struct pvo_entry *pvo;
2556 size_t offset = va & ADDR_POFF;
2557 int s;
2558
2559 PMAP_LOCK();
2560 s = splvm();
2561 while (len > 0) {
2562 size_t seglen = PAGE_SIZE - offset;
2563 if (seglen > len)
2564 seglen = len;
2565 pvo = pmap_pvo_find_va(p->p_vmspace->vm_map.pmap, va, NULL);
2566 if (pvo != NULL && PVO_EXECUTABLE_P(pvo)) {
2567 pmap_syncicache(
2568 (pvo->pvo_pte.pte_lo & PTE_RPGN) | offset, seglen);
2569 PMAP_PVO_CHECK(pvo);
2570 }
2571 va += seglen;
2572 len -= seglen;
2573 offset = 0;
2574 }
2575 splx(s);
2576 PMAP_UNLOCK();
2577 }
2578
2579 #if defined(DEBUG) || defined(PMAPCHECK) || defined(DDB)
2580 void
2581 pmap_pte_print(volatile struct pte *pt)
2582 {
2583 printf("PTE %p: ", pt);
2584
2585 #if defined(PMAP_OEA)
2586 /* High word: */
2587 printf("%#" _PRIxpte ": [", pt->pte_hi);
2588 #else
2589 printf("%#" _PRIxpte ": [", pt->pte_hi);
2590 #endif /* PMAP_OEA */
2591
2592 printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
2593 printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
2594
2595 printf("%#" _PRIxpte " %#" _PRIxpte "",
2596 (pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
2597 pt->pte_hi & PTE_API);
2598 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2599 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2600 #else
2601 printf(" (va %#" _PRIxva ")] ", pmap_pte_to_va(pt));
2602 #endif /* PMAP_OEA */
2603
2604 /* Low word: */
2605 #if defined (PMAP_OEA)
2606 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2607 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2608 #else
2609 printf(" %#" _PRIxpte ": [", pt->pte_lo);
2610 printf("%#" _PRIxpte "... ", pt->pte_lo >> 12);
2611 #endif
2612 printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
2613 printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
2614 printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
2615 printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
2616 printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
2617 printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
2618 switch (pt->pte_lo & PTE_PP) {
2619 case PTE_BR: printf("br]\n"); break;
2620 case PTE_BW: printf("bw]\n"); break;
2621 case PTE_SO: printf("so]\n"); break;
2622 case PTE_SW: printf("sw]\n"); break;
2623 }
2624 }
2625 #endif
2626
2627 #if defined(DDB)
2628 void
2629 pmap_pteg_check(void)
2630 {
2631 volatile struct pte *pt;
2632 int i;
2633 int ptegidx;
2634 u_int p_valid = 0;
2635 u_int s_valid = 0;
2636 u_int invalid = 0;
2637
2638 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2639 for (pt = pmap_pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
2640 if (pt->pte_hi & PTE_VALID) {
2641 if (pt->pte_hi & PTE_HID)
2642 s_valid++;
2643 else
2644 {
2645 p_valid++;
2646 }
2647 } else
2648 invalid++;
2649 }
2650 }
2651 printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
2652 p_valid, p_valid, s_valid, s_valid,
2653 invalid, invalid);
2654 }
2655
2656 void
2657 pmap_print_mmuregs(void)
2658 {
2659 int i;
2660 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2661 u_int cpuvers;
2662 #endif
2663 #ifndef PMAP_OEA64
2664 vaddr_t addr;
2665 register_t soft_sr[16];
2666 #endif
2667 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2668 struct bat soft_ibat[4];
2669 struct bat soft_dbat[4];
2670 #endif
2671 paddr_t sdr1;
2672
2673 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2674 cpuvers = MFPVR() >> 16;
2675 #endif
2676 __asm volatile ("mfsdr1 %0" : "=r"(sdr1));
2677 #ifndef PMAP_OEA64
2678 addr = 0;
2679 for (i = 0; i < 16; i++) {
2680 soft_sr[i] = MFSRIN(addr);
