if_sq.c revision 1.46 1 /* $NetBSD: if_sq.c,v 1.46 2016/06/10 13:27:12 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.46 2016/06/10 13:27:12 ozaki-r Exp $");
37
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <machine/endian.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <sys/bus.h>
63 #include <machine/intr.h>
64 #include <machine/sysconf.h>
65
66 #include <dev/ic/seeq8003reg.h>
67
68 #include <sgimips/hpc/sqvar.h>
69 #include <sgimips/hpc/hpcvar.h>
70 #include <sgimips/hpc/hpcreg.h>
71
72 #include <dev/arcbios/arcbios.h>
73 #include <dev/arcbios/arcbiosvar.h>
74
75 #define static
76
77 /*
78 * Short TODO list:
79 * (1) Do counters for bad-RX packets.
80 * (2) Allow multi-segment transmits, instead of copying to a single,
81 * contiguous mbuf.
82 * (3) Verify sq_stop() turns off enough stuff; I was still getting
83 * seeq interrupts after sq_stop().
84 * (4) Implement EDLC modes: especially packet auto-pad and simplex
85 * mode.
86 * (5) Should the driver filter out its own transmissions in non-EDLC
87 * mode?
88 * (6) Multicast support -- multicast filter, address management, ...
89 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need
90 * to figure out if RB0 is read-only as stated in one spot in the
91 * HPC spec or read-write (ie, is the 'write a one to clear it')
92 * the correct thing?
93 */
94
95 #if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98 #else
99 #define SQ_DPRINTF(x)
100 #endif
101
102 static int sq_match(device_t, cfdata_t, void *);
103 static void sq_attach(device_t, device_t, void *);
104 static int sq_init(struct ifnet *);
105 static void sq_start(struct ifnet *);
106 static void sq_stop(struct ifnet *, int);
107 static void sq_watchdog(struct ifnet *);
108 static int sq_ioctl(struct ifnet *, u_long, void *);
109
110 static void sq_set_filter(struct sq_softc *);
111 static int sq_intr(void *);
112 static int sq_rxintr(struct sq_softc *);
113 static int sq_txintr(struct sq_softc *);
114 static void sq_txring_hpc1(struct sq_softc *);
115 static void sq_txring_hpc3(struct sq_softc *);
116 static void sq_reset(struct sq_softc *);
117 static int sq_add_rxbuf(struct sq_softc *, int);
118 static void sq_dump_buffer(paddr_t addr, psize_t len);
119 static void sq_trace_dump(struct sq_softc *);
120
121 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
122 sq_match, sq_attach, NULL, NULL);
123
124 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126 #define sq_seeq_read(sc, off) \
127 bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
128 #define sq_seeq_write(sc, off, val) \
129 bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
130
131 #define sq_hpc_read(sc, off) \
132 bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133 #define sq_hpc_write(sc, off, val) \
134 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136 /* MAC address offset for non-onboard implementations */
137 #define SQ_HPC_EEPROM_ENADDR 250
138
139 #define SGI_OUI_0 0x08
140 #define SGI_OUI_1 0x00
141 #define SGI_OUI_2 0x69
142
143 static int
144 sq_match(device_t parent, cfdata_t cf, void *aux)
145 {
146 struct hpc_attach_args *ha = aux;
147
148 if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149 vaddr_t reset, txstat;
150
151 reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152 ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153 txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154 ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156 if (platform.badaddr((void *)reset, sizeof(reset)))
157 return 0;
158
159 *(volatile uint32_t *)reset = 0x1;
160 delay(20);
161 *(volatile uint32_t *)reset = 0x0;
162
163 if (platform.badaddr((void *)txstat, sizeof(txstat)))
164 return 0;
165
166 if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167 return 1;
168 }
169
170 return 0;
171 }
172
173 static void
174 sq_attach(device_t parent, device_t self, void *aux)
175 {
176 int i, err;
177 const char* macaddr;
178 struct sq_softc *sc = device_private(self);
179 struct hpc_attach_args *haa = aux;
180 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182 sc->sc_dev = self;
183 sc->sc_hpct = haa->ha_st;
184 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
185
186 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
187 haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
188 &sc->sc_hpch)) != 0) {
189 printf(": unable to map HPC DMA registers, error = %d\n", err);
190 goto fail_0;
191 }
192
193 sc->sc_regt = haa->ha_st;
