if_sq.c revision 1.55 1 /* $NetBSD: if_sq.c,v 1.55 2022/09/18 13:23:53 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Rafal K. Boni
5 * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * Portions of this code are derived from software contributed to The
9 * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.55 2022/09/18 13:23:53 thorpej Exp $");
37
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/device.h>
42 #include <sys/callout.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/syslog.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <machine/endian.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59
60 #include <net/bpf.h>
61
62 #include <sys/bus.h>
63 #include <machine/intr.h>
64 #include <machine/sysconf.h>
65
66 #include <dev/ic/seeq8003reg.h>
67
68 #include <sgimips/hpc/sqvar.h>
69 #include <sgimips/hpc/hpcvar.h>
70 #include <sgimips/hpc/hpcreg.h>
71
72 #include <dev/arcbios/arcbios.h>
73 #include <dev/arcbios/arcbiosvar.h>
74
75 #define static
76
77 /*
78 * Short TODO list:
79 * (1) Do counters for bad-RX packets.
80 * (2) Allow multi-segment transmits, instead of copying to a single,
81 * contiguous mbuf.
82 * (3) Verify sq_stop() turns off enough stuff; I was still getting
83 * seeq interrupts after sq_stop().
84 * (4) Implement EDLC modes: especially packet auto-pad and simplex
85 * mode.
86 * (5) Should the driver filter out its own transmissions in non-EDLC
87 * mode?
88 * (6) Multicast support -- multicast filter, address management, ...
89 * (7) Deal with RB0 (recv buffer overflow) on reception. Will need
90 * to figure out if RB0 is read-only as stated in one spot in the
91 * HPC spec or read-write (ie, is the 'write a one to clear it')
92 * the correct thing?
93 */
94
95 #if defined(SQ_DEBUG)
96 int sq_debug = 0;
97 #define SQ_DPRINTF(x) if (sq_debug) printf x
98 #else
99 #define SQ_DPRINTF(x)
100 #endif
101
102 static int sq_match(device_t, cfdata_t, void *);
103 static void sq_attach(device_t, device_t, void *);
104 static int sq_init(struct ifnet *);
105 static void sq_start(struct ifnet *);
106 static void sq_stop(struct ifnet *, int);
107 static void sq_watchdog(struct ifnet *);
108 static int sq_ioctl(struct ifnet *, u_long, void *);
109
110 static void sq_set_filter(struct sq_softc *);
111 static int sq_intr(void *);
112 static int sq_rxintr(struct sq_softc *);
113 static int sq_txintr(struct sq_softc *);
114 static void sq_txring_hpc1(struct sq_softc *);
115 static void sq_txring_hpc3(struct sq_softc *);
116 static void sq_reset(struct sq_softc *);
117 static int sq_add_rxbuf(struct sq_softc *, int);
118 static void sq_dump_buffer(paddr_t, psize_t);
119 static void sq_trace_dump(struct sq_softc *);
120
121 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
122 sq_match, sq_attach, NULL, NULL);
123
124 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
125
126 #define sq_seeq_read(sc, off) \
127 bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
128 #define sq_seeq_write(sc, off, val) \
129 bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
130
131 #define sq_hpc_read(sc, off) \
132 bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
133 #define sq_hpc_write(sc, off, val) \
134 bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
135
136 /* MAC address offset for non-onboard implementations */
137 #define SQ_HPC_EEPROM_ENADDR 250
138
139 #define SGI_OUI_0 0x08
140 #define SGI_OUI_1 0x00
141 #define SGI_OUI_2 0x69
142
143 static int
144 sq_match(device_t parent, cfdata_t cf, void *aux)
145 {
146 struct hpc_attach_args *ha = aux;
147
148 if (strcmp(ha->ha_name, cf->cf_name) == 0) {
149 vaddr_t reset, txstat;
150
151 reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
152 ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
153 txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
154 ha->ha_devoff + (SEEQ_TXSTAT << 2));
155
156 if (platform.badaddr((void *)reset, sizeof(reset)))
157 return 0;
158
159 *(volatile uint32_t *)reset = 0x1;
160 delay(20);
161 *(volatile uint32_t *)reset = 0x0;
162
163 if (platform.badaddr((void *)txstat, sizeof(txstat)))
164 return 0;
