riscv_machdep.c revision 1.35 1 /* $NetBSD: riscv_machdep.c,v 1.35 2023/12/22 08:41:59 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2014, 2019, 2022 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas of 3am Software Foundry, and by Nick Hudson.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include "opt_ddb.h"
33 #include "opt_modular.h"
34 #include "opt_multiprocessor.h"
35 #include "opt_riscv_debug.h"
36
37 #include <sys/cdefs.h>
38 __RCSID("$NetBSD: riscv_machdep.c,v 1.35 2023/12/22 08:41:59 skrll Exp $");
39
40 #include <sys/param.h>
41
42 #include <sys/asan.h>
43 #include <sys/boot_flag.h>
44 #include <sys/cpu.h>
45 #include <sys/exec.h>
46 #include <sys/kmem.h>
47 #include <sys/ktrace.h>
48 #include <sys/lwp.h>
49 #include <sys/module.h>
50 #include <sys/mount.h>
51 #include <sys/msgbuf.h>
52 #include <sys/optstr.h>
53 #include <sys/proc.h>
54 #include <sys/reboot.h>
55 #include <sys/syscall.h>
56 #include <sys/sysctl.h>
57 #include <sys/systm.h>
58
59 #include <dev/cons.h>
60 #include <uvm/uvm_extern.h>
61
62 #include <riscv/frame.h>
63 #include <riscv/locore.h>
64 #include <riscv/machdep.h>
65 #include <riscv/pte.h>
66 #include <riscv/sbi.h>
67
68 #include <libfdt.h>
69 #include <dev/fdt/fdtvar.h>
70 #include <dev/fdt/fdt_boot.h>
71 #include <dev/fdt/fdt_memory.h>
72 #include <dev/fdt/fdt_private.h>
73
74 int cpu_printfataltraps = 1;
75 char machine[] = MACHINE;
76 char machine_arch[] = MACHINE_ARCH;
77
78 #ifdef VERBOSE_INIT_RISCV
79 #define VPRINTF(...) printf(__VA_ARGS__)
80 #else
81 #define VPRINTF(...) __nothing
82 #endif
83
84 /* 64 should be enough, even for a ZFS UUID */
85 #define MAX_BOOT_DEV_STR 64
86
87 char bootdevstr[MAX_BOOT_DEV_STR] = "";
88 char *boot_args = NULL;
89
90 paddr_t physical_start;
91 paddr_t physical_end;
92
93 static void
94 earlyconsputc(dev_t dev, int c)
95 {
96 uartputc(c);
97 }
98
99 static int
100 earlyconsgetc(dev_t dev)
101 {
102 return uartgetc();
103 }
104
105 static struct consdev earlycons = {
106 .cn_putc = earlyconsputc,
107 .cn_getc = earlyconsgetc,
108 .cn_pollc = nullcnpollc,
109 };
110
111 struct vm_map *phys_map;
112
113 struct trapframe cpu_ddb_regs;
114 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
115 #ifdef FPE
116 [PCU_FPU] = &pcu_fpu_ops,
117 #endif
118 };
119
120 /*
121 * Used by PHYSTOV and VTOPHYS -- Will be set be BSS is zeroed so
122 * keep it in data
123 */
124 unsigned long kern_vtopdiff __attribute__((__section__(".data")));
125
126
127 /*
128 * machine dependent system variables.
129 */
130 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
131 {
132 sysctl_createv(clog, 0, NULL, NULL,
133 CTLFLAG_PERMANENT,
134 CTLTYPE_NODE, "machdep", NULL,
135 NULL, 0, NULL, 0,
136 CTL_MACHDEP, CTL_EOL);
137 }
138
139 void
140 delay(unsigned long us)
141 {
142 const uint32_t cycles_per_us = curcpu()->ci_data.cpu_cc_freq / 1000000;
143 const uint64_t cycles = (uint64_t)us * cycles_per_us;
144 const uint64_t finish = csr_cycle_read() + cycles;
145
146 while (csr_cycle_read() < finish) {
147 /* spin, baby spin */
148 }
149 }
150
151 #ifdef MODULAR
152 /*
153 * Push any modules loaded by the boot loader.
154 */
155 void
156 module_init_md(void)
157 {
158 }
159 #endif /* MODULAR */
160
161 /*
162 * Set registers on exec.
