if_sq.c revision 1.16.2.3 1 /* $NetBSD: if_sq.c,v 1.16.2.3 2004/09/21 13:21:19 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.16.2.3 2004/09/21 13:21:19 skrll Exp $");
37
38 #include "bpfilter.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <machine/endian.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67
68 #include <dev/ic/seeq8003reg.h>
69
70 #include <sgimips/hpc/sqvar.h>
71 #include <sgimips/hpc/hpcvar.h>
72 #include <sgimips/hpc/hpcreg.h>
73
74 #include <dev/arcbios/arcbios.h>
75 #include <dev/arcbios/arcbiosvar.h>
76
77 #define static
78
79 /*
80 * Short TODO list:
81 * (1) Do counters for bad-RX packets.
82 * (2) Allow multi-segment transmits, instead of copying to a single,
83 * contiguous mbuf.
84 * (3) Verify sq_stop() turns off enough stuff; I was still getting
85 * seeq interrupts after sq_stop().
86 * (4) Implement EDLC modes: especially packet auto-pad and simplex
87 * mode.
88 * (5) Should the driver filter out its own transmissions in non-EDLC
89 * mode?
90 * (6) Multicast support -- multicast filter, address management, ...
91 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need
92 * to figure out if RB0 is read-only as stated in one spot in the
93 * HPC spec or read-write (ie, is the 'write a one to clear it')
94 * the correct thing?
95 */
96
97 #if defined(SQ_DEBUG)
98 int sq_debug = 0;
99 #define SQ_DPRINTF(x) if (sq_debug) printf x
100 #else
101 #define SQ_DPRINTF(x)
102 #endif
103
104 static int sq_match(struct device *, struct cfdata *, void *);
105 static void sq_attach(struct device *, struct device *, void *);
106 static int sq_init(struct ifnet *);
107 static void sq_start(struct ifnet *);
108 static void sq_stop(struct ifnet *, int);
109 static void sq_watchdog(struct ifnet *);
110 static int sq_ioctl(struct ifnet *, u_long, caddr_t);
111
112 static void sq_set_filter(struct sq_softc *);
113 static int sq_intr(void *);
114 static int sq_rxintr(struct sq_softc *);
115 static int sq_txintr(struct sq_softc *);
116 static void sq_reset(struct sq_softc *);
117 static int sq_add_rxbuf(struct sq_softc *, int);
118 static void sq_dump_buffer(u_int32_t addr, u_int32_t len);
119
120 static void enaddr_aton(const char*, u_int8_t*);
121
122 /* Actions */
123 #define SQ_RESET 1
124 #define SQ_ADD_TO_DMA 2
125 #define SQ_START_DMA 3
126 #define SQ_DONE_DMA 4
127 #define SQ_RESTART_DMA 5
128 #define SQ_TXINTR_ENTER 6
129 #define SQ_TXINTR_EXIT 7
130 #define SQ_TXINTR_BUSY 8
131
132 struct sq_action_trace {
133 int action;
134 int bufno;
135 int status;
136 int freebuf;
137 };
138
139 #define SQ_TRACEBUF_SIZE 100
140 int sq_trace_idx = 0;
141 struct sq_action_trace sq_trace[SQ_TRACEBUF_SIZE];
142
143 void sq_trace_dump(struct sq_softc* sc);
144
145 #define SQ_TRACE(act, buf, stat, free) do { \
146 sq_trace[sq_trace_idx].action = (act); \
147 sq_trace[sq_trace_idx].bufno = (buf); \
148 sq_trace[sq_trace_idx].status = (stat); \
149 sq_trace[sq_trace_idx].freebuf = (free); \
150 if (++sq_trace_idx == SQ_TRACEBUF_SIZE) { \
151 memset(&sq_trace, 0, sizeof(sq_trace)); \
152 sq_trace_idx = 0; \
153 } \
154 } while (0)
155
156 CFATTACH_DECL(sq, sizeof(struct sq_softc),
157 sq_match, sq_attach, NULL, NULL);
158
159 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
160
161 static int
162 sq_match(struct device *parent, struct cfdata *cf, void *aux)
163 {
164 struct hpc_attach_args *ha = aux;
165
166 if (strcmp(ha->ha_name, cf->cf_name) == 0)
167 return (1);
168
169 return (0);
170 }
171
172 static void
173 sq_attach(struct device *parent, struct device *self, void *aux)
174 {
175 int i, err;
176 char* macaddr;
177 struct sq_softc *sc = (void *)self;
178 struct hpc_attach_args *haa = aux;
179 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
180
181 sc->sc_hpct = haa->ha_st;
182 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
183
184 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
185 haa->ha_dmaoff,
186 sc->hpc_regs->enet_regs_size,
187 &sc->sc_hpch)) != 0) {
188 printf(": unable to map HPC DMA registers, error = %d\n", err);