165
166 if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
167 return 1;
168 }
169
170 return 0;
171 }
172
173 static void
174 sq_attach(device_t parent, device_t self, void *aux)
175 {
176 int i, err;
177 const char* macaddr;
178 struct sq_softc *sc = device_private(self);
179 struct hpc_attach_args *haa = aux;
180 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
181
182 sc->sc_dev = self;
183 sc->sc_hpct = haa->ha_st;
184 sc->hpc_regs = haa->hpc_regs; /* HPC register definitions */
185
186 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
187 haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
188 &sc->sc_hpch)) != 0) {
189 printf(": unable to map HPC DMA registers, error = %d\n", err);
190 goto fail_0;
191 }
192
193 sc->sc_regt = haa->ha_st;
194 if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
195 haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
196 &sc->sc_regh)) != 0) {
197 printf(": unable to map Seeq registers, error = %d\n", err);
198 goto fail_0;
199 }
200
201 sc->sc_dmat = haa->ha_dmat;
202
203 if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
204 PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
205 BUS_DMA_NOWAIT)) != 0) {
206 printf(": unable to allocate control data, error = %d\n", err);
207 goto fail_0;
208 }
209
210 if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
211 sizeof(struct sq_control), (void **)&sc->sc_control,
212 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
213 printf(": unable to map control data, error = %d\n", err);
214 goto fail_1;
215 }
216
217 if ((err = bus_dmamap_create(sc->sc_dmat,
218 sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
219 BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
220 printf(": unable to create DMA map for control data, error "
221 "= %d\n", err);
222 goto fail_2;
223 }
224
225 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
226 sc->sc_control, sizeof(struct sq_control), NULL,
227 BUS_DMA_NOWAIT)) != 0) {
228 printf(": unable to load DMA map for control data, error "
229 "= %d\n", err);
230 goto fail_3;
231 }
232
233 memset(sc->sc_control, 0, sizeof(struct sq_control));
234
235 /* Create transmit buffer DMA maps */
236 for (i = 0; i < SQ_NTXDESC; i++) {
237 if ((err = bus_dmamap_create(sc->sc_dmat,
238 MCLBYTES, 1, MCLBYTES, 0,
239 BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
240 printf(": unable to create tx DMA map %d, error = %d\n",
241 i, err);
242 goto fail_4;
243 }
244 }
245
246 /* Create receive buffer DMA maps */
247 for (i = 0; i < SQ_NRXDESC; i++) {
248 if ((err = bus_dmamap_create(sc->sc_dmat,
249 MCLBYTES, 1, MCLBYTES, 0,
250 BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
251 printf(": unable to create rx DMA map %d, error = %d\n",
252 i, err);
253 goto fail_5;
254 }
255 }
256
257 /* Pre-allocate the receive buffers. */
258 for (i = 0; i < SQ_NRXDESC; i++) {
259 if ((err = sq_add_rxbuf(sc, i)) != 0) {
260 printf(": unable to allocate or map rx buffer %d\n,"
261 " error = %d\n", i, err);
262 goto fail_6;
263 }
264 }
265
266 memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
267 ETHER_ADDR_LEN);
268
269 /*
270 * If our mac address is bogus, obtain it from ARCBIOS. This will
271 * be true of the onboard HPC3 on IP22, since there is no eeprom,
272 * but rather the DS1386 RTC's battery-backed ram is used.
273 */
274 if (sc->sc_enaddr[0] != SGI_OUI_0 ||
275 sc->sc_enaddr[1] != SGI_OUI_1 ||
276 sc->sc_enaddr[2] != SGI_OUI_2) {
277 macaddr = arcbios_GetEnvironmentVariable("eaddr");
278 if (macaddr == NULL) {
279 printf(": unable to get MAC address!\n");
280 goto fail_6;
281 }
282 ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
283 }
284
285 evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
286 device_xname(self), "intr");
287
288 if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
289 printf(": unable to establish interrupt!\n");
290 goto fail_6;
291 }
292
293 /* Reset the chip to a known state. */
294 sq_reset(sc);
295
296 /*
297 * Determine if we're an 8003 or 80c03 by setting the first
298 * MAC address register to non-zero, and then reading it back.