194 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195 haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
196 &sc->sc_regh)) != 0) {
197 printf(": unable to map Seeq registers, error = %d\n", err);
198 goto fail_0;
199 }
200
201 sc->sc_dmat = haa->ha_dmat;
202
203 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
205 BUS_DMA_NOWAIT)) != 0) {
206 printf(": unable to allocate control data, error = %d\n", err);
207 goto fail_0;
208 }
209
210 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211 sizeof(struct sq_control), (void **)&sc->sc_control,
212 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
213 printf(": unable to map control data, error = %d\n", err);
214 goto fail_1;
215 }
216
217 if ((err = bus_dmamap_create(sc->sc_dmat,
218 sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
219 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
220 printf(": unable to create DMA map for control data, error "
221 "= %d\n", err);
222 goto fail_2;
223 }
224
225 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
226 sc->sc_control, sizeof(struct sq_control), NULL,
227 BUS_DMA_NOWAIT)) != 0) {
228 printf(": unable to load DMA map for control data, error "
229 "= %d\n", err);
230 goto fail_3;
231 }
232
233 memset(sc->sc_control, 0, sizeof(struct sq_control));
234
235 /* Create transmit buffer DMA maps */
236 for (i = 0; i < SQ_NTXDESC; i++) {
237 if ((err = bus_dmamap_create(sc->sc_dmat,
238 MCLBYTES, 1, MCLBYTES, 0,
239 BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
240 printf(": unable to create tx DMA map %d, error = %d\n",
241 i, err);
242 goto fail_4;
243 }
244 }
245
246 /* Create receive buffer DMA maps */
247 for (i = 0; i < SQ_NRXDESC; i++) {
248 if ((err = bus_dmamap_create(sc->sc_dmat,
249 MCLBYTES, 1, MCLBYTES, 0,
250 BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
251 printf(": unable to create rx DMA map %d, error = %d\n",
252 i, err);
253 goto fail_5;
254 }
255 }
256
257 /* Pre-allocate the receive buffers. */
258 for (i = 0; i < SQ_NRXDESC; i++) {
259 if ((err = sq_add_rxbuf(sc, i)) != 0) {
260 printf(": unable to allocate or map rx buffer %d\n,"
261 " error = %d\n", i, err);
262 goto fail_6;
263 }
264 }
265
266 memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
267 ETHER_ADDR_LEN);
268
269 /*
270 * If our mac address is bogus, obtain it from ARCBIOS. This will
271 * be true of the onboard HPC3 on IP22, since there is no eeprom,
272 * but rather the DS1386 RTC's battery-backed ram is used.
273 */
274 if (sc->sc_enaddr[0] != SGI_OUI_0 ||
275 sc->sc_enaddr[1] != SGI_OUI_1 ||
276 sc->sc_enaddr[2] != SGI_OUI_2) {
277 macaddr = arcbios_GetEnvironmentVariable("eaddr");
278 if (macaddr == NULL) {
279 printf(": unable to get MAC address!\n");
280 goto fail_6;
281 }
282 ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
283 }
284
285 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
286 device_xname(self), "intr");
287
288 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
289 printf(": unable to establish interrupt!\n");
290 goto fail_6;
291 }
292
293 /* Reset the chip to a known state. */
294 sq_reset(sc);
295
296 /*
297 * Determine if we're an 8003 or 80c03 by setting the first
298 * MAC address register to non-zero, and then reading it back.
299 * If it's zero, we have an 80c03, because we will have read
300 * the TxCollLSB register.
301 */
302 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
303 if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
304 sc->sc_type = SQ_TYPE_80C03;
305 else
306 sc->sc_type = SQ_TYPE_8003;
307 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
308
309 printf(": SGI Seeq %s\n",
310 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
311
312 printf("%s: Ethernet address %s\n",
313 device_xname(self), ether_sprintf(sc->sc_enaddr));
314
315 strcpy(ifp->if_xname, device_xname(self));
316 ifp->if_softc = sc;
317 ifp->if_mtu = ETHERMTU;
318 ifp->if_init = sq_init;
319 ifp->if_stop = sq_stop;
320 ifp->if_start = sq_start;
321 ifp->if_ioctl = sq_ioctl;
322 ifp->if_watchdog = sq_watchdog;
323 ifp->if_flags = IFF_BROADCAST | IFF_NOTRAILERS | IFF_MULTICAST;
324 IFQ_SET_READY(&ifp->if_snd);
325
326 if_attach(ifp);
327 ether_ifattach(ifp, sc->sc_enaddr);
328
329 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
330 /* Done! */
331 return;
332
333 /*
334 * Free any resources we've allocated during the failed attach
335 * attempt. Do this in reverse order and fall through.