163 * Clear all registers except sp, pc.
164 * sp is set to the stack pointer passed in. pc is set to the entry
165 * point given by the exec_package passed in.
166 */
167 void
168 setregs(struct lwp *l, struct exec_package *pack, vaddr_t stack)
169 {
170 struct trapframe * const tf = l->l_md.md_utf;
171 struct proc * const p = l->l_proc;
172
173 memset(tf, 0, sizeof(*tf));
174 tf->tf_sp = (intptr_t)stack_align(stack);
175 tf->tf_pc = (intptr_t)pack->ep_entry & ~1;
176 #ifdef _LP64
177 tf->tf_sr = (p->p_flag & PK_32) ? SR_USER32 : SR_USER64;
178 #else
179 tf->tf_sr = SR_USER;
180 #endif
181
182 // Set up arguments for ___start(cleanup, ps_strings)
183 tf->tf_a0 = 0; // cleanup
184 tf->tf_a1 = p->p_psstrp; // ps_strings
185
186 /*
187 * Must have interrupts disabled for exception return.
188 * Must be switching to user mode.
189 * Must enable interrupts after sret.
190 */
191 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SIE) == 0);
192 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SPP) == 0);
193 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SPIE) != 0);
194 }
195
196 void
197 md_child_return(struct lwp *l)
198 {
199 struct trapframe * const tf = lwp_trapframe(l);
200
201 tf->tf_a0 = 0;
202 tf->tf_a1 = 1;
203 #ifdef FPE
204 /* Disable FP as we can't be using it (yet). */
205 tf->tf_sr &= ~SR_FS;
206 #endif
207
208 /*
209 * Must have interrupts disabled for exception return.
210 * Must be switching to user mode.
211 * Must enable interrupts after sret.
212 */
213
214 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SIE) == 0);
215 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SPP) == 0);
216 KASSERT(__SHIFTOUT(tf->tf_sr, SR_SPIE) != 0);
217
218 userret(l);
219 }
220
221 void
222 cpu_spawn_return(struct lwp *l)
223 {
224 userret(l);
225 }
226
227 /*
228 * Start a new LWP
229 */
230 void
231 startlwp(void *arg)
232 {
233 ucontext_t * const uc = arg;
234 lwp_t * const l = curlwp;
235 int error __diagused;
236
237 error = cpu_setmcontext(l, &uc->uc_mcontext, uc->uc_flags);
238 KASSERT(error == 0);
239
240 kmem_free(uc, sizeof(*uc));
241 userret(l);
242 }
243
244 // We've worked hard to make sure struct reg and __gregset_t are the same.
245 // Ditto for struct fpreg and fregset_t.
246
247 #ifdef _LP64
248 CTASSERT(sizeof(struct reg) == sizeof(__gregset_t));
249 #endif
250 CTASSERT(sizeof(struct fpreg) == sizeof(__fregset_t));
251
252 void
253 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
254 {
255 const struct trapframe * const tf = l->l_md.md_utf;
256
257 /* Save register context. */
258 *(struct reg *)mcp->__gregs = tf->tf_regs;
259
260 *flags |= _UC_CPU | _UC_TLSBASE;
261
262 /* Save floating point register context, if any. */
263 KASSERT(l == curlwp);
264 if (fpu_valid_p(l)) {
265 /*
266 * If this process is the current FP owner, dump its
267 * context to the PCB first.
268 */
269 fpu_save(l);
270
271 struct pcb * const pcb = lwp_getpcb(l);
272 *(struct fpreg *)mcp->__fregs = pcb->pcb_fpregs;
273 *flags |= _UC_FPU;
274 }
275 }
276
277 int
278 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
279 {
280 /*
281 * Verify that at least the PC and SP are user addresses.
282 */
283 if ((intptr_t) mcp->__gregs[_REG_PC] < 0
284 || (intptr_t) mcp->__gregs[_REG_SP] < 0
285 || (mcp->__gregs[_REG_PC] & 1))
286 return EINVAL;
287
288 return 0;
289 }
290
291 int
292 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
293 {
294 struct trapframe * const tf = l->l_md.md_utf;
295 struct proc * const p = l->l_proc;
296 const __greg_t * const gr = mcp->__gregs;
297 int error;
298
299 /* Restore register context, if any. */
300 if (flags & _UC_CPU) {
301 error = cpu_mcontext_validate(l, mcp);
302 if (error)
303 return error;
304
305 /*
306 * Avoid updating TLS register here.
