if_sq.c revision 1.34 1 /* $NetBSD: if_sq.c,v 1.34 2009/12/14 00:46:13 matt Exp $ */
2
3 /*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.34 2009/12/14 00:46:13 matt Exp $");
37
38 #include "bpfilter.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/callout.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/syslog.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <machine/endian.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60
61 #if NBPFILTER > 0
62 #include <net/bpf.h>
63 #endif
64
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67 #include <machine/sysconf.h>
68
69 #include <dev/ic/seeq8003reg.h>
70
71 #include <sgimips/hpc/sqvar.h>
72 #include <sgimips/hpc/hpcvar.h>
73 #include <sgimips/hpc/hpcreg.h>
74
75 #include <dev/arcbios/arcbios.h>
76 #include <dev/arcbios/arcbiosvar.h>
77
78 #define static
79
80 /*
81 * Short TODO list:
82 * (1) Do counters for bad-RX packets.
83 * (2) Allow multi-segment transmits, instead of copying to a single,
84 * contiguous mbuf.
85 * (3) Verify sq_stop() turns off enough stuff; I was still getting
86 * seeq interrupts after sq_stop().
87 * (4) Implement EDLC modes: especially packet auto-pad and simplex
88 * mode.
89 * (5) Should the driver filter out its own transmissions in non-EDLC
90 * mode?
91 * (6) Multicast support -- multicast filter, address management, ...
92 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need
93 * to figure out if RB0 is read-only as stated in one spot in the
94 * HPC spec or read-write (ie, is the 'write a one to clear it')
95 * the correct thing?
96 */
97
98 #if defined(SQ_DEBUG)
99 int sq_debug = 0;
100 #define SQ_DPRINTF(x) if (sq_debug) printf x
101 #else
102 #define SQ_DPRINTF(x)
103 #endif
104
105 static int sq_match(struct device *, struct cfdata *, void *);
106 static void sq_attach(struct device *, struct device *, void *);
107 static int sq_init(struct ifnet *);
108 static void sq_start(struct ifnet *);
109 static void sq_stop(struct ifnet *, int);
110 static void sq_watchdog(struct ifnet *);
111 static int sq_ioctl(struct ifnet *, u_long, void *);
112
113 static void sq_set_filter(struct sq_softc *);
114 static int sq_intr(void *);
115 static int sq_rxintr(struct sq_softc *);
116 static int sq_txintr(struct sq_softc *);
117 static void sq_txring_hpc1(struct sq_softc *);
118 static void sq_txring_hpc3(struct sq_softc *);
119 static void sq_reset(struct sq_softc *);
120 static int sq_add_rxbuf(struct sq_softc *, int);
121 static void sq_dump_buffer(paddr_t addr, psize_t len);
122 static void sq_trace_dump(struct sq_softc *);
123
124 static void enaddr_aton(const char*, u_int8_t*);
125
126 CFATTACH_DECL(sq, sizeof(struct sq_softc),
127 sq_match, sq_attach, NULL, NULL);
128
129 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
130
131 #define sq_seeq_read(sc, off) \
132 bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
133 #define sq_seeq_write(sc, off, val) \
134 bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
135
136 #define sq_hpc_read(sc, off) \
137 bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
138 #define sq_hpc_write(sc, off, val) \
139 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
140
141 /* MAC address offset for non-onboard implementations */
142 #define SQ_HPC_EEPROM_ENADDR 250
143
144 #define SGI_OUI_0 0x08
145 #define SGI_OUI_1 0x00
146 #define SGI_OUI_2 0x69
147
148 static int
149 sq_match(struct device *parent, struct cfdata *cf, void *aux)
150 {
151 struct hpc_attach_args *ha = aux;
152
153 if (strcmp(ha->ha_name, cf->cf_name) == 0) {
154 vaddr_t reset, txstat;
155
156 reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
157 ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
158 txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
159 ha->ha_devoff + (SEEQ_TXSTAT << 2));
160
161 if (platform.badaddr((void *)reset, sizeof(reset)))
162 return (0);
163
164 *(volatile uint32_t *)reset = 0x1;
165 delay(20);
166 *(volatile uint32_t *)reset = 0x0;
167
168 if (platform.badaddr((void *)txstat, sizeof(txstat)))
169 return (0);
170
171 if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
172 return (1);
173 }
174
175 return (0);
176 }
177
178 static void
179 sq_attach(struct device *parent, struct device *self, void *aux)
180 {
181 int i, err;
182 const char* macaddr;
183 struct sq_softc *sc = (void *)self;
184 struct hpc_attach_args *haa = aux;
185 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
186
187 sc->sc_hpct = haa->ha_st;
188 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
189
190 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
191 haa->ha_dmaoff,
