skg.c revision 1.4 1 /* $NetBSD: skg.c,v 1.4 2011/10/30 21:08:33 phx Exp $ */
2
3 /*-
4 * Copyright (c) 2010 Frank Wille.
5 * All rights reserved.
6 *
7 * Written by Frank Wille for The NetBSD Project.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include <sys/param.h>
32
33 #include <netinet/in.h>
34 #include <netinet/in_systm.h>
35
36 #include <lib/libsa/stand.h>
37 #include <lib/libsa/net.h>
38
39 #include "globals.h"
40
41 /*
42 * - reverse endian access every CSR.
43 * - no vtophys() translation, vaddr_t == paddr_t.
44 * - PIPT writeback cache aware.
45 */
46 #define CSR_WRITE_1(l, r, v) out8((l)->csr+(r), (v))
47 #define CSR_READ_1(l, r) in8((l)->csr+(r))
48 #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v))
49 #define CSR_READ_2(l, r) in16rb((l)->csr+(r))
50 #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v))
51 #define CSR_READ_4(l, r) in32rb((l)->csr+(r))
52 #define VTOPHYS(va) (uint32_t)(va)
53 #define DEVTOV(pa) (uint32_t)(pa)
54 #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz))
55 #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz))
56 #define DELAY(n) delay(n)
57 #define ALLOC(T,A) (T *)allocaligned(sizeof(T),(A))
58
59 struct desc {
60 uint32_t xd0, xd1, xd2, xd3, xd4;
61 uint32_t rsrvd[3];
62 };
63 #define CTL_LS 0x20000000
64 #define CTL_FS 0x40000000
65 #define CTL_OWN 0x80000000
66 #define CTL_DEFOPC 0x00550000
67 #define FRAMEMASK 0x0000ffff
68 #define RXSTAT_RXOK 0x00000100
69
70 #define SK_CSR 0x0004
71 #define CSR_SW_RESET 0x0001
72 #define CSR_SW_UNRESET 0x0002
73 #define CSR_MASTER_RESET 0x0004
74 #define CSR_MASTER_UNRESET 0x0008
75 #define SK_IMR 0x000c
76 #define SK_BMU_RX_CSR0 0x0060
77 #define SK_BMU_TXS_CSR0 0x0068
78 #define SK_MAC0 0x0100
79 #define SK_MAC1 0x0108
80 #define SK_GPIO 0x015c
81 #define SK_RAMCTL 0x01a0
82 #define SK_TXAR1_COUNTERCTL 0x0210
83 #define TXARCTL_ON 0x02
84 #define TXARCTL_FSYNC_ON 0x80
85 #define SK_RXQ1_CURADDR_LO 0x0420
86 #define SK_RXQ1_CURADDR_HI 0x0424
87 #define SK_RXQ1_BMU_CSR 0x0434
88 #define RXBMU_CLR_IRQ_EOF 0x00000002
89 #define RXBMU_RX_START 0x00000010
90 #define RXBMU_RX_STOP 0x00000020
91 #define RXBMU_POLL_ON 0x00000080
92 #define RXBMU_TRANSFER_SM_UNRESET 0x00000200
93 #define RXBMU_DESCWR_SM_UNRESET 0x00000800
94 #define RXBMU_DESCRD_SM_UNRESET 0x00002000
95 #define RXBMU_SUPERVISOR_SM_UNRESET 0x00008000
96 #define RXBMU_PFI_SM_UNRESET 0x00020000
97 #define RXBMU_FIFO_UNRESET 0x00080000
98 #define RXBMU_DESC_UNRESET 0x00200000
99 #define SK_TXQS1_CURADDR_LO 0x0620
100 #define SK_TXQS1_CURADDR_HI 0x0624
101 #define SK_TXQS1_BMU_CSR 0x0634
102 #define TXBMU_CLR_IRQ_EOF 0x00000002
103 #define TXBMU_TX_START 0x00000010
104 #define TXBMU_TX_STOP 0x00000020
105 #define TXBMU_POLL_ON 0x00000080
106 #define TXBMU_TRANSFER_SM_UNRESET 0x00000200
107 #define TXBMU_DESCWR_SM_UNRESET 0x00000800
108 #define TXBMU_DESCRD_SM_UNRESET 0x00002000
109 #define TXBMU_SUPERVISOR_SM_UNRESET 0x00008000
110 #define TXBMU_PFI_SM_UNRESET 0x00020000
111 #define TXBMU_FIFO_UNRESET 0x00080000
112 #define TXBMU_DESC_UNRESET 0x00200000
113 #define SK_RXRB1_START 0x0800
