Home | History | Annotate | Line # | Download | only in hpc
haltwo.c revision 1.20.4.1
      1  1.20.4.1  jmcneill /* $NetBSD: haltwo.c,v 1.20.4.1 2011/11/20 12:07:27 jmcneill Exp $ */
      2       1.1  lonewolf 
      3       1.1  lonewolf /*
      4       1.1  lonewolf  * Copyright (c) 2003 Ilpo Ruotsalainen
      5       1.1  lonewolf  * All rights reserved.
      6       1.1  lonewolf  *
      7       1.1  lonewolf  * Redistribution and use in source and binary forms, with or without
      8       1.1  lonewolf  * modification, are permitted provided that the following conditions
      9       1.1  lonewolf  * are met:
     10       1.1  lonewolf  * 1. Redistributions of source code must retain the above copyright
     11       1.1  lonewolf  *    notice, this list of conditions and the following disclaimer.
     12       1.1  lonewolf  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1  lonewolf  *    notice, this list of conditions and the following disclaimer in the
     14       1.1  lonewolf  *    documentation and/or other materials provided with the distribution.
     15       1.1  lonewolf  * 3. The name of the author may not be used to endorse or promote products
     16       1.1  lonewolf  *    derived from this software without specific prior written permission.
     17       1.1  lonewolf  *
     18       1.1  lonewolf  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19       1.1  lonewolf  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20       1.1  lonewolf  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21       1.1  lonewolf  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22       1.1  lonewolf  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23       1.1  lonewolf  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24       1.1  lonewolf  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25       1.1  lonewolf  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26       1.1  lonewolf  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27       1.1  lonewolf  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28       1.1  lonewolf  *
     29       1.1  lonewolf  * <<Id: LICENSE_GC,v 1.1 2001/10/01 23:24:05 cgd Exp>>
     30       1.1  lonewolf  */
     31       1.1  lonewolf 
     32       1.1  lonewolf #include <sys/cdefs.h>
     33  1.20.4.1  jmcneill __KERNEL_RCSID(0, "$NetBSD: haltwo.c,v 1.20.4.1 2011/11/20 12:07:27 jmcneill Exp $");
     34       1.1  lonewolf 
     35       1.1  lonewolf #include <sys/param.h>
     36       1.1  lonewolf #include <sys/systm.h>
     37       1.1  lonewolf #include <sys/device.h>
     38       1.1  lonewolf #include <sys/audioio.h>
     39  1.20.4.1  jmcneill #include <sys/kmem.h>
     40       1.1  lonewolf #include <dev/audio_if.h>
     41       1.1  lonewolf #include <dev/auconv.h>
     42       1.1  lonewolf #include <dev/mulaw.h>
     43       1.1  lonewolf 
     44       1.1  lonewolf #include <uvm/uvm_extern.h>
     45       1.1  lonewolf 
     46      1.20    dyoung #include <sys/bus.h>
     47      1.11    rumble #include <machine/sysconf.h>
     48       1.1  lonewolf 
     49       1.1  lonewolf #include <sgimips/hpc/hpcvar.h>
     50       1.1  lonewolf #include <sgimips/hpc/hpcreg.h>
     51       1.1  lonewolf 
     52       1.1  lonewolf #include <sgimips/hpc/haltworeg.h>
     53       1.1  lonewolf #include <sgimips/hpc/haltwovar.h>
     54       1.1  lonewolf 
     55       1.1  lonewolf #ifdef AUDIO_DEBUG
     56       1.1  lonewolf #define DPRINTF(x)      printf x
     57       1.1  lonewolf #else
     58       1.1  lonewolf #define DPRINTF(x)
     59       1.1  lonewolf #endif
     60       1.1  lonewolf 
     61       1.1  lonewolf static int haltwo_query_encoding(void *, struct audio_encoding *);
     62       1.6      kent static int haltwo_set_params(void *, int, int, audio_params_t *,
     63       1.6      kent 	audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
     64       1.6      kent static int haltwo_round_blocksize(void *, int, int, const audio_params_t *);
     65       1.1  lonewolf static int haltwo_halt_output(void *);
     66       1.1  lonewolf static int haltwo_halt_input(void *);
     67       1.1  lonewolf static int haltwo_getdev(void *, struct audio_device *);
     68       1.1  lonewolf static int haltwo_set_port(void *, mixer_ctrl_t *);
     69       1.1  lonewolf static int haltwo_get_port(void *, mixer_ctrl_t *);
     70       1.1  lonewolf static int haltwo_query_devinfo(void *, mixer_devinfo_t *);
     71  1.20.4.1  jmcneill static void *haltwo_malloc(void *, int, size_t);
     72  1.20.4.1  jmcneill static void haltwo_free(void *, void *, size_t);
     73       1.1  lonewolf static int haltwo_get_props(void *);
     74       1.1  lonewolf static int haltwo_trigger_output(void *, void *, void *, int, void (*)(void *),
     75       1.6      kent 	void *, const audio_params_t *);
     76       1.1  lonewolf static int haltwo_trigger_input(void *, void *, void *, int, void (*)(void *),
     77       1.6      kent 	void *, const audio_params_t *);
     78  1.20.4.1  jmcneill static void haltwo_get_locks(void *, kmutex_t **, kmutex_t **);
     79      1.17   tsutsui static bool haltwo_shutdown(device_t, int);
     80       1.1  lonewolf 
     81       1.4      yamt static const struct audio_hw_if haltwo_hw_if = {
     82       1.6      kent 	NULL, /* open */
     83       1.6      kent 	NULL, /* close */
     84       1.1  lonewolf 	NULL, /* drain */
     85       1.1  lonewolf 	haltwo_query_encoding,
     86       1.1  lonewolf 	haltwo_set_params,
     87       1.1  lonewolf 	haltwo_round_blocksize,
