Home | History | Annotate | Line # | Download | only in hpc
if_sq.c revision 1.38
      1 /*	$NetBSD: if_sq.c,v 1.38 2011/01/25 12:21:04 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Rafal K. Boni
      5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * Portions of this code are derived from software contributed to The
      9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.38 2011/01/25 12:21:04 tsutsui Exp $");
     37 
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/device.h>
     42 #include <sys/callout.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/malloc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/socket.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/errno.h>
     49 #include <sys/syslog.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 #include <machine/endian.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_ether.h>
     59 
     60 #include <net/bpf.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 #include <machine/sysconf.h>
     65 
     66 #include <dev/ic/seeq8003reg.h>
     67 
     68 #include <sgimips/hpc/sqvar.h>
     69 #include <sgimips/hpc/hpcvar.h>
     70 #include <sgimips/hpc/hpcreg.h>
     71 
     72 #include <dev/arcbios/arcbios.h>
     73 #include <dev/arcbios/arcbiosvar.h>
     74 
     75 #define static
     76 
     77 /*
     78  * Short TODO list:
     79  *	(1) Do counters for bad-RX packets.
     80  *	(2) Allow multi-segment transmits, instead of copying to a single,
     81  *	    contiguous mbuf.
     82  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
     83  *	    seeq interrupts after sq_stop().
     84  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
     85  *	    mode.
     86  *	(5) Should the driver filter out its own transmissions in non-EDLC
     87  *	    mode?
     88  *	(6) Multicast support -- multicast filter, address management, ...
     89  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
     90  *	    to figure out if RB0 is read-only as stated in one spot in the
     91  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
     92  *	    the correct thing?
     93  */
     94 
     95 #if defined(SQ_DEBUG)
     96  int sq_debug = 0;
     97  #define SQ_DPRINTF(x) if (sq_debug) printf x
     98 #else
     99  #define SQ_DPRINTF(x)
    100 #endif
    101 
    102 static int	sq_match(struct device *, struct cfdata *, void *);
    103 static void	sq_attach(struct device *, struct device *, void *);
    104 static int	sq_init(struct ifnet *);
    105 static void	sq_start(struct ifnet *);
    106 static void	sq_stop(struct ifnet *, int);
    107 static void	sq_watchdog(struct ifnet *);
    108 static int	sq_ioctl(struct ifnet *, u_long, void *);
    109 
    110 static void	sq_set_filter(struct sq_softc *);
    111 static int	sq_intr(void *);
    112 static int	sq_rxintr(struct sq_softc *);
    113 static int	sq_txintr(struct sq_softc *);
    114 static void	sq_txring_hpc1(struct sq_softc *);
    115 static void	sq_txring_hpc3(struct sq_softc *);
    116 static void	sq_reset(struct sq_softc *);
    117 static int 	sq_add_rxbuf(struct sq_softc *, int);
    118 static void 	sq_dump_buffer(paddr_t addr, psize_t len);
    119 static void	sq_trace_dump(struct sq_softc *);
    120 
    121 CFATTACH_DECL(sq, sizeof(struct sq_softc),
    122     sq_match, sq_attach, NULL, NULL);
    123 
    124 #define        ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
    125 
    126 #define sq_seeq_read(sc, off) \
    127 	bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
    128 #define sq_seeq_write(sc, off, val) \
    129 	bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
    130 
    131 #define sq_hpc_read(sc, off) \
    132 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
    133 #define sq_hpc_write(sc, off, val) \
    134 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
    135 
    136 /* MAC address offset for non-onboard implementations */
    137 #define SQ_HPC_EEPROM_ENADDR	250
    138 
    139 #define SGI_OUI_0		0x08
    140 #define SGI_OUI_1		0x00
    141 #define SGI_OUI_2		0x69
    142 
    143 static int
    144 sq_match(struct device *parent, struct cfdata *cf, void *aux)
    145 {
    146 	struct hpc_attach_args *ha = aux;
    147 
    148 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
    149 		vaddr_t reset, txstat;
    150 
    151 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    152 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
    153 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    154 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
    155 
    156 		if (platform.badaddr((void *)reset, sizeof(reset)))
    157 			return (0);
    158 
    159 		*(volatile uint32_t *)reset = 0x1;
    160 		delay(20);
    161 		*(volatile uint32_t *)reset = 0x0;
    162 
    163 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
    164 			return (0);
    165 
    166 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
    167 			return (1);
    168 	}
    169 
    170 	return (0);
    171 }
    172 
    173 static void
    174 sq_attach(struct device *parent, struct device *self, void *aux)
    175 {
    176 	int i, err;
    177 	const char* macaddr;
    178 	struct sq_softc *sc = (void *)self;
    179 	struct hpc_attach_args *haa = aux;
    180 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    181 
    182 	sc->sc_hpct = haa->ha_st;
    183 	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
    184 
    185 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    186 				       haa->ha_dmaoff,