189 goto fail_0;
190 }
191
192 sc->sc_regt = haa->ha_st;
193 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
194 haa->ha_devoff,
195 sc->hpc_regs->enet_devregs_size,
196 &sc->sc_regh)) != 0) {
197 printf(": unable to map Seeq registers, error = %d\n", err);
198 goto fail_0;
199 }
200
201 sc->sc_dmat = haa->ha_dmat;
202
203 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
205 1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
206 printf(": unable to allocate control data, error = %d\n", err);
207 goto fail_0;
208 }
209
210 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211 sizeof(struct sq_control),
212 (caddr_t *)&sc->sc_control,
213 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
214 printf(": unable to map control data, error = %d\n", err);
215 goto fail_1;
216 }
217
218 if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
219 1, sizeof(struct sq_control), PAGE_SIZE,
220 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
221 printf(": unable to create DMA map for control data, error "
222 "= %d\n", err);
223 goto fail_2;
224 }
225
226 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
227 sizeof(struct sq_control),
228 NULL, BUS_DMA_NOWAIT)) != 0) {
229 printf(": unable to load DMA map for control data, error "
230 "= %d\n", err);
231 goto fail_3;
232 }
233
234 memset(sc->sc_control, 0, sizeof(struct sq_control));
235
236 /* Create transmit buffer DMA maps */
237 for (i = 0; i < SQ_NTXDESC; i++) {
238 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
239 0, BUS_DMA_NOWAIT,
240 &sc->sc_txmap[i])) != 0) {
241 printf(": unable to create tx DMA map %d, error = %d\n",
242 i, err);
243 goto fail_4;
244 }
245 }
246
247 /* Create receive buffer DMA maps */
248 for (i = 0; i < SQ_NRXDESC; i++) {
249 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
250 0, BUS_DMA_NOWAIT,
251 &sc->sc_rxmap[i])) != 0) {
252 printf(": unable to create rx DMA map %d, error = %d\n",
253 i, err);
254 goto fail_5;
255 }
256 }
257
258 /* Pre-allocate the receive buffers. */
259 for (i = 0; i < SQ_NRXDESC; i++) {
260 if ((err = sq_add_rxbuf(sc, i)) != 0) {
261 printf(": unable to allocate or map rx buffer %d\n,"
262 " error = %d\n", i, err);
263 goto fail_6;
264 }
265 }
266
267 if ((macaddr = ARCBIOS->GetEnvironmentVariable("eaddr")) == NULL) {
268 printf(": unable to get MAC address!\n");
269 goto fail_6;
270 }
271
272 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
273 self->dv_xname, "intr");
274
275 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
276 printf(": unable to establish interrupt!\n");
277 goto fail_6;
278 }
279
280 /* Reset the chip to a known state. */
281 sq_reset(sc);
282
283 /*
284 * Determine if we're an 8003 or 80c03 by setting the first
285 * MAC address register to non-zero, and then reading it back.
286 * If it's zero, we have an 80c03, because we will have read
287 * the TxCollLSB register.
288 */
289 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCOLLS0, 0xa5);
290 if (bus_space_read_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCOLLS0) == 0)
291 sc->sc_type = SQ_TYPE_80C03;
292 else
293 sc->sc_type = SQ_TYPE_8003;
294 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCOLLS0, 0x00);
295
296 printf(": SGI Seeq %s\n",
297 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
298
299 enaddr_aton(macaddr, sc->sc_enaddr);
300
301 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
302 ether_sprintf(sc->sc_enaddr));
303
304 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_init = sq_init;
308 ifp->if_stop = sq_stop;
309 ifp->if_start = sq_start;
310 ifp->if_ioctl = sq_ioctl;
311 ifp->if_watchdog = sq_watchdog;
312 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
313 IFQ_SET_READY(&ifp->if_snd);
314
315 if_attach(ifp);
316 ether_ifattach(ifp, sc->sc_enaddr);
317
318 memset(&sq_trace, 0, sizeof(sq_trace));
319 /* Done! */
320 return;
321
322 /*
323 * Free any resources we've allocated during the failed attach
324 * attempt. Do this in reverse order and fall through.