114 #define SK_RXRB1_END 0x0804
115 #define SK_RXRB1_WR_PTR 0x0808
116 #define SK_RXRB1_RD_PTR 0x080c
117 #define SK_RXRB1_CTLTST 0x0828
118 #define RBCTL_UNRESET 0x02
119 #define RBCTL_ON 0x08
120 #define RBCTL_STORENFWD_ON 0x20
121 #define SK_TXRBS1_START 0x0a00
122 #define SK_TXRBS1_END 0x0a04
123 #define SK_TXRBS1_WR_PTR 0x0a08
124 #define SK_TXRBS1_RD_PTR 0x0a0c
125 #define SK_TXRBS1_CTLTST 0x0a28
126 #define SK_RXMF1_CTRL_TEST 0x0c48
127 #define RFCTL_OPERATION_ON 0x00000008
128 #define RFCTL_RESET_CLEAR 0x00000002
129 #define SK_TXMF1_CTRL_TEST 0x0D48
130 #define TFCTL_OPERATION_ON 0x00000008
131 #define TFCTL_RESET_CLEAR 0x00000002
132 #define SK_GMAC_CTRL 0x0f00
133 #define GMAC_LOOP_OFF 0x00000010
134 #define GMAC_PAUSE_ON 0x00000008
135 #define GMAC_RESET_CLEAR 0x00000002
136 #define GMAC_RESET_SET 0x00000001
137 #define SK_GPHY_CTRL 0x0f04
138 #define GPHY_INT_POL_HI 0x08000000
139 #define GPHY_DIS_FC 0x02000000
140 #define GPHY_DIS_SLEEP 0x01000000
141 #define GPHY_ENA_XC 0x00040000
142 #define GPHY_ENA_PAUSE 0x00002000
143 #define GPHY_RESET_CLEAR 0x00000002
144 #define GPHY_RESET_SET 0x00000001
145 #define GPHY_ANEG_ALL 0x0009c000
146 #define GPHY_COPPER 0x00f00000
147 #define SK_LINK_CTRL 0x0f10
148 #define LINK_RESET_CLEAR 0x0002
149 #define LINK_RESET_SET 0x0001
150
151 #define YUKON_GPCR 0x2804
152 #define GPCR_TXEN 0x1000
153 #define GPCR_RXEN 0x0800
154 #define YUKON_SA1 0x281c
155 #define YUKON_SA2 0x2828
156 #define YUKON_SMICR 0x2880
157 #define SMICR_PHYAD(x) (((x) & 0x1f) << 11)
158 #define SMICR_REGAD(x) (((x) & 0x1f) << 6)
159 #define SMICR_OP_READ 0x0020
160 #define SMICR_OP_WRITE 0x0000
161 #define SMICR_READ_VALID 0x0010
162 #define SMICR_BUSY 0x0008
163 #define YUKON_SMIDR 0x2884
164
165 #define MII_PSSR 0x11 /* MAKPHY status register */
166 #define PSSR_DUPLEX 0x2000 /* FDX */
167 #define PSSR_RESOLVED 0x0800 /* speed and duplex resolved */
168 #define PSSR_LINK 0x0400 /* link indication */
169 #define PSSR_SPEED(x) (((x) >> 14) & 0x3)
170 #define SPEED10 0
171 #define SPEED100 1
172 #define SPEED1000 2
173
174 #define FRAMESIZE 1536
175
176 struct local {
177 struct desc txd[2];
178 struct desc rxd[2];
179 uint8_t rxstore[2][FRAMESIZE];
180 unsigned csr, rx, tx, phy;
181 uint16_t pssr, anlpar;
182 };
183
184 static int mii_read(struct local *, int, int);
185 static void mii_write(struct local *, int, int, int);
186 static void mii_initphy(struct local *);
187 static void mii_dealan(struct local *, unsigned);
188
189 int
190 skg_match(unsigned tag, void *data)
191 {
192 unsigned v;
193
194 v = pcicfgread(tag, PCI_ID_REG);
195 switch (v) {
196 case PCI_DEVICE(0x11ab, 0x4320):
197 return 1;
198 }
199 return 0;
200 }
201
202 void *
203 skg_init(unsigned tag, void *data)
204 {
205 struct local *l;
206 struct desc *txd, *rxd;
207 uint8_t *en;
208 unsigned i;
209 uint16_t reg;
210
211 l = ALLOC(struct local, 32); /* desc alignment */
212 memset(l, 0, sizeof(struct local));
213 l->csr = DEVTOV(pcicfgread(tag, 0x10)); /* use mem space */
214
215 /* make sure the descriptor bytes are not reversed */