2681 addr += (1 << ADDR_SR_SHFT);
2682 }
2683 #endif
2684
2685 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
2686 /* read iBAT (601: uBAT) registers */
2687 __asm volatile ("mfibatu %0,0" : "=r"(soft_ibat[0].batu));
2688 __asm volatile ("mfibatl %0,0" : "=r"(soft_ibat[0].batl));
2689 __asm volatile ("mfibatu %0,1" : "=r"(soft_ibat[1].batu));
2690 __asm volatile ("mfibatl %0,1" : "=r"(soft_ibat[1].batl));
2691 __asm volatile ("mfibatu %0,2" : "=r"(soft_ibat[2].batu));
2692 __asm volatile ("mfibatl %0,2" : "=r"(soft_ibat[2].batl));
2693 __asm volatile ("mfibatu %0,3" : "=r"(soft_ibat[3].batu));
2694 __asm volatile ("mfibatl %0,3" : "=r"(soft_ibat[3].batl));
2695
2696
2697 if (cpuvers != MPC601) {
2698 /* read dBAT registers */
2699 __asm volatile ("mfdbatu %0,0" : "=r"(soft_dbat[0].batu));
2700 __asm volatile ("mfdbatl %0,0" : "=r"(soft_dbat[0].batl));
2701 __asm volatile ("mfdbatu %0,1" : "=r"(soft_dbat[1].batu));
2702 __asm volatile ("mfdbatl %0,1" : "=r"(soft_dbat[1].batl));
2703 __asm volatile ("mfdbatu %0,2" : "=r"(soft_dbat[2].batu));
2704 __asm volatile ("mfdbatl %0,2" : "=r"(soft_dbat[2].batl));
2705 __asm volatile ("mfdbatu %0,3" : "=r"(soft_dbat[3].batu));
2706 __asm volatile ("mfdbatl %0,3" : "=r"(soft_dbat[3].batl));
2707 }
2708 #endif
2709
2710 printf("SDR1:\t%#" _PRIxpa "\n", sdr1);
2711 #ifndef PMAP_OEA64
2712 printf("SR[]:\t");
2713 for (i = 0; i < 4; i++)
2714 printf("0x%08lx, ", soft_sr[i]);
2715 printf("\n\t");
2716 for ( ; i < 8; i++)
2717 printf("0x%08lx, ", soft_sr[i]);
2718 printf("\n\t");
2719 for ( ; i < 12; i++)
2720 printf("0x%08lx, ", soft_sr[i]);
2721 printf("\n\t");
2722 for ( ; i < 16; i++)
2723 printf("0x%08lx, ", soft_sr[i]);
2724 printf("\n");
2725 #endif
2726
2727 #if defined(PMAP_OEA) || defined(PMAP_OEA64_BRIDGE)
2728 printf("%cBAT[]:\t", cpuvers == MPC601 ? 'u' : 'i');
2729 for (i = 0; i < 4; i++) {
2730 printf("0x%08lx 0x%08lx, ",
2731 soft_ibat[i].batu, soft_ibat[i].batl);
2732 if (i == 1)
2733 printf("\n\t");
2734 }
2735 if (cpuvers != MPC601) {
2736 printf("\ndBAT[]:\t");
2737 for (i = 0; i < 4; i++) {
2738 printf("0x%08lx 0x%08lx, ",
2739 soft_dbat[i].batu, soft_dbat[i].batl);
2740 if (i == 1)
2741 printf("\n\t");
2742 }
2743 }
2744 printf("\n");
2745 #endif /* PMAP_OEA... */
2746 }
2747
2748 void
2749 pmap_print_pte(pmap_t pm, vaddr_t va)
2750 {
2751 struct pvo_entry *pvo;
2752 volatile struct pte *pt;
2753 int pteidx;
2754
2755 pvo = pmap_pvo_find_va(pm, va, &pteidx);
2756 if (pvo != NULL) {
2757 pt = pmap_pvo_to_pte(pvo, pteidx);
2758 if (pt != NULL) {
2759 printf("VA %#" _PRIxva " -> %p -> %s %#" _PRIxpte ", %#" _PRIxpte "\n",
2760 va, pt,
2761 pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
2762 pt->pte_hi, pt->pte_lo);
2763 } else {
2764 printf("No valid PTE found\n");
2765 }
2766 } else {
2767 printf("Address not in pmap\n");
2768 }
2769 }
2770
2771 void
2772 pmap_pteg_dist(void)
2773 {
2774 struct pvo_entry *pvo;
2775 int ptegidx;
2776 int depth;
2777 int max_depth = 0;
2778 unsigned int depths[64];
2779
2780 memset(depths, 0, sizeof(depths));
2781 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2782 depth = 0;
2783 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2784 depth++;
2785 }
2786 if (depth > max_depth)
2787 max_depth = depth;
2788 if (depth > 63)
2789 depth = 63;
2790 depths[depth]++;
2791 }
2792
2793 for (depth = 0; depth < 64; depth++) {
2794 printf(" [%2d]: %8u", depth, depths[depth]);
2795 if ((depth & 3) == 3)
2796 printf("\n");
2797 if (depth == max_depth)
2798 break;
2799 }
2800 if ((depth & 3) != 3)
2801 printf("\n");