192 sc->hpc_regs->enet_regs_size,
193 &sc->sc_hpch)) != 0) {
194 printf(": unable to map HPC DMA registers, error = %d\n", err);
195 goto fail_0;
196 }
197
198 sc->sc_regt = haa->ha_st;
199 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
200 haa->ha_devoff,
201 sc->hpc_regs->enet_devregs_size,
202 &sc->sc_regh)) != 0) {
203 printf(": unable to map Seeq registers, error = %d\n", err);
204 goto fail_0;
205 }
206
207 sc->sc_dmat = haa->ha_dmat;
208
209 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
210 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
211 1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
212 printf(": unable to allocate control data, error = %d\n", err);
213 goto fail_0;
214 }
215
216 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
217 sizeof(struct sq_control),
218 (void **)&sc->sc_control,
219 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
220 printf(": unable to map control data, error = %d\n", err);
221 goto fail_1;
222 }
223
224 if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
225 1, sizeof(struct sq_control), PAGE_SIZE,
226 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
227 printf(": unable to create DMA map for control data, error "
228 "= %d\n", err);
229 goto fail_2;
230 }
231
232 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
233 sizeof(struct sq_control),
234 NULL, BUS_DMA_NOWAIT)) != 0) {
235 printf(": unable to load DMA map for control data, error "
236 "= %d\n", err);
237 goto fail_3;
238 }
239
240 memset(sc->sc_control, 0, sizeof(struct sq_control));
241
242 /* Create transmit buffer DMA maps */
243 for (i = 0; i < SQ_NTXDESC; i++) {
244 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
245 0, BUS_DMA_NOWAIT,
246 &sc->sc_txmap[i])) != 0) {
247 printf(": unable to create tx DMA map %d, error = %d\n",
248 i, err);
249 goto fail_4;
250 }
251 }
252
253 /* Create receive buffer DMA maps */
254 for (i = 0; i < SQ_NRXDESC; i++) {
255 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
256 0, BUS_DMA_NOWAIT,
257 &sc->sc_rxmap[i])) != 0) {
258 printf(": unable to create rx DMA map %d, error = %d\n",
259 i, err);
260 goto fail_5;
261 }
262 }
263
264 /* Pre-allocate the receive buffers. */
265 for (i = 0; i < SQ_NRXDESC; i++) {
266 if ((err = sq_add_rxbuf(sc, i)) != 0) {
267 printf(": unable to allocate or map rx buffer %d\n,"
268 " error = %d\n", i, err);
269 goto fail_6;
270 }
271 }
272
273 memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
274 ETHER_ADDR_LEN);
275
276 /*
277 * If our mac address is bogus, obtain it from ARCBIOS. This will
278 * be true of the onboard HPC3 on IP22, since there is no eeprom,
279 * but rather the DS1386 RTC's battery-backed ram is used.
280 */
281 if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
282 sc->sc_enaddr[2] != SGI_OUI_2) {
283 macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
284 if (macaddr == NULL) {
285 printf(": unable to get MAC address!\n");
286 goto fail_6;
287 }
288 enaddr_aton(macaddr, sc->sc_enaddr);
289 }
290
291 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
292 self->dv_xname, "intr");
293
294 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
295 printf(": unable to establish interrupt!\n");
296 goto fail_6;
297 }
298
299 /* Reset the chip to a known state. */
300 sq_reset(sc);
301
302 /*
303 * Determine if we're an 8003 or 80c03 by setting the first
304 * MAC address register to non-zero, and then reading it back.
305 * If it's zero, we have an 80c03, because we will have read
306 * the TxCollLSB register.
307 */
308 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
309 if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
310 sc->sc_type = SQ_TYPE_80C03;
311 else
312 sc->sc_type = SQ_TYPE_8003;
313 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
314
315 printf(": SGI Seeq %s\n",
316 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
317
318 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
319 ether_sprintf(sc->sc_enaddr));
320
321 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
322 ifp->if_softc = sc;
323 ifp->if_mtu = ETHERMTU;
324 ifp->if_init = sq_init;
325 ifp->if_stop = sq_stop;
326 ifp->if_start = sq_start;
327 ifp->if_ioctl = sq_ioctl;
328 ifp->if_watchdog = sq_watchdog;
329 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
330 IFQ_SET_READY(&ifp->if_snd);
331
332 if_attach(ifp);
333 ether_ifattach(ifp, sc->sc_enaddr);
334
335 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
336 /* Done! */
337 return;
338
339 /*
340 * Free any resources we've allocated during the failed attach
341 * attempt. Do this in reverse order and fall through.