216 i = pcicfgread(tag, 0x44);
217 pcicfgwrite(tag, 0x44, i & ~4);
218
219 /* reset the chip */
220 CSR_WRITE_2(l, SK_CSR, CSR_SW_RESET);
221 CSR_WRITE_2(l, SK_CSR, CSR_MASTER_RESET);
222 CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_SET);
223 DELAY(1000);
224 CSR_WRITE_2(l, SK_CSR, CSR_SW_UNRESET);
225 DELAY(2);
226 CSR_WRITE_2(l, SK_CSR, CSR_MASTER_UNRESET);
227 CSR_WRITE_2(l, SK_LINK_CTRL, LINK_RESET_CLEAR);
228 CSR_WRITE_4(l, SK_RAMCTL, 2); /* enable RAM interface */
229
230 mii_initphy(l);
231
232 /* read ethernet address */
233 en = data;
234 if (brdtype == BRD_SYNOLOGY)
235 read_mac_from_flash(en);
236 else
237 for (i = 0; i < 6; i++)
238 en[i] = CSR_READ_1(l, SK_MAC0 + i);
239 printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
240 en[0], en[1], en[2], en[3], en[4], en[5]);
241 DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
242 mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));
243
244 /* set station address */
245 for (i = 0; i < 3; i++)
246 CSR_WRITE_2(l, YUKON_SA1 + i * 4,
247 (en[i * 2] << 8) | en[i * 2 + 1]);
248
249 /* configure RX and TX MAC FIFO */
250 CSR_WRITE_1(l, SK_RXMF1_CTRL_TEST, RFCTL_RESET_CLEAR);
251 CSR_WRITE_4(l, SK_RXMF1_CTRL_TEST, RFCTL_OPERATION_ON);
252 CSR_WRITE_1(l, SK_TXMF1_CTRL_TEST, TFCTL_RESET_CLEAR);
253 CSR_WRITE_4(l, SK_TXMF1_CTRL_TEST, TFCTL_OPERATION_ON);
254
255 mii_dealan(l, 5);
256
257 switch (PSSR_SPEED(l->pssr)) {
258 case SPEED1000:
259 printf("1000Mbps");
260 break;
261 case SPEED100:
262 printf("100Mbps");
263 break;
264 case SPEED10:
265 printf("10Mbps");
266 break;
267 }
268 if (l->pssr & PSSR_DUPLEX)
269 printf("-FDX");
270 printf("\n");
271
272 /* configure RAM buffers, assuming 64k RAM */
273 CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_UNRESET);
274 CSR_WRITE_4(l, SK_RXRB1_START, 0);
275 CSR_WRITE_4(l, SK_RXRB1_WR_PTR, 0);
276 CSR_WRITE_4(l, SK_RXRB1_RD_PTR, 0);
277 CSR_WRITE_4(l, SK_RXRB1_END, 0xfff);
278 CSR_WRITE_4(l, SK_RXRB1_CTLTST, RBCTL_ON);
279 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_UNRESET);
280 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_STORENFWD_ON);
281 CSR_WRITE_4(l, SK_TXRBS1_START, 0x1000);
282 CSR_WRITE_4(l, SK_TXRBS1_WR_PTR, 0x1000);
283 CSR_WRITE_4(l, SK_TXRBS1_RD_PTR, 0x1000);
284 CSR_WRITE_4(l, SK_TXRBS1_END, 0x1fff);
285 CSR_WRITE_4(l, SK_TXRBS1_CTLTST, RBCTL_ON);
286
287 /* setup descriptors and BMU */
288 CSR_WRITE_1(l, SK_TXAR1_COUNTERCTL, TXARCTL_ON|TXARCTL_FSYNC_ON);
289
290 txd = &l->txd[0];
291 txd[0].xd1 = htole32(VTOPHYS(&txd[1]));
292 txd[1].xd1 = htole32(VTOPHYS(&txd[0]));
293 rxd = &l->rxd[0];
294 rxd[0].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
295 rxd[0].xd1 = htole32(VTOPHYS(&rxd[1]));
296 rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0]));
297 rxd[1].xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
298 rxd[1].xd1 = htole32(VTOPHYS(&rxd[0]));
299 rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1]));
300 wbinv(l, sizeof(struct local));
301
302 CSR_WRITE_4(l, SK_RXQ1_BMU_CSR,
303 RXBMU_TRANSFER_SM_UNRESET|RXBMU_DESCWR_SM_UNRESET|