2802 printf("Max depth found was %d\n", max_depth);
2803 }
2804 #endif /* DEBUG */
2805
2806 #if defined(PMAPCHECK) || defined(DEBUG)
2807 void
2808 pmap_pvo_verify(void)
2809 {
2810 int ptegidx;
2811 int s;
2812
2813 s = splvm();
2814 for (ptegidx = 0; ptegidx < pmap_pteg_cnt; ptegidx++) {
2815 struct pvo_entry *pvo;
2816 TAILQ_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2817 if ((uintptr_t) pvo >= SEGMENT_LENGTH)
2818 panic("pmap_pvo_verify: invalid pvo %p "
2819 "on list %#x", pvo, ptegidx);
2820 pmap_pvo_check(pvo);
2821 }
2822 }
2823 splx(s);
2824 }
2825 #endif /* PMAPCHECK */
2826
2827
2828 void *
2829 pmap_pool_ualloc(struct pool *pp, int flags)
2830 {
2831 struct pvo_page *pvop;
2832
2833 if (uvm.page_init_done != true) {
2834 return (void *) uvm_pageboot_alloc(PAGE_SIZE);
2835 }
2836
2837 PMAP_LOCK();
2838 pvop = SIMPLEQ_FIRST(&pmap_upvop_head);
2839 if (pvop != NULL) {
2840 pmap_upvop_free--;
2841 SIMPLEQ_REMOVE_HEAD(&pmap_upvop_head, pvop_link);
2842 PMAP_UNLOCK();
2843 return pvop;
2844 }
2845 PMAP_UNLOCK();
2846 return pmap_pool_malloc(pp, flags);
2847 }
2848
2849 void *
2850 pmap_pool_malloc(struct pool *pp, int flags)
2851 {
2852 struct pvo_page *pvop;
2853 struct vm_page *pg;
2854
2855 PMAP_LOCK();
2856 pvop = SIMPLEQ_FIRST(&pmap_mpvop_head);
2857 if (pvop != NULL) {
2858 pmap_mpvop_free--;
2859 SIMPLEQ_REMOVE_HEAD(&pmap_mpvop_head, pvop_link);
2860 PMAP_UNLOCK();
2861 return pvop;
2862 }
2863 PMAP_UNLOCK();
2864 again:
2865 pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
2866 UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
2867 if (__predict_false(pg == NULL)) {
2868 if (flags & PR_WAITOK) {
2869 uvm_wait("plpg");
2870 goto again;
2871 } else {
2872 return (0);
2873 }
2874 }
2875 KDASSERT(VM_PAGE_TO_PHYS(pg) == (uintptr_t)VM_PAGE_TO_PHYS(pg));
2876 return (void *)(uintptr_t) VM_PAGE_TO_PHYS(pg);
2877 }
2878
2879 void
2880 pmap_pool_ufree(struct pool *pp, void *va)
2881 {
2882 struct pvo_page *pvop;
2883 #if 0
2884 if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
2885 pmap_pool_mfree(va, size, tag);
2886 return;
2887 }
2888 #endif
2889 PMAP_LOCK();
2890 pvop = va;
2891 SIMPLEQ_INSERT_HEAD(&pmap_upvop_head, pvop, pvop_link);
2892 pmap_upvop_free++;
2893 if (pmap_upvop_free > pmap_upvop_maxfree)
2894 pmap_upvop_maxfree = pmap_upvop_free;
2895 PMAP_UNLOCK();
2896 }
2897
2898 void
2899 pmap_pool_mfree(struct pool *pp, void *va)
2900 {
2901 struct pvo_page *pvop;
2902
2903 PMAP_LOCK();
2904 pvop = va;
2905 SIMPLEQ_INSERT_HEAD(&pmap_mpvop_head, pvop, pvop_link);
2906 pmap_mpvop_free++;
2907 if (pmap_mpvop_free > pmap_mpvop_maxfree)
2908 pmap_mpvop_maxfree = pmap_mpvop_free;
2909 PMAP_UNLOCK();
2910 #if 0
2911 uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
2912 #endif
2913 }
2914
2915 /*
2916 * This routine in bootstraping to steal to-be-managed memory (which will
2917 * then be unmanaged). We use it to grab from the first 256MB for our
2918 * pmap needs and above 256MB for other stuff.
2919 */
2920 vaddr_t
2921 pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
2922 {
2923 vsize_t size;
2924 vaddr_t va;
2925 paddr_t start, end, pa = 0;
2926 int npgs, freelist;
2927 uvm_physseg_t bank;
2928
2929 if (uvm.page_init_done == true)
2930 panic("pmap_steal_memory: called _after_ bootstrap");
2931
2932 *vstartp = VM_MIN_KERNEL_ADDRESS;
2933 *vendp = VM_MAX_KERNEL_ADDRESS;
2934
2935 size = round_page(vsize);
2936 npgs = atop(size);
2937
2938 /*
2939 * PA 0 will never be among those given to UVM so we can use it
2940 * to indicate we couldn't steal any memory.