307 */
308 const __greg_t saved_tp = tf->tf_reg[_REG_TP];
309 tf->tf_regs = *(const struct reg *)gr;
310 tf->tf_reg[_REG_TP] = saved_tp;
311 }
312
313 /* Restore the private thread context */
314 if (flags & _UC_TLSBASE) {
315 lwp_setprivate(l, (void *)(intptr_t)mcp->__gregs[_X_TP]);
316 }
317
318 /* Restore floating point register context, if any. */
319 if (flags & _UC_FPU) {
320 KASSERT(l == curlwp);
321 /* Tell PCU we are replacing the FPU contents. */
322 fpu_replace(l);
323
324 /*
325 * The PCB FP regs struct includes the FP CSR, so use the
326 * proper size of fpreg when copying.
327 */
328 struct pcb * const pcb = lwp_getpcb(l);
329 pcb->pcb_fpregs = *(const struct fpreg *)mcp->__fregs;
330 }
331
332 mutex_enter(p->p_lock);
333 if (flags & _UC_SETSTACK)
334 l->l_sigstk.ss_flags |= SS_ONSTACK;
335 if (flags & _UC_CLRSTACK)
336 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
337 mutex_exit(p->p_lock);
338
339 return 0;
340 }
341
342 void
343 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
344 {
345 KASSERT(kpreempt_disabled());
346
347 if ((flags & RESCHED_KPREEMPT) != 0) {
348 #ifdef __HAVE_PREEMPTION
349 if ((flags & RESCHED_REMOTE) != 0) {
350 cpu_send_ipi(ci, IPI_KPREEMPT);
351 } else {
352 softint_trigger(SOFTINT_KPREEMPT);
353 }
354 #endif
355 return;
356 }
357 if ((flags & RESCHED_REMOTE) != 0) {
358 #ifdef MULTIPROCESSOR
359 cpu_send_ipi(ci, IPI_AST);
360 #endif
361 } else {
362 l->l_md.md_astpending = 1; /* force call to ast() */
363 }
364 }
365
366 void
367 cpu_signotify(struct lwp *l)
368 {
369 KASSERT(kpreempt_disabled());
370 #ifdef __HAVE_FAST_SOFTINTS
371 KASSERT(lwp_locked(l, NULL));
372 #endif
373
374 if (l->l_cpu != curcpu()) {
375 #ifdef MULTIPROCESSOR
376 cpu_send_ipi(l->l_cpu, IPI_AST);
377 #endif
378 } else {
379 l->l_md.md_astpending = 1; /* force call to ast() */
380 }
381 }
382
383 void
384 cpu_need_proftick(struct lwp *l)
385 {
386 KASSERT(kpreempt_disabled());
387 KASSERT(l->l_cpu == curcpu());
388
389 l->l_pflag |= LP_OWEUPC;
390 l->l_md.md_astpending = 1; /* force call to ast() */
391 }
392
393
394 /* Sync the discs, unmount the filesystems, and adjust the todr */
395 static void
396 bootsync(void)
397 {
398 static bool bootsyncdone = false;
399
400 if (bootsyncdone)
401 return;
402
403 bootsyncdone = true;
404
405 /* Make sure we can still manage to do things */
406 if ((csr_sstatus_read() & SR_SIE) == 0) {
407 /*
408 * If we get here then boot has been called without RB_NOSYNC
409 * and interrupts were disabled. This means the boot() call
410 * did not come from a user process e.g. shutdown, but must
411 * have come from somewhere in the kernel.
412 */
413 ENABLE_INTERRUPTS();
414 printf("Warning interrupts disabled during boot()\n");
415 }
416
417 vfs_shutdown();
418
419 resettodr();
420 }
421
422
423 void
424 cpu_reboot(int howto, char *bootstr)
425 {
426
427 /*
428 * If RB_NOSYNC was not specified sync the discs.
429 * Note: Unless cold is set to 1 here, syslogd will die during the
430 * unmount. It looks like syslogd is getting woken up only to find
431 * that it cannot page part of the binary in as the filesystem has
432 * been unmounted.