    187 				       sc->hpc_regs->enet_regs_size,
    188 				       &sc->sc_hpch)) != 0) {
    189 		printf(": unable to map HPC DMA registers, error = %d\n", err);
    190 		goto fail_0;
    191 	}
    192 
    193 	sc->sc_regt = haa->ha_st;
    194 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    195 				       haa->ha_devoff,
    196 				       sc->hpc_regs->enet_devregs_size,
    197 				       &sc->sc_regh)) != 0) {
    198 		printf(": unable to map Seeq registers, error = %d\n", err);
    199 		goto fail_0;
    200 	}
    201 
    202 	sc->sc_dmat = haa->ha_dmat;
    203 
    204 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
    205 				    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
    206 				    1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
    207 		printf(": unable to allocate control data, error = %d\n", err);
    208 		goto fail_0;
    209 	}
    210 
    211 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
    212 				  sizeof(struct sq_control),
    213 				  (void **)&sc->sc_control,
    214 				  BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    215 		printf(": unable to map control data, error = %d\n", err);
    216 		goto fail_1;
    217 	}
    218 
    219 	if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
    220 				     1, sizeof(struct sq_control), PAGE_SIZE,
    221 				     BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
    222 		printf(": unable to create DMA map for control data, error "
    223 			"= %d\n", err);
    224 		goto fail_2;
    225 	}
    226 
    227 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
    228 				   sizeof(struct sq_control),
    229 				   NULL, BUS_DMA_NOWAIT)) != 0) {
    230 		printf(": unable to load DMA map for control data, error "
    231 			"= %d\n", err);
    232 		goto fail_3;
    233 	}
    234 
    235 	memset(sc->sc_control, 0, sizeof(struct sq_control));
    236 
    237 	/* Create transmit buffer DMA maps */
    238 	for (i = 0; i < SQ_NTXDESC; i++) {
    239 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    240 					 0, BUS_DMA_NOWAIT,
    241 					 &sc->sc_txmap[i])) != 0) {
    242 		    printf(": unable to create tx DMA map %d, error = %d\n",
    243 			   i, err);
    244 		    goto fail_4;
    245 	    }
    246 	}
    247 
    248 	/* Create receive buffer DMA maps */
    249 	for (i = 0; i < SQ_NRXDESC; i++) {
    250 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    251 					 0, BUS_DMA_NOWAIT,
    252 					 &sc->sc_rxmap[i])) != 0) {
    253 		    printf(": unable to create rx DMA map %d, error = %d\n",
    254 			   i, err);
    255 		    goto fail_5;
    256 	    }
    257 	}
    258 
    259 	/* Pre-allocate the receive buffers.  */
    260 	for (i = 0; i < SQ_NRXDESC; i++) {
    261 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
    262 			printf(": unable to allocate or map rx buffer %d\n,"
    263 			       " error = %d\n", i, err);
    264 			goto fail_6;
    265 		}
    266 	}
    267 
    268 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
    269 	    ETHER_ADDR_LEN);
    270 
    271 	/*
    272 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
    273 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
    274 	 * but rather the DS1386 RTC's battery-backed ram is used.
    275 	 */
    276 	if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
    277 	    sc->sc_enaddr[2] != SGI_OUI_2) {
    278 		macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
    279 		if (macaddr == NULL) {
    280 			printf(": unable to get MAC address!\n");
    281 			goto fail_6;
    282 		}
    283 		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
    284 	}
    285 
    286 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
    287 					      self->dv_xname, "intr");
    288 
    289 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
    290 		printf(": unable to establish interrupt!\n");
    291 		goto fail_6;
    292 	}
    293 
    294 	/* Reset the chip to a known state. */
    295 	sq_reset(sc);
    296 
    297 	/*
    298 	 * Determine if we're an 8003 or 80c03 by setting the first
    299 	 * MAC address register to non-zero, and then reading it back.
    300 	 * If it's zero, we have an 80c03, because we will have read
    301 	 * the TxCollLSB register.
    302 	 */
    303 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
    304 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
    305 		sc->sc_type = SQ_TYPE_80C03;
    306 	else
    307 		sc->sc_type = SQ_TYPE_8003;
    308 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
    309 
    310 	printf(": SGI Seeq %s\n",
    311 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
    312 
    313 	printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    314 					   ether_sprintf(sc->sc_enaddr));
    315 
    316 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    317 	ifp->if_softc = sc;
    318 	ifp->if_mtu = ETHERMTU;
    319 	ifp->if_init = sq_init;
    320 	ifp->if_stop = sq_stop;
    321 	ifp->if_start = sq_start;
    322 	ifp->if_ioctl = sq_ioctl;
    323 	ifp->if_watchdog = sq_watchdog;
    324 	ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
    325 	IFQ_SET_READY(&ifp->if_snd);
    326 
    327 	if_attach(ifp);
    328 	ether_ifattach(ifp, sc->sc_enaddr);
    329 
    330 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    331 	/* Done! */
    332 	return;
    333 
    334 	/*
    335 	 * Free any resources we've allocated during the failed attach
    336 	 * attempt.  Do this in reverse order and fall through.
