haltwo.c revision 1.21 1 1.21 jmcneill /* $NetBSD: haltwo.c,v 1.21 2011/11/23 23:07:30 jmcneill Exp $ */
2 1.1 lonewolf
3 1.1 lonewolf /*
4 1.1 lonewolf * Copyright (c) 2003 Ilpo Ruotsalainen
5 1.1 lonewolf * All rights reserved.
6 1.1 lonewolf *
7 1.1 lonewolf * Redistribution and use in source and binary forms, with or without
8 1.1 lonewolf * modification, are permitted provided that the following conditions
9 1.1 lonewolf * are met:
10 1.1 lonewolf * 1. Redistributions of source code must retain the above copyright
11 1.1 lonewolf * notice, this list of conditions and the following disclaimer.
12 1.1 lonewolf * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 lonewolf * notice, this list of conditions and the following disclaimer in the
14 1.1 lonewolf * documentation and/or other materials provided with the distribution.
15 1.1 lonewolf * 3. The name of the author may not be used to endorse or promote products
16 1.1 lonewolf * derived from this software without specific prior written permission.
17 1.1 lonewolf *
18 1.1 lonewolf * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 1.1 lonewolf * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 1.1 lonewolf * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.1 lonewolf * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 1.1 lonewolf * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 1.1 lonewolf * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 1.1 lonewolf * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 1.1 lonewolf * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 1.1 lonewolf * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 1.1 lonewolf * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 1.1 lonewolf *
29 1.1 lonewolf * <<Id: LICENSE_GC,v 1.1 2001/10/01 23:24:05 cgd Exp>>
30 1.1 lonewolf */
31 1.1 lonewolf
32 1.1 lonewolf #include <sys/cdefs.h>
33 1.21 jmcneill __KERNEL_RCSID(0, "$NetBSD: haltwo.c,v 1.21 2011/11/23 23:07:30 jmcneill Exp $");
34 1.1 lonewolf
35 1.1 lonewolf #include <sys/param.h>
36 1.1 lonewolf #include <sys/systm.h>
37 1.1 lonewolf #include <sys/device.h>
38 1.1 lonewolf #include <sys/audioio.h>
39 1.21 jmcneill #include <sys/kmem.h>
40 1.1 lonewolf #include <dev/audio_if.h>
41 1.1 lonewolf #include <dev/auconv.h>
42 1.1 lonewolf #include <dev/mulaw.h>
43 1.1 lonewolf
44 1.1 lonewolf #include <uvm/uvm_extern.h>
45 1.1 lonewolf
46 1.20 dyoung #include <sys/bus.h>
47 1.11 rumble #include <machine/sysconf.h>
48 1.1 lonewolf
49 1.1 lonewolf #include <sgimips/hpc/hpcvar.h>
50 1.1 lonewolf #include <sgimips/hpc/hpcreg.h>
51 1.1 lonewolf
52 1.1 lonewolf #include <sgimips/hpc/haltworeg.h>
53 1.1 lonewolf #include <sgimips/hpc/haltwovar.h>
54 1.1 lonewolf
55 1.1 lonewolf #ifdef AUDIO_DEBUG
56 1.1 lonewolf #define DPRINTF(x) printf x
57 1.1 lonewolf #else
58 1.1 lonewolf #define DPRINTF(x)
59 1.1 lonewolf #endif
60 1.1 lonewolf
61 1.1 lonewolf static int haltwo_query_encoding(void *, struct audio_encoding *);
62 1.6 kent static int haltwo_set_params(void *, int, int, audio_params_t *,
63 1.6 kent audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
64 1.6 kent static int haltwo_round_blocksize(void *, int, int, const audio_params_t *);
65 1.1 lonewolf static int haltwo_halt_output(void *);
66 1.1 lonewolf static int haltwo_halt_input(void *);
67 1.1 lonewolf static int haltwo_getdev(void *, struct audio_device *);
68 1.1 lonewolf static int haltwo_set_port(void *, mixer_ctrl_t *);
69 1.1 lonewolf static int haltwo_get_port(void *, mixer_ctrl_t *);
70 1.1 lonewolf static int haltwo_query_devinfo(void *, mixer_devinfo_t *);
71 1.21 jmcneill static void *haltwo_malloc(void *, int, size_t);
72 1.21 jmcneill static void haltwo_free(void *, void *, size_t);
73 1.1 lonewolf static int haltwo_get_props(void *);
74 1.1 lonewolf static int haltwo_trigger_output(void *, void *, void *, int, void (*)(void *),
75 1.6 kent void *, const audio_params_t *);
76 1.1 lonewolf static int haltwo_trigger_input(void *, void *, void *, int, void (*)(void *),
77 1.6 kent void *, const audio_params_t *);
78 1.21 jmcneill static void haltwo_get_locks(void *, kmutex_t **, kmutex_t **);
79 1.17 tsutsui static bool haltwo_shutdown(device_t, int);
80 1.1 lonewolf