304 RXBMU_DESCRD_SM_UNRESET|RXBMU_SUPERVISOR_SM_UNRESET|
305 RXBMU_PFI_SM_UNRESET|RXBMU_FIFO_UNRESET|
306 RXBMU_DESC_UNRESET);
307 CSR_WRITE_4(l, SK_RXQ1_CURADDR_LO, VTOPHYS(rxd));
308 CSR_WRITE_4(l, SK_RXQ1_CURADDR_HI, 0);
309
310 CSR_WRITE_4(l, SK_TXQS1_BMU_CSR,
311 TXBMU_TRANSFER_SM_UNRESET|TXBMU_DESCWR_SM_UNRESET|
312 TXBMU_DESCRD_SM_UNRESET|TXBMU_SUPERVISOR_SM_UNRESET|
313 TXBMU_PFI_SM_UNRESET|TXBMU_FIFO_UNRESET|
314 TXBMU_DESC_UNRESET|TXBMU_POLL_ON);
315 CSR_WRITE_4(l, SK_TXQS1_CURADDR_LO, VTOPHYS(txd));
316 CSR_WRITE_4(l, SK_TXQS1_CURADDR_HI, 0);
317
318 CSR_WRITE_4(l, SK_IMR, 0);
319 CSR_WRITE_4(l, SK_RXQ1_BMU_CSR, RXBMU_RX_START);
320 reg = CSR_READ_2(l, YUKON_GPCR);
321 reg |= GPCR_TXEN | GPCR_RXEN;
322 CSR_WRITE_2(l, YUKON_GPCR, reg);
323
324 return l;
325 }
326
327 int
328 skg_send(void *dev, char *buf, unsigned len)
329 {
330 struct local *l = dev;
331 volatile struct desc *txd;
332 unsigned loop;
333
334 wbinv(buf, len);
335 txd = &l->txd[l->tx];
336 txd->xd2 = htole32(VTOPHYS(buf));
337 txd->xd0 = htole32((len & FRAMEMASK)|CTL_DEFOPC|CTL_FS|CTL_LS|CTL_OWN);
338 wbinv(txd, sizeof(struct desc));
339 CSR_WRITE_4(l, SK_BMU_TXS_CSR0, TXBMU_TX_START);
340 loop = 100;
341 do {
342 if ((le32toh(txd->xd0) & CTL_OWN) == 0)
343 goto done;
344 DELAY(10);
345 inv(txd, sizeof(struct desc));
346 } while (--loop > 0);
347 printf("xmit failed\n");
348 return -1;
349 done:
350 l->tx ^= 1;
351 return len;
352 }
353
354 int
355 skg_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
356 {
357 struct local *l = dev;
358 volatile struct desc *rxd;
359 unsigned bound, ctl, rxstat, len;
360 uint8_t *ptr;
361
362 bound = 1000 * timo;
363 #if 0
364 printf("recving with %u sec. timeout\n", timo);
365 #endif
366 again:
367 rxd = &l->rxd[l->rx];
368 do {
369 inv(rxd, sizeof(struct desc));
370 ctl = le32toh(rxd->xd0);
371 if ((ctl & CTL_OWN) == 0)
372 goto gotone;
373 DELAY(1000); /* 1 milli second */
374 } while (--bound > 0);
375 errno = 0;
376 return -1;
377 gotone:
378 rxstat = le32toh(rxd->xd4);
379 if ((rxstat & RXSTAT_RXOK) == 0) {
380 rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
381 wbinv(rxd, sizeof(struct desc));
382 l->rx ^= 1;
383 goto again;
384 }
385 len = ctl & FRAMEMASK;
386 if (len > maxlen)
387 len = maxlen;
388 ptr = l->rxstore[l->rx];
389 inv(ptr, len);
390 memcpy(buf, ptr, len);
391 rxd->xd0 = htole32(FRAMESIZE|CTL_DEFOPC|CTL_LS|CTL_FS|CTL_OWN);
392 wbinv(rxd, sizeof(struct desc));
393 l->rx ^= 1;
394 return len;
395 }
396
397 static int
398 mii_read(struct local *l, int phy, int reg)
399 {
400 unsigned loop, v;
401
402 CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) |
403 SMICR_OP_READ);
404 loop = 1000;
405 do {
406 DELAY(1);
407 v = CSR_READ_2(l, YUKON_SMICR);
408 } while ((v & SMICR_READ_VALID) == 0 && --loop);
409 if (loop == 0) {
410 printf("mii_read timeout!\n");
411 return 0;
412 }
413 return CSR_READ_2(l, YUKON_SMIDR);
414 }
415
416 static void
417 mii_write(struct local *l, int phy, int reg, int data)
418 {
419 unsigned loop, v;
420
421 CSR_WRITE_2(l, YUKON_SMIDR, data);
422 CSR_WRITE_2(l, YUKON_SMICR, SMICR_PHYAD(phy) | SMICR_REGAD(reg) |