2941 */
2942
2943 for (bank = uvm_physseg_get_first();
2944 uvm_physseg_valid_p(bank);
2945 bank = uvm_physseg_get_next(bank)) {
2946
2947 freelist = uvm_physseg_get_free_list(bank);
2948 start = uvm_physseg_get_start(bank);
2949 end = uvm_physseg_get_end(bank);
2950
2951 if (freelist == VM_FREELIST_FIRST256 &&
2952 (end - start) >= npgs) {
2953 pa = ptoa(start);
2954 break;
2955 }
2956 }
2957
2958 if (pa == 0)
2959 panic("pmap_steal_memory: no approriate memory to steal!");
2960
2961 uvm_physseg_unplug(start, npgs);
2962
2963 va = (vaddr_t) pa;
2964 memset((void *) va, 0, size);
2965 pmap_pages_stolen += npgs;
2966 #ifdef DEBUG
2967 if (pmapdebug && npgs > 1) {
2968 u_int cnt = 0;
2969 for (bank = uvm_physseg_get_first();
2970 uvm_physseg_valid_p(bank);
2971 bank = uvm_physseg_get_next(bank)) {
2972 cnt += uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank);
2973 }
2974 printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
2975 npgs, pmap_pages_stolen, cnt);
2976 }
2977 #endif
2978
2979 return va;
2980 }
2981
2982 /*
2983 * Find a chuck of memory with right size and alignment.
2984 */
2985 paddr_t
2986 pmap_boot_find_memory(psize_t size, psize_t alignment, int at_end)
2987 {
2988 struct mem_region *mp;
2989 paddr_t s, e;
2990 int i, j;
2991
2992 size = round_page(size);
2993
2994 DPRINTFN(BOOT,
2995 "pmap_boot_find_memory: size=%#" _PRIxpa ", alignment=%#" _PRIxpa ", at_end=%d",
2996 size, alignment, at_end);
2997
2998 if (alignment < PAGE_SIZE || (alignment & (alignment-1)) != 0)
2999 panic("pmap_boot_find_memory: invalid alignment %#" _PRIxpa,
3000 alignment);
3001
3002 if (at_end) {
3003 if (alignment != PAGE_SIZE)
3004 panic("pmap_boot_find_memory: invalid ending "
3005 "alignment %#" _PRIxpa, alignment);
3006
3007 for (mp = &avail[avail_cnt-1]; mp >= avail; mp--) {
3008 s = mp->start + mp->size - size;
3009 if (s >= mp->start && mp->size >= size) {
3010 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3011 DPRINTFN(BOOT,
3012 "pmap_boot_find_memory: b-avail[%d] start "
3013 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3014 mp->start, mp->size);
3015 mp->size -= size;
3016 DPRINTFN(BOOT,
3017 "pmap_boot_find_memory: a-avail[%d] start "
3018 "%#" _PRIxpa " size %#" _PRIxpa "\n", mp - avail,
3019 mp->start, mp->size);
3020 return s;
3021 }
3022 }
3023 panic("pmap_boot_find_memory: no available memory");
3024 }
3025
3026 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3027 s = (mp->start + alignment - 1) & ~(alignment-1);
3028 e = s + size;
3029
3030 /*
3031 * Is the calculated region entirely within the region?
3032 */
3033 if (s < mp->start || e > mp->start + mp->size)
3034 continue;
3035
3036 DPRINTFN(BOOT, ": %#" _PRIxpa "\n", s);
3037 if (s == mp->start) {
3038 /*
3039 * If the block starts at the beginning of region,
3040 * adjust the size & start. (the region may now be
3041 * zero in length)
3042 */
3043 DPRINTFN(BOOT,
3044 "pmap_boot_find_memory: b-avail[%d] start "
3045 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3046 mp->start += size;
3047 mp->size -= size;
3048 DPRINTFN(BOOT,
3049 "pmap_boot_find_memory: a-avail[%d] start "
3050 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3051 } else if (e == mp->start + mp->size) {
3052 /*
3053 * If the block starts at the beginning of region,
3054 * adjust only the size.
3055 */
3056 DPRINTFN(BOOT,
3057 "pmap_boot_find_memory: b-avail[%d] start "
3058 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3059 mp->size -= size;
3060 DPRINTFN(BOOT,
3061 "pmap_boot_find_memory: a-avail[%d] start "
3062 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3063 } else {
3064 /*
3065 * Block is in the middle of the region, so we
3066 * have to split it in two.