    337 	 */
    338 fail_6:
    339 	for (i = 0; i < SQ_NRXDESC; i++) {
    340 		if (sc->sc_rxmbuf[i] != NULL) {
    341 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
    342 			m_freem(sc->sc_rxmbuf[i]);
    343 		}
    344 	}
    345 fail_5:
    346 	for (i = 0; i < SQ_NRXDESC; i++) {
    347 	    if (sc->sc_rxmap[i] != NULL)
    348 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
    349 	}
    350 fail_4:
    351 	for (i = 0; i < SQ_NTXDESC; i++) {
    352 	    if (sc->sc_txmap[i] !=  NULL)
    353 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
    354 	}
    355 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
    356 fail_3:
    357 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
    358 fail_2:
    359 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
    360 				      sizeof(struct sq_control));
    361 fail_1:
    362 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
    363 fail_0:
    364 	return;
    365 }
    366 
    367 /* Set up data to get the interface up and running. */
    368 int
    369 sq_init(struct ifnet *ifp)
    370 {
    371 	int i;
    372 	struct sq_softc *sc = ifp->if_softc;
    373 
    374 	/* Cancel any in-progress I/O */
    375 	sq_stop(ifp, 0);
    376 
    377 	sc->sc_nextrx = 0;
    378 
    379 	sc->sc_nfreetx = SQ_NTXDESC;
    380 	sc->sc_nexttx = sc->sc_prevtx = 0;
    381 
    382 	SQ_TRACE(SQ_RESET, sc, 0, 0);
    383 
    384 	/* Set into 8003 mode, bank 0 to program ethernet address */
    385 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
    386 
    387 	/* Now write the address */
    388 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    389 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
    390 
    391 	sc->sc_rxcmd = RXCMD_IE_CRC |
    392 		       RXCMD_IE_DRIB |
    393 		       RXCMD_IE_SHORT |
    394 		       RXCMD_IE_END |
    395 		       RXCMD_IE_GOOD;
    396 
    397 	/*
    398 	 * Set the receive filter -- this will add some bits to the
    399 	 * prototype RXCMD register.  Do this before setting the
    400 	 * transmit config register, since we might need to switch
    401 	 * banks.
    402 	 */
    403 	sq_set_filter(sc);
    404 
    405 	/* Set up Seeq transmit command register */
    406 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
    407 				      TXCMD_IE_COLL |
    408 				      TXCMD_IE_16COLL |
    409 				      TXCMD_IE_GOOD);
    410 
    411 	/* Now write the receive command register. */
    412 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
    413 
    414 	/*
    415 	 * Set up HPC ethernet PIO and DMA configurations.
    416 	 *
    417 	 * The PROM appears to do most of this for the onboard HPC3, but
    418 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
    419 	 * chip is configured and assume that it's correct for both.
    420 	 */
    421 	if (sc->hpc_regs->revision == 3) {
    422 		uint32_t dmareg, pioreg;
    423 
    424 		pioreg = HPC3_ENETR_PIOCFG_P1(1) |
    425 			 HPC3_ENETR_PIOCFG_P2(6) |
    426 			 HPC3_ENETR_PIOCFG_P3(1);
    427 
    428 		dmareg = HPC3_ENETR_DMACFG_D1(6) |
    429 			 HPC3_ENETR_DMACFG_D2(2) |
    430 			 HPC3_ENETR_DMACFG_D3(0) |
    431 			 HPC3_ENETR_DMACFG_FIX_RXDC |
    432 			 HPC3_ENETR_DMACFG_FIX_INTR |
    433 			 HPC3_ENETR_DMACFG_FIX_EOP |
    434 			 HPC3_ENETR_DMACFG_TIMEOUT;
    435 
    436 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
    437 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
    438 	}
    439 
    440 	/* Pass the start of the receive ring to the HPC */
    441 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
    442 
    443 	/* And turn on the HPC ethernet receive channel */
    444 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
    445 	    sc->hpc_regs->enetr_ctl_active);
    446 
    447 	/*
    448 	 * Turn off delayed receive interrupts on HPC1.
    449 	 * (see Hollywood HPC Specification 2.1.4.3)
    450 	 */
    451 	if (sc->hpc_regs->revision != 3)
    452 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
    453 
    454 	ifp->if_flags |= IFF_RUNNING;
    455 	ifp->if_flags &= ~IFF_OACTIVE;
    456 
    457 	return 0;
    458 }
    459 
    460 static void
    461 sq_set_filter(struct sq_softc *sc)
    462 {
    463 	struct ethercom *ec = &sc->sc_ethercom;
    464 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    465 	struct ether_multi *enm;
    466 	struct ether_multistep step;
    467 
    468 	/*
    469 	 * Check for promiscuous mode.  Also implies
    470 	 * all-multicast.
    471 	 */
    472 	if (ifp->if_flags & IFF_PROMISC) {
    473 		sc->sc_rxcmd |= RXCMD_REC_ALL;
    474 		ifp->if_flags |= IFF_ALLMULTI;
    475 		return;
    476 	}
    477 
    478 	/*
    479 	 * The 8003 has no hash table.  If we have any multicast
    480 	 * addresses on the list, enable reception of all multicast
    481 	 * frames.
    482 	 *
    483 	 * XXX The 80c03 has a hash table.  We should use it.
    484 	 */
    485 
    486 	ETHER_FIRST_MULTI(step, ec, enm);
    487 
    488 	if (enm == NULL) {
    489 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
    490 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
    491 
    492 		ifp->if_flags &= ~IFF_ALLMULTI;
    493 		return;
    494 	}
    495 
    496 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
    497 	ifp->if_flags |= IFF_ALLMULTI;
    498 }
    499 
    500 int
    501 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    502 {
    503 	int s, error = 0;
    504 
    505 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
    506 
    507 	s = splnet();
    508 
    509 	error = ether_ioctl(ifp, cmd, data);
    510 	if (error == ENETRESET) {
    511 		/*
    512 		 * Multicast list has changed; set the hardware filter
    513 		 * accordingly.