433 */
434 if ((howto & RB_NOSYNC) == 0)
435 bootsync();
436
437 #if 0
438 /* Disable interrupts. */
439 const int s = splhigh();
440
441 /* Do a dump if requested. */
442 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
443 dumpsys();
444
445 splx(s);
446 #endif
447
448 pmf_system_shutdown(boothowto);
449
450 /* Say NO to interrupts for good */
451 splhigh();
452
453 /* Run any shutdown hooks */
454 doshutdownhooks();
455
456 /* Make sure IRQ's are disabled */
457 DISABLE_INTERRUPTS();
458
459 if (howto & RB_HALT) {
460 printf("\n");
461 printf("The operating system has halted.\n");
462 printf("Please press any key to reboot.\n\n");
463 cnpollc(true); /* for proper keyboard command handling */
464 if (cngetc() == 0) {
465 /* no console attached, so just hlt */
466 printf("No keyboard - cannot reboot after all.\n");
467 goto spin;
468 }
469 cnpollc(false);
470 }
471
472 printf("rebooting...\n");
473
474 sbi_system_reset(SBI_RESET_TYPE_COLDREBOOT, SBI_RESET_REASON_NONE);
475 spin:
476 for (;;) {
477 asm volatile("wfi" ::: "memory");
478 }
479 /* NOTREACHED */
480 }
481
482 void
483 cpu_dumpconf(void)
484 {
485 // TBD!!
486 }
487
488
489 int
490 cpu_lwp_setprivate(lwp_t *l, void *addr)
491 {
492 struct trapframe * const tf = lwp_trapframe(l);
493
494 tf->tf_reg[_REG_TP] = (register_t)addr;
495
496 return 0;
497 }
498
499
500 void
501 cpu_startup(void)
502 {
503 vaddr_t minaddr, maxaddr;
504 char pbuf[10]; /* "999999 MB" -- But Sv39 is max 512GB */
505
506 /*
507 * Good {morning,afternoon,evening,night}.
508 */
509 printf("%s%s", copyright, version);
510 format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
511 printf("total memory = %s\n", pbuf);
512
513 minaddr = 0;
514 /*
515 * Allocate a submap for physio.
516 */
517 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
518 VM_PHYS_SIZE, 0, FALSE, NULL);
519
520 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
521 printf("avail memory = %s\n", pbuf);
522
523 #ifdef MULTIPROCESSOR
524 kcpuset_create(&cpus_halted, true);
525 KASSERT(cpus_halted != NULL);
526
527 kcpuset_create(&cpus_hatched, true);
528 KASSERT(cpus_hatched != NULL);
529
530 kcpuset_create(&cpus_paused, true);
531 KASSERT(cpus_paused != NULL);
532
533 kcpuset_create(&cpus_resumed, true);
534 KASSERT(cpus_resumed != NULL);
535
536 kcpuset_create(&cpus_running, true);
537 KASSERT(cpus_running != NULL);
538
539 kcpuset_set(cpus_hatched, cpu_index(curcpu()));
540 kcpuset_set(cpus_running, cpu_index(curcpu()));
541 #endif
542
543 fdtbus_intr_init();
544
545 fdt_setup_rndseed();
546 fdt_setup_efirng();
547 }
548
549 static void
550 riscv_add_memory(const struct fdt_memory *m, void *arg)
551 {
552 paddr_t first = atop(m->start);
553 paddr_t last = atop(m->end);
554 int freelist = VM_FREELIST_DEFAULT;
555
556 VPRINTF("adding %#16" PRIxPADDR " - %#16" PRIxPADDR" to freelist %d\n",
557 m->start, m->end, freelist);
558
559 uvm_page_physload(first, last, first, last, freelist);
560 physmem += last - first;
561 }
562
563
564 static void
565 cpu_kernel_vm_init(paddr_t memory_start, paddr_t memory_end)
566 {
567 extern char __kernel_text[];
568 extern char _end[];
569
570 vaddr_t kernstart = trunc_page((vaddr_t)__kernel_text);
571 vaddr_t kernend = round_page((vaddr_t)_end);
572 paddr_t kernstart_phys = KERN_VTOPHYS(kernstart);
573 paddr_t kernend_phys = KERN_VTOPHYS(kernend);
574
575 VPRINTF("%s: kernel phys start %#" PRIxPADDR " end %#" PRIxPADDR "\n",
576 __func__, kernstart_phys, kernend_phys);
577 fdt_memory_remove_range(kernstart_phys,
578 kernend_phys - kernstart_phys);
579
580 /*
581 * Don't give these pages to UVM.