325 */
326 fail_6:
327 for (i = 0; i < SQ_NRXDESC; i++) {
328 if (sc->sc_rxmbuf[i] != NULL) {
329 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
330 m_freem(sc->sc_rxmbuf[i]);
331 }
332 }
333 fail_5:
334 for (i = 0; i < SQ_NRXDESC; i++) {
335 if (sc->sc_rxmap[i] != NULL)
336 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
337 }
338 fail_4:
339 for (i = 0; i < SQ_NTXDESC; i++) {
340 if (sc->sc_txmap[i] != NULL)
341 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
342 }
343 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
344 fail_3:
345 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
346 fail_2:
347 bus_dmamem_unmap(sc->sc_dmat, (caddr_t) sc->sc_control,
348 sizeof(struct sq_control));
349 fail_1:
350 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
351 fail_0:
352 return;
353 }
354
355 /* Set up data to get the interface up and running. */
356 int
357 sq_init(struct ifnet *ifp)
358 {
359 int i;
360 u_int32_t reg;
361 struct sq_softc *sc = ifp->if_softc;
362
363 /* Cancel any in-progress I/O */
364 sq_stop(ifp, 0);
365
366 sc->sc_nextrx = 0;
367
368 sc->sc_nfreetx = SQ_NTXDESC;
369 sc->sc_nexttx = sc->sc_prevtx = 0;
370
371 SQ_TRACE(SQ_RESET, 0, 0, sc->sc_nfreetx);
372
373 /* Set into 8003 mode, bank 0 to program ethernet address */
374 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCMD, TXCMD_BANK0);
375
376 /* Now write the address */
377 for (i = 0; i < ETHER_ADDR_LEN; i++)
378 bus_space_write_1(sc->sc_regt, sc->sc_regh, i,
379 sc->sc_enaddr[i]);
380
381 sc->sc_rxcmd = RXCMD_IE_CRC |
382 RXCMD_IE_DRIB |
383 RXCMD_IE_SHORT |
384 RXCMD_IE_END |
385 RXCMD_IE_GOOD;
386
387 /*
388 * Set the receive filter -- this will add some bits to the
389 * prototype RXCMD register. Do this before setting the
390 * transmit config register, since we might need to switch
391 * banks.
392 */
393 sq_set_filter(sc);
394
395 /* Set up Seeq transmit command register */
396 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCMD,
397 TXCMD_IE_UFLOW |
398 TXCMD_IE_COLL |
399 TXCMD_IE_16COLL |
400 TXCMD_IE_GOOD);
401
402 /* Now write the receive command register. */
403 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_RXCMD, sc->sc_rxcmd);
404
405 /* Set up HPC ethernet DMA config */
406 if (sc->hpc_regs->revision == 3) {
407 reg = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
408 sc->hpc_regs->enetr_dmacfg);
409 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
410 sc->hpc_regs->enetr_dmacfg,
411 reg | ENETR_DMACFG_FIX_RXDC |
412 ENETR_DMACFG_FIX_INTR |
413 ENETR_DMACFG_FIX_EOP);
414 }
415
416 /* Pass the start of the receive ring to the HPC */
417 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetr_ndbp,
418 SQ_CDRXADDR(sc, 0));
419
420 /* And turn on the HPC ethernet receive channel */
421 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetr_ctl,
422 sc->hpc_regs->enetr_ctl_active);
423
424 ifp->if_flags |= IFF_RUNNING;
425 ifp->if_flags &= ~IFF_OACTIVE;
426
427 return 0;
428 }
429
430 static void
431 sq_set_filter(struct sq_softc *sc)
432 {
433 struct ethercom *ec = &sc->sc_ethercom;
434 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
435 struct ether_multi *enm;
436 struct ether_multistep step;
437
438 /*
439 * Check for promiscuous mode. Also implies
440 * all-multicast.
441 */
442 if (ifp->if_flags & IFF_PROMISC) {
443 sc->sc_rxcmd |= RXCMD_REC_ALL;
444 ifp->if_flags |= IFF_ALLMULTI;
445 return;
446 }
447
448 /*
449 * The 8003 has no hash table. If we have any multicast
450 * addresses on the list, enable reception of all multicast
451 * frames.
452 *
453 * XXX The 80c03 has a hash table. We should use it.
454 */
455
456 ETHER_FIRST_MULTI(step, ec, enm);
457
458 if (enm == NULL) {
459 sc->sc_rxcmd &= ~RXCMD_REC_MASK;
460 sc->sc_rxcmd |= RXCMD_REC_BROAD;
461
462 ifp->if_flags &= ~IFF_ALLMULTI;
463 return;
464 }
465
466 sc->sc_rxcmd |= RXCMD_REC_MULTI;
467 ifp->if_flags |= IFF_ALLMULTI;
468 }
469
470 int
471 sq_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
472 {
473 int s, error = 0;
474
475 s = splnet();
476
477 error = ether_ioctl(ifp, cmd, data);
478 if (error == ENETRESET) {
479 /*
480 * Multicast list has changed; set the hardware filter
481 * accordingly.