336 */
337 fail_6:
338 for (i = 0; i < SQ_NRXDESC; i++) {
339 if (sc->sc_rxmbuf[i] != NULL) {
340 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
341 m_freem(sc->sc_rxmbuf[i]);
342 }
343 }
344 fail_5:
345 for (i = 0; i < SQ_NRXDESC; i++) {
346 if (sc->sc_rxmap[i] != NULL)
347 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
348 }
349 fail_4:
350 for (i = 0; i < SQ_NTXDESC; i++) {
351 if (sc->sc_txmap[i] != NULL)
352 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
353 }
354 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
355 fail_3:
356 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
357 fail_2:
358 bus_dmamem_unmap(sc->sc_dmat,
359 (void *)sc->sc_control, sizeof(struct sq_control));
360 fail_1:
361 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
362 fail_0:
363 return;
364 }
365
366 /* Set up data to get the interface up and running. */
367 int
368 sq_init(struct ifnet *ifp)
369 {
370 int i;
371 struct sq_softc *sc = ifp->if_softc;
372
373 /* Cancel any in-progress I/O */
374 sq_stop(ifp, 0);
375
376 sc->sc_nextrx = 0;
377
378 sc->sc_nfreetx = SQ_NTXDESC;
379 sc->sc_nexttx = sc->sc_prevtx = 0;
380
381 SQ_TRACE(SQ_RESET, sc, 0, 0);
382
383 /* Set into 8003 mode, bank 0 to program ethernet address */
384 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
385
386 /* Now write the address */
387 for (i = 0; i < ETHER_ADDR_LEN; i++)
388 sq_seeq_write(sc, i, sc->sc_enaddr[i]);
389
390 sc->sc_rxcmd =
391 RXCMD_IE_CRC |
392 RXCMD_IE_DRIB |
393 RXCMD_IE_SHORT |
394 RXCMD_IE_END |
395 RXCMD_IE_GOOD;
396
397 /*
398 * Set the receive filter -- this will add some bits to the
399 * prototype RXCMD register. Do this before setting the
400 * transmit config register, since we might need to switch
401 * banks.
402 */
403 sq_set_filter(sc);
404
405 /* Set up Seeq transmit command register */
406 sq_seeq_write(sc, SEEQ_TXCMD,
407 TXCMD_IE_UFLOW |
408 TXCMD_IE_COLL |
409 TXCMD_IE_16COLL |
410 TXCMD_IE_GOOD);
411
412 /* Now write the receive command register. */
413 sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
414
415 /*
416 * Set up HPC ethernet PIO and DMA configurations.
417 *
418 * The PROM appears to do most of this for the onboard HPC3, but
419 * not for the Challenge S's IOPLUS chip. We copy how the onboard
420 * chip is configured and assume that it's correct for both.
421 */
422 if (sc->hpc_regs->revision == 3) {
423 uint32_t dmareg, pioreg;
424
425 pioreg =
426 HPC3_ENETR_PIOCFG_P1(1) |
427 HPC3_ENETR_PIOCFG_P2(6) |
428 HPC3_ENETR_PIOCFG_P3(1);
429
430 dmareg =
431 HPC3_ENETR_DMACFG_D1(6) |
432 HPC3_ENETR_DMACFG_D2(2) |
433 HPC3_ENETR_DMACFG_D3(0) |
434 HPC3_ENETR_DMACFG_FIX_RXDC |
435 HPC3_ENETR_DMACFG_FIX_INTR |
436 HPC3_ENETR_DMACFG_FIX_EOP |
437 HPC3_ENETR_DMACFG_TIMEOUT;
438
439 sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
440 sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
441 }
442
443 /* Pass the start of the receive ring to the HPC */
444 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
445
446 /* And turn on the HPC ethernet receive channel */
447 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
448 sc->hpc_regs->enetr_ctl_active);
449
450 /*
451 * Turn off delayed receive interrupts on HPC1.
452 * (see Hollywood HPC Specification 2.1.4.3)
453 */
454 if (sc->hpc_regs->revision != 3)
455 sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
456
457 ifp->if_flags |= IFF_RUNNING;
458 ifp->if_flags &= ~IFF_OACTIVE;
459
460 return 0;
461 }
462
463 static void
464 sq_set_filter(struct sq_softc *sc)
465 {
466 struct ethercom *ec = &sc->sc_ethercom;
467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 struct ether_multi *enm;
469 struct ether_multistep step;
470
471 /*
472 * Check for promiscuous mode. Also implies
473 * all-multicast.
474 */
475 if (ifp->if_flags & IFF_PROMISC) {
476 sc->sc_rxcmd |= RXCMD_REC_ALL;
477 ifp->if_flags |= IFF_ALLMULTI;
478 return;
479 }
480
481 /*
482 * The 8003 has no hash table. If we have any multicast
483 * addresses on the list, enable reception of all multicast
484 * frames.
485 *
486 * XXX The 80c03 has a hash table. We should use it.