582 *
583 * cpu_kernel_vm_init need to create proper tables then the following
584 * will be true.
585 *
586 * Now we have APs started the pages used for stacks and L1PT can
587 * be given to uvm
588 */
589 extern char const __start__init_memory[];
590 extern char const __stop__init_memory[] __weak;
591 if (&__start__init_memory[0] != &__stop__init_memory[0]) {
592 const paddr_t spa = KERN_VTOPHYS((vaddr_t)__start__init_memory);
593 const paddr_t epa = KERN_VTOPHYS((vaddr_t)__stop__init_memory);
594
595 VPRINTF("%s: init phys start %#" PRIxPADDR
596 " end %#" PRIxPADDR "\n", __func__, spa, epa);
597 fdt_memory_remove_range(spa, epa - spa);
598 }
599
600 #ifdef _LP64
601 paddr_t pa = memory_start & ~XSEGOFSET;
602 pmap_direct_base = RISCV_DIRECTMAP_START;
603 extern pd_entry_t l2_pte[PAGE_SIZE / sizeof(pd_entry_t)];
604
605
606 const vsize_t vshift = XSEGSHIFT;
607 const vaddr_t pdetab_mask = PMAP_PDETABSIZE - 1;
608 const vsize_t inc = 1UL << vshift;
609
610 const vaddr_t sva = RISCV_DIRECTMAP_START + pa;
611 const vaddr_t eva = RISCV_DIRECTMAP_END;
612 const size_t sidx = (sva >> vshift) & pdetab_mask;
613 const size_t eidx = (eva >> vshift) & pdetab_mask;
614
615 /* Allocate gigapages covering all physical memory in the direct map. */
616 for (size_t i = sidx; i < eidx && pa < memory_end; i++, pa += inc) {
617 l2_pte[i] = PA_TO_PTE(pa) | PTE_KERN | PTE_HARDWIRED | PTE_RW;
618 VPRINTF("dm: %p : %#" PRIxPADDR "\n", &l2_pte[i], l2_pte[i]);
619 }
620 #endif
621 // pt_dump(printf);
622 }
623
624 static void
625 riscv_init_lwp0_uarea(void)
626 {
627 extern char lwp0uspace[];
628
629 uvm_lwp_setuarea(&lwp0, (vaddr_t)lwp0uspace);
630 memset(&lwp0.l_md, 0, sizeof(lwp0.l_md));
631 memset(lwp_getpcb(&lwp0), 0, sizeof(struct pcb));
632
633 struct trapframe *tf = (struct trapframe *)(lwp0uspace + USPACE) - 1;
634 memset(tf, 0, sizeof(*tf));
635
636 lwp0.l_md.md_utf = lwp0.l_md.md_ktf = tf;
637 }
638
639
640 static void
641 riscv_print_memory(const struct fdt_memory *m, void *arg)
642 {
643
644 VPRINTF("FDT /memory @ 0x%" PRIx64 " size 0x%" PRIx64 "\n",
645 m->start, m->end - m->start);
646 }
647
648
649 static void
650 parse_mi_bootargs(char *args)
651 {
652 int howto;
653 bool found, start, skipping;
654
655 if (args == NULL)
656 return;
657
658 start = true;
659 skipping = false;
660 for (char *cp = args; *cp; cp++) {
661 /* check for "words" starting with a "-" only */
662 if (start) {
663 if (*cp == '-') {
664 skipping = false;
665 } else {
666 skipping = true;
667 }
668 start = false;
669 continue;
670 }
671
672 if (*cp == ' ') {
673 start = true;
674 skipping = false;
675 continue;
676 }
677
678 if (skipping) {
679 continue;
680 }
681
682 /* Check valid boot flags */
683 howto = 0;
684 BOOT_FLAG(*cp, howto);
685 if (!howto)
686 printf("bootflag '%c' not recognised\n", *cp);
687 else
688 boothowto |= howto;
689 }
690
691 found = optstr_get(args, "root", bootdevstr, sizeof(bootdevstr));
692 if (found) {
693 bootspec = bootdevstr;