342 */
343 fail_6:
344 for (i = 0; i < SQ_NRXDESC; i++) {
345 if (sc->sc_rxmbuf[i] != NULL) {
346 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
347 m_freem(sc->sc_rxmbuf[i]);
348 }
349 }
350 fail_5:
351 for (i = 0; i < SQ_NRXDESC; i++) {
352 if (sc->sc_rxmap[i] != NULL)
353 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
354 }
355 fail_4:
356 for (i = 0; i < SQ_NTXDESC; i++) {
357 if (sc->sc_txmap[i] != NULL)
358 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
359 }
360 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
361 fail_3:
362 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
363 fail_2:
364 bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
365 sizeof(struct sq_control));
366 fail_1:
367 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
368 fail_0:
369 return;
370 }
371
372 /* Set up data to get the interface up and running. */
373 int
374 sq_init(struct ifnet *ifp)
375 {
376 int i;
377 struct sq_softc *sc = ifp->if_softc;
378
379 /* Cancel any in-progress I/O */
380 sq_stop(ifp, 0);
381
382 sc->sc_nextrx = 0;
383
384 sc->sc_nfreetx = SQ_NTXDESC;
385 sc->sc_nexttx = sc->sc_prevtx = 0;
386
387 SQ_TRACE(SQ_RESET, sc, 0, 0);
388
389 /* Set into 8003 mode, bank 0 to program ethernet address */
390 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
391
392 /* Now write the address */
393 for (i = 0; i < ETHER_ADDR_LEN; i++)
394 sq_seeq_write(sc, i, sc->sc_enaddr[i]);
395
396 sc->sc_rxcmd = RXCMD_IE_CRC |
397 RXCMD_IE_DRIB |
398 RXCMD_IE_SHORT |
399 RXCMD_IE_END |
400 RXCMD_IE_GOOD;
401
402 /*
403 * Set the receive filter -- this will add some bits to the
404 * prototype RXCMD register. Do this before setting the
405 * transmit config register, since we might need to switch
406 * banks.
407 */
408 sq_set_filter(sc);
409
410 /* Set up Seeq transmit command register */
411 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
412 TXCMD_IE_COLL |
413 TXCMD_IE_16COLL |
414 TXCMD_IE_GOOD);
415
416 /* Now write the receive command register. */
417 sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
418
419 /*
420 * Set up HPC ethernet PIO and DMA configurations.
421 *
422 * The PROM appears to do most of this for the onboard HPC3, but
423 * not for the Challenge S's IOPLUS chip. We copy how the onboard
424 * chip is configured and assume that it's correct for both.
425 */
426 if (sc->hpc_regs->revision == 3) {
427 u_int32_t dmareg, pioreg;
428
429 pioreg = HPC3_ENETR_PIOCFG_P1(1) |
430 HPC3_ENETR_PIOCFG_P2(6) |
431 HPC3_ENETR_PIOCFG_P3(1);
432
433 dmareg = HPC3_ENETR_DMACFG_D1(6) |
434 HPC3_ENETR_DMACFG_D2(2) |
435 HPC3_ENETR_DMACFG_D3(0) |
436 HPC3_ENETR_DMACFG_FIX_RXDC |
437 HPC3_ENETR_DMACFG_FIX_INTR |
438 HPC3_ENETR_DMACFG_FIX_EOP |
439 HPC3_ENETR_DMACFG_TIMEOUT;
440
441 sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
442 sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
443 }
444
445 /* Pass the start of the receive ring to the HPC */
446 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
447
448 /* And turn on the HPC ethernet receive channel */
449 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
450 sc->hpc_regs->enetr_ctl_active);
451
452 /*
453 * Turn off delayed receive interrupts on HPC1.
454 * (see Hollywood HPC Specification 2.1.4.3)
455 */
456 if (sc->hpc_regs->revision != 3)
457 sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
458
459 ifp->if_flags |= IFF_RUNNING;
460 ifp->if_flags &= ~IFF_OACTIVE;
461
462 return 0;
463 }
464
465 static void
466 sq_set_filter(struct sq_softc *sc)
467 {
468 struct ethercom *ec = &sc->sc_ethercom;
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 struct ether_multi *enm;
471 struct ether_multistep step;
472
473 /*
474 * Check for promiscuous mode. Also implies
475 * all-multicast.
476 */
477 if (ifp->if_flags & IFF_PROMISC) {
478 sc->sc_rxcmd |= RXCMD_REC_ALL;
479 ifp->if_flags |= IFF_ALLMULTI;
480 return;
481 }
482
483 /*
484 * The 8003 has no hash table. If we have any multicast
485 * addresses on the list, enable reception of all multicast
486 * frames.
487 *
488 * XXX The 80c03 has a hash table. We should use it.
489 */
490
491 ETHER_FIRST_MULTI(step, ec, enm);
492
493 if (enm == NULL) {
494 sc->sc_rxcmd &= ~RXCMD_REC_MASK;
495 sc->sc_rxcmd |= RXCMD_REC_BROAD;
496
497 ifp->if_flags &= ~IFF_ALLMULTI;
498 return;
499 }
500
501 sc->sc_rxcmd |= RXCMD_REC_MULTI;
502 ifp->if_flags |= IFF_ALLMULTI;
503 }
504
505 int
506 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
507 {
508 int s, error = 0;
509
510 SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
511
512 s = splnet();
513
514 error = ether_ioctl(ifp, cmd, data);
515 if (error == ENETRESET) {
516 /*
517 * Multicast list has changed; set the hardware filter
518 * accordingly.