482 */
483 error = sq_init(ifp);
484 }
485
486 splx(s);
487 return (error);
488 }
489
490 void
491 sq_start(struct ifnet *ifp)
492 {
493 struct sq_softc *sc = ifp->if_softc;
494 u_int32_t status;
495 struct mbuf *m0, *m;
496 bus_dmamap_t dmamap;
497 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
498
499 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
500 return;
501
502 /*
503 * Remember the previous number of free descriptors and
504 * the first descriptor we'll use.
505 */
506 ofree = sc->sc_nfreetx;
507 firsttx = sc->sc_nexttx;
508
509 /*
510 * Loop through the send queue, setting up transmit descriptors
511 * until we drain the queue, or use up all available transmit
512 * descriptors.
513 */
514 while (sc->sc_nfreetx != 0) {
515 /*
516 * Grab a packet off the queue.
517 */
518 IFQ_POLL(&ifp->if_snd, m0);
519 if (m0 == NULL)
520 break;
521 m = NULL;
522
523 dmamap = sc->sc_txmap[sc->sc_nexttx];
524
525 /*
526 * Load the DMA map. If this fails, the packet either
527 * didn't fit in the alloted number of segments, or we were
528 * short on resources. In this case, we'll copy and try
529 * again.
530 * Also copy it if we need to pad, so that we are sure there
531 * is room for the pad buffer.
532 * XXX the right way of doing this is to use a static buffer
533 * for padding and adding it to the transmit descriptor (see
534 * sys/dev/pci/if_tl.c for example). We can't do this here yet
535 * because we can't send packets with more than one fragment.
536 */
537 if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
538 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
539 BUS_DMA_NOWAIT) != 0) {
540 MGETHDR(m, M_DONTWAIT, MT_DATA);
541 if (m == NULL) {
542 printf("%s: unable to allocate Tx mbuf\n",
543 sc->sc_dev.dv_xname);
544 break;
545 }
546 if (m0->m_pkthdr.len > MHLEN) {
547 MCLGET(m, M_DONTWAIT);
548 if ((m->m_flags & M_EXT) == 0) {
549 printf("%s: unable to allocate Tx "
550 "cluster\n", sc->sc_dev.dv_xname);
551 m_freem(m);
552 break;
553 }
554 }
555
556 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
557 if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
558 memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
559 ETHER_PAD_LEN - m0->m_pkthdr.len);
560 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
561 } else
562 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
563
564 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
565 m, BUS_DMA_NOWAIT)) != 0) {
566 printf("%s: unable to load Tx buffer, "
567 "error = %d\n", sc->sc_dev.dv_xname, err);
568 break;
569 }
570 }
571
572 /*
573 * Ensure we have enough descriptors free to describe
574 * the packet.
575 */
576 if (dmamap->dm_nsegs > sc->sc_nfreetx) {
577 /*
578 * Not enough free descriptors to transmit this
579 * packet. We haven't committed to anything yet,
580 * so just unload the DMA map, put the packet
581 * back on the queue, and punt. Notify the upper
582 * layer that there are no more slots left.
583 *
584 * XXX We could allocate an mbuf and copy, but
585 * XXX it is worth it?
586 */
587 ifp->if_flags |= IFF_OACTIVE;
588 bus_dmamap_unload(sc->sc_dmat, dmamap);
589 if (m != NULL)
590 m_freem(m);
591 break;
592 }
593
594 IFQ_DEQUEUE(&ifp->if_snd, m0);
595 #if NBPFILTER > 0
596 /*
597 * Pass the packet to any BPF listeners.
598 */
599 if (ifp->if_bpf)
600 bpf_mtap(ifp->if_bpf, m0);
601 #endif /* NBPFILTER > 0 */
602 if (m != NULL) {
603 m_freem(m0);
604 m0 = m;
605 }
606
607 /*
608 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
609 */
610
611 /* Sync the DMA map. */
612 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
613 BUS_DMASYNC_PREWRITE);
614
615 /*
616 * Initialize the transmit descriptors.
617 */
618 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
619 seg < dmamap->dm_nsegs;
620 seg++, nexttx = SQ_NEXTTX(nexttx)) {
621 if (sc->hpc_regs->revision == 3) {
622 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
623 dmamap->dm_segs[seg].ds_addr;
624 sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
625 dmamap->dm_segs[seg].ds_len;
626 } else {
627 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
628 dmamap->dm_segs[seg].ds_addr;
629 sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
630 dmamap->dm_segs[seg].ds_len;
631 }
632 sc->sc_txdesc[nexttx].hdd_descptr=
633 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
634 lasttx = nexttx;
635 totlen += dmamap->dm_segs[seg].ds_len;
636 }
637
638 /* Last descriptor gets end-of-packet */
639 KASSERT(lasttx != -1);
640 if (sc->hpc_regs->revision == 3)
641 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |= HDD_CTL_EOPACKET;
642 else
643 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
644 HPC1_HDD_CTL_EOPACKET;
645
646 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
647 sc->sc_nexttx, lasttx,
648 totlen));
649
650 if (ifp->if_flags & IFF_DEBUG) {
651 printf(" transmit chain:\n");
652 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
653 printf(" descriptor %d:\n", seg);
654 printf(" hdd_bufptr: 0x%08x\n",
655 (sc->hpc_regs->revision == 3) ?