    514 		 */
    515 		if (ifp->if_flags & IFF_RUNNING)
    516 			error = sq_init(ifp);
    517 		else
    518 			error = 0;
    519 	}
    520 
    521 	splx(s);
    522 	return (error);
    523 }
    524 
    525 void
    526 sq_start(struct ifnet *ifp)
    527 {
    528 	struct sq_softc *sc = ifp->if_softc;
    529 	uint32_t status;
    530 	struct mbuf *m0, *m;
    531 	bus_dmamap_t dmamap;
    532 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
    533 
    534 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    535 		return;
    536 
    537 	/*
    538 	 * Remember the previous number of free descriptors and
    539 	 * the first descriptor we'll use.
    540 	 */
    541 	ofree = sc->sc_nfreetx;
    542 	firsttx = sc->sc_nexttx;
    543 
    544 	/*
    545 	 * Loop through the send queue, setting up transmit descriptors
    546 	 * until we drain the queue, or use up all available transmit
    547 	 * descriptors.
    548 	 */
    549 	while (sc->sc_nfreetx != 0) {
    550 		/*
    551 		 * Grab a packet off the queue.
    552 		 */
    553 		IFQ_POLL(&ifp->if_snd, m0);
    554 		if (m0 == NULL)
    555 			break;
    556 		m = NULL;
    557 
    558 		dmamap = sc->sc_txmap[sc->sc_nexttx];
    559 
    560 		/*
    561 		 * Load the DMA map.  If this fails, the packet either
    562 		 * didn't fit in the alloted number of segments, or we were
    563 		 * short on resources.  In this case, we'll copy and try
    564 		 * again.
    565 		 * Also copy it if we need to pad, so that we are sure there
    566 		 * is room for the pad buffer.
    567 		 * XXX the right way of doing this is to use a static buffer
    568 		 * for padding and adding it to the transmit descriptor (see
    569 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
    570 		 * because we can't send packets with more than one fragment.
    571 		 */
    572 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
    573 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    574 						      BUS_DMA_NOWAIT) != 0) {
    575 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    576 			if (m == NULL) {
    577 				printf("%s: unable to allocate Tx mbuf\n",
    578 				    sc->sc_dev.dv_xname);
    579 				break;
    580 			}
    581 			if (m0->m_pkthdr.len > MHLEN) {
    582 				MCLGET(m, M_DONTWAIT);
    583 				if ((m->m_flags & M_EXT) == 0) {
    584 					printf("%s: unable to allocate Tx "
    585 					    "cluster\n", sc->sc_dev.dv_xname);
    586 					m_freem(m);
    587 					break;
    588 				}
    589 			}
    590 
    591 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    592 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
    593 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
    594 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
    595 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
    596 			} else
    597 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    598 
    599 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    600 						m, BUS_DMA_NOWAIT)) != 0) {
    601 				printf("%s: unable to load Tx buffer, "
    602 				    "error = %d\n", sc->sc_dev.dv_xname, err);
    603 				break;
    604 			}
    605 		}
    606 
    607 		/*
    608 		 * Ensure we have enough descriptors free to describe
    609 		 * the packet.
    610 		 */
    611 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
    612 			/*
    613 			 * Not enough free descriptors to transmit this
    614 			 * packet.  We haven't committed to anything yet,
    615 			 * so just unload the DMA map, put the packet
    616 			 * back on the queue, and punt.  Notify the upper
    617 			 * layer that there are no more slots left.
    618 			 *
    619 			 * XXX We could allocate an mbuf and copy, but
    620 			 * XXX it is worth it?
    621 			 */
    622 			ifp->if_flags |= IFF_OACTIVE;
    623 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    624 			if (m != NULL)
    625 				m_freem(m);
    626 			break;
    627 		}
    628 
    629 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    630 		/*
    631 		 * Pass the packet to any BPF listeners.
    632 		 */
    633 		bpf_mtap(ifp, m0);
    634 		if (m != NULL) {
    635 			m_freem(m0);
    636 			m0 = m;
    637 		}
    638 
    639 		/*
    640 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    641 		 */
    642 
    643 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
    644 
    645 		/* Sync the DMA map. */
    646 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    647 		    BUS_DMASYNC_PREWRITE);
    648 
    649 		/*
    650 		 * Initialize the transmit descriptors.
    651 		 */
    652 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
    653 		     seg < dmamap->dm_nsegs;
    654 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
    655 			if (sc->hpc_regs->revision == 3) {
    656 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
    657 					    dmamap->dm_segs[seg].ds_addr;
    658 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
    659 					    dmamap->dm_segs[seg].ds_len;
    660 			} else {
    661 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
    662 					    dmamap->dm_segs[seg].ds_addr;
    663 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
    664 					    dmamap->dm_segs[seg].ds_len;
    665 			}
    666 			sc->sc_txdesc[nexttx].hdd_descptr=
    667 					    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
    668 			lasttx = nexttx;
    669 			totlen += dmamap->dm_segs[seg].ds_len;
    670 		}
    671 
    672 		/* Last descriptor gets end-of-packet */
    673 		KASSERT(lasttx != -1);
    674 		if (sc->hpc_regs->revision == 3)
    675 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    676 			    HPC3_HDD_CTL_EOPACKET;
    677 		else
    678 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
    679 			    HPC1_HDD_CTL_EOPACKET;
    680 
    681 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n", sc->sc_dev.dv_xname,
    682 						       sc->sc_nexttx, lasttx,
    683 						       totlen));
    684 
    685 		if (ifp->if_flags & IFF_DEBUG) {
    686 			printf("     transmit chain:\n");
    687 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
    688 				printf("     descriptor %d:\n", seg);
    689 				printf("       hdd_bufptr:      0x%08x\n",
    690 					(sc->hpc_regs->revision == 3) ?