     88       1.1  lonewolf 	NULL, /* commit_settings */
     89       1.1  lonewolf 	NULL, /* init_output */
     90       1.1  lonewolf 	NULL, /* init_input */
     91       1.1  lonewolf 	NULL, /* start_output */
     92       1.1  lonewolf 	NULL, /* start_input */
     93       1.1  lonewolf 	haltwo_halt_output,
     94       1.1  lonewolf 	haltwo_halt_input,
     95       1.1  lonewolf 	NULL, /* speaker_ctl */
     96       1.1  lonewolf 	haltwo_getdev,
     97       1.1  lonewolf 	NULL, /* setfd */
     98       1.1  lonewolf 	haltwo_set_port,
     99       1.1  lonewolf 	haltwo_get_port,
    100       1.1  lonewolf 	haltwo_query_devinfo,
    101       1.1  lonewolf 	haltwo_malloc,
    102       1.1  lonewolf 	haltwo_free,
    103       1.1  lonewolf 	NULL, /* round_buffersize */
    104       1.1  lonewolf 	NULL, /* mappage */
    105       1.1  lonewolf 	haltwo_get_props,
    106       1.1  lonewolf 	haltwo_trigger_output,
    107       1.1  lonewolf 	haltwo_trigger_input,
    108  1.20.4.1  jmcneill 	NULL, /* dev_ioctl */
    109  1.20.4.1  jmcneill 	NULL, /* powerstate */
    110  1.20.4.1  jmcneill 	haltwo_get_locks,
    111       1.1  lonewolf };
    112       1.1  lonewolf 
    113       1.1  lonewolf static const struct audio_device haltwo_device = {
    114       1.2   tsutsui 	"HAL2",
    115       1.2   tsutsui 	"",
    116       1.2   tsutsui 	"haltwo"
    117       1.1  lonewolf };
    118       1.1  lonewolf 
    119      1.19   tsutsui static int  haltwo_match(device_t, cfdata_t, void *);
    120      1.19   tsutsui static void haltwo_attach(device_t, device_t, void *);
    121       1.1  lonewolf static int  haltwo_intr(void *);
    122       1.1  lonewolf 
    123      1.19   tsutsui CFATTACH_DECL_NEW(haltwo, sizeof(struct haltwo_softc),
    124       1.1  lonewolf     haltwo_match, haltwo_attach, NULL, NULL);
    125       1.1  lonewolf 
    126       1.1  lonewolf #define haltwo_write(sc,type,off,val) \
    127       1.1  lonewolf 	bus_space_write_4(sc->sc_st, sc->sc_##type##_sh, off, val)
    128       1.1  lonewolf 
    129       1.1  lonewolf #define haltwo_read(sc,type,off) \
    130       1.1  lonewolf 	bus_space_read_4(sc->sc_st, sc->sc_##type##_sh, off)
    131       1.1  lonewolf 
    132       1.1  lonewolf static void
    133       1.1  lonewolf haltwo_write_indirect(struct haltwo_softc *sc, uint32_t ireg, uint16_t low,
    134       1.1  lonewolf 		uint16_t high)
    135       1.1  lonewolf {
    136       1.2   tsutsui 
    137       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IDR0, low);
    138       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IDR1, high);
    139       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IDR2, 0);
    140       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IDR3, 0);
    141       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IAR, ireg);
    142       1.1  lonewolf 
    143       1.1  lonewolf 	while (haltwo_read(sc, ctl, HAL2_REG_CTL_ISR) & HAL2_ISR_TSTATUS)
    144       1.7      kent 		continue;
    145       1.1  lonewolf }
    146       1.1  lonewolf 
    147       1.1  lonewolf static void
    148       1.1  lonewolf haltwo_read_indirect(struct haltwo_softc *sc, uint32_t ireg, uint16_t *low,
    149       1.1  lonewolf 		uint16_t *high)
    150       1.1  lonewolf {
    151       1.2   tsutsui 
    152       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_IAR,
    153       1.1  lonewolf 	    ireg | HAL2_IAR_READ);
    154       1.1  lonewolf 
    155       1.1  lonewolf 	while (haltwo_read(sc, ctl, HAL2_REG_CTL_ISR) & HAL2_ISR_TSTATUS)
    156       1.7      kent 		continue;
    157       1.1  lonewolf 
    158       1.1  lonewolf 	if (low)
    159       1.1  lonewolf 		*low = haltwo_read(sc, ctl, HAL2_REG_CTL_IDR0);
    160       1.2   tsutsui 
    161       1.1  lonewolf 	if (high)
    162       1.1  lonewolf 		*high = haltwo_read(sc, ctl, HAL2_REG_CTL_IDR1);
    163       1.1  lonewolf }
    164       1.1  lonewolf 
    165       1.1  lonewolf static int
    166       1.1  lonewolf haltwo_init_codec(struct haltwo_softc *sc, struct haltwo_codec *codec)
    167       1.1  lonewolf {
    168       1.1  lonewolf 	int err;
    169       1.1  lonewolf 	int rseg;
    170       1.7      kent 	size_t allocsz;
    171       1.1  lonewolf 
    172       1.7      kent 	allocsz = sizeof(struct hpc_dma_desc) * HALTWO_MAX_DMASEGS;
    173       1.1  lonewolf 	KASSERT(allocsz <= PAGE_SIZE);
    174       1.1  lonewolf 
    175       1.1  lonewolf 	err = bus_dmamem_alloc(sc->sc_dma_tag, allocsz, 0, 0, &codec->dma_seg,
    176       1.1  lonewolf 	    1, &rseg, BUS_DMA_NOWAIT);
    177       1.1  lonewolf 	if (err)
    178       1.1  lonewolf 		goto out;
    179       1.1  lonewolf 
    180       1.1  lonewolf 	err = bus_dmamem_map(sc->sc_dma_tag, &codec->dma_seg, rseg, allocsz,
    181      1.12  christos 	    (void **)&codec->dma_descs, BUS_DMA_NOWAIT);
    182       1.1  lonewolf 	if (err)
    183       1.1  lonewolf 		goto out_free;
    184       1.1  lonewolf 
    185       1.1  lonewolf 	err = bus_dmamap_create(sc->sc_dma_tag, allocsz, 1, PAGE_SIZE, 0,
    186       1.1  lonewolf 	    BUS_DMA_NOWAIT, &codec->dma_map);
    187       1.1  lonewolf 	if (err)
    188       1.1  lonewolf 		goto out_free;
    189       1.1  lonewolf 
    190       1.1  lonewolf 	err = bus_dmamap_load(sc->sc_dma_tag, codec->dma_map, codec->dma_descs,
    191       1.1  lonewolf 	    allocsz, NULL, BUS_DMA_NOWAIT);
    192       1.1  lonewolf 	if (err)
    193       1.1  lonewolf 		goto out_destroy;
    194       1.1  lonewolf 