656 sc->sc_txdesc[seg].hpc3_hdd_bufptr :
657 sc->sc_txdesc[seg].hpc1_hdd_bufptr);
658 printf(" hdd_ctl: 0x%08x\n",
659 (sc->hpc_regs->revision == 3) ?
660 sc->sc_txdesc[seg].hpc3_hdd_ctl:
661 sc->sc_txdesc[seg].hpc1_hdd_ctl);
662 printf(" hdd_descptr: 0x%08x\n",
663 sc->sc_txdesc[seg].hdd_descptr);
664
665 if (seg == lasttx)
666 break;
667 }
668 }
669
670 /* Sync the descriptors we're using. */
671 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
672 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
673
674 /* Store a pointer to the packet so we can free it later */
675 sc->sc_txmbuf[sc->sc_nexttx] = m0;
676
677 /* Advance the tx pointer. */
678 sc->sc_nfreetx -= dmamap->dm_nsegs;
679 sc->sc_nexttx = nexttx;
680
681 }
682
683 /* All transmit descriptors used up, let upper layers know */
684 if (sc->sc_nfreetx == 0)
685 ifp->if_flags |= IFF_OACTIVE;
686
687 if (sc->sc_nfreetx != ofree) {
688 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
689 sc->sc_dev.dv_xname, lasttx - firsttx + 1,
690 firsttx, lasttx));
691
692 /*
693 * Cause a transmit interrupt to happen on the
694 * last packet we enqueued, mark it as the last
695 * descriptor.
696 *
697 * HDD_CTL_EOPACKET && HDD_CTL_INTR cause an
698 * interrupt.
699 */
700 KASSERT(lasttx != -1);
701 if (sc->hpc_regs->revision == 3) {
702 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |= HDD_CTL_INTR |
703 HDD_CTL_EOCHAIN;
704 } else {
705 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
706 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
707 HPC1_HDD_CTL_EOCHAIN;
708 }
709
710 SQ_CDTXSYNC(sc, lasttx, 1,
711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712
713 /*
714 * There is a potential race condition here if the HPC
715 * DMA channel is active and we try and either update
716 * the 'next descriptor' pointer in the HPC PIO space
717 * or the 'next descriptor' pointer in a previous desc-
718 * riptor.
719 *
720 * To avoid this, if the channel is active, we rely on
721 * the transmit interrupt routine noticing that there
722 * are more packets to send and restarting the HPC DMA
723 * engine, rather than mucking with the DMA state here.
724 */
725 status = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
726 sc->hpc_regs->enetx_ctl);
727
728 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
729 SQ_TRACE(SQ_ADD_TO_DMA, firsttx, status,
730 sc->sc_nfreetx);
731
732 /* NB: hpc3_hdd_ctl is also hpc1_hdd_bufptr */
733 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
734 ~HDD_CTL_EOCHAIN;
735
736 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
737 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
738 } else {
739 SQ_TRACE(SQ_START_DMA, firsttx, status, sc->sc_nfreetx);
740
741 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
742 sc->hpc_regs->enetx_ndbp, SQ_CDTXADDR(sc, firsttx));
743
744 if (sc->hpc_regs->revision != 3) {
745 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
746 HPC1_ENETX_CFXBP, SQ_CDTXADDR(sc, firsttx));
747 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
748 HPC1_ENETX_CBP, SQ_CDTXADDR(sc, firsttx));
749 }
750
751 /* Kick DMA channel into life */
752 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
753 sc->hpc_regs->enetx_ctl,
754 sc->hpc_regs->enetx_ctl_active);
755 }
756
757 /* Set a watchdog timer in case the chip flakes out. */
758 ifp->if_timer = 5;
759 }
760 }
761
762 void
763 sq_stop(struct ifnet *ifp, int disable)
764 {
765 int i;
766 struct sq_softc *sc = ifp->if_softc;
767
768 for (i =0; i < SQ_NTXDESC; i++) {
769 if (sc->sc_txmbuf[i] != NULL) {
770 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
771 m_freem(sc->sc_txmbuf[i]);
772 sc->sc_txmbuf[i] = NULL;
773 }
774 }
775
776 /* Clear Seeq transmit/receive command registers */
777 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_TXCMD, 0);
778 bus_space_write_1(sc->sc_regt, sc->sc_regh, SEEQ_RXCMD, 0);
779
780 sq_reset(sc);
781
782 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
783 ifp->if_timer = 0;
784 }
785
786 /* Device timeout/watchdog routine. */
787 void
788 sq_watchdog(struct ifnet *ifp)
789 {
