Home | History | Annotate | Line # | Download | only in hpc
if_sq.c revision 1.39
      1 /*	$NetBSD: if_sq.c,v 1.39 2011/01/25 12:43:30 tsutsui Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Rafal K. Boni
      5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * Portions of this code are derived from software contributed to The
      9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.39 2011/01/25 12:43:30 tsutsui Exp $");
     37 
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/device.h>
     42 #include <sys/callout.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/malloc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/socket.h>
     47 #include <sys/ioctl.h>
     48 #include <sys/errno.h>
     49 #include <sys/syslog.h>
     50 
     51 #include <uvm/uvm_extern.h>
     52 
     53 #include <machine/endian.h>
     54 
     55 #include <net/if.h>
     56 #include <net/if_dl.h>
     57 #include <net/if_media.h>
     58 #include <net/if_ether.h>
     59 
     60 #include <net/bpf.h>
     61 
     62 #include <machine/bus.h>
     63 #include <machine/intr.h>
     64 #include <machine/sysconf.h>
     65 
     66 #include <dev/ic/seeq8003reg.h>
     67 
     68 #include <sgimips/hpc/sqvar.h>
     69 #include <sgimips/hpc/hpcvar.h>
     70 #include <sgimips/hpc/hpcreg.h>
     71 
     72 #include <dev/arcbios/arcbios.h>
     73 #include <dev/arcbios/arcbiosvar.h>
     74 
     75 #define static
     76 
     77 /*
     78  * Short TODO list:
     79  *	(1) Do counters for bad-RX packets.
     80  *	(2) Allow multi-segment transmits, instead of copying to a single,
     81  *	    contiguous mbuf.
     82  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
     83  *	    seeq interrupts after sq_stop().
     84  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
     85  *	    mode.
     86  *	(5) Should the driver filter out its own transmissions in non-EDLC
     87  *	    mode?
     88  *	(6) Multicast support -- multicast filter, address management, ...
     89  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
     90  *	    to figure out if RB0 is read-only as stated in one spot in the
     91  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
     92  *	    the correct thing?
     93  */
     94 
     95 #if defined(SQ_DEBUG)
     96  int sq_debug = 0;
     97  #define SQ_DPRINTF(x) if (sq_debug) printf x
     98 #else
     99  #define SQ_DPRINTF(x)
    100 #endif
    101 
    102 static int	sq_match(device_t, cfdata_t, void *);
    103 static void	sq_attach(device_t, device_t, void *);
    104 static int	sq_init(struct ifnet *);
    105 static void	sq_start(struct ifnet *);
    106 static void	sq_stop(struct ifnet *, int);
    107 static void	sq_watchdog(struct ifnet *);
    108 static int	sq_ioctl(struct ifnet *, u_long, void *);
    109 
    110 static void	sq_set_filter(struct sq_softc *);
    111 static int	sq_intr(void *);
    112 static int	sq_rxintr(struct sq_softc *);
    113 static int	sq_txintr(struct sq_softc *);
    114 static void	sq_txring_hpc1(struct sq_softc *);
    115 static void	sq_txring_hpc3(struct sq_softc *);
    116 static void	sq_reset(struct sq_softc *);
    117 static int 	sq_add_rxbuf(struct sq_softc *, int);
    118 static void 	sq_dump_buffer(paddr_t addr, psize_t len);
    119 static void	sq_trace_dump(struct sq_softc *);
    120 
    121 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
    122     sq_match, sq_attach, NULL, NULL);
    123 
    124 #define        ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
    125 
    126 #define sq_seeq_read(sc, off) \
    127 	bus_space_read_1(sc->sc_regt, sc->sc_regh, off)
    128 #define sq_seeq_write(sc, off, val) \
    129 	bus_space_write_1(sc->sc_regt, sc->sc_regh, off, val)
    130 
    131 #define sq_hpc_read(sc, off) \
    132 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
    133 #define sq_hpc_write(sc, off, val) \
    134 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
    135 
    136 /* MAC address offset for non-onboard implementations */
    137 #define SQ_HPC_EEPROM_ENADDR	250
    138 
    139 #define SGI_OUI_0		0x08
    140 #define SGI_OUI_1		0x00
    141 #define SGI_OUI_2		0x69
    142 
    143 static int
    144 sq_match(device_t parent, cfdata_t cf, void *aux)
    145 {
    146 	struct hpc_attach_args *ha = aux;
    147 
    148 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
    149 		vaddr_t reset, txstat;
    150 
    151 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    152 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
    153 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    154 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
    155 
    156 		if (platform.badaddr((void *)reset, sizeof(reset)))
    157 			return (0);
    158 
    159 		*(volatile uint32_t *)reset = 0x1;
    160 		delay(20);
    161 		*(volatile uint32_t *)reset = 0x0;
    162 
    163 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
    164 			return (0);
    165 
    166 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
    167 			return (1);
    168 	}
    169 
    170 	return (0);
    171 }
    172 
    173 static void
    174 sq_attach(device_t parent, device_t self, void *aux)
    175 {
    176 	int i, err;
    177 	const char* macaddr;
    178 	struct sq_softc *sc = device_private(self);
    179 	struct hpc_attach_args *haa = aux;
    180 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    181 
    182 	sc->sc_dev = self;
    183 	sc->sc_hpct = haa->ha_st;
    184 	sc->hpc_regs = haa->hpc_regs;      /* HPC register definitions */
    185 
    186 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    187 				       haa->ha_dmaoff,