3067 */
3068 for (j = avail_cnt; j > i + 1; j--) {
3069 avail[j] = avail[j-1];
3070 }
3071 DPRINTFN(BOOT,
3072 "pmap_boot_find_memory: b-avail[%d] start "
3073 "%#" _PRIxpa " size %#" _PRIxpa "\n", i, mp->start, mp->size);
3074 mp[1].start = e;
3075 mp[1].size = mp[0].start + mp[0].size - e;
3076 mp[0].size = s - mp[0].start;
3077 avail_cnt++;
3078 for (; i < avail_cnt; i++) {
3079 DPRINTFN(BOOT,
3080 "pmap_boot_find_memory: a-avail[%d] "
3081 "start %#" _PRIxpa " size %#" _PRIxpa "\n", i,
3082 avail[i].start, avail[i].size);
3083 }
3084 }
3085 KASSERT(s == (uintptr_t) s);
3086 return s;
3087 }
3088 panic("pmap_boot_find_memory: not enough memory for "
3089 "%#" _PRIxpa "/%#" _PRIxpa " allocation?", size, alignment);
3090 }
3091
3092 /* XXXSL: we dont have any BATs to do this, map in Segment 0 1:1 using page tables */
3093 #if defined (PMAP_OEA64_BRIDGE)
3094 int
3095 pmap_setup_segment0_map(int use_large_pages, ...)
3096 {
3097 vaddr_t va, va_end;
3098
3099 register_t pte_lo = 0x0;
3100 int ptegidx = 0;
3101 struct pte pte;
3102 va_list ap;
3103
3104 /* Coherent + Supervisor RW, no user access */
3105 pte_lo = PTE_M;
3106
3107 /* XXXSL
3108 * Map in 1st segment 1:1, we'll be careful not to spill kernel entries later,
3109 * these have to take priority.
3110 */
3111 for (va = 0x0; va < SEGMENT_LENGTH; va += 0x1000) {
3112 ptegidx = va_to_pteg(pmap_kernel(), va);
3113 pmap_pte_create(&pte, pmap_kernel(), va, va | pte_lo);
3114 (void)pmap_pte_insert(ptegidx, &pte);
3115 }
3116
3117 va_start(ap, use_large_pages);
3118 while (1) {
3119 paddr_t pa;
3120 size_t size;
3121
3122 va = va_arg(ap, vaddr_t);
3123
3124 if (va == 0)
3125 break;
3126
3127 pa = va_arg(ap, paddr_t);
3128 size = va_arg(ap, size_t);
3129
3130 for (va_end = va + size; va < va_end; va += 0x1000, pa += 0x1000) {
3131 #if 0
3132 printf("%s: Inserting: va: %#" _PRIxva ", pa: %#" _PRIxpa "\n", __func__, va, pa);
3133 #endif
3134 ptegidx = va_to_pteg(pmap_kernel(), va);
3135 pmap_pte_create(&pte, pmap_kernel(), va, pa | pte_lo);
3136 (void)pmap_pte_insert(ptegidx, &pte);
3137 }
3138 }
3139 va_end(ap);
3140
3141 TLBSYNC();
3142 SYNC();
3143 return (0);
3144 }
3145 #endif /* PMAP_OEA64_BRIDGE */
3146
3147 /*
3148 * This is not part of the defined PMAP interface and is specific to the
3149 * PowerPC architecture. This is called during initppc, before the system
3150 * is really initialized.
3151 */
3152 void
3153 pmap_bootstrap(paddr_t kernelstart, paddr_t kernelend)
3154 {
3155 struct mem_region *mp, tmp;
3156 paddr_t s, e;
3157 psize_t size;
3158 int i, j;
3159
3160 /*
3161 * Get memory.
3162 */
3163 mem_regions(&mem, &avail);
3164 #if defined(DEBUG)
3165 if (pmapdebug & PMAPDEBUG_BOOT) {
3166 printf("pmap_bootstrap: memory configuration:\n");
3167 for (mp = mem; mp->size; mp++) {
3168 printf("pmap_bootstrap: mem start %#" _PRIxpa " size %#" _PRIxpa "\n",
3169 mp->start, mp->size);
3170 }
3171 for (mp = avail; mp->size; mp++) {
3172 printf("pmap_bootstrap: avail start %#" _PRIxpa " size %#" _PRIxpa "\n",
3173 mp->start, mp->size);
3174 }
3175 }
3176 #endif
3177
3178 /*
3179 * Find out how much physical memory we have and in how many chunks.
3180 */
3181 for (mem_cnt = 0, mp = mem; mp->size; mp++) {
3182 if (mp->start >= pmap_memlimit)
3183 continue;
3184 if (mp->start + mp->size > pmap_memlimit) {
3185 size = pmap_memlimit - mp->start;
3186 physmem += btoc(size);
3187 } else {
3188 physmem += btoc(mp->size);
3189 }
3190 mem_cnt++;
3191 }
3192
3193 /*
3194 * Count the number of available entries.
3195 */
3196 for (avail_cnt = 0, mp = avail; mp->size; mp++)
3197 avail_cnt++;
3198
3199 /*
3200 * Page align all regions.