    195       1.1  lonewolf 	DPRINTF(("haltwo_init_codec: allocated %d descriptors (%d bytes)"
    196       1.1  lonewolf 	    " at %p\n", HALTWO_MAX_DMASEGS, allocsz, codec->dma_descs));
    197       1.1  lonewolf 
    198       1.1  lonewolf 	memset(codec->dma_descs, 0, allocsz);
    199       1.1  lonewolf 
    200       1.7      kent 	return 0;
    201       1.1  lonewolf 
    202       1.1  lonewolf out_destroy:
    203       1.1  lonewolf 	bus_dmamap_destroy(sc->sc_dma_tag, codec->dma_map);
    204       1.1  lonewolf out_free:
    205       1.1  lonewolf 	bus_dmamem_free(sc->sc_dma_tag, &codec->dma_seg, rseg);
    206       1.1  lonewolf out:
    207       1.1  lonewolf 	DPRINTF(("haltwo_init_codec failed: %d\n",err));
    208       1.1  lonewolf 
    209       1.7      kent 	return err;
    210       1.1  lonewolf }
    211       1.1  lonewolf 
    212       1.1  lonewolf static void
    213       1.1  lonewolf haltwo_setup_dma(struct haltwo_softc *sc, struct haltwo_codec *codec,
    214       1.1  lonewolf 		struct haltwo_dmabuf *dmabuf, size_t len, int blksize,
    215       1.1  lonewolf 		void (*intr)(void *), void *intrarg)
    216       1.1  lonewolf {
    217       1.1  lonewolf 	int i;
    218       1.1  lonewolf 	bus_dma_segment_t *segp;
    219       1.1  lonewolf 	struct hpc_dma_desc *descp;
    220       1.7      kent 	int next_intr;
    221       1.2   tsutsui 
    222       1.1  lonewolf 	KASSERT(len % blksize == 0);
    223       1.1  lonewolf 
    224       1.7      kent 	next_intr = blksize;
    225       1.1  lonewolf 	codec->intr = intr;
    226       1.1  lonewolf 	codec->intr_arg = intrarg;
    227       1.1  lonewolf 
    228       1.1  lonewolf 	segp = dmabuf->dma_map->dm_segs;
    229       1.1  lonewolf 	descp = codec->dma_descs;
    230       1.1  lonewolf 
    231       1.1  lonewolf 	/* Build descriptor chain for looping DMA, triggering interrupt every
    232       1.1  lonewolf 	 * blksize bytes */
    233       1.1  lonewolf 	for (i = 0; i < dmabuf->dma_map->dm_nsegs; i++) {
    234       1.3    sekiya 		descp->hpc3_hdd_bufptr = segp->ds_addr;
    235       1.3    sekiya 		descp->hpc3_hdd_ctl = segp->ds_len;
    236       1.1  lonewolf 
    237       1.1  lonewolf 		KASSERT(next_intr >= segp->ds_len);
    238       1.1  lonewolf 
    239       1.1  lonewolf 		if (next_intr == segp->ds_len) {
    240       1.1  lonewolf 			/* Generate intr after this DMA buffer */
    241       1.5    rumble 			descp->hpc3_hdd_ctl |= HPC3_HDD_CTL_INTR;
    242       1.1  lonewolf 			next_intr = blksize;
    243       1.2   tsutsui 		} else
    244       1.1  lonewolf 			next_intr -= segp->ds_len;
    245       1.1  lonewolf 
    246       1.1  lonewolf 		if (i < dmabuf->dma_map->dm_nsegs - 1)
    247       1.1  lonewolf 			descp->hdd_descptr = codec->dma_seg.ds_addr +
    248       1.1  lonewolf 			    sizeof(struct hpc_dma_desc) * (i + 1);
    249       1.1  lonewolf 		else
    250       1.1  lonewolf 			descp->hdd_descptr = codec->dma_seg.ds_addr;
    251       1.1  lonewolf 
    252       1.1  lonewolf 		DPRINTF(("haltwo_setup_dma: hdd_bufptr = %x hdd_ctl = %x"
    253       1.3    sekiya 		    " hdd_descptr = %x\n", descp->hpc3_hdd_bufptr,
    254       1.3    sekiya 		    descp->hpc3_hdd_ctl, descp->hdd_descptr));
    255       1.1  lonewolf 
    256       1.1  lonewolf 		segp++;
    257       1.1  lonewolf 		descp++;
    258       1.1  lonewolf 	}
    259       1.1  lonewolf 
    260       1.1  lonewolf 	bus_dmamap_sync(sc->sc_dma_tag, codec->dma_map, 0,
    261       1.1  lonewolf 	    codec->dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
    262       1.1  lonewolf }
    263       1.1  lonewolf 
    264       1.1  lonewolf static int
    265      1.19   tsutsui haltwo_match(device_t parent, cfdata_t cf, void *aux)
    266       1.1  lonewolf {
    267       1.7      kent 	struct hpc_attach_args *haa;
    268      1.10    rumble 	uint32_t rev;
    269       1.1  lonewolf 
    270       1.7      kent 	haa = aux;
    271       1.8    sekiya 	if (strcmp(haa->ha_name, cf->cf_name))
    272       1.8    sekiya 		return 0;
    273      1.10    rumble 
    274      1.13        he 	if ( platform.badaddr((void *)(vaddr_t)(haa->ha_sh + haa->ha_devoff),
    275      1.18   tsutsui 	    sizeof(uint32_t)) )
    276       1.8    sekiya 		return 0;
    277       1.1  lonewolf 
    278      1.11    rumble 	if ( platform.badaddr(
    279      1.13        he 	    (void *)(vaddr_t)(haa->ha_sh + haa->ha_devoff + HAL2_REG_CTL_REV),
    280      1.18   tsutsui 	    sizeof(uint32_t)) )
    281      1.10    rumble 		return 0;
    282      1.10    rumble 
    283      1.10    rumble 	rev = *(uint32_t *)MIPS_PHYS_TO_KSEG1(haa->ha_sh + haa->ha_devoff +
    284      1.10    rumble 	    HAL2_REG_CTL_REV);
    285      1.10    rumble 
    286      1.10    rumble 	/* This bit is inverted, the test is correct */
    287      1.10    rumble 	if (rev & HAL2_REV_AUDIO_PRESENT_N)
    288      1.10    rumble 		return 0;
    289      1.10    rumble 
    290       1.8    sekiya 	return 1;
    291       1.1  lonewolf }
    292       1.1  lonewolf 
    293       1.1  lonewolf static void
    294      1.19   tsutsui haltwo_attach(device_t parent, device_t self, void *aux)
    295       1.1  lonewolf {
    296       1.7      kent 	struct haltwo_softc *sc;
    297       1.7      kent 	struct hpc_attach_args *haa;
    298       1.1  lonewolf 	uint32_t rev;
    299       1.2   tsutsui 
    300      1.19   tsutsui 	sc = device_private(self);
    301       1.7      kent 	haa = aux;
    302      1.19   tsutsui 	sc->sc_dev = self;
    303       1.1  lonewolf 	sc->sc_st = haa->ha_st;
