Home | History | Annotate | Line # | Download | only in riscv
riscv_machdep.c revision 1.2
      1  1.1  matt /*-
      2  1.1  matt  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      3  1.1  matt  * All rights reserved.
      4  1.1  matt  *
      5  1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      6  1.1  matt  * by Matt Thomas of 3am Software Foundry.
      7  1.1  matt  *
      8  1.1  matt  * Redistribution and use in source and binary forms, with or without
      9  1.1  matt  * modification, are permitted provided that the following conditions
     10  1.1  matt  * are met:
     11  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     12  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     13  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     15  1.1  matt  *    documentation and/or other materials provided with the distribution.
     16  1.1  matt  *
     17  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18  1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21  1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22  1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23  1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24  1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26  1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27  1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     28  1.1  matt  */
     29  1.1  matt 
     30  1.1  matt #include <sys/cdefs.h>
     31  1.1  matt 
     32  1.1  matt #include "opt_modular.h"
     33  1.1  matt 
     34  1.2   chs __RCSID("$NetBSD: riscv_machdep.c,v 1.2 2017/03/16 16:13:21 chs Exp $");
     35  1.1  matt 
     36  1.1  matt #include <sys/param.h>
     37  1.1  matt #include <sys/systm.h>
     38  1.1  matt #include <sys/cpu.h>
     39  1.1  matt #include <sys/exec.h>
     40  1.1  matt #include <sys/lwp.h>
     41  1.1  matt #include <sys/kmem.h>
     42  1.1  matt #include <sys/ktrace.h>
     43  1.1  matt #include <sys/module.h>
     44  1.1  matt #include <sys/proc.h>
     45  1.1  matt #include <sys/reboot.h>
     46  1.1  matt #include <sys/syscall.h>
     47  1.1  matt 
     48  1.1  matt #include <uvm/uvm_extern.h>
     49  1.1  matt 
     50  1.1  matt #include <riscv/locore.h>
     51  1.1  matt 
     52  1.1  matt int cpu_printfataltraps;
     53  1.1  matt char machine[] = MACHINE;
     54  1.1  matt char machine_arch[] = MACHINE_ARCH;
     55  1.1  matt 
     56  1.1  matt struct vm_map *phys_map;
     57  1.1  matt 
     58  1.1  matt struct trapframe cpu_ddb_regs;
     59  1.1  matt 
     60  1.1  matt struct cpu_info cpu_info_store = {
     61  1.1  matt 	.ci_cpl = IPL_HIGH,
     62  1.1  matt 	.ci_ddb_regs = &cpu_ddb_regs,
     63  1.1  matt };
     64  1.1  matt 
     65  1.1  matt const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
     66  1.1  matt 	[PCU_FPU] = &pcu_fpu_ops,
     67  1.1  matt };
     68  1.1  matt 
     69  1.1  matt void
     70  1.1  matt delay(unsigned long us)
     71  1.1  matt {
     72  1.1  matt 	const uint32_t cycles_per_us = curcpu()->ci_data.cpu_cc_freq / 1000000;
     73  1.1  matt 	const uint64_t cycles = (uint64_t)us * cycles_per_us;
     74  1.1  matt 	const uint64_t finish = riscvreg_cycle_read() + cycles;
     75  1.1  matt 
     76  1.1  matt 	while (riscvreg_cycle_read() < finish) {
     77  1.1  matt 		/* spin, baby spin */
     78  1.1  matt 	}
     79  1.1  matt }
     80  1.1  matt 
     81  1.1  matt #ifdef MODULAR
     82  1.1  matt /*
     83  1.1  matt  * Push any modules loaded by the boot loader.
     84  1.1  matt  */
     85  1.1  matt void
     86  1.1  matt module_init_md(void)
     87  1.1  matt {
     88  1.1  matt }
     89  1.1  matt #endif /* MODULAR */
     90  1.1  matt 
     91  1.1  matt /*
     92  1.1  matt  * Set registers on exec.
     93  1.1  matt  * Clear all registers except sp, pc, and t9.
     94  1.1  matt  * $sp is set to the stack pointer passed in.  $pc is set to the entry
     95  1.1  matt  * point given by the exec_package passed in, as is $t9 (used for PIC
     96  1.1  matt  * code by the MIPS elf abi).