299 * If it's zero, we have an 80c03, because we will have read
300 * the TxCollLSB register.
301 */
302 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
303 if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
304 sc->sc_type = SQ_TYPE_80C03;
305 else
306 sc->sc_type = SQ_TYPE_8003;
307 sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
308
309 printf(": SGI Seeq %s\n",
310 sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
311
312 printf("%s: Ethernet address %s\n",
313 device_xname(self), ether_sprintf(sc->sc_enaddr));
314
315 strcpy(ifp->if_xname, device_xname(self));
316 ifp->if_softc = sc;
317 ifp->if_mtu = ETHERMTU;
318 ifp->if_init = sq_init;
319 ifp->if_stop = sq_stop;
320 ifp->if_start = sq_start;
321 ifp->if_ioctl = sq_ioctl;
322 ifp->if_watchdog = sq_watchdog;
323 ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
324 IFQ_SET_READY(&ifp->if_snd);
325
326 if_attach(ifp);
327 if_deferred_start_init(ifp, NULL);
328 ether_ifattach(ifp, sc->sc_enaddr);
329
330 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
331 /* Done! */
332 return;
333
334 /*
335 * Free any resources we've allocated during the failed attach
336 * attempt. Do this in reverse order and fall through.
337 */
338 fail_6:
339 for (i = 0; i < SQ_NRXDESC; i++) {
340 if (sc->sc_rxmbuf[i] != NULL) {
341 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
342 m_freem(sc->sc_rxmbuf[i]);
343 }
344 }
345 fail_5:
346 for (i = 0; i < SQ_NRXDESC; i++) {
347 if (sc->sc_rxmap[i] != NULL)
348 bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
349 }
350 fail_4:
351 for (i = 0; i < SQ_NTXDESC; i++) {
352 if (sc->sc_txmap[i] != NULL)
353 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
354 }
355 bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
356 fail_3:
357 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
358 fail_2:
359 bus_dmamem_unmap(sc->sc_dmat,
360 (void *)sc->sc_control, sizeof(struct sq_control));
361 fail_1:
362 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
363 fail_0:
364 return;
365 }
366
367 /* Set up data to get the interface up and running. */
368 int
369 sq_init(struct ifnet *ifp)
370 {
371 int i;
372 struct sq_softc *sc = ifp->if_softc;
373
374 /* Cancel any in-progress I/O */
375 sq_stop(ifp, 0);
376
377 sc->sc_nextrx = 0;
378
379 sc->sc_nfreetx = SQ_NTXDESC;
380 sc->sc_nexttx = sc->sc_prevtx = 0;
381
382 SQ_TRACE(SQ_RESET, sc, 0, 0);
383
384 /* Set into 8003 mode, bank 0 to program ethernet address */
385 sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
386
387 /* Now write the address */
388 for (i = 0; i < ETHER_ADDR_LEN; i++)
389 sq_seeq_write(sc, i, sc->sc_enaddr[i]);
390
391 sc->sc_rxcmd =
392 RXCMD_IE_CRC |
393 RXCMD_IE_DRIB |
394 RXCMD_IE_SHORT |
395 RXCMD_IE_END |
396 RXCMD_IE_GOOD;
397
398 /*
399 * Set the receive filter -- this will add some bits to the
400 * prototype RXCMD register. Do this before setting the
401 * transmit config register, since we might need to switch
402 * banks.
403 */
404 sq_set_filter(sc);
405
406 /* Set up Seeq transmit command register */
407 sq_seeq_write(sc, SEEQ_TXCMD,
408 TXCMD_IE_UFLOW |
409 TXCMD_IE_COLL |
410 TXCMD_IE_16COLL |
411 TXCMD_IE_GOOD);
412
413 /* Now write the receive command register. */
414 sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
415
416 /*
417 * Set up HPC ethernet PIO and DMA configurations.