    304       1.1  lonewolf 	sc->sc_dma_tag = haa->ha_dmat;
    305       1.1  lonewolf 
    306  1.20.4.1  jmcneill 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
    307  1.20.4.1  jmcneill 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
    308  1.20.4.1  jmcneill 
    309       1.1  lonewolf 	if (bus_space_subregion(haa->ha_st, haa->ha_sh, haa->ha_devoff,
    310       1.5    rumble 	    HPC3_PBUS_CH0_DEVREGS_SIZE, &sc->sc_ctl_sh)) {
    311       1.1  lonewolf 		aprint_error(": unable to map control registers\n");
    312       1.1  lonewolf 		return;
    313       1.1  lonewolf 	}
    314       1.1  lonewolf 
    315       1.5    rumble 	if (bus_space_subregion(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH2_DEVREGS,
    316       1.5    rumble 	    HPC3_PBUS_CH2_DEVREGS_SIZE, &sc->sc_vol_sh)) {
    317       1.1  lonewolf 		aprint_error(": unable to map volume registers\n");
    318       1.1  lonewolf 		return;
    319       1.1  lonewolf 	}
    320       1.1  lonewolf 
    321       1.1  lonewolf 	if (bus_space_subregion(haa->ha_st, haa->ha_sh, haa->ha_dmaoff,
    322       1.5    rumble 	    HPC3_PBUS_DMAREGS_SIZE, &sc->sc_dma_sh)) {
    323       1.1  lonewolf 		aprint_error(": unable to map DMA registers\n");
    324       1.1  lonewolf 		return;
    325       1.1  lonewolf 	}
    326       1.1  lonewolf 
    327       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_ISR, 0);
    328       1.1  lonewolf 	haltwo_write(sc, ctl, HAL2_REG_CTL_ISR,
    329       1.1  lonewolf 	    HAL2_ISR_GLOBAL_RESET_N | HAL2_ISR_CODEC_RESET_N);
    330       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_RELAY_C, HAL2_RELAY_C_STATE, 0);
    331       1.1  lonewolf 
    332       1.1  lonewolf 	rev = haltwo_read(sc, ctl, HAL2_REG_CTL_REV);
    333       1.1  lonewolf 
    334  1.20.4.1  jmcneill 	if (cpu_intr_establish(haa->ha_irq, IPL_SCHED, haltwo_intr, sc)
    335       1.1  lonewolf 	    == NULL) {
    336       1.1  lonewolf 		aprint_error(": unable to establish interrupt\n");
    337       1.1  lonewolf 		return;
    338       1.1  lonewolf 	}
    339       1.1  lonewolf 
    340       1.1  lonewolf 	aprint_naive(": Audio controller\n");
    341       1.1  lonewolf 
    342       1.1  lonewolf 	aprint_normal(": HAL2 revision %d.%d.%d\n", (rev & 0x7000) >> 12,
    343       1.1  lonewolf 	    (rev & 0x00F0) >> 4, rev & 0x000F);
    344       1.1  lonewolf 
    345       1.1  lonewolf 	if (haltwo_init_codec(sc, &sc->sc_dac)) {
    346       1.1  lonewolf 		aprint_error(
    347       1.1  lonewolf 		    "haltwo_attach: unable to create DMA descriptor list\n");
    348       1.1  lonewolf 		return;
    349       1.1  lonewolf 	}
    350       1.1  lonewolf 
    351       1.1  lonewolf 	/* XXX Magic PBUS CFGDMA values from Linux HAL2 driver XXX */
    352       1.5    rumble 	bus_space_write_4(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH0_CFGDMA,
    353       1.1  lonewolf 	    0x8208844);
    354       1.5    rumble 	bus_space_write_4(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH1_CFGDMA,
    355       1.1  lonewolf 	    0x8208844);
    356       1.1  lonewolf 
    357       1.1  lonewolf 	/* Unmute output */
    358       1.1  lonewolf 	/* XXX Add mute/unmute support to mixer ops? XXX */
    359       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DAC_C2, 0, 0);
    360       1.1  lonewolf 
    361       1.1  lonewolf 	/* Set master volume to zero */
    362       1.1  lonewolf 	sc->sc_vol_left = sc->sc_vol_right = 0;
    363       1.1  lonewolf 	haltwo_write(sc, vol, HAL2_REG_VOL_LEFT, sc->sc_vol_left);
    364       1.1  lonewolf 	haltwo_write(sc, vol, HAL2_REG_VOL_RIGHT, sc->sc_vol_right);
    365       1.1  lonewolf 
    366      1.19   tsutsui 	audio_attach_mi(&haltwo_hw_if, sc, self);
    367      1.15   tsutsui 
    368      1.17   tsutsui 	if (!pmf_device_register1(self, NULL, NULL, haltwo_shutdown))
    369      1.15   tsutsui 		aprint_error_dev(self,
    370      1.17   tsutsui 		    "couldn't establish power handler\n");
    371       1.1  lonewolf }
    372       1.1  lonewolf 
    373       1.1  lonewolf static int
    374       1.1  lonewolf haltwo_intr(void *v)
    375       1.1  lonewolf {
    376       1.7      kent 	struct haltwo_softc *sc;
    377       1.7      kent 	int ret;
    378       1.1  lonewolf 
    379       1.7      kent 	sc = v;
    380       1.7      kent 	ret = 0;
    381  1.20.4.1  jmcneill 
    382  1.20.4.1  jmcneill 	mutex_spin_enter(&sc->sc_intr_lock);
    383  1.20.4.1  jmcneill 
    384       1.5    rumble 	if (bus_space_read_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL)
    385       1.5    rumble 	    & HPC3_PBUS_DMACTL_IRQ) {
    386       1.2   tsutsui 		sc->sc_dac.intr(sc->sc_dac.intr_arg);
    387       1.1  lonewolf 
    388       1.2   tsutsui 		ret = 1;
    389       1.2   tsutsui 	} else
    390       1.2   tsutsui 		DPRINTF(("haltwo_intr: Huh?\n"));
    391       1.1  lonewolf 
    392  1.20.4.1  jmcneill 	mutex_spin_exit(&sc->sc_intr_lock);
    393  1.20.4.1  jmcneill 
    394       1.7      kent 	return ret;
    395       1.1  lonewolf }
    396       1.1  lonewolf 
    397       1.1  lonewolf static int
    398       1.1  lonewolf haltwo_query_encoding(void *v, struct audio_encoding *e)
    399       1.1  lonewolf {
    400       1.2   tsutsui 
    401       1.1  lonewolf 	switch (e->index) {
    402       1.1  lonewolf 	case 0:
    403       1.1  lonewolf 		strcpy(e->name, AudioEslinear_le);
    404       1.1  lonewolf 		e->encoding = AUDIO_ENCODING_SLINEAR_LE;
    405       1.1  lonewolf 		e->precision = 16;