    691 					    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
    692 					    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
    693 				printf("       hdd_ctl: 0x%08x\n",
    694 					(sc->hpc_regs->revision == 3) ?
    695 					    sc->sc_txdesc[seg].hpc3_hdd_ctl:
    696 					    sc->sc_txdesc[seg].hpc1_hdd_ctl);
    697 				printf("       hdd_descptr:      0x%08x\n",
    698 					sc->sc_txdesc[seg].hdd_descptr);
    699 
    700 				if (seg == lasttx)
    701 					break;
    702 			}
    703 		}
    704 
    705 		/* Sync the descriptors we're using. */
    706 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
    707 				BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    708 
    709 		/* Store a pointer to the packet so we can free it later */
    710 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
    711 
    712 		/* Advance the tx pointer. */
    713 		sc->sc_nfreetx -= dmamap->dm_nsegs;
    714 		sc->sc_nexttx = nexttx;
    715 	}
    716 
    717 	/* All transmit descriptors used up, let upper layers know */
    718 	if (sc->sc_nfreetx == 0)
    719 		ifp->if_flags |= IFF_OACTIVE;
    720 
    721 	if (sc->sc_nfreetx != ofree) {
    722 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
    723 			    sc->sc_dev.dv_xname, lasttx - firsttx + 1,
    724 			    firsttx, lasttx));
    725 
    726 		/*
    727 		 * Cause a transmit interrupt to happen on the
    728 		 * last packet we enqueued, mark it as the last
    729 		 * descriptor.
    730 		 *
    731 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
    732 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
    733 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
    734 		 */
    735 		KASSERT(lasttx != -1);
    736 		if (sc->hpc_regs->revision == 3) {
    737 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    738 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
    739 		} else {
    740 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
    741 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
    742 			    HPC1_HDD_CTL_EOCHAIN;
    743 		}
    744 
    745 		SQ_CDTXSYNC(sc, lasttx, 1,
    746 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    747 
    748 		/*
    749 		 * There is a potential race condition here if the HPC
    750 		 * DMA channel is active and we try and either update
    751 		 * the 'next descriptor' pointer in the HPC PIO space
    752 		 * or the 'next descriptor' pointer in a previous desc-
    753 		 * riptor.
    754 		 *
    755 		 * To avoid this, if the channel is active, we rely on
    756 		 * the transmit interrupt routine noticing that there
    757 		 * are more packets to send and restarting the HPC DMA
    758 		 * engine, rather than mucking with the DMA state here.
    759 		 */
    760 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    761 
    762 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
    763 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
    764 
    765 			/*
    766 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
    767 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
    768 			 */
    769 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
    770 			    ~HPC3_HDD_CTL_EOCHAIN;
    771 
    772 			if (sc->hpc_regs->revision != 3)
    773 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
    774 				    &= ~HPC1_HDD_CTL_INTR;
    775 
    776 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
    777 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    778 		} else if (sc->hpc_regs->revision == 3) {
    779 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    780 
    781 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
    782 			    firsttx));
    783 
    784 			/* Kick DMA channel into life */
    785 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
    786 		} else {
    787 			/*
    788 			 * In the HPC1 case where transmit DMA is
    789 			 * inactive, we can either kick off if
    790 			 * the ring was previously empty, or call
    791 			 * our transmit interrupt handler to
    792 			 * figure out if the ring stopped short
    793 			 * and restart at the right place.