487 */
488
489 ETHER_FIRST_MULTI(step, ec, enm);
490
491 if (enm == NULL) {
492 sc->sc_rxcmd &= ~RXCMD_REC_MASK;
493 sc->sc_rxcmd |= RXCMD_REC_BROAD;
494
495 ifp->if_flags &= ~IFF_ALLMULTI;
496 return;
497 }
498
499 sc->sc_rxcmd |= RXCMD_REC_MULTI;
500 ifp->if_flags |= IFF_ALLMULTI;
501 }
502
503 int
504 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
505 {
506 int s, error = 0;
507
508 SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
509
510 s = splnet();
511
512 error = ether_ioctl(ifp, cmd, data);
513 if (error == ENETRESET) {
514 /*
515 * Multicast list has changed; set the hardware filter
516 * accordingly.
517 */
518 if (ifp->if_flags & IFF_RUNNING)
519 error = sq_init(ifp);
520 else
521 error = 0;
522 }
523
524 splx(s);
525 return error;
526 }
527
528 void
529 sq_start(struct ifnet *ifp)
530 {
531 struct sq_softc *sc = ifp->if_softc;
532 uint32_t status;
533 struct mbuf *m0, *m;
534 bus_dmamap_t dmamap;
535 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
536
537 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
538 return;
539
540 /*
541 * Remember the previous number of free descriptors and
542 * the first descriptor we'll use.
543 */
544 ofree = sc->sc_nfreetx;
545 firsttx = sc->sc_nexttx;
546
547 /*
548 * Loop through the send queue, setting up transmit descriptors
549 * until we drain the queue, or use up all available transmit
550 * descriptors.
551 */
552 while (sc->sc_nfreetx != 0) {
553 /*
554 * Grab a packet off the queue.
555 */
556 IFQ_POLL(&ifp->if_snd, m0);
557 if (m0 == NULL)
558 break;
559 m = NULL;
560
561 dmamap = sc->sc_txmap[sc->sc_nexttx];
562
563 /*
564 * Load the DMA map. If this fails, the packet either
565 * didn't fit in the alloted number of segments, or we were
566 * short on resources. In this case, we'll copy and try
567 * again.
568 * Also copy it if we need to pad, so that we are sure there
569 * is room for the pad buffer.
570 * XXX the right way of doing this is to use a static buffer
571 * for padding and adding it to the transmit descriptor (see
572 * sys/dev/pci/if_tl.c for example). We can't do this here yet
573 * because we can't send packets with more than one fragment.
574 */
575 if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
576 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
577 BUS_DMA_NOWAIT) != 0) {
578 MGETHDR(m, M_DONTWAIT, MT_DATA);
579 if (m == NULL) {
580 printf("%s: unable to allocate Tx mbuf\n",
581 device_xname(sc->sc_dev));
582 break;
583 }
584 if (m0->m_pkthdr.len > MHLEN) {
585 MCLGET(m, M_DONTWAIT);
586 if ((m->m_flags & M_EXT) == 0) {
587 printf("%s: unable to allocate Tx "
588 "cluster\n",
589 device_xname(sc->sc_dev));
590 m_freem(m);
591 break;
592 }
593 }
594
595 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
596 if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
597 memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
598 ETHER_PAD_LEN - m0->m_pkthdr.len);
599 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
600 } else
601 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
602
603 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
604 m, BUS_DMA_NOWAIT)) != 0) {
605 printf("%s: unable to load Tx buffer, "
606 "error = %d\n",
607 device_xname(sc->sc_dev), err);
608 break;
609 }
610 }
611
612 /*
613 * Ensure we have enough descriptors free to describe
614 * the packet.
615 */
616 if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617 /*
618 * Not enough free descriptors to transmit this
619 * packet. We haven't committed to anything yet,
620 * so just unload the DMA map, put the packet
621 * back on the queue, and punt. Notify the upper
622 * layer that there are no more slots left.
623 *
624 * XXX We could allocate an mbuf and copy, but
625 * XXX it is worth it?
626 */
627 ifp->if_flags |= IFF_OACTIVE;
628 bus_dmamap_unload(sc->sc_dmat, dmamap);
629 if (m != NULL)
630 m_freem(m);
631 break;
632 }
633
634 IFQ_DEQUEUE(&ifp->if_snd, m0);
635 /*
636 * Pass the packet to any BPF listeners.
637 */
638 bpf_mtap(ifp, m0);
639 if (m != NULL) {
640 m_freem(m0);
641 m0 = m;
642 }
643
644 /*
645 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
646 */
647
648 SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
649
650 /* Sync the DMA map. */
651 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
652 BUS_DMASYNC_PREWRITE);
653
654 /*
655 * Initialize the transmit descriptors.