81 1.4 yamt static const struct audio_hw_if haltwo_hw_if = {
82 1.6 kent NULL, /* open */
83 1.6 kent NULL, /* close */
84 1.1 lonewolf NULL, /* drain */
85 1.1 lonewolf haltwo_query_encoding,
86 1.1 lonewolf haltwo_set_params,
87 1.1 lonewolf haltwo_round_blocksize,
88 1.1 lonewolf NULL, /* commit_settings */
89 1.1 lonewolf NULL, /* init_output */
90 1.1 lonewolf NULL, /* init_input */
91 1.1 lonewolf NULL, /* start_output */
92 1.1 lonewolf NULL, /* start_input */
93 1.1 lonewolf haltwo_halt_output,
94 1.1 lonewolf haltwo_halt_input,
95 1.1 lonewolf NULL, /* speaker_ctl */
96 1.1 lonewolf haltwo_getdev,
97 1.1 lonewolf NULL, /* setfd */
98 1.1 lonewolf haltwo_set_port,
99 1.1 lonewolf haltwo_get_port,
100 1.1 lonewolf haltwo_query_devinfo,
101 1.1 lonewolf haltwo_malloc,
102 1.1 lonewolf haltwo_free,
103 1.1 lonewolf NULL, /* round_buffersize */
104 1.1 lonewolf NULL, /* mappage */
105 1.1 lonewolf haltwo_get_props,
106 1.1 lonewolf haltwo_trigger_output,
107 1.1 lonewolf haltwo_trigger_input,
108 1.21 jmcneill NULL, /* dev_ioctl */
109 1.21 jmcneill haltwo_get_locks,
110 1.1 lonewolf };
111 1.1 lonewolf
112 1.1 lonewolf static const struct audio_device haltwo_device = {
113 1.2 tsutsui "HAL2",
114 1.2 tsutsui "",
115 1.2 tsutsui "haltwo"
116 1.1 lonewolf };
117 1.1 lonewolf
118 1.19 tsutsui static int haltwo_match(device_t, cfdata_t, void *);
119 1.19 tsutsui static void haltwo_attach(device_t, device_t, void *);
120 1.1 lonewolf static int haltwo_intr(void *);
121 1.1 lonewolf
122 1.19 tsutsui CFATTACH_DECL_NEW(haltwo, sizeof(struct haltwo_softc),
123 1.1 lonewolf haltwo_match, haltwo_attach, NULL, NULL);
124 1.1 lonewolf
125 1.1 lonewolf #define haltwo_write(sc,type,off,val) \
126 1.1 lonewolf bus_space_write_4(sc->sc_st, sc->sc_##type##_sh, off, val)
127 1.1 lonewolf
128 1.1 lonewolf #define haltwo_read(sc,type,off) \
129 1.1 lonewolf bus_space_read_4(sc->sc_st, sc->sc_##type##_sh, off)
130 1.1 lonewolf
131 1.1 lonewolf static void
132 1.1 lonewolf haltwo_write_indirect(struct haltwo_softc *sc, uint32_t ireg, uint16_t low,
133 1.1 lonewolf uint16_t high)
134 1.1 lonewolf {
135 1.2 tsutsui
136 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IDR0, low);
137 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IDR1, high);
138 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IDR2, 0);
139 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IDR3, 0);
140 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IAR, ireg);
141 1.1 lonewolf
142 1.1 lonewolf while (haltwo_read(sc, ctl, HAL2_REG_CTL_ISR) & HAL2_ISR_TSTATUS)
143 1.7 kent continue;
144 1.1 lonewolf }
145 1.1 lonewolf
146 1.1 lonewolf static void
147 1.1 lonewolf haltwo_read_indirect(struct haltwo_softc *sc, uint32_t ireg, uint16_t *low,
148 1.1 lonewolf uint16_t *high)
149 1.1 lonewolf {
150 1.2 tsutsui
151 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_IAR,
152 1.1 lonewolf ireg | HAL2_IAR_READ);
153 1.1 lonewolf
154 1.1 lonewolf while (haltwo_read(sc, ctl, HAL2_REG_CTL_ISR) & HAL2_ISR_TSTATUS)
155 1.7 kent continue;
156 1.1 lonewolf
157 1.1 lonewolf if (low)
158 1.1 lonewolf *low = haltwo_read(sc, ctl, HAL2_REG_CTL_IDR0);
159 1.2 tsutsui
160 1.1 lonewolf if (high)
161 1.1 lonewolf *high = haltwo_read(sc, ctl, HAL2_REG_CTL_IDR1);
162 1.1 lonewolf }
163 1.1 lonewolf
164 1.1 lonewolf static int
165 1.1 lonewolf haltwo_init_codec(struct haltwo_softc *sc, struct haltwo_codec *codec)
166 1.1 lonewolf {
167 1.1 lonewolf int err;
168 1.1 lonewolf int rseg;
169 1.7 kent size_t allocsz;
170 1.1 lonewolf
171 1.7 kent allocsz = sizeof(struct hpc_dma_desc) * HALTWO_MAX_DMASEGS;
172 1.1 lonewolf KASSERT(allocsz <= PAGE_SIZE);
173 1.1 lonewolf
174 1.1 lonewolf err = bus_dmamem_alloc(sc->sc_dma_tag, allocsz, 0, 0, &codec->dma_seg,
175 1.1 lonewolf 1, &rseg, BUS_DMA_NOWAIT);
176 1.1 lonewolf if (err)
177 1.1 lonewolf goto out;
178 1.1 lonewolf
179 1.1 lonewolf err = bus_dmamem_map(sc->sc_dma_tag, &codec->dma_seg, rseg, allocsz,
180 1.12 christos (void **)&codec->dma_descs, BUS_DMA_NOWAIT);
181 1.1 lonewolf if (err)
182 1.1 lonewolf goto out_free;
183 1.1 lonewolf
184 1.1 lonewolf err = bus_dmamap_create(sc->sc_dma_tag, allocsz, 1, PAGE_SIZE, 0,
185 1.1 lonewolf BUS_DMA_NOWAIT, &codec->dma_map);
186 1.1 lonewolf if (err)
187 1.1 lonewolf goto out_free;