418 *
419 * The PROM appears to do most of this for the onboard HPC3, but
420 * not for the Challenge S's IOPLUS chip. We copy how the onboard
421 * chip is configured and assume that it's correct for both.
422 */
423 if (sc->hpc_regs->revision == 3) {
424 uint32_t dmareg, pioreg;
425
426 pioreg =
427 HPC3_ENETR_PIOCFG_P1(1) |
428 HPC3_ENETR_PIOCFG_P2(6) |
429 HPC3_ENETR_PIOCFG_P3(1);
430
431 dmareg =
432 HPC3_ENETR_DMACFG_D1(6) |
433 HPC3_ENETR_DMACFG_D2(2) |
434 HPC3_ENETR_DMACFG_D3(0) |
435 HPC3_ENETR_DMACFG_FIX_RXDC |
436 HPC3_ENETR_DMACFG_FIX_INTR |
437 HPC3_ENETR_DMACFG_FIX_EOP |
438 HPC3_ENETR_DMACFG_TIMEOUT;
439
440 sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
441 sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
442 }
443
444 /* Pass the start of the receive ring to the HPC */
445 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
446
447 /* And turn on the HPC ethernet receive channel */
448 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
449 sc->hpc_regs->enetr_ctl_active);
450
451 /*
452 * Turn off delayed receive interrupts on HPC1.
453 * (see Hollywood HPC Specification 2.1.4.3)
454 */
455 if (sc->hpc_regs->revision != 3)
456 sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
457
458 ifp->if_flags |= IFF_RUNNING;
459
460 return 0;
461 }
462
463 static void
464 sq_set_filter(struct sq_softc *sc)
465 {
466 struct ethercom *ec = &sc->sc_ethercom;
467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 struct ether_multi *enm;
469 struct ether_multistep step;
470
471 /*
472 * Check for promiscuous mode. Also implies
473 * all-multicast.
474 */
475 if (ifp->if_flags & IFF_PROMISC) {
476 sc->sc_rxcmd |= RXCMD_REC_ALL;
477 ifp->if_flags |= IFF_ALLMULTI;
478 return;
479 }
480
481 /*
482 * The 8003 has no hash table. If we have any multicast
483 * addresses on the list, enable reception of all multicast
484 * frames.
485 *
486 * XXX The 80c03 has a hash table. We should use it.
487 */
488
489 ETHER_FIRST_MULTI(step, ec, enm);
490
491 if (enm == NULL) {
492 sc->sc_rxcmd &= ~RXCMD_REC_MASK;
493 sc->sc_rxcmd |= RXCMD_REC_BROAD;
494
495 ifp->if_flags &= ~IFF_ALLMULTI;
496 return;
497 }
498
499 sc->sc_rxcmd |= RXCMD_REC_MULTI;
500 ifp->if_flags |= IFF_ALLMULTI;
501 }
502
503 int
504 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
505 {
506 int s, error = 0;
507
508 SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
509
510 s = splnet();
511
512 error = ether_ioctl(ifp, cmd, data);
513 if (error == ENETRESET) {
514 /*
515 * Multicast list has changed; set the hardware filter
516 * accordingly.
517 */
518 if (ifp->if_flags & IFF_RUNNING)
519 error = sq_init(ifp);
520 else
521 error = 0;
522 }
523
524 splx(s);
525 return error;
526 }
527
528 void
529 sq_start(struct ifnet *ifp)
530 {
531 struct sq_softc *sc = ifp->if_softc;
532 uint32_t status;
533 struct mbuf *m0, *m;
534 bus_dmamap_t dmamap;
535 int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
536
537 if ((ifp->if_flags & IFF_RUNNING) == 0)
538 return;
539
540 /*
541 * Remember the previous number of free descriptors and
542 * the first descriptor we'll use.
543 */
544 ofree = sc->sc_nfreetx;
545 firsttx = sc->sc_nexttx;
546
547 /*
548 * Loop through the send queue, setting up transmit descriptors
549 * until we drain the queue, or use up all available transmit
550 * descriptors.