    188 				       sc->hpc_regs->enet_regs_size,
    189 				       &sc->sc_hpch)) != 0) {
    190 		printf(": unable to map HPC DMA registers, error = %d\n", err);
    191 		goto fail_0;
    192 	}
    193 
    194 	sc->sc_regt = haa->ha_st;
    195 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    196 				       haa->ha_devoff,
    197 				       sc->hpc_regs->enet_devregs_size,
    198 				       &sc->sc_regh)) != 0) {
    199 		printf(": unable to map Seeq registers, error = %d\n", err);
    200 		goto fail_0;
    201 	}
    202 
    203 	sc->sc_dmat = haa->ha_dmat;
    204 
    205 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
    206 				    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg,
    207 				    1, &sc->sc_ncdseg, BUS_DMA_NOWAIT)) != 0) {
    208 		printf(": unable to allocate control data, error = %d\n", err);
    209 		goto fail_0;
    210 	}
    211 
    212 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
    213 				  sizeof(struct sq_control),
    214 				  (void **)&sc->sc_control,
    215 				  BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    216 		printf(": unable to map control data, error = %d\n", err);
    217 		goto fail_1;
    218 	}
    219 
    220 	if ((err = bus_dmamap_create(sc->sc_dmat, sizeof(struct sq_control),
    221 				     1, sizeof(struct sq_control), PAGE_SIZE,
    222 				     BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
    223 		printf(": unable to create DMA map for control data, error "
    224 			"= %d\n", err);
    225 		goto fail_2;
    226 	}
    227 
    228 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap, sc->sc_control,
    229 				   sizeof(struct sq_control),
    230 				   NULL, BUS_DMA_NOWAIT)) != 0) {
    231 		printf(": unable to load DMA map for control data, error "
    232 			"= %d\n", err);
    233 		goto fail_3;
    234 	}
    235 
    236 	memset(sc->sc_control, 0, sizeof(struct sq_control));
    237 
    238 	/* Create transmit buffer DMA maps */
    239 	for (i = 0; i < SQ_NTXDESC; i++) {
    240 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    241 					 0, BUS_DMA_NOWAIT,
    242 					 &sc->sc_txmap[i])) != 0) {
    243 		    printf(": unable to create tx DMA map %d, error = %d\n",
    244 			   i, err);
    245 		    goto fail_4;
    246 	    }
    247 	}
    248 
    249 	/* Create receive buffer DMA maps */
    250 	for (i = 0; i < SQ_NRXDESC; i++) {
    251 	    if ((err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
    252 					 0, BUS_DMA_NOWAIT,
    253 					 &sc->sc_rxmap[i])) != 0) {
    254 		    printf(": unable to create rx DMA map %d, error = %d\n",
    255 			   i, err);
    256 		    goto fail_5;
    257 	    }
    258 	}
    259 
    260 	/* Pre-allocate the receive buffers.  */
    261 	for (i = 0; i < SQ_NRXDESC; i++) {
    262 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
    263 			printf(": unable to allocate or map rx buffer %d\n,"
    264 			       " error = %d\n", i, err);
    265 			goto fail_6;
    266 		}
    267 	}
    268 
    269 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
    270 	    ETHER_ADDR_LEN);
    271 
    272 	/*
    273 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
    274 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
    275 	 * but rather the DS1386 RTC's battery-backed ram is used.
    276 	 */
    277 	if (sc->sc_enaddr[0] != SGI_OUI_0 || sc->sc_enaddr[1] != SGI_OUI_1 ||
    278 	    sc->sc_enaddr[2] != SGI_OUI_2) {
    279 		macaddr = ARCBIOS->GetEnvironmentVariable("eaddr");
    280 		if (macaddr == NULL) {
    281 			printf(": unable to get MAC address!\n");
    282 			goto fail_6;
    283 		}
    284 		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
    285 	}
    286 
    287 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
    288 	    device_xname(self), "intr");
    289 
    290 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
    291 		printf(": unable to establish interrupt!\n");
    292 		goto fail_6;
    293 	}
    294 
    295 	/* Reset the chip to a known state. */
    296 	sq_reset(sc);
    297 
    298 	/*
    299 	 * Determine if we're an 8003 or 80c03 by setting the first
    300 	 * MAC address register to non-zero, and then reading it back.
    301 	 * If it's zero, we have an 80c03, because we will have read
    302 	 * the TxCollLSB register.
    303 	 */
    304 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
    305 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
    306 		sc->sc_type = SQ_TYPE_80C03;
    307 	else
    308 		sc->sc_type = SQ_TYPE_8003;
    309 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
    310 
    311 	printf(": SGI Seeq %s\n",
    312 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
    313 
    314 	printf("%s: Ethernet address %s\n",
    315 	    device_xname(self), ether_sprintf(sc->sc_enaddr));
    316 
    317 	strcpy(ifp->if_xname, device_xname(self));
    318 	ifp->if_softc = sc;
    319 	ifp->if_mtu = ETHERMTU;
    320 	ifp->if_init = sq_init;
    321 	ifp->if_stop = sq_stop;
    322 	ifp->if_start = sq_start;
    323 	ifp->if_ioctl = sq_ioctl;
    324 	ifp->if_watchdog = sq_watchdog;
    325 	ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
    326 	IFQ_SET_READY(&ifp->if_snd);
    327 
    328 	if_attach(ifp);
    329 	ether_ifattach(ifp, sc->sc_enaddr);
    330 
    331 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    332 	/* Done! */
    333 	return;
    334 
    335 	/*
    336 	 * Free any resources we've allocated during the failed attach
    337 	 * attempt.  Do this in reverse order and fall through.