656 */
657 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
658 seg < dmamap->dm_nsegs;
659 seg++, nexttx = SQ_NEXTTX(nexttx)) {
660 if (sc->hpc_regs->revision == 3) {
661 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
662 dmamap->dm_segs[seg].ds_addr;
663 sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
664 dmamap->dm_segs[seg].ds_len;
665 } else {
666 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
667 dmamap->dm_segs[seg].ds_addr;
668 sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
669 dmamap->dm_segs[seg].ds_len;
670 }
671 sc->sc_txdesc[nexttx].hdd_descptr =
672 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
673 lasttx = nexttx;
674 totlen += dmamap->dm_segs[seg].ds_len;
675 }
676
677 /* Last descriptor gets end-of-packet */
678 KASSERT(lasttx != -1);
679 if (sc->hpc_regs->revision == 3)
680 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
681 HPC3_HDD_CTL_EOPACKET;
682 else
683 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
684 HPC1_HDD_CTL_EOPACKET;
685
686 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
687 device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
688
689 if (ifp->if_flags & IFF_DEBUG) {
690 printf(" transmit chain:\n");
691 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
692 printf(" descriptor %d:\n", seg);
693 printf(" hdd_bufptr: 0x%08x\n",
694 (sc->hpc_regs->revision == 3) ?
695 sc->sc_txdesc[seg].hpc3_hdd_bufptr :
696 sc->sc_txdesc[seg].hpc1_hdd_bufptr);
697 printf(" hdd_ctl: 0x%08x\n",
698 (sc->hpc_regs->revision == 3) ?
699 sc->sc_txdesc[seg].hpc3_hdd_ctl:
700 sc->sc_txdesc[seg].hpc1_hdd_ctl);
701 printf(" hdd_descptr: 0x%08x\n",
702 sc->sc_txdesc[seg].hdd_descptr);
703
704 if (seg == lasttx)
705 break;
706 }
707 }
708
709 /* Sync the descriptors we're using. */
710 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712
713 /* Store a pointer to the packet so we can free it later */
714 sc->sc_txmbuf[sc->sc_nexttx] = m0;
715
716 /* Advance the tx pointer. */
717 sc->sc_nfreetx -= dmamap->dm_nsegs;
718 sc->sc_nexttx = nexttx;
719 }
720
721 /* All transmit descriptors used up, let upper layers know */
722 if (sc->sc_nfreetx == 0)
723 ifp->if_flags |= IFF_OACTIVE;
724
725 if (sc->sc_nfreetx != ofree) {
726 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
727 device_xname(sc->sc_dev), lasttx - firsttx + 1,
728 firsttx, lasttx));
729
730 /*
731 * Cause a transmit interrupt to happen on the
732 * last packet we enqueued, mark it as the last
733 * descriptor.
734 *
735 * HPC1_HDD_CTL_INTR will generate an interrupt on
736 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
737 * addition to HPC3_HDD_CTL_INTR to interrupt.
738 */
739 KASSERT(lasttx != -1);
740 if (sc->hpc_regs->revision == 3) {
741 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
742 HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
743 } else {
744 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
745 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
746 HPC1_HDD_CTL_EOCHAIN;
747 }
748
749 SQ_CDTXSYNC(sc, lasttx, 1,
750 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
751
752 /*
753 * There is a potential race condition here if the HPC
754 * DMA channel is active and we try and either update
755 * the 'next descriptor' pointer in the HPC PIO space
756 * or the 'next descriptor' pointer in a previous desc-
757 * riptor.
758 *
759 * To avoid this, if the channel is active, we rely on
760 * the transmit interrupt routine noticing that there
761 * are more packets to send and restarting the HPC DMA
762 * engine, rather than mucking with the DMA state here.
763 */
764 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
765
766 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
767 SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
768
769 /*
770 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
771 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
772 */
773 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
774 ~HPC3_HDD_CTL_EOCHAIN;
775
776 if (sc->hpc_regs->revision != 3)
777 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
778 &= ~HPC1_HDD_CTL_INTR;
779
780 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
781 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
782 } else if (sc->hpc_regs->revision == 3) {
783 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
784
785 sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
786 firsttx));
787
788 /* Kick DMA channel into life */
789 sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
790 } else {
791 /*
792 * In the HPC1 case where transmit DMA is
793 * inactive, we can either kick off if
794 * the ring was previously empty, or call
795 * our transmit interrupt handler to
796 * figure out if the ring stopped short
797 * and restart at the right place.