     97  1.1  matt  */
     98  1.1  matt void
     99  1.1  matt setregs(struct lwp *l, struct exec_package *pack, vaddr_t stack)
    100  1.1  matt {
    101  1.1  matt 	struct trapframe * const tf = l->l_md.md_utf;
    102  1.1  matt 	struct proc * const p = l->l_proc;
    103  1.1  matt 
    104  1.1  matt 	memset(tf, 0, sizeof(struct trapframe));
    105  1.1  matt 	tf->tf_sp = (intptr_t)stack_align(stack);
    106  1.1  matt 	tf->tf_pc = (intptr_t)pack->ep_entry & ~1;
    107  1.1  matt #ifdef _LP64
    108  1.1  matt 	tf->tf_sr = (p->p_flag & PK_32) ? SR_USER32 : SR_USER;
    109  1.1  matt #else
    110  1.1  matt 	tf->tf_sr = SR_USER;
    111  1.1  matt #endif
    112  1.1  matt 	// Set up arguments for _start(obj, cleanup, ps_strings)
    113  1.1  matt 	tf->tf_a0 = 0;			// obj
    114  1.1  matt 	tf->tf_a1 = 0;			// cleanup
    115  1.1  matt 	tf->tf_a2 = p->p_psstrp;	// ps_strings
    116  1.1  matt }
    117  1.1  matt 
    118  1.1  matt void
    119  1.1  matt child_return(void *arg)
    120  1.1  matt {
    121  1.1  matt 	struct lwp * const l = arg;
    122  1.1  matt 	struct trapframe * const tf = l->l_md.md_utf;
    123  1.1  matt 
    124  1.1  matt 	tf->tf_a0 = 0;
    125  1.1  matt 	tf->tf_a1 = 1;
    126  1.1  matt 	tf->tf_sr &= ~SR_EF;		/* Disable FP as we can't be them. */
    127  1.1  matt 	ktrsysret(SYS_fork, 0, 0);
    128  1.1  matt }
    129  1.1  matt 
    130  1.1  matt void
    131  1.1  matt cpu_spawn_return(struct lwp *l)
    132  1.1  matt {
    133  1.1  matt 	userret(l);
    134  1.1  matt }
    135  1.1  matt 
    136  1.1  matt /*
    137  1.1  matt  * Start a new LWP
    138  1.1  matt  */
    139  1.1  matt void
    140  1.1  matt startlwp(void *arg)
    141  1.1  matt {
    142  1.1  matt 	ucontext_t * const uc = arg;
    143  1.1  matt 	lwp_t * const l = curlwp;
    144  1.1  matt 	int error __diagused;
    145  1.1  matt 
    146  1.1  matt 	error = cpu_setmcontext(l, &uc->uc_mcontext, uc->uc_flags);
    147  1.1  matt 	KASSERT(error == 0);
    148  1.1  matt 
    149  1.1  matt 	kmem_free(uc, sizeof(ucontext_t));
    150  1.1  matt 	userret(l);
    151  1.1  matt }
    152  1.1  matt 
    153  1.1  matt // We've worked hard to make sure struct reg and __gregset_t are the same.
    154  1.1  matt // Ditto for struct fpreg and fregset_t.
    155  1.1  matt 
    156  1.1  matt CTASSERT(sizeof(struct reg) == sizeof(__gregset_t));
    157  1.1  matt CTASSERT(sizeof(struct fpreg) == sizeof(__fregset_t));
    158  1.1  matt 
    159  1.1  matt void
    160  1.1  matt cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
    161  1.1  matt {
    162  1.1  matt 	const struct trapframe * const tf = l->l_md.md_utf;
    163  1.1  matt 
    164  1.1  matt 	/* Save register context. */
    165  1.1  matt 	*(struct reg *)mcp->__gregs = tf->tf_regs;
    166  1.1  matt 
    167  1.1  matt 	mcp->__private = (intptr_t)l->l_private;
    168  1.1  matt 
    169  1.1  matt 	*flags |= _UC_CPU | _UC_TLSBASE;
    170  1.1  matt 
    171  1.1  matt 	/* Save floating point register context, if any. */
    172  1.1  matt 	KASSERT(l == curlwp);
    173  1.2   chs 	if (fpu_valid_p(l)) {
    174  1.1  matt 		/*
    175  1.1  matt 		 * If this process is the current FP owner, dump its
    176  1.1  matt 		 * context to the PCB first.
    177  1.1  matt 		 */
    178  1.2   chs 		fpu_save(l);
    179  1.1  matt 
    180  1.1  matt 		struct pcb * const pcb = lwp_getpcb(l);
    181  1.1  matt 		*(struct fpreg *)mcp->__fregs = pcb->pcb_fpregs;
    182  1.1  matt 		*flags |= _UC_FPU;
    183  1.1  matt 	}
    184  1.1  matt }
    185  1.1  matt 
    186  1.1  matt int
    187  1.1  matt cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
    188  1.1  matt {
    189  1.1  matt 	/*
    190  1.1  matt 	 * Verify that at least the PC and SP are user addresses.