188 1.1 lonewolf
189 1.1 lonewolf err = bus_dmamap_load(sc->sc_dma_tag, codec->dma_map, codec->dma_descs,
190 1.1 lonewolf allocsz, NULL, BUS_DMA_NOWAIT);
191 1.1 lonewolf if (err)
192 1.1 lonewolf goto out_destroy;
193 1.1 lonewolf
194 1.1 lonewolf DPRINTF(("haltwo_init_codec: allocated %d descriptors (%d bytes)"
195 1.1 lonewolf " at %p\n", HALTWO_MAX_DMASEGS, allocsz, codec->dma_descs));
196 1.1 lonewolf
197 1.1 lonewolf memset(codec->dma_descs, 0, allocsz);
198 1.1 lonewolf
199 1.7 kent return 0;
200 1.1 lonewolf
201 1.1 lonewolf out_destroy:
202 1.1 lonewolf bus_dmamap_destroy(sc->sc_dma_tag, codec->dma_map);
203 1.1 lonewolf out_free:
204 1.1 lonewolf bus_dmamem_free(sc->sc_dma_tag, &codec->dma_seg, rseg);
205 1.1 lonewolf out:
206 1.1 lonewolf DPRINTF(("haltwo_init_codec failed: %d\n",err));
207 1.1 lonewolf
208 1.7 kent return err;
209 1.1 lonewolf }
210 1.1 lonewolf
211 1.1 lonewolf static void
212 1.1 lonewolf haltwo_setup_dma(struct haltwo_softc *sc, struct haltwo_codec *codec,
213 1.1 lonewolf struct haltwo_dmabuf *dmabuf, size_t len, int blksize,
214 1.1 lonewolf void (*intr)(void *), void *intrarg)
215 1.1 lonewolf {
216 1.1 lonewolf int i;
217 1.1 lonewolf bus_dma_segment_t *segp;
218 1.1 lonewolf struct hpc_dma_desc *descp;
219 1.7 kent int next_intr;
220 1.2 tsutsui
221 1.1 lonewolf KASSERT(len % blksize == 0);
222 1.1 lonewolf
223 1.7 kent next_intr = blksize;
224 1.1 lonewolf codec->intr = intr;
225 1.1 lonewolf codec->intr_arg = intrarg;
226 1.1 lonewolf
227 1.1 lonewolf segp = dmabuf->dma_map->dm_segs;
228 1.1 lonewolf descp = codec->dma_descs;
229 1.1 lonewolf
230 1.1 lonewolf /* Build descriptor chain for looping DMA, triggering interrupt every
231 1.1 lonewolf * blksize bytes */
232 1.1 lonewolf for (i = 0; i < dmabuf->dma_map->dm_nsegs; i++) {
233 1.3 sekiya descp->hpc3_hdd_bufptr = segp->ds_addr;
234 1.3 sekiya descp->hpc3_hdd_ctl = segp->ds_len;
235 1.1 lonewolf
236 1.1 lonewolf KASSERT(next_intr >= segp->ds_len);
237 1.1 lonewolf
238 1.1 lonewolf if (next_intr == segp->ds_len) {
239 1.1 lonewolf /* Generate intr after this DMA buffer */
240 1.5 rumble descp->hpc3_hdd_ctl |= HPC3_HDD_CTL_INTR;
241 1.1 lonewolf next_intr = blksize;
242 1.2 tsutsui } else
243 1.1 lonewolf next_intr -= segp->ds_len;
244 1.1 lonewolf
245 1.1 lonewolf if (i < dmabuf->dma_map->dm_nsegs - 1)
246 1.1 lonewolf descp->hdd_descptr = codec->dma_seg.ds_addr +
247 1.1 lonewolf sizeof(struct hpc_dma_desc) * (i + 1);
248 1.1 lonewolf else
249 1.1 lonewolf descp->hdd_descptr = codec->dma_seg.ds_addr;
250 1.1 lonewolf
251 1.1 lonewolf DPRINTF(("haltwo_setup_dma: hdd_bufptr = %x hdd_ctl = %x"
252 1.3 sekiya " hdd_descptr = %x\n", descp->hpc3_hdd_bufptr,
253 1.3 sekiya descp->hpc3_hdd_ctl, descp->hdd_descptr));
254 1.1 lonewolf
255 1.1 lonewolf segp++;
256 1.1 lonewolf descp++;
257 1.1 lonewolf }
258 1.1 lonewolf
259 1.1 lonewolf bus_dmamap_sync(sc->sc_dma_tag, codec->dma_map, 0,
260 1.1 lonewolf codec->dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
261 1.1 lonewolf }
262 1.1 lonewolf
263 1.1 lonewolf static int
264 1.19 tsutsui haltwo_match(device_t parent, cfdata_t cf, void *aux)
265 1.1 lonewolf {
266 1.7 kent struct hpc_attach_args *haa;
267 1.10 rumble uint32_t rev;
268 1.1 lonewolf
269 1.7 kent haa = aux;
270 1.8 sekiya if (strcmp(haa->ha_name, cf->cf_name))
271 1.8 sekiya return 0;
272 1.10 rumble
273 1.13 he if ( platform.badaddr((void *)(vaddr_t)(haa->ha_sh + haa->ha_devoff),
274 1.18 tsutsui sizeof(uint32_t)) )
275 1.8 sekiya return 0;
276 1.1 lonewolf
277 1.11 rumble if ( platform.badaddr(
278 1.13 he (void *)(vaddr_t)(haa->ha_sh + haa->ha_devoff + HAL2_REG_CTL_REV),
279 1.18 tsutsui sizeof(uint32_t)) )
280 1.10 rumble return 0;
281 1.10 rumble
282 1.10 rumble rev = *(uint32_t *)MIPS_PHYS_TO_KSEG1(haa->ha_sh + haa->ha_devoff +
283 1.10 rumble HAL2_REG_CTL_REV);
284 1.10 rumble
285 1.10 rumble /* This bit is inverted, the test is correct */
286 1.10 rumble if (rev & HAL2_REV_AUDIO_PRESENT_N)
287 1.10 rumble return 0;
288 1.10 rumble
289 1.8 sekiya return 1;
290 1.1 lonewolf }
291 1.1 lonewolf
292 1.1 lonewolf static void
293 1.19 tsutsui haltwo_attach(device_t parent, device_t self, void *aux)
294 1.1 lonewolf {
295 1.7 kent struct haltwo_softc *sc;