798 */
799 if (ofree == SQ_NTXDESC) {
800 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
801
802 sq_hpc_write(sc, HPC1_ENETX_NDBP,
803 SQ_CDTXADDR(sc, firsttx));
804 sq_hpc_write(sc, HPC1_ENETX_CFXBP,
805 SQ_CDTXADDR(sc, firsttx));
806 sq_hpc_write(sc, HPC1_ENETX_CBP,
807 SQ_CDTXADDR(sc, firsttx));
808
809 /* Kick DMA channel into life */
810 sq_hpc_write(sc, HPC1_ENETX_CTL,
811 HPC1_ENETX_CTL_ACTIVE);
812 } else
813 sq_txring_hpc1(sc);
814 }
815
816 /* Set a watchdog timer in case the chip flakes out. */
817 ifp->if_timer = 5;
818 }
819 }
820
821 void
822 sq_stop(struct ifnet *ifp, int disable)
823 {
824 int i;
825 struct sq_softc *sc = ifp->if_softc;
826
827 for (i = 0; i < SQ_NTXDESC; i++) {
828 if (sc->sc_txmbuf[i] != NULL) {
829 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
830 m_freem(sc->sc_txmbuf[i]);
831 sc->sc_txmbuf[i] = NULL;
832 }
833 }
834
835 /* Clear Seeq transmit/receive command registers */
836 sq_seeq_write(sc, SEEQ_TXCMD, 0);
837 sq_seeq_write(sc, SEEQ_RXCMD, 0);
838
839 sq_reset(sc);
840
841 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
842 ifp->if_timer = 0;
843 }
844
845 /* Device timeout/watchdog routine. */
846 void
847 sq_watchdog(struct ifnet *ifp)
848 {
849 uint32_t status;
850 struct sq_softc *sc = ifp->if_softc;
851
852 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
853 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
854 "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
855 sc->sc_nexttx, sc->sc_nfreetx, status);
856
857 sq_trace_dump(sc);
858
859 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
860 sc->sq_trace_idx = 0;
861
862 ++ifp->if_oerrors;
863
864 sq_init(ifp);
865 }
866
867 static void
868 sq_trace_dump(struct sq_softc *sc)
869 {
870 int i;
871 const char *act;
872
873 for (i = 0; i < sc->sq_trace_idx; i++) {
874 switch (sc->sq_trace[i].action) {
875 case SQ_RESET: act = "SQ_RESET"; break;
876 case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break;
877 case SQ_START_DMA: act = "SQ_START_DMA"; break;
878 case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break;
879 case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break;
880 case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break;
881 case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break;
882 case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break;
883 case SQ_IOCTL: act = "SQ_IOCTL"; break;
884 case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break;
885 default: act = "UNKNOWN";
886 }
887
888 printf("%s: [%03d] action %-16s buf %03d free %03d "
889 "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
890 sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
891 sc->sq_trace[i].status, sc->sq_trace[i].line);
892 }
893 }
894
895 static int
896 sq_intr(void *arg)
897 {
898 struct sq_softc *sc = arg;
899 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
900 int handled = 0;
901 uint32_t stat;
902
903 stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
904
905 if ((stat & 2) == 0)
906 SQ_DPRINTF(("%s: Unexpected interrupt!\n",
907 device_xname(sc->sc_dev)));
908 else
909 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
910
911 /*
912 * If the interface isn't running, the interrupt couldn't
913 * possibly have come from us.
914 */
915 if ((ifp->if_flags & IFF_RUNNING) == 0)
916 return 0;
917
918 sc->sq_intrcnt.ev_count++;
919
920 /* Always check for received packets */
921 if (sq_rxintr(sc) != 0)
922 handled++;
923
924 /* Only handle transmit interrupts if we actually sent something */
925 if (sc->sc_nfreetx < SQ_NTXDESC) {
926 sq_txintr(sc);
927 handled++;
928 }
929
930 if (handled)
931 rnd_add_uint32(&sc->rnd_source, stat);
932 return handled;
933 }
934
935 static int
936 sq_rxintr(struct sq_softc *sc)
937 {
938 int count = 0;
939 struct mbuf* m;
940 int i, framelen;
941 uint8_t pktstat;
942 uint32_t status;
943 uint32_t ctl_reg;
944 int new_end, orig_end;
945 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
946
947 for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
948 SQ_CDRXSYNC(sc, i,
949 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
950
951 /*
952 * If this is a CPU-owned buffer, we're at the end of the list.