3201 */
3202 kernelstart = trunc_page(kernelstart);
3203 kernelend = round_page(kernelend);
3204 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3205 s = round_page(mp->start);
3206 mp->size -= (s - mp->start);
3207 mp->size = trunc_page(mp->size);
3208 mp->start = s;
3209 e = mp->start + mp->size;
3210
3211 DPRINTFN(BOOT,
3212 "pmap_bootstrap: b-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3213 i, mp->start, mp->size);
3214
3215 /*
3216 * Don't allow the end to run beyond our artificial limit
3217 */
3218 if (e > pmap_memlimit)
3219 e = pmap_memlimit;
3220
3221 /*
3222 * Is this region empty or strange? skip it.
3223 */
3224 if (e <= s) {
3225 mp->start = 0;
3226 mp->size = 0;
3227 continue;
3228 }
3229
3230 /*
3231 * Does this overlap the beginning of kernel?
3232 * Does extend past the end of the kernel?
3233 */
3234 else if (s < kernelstart && e > kernelstart) {
3235 if (e > kernelend) {
3236 avail[avail_cnt].start = kernelend;
3237 avail[avail_cnt].size = e - kernelend;
3238 avail_cnt++;
3239 }
3240 mp->size = kernelstart - s;
3241 }
3242 /*
3243 * Check whether this region overlaps the end of the kernel.
3244 */
3245 else if (s < kernelend && e > kernelend) {
3246 mp->start = kernelend;
3247 mp->size = e - kernelend;
3248 }
3249 /*
3250 * Look whether this regions is completely inside the kernel.
3251 * Nuke it if it does.
3252 */
3253 else if (s >= kernelstart && e <= kernelend) {
3254 mp->start = 0;
3255 mp->size = 0;
3256 }
3257 /*
3258 * If the user imposed a memory limit, enforce it.
3259 */
3260 else if (s >= pmap_memlimit) {
3261 mp->start = -PAGE_SIZE; /* let's know why */
3262 mp->size = 0;
3263 }
3264 else {
3265 mp->start = s;
3266 mp->size = e - s;
3267 }
3268 DPRINTFN(BOOT,
3269 "pmap_bootstrap: a-avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3270 i, mp->start, mp->size);
3271 }
3272
3273 /*
3274 * Move (and uncount) all the null return to the end.
3275 */
3276 for (mp = avail, i = 0; i < avail_cnt; i++, mp++) {
3277 if (mp->size == 0) {
3278 tmp = avail[i];
3279 avail[i] = avail[--avail_cnt];
3280 avail[avail_cnt] = avail[i];
3281 }
3282 }
3283
3284 /*
3285 * (Bubble)sort them into ascending order.
3286 */
3287 for (i = 0; i < avail_cnt; i++) {
3288 for (j = i + 1; j < avail_cnt; j++) {
3289 if (avail[i].start > avail[j].start) {
3290 tmp = avail[i];
3291 avail[i] = avail[j];
3292 avail[j] = tmp;
3293 }
3294 }
3295 }
3296
3297 /*
3298 * Make sure they don't overlap.
3299 */
3300 for (mp = avail, i = 0; i < avail_cnt - 1; i++, mp++) {
3301 if (mp[0].start + mp[0].size > mp[1].start) {
3302 mp[0].size = mp[1].start - mp[0].start;
3303 }
3304 DPRINTFN(BOOT,
3305 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3306 i, mp->start, mp->size);
3307 }
3308 DPRINTFN(BOOT,
3309 "pmap_bootstrap: avail[%d] start %#" _PRIxpa " size %#" _PRIxpa "\n",
3310 i, mp->start, mp->size);
3311
3312 #ifdef PTEGCOUNT
3313 pmap_pteg_cnt = PTEGCOUNT;
3314 #else /* PTEGCOUNT */
3315
3316 pmap_pteg_cnt = 0x1000;
3317
3318 while (pmap_pteg_cnt < physmem)
3319 pmap_pteg_cnt <<= 1;
3320
3321 pmap_pteg_cnt >>= 1;
3322 #endif /* PTEGCOUNT */
3323
3324 #ifdef DEBUG
3325 DPRINTFN(BOOT, "pmap_pteg_cnt: 0x%x\n", pmap_pteg_cnt);
3326 #endif
3327
3328 /*
3329 * Find suitably aligned memory for PTEG hash table.
3330 */
3331 size = pmap_pteg_cnt * sizeof(struct pteg);
3332 pmap_pteg_table = (void *)(uintptr_t) pmap_boot_find_memory(size, size, 0);
3333
3334 #ifdef DEBUG
3335 DPRINTFN(BOOT,
3336 "PTEG cnt: 0x%x HTAB size: 0x%08x bytes, address: %p\n", pmap_pteg_cnt, (unsigned int)size, pmap_pteg_table);
3337 #endif
3338
3339
3340 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3341 if ( (uintptr_t) pmap_pteg_table + size > SEGMENT_LENGTH)
3342 panic("pmap_bootstrap: pmap_pteg_table end (%p + %#" _PRIxpa ") > 256MB",
3343 pmap_pteg_table, size);
3344 #endif
3345
3346 memset(__UNVOLATILE(pmap_pteg_table), 0,
3347 pmap_pteg_cnt * sizeof(struct pteg));
3348 pmap_pteg_mask = pmap_pteg_cnt - 1;
3349
3350 /*
3351 * We cannot do pmap_steal_memory here since UVM hasn't been loaded
3352 * with pages. So we just steal them before giving them to UVM.