296 1.7 kent struct hpc_attach_args *haa;
297 1.1 lonewolf uint32_t rev;
298 1.2 tsutsui
299 1.19 tsutsui sc = device_private(self);
300 1.7 kent haa = aux;
301 1.19 tsutsui sc->sc_dev = self;
302 1.1 lonewolf sc->sc_st = haa->ha_st;
303 1.1 lonewolf sc->sc_dma_tag = haa->ha_dmat;
304 1.1 lonewolf
305 1.21 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
306 1.21 jmcneill mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
307 1.21 jmcneill
308 1.1 lonewolf if (bus_space_subregion(haa->ha_st, haa->ha_sh, haa->ha_devoff,
309 1.5 rumble HPC3_PBUS_CH0_DEVREGS_SIZE, &sc->sc_ctl_sh)) {
310 1.1 lonewolf aprint_error(": unable to map control registers\n");
311 1.1 lonewolf return;
312 1.1 lonewolf }
313 1.1 lonewolf
314 1.5 rumble if (bus_space_subregion(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH2_DEVREGS,
315 1.5 rumble HPC3_PBUS_CH2_DEVREGS_SIZE, &sc->sc_vol_sh)) {
316 1.1 lonewolf aprint_error(": unable to map volume registers\n");
317 1.1 lonewolf return;
318 1.1 lonewolf }
319 1.1 lonewolf
320 1.1 lonewolf if (bus_space_subregion(haa->ha_st, haa->ha_sh, haa->ha_dmaoff,
321 1.5 rumble HPC3_PBUS_DMAREGS_SIZE, &sc->sc_dma_sh)) {
322 1.1 lonewolf aprint_error(": unable to map DMA registers\n");
323 1.1 lonewolf return;
324 1.1 lonewolf }
325 1.1 lonewolf
326 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_ISR, 0);
327 1.1 lonewolf haltwo_write(sc, ctl, HAL2_REG_CTL_ISR,
328 1.1 lonewolf HAL2_ISR_GLOBAL_RESET_N | HAL2_ISR_CODEC_RESET_N);
329 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_RELAY_C, HAL2_RELAY_C_STATE, 0);
330 1.1 lonewolf
331 1.1 lonewolf rev = haltwo_read(sc, ctl, HAL2_REG_CTL_REV);
332 1.1 lonewolf
333 1.21 jmcneill if (cpu_intr_establish(haa->ha_irq, IPL_SCHED, haltwo_intr, sc)
334 1.1 lonewolf == NULL) {
335 1.1 lonewolf aprint_error(": unable to establish interrupt\n");
336 1.1 lonewolf return;
337 1.1 lonewolf }
338 1.1 lonewolf
339 1.1 lonewolf aprint_naive(": Audio controller\n");
340 1.1 lonewolf
341 1.1 lonewolf aprint_normal(": HAL2 revision %d.%d.%d\n", (rev & 0x7000) >> 12,
342 1.1 lonewolf (rev & 0x00F0) >> 4, rev & 0x000F);
343 1.1 lonewolf
344 1.1 lonewolf if (haltwo_init_codec(sc, &sc->sc_dac)) {
345 1.1 lonewolf aprint_error(
346 1.1 lonewolf "haltwo_attach: unable to create DMA descriptor list\n");
347 1.1 lonewolf return;
348 1.1 lonewolf }
349 1.1 lonewolf
350 1.1 lonewolf /* XXX Magic PBUS CFGDMA values from Linux HAL2 driver XXX */
351 1.5 rumble bus_space_write_4(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH0_CFGDMA,
352 1.1 lonewolf 0x8208844);
353 1.5 rumble bus_space_write_4(haa->ha_st, haa->ha_sh, HPC3_PBUS_CH1_CFGDMA,
354 1.1 lonewolf 0x8208844);
355 1.1 lonewolf
356 1.1 lonewolf /* Unmute output */
357 1.1 lonewolf /* XXX Add mute/unmute support to mixer ops? XXX */
358 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DAC_C2, 0, 0);
359 1.1 lonewolf
360 1.1 lonewolf /* Set master volume to zero */
361 1.1 lonewolf sc->sc_vol_left = sc->sc_vol_right = 0;
362 1.1 lonewolf haltwo_write(sc, vol, HAL2_REG_VOL_LEFT, sc->sc_vol_left);
363 1.1 lonewolf haltwo_write(sc, vol, HAL2_REG_VOL_RIGHT, sc->sc_vol_right);
364 1.1 lonewolf
365 1.19 tsutsui audio_attach_mi(&haltwo_hw_if, sc, self);
366 1.15 tsutsui
367 1.17 tsutsui if (!pmf_device_register1(self, NULL, NULL, haltwo_shutdown))
368 1.15 tsutsui aprint_error_dev(self,
369 1.17 tsutsui "couldn't establish power handler\n");
370 1.1 lonewolf }
371 1.1 lonewolf
372 1.1 lonewolf static int
373 1.1 lonewolf haltwo_intr(void *v)
374 1.1 lonewolf {
375 1.7 kent struct haltwo_softc *sc;
376 1.7 kent int ret;
377 1.1 lonewolf
378 1.7 kent sc = v;
379 1.7 kent ret = 0;
380 1.21 jmcneill
381 1.21 jmcneill mutex_spin_enter(&sc->sc_intr_lock);
382 1.21 jmcneill
383 1.5 rumble if (bus_space_read_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL)
384 1.5 rumble & HPC3_PBUS_DMACTL_IRQ) {
385 1.2 tsutsui sc->sc_dac.intr(sc->sc_dac.intr_arg);
386 1.1 lonewolf
387 1.2 tsutsui ret = 1;
388 1.2 tsutsui } else
389 1.2 tsutsui DPRINTF(("haltwo_intr: Huh?\n"));
390 1.1 lonewolf
391 1.21 jmcneill mutex_spin_exit(&sc->sc_intr_lock);
392 1.21 jmcneill
393 1.7 kent return ret;
394 1.1 lonewolf }
395 1.1 lonewolf
396 1.1 lonewolf static int
397 1.1 lonewolf haltwo_query_encoding(void *v, struct audio_encoding *e)
