if_sq.c revision 1.38 1 /* $NetBSD: if_sq.c,v 1.38 2011/01/25 12:21:04 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.38 2011/01/25 12:21:04 tsutsui Exp $");
37
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <machine/endian.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 #include <machine/sysconf.h>
65
66 #include <dev/ic/seeq8003reg.h>
67
68 #include <sgimips/hpc/sqvar.h>
69 #include <sgimips/hpc/hpcvar.h>
70 #include <sgimips/hpc/hpcreg.h>
71
72 #include <dev/arcbios/arcbios.h>
73 #include <dev/arcbios/arcbiosvar.h>
74
75 #define static
76
77 /*
78 * Short TODO list:
79 * (1) Do counters for bad-RX packets.
80 * (2) Allow multi-segment transmits, instead of copying to a single,
81 * contiguous mbuf.
82 * (3) Verify sq_stop() turns off enough stuff; I was still getting
83 * seeq interrupts after sq_stop().
84 * (4) Implement EDLC modes: especially packet auto-pad and simplex
85 * mode.
86 * (5) Should the driver filter out its own transmissions in non-EDLC
87 * mode?
88 * (6) Multicast support -- multicast filter, address management, ...
89 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need
90 * to figure out if RB0 is read-only as stated in one spot in the
91 * HPC spec or read-write (ie, is the 'write a one to clear it')
92 * the correct thing?
93 */
94
95 #if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98 #else
99 #define SQ_DPRINTF(x)
100 #endif
101
102 static int sq_match(struct device *, struct cfdata *, void *);
103 static void sq_attach(struct device *, struct device *, void *);
104 static int sq_init(struct ifnet *);
105 static void sq_start(struct ifnet *);
106 static void sq_stop(struct ifnet *, int);
107 static void sq_watchdog(struct ifnet *);
108 static int sq_ioctl(struct ifnet *, u_long, void *);
109
110 static void sq_set_filter(struct sq_softc *);
111 static int sq_intr(void *);
112 static int sq_rxintr(struct sq_softc *);
113 static int sq_txintr(struct sq_softc *);
114 static void sq_txring_hpc1(struct sq_softc *);
115 static void sq_txring_hpc3(struct sq_softc *);
116 static void sq_reset(struct sq_softc *);
117 static int sq_add_rxbuf(struct sq_softc *, int);
118 static void sq_dump_buffer(paddr_t addr, psize_t len);
119 static void sq_trace_dump(struct sq_softc *);
120
121 CFATTACH_DECL(sq, sizeof(struct sq_softc),
122 sq_match, sq_attach, NULL, NULL);
123
124 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126 #define sq_seeq_read(sc, off) \
127 bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
128 #define sq_seeq_write(sc, off, val) \
129 bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
130
131 #define sq_hpc_read(sc, off) \
132 bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133 #define sq_hpc_write(sc, off, val) \
134 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136 /* MAC address offset for non-onboard implementations */
137 #define SQ_HPC_EEPROM_ENADDR 250
138
139 #define SGI_OUI_0 0x08
140 #define SGI_OUI_1 0x00
141 #define SGI_OUI_2 0x69
142
143 static int
144 sq_match(struct device *parent, struct cfdata *cf, void *aux)
145 {
146 struct hpc_attach_args *ha = aux;
147
148 if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149 vaddr_t reset, txstat;
150
151 reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152 ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153 txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154 ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156 if (platform.badaddr((void *)reset, sizeof(reset)))
157 return (0);
158
159 *(volatile uint32_t *)reset = 0x1;
160 delay(20);
161 *(volatile uint32_t *)reset = 0x0;
162
163 if (platform.badaddr((void *)txstat, sizeof(txstat)))
164 return (0);
165
166 if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167 return (1);
168 }
169
170 return (0);
171 }
172
173 static void
174 sq_attach(struct device *parent, struct device *self, void *aux)
175 {
176 int i, err;
177 const char* macaddr;
178 struct sq_softc *sc = (void *)self;
179 struct hpc_attach_args *haa = aux;
180 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182 sc->sc_hpct = haa->ha_st;
183 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
184
185 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
186 haa->ha_dmaoff,
187 sc->hpc_regs->enet_regs_size,
188 &sc->sc_hpch)) != 0) {
189 printf(": unable to map HPC DMA registers, error = %d\n", err);
190 goto fail_0;
191 }
192
193 sc->sc_regt = haa->ha_st;