694 }
695 }
696
697
698 void
699 init_riscv(register_t hartid, paddr_t dtb)
700 {
701
702 /* set temporally to work printf()/panic() even before consinit() */
703 cn_tab = &earlycons;
704
705 /* Load FDT */
706 const vaddr_t dtbva = VM_KERNEL_DTB_BASE + (dtb & (NBSEG - 1));
707 void *fdt_data = (void *)dtbva;
708 int error = fdt_check_header(fdt_data);
709 if (error != 0)
710 panic("fdt_check_header failed: %s", fdt_strerror(error));
711
712 fdtbus_init(fdt_data);
713
714 /* Lookup platform specific backend */
715 const struct fdt_platform * const plat = fdt_platform_find();
716 if (plat == NULL)
717 panic("Kernel does not support this device");
718
719 /* Early console may be available, announce ourselves. */
720 VPRINTF("FDT<%p>\n", fdt_data);
721
722 boot_args = fdt_get_bootargs();
723
724 VPRINTF("devmap %p\n", plat->fp_devmap());
725 pmap_devmap_bootstrap(0, plat->fp_devmap());
726
727 VPRINTF("bootstrap\n");
728 plat->fp_bootstrap();
729
730 /*
731 * If stdout-path is specified on the command line, override the
732 * value in /chosen/stdout-path before initializing console.
733 */
734 VPRINTF("stdout\n");
735 fdt_update_stdout_path(fdt_data, boot_args);
736
737 /*
738 * Done making changes to the FDT.
739 */
740 fdt_pack(fdt_data);
741
742 const uint32_t dtbsize = round_page(fdt_totalsize(fdt_data));
743
744 VPRINTF("fdt size %x/%x\n", dtbsize, fdt_totalsize(fdt_data));
745
746 VPRINTF("consinit ");
747 consinit();
748 VPRINTF("ok\n");
749
750 /* Talk to the user */
751 printf("NetBSD/riscv (fdt) booting ...\n");
752
753 #ifdef BOOT_ARGS
754 char mi_bootargs[] = BOOT_ARGS;
755 parse_mi_bootargs(mi_bootargs);
756 #endif
757
758 uint64_t memory_start, memory_end;
759 fdt_memory_get(&memory_start, &memory_end);
760 physical_start = memory_start;
761 physical_end = memory_end;
762
763 fdt_memory_foreach(riscv_print_memory, NULL);
764
765 /* Cannot map memory above largest page number */
766 const uint64_t maxppn = __SHIFTOUT_MASK(PTE_PPN) - 1;
767 const uint64_t memory_limit = ptoa(maxppn);
768
769 if (memory_end > memory_limit) {
770 fdt_memory_remove_range(memory_limit, memory_end);
771 memory_end = memory_limit;
772 }
773
774 uint64_t memory_size __unused = memory_end - memory_start;
775
776 VPRINTF("%s: memory start %" PRIx64 " end %" PRIx64 " (len %"
777 PRIx64 ")\n", __func__, memory_start, memory_end, memory_size);
778
779 /* Parse ramdisk, rndseed, and firmware's RNG from EFI */
780 fdt_probe_initrd();
781 fdt_probe_rndseed();
782 fdt_probe_efirng();
783
784 fdt_memory_remove_reserved(memory_start, memory_end);
785
786 fdt_memory_remove_range(dtb, dtbsize);
787 fdt_reserve_initrd();
788 fdt_reserve_rndseed();
789 fdt_reserve_efirng();
790
791 /* Perform PT build and VM init */
792 cpu_kernel_vm_init(memory_start, memory_end);
793
794 VPRINTF("bootargs: %s\n", boot_args);
795
796 parse_mi_bootargs(boot_args);
797
798 #ifdef DDB
799 if (boothowto & RB_KDB) {
800 printf("Entering DDB...\n");
801 cpu_Debugger();