398 1.1 lonewolf {
399 1.2 tsutsui
400 1.1 lonewolf switch (e->index) {
401 1.1 lonewolf case 0:
402 1.1 lonewolf strcpy(e->name, AudioEslinear_le);
403 1.1 lonewolf e->encoding = AUDIO_ENCODING_SLINEAR_LE;
404 1.1 lonewolf e->precision = 16;
405 1.1 lonewolf e->flags = 0;
406 1.1 lonewolf break;
407 1.2 tsutsui
408 1.1 lonewolf case 1:
409 1.1 lonewolf strcpy(e->name, AudioEslinear_be);
410 1.1 lonewolf e->encoding = AUDIO_ENCODING_SLINEAR_BE;
411 1.1 lonewolf e->precision = 16;
412 1.1 lonewolf e->flags = 0;
413 1.1 lonewolf break;
414 1.1 lonewolf
415 1.1 lonewolf case 2:
416 1.1 lonewolf strcpy(e->name, AudioEmulaw);
417 1.1 lonewolf e->encoding = AUDIO_ENCODING_ULAW;
418 1.1 lonewolf e->precision = 8;
419 1.1 lonewolf e->flags = AUDIO_ENCODINGFLAG_EMULATED;
420 1.1 lonewolf break;
421 1.2 tsutsui
422 1.1 lonewolf default:
423 1.7 kent return EINVAL;
424 1.1 lonewolf }
425 1.2 tsutsui
426 1.7 kent return 0;
427 1.1 lonewolf }
428 1.1 lonewolf
429 1.1 lonewolf static int
430 1.6 kent haltwo_set_params(void *v, int setmode, int usemode,
431 1.6 kent audio_params_t *play, audio_params_t *rec,
432 1.6 kent stream_filter_list_t *pfil, stream_filter_list_t *rfil)
433 1.1 lonewolf {
434 1.6 kent audio_params_t hw;
435 1.7 kent struct haltwo_softc *sc;
436 1.1 lonewolf int master, inc, mod;
437 1.1 lonewolf uint16_t tmp;
438 1.1 lonewolf
439 1.7 kent sc = v;
440 1.6 kent if (play->sample_rate < 4000)
441 1.6 kent play->sample_rate = 4000;
442 1.6 kent if (play->sample_rate > 48000)
443 1.6 kent play->sample_rate = 48000;
444 1.2 tsutsui
445 1.6 kent if (44100 % play->sample_rate < 48000 % play->sample_rate)
446 1.6 kent master = 44100;
447 1.6 kent else
448 1.6 kent master = 48000;
449 1.6 kent
450 1.6 kent /* HAL2 specification 3.1.2.21: Codecs should be driven with INC/MOD
451 1.6 kent * fractions equivalent to 4/N, where N is a positive integer. */
452 1.6 kent inc = 4;
453 1.6 kent mod = master * inc / play->sample_rate;
454 1.6 kent
455 1.6 kent /* Fixup upper layers idea of HW sample rate to the actual final rate */
456 1.6 kent play->sample_rate = master * inc / mod;
457 1.6 kent
458 1.6 kent DPRINTF(("haltwo_set_params: master = %d inc = %d mod = %d"
459 1.6 kent " sample_rate = %ld\n", master, inc, mod,
460 1.6 kent play->sample_rate));
461 1.6 kent
462 1.6 kent hw = *play;
463 1.1 lonewolf switch (play->encoding) {
464 1.1 lonewolf case AUDIO_ENCODING_ULAW:
465 1.1 lonewolf if (play->precision != 8)
466 1.7 kent return EINVAL;
467 1.1 lonewolf
468 1.6 kent hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
469 1.6 kent pfil->append(pfil, mulaw_to_linear16, &hw);
470 1.6 kent play = &hw;
471 1.1 lonewolf break;
472 1.1 lonewolf case AUDIO_ENCODING_SLINEAR_BE:
473 1.1 lonewolf case AUDIO_ENCODING_SLINEAR_LE:
474 1.1 lonewolf break;
475 1.1 lonewolf
476 1.1 lonewolf default:
477 1.7 kent return EINVAL;
478 1.1 lonewolf }
479 1.6 kent /* play points HW encoding */
480 1.1 lonewolf
481 1.1 lonewolf /* Setup samplerate to HW */
482 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_BRES1_C1,
483 1.1 lonewolf master == 44100 ? 1 : 0, 0);
484 1.1 lonewolf /* XXX Documentation disagrees but this seems to work XXX */
485 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_BRES1_C2,
486 1.1 lonewolf inc, 0xFFFF & (inc - mod - 1));
487 1.1 lonewolf
488 1.1 lonewolf /* Setup endianness to HW */
489 1.1 lonewolf haltwo_read_indirect(sc, HAL2_IREG_DMA_END, &tmp, NULL);
490 1.6 kent if (play->encoding == AUDIO_ENCODING_SLINEAR_LE)
491 1.1 lonewolf tmp |= HAL2_DMA_END_CODECTX;
492 1.1 lonewolf else
493 1.1 lonewolf tmp &= ~HAL2_DMA_END_CODECTX;
494 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DMA_END, tmp, 0);
495 1.1 lonewolf
496 1.1 lonewolf /* Set PBUS channel, Bresenham clock source, number of channels to HW */
497 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DAC_C1,
498 1.1 lonewolf (0 << HAL2_C1_DMA_SHIFT) |
499 1.1 lonewolf (1 << HAL2_C1_CLKID_SHIFT) |
500 1.6 kent (play->channels << HAL2_C1_DATAT_SHIFT), 0);
501 1.1 lonewolf
502 1.1 lonewolf DPRINTF(("haltwo_set_params: hw_encoding = %d hw_channels = %d\n",
503 1.6 kent play->encoding, play->channels));
504 1.1 lonewolf
505 1.7 kent return 0;
506 1.1 lonewolf }
507 1.1 lonewolf