    406       1.1  lonewolf 		e->flags = 0;
    407       1.1  lonewolf 		break;
    408       1.2   tsutsui 
    409       1.1  lonewolf 	case 1:
    410       1.1  lonewolf 		strcpy(e->name, AudioEslinear_be);
    411       1.1  lonewolf 		e->encoding = AUDIO_ENCODING_SLINEAR_BE;
    412       1.1  lonewolf 		e->precision = 16;
    413       1.1  lonewolf 		e->flags = 0;
    414       1.1  lonewolf 		break;
    415       1.1  lonewolf 
    416       1.1  lonewolf 	case 2:
    417       1.1  lonewolf 		strcpy(e->name, AudioEmulaw);
    418       1.1  lonewolf 		e->encoding = AUDIO_ENCODING_ULAW;
    419       1.1  lonewolf 		e->precision = 8;
    420       1.1  lonewolf 		e->flags = AUDIO_ENCODINGFLAG_EMULATED;
    421       1.1  lonewolf 		break;
    422       1.2   tsutsui 
    423       1.1  lonewolf 	default:
    424       1.7      kent 		return EINVAL;
    425       1.1  lonewolf 	}
    426       1.2   tsutsui 
    427       1.7      kent 	return 0;
    428       1.1  lonewolf }
    429       1.1  lonewolf 
    430       1.1  lonewolf static int
    431       1.6      kent haltwo_set_params(void *v, int setmode, int usemode,
    432       1.6      kent 		  audio_params_t *play, audio_params_t *rec,
    433       1.6      kent 		  stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    434       1.1  lonewolf {
    435       1.6      kent 	audio_params_t hw;
    436       1.7      kent 	struct haltwo_softc *sc;
    437       1.1  lonewolf 	int master, inc, mod;
    438       1.1  lonewolf 	uint16_t tmp;
    439       1.1  lonewolf 
    440       1.7      kent 	sc = v;
    441       1.6      kent 	if (play->sample_rate < 4000)
    442       1.6      kent 		play->sample_rate = 4000;
    443       1.6      kent 	if (play->sample_rate > 48000)
    444       1.6      kent 		play->sample_rate = 48000;
    445       1.2   tsutsui 
    446       1.6      kent 	if (44100 % play->sample_rate < 48000 % play->sample_rate)
    447       1.6      kent 		master = 44100;
    448       1.6      kent 	else
    449       1.6      kent 		master = 48000;
    450       1.6      kent 
    451       1.6      kent 	/* HAL2 specification 3.1.2.21: Codecs should be driven with INC/MOD
    452       1.6      kent 	 * fractions equivalent to 4/N, where N is a positive integer. */
    453       1.6      kent 	inc = 4;
    454       1.6      kent 	mod = master * inc / play->sample_rate;
    455       1.6      kent 
    456       1.6      kent 	/* Fixup upper layers idea of HW sample rate to the actual final rate */
    457       1.6      kent 	play->sample_rate = master * inc / mod;
    458       1.6      kent 
    459       1.6      kent 	DPRINTF(("haltwo_set_params: master = %d inc = %d mod = %d"
    460       1.6      kent 	    " sample_rate = %ld\n", master, inc, mod,
    461       1.6      kent 	    play->sample_rate));
    462       1.6      kent 
    463       1.6      kent 	hw = *play;
    464       1.1  lonewolf 	switch (play->encoding) {
    465       1.1  lonewolf 	case AUDIO_ENCODING_ULAW:
    466       1.1  lonewolf 		if (play->precision != 8)
    467       1.7      kent 			return EINVAL;
    468       1.1  lonewolf 
    469       1.6      kent 		hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
    470       1.6      kent 		pfil->append(pfil, mulaw_to_linear16, &hw);
    471       1.6      kent 		play = &hw;
    472       1.1  lonewolf 		break;
    473       1.1  lonewolf 	case AUDIO_ENCODING_SLINEAR_BE:
    474       1.1  lonewolf 	case AUDIO_ENCODING_SLINEAR_LE:
    475       1.1  lonewolf 		break;
    476       1.1  lonewolf 
    477       1.1  lonewolf 	default:
    478       1.7      kent 		return EINVAL;
    479       1.1  lonewolf 	}
    480       1.6      kent 	/* play points HW encoding */
    481       1.1  lonewolf 
    482       1.1  lonewolf 	/* Setup samplerate to HW */
    483       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_BRES1_C1,
    484       1.1  lonewolf 	    master == 44100 ? 1 : 0, 0);
    485       1.1  lonewolf 	/* XXX Documentation disagrees but this seems to work XXX */
    486       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_BRES1_C2,
    487       1.1  lonewolf 	    inc, 0xFFFF & (inc - mod - 1));
    488       1.1  lonewolf 
    489       1.1  lonewolf 	/* Setup endianness to HW */
    490       1.1  lonewolf 	haltwo_read_indirect(sc, HAL2_IREG_DMA_END, &tmp, NULL);
    491       1.6      kent 	if (play->encoding == AUDIO_ENCODING_SLINEAR_LE)
    492       1.1  lonewolf 		tmp |= HAL2_DMA_END_CODECTX;
    493       1.1  lonewolf 	else
    494       1.1  lonewolf 		tmp &= ~HAL2_DMA_END_CODECTX;
    495       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DMA_END, tmp, 0);
    496       1.1  lonewolf 
    497       1.1  lonewolf 	/* Set PBUS channel, Bresenham clock source, number of channels to HW */
    498       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DAC_C1,
    499       1.1  lonewolf 	    (0 << HAL2_C1_DMA_SHIFT) |
    500       1.1  lonewolf 	    (1 << HAL2_C1_CLKID_SHIFT) |
    501       1.6      kent 	    (play->channels << HAL2_C1_DATAT_SHIFT), 0);
    502       1.1  lonewolf 
    503       1.1  lonewolf 	DPRINTF(("haltwo_set_params: hw_encoding = %d hw_channels = %d\n",
    504       1.6      kent 	    play->encoding, play->channels));
    505       1.1  lonewolf 
    506       1.7      kent 	return 0;
    507       1.1  lonewolf }
    508       1.1  lonewolf 
    509       1.1  lonewolf static int
    510       1.6      kent haltwo_round_blocksize(void *v, int blocksize,
    511       1.6      kent 		       int mode, const audio_params_t *param)