551 */
552 while (sc->sc_nfreetx != 0) {
553 /*
554 * Grab a packet off the queue.
555 */
556 IFQ_POLL(&ifp->if_snd, m0);
557 if (m0 == NULL)
558 break;
559 m = NULL;
560
561 dmamap = sc->sc_txmap[sc->sc_nexttx];
562
563 /*
564 * Load the DMA map. If this fails, the packet either
565 * didn't fit in the alloted number of segments, or we were
566 * short on resources. In this case, we'll copy and try
567 * again.
568 * Also copy it if we need to pad, so that we are sure there
569 * is room for the pad buffer.
570 * XXX the right way of doing this is to use a static buffer
571 * for padding and adding it to the transmit descriptor (see
572 * sys/dev/pci/if_tl.c for example). We can't do this here yet
573 * because we can't send packets with more than one fragment.
574 */
575 if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
576 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
577 BUS_DMA_NOWAIT) != 0) {
578 MGETHDR(m, M_DONTWAIT, MT_DATA);
579 if (m == NULL) {
580 printf("%s: unable to allocate Tx mbuf\n",
581 device_xname(sc->sc_dev));
582 break;
583 }
584 if (m0->m_pkthdr.len > MHLEN) {
585 MCLGET(m, M_DONTWAIT);
586 if ((m->m_flags & M_EXT) == 0) {
587 printf("%s: unable to allocate Tx "
588 "cluster\n",
589 device_xname(sc->sc_dev));
590 m_freem(m);
591 break;
592 }
593 }
594
595 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
596 if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
597 memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
598 ETHER_PAD_LEN - m0->m_pkthdr.len);
599 m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
600 } else
601 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
602
603 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
604 m, BUS_DMA_NOWAIT)) != 0) {
605 printf("%s: unable to load Tx buffer, "
606 "error = %d\n",
607 device_xname(sc->sc_dev), err);
608 break;
609 }
610 }
611
612 /*
613 * Ensure we have enough descriptors free to describe
614 * the packet.
615 */
616 if (dmamap->dm_nsegs > sc->sc_nfreetx) {
617 /*
618 * Not enough free descriptors to transmit this
619 * packet. We haven't committed to anything yet,
620 * so just unload the DMA map, put the packet
621 * back on the queue, and punt.
622 *
623 * XXX We could allocate an mbuf and copy, but
624 * XXX it is worth it?
625 */
626 bus_dmamap_unload(sc->sc_dmat, dmamap);
627 if (m != NULL)
628 m_freem(m);
629 break;
630 }
631
632 IFQ_DEQUEUE(&ifp->if_snd, m0);
633 /*
634 * Pass the packet to any BPF listeners.
635 */
636 bpf_mtap(ifp, m0, BPF_D_OUT);
637 if (m != NULL) {
638 m_freem(m0);
639 m0 = m;
640 }
641
642 /*
643 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
644 */
645
646 SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
647
648 /* Sync the DMA map. */
649 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
650 BUS_DMASYNC_PREWRITE);
651
652 /*
653 * Initialize the transmit descriptors.
654 */
655 for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
656 seg < dmamap->dm_nsegs;
657 seg++, nexttx = SQ_NEXTTX(nexttx)) {
658 if (sc->hpc_regs->revision == 3) {
659 sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
660 dmamap->dm_segs[seg].ds_addr;
661 sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
662 dmamap->dm_segs[seg].ds_len;
663 } else {
664 sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
665 dmamap->dm_segs[seg].ds_addr;
666 sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
667 dmamap->dm_segs[seg].ds_len;
668 }
669 sc->sc_txdesc[nexttx].hdd_descptr =
670 SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
671 lasttx = nexttx;
672 totlen += dmamap->dm_segs[seg].ds_len;
673 }
674
675 /* Last descriptor gets end-of-packet */
676 KASSERT(lasttx != -1);
677 if (sc->hpc_regs->revision == 3)
678 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
679 HPC3_HDD_CTL_EOPACKET;
680 else
681 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
682 HPC1_HDD_CTL_EOPACKET;
683
684 SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
685 device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
686
687 if (ifp->if_flags & IFF_DEBUG) {
688 printf(" transmit chain:\n");
689 for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
690 printf(" descriptor %d:\n", seg);
691 printf(" hdd_bufptr: 0x%08x\n",
692 (sc->hpc_regs->revision == 3) ?