953 */
954 if (sc->hpc_regs->revision == 3)
955 ctl_reg =
956 sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
957 else
958 ctl_reg =
959 sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
960
961 if (ctl_reg) {
962 #if defined(SQ_DEBUG)
963 uint32_t reg;
964
965 reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
966 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
967 device_xname(sc->sc_dev), i, reg));
968 #endif
969 break;
970 }
971
972 count++;
973
974 m = sc->sc_rxmbuf[i];
975 framelen = m->m_ext.ext_size - 3;
976 if (sc->hpc_regs->revision == 3)
977 framelen -=
978 HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
979 else
980 framelen -=
981 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
982
983 /* Now sync the actual packet data */
984 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
985 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
986
987 pktstat = *((uint8_t *)m->m_data + framelen + 2);
988
989 if ((pktstat & RXSTAT_GOOD) == 0) {
990 ifp->if_ierrors++;
991
992 if (pktstat & RXSTAT_OFLOW)
993 printf("%s: receive FIFO overflow\n",
994 device_xname(sc->sc_dev));
995
996 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
997 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
998 SQ_INIT_RXDESC(sc, i);
999 SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
1000 device_xname(sc->sc_dev), i));
1001 continue;
1002 }
1003
1004 if (sq_add_rxbuf(sc, i) != 0) {
1005 ifp->if_ierrors++;
1006 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1007 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1008 SQ_INIT_RXDESC(sc, i);
1009 SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1010 "failed\n", device_xname(sc->sc_dev), i));
1011 continue;
1012 }
1013
1014
1015 m->m_data += 2;
1016 m_set_rcvif(m, ifp);
1017 m->m_pkthdr.len = m->m_len = framelen;
1018
1019 ifp->if_ipackets++;
1020
1021 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1022 device_xname(sc->sc_dev), i, framelen));
1023
1024 bpf_mtap(ifp, m);
1025 if_percpuq_enqueue(ifp->if_percpuq, m);
1026 }
1027
1028
1029 /* If anything happened, move ring start/end pointers to new spot */
1030 if (i != sc->sc_nextrx) {
1031 /*
1032 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1033 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1034 */
1035
1036 new_end = SQ_PREVRX(i);
1037 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1038 SQ_CDRXSYNC(sc, new_end,
1039 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1040
1041 orig_end = SQ_PREVRX(sc->sc_nextrx);
1042 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1043 SQ_CDRXSYNC(sc, orig_end,
1044 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1045
1046 sc->sc_nextrx = i;
1047 }
1048
1049 status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1050
1051 /* If receive channel is stopped, restart it... */
1052 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1053 /* Pass the start of the receive ring to the HPC */
1054 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1055 SQ_CDRXADDR(sc, sc->sc_nextrx));
1056
1057 /* And turn on the HPC ethernet receive channel */
1058 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1059 sc->hpc_regs->enetr_ctl_active);
1060 }
1061
1062 return count;
1063 }
1064
1065 static int
1066 sq_txintr(struct sq_softc *sc)
1067 {
1068 int shift = 0;
1069 uint32_t status, tmp;
1070 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1071
1072 if (sc->hpc_regs->revision != 3)
1073 shift = 16;
1074
1075 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1076
1077 SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1078
1079 tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1080 if ((status & tmp) == 0) {
1081 if (status & TXSTAT_COLL)
1082 ifp->if_collisions++;
1083
1084 if (status & TXSTAT_UFLOW) {
1085 printf("%s: transmit underflow\n",
1086 device_xname(sc->sc_dev));
1087 ifp->if_oerrors++;
1088 }
1089
1090 if (status & TXSTAT_16COLL) {
1091 printf("%s: max collisions reached\n",
1092 device_xname(sc->sc_dev));
1093 ifp->if_oerrors++;
1094 ifp->if_collisions += 16;
1095 }
1096 }
1097
1098 /* prevtx now points to next xmit packet not yet finished */
1099 if (sc->hpc_regs->revision == 3)
1100 sq_txring_hpc3(sc);
1101 else
1102 sq_txring_hpc1(sc);
1103
1104 /* If we have buffers free, let upper layers know */
1105 if (sc->sc_nfreetx > 0)
1106 ifp->if_flags &= ~IFF_OACTIVE;
1107
1108 /* If all packets have left the coop, cancel watchdog */
1109 if (sc->sc_nfreetx == SQ_NTXDESC)
1110 ifp->if_timer = 0;
1111
1112 SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1113 sq_start(ifp);
1114
1115 return 1;
1116 }
1117
1118 /*
1119 * Reclaim used transmit descriptors and restart the transmit DMA
1120 * engine if necessary.
1121 */
1122 static void
1123 sq_txring_hpc1(struct sq_softc *sc)
1124 {
1125 /*
1126 * HPC1 doesn't tag transmitted descriptors, however,
1127 * the NDBP register points to the next descriptor that
1128 * has not yet been processed. If DMA is not in progress,
1129 * we can safely reclaim all descriptors up to NDBP, and,
1130 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1131 * is active, we can only safely reclaim up to CBP.
1132 *
1133 * For now, we'll only reclaim on inactive DMA and assume
1134 * that a sufficiently large ring keeps us out of trouble.