    794 			 */
    795 			if (ofree == SQ_NTXDESC) {
    796 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    797 
    798 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
    799 				    SQ_CDTXADDR(sc, firsttx));
    800 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
    801 				    SQ_CDTXADDR(sc, firsttx));
    802 				sq_hpc_write(sc, HPC1_ENETX_CBP,
    803 				    SQ_CDTXADDR(sc, firsttx));
    804 
    805 				/* Kick DMA channel into life */
    806 				sq_hpc_write(sc, HPC1_ENETX_CTL,
    807 				    HPC1_ENETX_CTL_ACTIVE);
    808 			} else
    809 				sq_txring_hpc1(sc);
    810 		}
    811 
    812 		/* Set a watchdog timer in case the chip flakes out. */
    813 		ifp->if_timer = 5;
    814 	}
    815 }
    816 
    817 void
    818 sq_stop(struct ifnet *ifp, int disable)
    819 {
    820 	int i;
    821 	struct sq_softc *sc = ifp->if_softc;
    822 
    823 	for (i =0; i < SQ_NTXDESC; i++) {
    824 		if (sc->sc_txmbuf[i] != NULL) {
    825 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
    826 			m_freem(sc->sc_txmbuf[i]);
    827 			sc->sc_txmbuf[i] = NULL;
    828 		}
    829 	}
    830 
    831 	/* Clear Seeq transmit/receive command registers */
    832 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
    833 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
    834 
    835 	sq_reset(sc);
    836 
    837 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    838 	ifp->if_timer = 0;
    839 }
    840 
    841 /* Device timeout/watchdog routine. */
    842 void
    843 sq_watchdog(struct ifnet *ifp)
    844 {
    845 	uint32_t status;
    846 	struct sq_softc *sc = ifp->if_softc;
    847 
    848 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    849 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
    850 		     "status %08x)\n", sc->sc_dev.dv_xname, sc->sc_prevtx,
    851 				       sc->sc_nexttx, sc->sc_nfreetx, status);
    852 
    853 	sq_trace_dump(sc);
    854 
    855 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    856 	sc->sq_trace_idx = 0;
    857 
    858 	++ifp->if_oerrors;
    859 
    860 	sq_init(ifp);
    861 }
    862 
    863 static void
    864 sq_trace_dump(struct sq_softc *sc)
    865 {
    866 	int i;
    867 	const char *act;
    868 
    869 	for (i = 0; i < sc->sq_trace_idx; i++) {
    870 		switch (sc->sq_trace[i].action) {
    871 		case SQ_RESET:		act = "SQ_RESET";		break;
    872 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
    873 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
    874 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
    875 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
    876 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
    877 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
    878 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
    879 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
    880 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
    881 		default:		act = "UNKNOWN";
    882 		}
    883 
    884 		printf("%s: [%03d] action %-16s buf %03d free %03d "
    885 		    "status %08x line %d\n", sc->sc_dev.dv_xname, i, act,
    886 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
    887 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
    888 	}
    889 }
    890 
    891 static int
    892 sq_intr(void *arg)
    893 {
    894 	struct sq_softc *sc = arg;
    895 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    896 	int handled = 0;
    897 	uint32_t stat;
    898 
    899 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
    900 
    901 	if ((stat & 2) == 0)
    902 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
    903 		    sc->sc_dev.dv_xname));
    904 	else
    905 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
    906 
    907 	/*
    908 	 * If the interface isn't running, the interrupt couldn't
    909 	 * possibly have come from us.
    910 	 */
    911 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    912 		return 0;
    913 
    914 	sc->sq_intrcnt.ev_count++;
    915 
    916 	/* Always check for received packets */
    917 	if (sq_rxintr(sc) != 0)
    918 		handled++;
    919 
    920 	/* Only handle transmit interrupts if we actually sent something */
    921 	if (sc->sc_nfreetx < SQ_NTXDESC) {
    922 		sq_txintr(sc);
    923 		handled++;
    924 	}
    925 
    926 #if NRND > 0
    927 	if (handled)
    928 		rnd_add_uint32(&sc->rnd_source, stat);
    929 #endif
    930 	return (handled);
    931 }
    932 
    933 static int
    934 sq_rxintr(struct sq_softc *sc)
    935 {
    936 	int count = 0;
    937 	struct mbuf* m;
    938 	int i, framelen;
    939 	uint8_t pktstat;
    940 	uint32_t status;
    941 	uint32_t ctl_reg;
    942 	int new_end, orig_end;
    943 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    944 
    945 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
    946 		SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
    947 		    BUS_DMASYNC_POSTWRITE);
    948 
    949 		/*
    950 		 * If this is a CPU-owned buffer, we're at the end of the list.
    951 		 */
    952 		if (sc->hpc_regs->revision == 3)
    953 			ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
    954 			    HPC3_HDD_CTL_OWN;
    955 		else
    956 			ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
    957 			    HPC1_HDD_CTL_OWN;
    958 
    959 		if (ctl_reg) {
    960 #if defined(SQ_DEBUG)
    961 			uint32_t reg;
    962 
    963 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
    964 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
    965 			    sc->sc_dev.dv_xname, i, reg));