519 */
520 if (ifp->if_flags & IFF_RUNNING)
521 error = sq_init(ifp);
522 else
523 error = 0;
524 }
525
526 splx(s);
527 return (error);
528 }
529
530 void
531 sq_start(struct ifnet *ifp)
532 {
533 struct sq_softc *sc = ifp->if_softc;
534 u_int32_t status;
535 struct mbuf *m0, *m;
536 bus_dmamap_t dmamap;
537 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
538
539 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
540 return;
541
542 /*
543 * Remember the previous number of free descriptors and
544 * the first descriptor we'll use.
545 */
546 ofree = sc->sc_nfreetx;
547 firsttx = sc->sc_nexttx;
548
549 /*
550 * Loop through the send queue, setting up transmit descriptors
551 * until we drain the queue, or use up all available transmit
552 * descriptors.
553 */
554 while (sc->sc_nfreetx != 0) {
555 /*
556 * Grab a packet off the queue.
557 */
558 IFQ_POLL(&ifp->if_snd, m0);
559 if (m0 == NULL)
560 break;
561 m = NULL;
562
563 dmamap = sc->sc_txmap[sc->sc_nexttx];
564
565 /*
566 * Load the DMA map. If this fails, the packet either
567 * didn't fit in the alloted number of segments, or we were
568 * short on resources. In this case, we'll copy and try
569 * again.
570 * Also copy it if we need to pad, so that we are sure there
571 * is room for the pad buffer.
572 * XXX the right way of doing this is to use a static buffer
573 * for padding and adding it to the transmit descriptor (see
574 * sys/dev/pci/if_tl.c for example). We can't do this here yet
575 * because we can't send packets with more than one fragment.
576 */
577 if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
578 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
579 BUS_DMA_NOWAIT) != 0) {
580 MGETHDR(m, M_DONTWAIT, MT_DATA);
581 if (m == NULL) {
582 printf("%s: unable to allocate Tx mbuf\n",
583 sc->sc_dev.dv_xname);
584 break;
585 }
586 if (m0->m_pkthdr.len > MHLEN) {
587 MCLGET(m, M_DONTWAIT);
588 if ((m->m_flags & M_EXT) == 0) {
589 printf("%s: unable to allocate Tx "
590 "cluster\n", sc->sc_dev.dv_xname);
591 m_freem(m);
592 break;
593 }
594 }
595
596 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
597 if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
598 memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
599 ETHER_PAD_LEN - m0->m_pkthdr.len);
600 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
601 } else
602 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
603
604 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
605 m, BUS_DMA_NOWAIT)) != 0) {
606 printf("%s: unable to load Tx buffer, "
607 "error = %d\n", sc->sc_dev.dv_xname, err);
608 break;
609 }
610 }
611
612 /*
613 * Ensure we have enough descriptors free to describe
614 * the packet.
615 */
616 if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617 /*
618 * Not enough free descriptors to transmit this
619 * packet. We haven't committed to anything yet,
620 * so just unload the DMA map, put the packet
621 * back on the queue, and punt. Notify the upper
622 * layer that there are no more slots left.
623 *
624 * XXX We could allocate an mbuf and copy, but
625 * XXX it is worth it?
626 */
627 ifp->if_flags |= IFF_OACTIVE;
628 bus_dmamap_unload(sc->sc_dmat, dmamap);
629 if (m != NULL)
630 m_freem(m);
631 break;
632 }
633
634 IFQ_DEQUEUE(&ifp->if_snd, m0);
635 #if NBPFILTER > 0
636 /*
637 * Pass the packet to any BPF listeners.
638 */
639 if (ifp->if_bpf)
640 bpf_mtap(ifp->if_bpf, m0);
641 #endif /* NBPFILTER > 0 */
642 if (m != NULL) {
643 m_freem(m0);
644 m0 = m;
645 }
646
647 /*
648 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
649 */
650
651 SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
652
653 /* Sync the DMA map. */
654 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
655 BUS_DMASYNC_PREWRITE);
656
657 /*
658 * Initialize the transmit descriptors.
659 */
660 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
661 seg < dmamap->dm_nsegs;
662 seg++, nexttx = SQ_NEXTTX(nexttx)) {
663 if (sc->hpc_regs->revision == 3) {
664 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
665 dmamap->dm_segs[seg].ds_addr;
666 sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
667 dmamap->dm_segs[seg].ds_len;
668 } else {
669 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
670 dmamap->dm_segs[seg].ds_addr;
671 sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
672 dmamap->dm_segs[seg].ds_len;
673 }
674 sc->sc_txdesc[nexttx].hdd_descptr=
675 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
676 lasttx = nexttx;
677 totlen += dmamap->dm_segs[seg].ds_len;
678 }
679
680 /* Last descriptor gets end-of-packet */
681 KASSERT(lasttx != -1);
682 if (sc->hpc_regs->revision == 3)
683 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
684 HPC3_HDD_CTL_EOPACKET;
685 else
686 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
687 HPC1_HDD_CTL_EOPACKET;
688
689 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
690 sc->sc_nexttx, lasttx,
691 totlen));
692
693 if (ifp->if_flags & IFF_DEBUG) {
694 printf(" transmit chain:\n");
695 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
696 printf(" descriptor %d:\n", seg);
697 printf(" hdd_bufptr: 0x%08x\n",
698 (sc->hpc_regs->revision == 3) ?