1135 */
1136 uint32_t reclaimto, status;
1137 int reclaimall, i = sc->sc_prevtx;
1138 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1139
1140 status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1141 if (status & HPC1_ENETX_CTL_ACTIVE) {
1142 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1143 return;
1144 } else
1145 reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1146
1147 if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1148 reclaimall = 1;
1149 else
1150 reclaimall = 0;
1151
1152 while (sc->sc_nfreetx < SQ_NTXDESC) {
1153 if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1154 break;
1155
1156 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1157 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1158
1159 /* Sync the packet data, unload DMA map, free mbuf */
1160 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1161 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1162 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1163 m_freem(sc->sc_txmbuf[i]);
1164 sc->sc_txmbuf[i] = NULL;
1165
1166 ifp->if_opackets++;
1167 sc->sc_nfreetx++;
1168
1169 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1170
1171 i = SQ_NEXTTX(i);
1172 }
1173
1174 if (sc->sc_nfreetx < SQ_NTXDESC) {
1175 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1176
1177 KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1178
1179 sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1180 sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1181
1182 /* Kick DMA channel into life */
1183 sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1184
1185 /*
1186 * Set a watchdog timer in case the chip
1187 * flakes out.
1188 */
1189 ifp->if_timer = 5;
1190 }
1191
1192 sc->sc_prevtx = i;
1193 }
1194
1195 /*
1196 * Reclaim used transmit descriptors and restart the transmit DMA
1197 * engine if necessary.
1198 */
1199 static void
1200 sq_txring_hpc3(struct sq_softc *sc)
1201 {
1202 /*
1203 * HPC3 tags descriptors with a bit once they've been
1204 * transmitted. We need only free each XMITDONE'd
1205 * descriptor, and restart the DMA engine if any
1206 * descriptors are left over.
1207 */
1208 int i;
1209 uint32_t status = 0;
1210 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1211
1212 i = sc->sc_prevtx;
1213 while (sc->sc_nfreetx < SQ_NTXDESC) {
1214 /*
1215 * Check status first so we don't end up with a case of
1216 * the buffer not being finished while the DMA channel
1217 * has gone idle.
1218 */
1219 status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1220
1221 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1222 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1223
1224 /* Check for used descriptor and restart DMA chain if needed */
1225 if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1226 HPC3_HDD_CTL_XMITDONE) == 0) {
1227 if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1228 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1229
1230 sq_hpc_write(sc, HPC3_ENETX_NDBP,
1231 SQ_CDTXADDR(sc, i));
1232
1233 /* Kick DMA channel into life */
1234 sq_hpc_write(sc, HPC3_ENETX_CTL,
1235 HPC3_ENETX_CTL_ACTIVE);
1236
1237 /*
1238 * Set a watchdog timer in case the chip
1239 * flakes out.
1240 */
1241 ifp->if_timer = 5;
1242 } else
1243 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1244 break;
1245 }
1246
1247 /* Sync the packet data, unload DMA map, free mbuf */
1248 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1249 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1250 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1251 m_freem(sc->sc_txmbuf[i]);
1252 sc->sc_txmbuf[i] = NULL;
1253
1254 ifp->if_opackets++;
1255 sc->sc_nfreetx++;
1256
1257 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1258 i = SQ_NEXTTX(i);
1259 }
1260
1261 sc->sc_prevtx = i;
1262 }
1263
1264 void
1265 sq_reset(struct sq_softc *sc)
1266 {
1267
1268 /* Stop HPC dma channels */
1269 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1270 sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1271
1272 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1273 delay(20);
1274 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1275 }
1276
1277 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1278 int
1279 sq_add_rxbuf(struct sq_softc *sc, int idx)
1280 {
1281 int err;
1282 struct mbuf *m;
1283
1284 MGETHDR(m, M_DONTWAIT, MT_DATA);
1285 if (m == NULL)
1286 return ENOBUFS;
1287
1288 MCLGET(m, M_DONTWAIT);
1289 if ((m->m_flags & M_EXT) == 0) {
1290 m_freem(m);
1291 return ENOBUFS;
1292 }
1293
1294 if (sc->sc_rxmbuf[idx] != NULL)
1295 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1296
1297 sc->sc_rxmbuf[idx] = m;
1298
1299 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1300 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1301 printf("%s: can't load rx DMA map %d, error = %d\n",
1302 device_xname(sc->sc_dev), idx, err);
1303 panic("sq_add_rxbuf"); /* XXX */
1304 }
1305
1306 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1307 0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1308
1309 SQ_INIT_RXDESC(sc, idx);
1310
1311 return 0;
1312 }
1313
1314 void
1315 sq_dump_buffer(paddr_t addr, psize_t len)
1316 {
1317 u_int i;
1318 uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1319
1320 if (len == 0)
1321 return;
1322
1323 printf("%p: ", physaddr);
1324
1325 for (i = 0; i < len; i++) {
1326 printf("%02x ", *(physaddr + i) & 0xff);
1327 if ((i % 16) == 15 && i != len - 1)
1328 printf("\n%p: ", physaddr + i);
1329 }
1330
1331 printf("\n");
1332 }
1333