508 1.1 lonewolf static int
509 1.6 kent haltwo_round_blocksize(void *v, int blocksize,
510 1.6 kent int mode, const audio_params_t *param)
511 1.1 lonewolf {
512 1.2 tsutsui
513 1.1 lonewolf /* XXX Make this smarter and support DMA descriptor chaining XXX */
514 1.1 lonewolf /* XXX Rounding to nearest PAGE_SIZE might work? XXX */
515 1.1 lonewolf return PAGE_SIZE;
516 1.1 lonewolf }
517 1.1 lonewolf
518 1.1 lonewolf static int
519 1.1 lonewolf haltwo_halt_output(void *v)
520 1.1 lonewolf {
521 1.7 kent struct haltwo_softc *sc;
522 1.1 lonewolf
523 1.7 kent sc = v;
524 1.1 lonewolf /* Disable PBUS DMA */
525 1.5 rumble bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
526 1.5 rumble HPC3_PBUS_DMACTL_ACT_LD);
527 1.1 lonewolf
528 1.7 kent return 0;
529 1.1 lonewolf }
530 1.1 lonewolf
531 1.1 lonewolf static int
532 1.1 lonewolf haltwo_halt_input(void *v)
533 1.1 lonewolf {
534 1.2 tsutsui
535 1.7 kent return ENXIO;
536 1.1 lonewolf }
537 1.1 lonewolf
538 1.1 lonewolf static int
539 1.1 lonewolf haltwo_getdev(void *v, struct audio_device *dev)
540 1.1 lonewolf {
541 1.2 tsutsui
542 1.1 lonewolf *dev = haltwo_device;
543 1.7 kent return 0;
544 1.1 lonewolf }
545 1.1 lonewolf
546 1.1 lonewolf static int
547 1.1 lonewolf haltwo_set_port(void *v, mixer_ctrl_t *mc)
548 1.1 lonewolf {
549 1.7 kent struct haltwo_softc *sc;
550 1.1 lonewolf int lval, rval;
551 1.2 tsutsui
552 1.1 lonewolf if (mc->type != AUDIO_MIXER_VALUE)
553 1.7 kent return EINVAL;
554 1.1 lonewolf
555 1.1 lonewolf if (mc->un.value.num_channels == 1)
556 1.1 lonewolf lval = rval = mc->un.value.level[AUDIO_MIXER_LEVEL_MONO];
557 1.1 lonewolf else if (mc->un.value.num_channels == 2) {
558 1.1 lonewolf lval = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
559 1.1 lonewolf rval = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
560 1.1 lonewolf } else
561 1.7 kent return EINVAL;
562 1.1 lonewolf
563 1.7 kent sc = v;
564 1.1 lonewolf switch (mc->dev) {
565 1.1 lonewolf case HALTWO_MASTER_VOL:
566 1.1 lonewolf sc->sc_vol_left = lval;
567 1.1 lonewolf sc->sc_vol_right = rval;
568 1.1 lonewolf
569 1.1 lonewolf haltwo_write(sc, vol, HAL2_REG_VOL_LEFT,
570 1.1 lonewolf sc->sc_vol_left);
571 1.1 lonewolf haltwo_write(sc, vol, HAL2_REG_VOL_RIGHT,
572 1.1 lonewolf sc->sc_vol_right);
573 1.1 lonewolf break;
574 1.1 lonewolf
575 1.1 lonewolf default:
576 1.7 kent return EINVAL;
577 1.1 lonewolf }
578 1.1 lonewolf
579 1.7 kent return 0;
580 1.1 lonewolf }
581 1.1 lonewolf
582 1.1 lonewolf static int
583 1.1 lonewolf haltwo_get_port(void *v, mixer_ctrl_t *mc)
584 1.1 lonewolf {
585 1.7 kent struct haltwo_softc *sc;
586 1.1 lonewolf int l, r;
587 1.2 tsutsui
588 1.1 lonewolf switch (mc->dev) {
589 1.1 lonewolf case HALTWO_MASTER_VOL:
590 1.7 kent sc = v;
591 1.1 lonewolf l = sc->sc_vol_left;
592 1.1 lonewolf r = sc->sc_vol_right;
593 1.1 lonewolf break;
594 1.1 lonewolf
595 1.1 lonewolf default:
596 1.7 kent return EINVAL;
597 1.1 lonewolf }
598 1.1 lonewolf
599 1.1 lonewolf if (mc->un.value.num_channels == 1)
600 1.1 lonewolf mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
601 1.1 lonewolf else if (mc->un.value.num_channels == 2) {
602 1.1 lonewolf mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
603 1.1 lonewolf mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
604 1.1 lonewolf } else
605 1.7 kent return EINVAL;
606 1.1 lonewolf
607 1.7 kent return 0;
608 1.1 lonewolf }
609 1.1 lonewolf
610 1.1 lonewolf static int
611 1.1 lonewolf haltwo_query_devinfo(void *v, mixer_devinfo_t *dev)
612 1.1 lonewolf {
613 1.2 tsutsui
614 1.1 lonewolf switch (dev->index) {
615 1.1 lonewolf /* Mixer values */
616 1.1 lonewolf case HALTWO_MASTER_VOL:
617 1.1 lonewolf dev->type = AUDIO_MIXER_VALUE;
618 1.1 lonewolf dev->mixer_class = HALTWO_OUTPUT_CLASS;
619 1.1 lonewolf dev->prev = dev->next = AUDIO_MIXER_LAST;
620 1.1 lonewolf strcpy(dev->label.name, AudioNmaster);
621 1.1 lonewolf dev->un.v.num_channels = 2;
622 1.16 macallan dev->un.v.delta = 16;
623 1.1 lonewolf strcpy(dev->un.v.units.name, AudioNvolume);
624 1.1 lonewolf break;
625 1.1 lonewolf
626 1.1 lonewolf /* Mixer classes */
627 1.1 lonewolf case HALTWO_OUTPUT_CLASS:
628 1.1 lonewolf dev->type = AUDIO_MIXER_CLASS;
629 1.1 lonewolf dev->mixer_class = HALTWO_OUTPUT_CLASS;