    512       1.1  lonewolf {
    513       1.2   tsutsui 
    514       1.1  lonewolf 	/* XXX Make this smarter and support DMA descriptor chaining XXX */
    515       1.1  lonewolf 	/* XXX Rounding to nearest PAGE_SIZE might work? XXX */
    516       1.1  lonewolf 	return PAGE_SIZE;
    517       1.1  lonewolf }
    518       1.1  lonewolf 
    519       1.1  lonewolf static int
    520       1.1  lonewolf haltwo_halt_output(void *v)
    521       1.1  lonewolf {
    522       1.7      kent 	struct haltwo_softc *sc;
    523       1.1  lonewolf 
    524       1.7      kent 	sc = v;
    525       1.1  lonewolf 	/* Disable PBUS DMA */
    526       1.5    rumble 	bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
    527       1.5    rumble 	    HPC3_PBUS_DMACTL_ACT_LD);
    528       1.1  lonewolf 
    529       1.7      kent 	return 0;
    530       1.1  lonewolf }
    531       1.1  lonewolf 
    532       1.1  lonewolf static int
    533       1.1  lonewolf haltwo_halt_input(void *v)
    534       1.1  lonewolf {
    535       1.2   tsutsui 
    536       1.7      kent 	return ENXIO;
    537       1.1  lonewolf }
    538       1.1  lonewolf 
    539       1.1  lonewolf static int
    540       1.1  lonewolf haltwo_getdev(void *v, struct audio_device *dev)
    541       1.1  lonewolf {
    542       1.2   tsutsui 
    543       1.1  lonewolf 	*dev = haltwo_device;
    544       1.7      kent 	return 0;
    545       1.1  lonewolf }
    546       1.1  lonewolf 
    547       1.1  lonewolf static int
    548       1.1  lonewolf haltwo_set_port(void *v, mixer_ctrl_t *mc)
    549       1.1  lonewolf {
    550       1.7      kent 	struct haltwo_softc *sc;
    551       1.1  lonewolf 	int lval, rval;
    552       1.2   tsutsui 
    553       1.1  lonewolf 	if (mc->type != AUDIO_MIXER_VALUE)
    554       1.7      kent 		return EINVAL;
    555       1.1  lonewolf 
    556       1.1  lonewolf 	if (mc->un.value.num_channels == 1)
    557       1.1  lonewolf 		lval = rval = mc->un.value.level[AUDIO_MIXER_LEVEL_MONO];
    558       1.1  lonewolf 	else if (mc->un.value.num_channels == 2) {
    559       1.1  lonewolf 		lval = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
    560       1.1  lonewolf 		rval = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
    561       1.1  lonewolf 	} else
    562       1.7      kent 		return EINVAL;
    563       1.1  lonewolf 
    564       1.7      kent 	sc = v;
    565       1.1  lonewolf 	switch (mc->dev) {
    566       1.1  lonewolf 	case HALTWO_MASTER_VOL:
    567       1.1  lonewolf 		sc->sc_vol_left = lval;
    568       1.1  lonewolf 		sc->sc_vol_right = rval;
    569       1.1  lonewolf 
    570       1.1  lonewolf 		haltwo_write(sc, vol, HAL2_REG_VOL_LEFT,
    571       1.1  lonewolf 		    sc->sc_vol_left);
    572       1.1  lonewolf 		haltwo_write(sc, vol, HAL2_REG_VOL_RIGHT,
    573       1.1  lonewolf 		    sc->sc_vol_right);
    574       1.1  lonewolf 		break;
    575       1.1  lonewolf 
    576       1.1  lonewolf 	default:
    577       1.7      kent 		return EINVAL;
    578       1.1  lonewolf 	}
    579       1.1  lonewolf 
    580       1.7      kent 	return 0;
    581       1.1  lonewolf }
    582       1.1  lonewolf 
    583       1.1  lonewolf static int
    584       1.1  lonewolf haltwo_get_port(void *v, mixer_ctrl_t *mc)
    585       1.1  lonewolf {
    586       1.7      kent 	struct haltwo_softc *sc;
    587       1.1  lonewolf 	int l, r;
    588       1.2   tsutsui 
    589       1.1  lonewolf 	switch (mc->dev) {
    590       1.1  lonewolf 	case HALTWO_MASTER_VOL:
    591       1.7      kent 		sc = v;
    592       1.1  lonewolf 		l = sc->sc_vol_left;
    593       1.1  lonewolf 		r = sc->sc_vol_right;
    594       1.1  lonewolf 		break;
    595       1.1  lonewolf 
    596       1.1  lonewolf 	default:
    597       1.7      kent 		return EINVAL;
    598       1.1  lonewolf 	}
    599       1.1  lonewolf 
    600       1.1  lonewolf 	if (mc->un.value.num_channels == 1)
    601       1.1  lonewolf 		mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
    602       1.1  lonewolf 	else if (mc->un.value.num_channels == 2) {
    603       1.1  lonewolf 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]  = l;
    604       1.1  lonewolf 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
    605       1.1  lonewolf 	} else
    606       1.7      kent 		return EINVAL;
    607       1.1  lonewolf 
    608       1.7      kent 	return 0;
    609       1.1  lonewolf }
    610       1.1  lonewolf 
    611       1.1  lonewolf static int
    612       1.1  lonewolf haltwo_query_devinfo(void *v, mixer_devinfo_t *dev)
    613       1.1  lonewolf {
    614       1.2   tsutsui 
    615       1.1  lonewolf 	switch (dev->index) {
    616       1.1  lonewolf 	/* Mixer values */
    617       1.1  lonewolf 	case HALTWO_MASTER_VOL:
    618       1.1  lonewolf 		dev->type = AUDIO_MIXER_VALUE;
    619       1.1  lonewolf 		dev->mixer_class = HALTWO_OUTPUT_CLASS;
    620       1.1  lonewolf 		dev->prev = dev->next = AUDIO_MIXER_LAST;
    621       1.1  lonewolf 		strcpy(dev->label.name, AudioNmaster);
    622       1.1  lonewolf 		dev->un.v.num_channels = 2;
    623      1.16  macallan 		dev->un.v.delta = 16;
    624       1.1  lonewolf 		strcpy(dev->un.v.units.name, AudioNvolume);
    625       1.1  lonewolf 		break;
    626       1.1  lonewolf 
    627       1.1  lonewolf 	/* Mixer classes */
    628       1.1  lonewolf 	case HALTWO_OUTPUT_CLASS:
    629       1.1  lonewolf 		dev->type = AUDIO_MIXER_CLASS;
    630       1.1  lonewolf 		dev->mixer_class = HALTWO_OUTPUT_CLASS;