699 sc->sc_txdesc[seg].hpc3_hdd_bufptr :
700 sc->sc_txdesc[seg].hpc1_hdd_bufptr);
701 printf(" hdd_ctl: 0x%08x\n",
702 (sc->hpc_regs->revision == 3) ?
703 sc->sc_txdesc[seg].hpc3_hdd_ctl:
704 sc->sc_txdesc[seg].hpc1_hdd_ctl);
705 printf(" hdd_descptr: 0x%08x\n",
706 sc->sc_txdesc[seg].hdd_descptr);
707
708 if (seg == lasttx)
709 break;
710 }
711 }
712
713 /* Sync the descriptors we're using. */
714 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
715 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
716
717 /* Store a pointer to the packet so we can free it later */
718 sc->sc_txmbuf[sc->sc_nexttx] = m0;
719
720 /* Advance the tx pointer. */
721 sc->sc_nfreetx -= dmamap->dm_nsegs;
722 sc->sc_nexttx = nexttx;
723 }
724
725 /* All transmit descriptors used up, let upper layers know */
726 if (sc->sc_nfreetx == 0)
727 ifp->if_flags |= IFF_OACTIVE;
728
729 if (sc->sc_nfreetx != ofree) {
730 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
731 sc->sc_dev.dv_xname, lasttx - firsttx + 1,
732 firsttx, lasttx));
733
734 /*
735 * Cause a transmit interrupt to happen on the
736 * last packet we enqueued, mark it as the last
737 * descriptor.
738 *
739 * HPC1_HDD_CTL_INTR will generate an interrupt on
740 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
741 * addition to HPC3_HDD_CTL_INTR to interrupt.
742 */
743 KASSERT(lasttx != -1);
744 if (sc->hpc_regs->revision == 3) {
745 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
746 HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
747 } else {
748 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
749 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
750 HPC1_HDD_CTL_EOCHAIN;
751 }
752
753 SQ_CDTXSYNC(sc, lasttx, 1,
754 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
755
756 /*
757 * There is a potential race condition here if the HPC
758 * DMA channel is active and we try and either update
759 * the 'next descriptor' pointer in the HPC PIO space
760 * or the 'next descriptor' pointer in a previous desc-
761 * riptor.
762 *
763 * To avoid this, if the channel is active, we rely on
764 * the transmit interrupt routine noticing that there
765 * are more packets to send and restarting the HPC DMA
766 * engine, rather than mucking with the DMA state here.
767 */
768 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
769
770 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
771 SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
772
773 /*
774 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
775 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
776 */
777 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
778 ~HPC3_HDD_CTL_EOCHAIN;
779
780 if (sc->hpc_regs->revision != 3)
781 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
782 &= ~HPC1_HDD_CTL_INTR;
783
784 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
785 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
786 } else if (sc->hpc_regs->revision == 3) {
787 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
788
789 sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
790 firsttx));
791
792 /* Kick DMA channel into life */
793 sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
794 } else {
795 /*
796 * In the HPC1 case where transmit DMA is
797 * inactive, we can either kick off if
798 * the ring was previously empty, or call
799 * our transmit interrupt handler to
800 * figure out if the ring stopped short
801 * and restart at the right place.