630 1.1 lonewolf dev->next = dev->prev = AUDIO_MIXER_LAST;
631 1.1 lonewolf strcpy(dev->label.name, AudioCoutputs);
632 1.1 lonewolf break;
633 1.1 lonewolf
634 1.1 lonewolf default:
635 1.7 kent return EINVAL;
636 1.1 lonewolf }
637 1.1 lonewolf
638 1.7 kent return 0;
639 1.1 lonewolf }
640 1.1 lonewolf
641 1.1 lonewolf static int
642 1.1 lonewolf haltwo_alloc_dmamem(struct haltwo_softc *sc, size_t size,
643 1.1 lonewolf struct haltwo_dmabuf *p)
644 1.1 lonewolf {
645 1.1 lonewolf int err;
646 1.1 lonewolf
647 1.1 lonewolf p->size = size;
648 1.1 lonewolf
649 1.1 lonewolf /* XXX Check align/boundary XXX */
650 1.1 lonewolf err = bus_dmamem_alloc(sc->sc_dma_tag, p->size, 0, 0, p->dma_segs,
651 1.21 jmcneill HALTWO_MAX_DMASEGS, &p->dma_segcount, BUS_DMA_WAITOK);
652 1.1 lonewolf if (err)
653 1.1 lonewolf goto out;
654 1.1 lonewolf
655 1.1 lonewolf /* XXX BUS_DMA_COHERENT? XXX */
656 1.1 lonewolf err = bus_dmamem_map(sc->sc_dma_tag, p->dma_segs, p->dma_segcount,
657 1.21 jmcneill p->size, &p->kern_addr, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
658 1.1 lonewolf if (err)
659 1.1 lonewolf goto out_free;
660 1.1 lonewolf
661 1.1 lonewolf /* XXX Just guessing ... XXX */
662 1.1 lonewolf err = bus_dmamap_create(sc->sc_dma_tag, p->size, HALTWO_MAX_DMASEGS,
663 1.21 jmcneill PAGE_SIZE, 0, BUS_DMA_WAITOK, &p->dma_map);
664 1.1 lonewolf if (err)
665 1.1 lonewolf goto out_free;
666 1.1 lonewolf
667 1.1 lonewolf err = bus_dmamap_load(sc->sc_dma_tag, p->dma_map, p->kern_addr,
668 1.21 jmcneill p->size, NULL, BUS_DMA_WAITOK);
669 1.1 lonewolf if (err)
670 1.1 lonewolf goto out_destroy;
671 1.1 lonewolf
672 1.1 lonewolf return 0;
673 1.1 lonewolf
674 1.1 lonewolf out_destroy:
675 1.1 lonewolf bus_dmamap_destroy(sc->sc_dma_tag, p->dma_map);
676 1.1 lonewolf out_free:
677 1.1 lonewolf bus_dmamem_free(sc->sc_dma_tag, p->dma_segs, p->dma_segcount);
678 1.1 lonewolf out:
679 1.1 lonewolf DPRINTF(("haltwo_alloc_dmamem failed: %d\n",err));
680 1.1 lonewolf
681 1.1 lonewolf return err;
682 1.1 lonewolf }
683 1.1 lonewolf
684 1.1 lonewolf static void *
685 1.21 jmcneill haltwo_malloc(void *v, int direction, size_t size)
686 1.1 lonewolf {
687 1.7 kent struct haltwo_softc *sc;
688 1.1 lonewolf struct haltwo_dmabuf *p;
689 1.1 lonewolf
690 1.1 lonewolf DPRINTF(("haltwo_malloc size = %d\n", size));
691 1.7 kent sc = v;
692 1.21 jmcneill p = kmem_alloc(sizeof(*p), KM_SLEEP);
693 1.21 jmcneill if (p == NULL)
694 1.21 jmcneill return NULL;
695 1.1 lonewolf
696 1.1 lonewolf if (haltwo_alloc_dmamem(sc, size, p)) {
697 1.21 jmcneill kmem_free(p, sizeof(*p));
698 1.21 jmcneill return NULL;
699 1.1 lonewolf }
700 1.1 lonewolf
701 1.1 lonewolf p->next = sc->sc_dma_bufs;
702 1.1 lonewolf sc->sc_dma_bufs = p;
703 1.1 lonewolf
704 1.1 lonewolf return p->kern_addr;
705 1.1 lonewolf }
706 1.1 lonewolf
707 1.1 lonewolf static void
708 1.21 jmcneill haltwo_free(void *v, void *addr, size_t size)
709 1.1 lonewolf {
710 1.7 kent struct haltwo_softc *sc;
711 1.7 kent struct haltwo_dmabuf *p, **pp;
712 1.1 lonewolf
713 1.7 kent sc = v;
714 1.1 lonewolf for (pp = &sc->sc_dma_bufs; (p = *pp) != NULL; pp = &p->next) {
715 1.1 lonewolf if (p->kern_addr == addr) {
716 1.1 lonewolf *pp = p->next;
717 1.21 jmcneill kmem_free(p, sizeof(*p));
718 1.1 lonewolf return;
719 1.1 lonewolf }
720 1.1 lonewolf }
721 1.1 lonewolf
722 1.1 lonewolf panic("haltwo_free: buffer not in list");
723 1.1 lonewolf }
724 1.1 lonewolf
725 1.1 lonewolf static int
726 1.1 lonewolf haltwo_get_props(void *v)
727 1.1 lonewolf {
728 1.2 tsutsui
729 1.7 kent return 0;
730 1.1 lonewolf }
731 1.1 lonewolf
732 1.1 lonewolf static int
733 1.1 lonewolf haltwo_trigger_output(void *v, void *start, void *end, int blksize,
734 1.6 kent void (*intr)(void *), void *intrarg, const audio_params_t *param)
735 1.1 lonewolf {
736 1.7 kent struct haltwo_softc *sc;
737 1.1 lonewolf struct haltwo_dmabuf *p;
738 1.1 lonewolf uint16_t tmp;
739 1.1 lonewolf uint32_t ctrl;
740 1.1 lonewolf unsigned int fifobeg, fifoend, highwater;
741 1.1 lonewolf
742 1.1 lonewolf DPRINTF(("haltwo_trigger_output start = %p end = %p blksize = %d"
743 1.2 tsutsui " param = %p\n", start, end, blksize, param));
744 1.7 kent sc = v;
745 1.1 lonewolf for (p = sc->sc_dma_bufs; p != NULL; p = p->next)