3353 */
3354 size = sizeof(pmap_pvo_table[0]) * pmap_pteg_cnt;
3355 pmap_pvo_table = (void *)(uintptr_t) pmap_boot_find_memory(size, PAGE_SIZE, 0);
3356 #if defined(DIAGNOSTIC) || defined(DEBUG) || defined(PMAPCHECK)
3357 if ( (uintptr_t) pmap_pvo_table + size > SEGMENT_LENGTH)
3358 panic("pmap_bootstrap: pmap_pvo_table end (%p + %#" _PRIxpa ") > 256MB",
3359 pmap_pvo_table, size);
3360 #endif
3361
3362 for (i = 0; i < pmap_pteg_cnt; i++)
3363 TAILQ_INIT(&pmap_pvo_table[i]);
3364
3365 #ifndef MSGBUFADDR
3366 /*
3367 * Allocate msgbuf in high memory.
3368 */
3369 msgbuf_paddr = pmap_boot_find_memory(MSGBUFSIZE, PAGE_SIZE, 1);
3370 #endif
3371
3372 for (mp = avail, i = 0; i < avail_cnt; mp++, i++) {
3373 paddr_t pfstart = atop(mp->start);
3374 paddr_t pfend = atop(mp->start + mp->size);
3375 if (mp->size == 0)
3376 continue;
3377 if (mp->start + mp->size <= SEGMENT_LENGTH) {
3378 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3379 VM_FREELIST_FIRST256);
3380 } else if (mp->start >= SEGMENT_LENGTH) {
3381 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3382 VM_FREELIST_DEFAULT);
3383 } else {
3384 pfend = atop(SEGMENT_LENGTH);
3385 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3386 VM_FREELIST_FIRST256);
3387 pfstart = atop(SEGMENT_LENGTH);
3388 pfend = atop(mp->start + mp->size);
3389 uvm_page_physload(pfstart, pfend, pfstart, pfend,
3390 VM_FREELIST_DEFAULT);
3391 }
3392 }
3393
3394 /*
3395 * Make sure kernel vsid is allocated as well as VSID 0.
3396 */
3397 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3398 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
3399 pmap_vsid_bitmap[(PHYSMAP_VSIDBITS & (NPMAPS-1)) / VSID_NBPW]
3400 |= 1 << (PHYSMAP_VSIDBITS % VSID_NBPW);
3401 pmap_vsid_bitmap[0] |= 1;
3402
3403 /*
3404 * Initialize kernel pmap and hardware.
3405 */
3406
3407 /* PMAP_OEA64_BRIDGE does support these instructions */
3408 #if defined (PMAP_OEA) || defined (PMAP_OEA64_BRIDGE)
3409 for (i = 0; i < 16; i++) {
3410 #if defined(PPC_OEA601)
3411 /* XXX wedges for segment register 0xf , so set later */
3412 if ((iosrtable[i] & SR601_T) && ((MFPVR() >> 16) == MPC601))
3413 continue;
3414 #endif
3415 pmap_kernel()->pm_sr[i] = KERNELN_SEGMENT(i)|SR_PRKEY;
3416 __asm volatile ("mtsrin %0,%1"
3417 :: "r"(KERNELN_SEGMENT(i)|SR_PRKEY), "r"(i << ADDR_SR_SHFT));
3418 }
3419
3420 pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT|SR_SUKEY|SR_PRKEY;
3421 __asm volatile ("mtsr %0,%1"
3422 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
3423 #ifdef KERNEL2_SR
3424 pmap_kernel()->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT|SR_SUKEY|SR_PRKEY;
3425 __asm volatile ("mtsr %0,%1"
3426 :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
3427 #endif
3428 #endif /* PMAP_OEA || PMAP_OEA64_BRIDGE */
3429 #if defined (PMAP_OEA)
3430 for (i = 0; i < 16; i++) {
3431 if (iosrtable[i] & SR601_T) {
3432 pmap_kernel()->pm_sr[i] = iosrtable[i];
3433 __asm volatile ("mtsrin %0,%1"
3434 :: "r"(iosrtable[i]), "r"(i << ADDR_SR_SHFT));
3435 }
3436 }
3437 __asm volatile ("sync; mtsdr1 %0; isync"
3438 :: "r"((uintptr_t)pmap_pteg_table | (pmap_pteg_mask >> 10)));
3439 #elif defined (PMAP_OEA64) || defined (PMAP_OEA64_BRIDGE)
3440 __asm __volatile ("sync; mtsdr1 %0; isync"