790 u_int32_t status;
791 struct sq_softc *sc = ifp->if_softc;
792
793 status = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
794 sc->hpc_regs->enetx_ctl);
795 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
796 "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
797 sc->sc_nexttx, sc->sc_nfreetx, status);
798
799 sq_trace_dump(sc);
800
801 memset(&sq_trace, 0, sizeof(sq_trace));
802 sq_trace_idx = 0;
803
804 ++ifp->if_oerrors;
805
806 sq_init(ifp);
807 }
808
809 void sq_trace_dump(struct sq_softc* sc)
810 {
811 int i;
812
813 for(i = 0; i < sq_trace_idx; i++) {
814 printf("%s: [%d] action %d, buf %d, free %d, status %08x\n",
815 sc->sc_dev.dv_xname, i, sq_trace[i].action,
816 sq_trace[i].bufno, sq_trace[i].freebuf,
817 sq_trace[i].status);
818 }
819 }
820
821 static int
822 sq_intr(void * arg)
823 {
824 struct sq_softc *sc = arg;
825 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
826 int handled = 0;
827 u_int32_t stat;
828
829 stat = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
830 sc->hpc_regs->enetr_reset);
831
832 if ((stat & 2) == 0) {
833 printf("%s: Unexpected interrupt!\n", sc->sc_dev.dv_xname);
834 return 0;
835 }
836
837 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
838 sc->hpc_regs->enetr_reset, (stat | 2));
839
840 /*
841 * If the interface isn't running, the interrupt couldn't
842 * possibly have come from us.
843 */
844 if ((ifp->if_flags & IFF_RUNNING) == 0)
845 return 0;
846
847 sc->sq_intrcnt.ev_count++;
848
849 /* Always check for received packets */
850 if (sq_rxintr(sc) != 0)
851 handled++;
852
853 /* Only handle transmit interrupts if we actually sent something */
854 if (sc->sc_nfreetx < SQ_NTXDESC) {
855 sq_txintr(sc);
856 handled++;
857 }
858
859 #if NRND > 0
860 if (handled)
861 rnd_add_uint32(&sc->rnd_source, stat);
862 #endif
863 return (handled);
864 }
865
866 static int
867 sq_rxintr(struct sq_softc *sc)
868 {
869 int count = 0;
870 struct mbuf* m;
871 int i, framelen;
872 u_int8_t pktstat;
873 u_int32_t status;
874 u_int32_t ctl_reg;
875 int new_end, orig_end;
876 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
877
878 for(i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
879 SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
880
881 /* If this is a CPU-owned buffer, we're at the end of the list */
882 if (sc->hpc_regs->revision == 3)
883 ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl & HDD_CTL_OWN;
884 else
885 ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
886 HPC1_HDD_CTL_OWN;
887
888 if (ctl_reg) {
889 #if defined(SQ_DEBUG)
890 u_int32_t reg;
891
892 reg = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
893 sc->hpc_regs->enetr_ctl);
894 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
895 sc->sc_dev.dv_xname, i, reg));
896 #endif
897 break;
898 }
899
900 count++;
901
902 m = sc->sc_rxmbuf[i];
903 framelen = m->m_ext.ext_size - 3;
904 if (sc->hpc_regs->revision == 3)
905 framelen -=
906 HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
907 else
908 framelen -=
909 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
910
911 /* Now sync the actual packet data */
912 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
913 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
914
915 pktstat = *((u_int8_t*)m->m_data + framelen + 2);
916
917 if ((pktstat & RXSTAT_GOOD) == 0) {
918 ifp->if_ierrors++;
919
920 if (pktstat & RXSTAT_OFLOW)
921 printf("%s: receive FIFO overflow\n",
922 sc->sc_dev.dv_xname);
923
924 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
925 sc->sc_rxmap[i]->dm_mapsize,
926 BUS_DMASYNC_PREREAD);
927 SQ_INIT_RXDESC(sc, i);
928 continue;
929 }
930
931 if (sq_add_rxbuf(sc, i) != 0) {
932 ifp->if_ierrors++;
933 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
934 sc->sc_rxmap[i]->dm_mapsize,
935 BUS_DMASYNC_PREREAD);
936 SQ_INIT_RXDESC(sc, i);
937 continue;
938 }
939
940
941 m->m_data += 2;
942 m->m_pkthdr.rcvif = ifp;
943 m->m_pkthdr.len = m->m_len = framelen;
944
945 ifp->if_ipackets++;
946
947 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
948 sc->sc_dev.dv_xname, i, framelen));