    338 	 */
    339 fail_6:
    340 	for (i = 0; i < SQ_NRXDESC; i++) {
    341 		if (sc->sc_rxmbuf[i] != NULL) {
    342 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
    343 			m_freem(sc->sc_rxmbuf[i]);
    344 		}
    345 	}
    346 fail_5:
    347 	for (i = 0; i < SQ_NRXDESC; i++) {
    348 	    if (sc->sc_rxmap[i] != NULL)
    349 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
    350 	}
    351 fail_4:
    352 	for (i = 0; i < SQ_NTXDESC; i++) {
    353 	    if (sc->sc_txmap[i] !=  NULL)
    354 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
    355 	}
    356 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
    357 fail_3:
    358 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
    359 fail_2:
    360 	bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_control,
    361 				      sizeof(struct sq_control));
    362 fail_1:
    363 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
    364 fail_0:
    365 	return;
    366 }
    367 
    368 /* Set up data to get the interface up and running. */
    369 int
    370 sq_init(struct ifnet *ifp)
    371 {
    372 	int i;
    373 	struct sq_softc *sc = ifp->if_softc;
    374 
    375 	/* Cancel any in-progress I/O */
    376 	sq_stop(ifp, 0);
    377 
    378 	sc->sc_nextrx = 0;
    379 
    380 	sc->sc_nfreetx = SQ_NTXDESC;
    381 	sc->sc_nexttx = sc->sc_prevtx = 0;
    382 
    383 	SQ_TRACE(SQ_RESET, sc, 0, 0);
    384 
    385 	/* Set into 8003 mode, bank 0 to program ethernet address */
    386 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
    387 
    388 	/* Now write the address */
    389 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    390 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
    391 
    392 	sc->sc_rxcmd = RXCMD_IE_CRC |
    393 		       RXCMD_IE_DRIB |
    394 		       RXCMD_IE_SHORT |
    395 		       RXCMD_IE_END |
    396 		       RXCMD_IE_GOOD;
    397 
    398 	/*
    399 	 * Set the receive filter -- this will add some bits to the
    400 	 * prototype RXCMD register.  Do this before setting the
    401 	 * transmit config register, since we might need to switch
    402 	 * banks.
    403 	 */
    404 	sq_set_filter(sc);
    405 
    406 	/* Set up Seeq transmit command register */
    407 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_IE_UFLOW |
    408 				      TXCMD_IE_COLL |
    409 				      TXCMD_IE_16COLL |
    410 				      TXCMD_IE_GOOD);
    411 
    412 	/* Now write the receive command register. */
    413 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
    414 
    415 	/*
    416 	 * Set up HPC ethernet PIO and DMA configurations.
    417 	 *
    418 	 * The PROM appears to do most of this for the onboard HPC3, but
    419 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
    420 	 * chip is configured and assume that it's correct for both.
    421 	 */
    422 	if (sc->hpc_regs->revision == 3) {
    423 		uint32_t dmareg, pioreg;
    424 
    425 		pioreg = HPC3_ENETR_PIOCFG_P1(1) |
    426 			 HPC3_ENETR_PIOCFG_P2(6) |
    427 			 HPC3_ENETR_PIOCFG_P3(1);
    428 
    429 		dmareg = HPC3_ENETR_DMACFG_D1(6) |
    430 			 HPC3_ENETR_DMACFG_D2(2) |
    431 			 HPC3_ENETR_DMACFG_D3(0) |
    432 			 HPC3_ENETR_DMACFG_FIX_RXDC |
    433 			 HPC3_ENETR_DMACFG_FIX_INTR |
    434 			 HPC3_ENETR_DMACFG_FIX_EOP |
    435 			 HPC3_ENETR_DMACFG_TIMEOUT;
    436 
    437 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
    438 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
    439 	}
    440 
    441 	/* Pass the start of the receive ring to the HPC */
    442 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
    443 
    444 	/* And turn on the HPC ethernet receive channel */
    445 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
    446 	    sc->hpc_regs->enetr_ctl_active);
    447 
    448 	/*
    449 	 * Turn off delayed receive interrupts on HPC1.
    450 	 * (see Hollywood HPC Specification 2.1.4.3)
    451 	 */
    452 	if (sc->hpc_regs->revision != 3)
    453 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
    454 
    455 	ifp->if_flags |= IFF_RUNNING;
    456 	ifp->if_flags &= ~IFF_OACTIVE;
    457 
    458 	return 0;
    459 }
    460 
    461 static void
    462 sq_set_filter(struct sq_softc *sc)
    463 {
    464 	struct ethercom *ec = &sc->sc_ethercom;
    465 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    466 	struct ether_multi *enm;
    467 	struct ether_multistep step;
    468 
    469 	/*
    470 	 * Check for promiscuous mode.  Also implies
    471 	 * all-multicast.
    472 	 */
    473 	if (ifp->if_flags & IFF_PROMISC) {
    474 		sc->sc_rxcmd |= RXCMD_REC_ALL;
    475 		ifp->if_flags |= IFF_ALLMULTI;
    476 		return;
    477 	}
    478 
    479 	/*
    480 	 * The 8003 has no hash table.  If we have any multicast
    481 	 * addresses on the list, enable reception of all multicast
    482 	 * frames.
    483 	 *
    484 	 * XXX The 80c03 has a hash table.  We should use it.