423 SMICR_OP_WRITE);
424 loop = 1000;
425 do {
426 DELAY(1);
427 v = CSR_READ_2(l, YUKON_SMICR);
428 } while ((v & SMICR_BUSY) != 0 && --loop);
429 if (loop == 0)
430 printf("mii_write timeout!\n");
431 }
432
433 #define MII_BMCR 0x00 /* Basic mode control register (rw) */
434 #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */
435 #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */
436 #define MII_BMSR 0x01 /* Basic mode status register (ro) */
437 #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */
438 #define BMSR_LINK 0x0004 /* Link status */
439 #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */
440 #define ANAR_FC 0x0400 /* local device supports PAUSE */
441 #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */
442 #define ANAR_TX 0x0080 /* local device supports 100bTx */
443 #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */
444 #define ANAR_10 0x0020 /* local device supports 10bT */
445 #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */
446 #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */
447 #define MII_GTCR 0x09 /* 1000baseT control */
448 #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */
449 #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */
450 #define MII_GTSR 0x0a /* 1000baseT status */
451 #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */
452 #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */
453
454 static void
455 mii_initphy(struct local *l)
456 {
457 unsigned val;
458
459 l->phy = 0;
460
461 /* take PHY out of reset */
462 val = CSR_READ_4(l, SK_GPIO);
463 CSR_WRITE_4(l, SK_GPIO, (val | 0x2000000) & ~0x200);
464
465 /* GMAC and GPHY reset */
466 CSR_WRITE_4(l, SK_GPHY_CTRL, GPHY_RESET_SET);
467 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET);
468 DELAY(1000);
469 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_CLEAR);
470 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_RESET_SET);
471 DELAY(1000);
472
473 val = GPHY_INT_POL_HI | GPHY_DIS_FC | GPHY_DIS_SLEEP | GPHY_ENA_XC |
474 GPHY_ANEG_ALL | GPHY_ENA_PAUSE | GPHY_COPPER;
475 CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_SET);
476 DELAY(1000);
477 CSR_WRITE_4(l, SK_GPHY_CTRL, val | GPHY_RESET_CLEAR);
478 CSR_WRITE_4(l, SK_GMAC_CTRL, GMAC_LOOP_OFF | GMAC_PAUSE_ON |
479 GMAC_RESET_CLEAR);
480 }
481
482 static void
483 mii_dealan(struct local *l, unsigned timo)
484 {
485 unsigned bmsr, bound;
486
487 mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
488 ANAR_10 | ANAR_CSMA | ANAR_FC);
489 mii_write(l, l->phy, MII_GTCR, GANA_1000TFDX | GANA_1000THDX);
490 mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
491 l->anlpar = 0;
492 bound = getsecs() + timo;
493 do {
494 bmsr = mii_read(l, l->phy, MII_BMSR) |
495 mii_read(l, l->phy, MII_BMSR); /* read twice */
496 if ((bmsr & BMSR_LINK) && (bmsr & BMSR_ACOMP)) {
497 l->pssr = mii_read(l, l->phy, MII_PSSR);
498 l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
499 if ((l->pssr & PSSR_RESOLVED) == 0)
500 continue;
501 break;
502 }
503 DELAY(10 * 1000);
504 } while (getsecs() < bound);
505 }
506