    191  1.1  matt 	 */
    192  1.1  matt 	if ((intptr_t) mcp->__gregs[_REG_PC] < 0
    193  1.1  matt 	    || (intptr_t) mcp->__gregs[_REG_SP] < 0
    194  1.1  matt 	    || (mcp->__gregs[_REG_PC] & 1))
    195  1.1  matt 		return EINVAL;
    196  1.1  matt 
    197  1.1  matt 	return 0;
    198  1.1  matt }
    199  1.1  matt 
    200  1.1  matt int
    201  1.1  matt cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
    202  1.1  matt {
    203  1.1  matt 	struct trapframe * const tf = l->l_md.md_utf;
    204  1.1  matt 	struct proc * const p = l->l_proc;
    205  1.1  matt 	const __greg_t * const gr = mcp->__gregs;
    206  1.1  matt 	int error;
    207  1.1  matt 
    208  1.1  matt 	/* Restore register context, if any. */
    209  1.1  matt 	if (flags & _UC_CPU) {
    210  1.1  matt 		error = cpu_mcontext_validate(l, mcp);
    211  1.1  matt 		if (error)
    212  1.1  matt 			return error;
    213  1.1  matt 
    214  1.1  matt 		/* Save register context. */
    215  1.1  matt 		tf->tf_regs = *(const struct reg *)gr;
    216  1.1  matt 	}
    217  1.1  matt 
    218  1.1  matt 	/* Restore the private thread context */
    219  1.1  matt 	if (flags & _UC_TLSBASE) {
    220  1.1  matt 		lwp_setprivate(l, (void *)(intptr_t)mcp->__private);
    221  1.1  matt 	}
    222  1.1  matt 
    223  1.1  matt 	/* Restore floating point register context, if any. */
    224  1.1  matt 	if (flags & _UC_FPU) {
    225  1.1  matt 		KASSERT(l == curlwp);
    226  1.1  matt 		/* Tell PCU we are replacing the FPU contents. */
    227  1.2   chs 		fpu_replace(l);
    228  1.1  matt 
    229  1.1  matt 		/*
    230  1.1  matt 		 * The PCB FP regs struct includes the FP CSR, so use the
    231  1.1  matt 		 * proper size of fpreg when copying.
    232  1.1  matt 		 */
    233  1.1  matt 		struct pcb * const pcb = lwp_getpcb(l);
    234  1.1  matt 		pcb->pcb_fpregs = *(const struct fpreg *)mcp->__fregs;
    235  1.1  matt 	}
    236  1.1  matt 
    237  1.1  matt 	mutex_enter(p->p_lock);
    238  1.1  matt 	if (flags & _UC_SETSTACK)
    239  1.1  matt 		l->l_sigstk.ss_flags |= SS_ONSTACK;
    240  1.1  matt 	if (flags & _UC_CLRSTACK)
    241  1.1  matt 		l->l_sigstk.ss_flags &= ~SS_ONSTACK;
    242  1.1  matt 	mutex_exit(p->p_lock);
    243  1.1  matt 
    244  1.1  matt 	return (0);
    245  1.1  matt }
    246  1.1  matt 
    247  1.1  matt void
    248  1.1  matt cpu_need_resched(struct cpu_info *ci, int flags)
    249  1.1  matt {
    250  1.1  matt 	struct lwp * const l = ci->ci_data.cpu_onproc;
    251  1.1  matt #ifdef MULTIPROCESSOR
    252  1.1  matt 	struct cpu_info * const cur_ci = curcpu();
    253  1.1  matt #endif
    254  1.1  matt 
    255  1.1  matt 	KASSERT(kpreempt_disabled());
    256  1.1  matt 
    257  1.1  matt 	ci->ci_want_resched |= flags;
    258  1.1  matt 
    259  1.1  matt 	if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
    260  1.1  matt 		/*
    261  1.1  matt 		 * No point doing anything, it will switch soon.
    262  1.1  matt 		 * Also here to prevent an assertion failure in
    263  1.1  matt 		 * kpreempt() due to preemption being set on a
    264  1.1  matt 		 * soft interrupt LWP.
    265  1.1  matt 		 */
    266  1.1  matt 		return;
    267  1.1  matt 	}
    268  1.1  matt 
    269  1.1  matt 	if (__predict_false(l == ci->ci_data.cpu_idlelwp)) {
    270  1.1  matt #ifdef MULTIPROCESSOR
    271  1.1  matt 		/*
    272  1.1  matt 		 * If the other CPU is idling, it must be waiting for an
    273  1.1  matt 		 * interrupt.  So give it one.