194 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195 haa->ha_devoff,
196 sc->hpc_regs->enet_devregs_size,
197 &sc->sc_regh)) != 0) {
198 printf(": unable to map Seeq registers, error = %d\n", err);
199 goto fail_0;
200 }
201
202 sc->sc_dmat = haa->ha_dmat;
203
204 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
205 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
206 1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
207 printf(": unable to allocate control data, error = %d\n", err);
208 goto fail_0;
209 }
210
211 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
212 sizeof(struct sq_control),
213 (void **)&sc->sc_control,
214 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
215 printf(": unable to map control data, error = %d\n", err);
216 goto fail_1;
217 }
218
219 if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
220 1, sizeof(struct sq_control), PAGE_SIZE,
221 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
222 printf(": unable to create DMA map for control data, error "
223 "= %d\n", err);
224 goto fail_2;
225 }
226
227 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
228 sizeof(struct sq_control),
229 NULL, BUS_DMA_NOWAIT)) != 0) {
230 printf(": unable to load DMA map for control data, error "
231 "= %d\n", err);
232 goto fail_3;
233 }
234
235 memset(sc->sc_control, 0, sizeof(struct sq_control));
236
237 /* Create transmit buffer DMA maps */
238 for (i = 0; i < SQ_NTXDESC; i++) {
239 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
240 0, BUS_DMA_NOWAIT,
241 &sc->sc_txmap[i])) != 0) {
242 printf(": unable to create tx DMA map %d, error = %d\n",
243 i, err);
244 goto fail_4;
245 }
246 }
247
248 /* Create receive buffer DMA maps */
249 for (i = 0; i < SQ_NRXDESC; i++) {
250 if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
251 0, BUS_DMA_NOWAIT,
252 &sc->sc_rxmap[i])) != 0) {
253 printf(": unable to create rx DMA map %d, error = %d\n",
254 i, err);
255 goto fail_5;
256 }
257 }
258
259 /* Pre-allocate the receive buffers. */
260 for (i = 0; i < SQ_NRXDESC; i++) {
261 if ((err = sq_add_rxbuf(sc, i)) != 0) {
262 printf(": unable to allocate or map rx buffer %d\n,"
263 " error = %d\n", i, err);
264 goto fail_6;
265 }
266 }
267
268 memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
269 ETHER_ADDR_LEN);
270
271 /*
272 * If our mac address is bogus, obtain it from ARCBIOS. This will
273 * be true of the onboard HPC3 on IP22, since there is no eeprom,
274 * but rather the DS1386 RTC's battery-backed ram is used.
275 */
276 if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
277 sc->sc_enaddr[2] != SGI_OUI_2) {
278 macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
279 if (macaddr == NULL) {
280 printf(": unable to get MAC address!\n");
281 goto fail_6;
282 }
283 ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
284 }
285
286 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
287 self->dv_xname, "intr");
288
289 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
290 printf(": unable to establish interrupt!\n");
291 goto fail_6;
292 }
293
294 /* Reset the chip to a known state. */
295 sq_reset(sc);
296
297 /*
298 * Determine if we're an 8003 or 80c03 by setting the first
299 * MAC address register to non-zero, and then reading it back.
300 * If it's zero, we have an 80c03, because we will have read
301 * the TxCollLSB register.
302 */
303 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
304 if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
305 sc->sc_type = SQ_TYPE_80C03;
306 else
307 sc->sc_type = SQ_TYPE_8003;
308 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
309
310 printf(": SGI Seeq %s\n",
311 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
312
313 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
314 ether_sprintf(sc->sc_enaddr));
315
316 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
317 ifp->if_softc = sc;
318 ifp->if_mtu = ETHERMTU;
319 ifp->if_init = sq_init;
320 ifp->if_stop = sq_stop;
321 ifp->if_start = sq_start;
322 ifp->if_ioctl = sq_ioctl;
323 ifp->if_watchdog = sq_watchdog;
324 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
325 IFQ_SET_READY(&ifp->if_snd);
326
327 if_attach(ifp);
328 ether_ifattach(ifp, sc->sc_enaddr);
329
330 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
331 /* Done! */
332 return;
333
334 /*
335 * Free any resources we've allocated during the failed attach
336 * attempt. Do this in reverse order and fall through.