802 */
803 if (ofree == SQ_NTXDESC) {
804 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
805
806 sq_hpc_write(sc, HPC1_ENETX_NDBP,
807 SQ_CDTXADDR(sc, firsttx));
808 sq_hpc_write(sc, HPC1_ENETX_CFXBP,
809 SQ_CDTXADDR(sc, firsttx));
810 sq_hpc_write(sc, HPC1_ENETX_CBP,
811 SQ_CDTXADDR(sc, firsttx));
812
813 /* Kick DMA channel into life */
814 sq_hpc_write(sc, HPC1_ENETX_CTL,
815 HPC1_ENETX_CTL_ACTIVE);
816 } else
817 sq_txring_hpc1(sc);
818 }
819
820 /* Set a watchdog timer in case the chip flakes out. */
821 ifp->if_timer = 5;
822 }
823 }
824
825 void
826 sq_stop(struct ifnet *ifp, int disable)
827 {
828 int i;
829 struct sq_softc *sc = ifp->if_softc;
830
831 for (i =0; i < SQ_NTXDESC; i++) {
832 if (sc->sc_txmbuf[i] != NULL) {
833 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
834 m_freem(sc->sc_txmbuf[i]);
835 sc->sc_txmbuf[i] = NULL;
836 }
837 }
838
839 /* Clear Seeq transmit/receive command registers */
840 sq_seeq_write(sc, SEEQ_TXCMD, 0);
841 sq_seeq_write(sc, SEEQ_RXCMD, 0);
842
843 sq_reset(sc);
844
845 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
846 ifp->if_timer = 0;
847 }
848
849 /* Device timeout/watchdog routine. */
850 void
851 sq_watchdog(struct ifnet *ifp)
852 {
853 u_int32_t status;
854 struct sq_softc *sc = ifp->if_softc;
855
856 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
857 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
858 "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
859 sc->sc_nexttx, sc->sc_nfreetx, status);
860
861 sq_trace_dump(sc);
862
863 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
864 sc->sq_trace_idx = 0;
865
866 ++ifp->if_oerrors;
867
868 sq_init(ifp);
869 }
870
871 static void
872 sq_trace_dump(struct sq_softc *sc)
873 {
874 int i;
875 const char *act;
876
877 for (i = 0; i < sc->sq_trace_idx; i++) {
878 switch (sc->sq_trace[i].action) {
879 case SQ_RESET: act = "SQ_RESET"; break;
880 case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break;
881 case SQ_START_DMA: act = "SQ_START_DMA"; break;
882 case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break;
883 case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break;
884 case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break;
885 case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break;
886 case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break;
887 case SQ_IOCTL: act = "SQ_IOCTL"; break;
888 case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break;
889 default: act = "UNKNOWN";
890 }
891
892 printf("%s: [%03d] action %-16s buf %03d free %03d "
893 "status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
894 sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
895 sc->sq_trace[i].status, sc->sq_trace[i].line);
896 }
897 }
898
899 static int
900 sq_intr(void *arg)
901 {
902 struct sq_softc *sc = arg;
903 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
904 int handled = 0;
905 u_int32_t stat;
906
907 stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
908
909 if ((stat & 2) == 0)
910 SQ_DPRINTF(("%s: Unexpected interrupt!\n",
911 sc->sc_dev.dv_xname));
912 else
913 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
914
915 /*
916 * If the interface isn't running, the interrupt couldn't
917 * possibly have come from us.
918 */
919 if ((ifp->if_flags & IFF_RUNNING) == 0)
920 return 0;
921
922 sc->sq_intrcnt.ev_count++;
923
924 /* Always check for received packets */
925 if (sq_rxintr(sc) != 0)
926 handled++;
927
928 /* Only handle transmit interrupts if we actually sent something */
929 if (sc->sc_nfreetx < SQ_NTXDESC) {
930 sq_txintr(sc);
931 handled++;
932 }
933
934 #if NRND > 0
935 if (handled)
936 rnd_add_uint32(&sc->rnd_source, stat);
937 #endif
938 return (handled);
939 }
940
941 static int
942 sq_rxintr(struct sq_softc *sc)
943 {
944 int count = 0;
945 struct mbuf* m;
946 int i, framelen;
947 u_int8_t pktstat;
948 u_int32_t status;
949 u_int32_t ctl_reg;
950 int new_end, orig_end;
951 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
952
953 for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
954 SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
955 BUS_DMASYNC_POSTWRITE);
956
957 /*
958 * If this is a CPU-owned buffer, we're at the end of the list.
959 */
960 if (sc->hpc_regs->revision == 3)
961 ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
962 HPC3_HDD_CTL_OWN;
963 else
964 ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
965 HPC1_HDD_CTL_OWN;
966
967 if (ctl_reg) {
968 #if defined(SQ_DEBUG)
969 u_int32_t reg;
970
971 reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
972 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
973 sc->sc_dev.dv_xname, i, reg));
974 #endif
975 break;
976 }
977
978 count++;
979
980 m = sc->sc_rxmbuf[i];
981 framelen = m->m_ext.ext_size - 3;
982 if (sc->hpc_regs->revision == 3)
983 framelen -=
984 HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
985 else
986 framelen -=
987 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
988
989 /* Now sync the actual packet data */
990 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
991 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
992
993 pktstat = *((u_int8_t*)m->m_data + framelen + 2);
994
995 if ((pktstat & RXSTAT_GOOD) == 0) {
996 ifp->if_ierrors++;
997
998 if (pktstat & RXSTAT_OFLOW)
999 printf("%s: receive FIFO overflow\n",
1000 sc->sc_dev.dv_xname);
1001
1002 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1003 sc->sc_rxmap[i]->dm_mapsize,
1004 BUS_DMASYNC_PREREAD);
1005 SQ_INIT_RXDESC(sc, i);
1006 SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1007 sc->sc_dev.dv_xname, i));