    274  1.1  matt 		 */
    275  1.1  matt 		if (__predict_false(ci != cur_ci))
    276  1.1  matt 			cpu_send_ipi(ci, IPI_NOP);
    277  1.1  matt #endif
    278  1.1  matt 		return;
    279  1.1  matt 	}
    280  1.1  matt 
    281  1.1  matt #ifdef MULTIPROCESSOR
    282  1.1  matt 	atomic_or_uint(&ci->ci_want_resched, flags);
    283  1.1  matt #else
    284  1.1  matt 	ci->ci_want_resched |= flags;
    285  1.1  matt #endif
    286  1.1  matt 
    287  1.1  matt 	if (flags & RESCHED_KPREEMPT) {
    288  1.1  matt #ifdef __HAVE_PREEMPTION
    289  1.1  matt 		atomic_or_uint(&l->l_dopreempt, DOPREEMPT_ACTIVE);
    290  1.1  matt 		if (ci == cur_ci) {
    291  1.1  matt 			softint_trigger(SOFTINT_KPREEMPT);
    292  1.1  matt                 } else {
    293  1.1  matt                         cpu_send_ipi(ci, IPI_KPREEMPT);
    294  1.1  matt                 }
    295  1.1  matt #endif
    296  1.1  matt 		return;
    297  1.1  matt 	}
    298  1.1  matt 	l->l_md.md_astpending = 1;		/* force call to ast() */
    299  1.1  matt #ifdef MULTIPROCESSOR
    300  1.1  matt 	if (ci != cur_ci && (flags & RESCHED_IMMED)) {
    301  1.1  matt 		cpu_send_ipi(ci, IPI_AST);
    302  1.1  matt 	}
    303  1.1  matt #endif
    304  1.1  matt }
    305  1.1  matt 
    306  1.1  matt void
    307  1.1  matt cpu_signotify(struct lwp *l)
    308  1.1  matt {
    309  1.1  matt 	KASSERT(kpreempt_disabled());
    310  1.1  matt #ifdef __HAVE_FAST_SOFTINTS
    311  1.1  matt 	KASSERT(lwp_locked(l, NULL));
    312  1.1  matt #endif
    313  1.1  matt 	KASSERT(l->l_stat == LSONPROC || l->l_stat == LSRUN || l->l_stat == LSSTOP);
    314  1.1  matt 
    315  1.1  matt 	l->l_md.md_astpending = 1; 		/* force call to ast() */
    316  1.1  matt }
    317  1.1  matt 
    318  1.1  matt void
    319  1.1  matt cpu_need_proftick(struct lwp *l)
    320  1.1  matt {
    321  1.1  matt 	KASSERT(kpreempt_disabled());
    322  1.1  matt 	KASSERT(l->l_cpu == curcpu());
    323  1.1  matt 
    324  1.1  matt 	l->l_pflag |= LP_OWEUPC;
    325  1.1  matt 	l->l_md.md_astpending = 1;		/* force call to ast() */
    326  1.1  matt }
    327  1.1  matt 
    328  1.1  matt void
    329  1.1  matt cpu_set_curpri(int pri)
    330  1.1  matt {
    331  1.1  matt 	kpreempt_disable();
    332  1.1  matt 	curcpu()->ci_schedstate.spc_curpriority = pri;
    333  1.1  matt 	kpreempt_enable();
    334  1.1  matt }
    335  1.1  matt 
    336  1.1  matt void
    337  1.1  matt cpu_reboot(int how, char *bootstr)
    338  1.1  matt {
    339  1.1  matt 	for (;;) {
    340  1.1  matt 	}
    341  1.1  matt }
    342  1.1  matt 
    343  1.1  matt void
    344  1.1  matt cpu_dumpconf(void)
    345  1.1  matt {
    346  1.1  matt 	// TBD!!
    347  1.1  matt }
    348  1.1  matt 
    349  1.1  matt void
    350  1.1  matt cpu_startup(void)
    351  1.1  matt {
    352  1.1  matt 	vaddr_t minaddr, maxaddr;
    353  1.1  matt 	char pbuf[9];	/* "99999 MB" */
    354  1.1  matt 
    355  1.1  matt 	/*
    356  1.1  matt 	 * Good {morning,afternoon,evening,night}.
    357  1.1  matt 	 */
    358  1.1  matt 	printf("%s%s", copyright, version);
    359  1.1  matt 	format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
    360  1.1  matt 	printf("total memory = %s\n", pbuf);
    361  1.1  matt 
    362  1.1  matt 	minaddr = 0;
    363  1.1  matt 	/*
    364  1.1  matt 	 * Allocate a submap for physio.
    365  1.1  matt 	 */
    366  1.1  matt 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    367  1.1  matt 	    VM_PHYS_SIZE, 0, FALSE, NULL);
    368  1.1  matt 
    369  1.1  matt 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    370  1.1  matt 	printf("avail memory = %s\n", pbuf);
    371  1.1  matt }
    372  1.1  matt 
    373  1.1  matt void
    374  1.1  matt init_riscv(vaddr_t kernstart, vaddr_t kernend)
    375  1.1  matt {
    376  1.1  matt }
    377