337 */
338 fail_6:
339 for (i = 0; i < SQ_NRXDESC; i++) {
340 if (sc->sc_rxmbuf[i] != NULL) {
341 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
342 m_freem(sc->sc_rxmbuf[i]);
343 }
344 }
345 fail_5:
346 for (i = 0; i < SQ_NRXDESC; i++) {
347 if (sc->sc_rxmap[i] != NULL)
348 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
349 }
350 fail_4:
351 for (i = 0; i < SQ_NTXDESC; i++) {
352 if (sc->sc_txmap[i] != NULL)
353 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
354 }
355 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
356 fail_3:
357 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
358 fail_2:
359 bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
360 sizeof(struct sq_control));
361 fail_1:
362 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
363 fail_0:
364 return;
365 }
366
367 /* Set up data to get the interface up and running. */
368 int
369 sq_init(struct ifnet *ifp)
370 {
371 int i;
372 struct sq_softc *sc = ifp->if_softc;
373
374 /* Cancel any in-progress I/O */
375 sq_stop(ifp, 0);
376
377 sc->sc_nextrx = 0;
378
379 sc->sc_nfreetx = SQ_NTXDESC;
380 sc->sc_nexttx = sc->sc_prevtx = 0;
381
382 SQ_TRACE(SQ_RESET, sc, 0, 0);
383
384 /* Set into 8003 mode, bank 0 to program ethernet address */
385 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
386
387 /* Now write the address */
388 for (i = 0; i < ETHER_ADDR_LEN; i++)
389 sq_seeq_write(sc, i, sc->sc_enaddr[i]);
390
391 sc->sc_rxcmd = RXCMD_IE_CRC |
392 RXCMD_IE_DRIB |
393 RXCMD_IE_SHORT |
394 RXCMD_IE_END |
395 RXCMD_IE_GOOD;
396
397 /*
398 * Set the receive filter -- this will add some bits to the
399 * prototype RXCMD register. Do this before setting the
400 * transmit config register, since we might need to switch
401 * banks.
402 */
403 sq_set_filter(sc);
404
405 /* Set up Seeq transmit command register */
406 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
407 TXCMD_IE_COLL |
408 TXCMD_IE_16COLL |
409 TXCMD_IE_GOOD);
410
411 /* Now write the receive command register. */
412 sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
413
414 /*
415 * Set up HPC ethernet PIO and DMA configurations.
416 *
417 * The PROM appears to do most of this for the onboard HPC3, but
418 * not for the Challenge S's IOPLUS chip. We copy how the onboard
419 * chip is configured and assume that it's correct for both.
420 */
421 if (sc->hpc_regs->revision == 3) {
422 uint32_t dmareg, pioreg;
423
424 pioreg = HPC3_ENETR_PIOCFG_P1(1) |
425 HPC3_ENETR_PIOCFG_P2(6) |
426 HPC3_ENETR_PIOCFG_P3(1);
427
428 dmareg = HPC3_ENETR_DMACFG_D1(6) |
429 HPC3_ENETR_DMACFG_D2(2) |
430 HPC3_ENETR_DMACFG_D3(0) |
431 HPC3_ENETR_DMACFG_FIX_RXDC |
432 HPC3_ENETR_DMACFG_FIX_INTR |
433 HPC3_ENETR_DMACFG_FIX_EOP |
434 HPC3_ENETR_DMACFG_TIMEOUT;
435
436 sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
437 sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
438 }
439
440 /* Pass the start of the receive ring to the HPC */
441 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
442
443 /* And turn on the HPC ethernet receive channel */
444 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
445 sc->hpc_regs->enetr_ctl_active);
446
447 /*
448 * Turn off delayed receive interrupts on HPC1.
449 * (see Hollywood HPC Specification 2.1.4.3)
450 */
451 if (sc->hpc_regs->revision != 3)
452 sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
453
454 ifp->if_flags |= IFF_RUNNING;
455 ifp->if_flags &= ~IFF_OACTIVE;
456
457 return 0;
458 }
459
460 static void
461 sq_set_filter(struct sq_softc *sc)
462 {
463 struct ethercom *ec = &sc->sc_ethercom;
464 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
465 struct ether_multi *enm;
466 struct ether_multistep step;
467
468 /*
469 * Check for promiscuous mode. Also implies
470 * all-multicast.
471 */
472 if (ifp->if_flags & IFF_PROMISC) {
473 sc->sc_rxcmd |= RXCMD_REC_ALL;
474 ifp->if_flags |= IFF_ALLMULTI;
475 return;
476 }
477
478 /*
479 * The 8003 has no hash table. If we have any multicast
480 * addresses on the list, enable reception of all multicast
481 * frames.
482 *
483 * XXX The 80c03 has a hash table. We should use it.
484 */
485
486 ETHER_FIRST_MULTI(step, ec, enm);
487
488 if (enm == NULL) {
489 sc->sc_rxcmd &= ~RXCMD_REC_MASK;
490 sc->sc_rxcmd |= RXCMD_REC_BROAD;
491
492 ifp->if_flags &= ~IFF_ALLMULTI;
493 return;
494 }
495
496 sc->sc_rxcmd |= RXCMD_REC_MULTI;
497 ifp->if_flags |= IFF_ALLMULTI;
498 }
499
500 int
501 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
502 {
503 int s, error = 0;
504
505 SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
506
507 s = splnet();
508
509 error = ether_ioctl(ifp, cmd, data);
510 if (error == ENETRESET) {
511 /*
512 * Multicast list has changed; set the hardware filter
513 * accordingly.