949
950 #if NBPFILTER > 0
951 if (ifp->if_bpf)
952 bpf_mtap(ifp->if_bpf, m);
953 #endif
954 (*ifp->if_input)(ifp, m);
955 }
956
957
958 /* If anything happened, move ring start/end pointers to new spot */
959 if (i != sc->sc_nextrx) {
960 /* NB: hpc3_hdd_ctl is also hpc1_hdd_bufptr */
961
962 new_end = SQ_PREVRX(i);
963 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HDD_CTL_EOCHAIN;
964 SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
965 BUS_DMASYNC_PREWRITE);
966
967 orig_end = SQ_PREVRX(sc->sc_nextrx);
968 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HDD_CTL_EOCHAIN;
969 SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
970 BUS_DMASYNC_PREWRITE);
971
972 sc->sc_nextrx = i;
973 }
974
975 status = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
976 sc->hpc_regs->enetr_ctl);
977
978 /* If receive channel is stopped, restart it... */
979 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
980 /* Pass the start of the receive ring to the HPC */
981 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
982 sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, sc->sc_nextrx));
983
984 /* And turn on the HPC ethernet receive channel */
985 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
986 sc->hpc_regs->enetr_ctl, sc->hpc_regs->enetr_ctl_active);
987 }
988
989 return count;
990 }
991
992 static int
993 sq_txintr(struct sq_softc *sc)
994 {
995 int i;
996 int shift = 0;
997 u_int32_t status;
998 u_int32_t hpc1_ready = 0;
999 u_int32_t hpc3_not_ready = 1;
1000 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1001
1002 if (sc->hpc_regs->revision != 3)
1003 shift = 16;
1004
1005 status = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
1006 sc->hpc_regs->enetx_ctl) >> shift;
1007
1008 SQ_TRACE(SQ_TXINTR_ENTER, sc->sc_prevtx, status, sc->sc_nfreetx);
1009
1010 if ((status & ( (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD)) == 0) {
1011 /* XXX */ printf("txstat: %x\n", status);
1012 if (status & TXSTAT_COLL)
1013 ifp->if_collisions++;
1014
1015 if (status & TXSTAT_UFLOW) {
1016 printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
1017 ifp->if_oerrors++;
1018 }
1019
1020 if (status & TXSTAT_16COLL) {
1021 printf("%s: max collisions reached\n", sc->sc_dev.dv_xname);
1022 ifp->if_oerrors++;
1023 ifp->if_collisions += 16;
1024 }
1025 }
1026
1027 i = sc->sc_prevtx;
1028 while (sc->sc_nfreetx < SQ_NTXDESC) {
1029 /*
1030 * Check status first so we don't end up with a case of
1031 * the buffer not being finished while the DMA channel
1032 * has gone idle.
1033 */
1034 status = bus_space_read_4(sc->sc_hpct, sc->sc_hpch,
1035 sc->hpc_regs->enetx_ctl) >> shift;
1036
1037 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1038 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1039
1040 /*
1041 * If not yet transmitted, try and start DMA engine again.
1042 * HPC3 tags transmitted descriptors with XMITDONE whereas
1043 * HPC1 will not halt before sending through EOCHAIN.
1044 */
1045 if (sc->hpc_regs->revision == 3) {
1046 hpc3_not_ready =
1047 sc->sc_txdesc[i].hpc3_hdd_ctl & HDD_CTL_XMITDONE;
1048 } else {
1049 if (hpc1_ready)
1050 hpc1_ready++;
1051 else {
1052 if (sc->sc_txdesc[i].hpc1_hdd_ctl &
1053 HPC1_HDD_CTL_EOPACKET)
1054 hpc1_ready = 1;
1055 }
1056 }
1057
1058 if (hpc3_not_ready == 0 || hpc1_ready == 2) {
1059 if ((status & (sc->hpc_regs->enetx_ctl_active >> shift)) == 0) { // XXX
1060 SQ_TRACE(SQ_RESTART_DMA, i, status,
1061 sc->sc_nfreetx);
1062
1063 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
1064 sc->hpc_regs->enetx_ndbp, SQ_CDTXADDR(sc, i));
1065
1066 if (sc->hpc_regs->revision != 3) {
1067 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
1068 HPC1_ENETX_CFXBP, SQ_CDTXADDR(sc, i));
1069 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
1070 HPC1_ENETX_CBP, SQ_CDTXADDR(sc, i));
1071 }
1072
1073 /* Kick DMA channel into life */
1074 bus_space_write_4(sc->sc_hpct, sc->sc_hpch,
1075 sc->hpc_regs->enetx_ctl,
1076 sc->hpc_regs->enetx_ctl_active);
1077
1078 /*
1079 * Set a watchdog timer in case the chip
1080 * flakes out.