    485 	 */
    486 
    487 	ETHER_FIRST_MULTI(step, ec, enm);
    488 
    489 	if (enm == NULL) {
    490 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
    491 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
    492 
    493 		ifp->if_flags &= ~IFF_ALLMULTI;
    494 		return;
    495 	}
    496 
    497 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
    498 	ifp->if_flags |= IFF_ALLMULTI;
    499 }
    500 
    501 int
    502 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    503 {
    504 	int s, error = 0;
    505 
    506 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
    507 
    508 	s = splnet();
    509 
    510 	error = ether_ioctl(ifp, cmd, data);
    511 	if (error == ENETRESET) {
    512 		/*
    513 		 * Multicast list has changed; set the hardware filter
    514 		 * accordingly.
    515 		 */
    516 		if (ifp->if_flags & IFF_RUNNING)
    517 			error = sq_init(ifp);
    518 		else
    519 			error = 0;
    520 	}
    521 
    522 	splx(s);
    523 	return (error);
    524 }
    525 
    526 void
    527 sq_start(struct ifnet *ifp)
    528 {
    529 	struct sq_softc *sc = ifp->if_softc;
    530 	uint32_t status;
    531 	struct mbuf *m0, *m;
    532 	bus_dmamap_t dmamap;
    533 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
    534 
    535 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    536 		return;
    537 
    538 	/*
    539 	 * Remember the previous number of free descriptors and
    540 	 * the first descriptor we'll use.
    541 	 */
    542 	ofree = sc->sc_nfreetx;
    543 	firsttx = sc->sc_nexttx;
    544 
    545 	/*
    546 	 * Loop through the send queue, setting up transmit descriptors
    547 	 * until we drain the queue, or use up all available transmit
    548 	 * descriptors.
    549 	 */
    550 	while (sc->sc_nfreetx != 0) {
    551 		/*
    552 		 * Grab a packet off the queue.
    553 		 */
    554 		IFQ_POLL(&ifp->if_snd, m0);
    555 		if (m0 == NULL)
    556 			break;
    557 		m = NULL;
    558 
    559 		dmamap = sc->sc_txmap[sc->sc_nexttx];
    560 
    561 		/*
    562 		 * Load the DMA map.  If this fails, the packet either
    563 		 * didn't fit in the alloted number of segments, or we were
    564 		 * short on resources.  In this case, we'll copy and try
    565 		 * again.
    566 		 * Also copy it if we need to pad, so that we are sure there
    567 		 * is room for the pad buffer.
    568 		 * XXX the right way of doing this is to use a static buffer
    569 		 * for padding and adding it to the transmit descriptor (see
    570 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
    571 		 * because we can't send packets with more than one fragment.
    572 		 */
    573 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
    574 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    575 						      BUS_DMA_NOWAIT) != 0) {
    576 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    577 			if (m == NULL) {
    578 				printf("%s: unable to allocate Tx mbuf\n",
    579 				    device_xname(sc->sc_dev));
    580 				break;
    581 			}
    582 			if (m0->m_pkthdr.len > MHLEN) {
    583 				MCLGET(m, M_DONTWAIT);
    584 				if ((m->m_flags & M_EXT) == 0) {
    585 					printf("%s: unable to allocate Tx "
    586 					    "cluster\n",
    587 					    device_xname(sc->sc_dev));
    588 					m_freem(m);
    589 					break;
    590 				}
    591 			}
    592 
    593 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    594 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
    595 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
    596 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
    597 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
    598 			} else
    599 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    600 
    601 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    602 						m, BUS_DMA_NOWAIT)) != 0) {
    603 				printf("%s: unable to load Tx buffer, "
    604 				    "error = %d\n",
    605 				    device_xname(sc->sc_dev), err);
    606 				break;
    607 			}
    608 		}
    609 
    610 		/*
    611 		 * Ensure we have enough descriptors free to describe
    612 		 * the packet.
    613 		 */
    614 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
    615 			/*
    616 			 * Not enough free descriptors to transmit this
    617 			 * packet.  We haven't committed to anything yet,
    618 			 * so just unload the DMA map, put the packet
    619 			 * back on the queue, and punt.  Notify the upper
    620 			 * layer that there are no more slots left.
    621 			 *
    622 			 * XXX We could allocate an mbuf and copy, but
    623 			 * XXX it is worth it?
    624 			 */
    625 			ifp->if_flags |= IFF_OACTIVE;
    626 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    627 			if (m != NULL)
    628 				m_freem(m);
    629 			break;
    630 		}
    631 
    632 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    633 		/*
    634 		 * Pass the packet to any BPF listeners.
    635 		 */
    636 		bpf_mtap(ifp, m0);
    637 		if (m != NULL) {
    638 			m_freem(m0);
    639 			m0 = m;
    640 		}
    641 
    642 		/*
    643 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    644 		 */
    645 
    646 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
    647 
    648 		/* Sync the DMA map. */
    649 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    650 		    BUS_DMASYNC_PREWRITE);
    651 
    652 		/*
    653 		 * Initialize the transmit descriptors.