514 */
515 if (ifp->if_flags & IFF_RUNNING)
516 error = sq_init(ifp);
517 else
518 error = 0;
519 }
520
521 splx(s);
522 return (error);
523 }
524
525 void
526 sq_start(struct ifnet *ifp)
527 {
528 struct sq_softc *sc = ifp->if_softc;
529 uint32_t status;
530 struct mbuf *m0, *m;
531 bus_dmamap_t dmamap;
532 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
533
534 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
535 return;
536
537 /*
538 * Remember the previous number of free descriptors and
539 * the first descriptor we'll use.
540 */
541 ofree = sc->sc_nfreetx;
542 firsttx = sc->sc_nexttx;
543
544 /*
545 * Loop through the send queue, setting up transmit descriptors
546 * until we drain the queue, or use up all available transmit
547 * descriptors.
548 */
549 while (sc->sc_nfreetx != 0) {
550 /*
551 * Grab a packet off the queue.
552 */
553 IFQ_POLL(&ifp->if_snd, m0);
554 if (m0 == NULL)
555 break;
556 m = NULL;
557
558 dmamap = sc->sc_txmap[sc->sc_nexttx];
559
560 /*
561 * Load the DMA map. If this fails, the packet either
562 * didn't fit in the alloted number of segments, or we were
563 * short on resources. In this case, we'll copy and try
564 * again.
565 * Also copy it if we need to pad, so that we are sure there
566 * is room for the pad buffer.
567 * XXX the right way of doing this is to use a static buffer
568 * for padding and adding it to the transmit descriptor (see
569 * sys/dev/pci/if_tl.c for example). We can't do this here yet
570 * because we can't send packets with more than one fragment.
571 */
572 if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
573 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
574 BUS_DMA_NOWAIT) != 0) {
575 MGETHDR(m, M_DONTWAIT, MT_DATA);
576 if (m == NULL) {
577 printf("%s: unable to allocate Tx mbuf\n",
578 sc->sc_dev.dv_xname);
579 break;
580 }
581 if (m0->m_pkthdr.len > MHLEN) {
582 MCLGET(m, M_DONTWAIT);
583 if ((m->m_flags & M_EXT) == 0) {
584 printf("%s: unable to allocate Tx "
585 "cluster\n", sc->sc_dev.dv_xname);
586 m_freem(m);
587 break;
588 }
589 }
590
591 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
592 if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
593 memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
594 ETHER_PAD_LEN - m0->m_pkthdr.len);
595 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
596 } else
597 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
598
599 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
600 m, BUS_DMA_NOWAIT)) != 0) {
601 printf("%s: unable to load Tx buffer, "
602 "error = %d\n", sc->sc_dev.dv_xname, err);
603 break;
604 }
605 }
606
607 /*
608 * Ensure we have enough descriptors free to describe
609 * the packet.
610 */
611 if (dmamap->dm_nsegs > sc->sc_nfreetx) {
612 /*
613 * Not enough free descriptors to transmit this
614 * packet. We haven't committed to anything yet,
615 * so just unload the DMA map, put the packet
616 * back on the queue, and punt. Notify the upper
617 * layer that there are no more slots left.
618 *
619 * XXX We could allocate an mbuf and copy, but
620 * XXX it is worth it?
621 */
622 ifp->if_flags |= IFF_OACTIVE;
623 bus_dmamap_unload(sc->sc_dmat, dmamap);
624 if (m != NULL)
625 m_freem(m);
626 break;
627 }
628
629 IFQ_DEQUEUE(&ifp->if_snd, m0);
630 /*
631 * Pass the packet to any BPF listeners.
632 */
633 bpf_mtap(ifp, m0);
634 if (m != NULL) {
635 m_freem(m0);
636 m0 = m;
637 }
638
639 /*
640 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
641 */
642
643 SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
644
645 /* Sync the DMA map. */
646 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
647 BUS_DMASYNC_PREWRITE);
648
649 /*
650 * Initialize the transmit descriptors.
651 */
652 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
653 seg < dmamap->dm_nsegs;
654 seg++, nexttx = SQ_NEXTTX(nexttx)) {
655 if (sc->hpc_regs->revision == 3) {
656 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
657 dmamap->dm_segs[seg].ds_addr;
658 sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
659 dmamap->dm_segs[seg].ds_len;
660 } else {
661 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
662 dmamap->dm_segs[seg].ds_addr;
663 sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
664 dmamap->dm_segs[seg].ds_len;
665 }
666 sc->sc_txdesc[nexttx].hdd_descptr=
667 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
668 lasttx = nexttx;
669 totlen += dmamap->dm_segs[seg].ds_len;
670 }
671
672 /* Last descriptor gets end-of-packet */
673 KASSERT(lasttx != -1);
674 if (sc->hpc_regs->revision == 3)
675 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
676 HPC3_HDD_CTL_EOPACKET;
677 else
678 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
679 HPC1_HDD_CTL_EOPACKET;
680
681 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
682 sc->sc_nexttx, lasttx,
683 totlen));
684
685 if (ifp->if_flags & IFF_DEBUG) {
686 printf(" transmit chain:\n");
687 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
688 printf(" descriptor %d:\n", seg);
689 printf(" hdd_bufptr: 0x%08x\n",
690 (sc->hpc_regs->revision == 3) ?