    631       1.1  lonewolf 		dev->next = dev->prev = AUDIO_MIXER_LAST;
    632       1.1  lonewolf 		strcpy(dev->label.name, AudioCoutputs);
    633       1.1  lonewolf 		break;
    634       1.1  lonewolf 
    635       1.1  lonewolf 	default:
    636       1.7      kent 		return EINVAL;
    637       1.1  lonewolf 	}
    638       1.1  lonewolf 
    639       1.7      kent 	return 0;
    640       1.1  lonewolf }
    641       1.1  lonewolf 
    642       1.1  lonewolf static int
    643       1.1  lonewolf haltwo_alloc_dmamem(struct haltwo_softc *sc, size_t size,
    644       1.1  lonewolf 		struct haltwo_dmabuf *p)
    645       1.1  lonewolf {
    646       1.1  lonewolf 	int err;
    647       1.1  lonewolf 
    648       1.1  lonewolf 	p->size = size;
    649       1.1  lonewolf 
    650       1.1  lonewolf 	/* XXX Check align/boundary XXX */
    651       1.1  lonewolf 	err = bus_dmamem_alloc(sc->sc_dma_tag, p->size, 0, 0, p->dma_segs,
    652  1.20.4.1  jmcneill 	    HALTWO_MAX_DMASEGS, &p->dma_segcount, BUS_DMA_WAITOK);
    653       1.1  lonewolf 	if (err)
    654       1.1  lonewolf 		goto out;
    655       1.1  lonewolf 
    656       1.1  lonewolf 	/* XXX BUS_DMA_COHERENT? XXX */
    657       1.1  lonewolf 	err = bus_dmamem_map(sc->sc_dma_tag, p->dma_segs, p->dma_segcount,
    658  1.20.4.1  jmcneill 	    p->size, &p->kern_addr, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
    659       1.1  lonewolf 	if (err)
    660       1.1  lonewolf 		goto out_free;
    661       1.1  lonewolf 
    662       1.1  lonewolf 	/* XXX Just guessing ... XXX */
    663       1.1  lonewolf 	err = bus_dmamap_create(sc->sc_dma_tag, p->size, HALTWO_MAX_DMASEGS,
    664  1.20.4.1  jmcneill 	    PAGE_SIZE, 0, BUS_DMA_WAITOK, &p->dma_map);
    665       1.1  lonewolf 	if (err)
    666       1.1  lonewolf 		goto out_free;
    667       1.1  lonewolf 
    668       1.1  lonewolf 	err = bus_dmamap_load(sc->sc_dma_tag, p->dma_map, p->kern_addr,
    669  1.20.4.1  jmcneill 	    p->size, NULL, BUS_DMA_WAITOK);
    670       1.1  lonewolf 	if (err)
    671       1.1  lonewolf 		goto out_destroy;
    672       1.1  lonewolf 
    673       1.1  lonewolf 	return 0;
    674       1.1  lonewolf 
    675       1.1  lonewolf out_destroy:
    676       1.1  lonewolf 	bus_dmamap_destroy(sc->sc_dma_tag, p->dma_map);
    677       1.1  lonewolf out_free:
    678       1.1  lonewolf 	bus_dmamem_free(sc->sc_dma_tag, p->dma_segs, p->dma_segcount);
    679       1.1  lonewolf out:
    680       1.1  lonewolf 	DPRINTF(("haltwo_alloc_dmamem failed: %d\n",err));
    681       1.1  lonewolf 
    682       1.1  lonewolf 	return err;
    683       1.1  lonewolf }
    684       1.1  lonewolf 
    685       1.1  lonewolf static void *
    686  1.20.4.1  jmcneill haltwo_malloc(void *v, int direction, size_t size)
    687       1.1  lonewolf {
    688       1.7      kent 	struct haltwo_softc *sc;
    689       1.1  lonewolf 	struct haltwo_dmabuf *p;
    690       1.1  lonewolf 
    691       1.1  lonewolf 	DPRINTF(("haltwo_malloc size = %d\n", size));
    692       1.7      kent 	sc = v;
    693  1.20.4.1  jmcneill 	p = kmem_alloc(sizeof(*p), KM_SLEEP);
    694  1.20.4.1  jmcneill 	if (p == NULL)
    695  1.20.4.1  jmcneill 		return NULL;
    696       1.1  lonewolf 
    697       1.1  lonewolf 	if (haltwo_alloc_dmamem(sc, size, p)) {
    698  1.20.4.1  jmcneill 		kmem_free(p, sizeof(*p));
    699  1.20.4.1  jmcneill 		return NULL;
    700       1.1  lonewolf 	}
    701       1.1  lonewolf 
    702       1.1  lonewolf 	p->next = sc->sc_dma_bufs;
    703       1.1  lonewolf 	sc->sc_dma_bufs = p;
    704       1.1  lonewolf 
    705       1.1  lonewolf 	return p->kern_addr;
    706       1.1  lonewolf }
    707       1.1  lonewolf 
    708       1.1  lonewolf static void
    709  1.20.4.1  jmcneill haltwo_free(void *v, void *addr, size_t size)
    710       1.1  lonewolf {
    711       1.7      kent 	struct haltwo_softc *sc;
    712       1.7      kent 	struct haltwo_dmabuf *p, **pp;
    713       1.1  lonewolf 
    714       1.7      kent 	sc = v;
    715       1.1  lonewolf 	for (pp = &sc->sc_dma_bufs; (p = *pp) != NULL; pp = &p->next) {
    716       1.1  lonewolf 		if (p->kern_addr == addr) {
    717       1.1  lonewolf 			*pp = p->next;
    718  1.20.4.1  jmcneill 			kmem_free(p, sizeof(*p));
    719       1.1  lonewolf 			return;
    720       1.1  lonewolf 		}
    721       1.1  lonewolf 	}
    722       1.1  lonewolf 
    723       1.1  lonewolf 	panic("haltwo_free: buffer not in list");
    724       1.1  lonewolf }
    725       1.1  lonewolf 
    726       1.1  lonewolf static int
    727       1.1  lonewolf haltwo_get_props(void *v)
    728       1.1  lonewolf {
    729       1.2   tsutsui 
    730       1.7      kent 	return 0;
    731       1.1  lonewolf }
    732       1.1  lonewolf 
    733       1.1  lonewolf static int
    734       1.1  lonewolf haltwo_trigger_output(void *v, void *start, void *end, int blksize,
    735       1.6      kent 		void (*intr)(void *), void *intrarg, const audio_params_t *param)
    736       1.1  lonewolf {
    737       1.7      kent 	struct haltwo_softc *sc;
    738       1.1  lonewolf 	struct haltwo_dmabuf *p;
    739       1.1  lonewolf 	uint16_t tmp;
    740       1.1  lonewolf 	uint32_t ctrl;
    741       1.1  lonewolf 	unsigned int fifobeg, fifoend, highwater;
    742       1.1  lonewolf 
    743       1.1  lonewolf 	DPRINTF(("haltwo_trigger_output start = %p end = %p blksize = %d"
    744       1.2   tsutsui 	    " param = %p\n", start, end, blksize, param));
    745       1.7      kent 	sc = v;