746 1.1 lonewolf if (p->kern_addr == start)
747 1.1 lonewolf break;
748 1.1 lonewolf
749 1.1 lonewolf if (p == NULL) {
750 1.1 lonewolf printf("haltwo_trigger_output: buffer not in list\n");
751 1.2 tsutsui
752 1.7 kent return EINVAL;
753 1.1 lonewolf }
754 1.1 lonewolf
755 1.1 lonewolf /* Disable PBUS DMA */
756 1.5 rumble bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
757 1.5 rumble HPC3_PBUS_DMACTL_ACT_LD);
758 1.1 lonewolf
759 1.1 lonewolf /* Disable HAL2 codec DMA */
760 1.1 lonewolf haltwo_read_indirect(sc, HAL2_IREG_DMA_PORT_EN, &tmp, NULL);
761 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DMA_PORT_EN,
762 1.1 lonewolf tmp & ~HAL2_DMA_PORT_EN_CODECTX, 0);
763 1.1 lonewolf
764 1.1 lonewolf haltwo_setup_dma(sc, &sc->sc_dac, p, (char *)end - (char *)start,
765 1.1 lonewolf blksize, intr, intrarg);
766 1.1 lonewolf
767 1.6 kent highwater = (param->channels * 4) >> 1;
768 1.1 lonewolf fifobeg = 0;
769 1.6 kent fifoend = (param->channels * 8) >> 3;
770 1.1 lonewolf
771 1.1 lonewolf DPRINTF(("haltwo_trigger_output: hw_channels = %d highwater = %d"
772 1.2 tsutsui " fifobeg = %d fifoend = %d\n", param->hw_channels, highwater,
773 1.2 tsutsui fifobeg, fifoend));
774 1.1 lonewolf
775 1.5 rumble ctrl = HPC3_PBUS_DMACTL_RT
776 1.5 rumble | HPC3_PBUS_DMACTL_ACT_LD
777 1.5 rumble | (highwater << HPC3_PBUS_DMACTL_HIGHWATER_SHIFT)
778 1.5 rumble | (fifobeg << HPC3_PBUS_DMACTL_FIFOBEG_SHIFT)
779 1.5 rumble | (fifoend << HPC3_PBUS_DMACTL_FIFOEND_SHIFT);
780 1.1 lonewolf
781 1.1 lonewolf /* Using PBUS CH0 for DAC DMA */
782 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DMA_DRV, 1, 0);
783 1.1 lonewolf
784 1.1 lonewolf /* HAL2 is ready for action, now setup PBUS for DMA transfer */
785 1.5 rumble bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_DP,
786 1.1 lonewolf sc->sc_dac.dma_seg.ds_addr);
787 1.5 rumble bus_space_write_4(sc->sc_st, sc->sc_dma_sh, HPC3_PBUS_CH0_CTL,
788 1.5 rumble ctrl | HPC3_PBUS_DMACTL_ACT);
789 1.1 lonewolf
790 1.1 lonewolf /* Both HAL2 and PBUS have been setup, now start it up */
791 1.1 lonewolf haltwo_read_indirect(sc, HAL2_IREG_DMA_PORT_EN, &tmp, NULL);
792 1.1 lonewolf haltwo_write_indirect(sc, HAL2_IREG_DMA_PORT_EN,
793 1.1 lonewolf tmp | HAL2_DMA_PORT_EN_CODECTX, 0);
794 1.2 tsutsui
795 1.7 kent return 0;
796 1.1 lonewolf }
797 1.1 lonewolf
798 1.1 lonewolf static int
799 1.1 lonewolf haltwo_trigger_input(void *v, void *start, void *end, int blksize,
800 1.6 kent void (*intr)(void *), void *intrarg, const audio_params_t *param)
801 1.1 lonewolf {
802 1.7 kent struct haltwo_softc *sc;
803 1.1 lonewolf struct haltwo_dmabuf *p;
804 1.2 tsutsui
805 1.1 lonewolf DPRINTF(("haltwo_trigger_input start = %p end = %p blksize = %d\n",
806 1.2 tsutsui start, end, blksize));
807 1.7 kent sc = v;
808 1.1 lonewolf for (p = sc->sc_dma_bufs; p != NULL; p = p->next)
809 1.1 lonewolf if (p->kern_addr == start)
810 1.1 lonewolf break;
811 1.1 lonewolf
812 1.1 lonewolf if (p == NULL) {
813 1.1 lonewolf printf("haltwo_trigger_input: buffer not in list\n");
814 1.2 tsutsui
815 1.7 kent return EINVAL;
816 1.1 lonewolf }
817 1.1 lonewolf
818 1.1 lonewolf #if 0
819 1.1 lonewolf haltwo_setup_dma(sc, &sc->sc_adc, p, (char *)end - (char *)start,
820 1.1 lonewolf blksize, intr, intrarg);
821 1.1 lonewolf #endif
822 1.2 tsutsui
823 1.7 kent return ENXIO;
824 1.1 lonewolf }
825 1.15 tsutsui
826 1.21 jmcneill static void
827 1.21 jmcneill haltwo_get_locks(void *v, kmutex_t **intr, kmutex_t **thread)
828 1.21 jmcneill {
829 1.21 jmcneill struct haltwo_softc *sc;
830 1.21 jmcneill
831 1.21 jmcneill DPRINTF(("haltwo_get_locks\n"));
832 1.21 jmcneill sc = v;
833 1.21 jmcneill
834 1.21 jmcneill *intr = &sc->sc_intr_lock;
835 1.21 jmcneill *thread = &sc->sc_lock;
836 1.21 jmcneill }
837 1.21 jmcneill
838 1.17 tsutsui bool
839 1.17 tsutsui haltwo_shutdown(device_t self, int howto)
840 1.15 tsutsui {
841 1.17 tsutsui struct haltwo_softc *sc;
842 1.15 tsutsui
843 1.17 tsutsui sc = device_private(self);
844 1.15 tsutsui haltwo_write(sc, ctl, HAL2_REG_CTL_ISR, 0);
845 1.15 tsutsui haltwo_write(sc, ctl, HAL2_REG_CTL_ISR,
846 1.15 tsutsui HAL2_ISR_GLOBAL_RESET_N | HAL2_ISR_CODEC_RESET_N);
847 1.17 tsutsui
848 1.17 tsutsui return true;
849 1.15 tsutsui }
850