691 sc->sc_txdesc[seg].hpc3_hdd_bufptr :
692 sc->sc_txdesc[seg].hpc1_hdd_bufptr);
693 printf(" hdd_ctl: 0x%08x\n",
694 (sc->hpc_regs->revision == 3) ?
695 sc->sc_txdesc[seg].hpc3_hdd_ctl:
696 sc->sc_txdesc[seg].hpc1_hdd_ctl);
697 printf(" hdd_descptr: 0x%08x\n",
698 sc->sc_txdesc[seg].hdd_descptr);
699
700 if (seg == lasttx)
701 break;
702 }
703 }
704
705 /* Sync the descriptors we're using. */
706 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
707 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
708
709 /* Store a pointer to the packet so we can free it later */
710 sc->sc_txmbuf[sc->sc_nexttx] = m0;
711
712 /* Advance the tx pointer. */
713 sc->sc_nfreetx -= dmamap->dm_nsegs;
714 sc->sc_nexttx = nexttx;
715 }
716
717 /* All transmit descriptors used up, let upper layers know */
718 if (sc->sc_nfreetx == 0)
719 ifp->if_flags |= IFF_OACTIVE;
720
721 if (sc->sc_nfreetx != ofree) {
722 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
723 sc->sc_dev.dv_xname, lasttx - firsttx + 1,
724 firsttx, lasttx));
725
726 /*
727 * Cause a transmit interrupt to happen on the
728 * last packet we enqueued, mark it as the last
729 * descriptor.
730 *
731 * HPC1_HDD_CTL_INTR will generate an interrupt on
732 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
733 * addition to HPC3_HDD_CTL_INTR to interrupt.
734 */
735 KASSERT(lasttx != -1);
736 if (sc->hpc_regs->revision == 3) {
737 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
738 HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
739 } else {
740 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
741 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
742 HPC1_HDD_CTL_EOCHAIN;
743 }
744
745 SQ_CDTXSYNC(sc, lasttx, 1,
746 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
747
748 /*
749 * There is a potential race condition here if the HPC
750 * DMA channel is active and we try and either update
751 * the 'next descriptor' pointer in the HPC PIO space
752 * or the 'next descriptor' pointer in a previous desc-
753 * riptor.
754 *
755 * To avoid this, if the channel is active, we rely on
756 * the transmit interrupt routine noticing that there
757 * are more packets to send and restarting the HPC DMA
758 * engine, rather than mucking with the DMA state here.
759 */
760 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
761
762 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
763 SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
764
765 /*
766 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
767 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
768 */
769 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
770 ~HPC3_HDD_CTL_EOCHAIN;
771
772 if (sc->hpc_regs->revision != 3)
773 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
774 &= ~HPC1_HDD_CTL_INTR;
775
776 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
777 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
778 } else if (sc->hpc_regs->revision == 3) {
779 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
780
781 sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
782 firsttx));
783
784 /* Kick DMA channel into life */
785 sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
786 } else {
787 /*
788 * In the HPC1 case where transmit DMA is
789 * inactive, we can either kick off if
790 * the ring was previously empty, or call
791 * our transmit interrupt handler to
792 * figure out if the ring stopped short
793 * and restart at the right place.