    654 		 */
    655 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
    656 		     seg < dmamap->dm_nsegs;
    657 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
    658 			if (sc->hpc_regs->revision == 3) {
    659 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
    660 					    dmamap->dm_segs[seg].ds_addr;
    661 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
    662 					    dmamap->dm_segs[seg].ds_len;
    663 			} else {
    664 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
    665 					    dmamap->dm_segs[seg].ds_addr;
    666 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
    667 					    dmamap->dm_segs[seg].ds_len;
    668 			}
    669 			sc->sc_txdesc[nexttx].hdd_descptr=
    670 					    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
    671 			lasttx = nexttx;
    672 			totlen += dmamap->dm_segs[seg].ds_len;
    673 		}
    674 
    675 		/* Last descriptor gets end-of-packet */
    676 		KASSERT(lasttx != -1);
    677 		if (sc->hpc_regs->revision == 3)
    678 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    679 			    HPC3_HDD_CTL_EOPACKET;
    680 		else
    681 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
    682 			    HPC1_HDD_CTL_EOPACKET;
    683 
    684 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
    685 						       device_xname(sc->sc_dev),
    686 						       sc->sc_nexttx, lasttx,
    687 						       totlen));
    688 
    689 		if (ifp->if_flags & IFF_DEBUG) {
    690 			printf("     transmit chain:\n");
    691 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
    692 				printf("     descriptor %d:\n", seg);
    693 				printf("       hdd_bufptr:      0x%08x\n",
    694 					(sc->hpc_regs->revision == 3) ?
    695 					    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
    696 					    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
    697 				printf("       hdd_ctl: 0x%08x\n",
    698 					(sc->hpc_regs->revision == 3) ?
    699 					    sc->sc_txdesc[seg].hpc3_hdd_ctl:
    700 					    sc->sc_txdesc[seg].hpc1_hdd_ctl);
    701 				printf("       hdd_descptr:      0x%08x\n",
    702 					sc->sc_txdesc[seg].hdd_descptr);
    703 
    704 				if (seg == lasttx)
    705 					break;
    706 			}
    707 		}
    708 
    709 		/* Sync the descriptors we're using. */
    710 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
    711 				BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    712 
    713 		/* Store a pointer to the packet so we can free it later */
    714 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
    715 
    716 		/* Advance the tx pointer. */
    717 		sc->sc_nfreetx -= dmamap->dm_nsegs;
    718 		sc->sc_nexttx = nexttx;
    719 	}
    720 
    721 	/* All transmit descriptors used up, let upper layers know */
    722 	if (sc->sc_nfreetx == 0)
    723 		ifp->if_flags |= IFF_OACTIVE;
    724 
    725 	if (sc->sc_nfreetx != ofree) {
    726 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
    727 			    device_xname(sc->sc_dev), lasttx - firsttx + 1,
    728 			    firsttx, lasttx));
    729 
    730 		/*
    731 		 * Cause a transmit interrupt to happen on the
    732 		 * last packet we enqueued, mark it as the last
    733 		 * descriptor.
    734 		 *
    735 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
    736 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
    737 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
    738 		 */
    739 		KASSERT(lasttx != -1);
    740 		if (sc->hpc_regs->revision == 3) {
    741 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    742 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
    743 		} else {
    744 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
    745 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
    746 			    HPC1_HDD_CTL_EOCHAIN;
    747 		}
    748 
    749 		SQ_CDTXSYNC(sc, lasttx, 1,
    750 				BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    751 
    752 		/*
    753 		 * There is a potential race condition here if the HPC
    754 		 * DMA channel is active and we try and either update
    755 		 * the 'next descriptor' pointer in the HPC PIO space
    756 		 * or the 'next descriptor' pointer in a previous desc-
    757 		 * riptor.
    758 		 *
    759 		 * To avoid this, if the channel is active, we rely on
    760 		 * the transmit interrupt routine noticing that there
    761 		 * are more packets to send and restarting the HPC DMA
    762 		 * engine, rather than mucking with the DMA state here.
    763 		 */
    764 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    765 
    766 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
    767 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
    768 
    769 			/*
    770 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
    771 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
    772 			 */
    773 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
    774 			    ~HPC3_HDD_CTL_EOCHAIN;
    775 
    776 			if (sc->hpc_regs->revision != 3)
    777 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
    778 				    &= ~HPC1_HDD_CTL_INTR;
    779 
    780 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
    781 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    782 		} else if (sc->hpc_regs->revision == 3) {
    783 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    784 
    785 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
    786 			    firsttx));
    787 
    788 			/* Kick DMA channel into life */
    789 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
    790 		} else {
    791 			/*
    792 			 * In the HPC1 case where transmit DMA is
    793 			 * inactive, we can either kick off if
    794 			 * the ring was previously empty, or call
    795 			 * our transmit interrupt handler to
    796 			 * figure out if the ring stopped short
    797 			 * and restart at the right place.