    746       1.1  lonewolf 	for (p = sc->sc_dma_bufs; p != NULL; p = p->next)
    747       1.1  lonewolf 		if (p->kern_addr == start)
    748       1.1  lonewolf 			break;
    749       1.1  lonewolf 
    750       1.1  lonewolf 	if (p == NULL) {
    751       1.1  lonewolf 		printf("haltwo_trigger_output: buffer not in list\n");
    752       1.2   tsutsui 
    753       1.7      kent 		return EINVAL;
    754       1.1  lonewolf 	}
    755       1.1  lonewolf 
    756       1.1  lonewolf 	/* Disable PBUS DMA */
    757       1.5    rumble 	bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
    758       1.5    rumble 	    HPC3_PBUS_DMACTL_ACT_LD);
    759       1.1  lonewolf 
    760       1.1  lonewolf 	/* Disable HAL2 codec DMA */
    761       1.1  lonewolf 	haltwo_read_indirect(sc, HAL2_IREG_DMA_PORT_EN, &tmp, NULL);
    762       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DMA_PORT_EN,
    763       1.1  lonewolf 	    tmp & ~HAL2_DMA_PORT_EN_CODECTX, 0);
    764       1.1  lonewolf 
    765       1.1  lonewolf 	haltwo_setup_dma(sc, &sc->sc_dac, p, (char *)end - (char *)start,
    766       1.1  lonewolf 	    blksize, intr, intrarg);
    767       1.1  lonewolf 
    768       1.6      kent 	highwater = (param->channels * 4) >> 1;
    769       1.1  lonewolf 	fifobeg = 0;
    770       1.6      kent 	fifoend = (param->channels * 8) >> 3;
    771       1.1  lonewolf 
    772       1.1  lonewolf 	DPRINTF(("haltwo_trigger_output: hw_channels = %d highwater = %d"
    773       1.2   tsutsui 	    " fifobeg = %d fifoend = %d\n", param->hw_channels, highwater,
    774       1.2   tsutsui 	    fifobeg, fifoend));
    775       1.1  lonewolf 
    776       1.5    rumble 	ctrl = HPC3_PBUS_DMACTL_RT
    777       1.5    rumble 	    | HPC3_PBUS_DMACTL_ACT_LD
    778       1.5    rumble 	    | (highwater << HPC3_PBUS_DMACTL_HIGHWATER_SHIFT)
    779       1.5    rumble 	    | (fifobeg << HPC3_PBUS_DMACTL_FIFOBEG_SHIFT)
    780       1.5    rumble 	    | (fifoend << HPC3_PBUS_DMACTL_FIFOEND_SHIFT);
    781       1.1  lonewolf 
    782       1.1  lonewolf 	/* Using PBUS CH0 for DAC DMA */
    783       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DMA_DRV, 1, 0);
    784       1.1  lonewolf 
    785       1.1  lonewolf 	/* HAL2 is ready for action, now setup PBUS for DMA transfer */
    786       1.5    rumble 	bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_DP,
    787       1.1  lonewolf 	    sc->sc_dac.dma_seg.ds_addr);
    788       1.5    rumble 	bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
    789       1.5    rumble 	    ctrl | HPC3_PBUS_DMACTL_ACT);
    790       1.1  lonewolf 
    791       1.1  lonewolf 	/* Both HAL2 and PBUS have been setup, now start it up */
    792       1.1  lonewolf 	haltwo_read_indirect(sc, HAL2_IREG_DMA_PORT_EN, &tmp, NULL);
    793       1.1  lonewolf 	haltwo_write_indirect(sc, HAL2_IREG_DMA_PORT_EN,
    794       1.1  lonewolf 	    tmp | HAL2_DMA_PORT_EN_CODECTX, 0);
    795       1.2   tsutsui 
    796       1.7      kent 	return 0;
    797       1.1  lonewolf }
    798       1.1  lonewolf 
    799       1.1  lonewolf static int
    800       1.1  lonewolf haltwo_trigger_input(void *v, void *start, void *end, int blksize,
    801       1.6      kent 		void (*intr)(void *), void *intrarg, const audio_params_t *param)
    802       1.1  lonewolf {
    803       1.7      kent 	struct haltwo_softc *sc;
    804       1.1  lonewolf 	struct haltwo_dmabuf *p;
    805       1.2   tsutsui 
    806       1.1  lonewolf 	DPRINTF(("haltwo_trigger_input start = %p end = %p blksize = %d\n",
    807       1.2   tsutsui 	    start, end, blksize));
    808       1.7      kent 	sc = v;
    809       1.1  lonewolf 	for (p = sc->sc_dma_bufs; p != NULL; p = p->next)
    810       1.1  lonewolf 		if (p->kern_addr == start)
    811       1.1  lonewolf 			break;
    812       1.1  lonewolf 
    813       1.1  lonewolf 	if (p == NULL) {
    814       1.1  lonewolf 		printf("haltwo_trigger_input: buffer not in list\n");
    815       1.2   tsutsui 
    816       1.7      kent 		return EINVAL;
    817       1.1  lonewolf 	}
    818       1.1  lonewolf 
    819       1.1  lonewolf #if 0
    820       1.1  lonewolf 	haltwo_setup_dma(sc, &sc->sc_adc, p, (char *)end - (char *)start,
    821       1.1  lonewolf 	    blksize, intr, intrarg);
    822       1.1  lonewolf #endif
    823       1.2   tsutsui 
    824       1.7      kent 	return ENXIO;
    825       1.1  lonewolf }
    826      1.15   tsutsui 
    827  1.20.4.1  jmcneill static void
    828  1.20.4.1  jmcneill haltwo_get_locks(void *v, kmutex_t **intr, kmutex_t **thread)
    829  1.20.4.1  jmcneill {
    830  1.20.4.1  jmcneill 	struct haltwo_softc *sc;
    831  1.20.4.1  jmcneill 
    832  1.20.4.1  jmcneill 	DPRINTF(("haltwo_get_locks\n"));
    833  1.20.4.1  jmcneill 	sc = v;
    834  1.20.4.1  jmcneill 
    835  1.20.4.1  jmcneill 	*intr = &sc->sc_intr_lock;
    836  1.20.4.1  jmcneill 	*thread = &sc->sc_lock;
    837  1.20.4.1  jmcneill }
    838  1.20.4.1  jmcneill 
    839      1.17   tsutsui bool
    840      1.17   tsutsui haltwo_shutdown(device_t self, int howto)
    841      1.15   tsutsui {
    842      1.17   tsutsui 	struct haltwo_softc *sc;
    843      1.15   tsutsui 
    844      1.17   tsutsui 	sc = device_private(self);
    845      1.15   tsutsui 	haltwo_write(sc, ctl, HAL2_REG_CTL_ISR, 0);
    846      1.15   tsutsui 	haltwo_write(sc, ctl, HAL2_REG_CTL_ISR,
    847      1.15   tsutsui 	    HAL2_ISR_GLOBAL_RESET_N | HAL2_ISR_CODEC_RESET_N);
    848      1.17   tsutsui 
    849      1.17   tsutsui 	return true;
    850      1.15   tsutsui }
    851