794 */
795 if (ofree == SQ_NTXDESC) {
796 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
797
798 sq_hpc_write(sc, HPC1_ENETX_NDBP,
799 SQ_CDTXADDR(sc, firsttx));
800 sq_hpc_write(sc, HPC1_ENETX_CFXBP,
801 SQ_CDTXADDR(sc, firsttx));
802 sq_hpc_write(sc, HPC1_ENETX_CBP,
803 SQ_CDTXADDR(sc, firsttx));
804
805 /* Kick DMA channel into life */
806 sq_hpc_write(sc, HPC1_ENETX_CTL,
807 HPC1_ENETX_CTL_ACTIVE);
808 } else
809 sq_txring_hpc1(sc);
810 }
811
812 /* Set a watchdog timer in case the chip flakes out. */
813 ifp->if_timer = 5;
814 }
815 }
816
817 void
818 sq_stop(struct ifnet *ifp, int disable)
819 {
820 int i;
821 struct sq_softc *sc = ifp->if_softc;
822
823 for (i =0; i < SQ_NTXDESC; i++) {
824 if (sc->sc_txmbuf[i] != NULL) {
825 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
826 m_freem(sc->sc_txmbuf[i]);
827 sc->sc_txmbuf[i] = NULL;
828 }
829 }
830
831 /* Clear Seeq transmit/receive command registers */
832 sq_seeq_write(sc, SEEQ_TXCMD, 0);
833 sq_seeq_write(sc, SEEQ_RXCMD, 0);
834
835 sq_reset(sc);
836
837 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
838 ifp->if_timer = 0;
839 }
840
841 /* Device timeout/watchdog routine. */
842 void
843 sq_watchdog(struct ifnet *ifp)
844 {
845 uint32_t status;
846 struct sq_softc *sc = ifp->if_softc;
847
848 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
849 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
850 "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
851 sc->sc_nexttx, sc->sc_nfreetx, status);
852
853 sq_trace_dump(sc);
854
855 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
856 sc->sq_trace_idx = 0;
857
858 ++ifp->if_oerrors;
859
860 sq_init(ifp);
861 }
862
863 static void
864 sq_trace_dump(struct sq_softc *sc)
865 {
866 int i;
867 const char *act;
868
869 for (i = 0; i < sc->sq_trace_idx; i++) {
870 switch (sc->sq_trace[i].action) {
871 case SQ_RESET: act = "SQ_RESET"; break;
872 case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break;
873 case SQ_START_DMA: act = "SQ_START_DMA"; break;
874 case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break;
875 case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break;
876 case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break;
877 case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break;
878 case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break;
879 case SQ_IOCTL: act = "SQ_IOCTL"; break;
880 case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break;
881 default: act = "UNKNOWN";
882 }
883
884 printf("%s: [%03d] action %-16s buf %03d free %03d "
885 "status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
886 sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
887 sc->sq_trace[i].status, sc->sq_trace[i].line);
888 }
889 }
890
891 static int
892 sq_intr(void *arg)
893 {
894 struct sq_softc *sc = arg;
895 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
896 int handled = 0;
897 uint32_t stat;
898
899 stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
900
901 if ((stat & 2) == 0)
902 SQ_DPRINTF(("%s: Unexpected interrupt!\n",
903 sc->sc_dev.dv_xname));
904 else
905 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
906
907 /*
908 * If the interface isn't running, the interrupt couldn't
909 * possibly have come from us.
910 */
911 if ((ifp->if_flags & IFF_RUNNING) == 0)
912 return 0;
913
914 sc->sq_intrcnt.ev_count++;
915
916 /* Always check for received packets */
917 if (sq_rxintr(sc) != 0)
918 handled++;
919
920 /* Only handle transmit interrupts if we actually sent something */
921 if (sc->sc_nfreetx < SQ_NTXDESC) {
922 sq_txintr(sc);
923 handled++;
924 }
925
926 #if NRND > 0
927 if (handled)
928 rnd_add_uint32(&sc->rnd_source, stat);
929 #endif
930 return (handled);
931 }
932
933 static int
934 sq_rxintr(struct sq_softc *sc)
935 {
936 int count = 0;
937 struct mbuf* m;
938 int i, framelen;
939 uint8_t pktstat;
940 uint32_t status;
941 uint32_t ctl_reg;
942 int new_end, orig_end;
943 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
944
945 for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
946 SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
947 BUS_DMASYNC_POSTWRITE);
948
949 /*
950 * If this is a CPU-owned buffer, we're at the end of the list.