802 }
803 #endif
804
805 extern char __kernel_text[];
806 extern char _end[];
807 // extern char __data_start[];
808 // extern char __rodata_start[];
809
810 vaddr_t kernstart = trunc_page((vaddr_t)__kernel_text);
811 vaddr_t kernend = round_page((vaddr_t)_end);
812 paddr_t kernstart_phys __unused = KERN_VTOPHYS(kernstart);
813 paddr_t kernend_phys __unused = KERN_VTOPHYS(kernend);
814
815 vaddr_t kernelvmstart;
816
817 vaddr_t kernstart_mega __unused = MEGAPAGE_TRUNC(kernstart);
818 vaddr_t kernend_mega = MEGAPAGE_ROUND(kernend);
819
820 kernelvmstart = kernend_mega;
821
822 #if 0
823 #ifdef MODULAR
824 #define MODULE_RESERVED_MAX (1024 * 1024 * 128)
825 #define MODULE_RESERVED_SIZE (1024 * 1024 * 32) /* good enough? */
826 module_start = kernelvmstart;
827 module_end = kernend_mega + MODULE_RESERVED_SIZE;
828 if (module_end >= kernstart_mega + MODULE_RESERVED_MAX)
829 module_end = kernstart_mega + MODULE_RESERVED_MAX;
830 KASSERT(module_end > kernend_mega);
831 kernelvmstart = module_end;
832 #endif /* MODULAR */
833 #endif
834 KASSERT(kernelvmstart < VM_KERNEL_VM_BASE);
835
836 kernelvmstart = VM_KERNEL_VM_BASE;
837
838 /*
839 * msgbuf is allocated from the top of the last biggest memory block.
840 */
841 paddr_t msgbufaddr = 0;
842
843 #ifdef _LP64
844 /* XXX check all ranges for last one with a big enough hole */
845 msgbufaddr = memory_end - MSGBUFSIZE;
846 KASSERT(msgbufaddr != 0); /* no space for msgbuf */
847 fdt_memory_remove_range(msgbufaddr, msgbufaddr + MSGBUFSIZE);
848 msgbufaddr = RISCV_PA_TO_KVA(msgbufaddr);
849 VPRINTF("msgbufaddr = %#lx\n", msgbufaddr);
850 initmsgbuf((void *)msgbufaddr, MSGBUFSIZE);
851 #endif
852
853 KASSERT(msgbufaddr != 0); /* no space for msgbuf */
854 #ifdef _LP64
855 initmsgbuf((void *)RISCV_PA_TO_KVA(msgbufaddr), MSGBUFSIZE);
856 #endif
857
858 #define DPRINTF(v) VPRINTF("%24s = 0x%16lx\n", #v, (unsigned long)v);
859
860 VPRINTF("------------------------------------------\n");
861 DPRINTF(kern_vtopdiff);
862 DPRINTF(memory_start);
863 DPRINTF(memory_end);
864 DPRINTF(memory_size);
865 DPRINTF(kernstart_phys);
866 DPRINTF(kernend_phys)
867 DPRINTF(msgbufaddr);
868 // DPRINTF(physical_end);
869 DPRINTF(VM_MIN_KERNEL_ADDRESS);
870 DPRINTF(kernstart_mega);
871 DPRINTF(kernstart);
872 DPRINTF(kernend);
873 DPRINTF(kernend_mega);
874 #if 0
875 #ifdef MODULAR
876 DPRINTF(module_start);
877 DPRINTF(module_end);
878 #endif
879 #endif
880 DPRINTF(VM_MAX_KERNEL_ADDRESS);
881 #ifdef _LP64
882 DPRINTF(pmap_direct_base);
883 #endif
884 VPRINTF("------------------------------------------\n");
885
886 #undef DPRINTF
887
888 uvm_md_init();
889
890 /*
891 * pass memory pages to uvm
892 */
893 physmem = 0;
894 fdt_memory_foreach(riscv_add_memory, NULL);
895
896 pmap_bootstrap(kernelvmstart, VM_MAX_KERNEL_ADDRESS);
897
898 kasan_init();
899
900 /* Finish setting up lwp0 on our end before we call main() */
901 riscv_init_lwp0_uarea();
902
903
904 error = 0;
905 if ((boothowto & RB_MD1) == 0) {