    966 #endif
    967 			break;
    968 		}
    969 
    970 		count++;
    971 
    972 		m = sc->sc_rxmbuf[i];
    973 		framelen = m->m_ext.ext_size - 3;
    974 		if (sc->hpc_regs->revision == 3)
    975 		    framelen -=
    976 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
    977 		else
    978 		    framelen -=
    979 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
    980 
    981 		/* Now sync the actual packet data */
    982 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    983 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
    984 
    985 		pktstat = *((uint8_t*)m->m_data + framelen + 2);
    986 
    987 		if ((pktstat & RXSTAT_GOOD) == 0) {
    988 			ifp->if_ierrors++;
    989 
    990 			if (pktstat & RXSTAT_OFLOW)
    991 				printf("%s: receive FIFO overflow\n",
    992 				    sc->sc_dev.dv_xname);
    993 
    994 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    995 			    sc->sc_rxmap[i]->dm_mapsize,
    996 			    BUS_DMASYNC_PREREAD);
    997 			SQ_INIT_RXDESC(sc, i);
    998 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
    999 			    sc->sc_dev.dv_xname, i));
   1000 			continue;
   1001 		}
   1002 
   1003 		if (sq_add_rxbuf(sc, i) != 0) {
   1004 			ifp->if_ierrors++;
   1005 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
   1006 			    sc->sc_rxmap[i]->dm_mapsize,
   1007 			    BUS_DMASYNC_PREREAD);
   1008 			SQ_INIT_RXDESC(sc, i);
   1009 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
   1010 			    "failed\n", sc->sc_dev.dv_xname, i));
   1011 			continue;
   1012 		}
   1013 
   1014 
   1015 		m->m_data += 2;
   1016 		m->m_pkthdr.rcvif = ifp;
   1017 		m->m_pkthdr.len = m->m_len = framelen;
   1018 
   1019 		ifp->if_ipackets++;
   1020 
   1021 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
   1022 			    sc->sc_dev.dv_xname, i, framelen));
   1023 
   1024 		bpf_mtap(ifp, m);
   1025 		(*ifp->if_input)(ifp, m);
   1026 	}
   1027 
   1028 
   1029 	/* If anything happened, move ring start/end pointers to new spot */
   1030 	if (i != sc->sc_nextrx) {
   1031 		/*
   1032 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
   1033 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
   1034 		 */
   1035 
   1036 		new_end = SQ_PREVRX(i);
   1037 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
   1038 		SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
   1039 		    BUS_DMASYNC_PREWRITE);
   1040 
   1041 		orig_end = SQ_PREVRX(sc->sc_nextrx);
   1042 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
   1043 		SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
   1044 		    BUS_DMASYNC_PREWRITE);
   1045 
   1046 		sc->sc_nextrx = i;
   1047 	}
   1048 
   1049 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
   1050 
   1051 	/* If receive channel is stopped, restart it... */
   1052 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
   1053 		/* Pass the start of the receive ring to the HPC */
   1054 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
   1055 		    sc->sc_nextrx));
   1056 
   1057 		/* And turn on the HPC ethernet receive channel */
   1058 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
   1059 		    sc->hpc_regs->enetr_ctl_active);
   1060 	}
   1061 
   1062 	return count;
   1063 }
   1064 
   1065 static int
   1066 sq_txintr(struct sq_softc *sc)
   1067 {
   1068 	int shift = 0;
   1069 	uint32_t status, tmp;
   1070 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1071 
   1072 	if (sc->hpc_regs->revision != 3)
   1073 		shift = 16;
   1074 
   1075 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
   1076 
   1077 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
   1078 
   1079 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
   1080 	if ((status & tmp) == 0) {
   1081 		if (status & TXSTAT_COLL)
   1082 			ifp->if_collisions++;
   1083 
   1084 		if (status & TXSTAT_UFLOW) {
   1085 			printf("%s: transmit underflow\n", sc->sc_dev.dv_xname);
   1086 			ifp->if_oerrors++;
   1087 		}
   1088 
   1089 		if (status & TXSTAT_16COLL) {
   1090 			printf("%s: max collisions reached\n",
   1091 			    sc->sc_dev.dv_xname);
   1092 			ifp->if_oerrors++;
   1093 			ifp->if_collisions += 16;
   1094 		}
   1095 	}
   1096 
   1097 	/* prevtx now points to next xmit packet not yet finished */
   1098 	if (sc->hpc_regs->revision == 3)
   1099 		sq_txring_hpc3(sc);
   1100 	else
   1101 		sq_txring_hpc1(sc);
   1102 
   1103 	/* If we have buffers free, let upper layers know */
   1104 	if (sc->sc_nfreetx > 0)
   1105 		ifp->if_flags &= ~IFF_OACTIVE;
   1106 
   1107 	/* If all packets have left the coop, cancel watchdog */
   1108 	if (sc->sc_nfreetx == SQ_NTXDESC)
   1109 		ifp->if_timer = 0;
   1110 
   1111 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
   1112 	sq_start(ifp);
   1113 
   1114 	return 1;
   1115 }
   1116 
   1117 /*
   1118  * Reclaim used transmit descriptors and restart the transmit DMA
   1119  * engine if necessary.
   1120  */
   1121 static void
   1122 sq_txring_hpc1(struct sq_softc *sc)
   1123 {
   1124 	/*
   1125 	 * HPC1 doesn't tag transmitted descriptors, however,
   1126 	 * the NDBP register points to the next descriptor that
   1127 	 * has not yet been processed. If DMA is not in progress,
   1128 	 * we can safely reclaim all descriptors up to NDBP, and,
   1129 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
   1130 	 * is active, we can only safely reclaim up to CBP.
   1131 	 *
   1132 	 * For now, we'll only reclaim on inactive DMA and assume
   1133 	 * that a sufficiently large ring keeps us out of trouble.