951 */
952 if (sc->hpc_regs->revision == 3)
953 ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
954 HPC3_HDD_CTL_OWN;
955 else
956 ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
957 HPC1_HDD_CTL_OWN;
958
959 if (ctl_reg) {
960 #if defined(SQ_DEBUG)
961 uint32_t reg;
962
963 reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
964 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
965 sc->sc_dev.dv_xname, i, reg));
966 #endif
967 break;
968 }
969
970 count++;
971
972 m = sc->sc_rxmbuf[i];
973 framelen = m->m_ext.ext_size - 3;
974 if (sc->hpc_regs->revision == 3)
975 framelen -=
976 HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
977 else
978 framelen -=
979 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
980
981 /* Now sync the actual packet data */
982 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
983 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
984
985 pktstat = *((uint8_t*)m->m_data + framelen + 2);
986
987 if ((pktstat & RXSTAT_GOOD) == 0) {
988 ifp->if_ierrors++;
989
990 if (pktstat & RXSTAT_OFLOW)
991 printf("%s: receive FIFO overflow\n",
992 sc->sc_dev.dv_xname);
993
994 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
995 sc->sc_rxmap[i]->dm_mapsize,
996 BUS_DMASYNC_PREREAD);
997 SQ_INIT_RXDESC(sc, i);
998 SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
999 sc->sc_dev.dv_xname, i));
1000 continue;
1001 }
1002
1003 if (sq_add_rxbuf(sc, i) != 0) {
1004 ifp->if_ierrors++;
1005 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1006 sc->sc_rxmap[i]->dm_mapsize,
1007 BUS_DMASYNC_PREREAD);
1008 SQ_INIT_RXDESC(sc, i);
1009 SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1010 "failed\n", sc->sc_dev.dv_xname, i));
1011 continue;
1012 }
1013
1014
1015 m->m_data += 2;
1016 m->m_pkthdr.rcvif = ifp;
1017 m->m_pkthdr.len = m->m_len = framelen;
1018
1019 ifp->if_ipackets++;
1020
1021 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1022 sc->sc_dev.dv_xname, i, framelen));
1023
1024 bpf_mtap(ifp, m);
1025 (*ifp->if_input)(ifp, m);
1026 }
1027
1028
1029 /* If anything happened, move ring start/end pointers to new spot */
1030 if (i != sc->sc_nextrx) {
1031 /*
1032 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1033 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1034 */
1035
1036 new_end = SQ_PREVRX(i);
1037 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1038 SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
1039 BUS_DMASYNC_PREWRITE);
1040
1041 orig_end = SQ_PREVRX(sc->sc_nextrx);
1042 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1043 SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
1044 BUS_DMASYNC_PREWRITE);
1045
1046 sc->sc_nextrx = i;
1047 }
1048
1049 status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1050
1051 /* If receive channel is stopped, restart it... */
1052 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1053 /* Pass the start of the receive ring to the HPC */
1054 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
1055 sc->sc_nextrx));
1056
1057 /* And turn on the HPC ethernet receive channel */
1058 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1059 sc->hpc_regs->enetr_ctl_active);
1060 }
1061
1062 return count;
1063 }
1064
1065 static int
1066 sq_txintr(struct sq_softc *sc)
1067 {
1068 int shift = 0;
1069 uint32_t status, tmp;
1070 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1071
1072 if (sc->hpc_regs->revision != 3)
1073 shift = 16;
1074
1075 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1076
1077 SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1078
1079 tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1080 if ((status & tmp) == 0) {
1081 if (status & TXSTAT_COLL)
1082 ifp->if_collisions++;
1083
1084 if (status & TXSTAT_UFLOW) {
1085 printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
1086 ifp->if_oerrors++;
1087 }
1088
1089 if (status & TXSTAT_16COLL) {
1090 printf("%s: max collisions reached\n",
1091 sc->sc_dev.dv_xname);
1092 ifp->if_oerrors++;
1093 ifp->if_collisions += 16;
1094 }
1095 }
1096
1097 /* prevtx now points to next xmit packet not yet finished */
1098 if (sc->hpc_regs->revision == 3)
1099 sq_txring_hpc3(sc);
1100 else
1101 sq_txring_hpc1(sc);
1102
1103 /* If we have buffers free, let upper layers know */
1104 if (sc->sc_nfreetx > 0)
1105 ifp->if_flags &= ~IFF_OACTIVE;
1106
1107 /* If all packets have left the coop, cancel watchdog */
1108 if (sc->sc_nfreetx == SQ_NTXDESC)
1109 ifp->if_timer = 0;
1110
1111 SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1112 sq_start(ifp);
1113
1114 return 1;
1115 }
1116
1117 /*
1118 * Reclaim used transmit descriptors and restart the transmit DMA
1119 * engine if necessary.
1120 */
1121 static void
1122 sq_txring_hpc1(struct sq_softc *sc)
1123 {
1124 /*
1125 * HPC1 doesn't tag transmitted descriptors, however,
1126 * the NDBP register points to the next descriptor that
1127 * has not yet been processed. If DMA is not in progress,
1128 * we can safely reclaim all descriptors up to NDBP, and,
1129 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1130 * is active, we can only safely reclaim up to CBP.
1131 *
1132 * For now, we'll only reclaim on inactive DMA and assume
1133 * that a sufficiently large ring keeps us out of trouble.
1134 */
1135 uint32_t reclaimto, status;
1136 int reclaimall, i = sc->sc_prevtx;
1137 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1138
1139 status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1140 if (status & HPC1_ENETX_CTL_ACTIVE) {
1141 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1142 return;
1143 } else
1144 reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1145
1146 if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1147 reclaimall = 1;
1148 else
1149 reclaimall = 0;
1150
1151 while (sc->sc_nfreetx < SQ_NTXDESC) {
1152 if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1153 break;
1154
1155 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1156 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157
1158 /* Sync the packet data, unload DMA map, free mbuf */
1159 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1160 sc->sc_txmap[i]->dm_mapsize,
1161 BUS_DMASYNC_POSTWRITE);
1162 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1163 m_freem(sc->sc_txmbuf[i]);
1164 sc->sc_txmbuf[i] = NULL;
1165
1166 ifp->if_opackets++;
1167 sc->sc_nfreetx++;
1168
1169 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1170
1171 i = SQ_NEXTTX(i);
1172 }
1173
1174 if (sc->sc_nfreetx < SQ_NTXDESC) {
1175 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1176
1177 KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1178
1179 sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1180 sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1181
1182 /* Kick DMA channel into life */
1183 sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1184
1185 /*
1186 * Set a watchdog timer in case the chip
1187 * flakes out.