    798 			 */
    799 			if (ofree == SQ_NTXDESC) {
    800 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    801 
    802 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
    803 				    SQ_CDTXADDR(sc, firsttx));
    804 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
    805 				    SQ_CDTXADDR(sc, firsttx));
    806 				sq_hpc_write(sc, HPC1_ENETX_CBP,
    807 				    SQ_CDTXADDR(sc, firsttx));
    808 
    809 				/* Kick DMA channel into life */
    810 				sq_hpc_write(sc, HPC1_ENETX_CTL,
    811 				    HPC1_ENETX_CTL_ACTIVE);
    812 			} else
    813 				sq_txring_hpc1(sc);
    814 		}
    815 
    816 		/* Set a watchdog timer in case the chip flakes out. */
    817 		ifp->if_timer = 5;
    818 	}
    819 }
    820 
    821 void
    822 sq_stop(struct ifnet *ifp, int disable)
    823 {
    824 	int i;
    825 	struct sq_softc *sc = ifp->if_softc;
    826 
    827 	for (i =0; i < SQ_NTXDESC; i++) {
    828 		if (sc->sc_txmbuf[i] != NULL) {
    829 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
    830 			m_freem(sc->sc_txmbuf[i]);
    831 			sc->sc_txmbuf[i] = NULL;
    832 		}
    833 	}
    834 
    835 	/* Clear Seeq transmit/receive command registers */
    836 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
    837 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
    838 
    839 	sq_reset(sc);
    840 
    841 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    842 	ifp->if_timer = 0;
    843 }
    844 
    845 /* Device timeout/watchdog routine. */
    846 void
    847 sq_watchdog(struct ifnet *ifp)
    848 {
    849 	uint32_t status;
    850 	struct sq_softc *sc = ifp->if_softc;
    851 
    852 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    853 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
    854 		     "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
    855 				       sc->sc_nexttx, sc->sc_nfreetx, status);
    856 
    857 	sq_trace_dump(sc);
    858 
    859 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    860 	sc->sq_trace_idx = 0;
    861 
    862 	++ifp->if_oerrors;
    863 
    864 	sq_init(ifp);
    865 }
    866 
    867 static void
    868 sq_trace_dump(struct sq_softc *sc)
    869 {
    870 	int i;
    871 	const char *act;
    872 
    873 	for (i = 0; i < sc->sq_trace_idx; i++) {
    874 		switch (sc->sq_trace[i].action) {
    875 		case SQ_RESET:		act = "SQ_RESET";		break;
    876 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
    877 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
    878 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
    879 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
    880 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
    881 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
    882 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
    883 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
    884 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
    885 		default:		act = "UNKNOWN";
    886 		}
    887 
    888 		printf("%s: [%03d] action %-16s buf %03d free %03d "
    889 		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
    890 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
    891 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
    892 	}
    893 }
    894 
    895 static int
    896 sq_intr(void *arg)
    897 {
    898 	struct sq_softc *sc = arg;
    899 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    900 	int handled = 0;
    901 	uint32_t stat;
    902 
    903 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
    904 
    905 	if ((stat & 2) == 0)
    906 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
    907 		    device_xname(sc->sc_dev)));
    908 	else
    909 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
    910 
    911 	/*
    912 	 * If the interface isn't running, the interrupt couldn't
    913 	 * possibly have come from us.
    914 	 */
    915 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    916 		return 0;
    917 
    918 	sc->sq_intrcnt.ev_count++;
    919 
    920 	/* Always check for received packets */
    921 	if (sq_rxintr(sc) != 0)
    922 		handled++;
    923 
    924 	/* Only handle transmit interrupts if we actually sent something */
    925 	if (sc->sc_nfreetx < SQ_NTXDESC) {
    926 		sq_txintr(sc);
    927 		handled++;
    928 	}
    929 
    930 #if NRND > 0
    931 	if (handled)
    932 		rnd_add_uint32(&sc->rnd_source, stat);
    933 #endif
    934 	return (handled);
    935 }
    936 
    937 static int
    938 sq_rxintr(struct sq_softc *sc)
    939 {
    940 	int count = 0;
    941 	struct mbuf* m;
    942 	int i, framelen;
    943 	uint8_t pktstat;
    944 	uint32_t status;
    945 	uint32_t ctl_reg;
    946 	int new_end, orig_end;
    947 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    948 
    949 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
    950 		SQ_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD |
    951 		    BUS_DMASYNC_POSTWRITE);
    952 
    953 		/*
    954 		 * If this is a CPU-owned buffer, we're at the end of the list.
    955 		 */
    956 		if (sc->hpc_regs->revision == 3)
    957 			ctl_reg = sc->sc_rxdesc[i].hpc3_hdd_ctl &
    958 			    HPC3_HDD_CTL_OWN;
    959 		else
    960 			ctl_reg = sc->sc_rxdesc[i].hpc1_hdd_ctl &
    961 			    HPC1_HDD_CTL_OWN;
    962 
    963 		if (ctl_reg) {
    964 #if defined(SQ_DEBUG)
    965 			uint32_t reg;
    966 
    967 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
    968 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
    969 			    device_xname(sc->sc_dev), i, reg));
    970 #endif