   1134 	 */
   1135 	uint32_t reclaimto, status;
   1136 	int reclaimall, i = sc->sc_prevtx;
   1137 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1138 
   1139 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
   1140 	if (status & HPC1_ENETX_CTL_ACTIVE) {
   1141 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1142 		return;
   1143 	} else
   1144 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
   1145 
   1146 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
   1147 		reclaimall = 1;
   1148 	else
   1149 		reclaimall = 0;
   1150 
   1151 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1152 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
   1153 			break;
   1154 
   1155 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1156 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1157 
   1158 		/* Sync the packet data, unload DMA map, free mbuf */
   1159 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
   1160 				sc->sc_txmap[i]->dm_mapsize,
   1161 				BUS_DMASYNC_POSTWRITE);
   1162 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1163 		m_freem(sc->sc_txmbuf[i]);
   1164 		sc->sc_txmbuf[i] = NULL;
   1165 
   1166 		ifp->if_opackets++;
   1167 		sc->sc_nfreetx++;
   1168 
   1169 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1170 
   1171 		i = SQ_NEXTTX(i);
   1172 	}
   1173 
   1174 	if (sc->sc_nfreetx < SQ_NTXDESC) {
   1175 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1176 
   1177 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
   1178 
   1179 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
   1180 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
   1181 
   1182 		/* Kick DMA channel into life */
   1183 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
   1184 
   1185 		/*
   1186 		 * Set a watchdog timer in case the chip
   1187 		 * flakes out.
   1188 		 */
   1189 		ifp->if_timer = 5;
   1190 	}
   1191 
   1192 	sc->sc_prevtx = i;
   1193 }
   1194 
   1195 /*
   1196  * Reclaim used transmit descriptors and restart the transmit DMA
   1197  * engine if necessary.
   1198  */
   1199 static void
   1200 sq_txring_hpc3(struct sq_softc *sc)
   1201 {
   1202 	/*
   1203 	 * HPC3 tags descriptors with a bit once they've been
   1204 	 * transmitted. We need only free each XMITDONE'd
   1205 	 * descriptor, and restart the DMA engine if any
   1206 	 * descriptors are left over.
   1207 	 */
   1208 	int i;
   1209 	uint32_t status = 0;
   1210 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1211 
   1212 	i = sc->sc_prevtx;
   1213 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1214 		/*
   1215 		 * Check status first so we don't end up with a case of
   1216 		 * the buffer not being finished while the DMA channel
   1217 		 * has gone idle.
   1218 		 */
   1219 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
   1220 
   1221 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1222 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1223 
   1224 		/* Check for used descriptor and restart DMA chain if needed */
   1225 		if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
   1226 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
   1227 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1228 
   1229 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
   1230 				    SQ_CDTXADDR(sc, i));
   1231 
   1232 				/* Kick DMA channel into life */
   1233 				sq_hpc_write(sc, HPC3_ENETX_CTL,
   1234 				    HPC3_ENETX_CTL_ACTIVE);
   1235 
   1236 				/*
   1237 				 * Set a watchdog timer in case the chip
   1238 				 * flakes out.
   1239 				 */
   1240 				ifp->if_timer = 5;
   1241 			} else
   1242 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1243 			break;
   1244 		}
   1245 
   1246 		/* Sync the packet data, unload DMA map, free mbuf */
   1247 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
   1248 				sc->sc_txmap[i]->dm_mapsize,
   1249 				BUS_DMASYNC_POSTWRITE);
   1250 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1251 		m_freem(sc->sc_txmbuf[i]);
   1252 		sc->sc_txmbuf[i] = NULL;
   1253 
   1254 		ifp->if_opackets++;
   1255 		sc->sc_nfreetx++;
   1256 
   1257 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1258 		i = SQ_NEXTTX(i);
   1259 	}
   1260 
   1261 	sc->sc_prevtx = i;
   1262 }
   1263 
   1264 void
   1265 sq_reset(struct sq_softc *sc)
   1266 {
   1267 	/* Stop HPC dma channels */
   1268 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
   1269 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
   1270 
   1271 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
   1272 	delay(20);
   1273 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
   1274 }
   1275 
   1276 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
   1277 int
   1278 sq_add_rxbuf(struct sq_softc *sc, int idx)
   1279 {
   1280 	int err;
   1281 	struct mbuf *m;
   1282 
   1283 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1284 	if (m == NULL)
   1285 		return (ENOBUFS);
   1286 
   1287 	MCLGET(m, M_DONTWAIT);
   1288 	if ((m->m_flags & M_EXT) == 0) {
   1289 		m_freem(m);
   1290 		return (ENOBUFS);
   1291 	}
   1292 
   1293 	if (sc->sc_rxmbuf[idx] != NULL)
   1294 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
   1295 
   1296 	sc->sc_rxmbuf[idx] = m;
   1297 
   1298 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
   1299 				   m->m_ext.ext_buf, m->m_ext.ext_size,
   1300 				   NULL, BUS_DMA_NOWAIT)) != 0) {
   1301 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1302 		    sc->sc_dev.dv_xname, idx, err);
   1303 		panic("sq_add_rxbuf");	/* XXX */
   1304 	}
   1305 
   1306 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
   1307 			sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
   1308 
   1309 	SQ_INIT_RXDESC(sc, idx);
   1310 
   1311 	return 0;
   1312 }
   1313 
   1314 void
   1315 sq_dump_buffer(paddr_t addr, psize_t len)
   1316 {
   1317 	u_int i;
   1318 	u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1(addr);
   1319 
   1320 	if (len == 0)
   1321 		return;
   1322 
   1323 	printf("%p: ", physaddr);
   1324 
   1325 	for (i = 0; i < len; i++) {
   1326 		printf("%02x ", *(physaddr + i) & 0xff);
   1327 		if ((i % 16) ==  15 && i != len - 1)
   1328 		    printf("\n%p: ", physaddr + i);
   1329 	}
   1330 
   1331 	printf("\n");
   1332 }
   1333