1188 */
1189 ifp->if_timer = 5;
1190 }
1191
1192 sc->sc_prevtx = i;
1193 }
1194
1195 /*
1196 * Reclaim used transmit descriptors and restart the transmit DMA
1197 * engine if necessary.
1198 */
1199 static void
1200 sq_txring_hpc3(struct sq_softc *sc)
1201 {
1202 /*
1203 * HPC3 tags descriptors with a bit once they've been
1204 * transmitted. We need only free each XMITDONE'd
1205 * descriptor, and restart the DMA engine if any
1206 * descriptors are left over.
1207 */
1208 int i;
1209 uint32_t status = 0;
1210 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1211
1212 i = sc->sc_prevtx;
1213 while (sc->sc_nfreetx < SQ_NTXDESC) {
1214 /*
1215 * Check status first so we don't end up with a case of
1216 * the buffer not being finished while the DMA channel
1217 * has gone idle.
1218 */
1219 status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1220
1221 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1222 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1223
1224 /* Check for used descriptor and restart DMA chain if needed */
1225 if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
1226 if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1227 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1228
1229 sq_hpc_write(sc, HPC3_ENETX_NDBP,
1230 SQ_CDTXADDR(sc, i));
1231
1232 /* Kick DMA channel into life */
1233 sq_hpc_write(sc, HPC3_ENETX_CTL,
1234 HPC3_ENETX_CTL_ACTIVE);
1235
1236 /*
1237 * Set a watchdog timer in case the chip
1238 * flakes out.
1239 */
1240 ifp->if_timer = 5;
1241 } else
1242 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1243 break;
1244 }
1245
1246 /* Sync the packet data, unload DMA map, free mbuf */
1247 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
1248 sc->sc_txmap[i]->dm_mapsize,
1249 BUS_DMASYNC_POSTWRITE);
1250 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1251 m_freem(sc->sc_txmbuf[i]);
1252 sc->sc_txmbuf[i] = NULL;
1253
1254 ifp->if_opackets++;
1255 sc->sc_nfreetx++;
1256
1257 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1258 i = SQ_NEXTTX(i);
1259 }
1260
1261 sc->sc_prevtx = i;
1262 }
1263
1264 void
1265 sq_reset(struct sq_softc *sc)
1266 {
1267 /* Stop HPC dma channels */
1268 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1269 sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1270
1271 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1272 delay(20);
1273 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1274 }
1275
1276 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1277 int
1278 sq_add_rxbuf(struct sq_softc *sc, int idx)
1279 {
1280 int err;
1281 struct mbuf *m;
1282
1283 MGETHDR(m, M_DONTWAIT, MT_DATA);
1284 if (m == NULL)
1285 return (ENOBUFS);
1286
1287 MCLGET(m, M_DONTWAIT);
1288 if ((m->m_flags & M_EXT) == 0) {
1289 m_freem(m);
1290 return (ENOBUFS);
1291 }
1292
1293 if (sc->sc_rxmbuf[idx] != NULL)
1294 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1295
1296 sc->sc_rxmbuf[idx] = m;
1297
1298 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1299 m->m_ext.ext_buf, m->m_ext.ext_size,
1300 NULL, BUS_DMA_NOWAIT)) != 0) {
1301 printf("%s: can't load rx DMA map %d, error = %d\n",
1302 sc->sc_dev.dv_xname, idx, err);
1303 panic("sq_add_rxbuf"); /* XXX */
1304 }
1305
1306 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
1307 sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1308
1309 SQ_INIT_RXDESC(sc, idx);
1310
1311 return 0;
1312 }
1313
1314 void
1315 sq_dump_buffer(paddr_t addr, psize_t len)
1316 {
1317 u_int i;
1318 u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1(addr);
1319
1320 if (len == 0)
1321 return;
1322
1323 printf("%p: ", physaddr);
1324
1325 for (i = 0; i < len; i++) {
1326 printf("%02x ", *(physaddr + i) & 0xff);
1327 if ((i % 16) == 15 && i != len - 1)
1328 printf("\n%p: ", physaddr + i);
1329 }
1330
1331 printf("\n");
1332 }
1333