1008 continue;
1009 }
1010
1011 if (sq_add_rxbuf(sc, i) != 0) {
1012 ifp->if_ierrors++;
1013 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1014 sc->sc_rxmap[i]->dm_mapsize,
1015 BUS_DMASYNC_PREREAD);
1016 SQ_INIT_RXDESC(sc, i);
1017 SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1018 "failed\n", sc->sc_dev.dv_xname, i));
1019 continue;
1020 }
1021
1022
1023 m->m_data += 2;
1024 m->m_pkthdr.rcvif = ifp;
1025 m->m_pkthdr.len = m->m_len = framelen;
1026
1027 ifp->if_ipackets++;
1028
1029 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1030 sc->sc_dev.dv_xname, i, framelen));
1031
1032 #if NBPFILTER > 0
1033 if (ifp->if_bpf)
1034 bpf_mtap(ifp->if_bpf, m);
1035 #endif
1036 (*ifp->if_input)(ifp, m);
1037 }
1038
1039
1040 /* If anything happened, move ring start/end pointers to new spot */
1041 if (i != sc->sc_nextrx) {
1042 /*
1043 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1044 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1045 */
1046
1047 new_end = SQ_PREVRX(i);
1048 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1049 SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
1050 BUS_DMASYNC_PREWRITE);
1051
1052 orig_end = SQ_PREVRX(sc->sc_nextrx);
1053 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1054 SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
1055 BUS_DMASYNC_PREWRITE);
1056
1057 sc->sc_nextrx = i;
1058 }
1059
1060 status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1061
1062 /* If receive channel is stopped, restart it... */
1063 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1064 /* Pass the start of the receive ring to the HPC */
1065 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
1066 sc->sc_nextrx));
1067
1068 /* And turn on the HPC ethernet receive channel */
1069 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1070 sc->hpc_regs->enetr_ctl_active);
1071 }
1072
1073 return count;
1074 }
1075
1076 static int
1077 sq_txintr(struct sq_softc *sc)
1078 {
1079 int shift = 0;
1080 u_int32_t status, tmp;
1081 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1082
1083 if (sc->hpc_regs->revision != 3)
1084 shift = 16;
1085
1086 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1087
1088 SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1089
1090 tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1091 if ((status & tmp) == 0) {
1092 if (status & TXSTAT_COLL)
1093 ifp->if_collisions++;
1094
1095 if (status & TXSTAT_UFLOW) {
1096 printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
1097 ifp->if_oerrors++;
1098 }
1099
1100 if (status & TXSTAT_16COLL) {
1101 printf("%s: max collisions reached\n",
1102 sc->sc_dev.dv_xname);
1103 ifp->if_oerrors++;
1104 ifp->if_collisions += 16;
1105 }
1106 }
1107
1108 /* prevtx now points to next xmit packet not yet finished */
1109 if (sc->hpc_regs->revision == 3)
1110 sq_txring_hpc3(sc);
1111 else
1112 sq_txring_hpc1(sc);
1113
1114 /* If we have buffers free, let upper layers know */
1115 if (sc->sc_nfreetx > 0)
1116 ifp->if_flags &= ~IFF_OACTIVE;
1117
1118 /* If all packets have left the coop, cancel watchdog */
1119 if (sc->sc_nfreetx == SQ_NTXDESC)
1120 ifp->if_timer = 0;
1121
1122 SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1123 sq_start(ifp);
1124
1125 return 1;
1126 }
1127
1128 /*
1129 * Reclaim used transmit descriptors and restart the transmit DMA
1130 * engine if necessary.
1131 */
1132 static void
1133 sq_txring_hpc1(struct sq_softc *sc)
1134 {
1135 /*
1136 * HPC1 doesn't tag transmitted descriptors, however,
1137 * the NDBP register points to the next descriptor that
1138 * has not yet been processed. If DMA is not in progress,
1139 * we can safely reclaim all descriptors up to NDBP, and,
1140 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1141 * is active, we can only safely reclaim up to CBP.
1142 *
1143 * For now, we'll only reclaim on inactive DMA and assume
1144 * that a sufficiently large ring keeps us out of trouble.
1145 */
1146 u_int32_t reclaimto, status;
1147 int reclaimall, i = sc->sc_prevtx;
1148 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1149
1150 status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1151 if (status & HPC1_ENETX_CTL_ACTIVE) {
1152 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1153 return;
1154 } else
1155 reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1156
1157 if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1158 reclaimall = 1;
1159 else
1160 reclaimall = 0;
1161
1162 while (sc->sc_nfreetx < SQ_NTXDESC) {
1163 if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1164 break;
1165
1166 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1167 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1168
1169 /* Sync the packet data, unload DMA map, free mbuf */
1170 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1171 sc->sc_txmap[i]->dm_mapsize,
1172 BUS_DMASYNC_POSTWRITE);
1173 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1174 m_freem(sc->sc_txmbuf[i]);
1175 sc->sc_txmbuf[i] = NULL;
1176
1177 ifp->if_opackets++;
1178 sc->sc_nfreetx++;
1179
1180 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1181
1182 i = SQ_NEXTTX(i);
1183 }
1184
1185 if (sc->sc_nfreetx < SQ_NTXDESC) {
1186 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1187
1188 KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1189
1190 sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1191 sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1192
1193 /* Kick DMA channel into life */
1194 sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1195
1196 /*
1197 * Set a watchdog timer in case the chip
1198 * flakes out.