    971 			break;
    972 		}
    973 
    974 		count++;
    975 
    976 		m = sc->sc_rxmbuf[i];
    977 		framelen = m->m_ext.ext_size - 3;
    978 		if (sc->hpc_regs->revision == 3)
    979 		    framelen -=
    980 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
    981 		else
    982 		    framelen -=
    983 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
    984 
    985 		/* Now sync the actual packet data */
    986 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    987 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
    988 
    989 		pktstat = *((uint8_t*)m->m_data + framelen + 2);
    990 
    991 		if ((pktstat & RXSTAT_GOOD) == 0) {
    992 			ifp->if_ierrors++;
    993 
    994 			if (pktstat & RXSTAT_OFLOW)
    995 				printf("%s: receive FIFO overflow\n",
    996 				    device_xname(sc->sc_dev));
    997 
    998 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    999 			    sc->sc_rxmap[i]->dm_mapsize,
   1000 			    BUS_DMASYNC_PREREAD);
   1001 			SQ_INIT_RXDESC(sc, i);
   1002 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
   1003 			    device_xname(sc->sc_dev), i));
   1004 			continue;
   1005 		}
   1006 
   1007 		if (sq_add_rxbuf(sc, i) != 0) {
   1008 			ifp->if_ierrors++;
   1009 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
   1010 			    sc->sc_rxmap[i]->dm_mapsize,
   1011 			    BUS_DMASYNC_PREREAD);
   1012 			SQ_INIT_RXDESC(sc, i);
   1013 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
   1014 			    "failed\n", device_xname(sc->sc_dev), i));
   1015 			continue;
   1016 		}
   1017 
   1018 
   1019 		m->m_data += 2;
   1020 		m->m_pkthdr.rcvif = ifp;
   1021 		m->m_pkthdr.len = m->m_len = framelen;
   1022 
   1023 		ifp->if_ipackets++;
   1024 
   1025 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
   1026 			    device_xname(sc->sc_dev), i, framelen));
   1027 
   1028 		bpf_mtap(ifp, m);
   1029 		(*ifp->if_input)(ifp, m);
   1030 	}
   1031 
   1032 
   1033 	/* If anything happened, move ring start/end pointers to new spot */
   1034 	if (i != sc->sc_nextrx) {
   1035 		/*
   1036 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
   1037 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
   1038 		 */
   1039 
   1040 		new_end = SQ_PREVRX(i);
   1041 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
   1042 		SQ_CDRXSYNC(sc, new_end, BUS_DMASYNC_PREREAD |
   1043 		    BUS_DMASYNC_PREWRITE);
   1044 
   1045 		orig_end = SQ_PREVRX(sc->sc_nextrx);
   1046 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
   1047 		SQ_CDRXSYNC(sc, orig_end, BUS_DMASYNC_PREREAD |
   1048 		    BUS_DMASYNC_PREWRITE);
   1049 
   1050 		sc->sc_nextrx = i;
   1051 	}
   1052 
   1053 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
   1054 
   1055 	/* If receive channel is stopped, restart it... */
   1056 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
   1057 		/* Pass the start of the receive ring to the HPC */
   1058 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc,
   1059 		    sc->sc_nextrx));
   1060 
   1061 		/* And turn on the HPC ethernet receive channel */
   1062 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
   1063 		    sc->hpc_regs->enetr_ctl_active);
   1064 	}
   1065 
   1066 	return count;
   1067 }
   1068 
   1069 static int
   1070 sq_txintr(struct sq_softc *sc)
   1071 {
   1072 	int shift = 0;
   1073 	uint32_t status, tmp;
   1074 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1075 
   1076 	if (sc->hpc_regs->revision != 3)
   1077 		shift = 16;
   1078 
   1079 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
   1080 
   1081 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
   1082 
   1083 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
   1084 	if ((status & tmp) == 0) {
   1085 		if (status & TXSTAT_COLL)
   1086 			ifp->if_collisions++;
   1087 
   1088 		if (status & TXSTAT_UFLOW) {
   1089 			printf("%s: transmit underflow\n",
   1090 			    device_xname(sc->sc_dev));
   1091 			ifp->if_oerrors++;
   1092 		}
   1093 
   1094 		if (status & TXSTAT_16COLL) {
   1095 			printf("%s: max collisions reached\n",
   1096 			    device_xname(sc->sc_dev));
   1097 			ifp->if_oerrors++;
   1098 			ifp->if_collisions += 16;
   1099 		}
   1100 	}
   1101 
   1102 	/* prevtx now points to next xmit packet not yet finished */
   1103 	if (sc->hpc_regs->revision == 3)
   1104 		sq_txring_hpc3(sc);
   1105 	else
   1106 		sq_txring_hpc1(sc);
   1107 
   1108 	/* If we have buffers free, let upper layers know */
   1109 	if (sc->sc_nfreetx > 0)
   1110 		ifp->if_flags &= ~IFF_OACTIVE;
   1111 
   1112 	/* If all packets have left the coop, cancel watchdog */
   1113 	if (sc->sc_nfreetx == SQ_NTXDESC)
   1114 		ifp->if_timer = 0;
   1115 
   1116 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
   1117 	sq_start(ifp);
   1118 
   1119 	return 1;
   1120 }
   1121 
   1122 /*
   1123  * Reclaim used transmit descriptors and restart the transmit DMA
   1124  * engine if necessary.
   1125  */
   1126 static void
   1127 sq_txring_hpc1(struct sq_softc *sc)
   1128 {
   1129 	/*
   1130 	 * HPC1 doesn't tag transmitted descriptors, however,
   1131 	 * the NDBP register points to the next descriptor that
   1132 	 * has not yet been processed. If DMA is not in progress,
   1133 	 * we can safely reclaim all descriptors up to NDBP, and,
   1134 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
   1135 	 * is active, we can only safely reclaim up to CBP.
   1136 	 *
   1137 	 * For now, we'll only reclaim on inactive DMA and assume
   1138 	 * that a sufficiently large ring keeps us out of trouble.