3441 :: "r"((uintptr_t)pmap_pteg_table | (32 - __builtin_clz(pmap_pteg_mask >> 11))));
3442 #endif
3443 tlbia();
3444
3445 #ifdef ALTIVEC
3446 pmap_use_altivec = cpu_altivec;
3447 #endif
3448
3449 #ifdef DEBUG
3450 if (pmapdebug & PMAPDEBUG_BOOT) {
3451 u_int cnt;
3452 uvm_physseg_t bank;
3453 char pbuf[9];
3454 for (cnt = 0, bank = uvm_physseg_get_first();
3455 uvm_physseg_valid_p(bank);
3456 bank = uvm_physseg_get_next(bank)) {
3457 cnt += uvm_physseg_get_avail_end(bank) -
3458 uvm_physseg_get_avail_start(bank);
3459 printf("pmap_bootstrap: vm_physmem[%d]=%#" _PRIxpa "-%#" _PRIxpa "/%#" _PRIxpa "\n",
3460 bank,
3461 ptoa(uvm_physseg_get_avail_start(bank)),
3462 ptoa(uvm_physseg_get_avail_end(bank)),
3463 ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)));
3464 }
3465 format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
3466 printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
3467 pbuf, cnt);
3468 }
3469 #endif
3470
3471 pool_init(&pmap_upvo_pool, sizeof(struct pvo_entry),
3472 sizeof(struct pvo_entry), 0, 0, "pmap_upvopl",
3473 &pmap_pool_uallocator, IPL_VM);
3474
3475 pool_setlowat(&pmap_upvo_pool, 252);
3476
3477 pool_init(&pmap_pool, sizeof(struct pmap),
3478 sizeof(void *), 0, 0, "pmap_pl", &pmap_pool_uallocator,
3479 IPL_NONE);
3480
3481 #if defined(PMAP_NEED_MAPKERNEL)
3482 {
3483 struct pmap *pm = pmap_kernel();
3484 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3485 extern int etext[], kernel_text[];
3486 vaddr_t va, va_etext = (paddr_t) etext;
3487 #endif
3488 paddr_t pa, pa_end;
3489 register_t sr;
3490 struct pte pt;
3491 unsigned int ptegidx;
3492 int bank;
3493
3494 sr = PHYSMAPN_SEGMENT(0) | SR_SUKEY|SR_PRKEY;
3495 pm->pm_sr[0] = sr;
3496
3497 for (bank = 0; bank < vm_nphysseg; bank++) {
3498 pa_end = ptoa(VM_PHYSMEM_PTR(bank)->avail_end);
3499 pa = ptoa(VM_PHYSMEM_PTR(bank)->avail_start);
3500 for (; pa < pa_end; pa += PAGE_SIZE) {
3501 ptegidx = va_to_pteg(pm, pa);
3502 pmap_pte_create(&pt, pm, pa, pa | PTE_M|PTE_BW);
3503 pmap_pte_insert(ptegidx, &pt);
3504 }
3505 }
3506
3507 #if defined(PMAP_NEED_FULL_MAPKERNEL)
3508 va = (vaddr_t) kernel_text;
3509
3510 for (pa = kernelstart; va < va_etext;
3511 pa += PAGE_SIZE, va += PAGE_SIZE) {
3512 ptegidx = va_to_pteg(pm, va);
3513 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3514 pmap_pte_insert(ptegidx, &pt);
3515 }
3516
3517 for (; pa < kernelend;
3518 pa += PAGE_SIZE, va += PAGE_SIZE) {
3519 ptegidx = va_to_pteg(pm, va);
3520 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3521 pmap_pte_insert(ptegidx, &pt);
3522 }
3523
3524 for (va = 0, pa = 0; va < kernelstart;
3525 pa += PAGE_SIZE, va += PAGE_SIZE) {
3526 ptegidx = va_to_pteg(pm, va);
3527 if (va < 0x3000)
3528 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BR);
3529 else
3530 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3531 pmap_pte_insert(ptegidx, &pt);
3532 }
3533 for (va = kernelend, pa = kernelend; va < SEGMENT_LENGTH;
3534 pa += PAGE_SIZE, va += PAGE_SIZE) {
3535 ptegidx = va_to_pteg(pm, va);
3536 pmap_pte_create(&pt, pm, va, pa | PTE_M|PTE_BW);
3537 pmap_pte_insert(ptegidx, &pt);
3538 }
3539 #endif
3540
3541 __asm volatile ("mtsrin %0,%1"
3542 :: "r"(sr), "r"(kernelstart));
3543 }
3544 #endif
3545
3546 #if defined(PMAPDEBUG)
3547 if ( pmapdebug )
3548 pmap_print_mmuregs();
3549 #endif
3550 }
3551