1199 */
1200 ifp->if_timer = 5;
1201 }
1202
1203 sc->sc_prevtx = i;
1204 }
1205
1206 /*
1207 * Reclaim used transmit descriptors and restart the transmit DMA
1208 * engine if necessary.
1209 */
1210 static void
1211 sq_txring_hpc3(struct sq_softc *sc)
1212 {
1213 /*
1214 * HPC3 tags descriptors with a bit once they've been
1215 * transmitted. We need only free each XMITDONE'd
1216 * descriptor, and restart the DMA engine if any
1217 * descriptors are left over.
1218 */
1219 int i;
1220 u_int32_t status = 0;
1221 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1222
1223 i = sc->sc_prevtx;
1224 while (sc->sc_nfreetx < SQ_NTXDESC) {
1225 /*
1226 * Check status first so we don't end up with a case of
1227 * the buffer not being finished while the DMA channel
1228 * has gone idle.
1229 */
1230 status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1231
1232 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1233 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1234
1235 /* Check for used descriptor and restart DMA chain if needed */
1236 if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
1237 if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1238 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1239
1240 sq_hpc_write(sc, HPC3_ENETX_NDBP,
1241 SQ_CDTXADDR(sc, i));
1242
1243 /* Kick DMA channel into life */
1244 sq_hpc_write(sc, HPC3_ENETX_CTL,
1245 HPC3_ENETX_CTL_ACTIVE);
1246
1247 /*
1248 * Set a watchdog timer in case the chip
1249 * flakes out.
1250 */
1251 ifp->if_timer = 5;
1252 } else
1253 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1254 break;
1255 }
1256
1257 /* Sync the packet data, unload DMA map, free mbuf */
1258 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1259 sc->sc_txmap[i]->dm_mapsize,
1260 BUS_DMASYNC_POSTWRITE);
1261 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1262 m_freem(sc->sc_txmbuf[i]);
1263 sc->sc_txmbuf[i] = NULL;
1264
1265 ifp->if_opackets++;
1266 sc->sc_nfreetx++;
1267
1268 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1269 i = SQ_NEXTTX(i);
1270 }
1271
1272 sc->sc_prevtx = i;
1273 }
1274
1275 void
1276 sq_reset(struct sq_softc *sc)
1277 {
1278 /* Stop HPC dma channels */
1279 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1280 sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1281
1282 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1283 delay(20);
1284 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1285 }
1286
1287 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1288 int
1289 sq_add_rxbuf(struct sq_softc *sc, int idx)
1290 {
1291 int err;
1292 struct mbuf *m;
1293
1294 MGETHDR(m, M_DONTWAIT, MT_DATA);
1295 if (m == NULL)
1296 return (ENOBUFS);
1297
1298 MCLGET(m, M_DONTWAIT);
1299 if ((m->m_flags & M_EXT) == 0) {
1300 m_freem(m);
1301 return (ENOBUFS);
1302 }
1303
1304 if (sc->sc_rxmbuf[idx] != NULL)
1305 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1306
1307 sc->sc_rxmbuf[idx] = m;
1308
1309 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1310 m->m_ext.ext_buf, m->m_ext.ext_size,
1311 NULL, BUS_DMA_NOWAIT)) != 0) {
1312 printf("%s: can't load rx DMA map %d, error = %d\n",
1313 sc->sc_dev.dv_xname, idx, err);
1314 panic("sq_add_rxbuf"); /* XXX */
1315 }
1316
1317 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
1318 sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1319
1320 SQ_INIT_RXDESC(sc, idx);
1321
1322 return 0;
1323 }
1324
1325 void
1326 sq_dump_buffer(paddr_t addr, psize_t len)
1327 {
1328 u_int i;
1329 u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1(addr);
1330
1331 if (len == 0)
1332 return;
1333
1334 printf("%p: ", physaddr);
1335
1336 for (i = 0; i < len; i++) {
1337 printf("%02x ", *(physaddr + i) & 0xff);
1338 if ((i % 16) == 15 && i != len - 1)
1339 printf("\n%p: ", physaddr + i);
1340 }
1341
1342 printf("\n");
1343 }
1344
1345 void
1346 enaddr_aton(const char* str, u_int8_t* eaddr)
1347 {
1348 int i;
1349 char c;
1350
1351 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1352 if (*str == ':')
1353 str++;
1354
1355 c = *str++;
1356 if (isdigit(c)) {
1357 eaddr[i] = (c - '0');
1358 } else if (isxdigit(c)) {
1359 eaddr[i] = (toupper(c) + 10 - 'A');
1360 }
1361
1362 c = *str++;
1363 if (isdigit(c)) {
1364 eaddr[i] = (eaddr[i] << 4) | (c - '0');
1365 } else if (isxdigit(c)) {
1366 eaddr[i] = (eaddr[i] << 4) | (toupper(c) + 10 - 'A');
1367 }
1368 }
1369 }
1370