906 VPRINTF("mpstart\n");
907 if (plat->fp_mpstart)
908 error = plat->fp_mpstart();
909 }
910 if (error)
911 printf("AP startup problems\n");
912 }
913
914
915 #ifdef _LP64
916 static void
917 pte_bits(void (*pr)(const char *, ...), pt_entry_t pte)
918 {
919 (*pr)("%c%c%c%c%c%c%c%c",
920 (pte & PTE_D) ? 'D' : '.',
921 (pte & PTE_A) ? 'A' : '.',
922 (pte & PTE_G) ? 'G' : '.',
923 (pte & PTE_U) ? 'U' : '.',
924 (pte & PTE_X) ? 'X' : '.',
925 (pte & PTE_W) ? 'W' : '.',
926 (pte & PTE_R) ? 'R' : '.',
927 (pte & PTE_V) ? 'V' : '.');
928 }
929
930 static void
931 dump_ln_table(paddr_t pdp_pa, int topbit, int level, vaddr_t va,
932 void (*pr)(const char *, ...) __printflike(1, 2))
933 {
934 pd_entry_t *pdp = (void *)PMAP_DIRECT_MAP(pdp_pa);
935
936 (*pr)("l%u @ pa %#16" PRIxREGISTER "\n", level, pdp_pa);
937 for (size_t i = 0; i < PAGE_SIZE / sizeof(pd_entry_t); i++) {
938 pd_entry_t entry = pdp[i];
939
940 if (topbit) {
941 va = i << (PGSHIFT + level * SEGLENGTH);
942 if (va & __BIT(topbit)) {
943 va |= __BITS(63, topbit);
944 }
945 }
946 if (entry != 0) {
947 paddr_t pa = __SHIFTOUT(entry, PTE_PPN) << PGSHIFT;
948 // check level PPN bits.
949 if (PTE_ISLEAF_P(entry)) {
950 (*pr)("l%u %3zu va 0x%016lx pa 0x%012lx - ",
951 level, i, va, pa);
952 pte_bits(pr, entry);
953 (*pr)("\n");
954 } else {
955 (*pr)("l%u %3zu va 0x%016lx -> 0x%012lx - ",
956 level, i, va, pa);
957 pte_bits(pr, entry);
958 (*pr)("\n");
959 if (level == 0) {
960 (*pr)("wtf\n");
961 continue;
962 }
963 if (pte_pde_valid_p(entry))
964 dump_ln_table(pa, 0, level - 1, va, pr);
965 }
966 }
967 va += 1UL << (PGSHIFT + level * SEGLENGTH);
968 }
969 }
970
971 void
972 pt_dump(void (*pr)(const char *, ...) __printflike(1, 2))
973 {
974 const register_t satp = csr_satp_read();
975 size_t topbit = sizeof(long) * NBBY - 1;
976
977 #ifdef _LP64
978 const paddr_t satp_pa = __SHIFTOUT(satp, SATP_PPN) << PGSHIFT;
979 const uint8_t mode = __SHIFTOUT(satp, SATP_MODE);
980 u_int level = 1;
981
982 switch (mode) {
983 case SATP_MODE_SV39:
984 case SATP_MODE_SV48:
985 topbit = (39 - 1) + (mode - 8) * SEGLENGTH;
986 level = mode - 6;
987 break;
988 }
989 #endif
990 (*pr)("topbit = %zu\n", topbit);
991
992 (*pr)("satp = 0x%" PRIxREGISTER "\n", satp);
993 #ifdef _LP64
994 dump_ln_table(satp_pa, topbit, level, 0, pr);
995 #endif
996 }
997 #endif
998
999 void
1000 consinit(void)
1001 {
1002 static bool initialized = false;
1003 const struct fdt_console *cons = fdtbus_get_console();
1004 const struct fdt_platform *plat = fdt_platform_find();
1005
1006 if (initialized || cons == NULL)
1007 return;
1008
1009 u_int uart_freq = 0;
1010 extern struct bus_space riscv_generic_bs_tag;
1011 struct fdt_attach_args faa = {
1012 .faa_bst = &riscv_generic_bs_tag,
1013 };
1014
1015 faa.faa_phandle = fdtbus_get_stdout_phandle();
1016 if (plat->fp_uart_freq != NULL)
1017 uart_freq = plat->fp_uart_freq();
1018
1019 cons->consinit(&faa, uart_freq);
1020
1021 initialized = true;
1022 }
1023