1081 */
1082 ifp->if_timer = 5;
1083 } else {
1084 SQ_TRACE(SQ_TXINTR_BUSY, i, status,
1085 sc->sc_nfreetx);
1086 }
1087 break;
1088 }
1089
1090 /* Sync the packet data, unload DMA map, free mbuf */
1091 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1092 sc->sc_txmap[i]->dm_mapsize,
1093 BUS_DMASYNC_POSTWRITE);
1094 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1095 m_freem(sc->sc_txmbuf[i]);
1096 sc->sc_txmbuf[i] = NULL;
1097
1098 ifp->if_opackets++;
1099 sc->sc_nfreetx++;
1100
1101 SQ_TRACE(SQ_DONE_DMA, i, status, sc->sc_nfreetx);
1102 i = SQ_NEXTTX(i);
1103 }
1104
1105 /* prevtx now points to next xmit packet not yet finished */
1106 sc->sc_prevtx = i;
1107
1108 /* If we have buffers free, let upper layers know */
1109 if (sc->sc_nfreetx > 0)
1110 ifp->if_flags &= ~IFF_OACTIVE;
1111
1112 /* If all packets have left the coop, cancel watchdog */
1113 if (sc->sc_nfreetx == SQ_NTXDESC)
1114 ifp->if_timer = 0;
1115
1116 SQ_TRACE(SQ_TXINTR_EXIT, sc->sc_prevtx, status, sc->sc_nfreetx);
1117 sq_start(ifp);
1118
1119 return 1;
1120 }
1121
1122
1123 void
1124 sq_reset(struct sq_softc *sc)
1125 {
1126 /* Stop HPC dma channels */
1127 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetr_ctl, 0);
1128 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetx_ctl, 0);
1129
1130 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetr_reset, 3);
1131 delay(20);
1132 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, sc->hpc_regs->enetr_reset, 0);
1133 }
1134
1135 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1136 int
1137 sq_add_rxbuf(struct sq_softc *sc, int idx)
1138 {
1139 int err;
1140 struct mbuf *m;
1141
1142 MGETHDR(m, M_DONTWAIT, MT_DATA);
1143 if (m == NULL)
1144 return (ENOBUFS);
1145
1146 MCLGET(m, M_DONTWAIT);
1147 if ((m->m_flags & M_EXT) == 0) {
1148 m_freem(m);
1149 return (ENOBUFS);
1150 }
1151
1152 if (sc->sc_rxmbuf[idx] != NULL)
1153 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1154
1155 sc->sc_rxmbuf[idx] = m;
1156
1157 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1158 m->m_ext.ext_buf, m->m_ext.ext_size,
1159 NULL, BUS_DMA_NOWAIT)) != 0) {
1160 printf("%s: can't load rx DMA map %d, error = %d\n",
1161 sc->sc_dev.dv_xname, idx, err);
1162 panic("sq_add_rxbuf"); /* XXX */
1163 }
1164
1165 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
1166 sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1167
1168 SQ_INIT_RXDESC(sc, idx);
1169
1170 return 0;
1171 }
1172
1173 void
1174 sq_dump_buffer(u_int32_t addr, u_int32_t len)
1175 {
1176 u_int i;
1177 u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1((caddr_t)addr);
1178
1179 if (len == 0)
1180 return;
1181
1182 printf("%p: ", physaddr);
1183
1184 for(i = 0; i < len; i++) {
1185 printf("%02x ", *(physaddr + i) & 0xff);
1186 if ((i % 16) == 15 && i != len - 1)
1187 printf("\n%p: ", physaddr + i);
1188 }
1189
1190 printf("\n");
1191 }
1192
1193
1194 void
1195 enaddr_aton(const char* str, u_int8_t* eaddr)
1196 {
1197 int i;
1198 char c;
1199
1200 for(i = 0; i < ETHER_ADDR_LEN; i++) {
1201 if (*str == ':')
1202 str++;
1203
1204 c = *str++;
1205 if (isdigit(c)) {
1206 eaddr[i] = (c - '0');
1207 } else if (isxdigit(c)) {
1208 eaddr[i] = (toupper(c) + 10 - 'A');
1209 }
1210
1211 c = *str++;
1212 if (isdigit(c)) {
1213 eaddr[i] = (eaddr[i] << 4) | (c - '0');
1214 } else if (isxdigit(c)) {
1215 eaddr[i] = (eaddr[i] << 4) | (toupper(c) + 10 - 'A');
1216 }
1217 }
1218 }
1219