   1139 	 */
   1140 	uint32_t reclaimto, status;
   1141 	int reclaimall, i = sc->sc_prevtx;
   1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1143 
   1144 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
   1145 	if (status & HPC1_ENETX_CTL_ACTIVE) {
   1146 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1147 		return;
   1148 	} else
   1149 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
   1150 
   1151 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
   1152 		reclaimall = 1;
   1153 	else
   1154 		reclaimall = 0;
   1155 
   1156 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1157 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
   1158 			break;
   1159 
   1160 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1161 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1162 
   1163 		/* Sync the packet data, unload DMA map, free mbuf */
   1164 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
   1165 				sc->sc_txmap[i]->dm_mapsize,
   1166 				BUS_DMASYNC_POSTWRITE);
   1167 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1168 		m_freem(sc->sc_txmbuf[i]);
   1169 		sc->sc_txmbuf[i] = NULL;
   1170 
   1171 		ifp->if_opackets++;
   1172 		sc->sc_nfreetx++;
   1173 
   1174 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1175 
   1176 		i = SQ_NEXTTX(i);
   1177 	}
   1178 
   1179 	if (sc->sc_nfreetx < SQ_NTXDESC) {
   1180 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1181 
   1182 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
   1183 
   1184 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
   1185 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
   1186 
   1187 		/* Kick DMA channel into life */
   1188 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
   1189 
   1190 		/*
   1191 		 * Set a watchdog timer in case the chip
   1192 		 * flakes out.
   1193 		 */
   1194 		ifp->if_timer = 5;
   1195 	}
   1196 
   1197 	sc->sc_prevtx = i;
   1198 }
   1199 
   1200 /*
   1201  * Reclaim used transmit descriptors and restart the transmit DMA
   1202  * engine if necessary.
   1203  */
   1204 static void
   1205 sq_txring_hpc3(struct sq_softc *sc)
   1206 {
   1207 	/*
   1208 	 * HPC3 tags descriptors with a bit once they've been
   1209 	 * transmitted. We need only free each XMITDONE'd
   1210 	 * descriptor, and restart the DMA engine if any
   1211 	 * descriptors are left over.
   1212 	 */
   1213 	int i;
   1214 	uint32_t status = 0;
   1215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1216 
   1217 	i = sc->sc_prevtx;
   1218 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1219 		/*
   1220 		 * Check status first so we don't end up with a case of
   1221 		 * the buffer not being finished while the DMA channel
   1222 		 * has gone idle.
   1223 		 */
   1224 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
   1225 
   1226 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1227 				BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1228 
   1229 		/* Check for used descriptor and restart DMA chain if needed */
   1230 		if (!(sc->sc_txdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_XMITDONE)) {
   1231 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
   1232 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1233 
   1234 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
   1235 				    SQ_CDTXADDR(sc, i));
   1236 
   1237 				/* Kick DMA channel into life */
   1238 				sq_hpc_write(sc, HPC3_ENETX_CTL,
   1239 				    HPC3_ENETX_CTL_ACTIVE);
   1240 
   1241 				/*
   1242 				 * Set a watchdog timer in case the chip
   1243 				 * flakes out.
   1244 				 */
   1245 				ifp->if_timer = 5;
   1246 			} else
   1247 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1248 			break;
   1249 		}
   1250 
   1251 		/* Sync the packet data, unload DMA map, free mbuf */
   1252 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i], 0,
   1253 				sc->sc_txmap[i]->dm_mapsize,
   1254 				BUS_DMASYNC_POSTWRITE);
   1255 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1256 		m_freem(sc->sc_txmbuf[i]);
   1257 		sc->sc_txmbuf[i] = NULL;
   1258 
   1259 		ifp->if_opackets++;
   1260 		sc->sc_nfreetx++;
   1261 
   1262 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1263 		i = SQ_NEXTTX(i);
   1264 	}
   1265 
   1266 	sc->sc_prevtx = i;
   1267 }
   1268 
   1269 void
   1270 sq_reset(struct sq_softc *sc)
   1271 {
   1272 	/* Stop HPC dma channels */
   1273 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
   1274 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
   1275 
   1276 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
   1277 	delay(20);
   1278 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
   1279 }
   1280 
   1281 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
   1282 int
   1283 sq_add_rxbuf(struct sq_softc *sc, int idx)
   1284 {
   1285 	int err;
   1286 	struct mbuf *m;
   1287 
   1288 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1289 	if (m == NULL)
   1290 		return (ENOBUFS);
   1291 
   1292 	MCLGET(m, M_DONTWAIT);
   1293 	if ((m->m_flags & M_EXT) == 0) {
   1294 		m_freem(m);
   1295 		return (ENOBUFS);
   1296 	}
   1297 
   1298 	if (sc->sc_rxmbuf[idx] != NULL)
   1299 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
   1300 
   1301 	sc->sc_rxmbuf[idx] = m;
   1302 
   1303 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
   1304 				   m->m_ext.ext_buf, m->m_ext.ext_size,
   1305 				   NULL, BUS_DMA_NOWAIT)) != 0) {
   1306 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1307 		    device_xname(sc->sc_dev), idx, err);
   1308 		panic("sq_add_rxbuf");	/* XXX */
   1309 	}
   1310 
   1311 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx], 0,
   1312 			sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
   1313 
   1314 	SQ_INIT_RXDESC(sc, idx);
   1315 
   1316 	return 0;
   1317 }
   1318 
   1319 void
   1320 sq_dump_buffer(paddr_t addr, psize_t len)
   1321 {
   1322 	u_int i;
   1323 	u_char* physaddr = (char*) MIPS_PHYS_TO_KSEG1(addr);
   1324 
   1325 	if (len == 0)
   1326 		return;
   1327 
   1328 	printf("%p: ", physaddr);
   1329 
   1330 	for (i = 0; i < len; i++) {
   1331 		printf("%02x ", *(physaddr + i) & 0xff);
   1332 		if ((i % 16) ==  15 && i != len - 1)
   1333 		    printf("\n%p: ", physaddr + i);
   1334 	}
   1335 
   1336 	printf("\n");
   1337 }
   1338