693 sc->sc_txdesc[seg].hpc3_hdd_bufptr :
694 sc->sc_txdesc[seg].hpc1_hdd_bufptr);
695 printf(" hdd_ctl: 0x%08x\n",
696 (sc->hpc_regs->revision == 3) ?
697 sc->sc_txdesc[seg].hpc3_hdd_ctl:
698 sc->sc_txdesc[seg].hpc1_hdd_ctl);
699 printf(" hdd_descptr: 0x%08x\n",
700 sc->sc_txdesc[seg].hdd_descptr);
701
702 if (seg == lasttx)
703 break;
704 }
705 }
706
707 /* Sync the descriptors we're using. */
708 SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
709 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
710
711 /* Store a pointer to the packet so we can free it later */
712 sc->sc_txmbuf[sc->sc_nexttx] = m0;
713
714 /* Advance the tx pointer. */
715 sc->sc_nfreetx -= dmamap->dm_nsegs;
716 sc->sc_nexttx = nexttx;
717 }
718
719 if (sc->sc_nfreetx != ofree) {
720 SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
721 device_xname(sc->sc_dev), lasttx - firsttx + 1,
722 firsttx, lasttx));
723
724 /*
725 * Cause a transmit interrupt to happen on the
726 * last packet we enqueued, mark it as the last
727 * descriptor.
728 *
729 * HPC1_HDD_CTL_INTR will generate an interrupt on
730 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
731 * addition to HPC3_HDD_CTL_INTR to interrupt.
732 */
733 KASSERT(lasttx != -1);
734 if (sc->hpc_regs->revision == 3) {
735 sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
736 HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
737 } else {
738 sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
739 sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
740 HPC1_HDD_CTL_EOCHAIN;
741 }
742
743 SQ_CDTXSYNC(sc, lasttx, 1,
744 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
745
746 /*
747 * There is a potential race condition here if the HPC
748 * DMA channel is active and we try and either update
749 * the 'next descriptor' pointer in the HPC PIO space
750 * or the 'next descriptor' pointer in a previous desc-
751 * riptor.
752 *
753 * To avoid this, if the channel is active, we rely on
754 * the transmit interrupt routine noticing that there
755 * are more packets to send and restarting the HPC DMA
756 * engine, rather than mucking with the DMA state here.
757 */
758 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
759
760 if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
761 SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
762
763 /*
764 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
765 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
766 */
767 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
768 ~HPC3_HDD_CTL_EOCHAIN;
769
770 if (sc->hpc_regs->revision != 3)
771 sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
772 &= ~HPC1_HDD_CTL_INTR;
773
774 SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx), 1,
775 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
776 } else if (sc->hpc_regs->revision == 3) {
777 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
778
779 sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
780 firsttx));
781
782 /* Kick DMA channel into life */
783 sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
784 } else {
785 /*
786 * In the HPC1 case where transmit DMA is
787 * inactive, we can either kick off if
788 * the ring was previously empty, or call
789 * our transmit interrupt handler to
790 * figure out if the ring stopped short
791 * and restart at the right place.
792 */
793 if (ofree == SQ_NTXDESC) {
794 SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
795
796 sq_hpc_write(sc, HPC1_ENETX_NDBP,
797 SQ_CDTXADDR(sc, firsttx));
798 sq_hpc_write(sc, HPC1_ENETX_CFXBP,
799 SQ_CDTXADDR(sc, firsttx));
800 sq_hpc_write(sc, HPC1_ENETX_CBP,
801 SQ_CDTXADDR(sc, firsttx));
802
803 /* Kick DMA channel into life */
804 sq_hpc_write(sc, HPC1_ENETX_CTL,
805 HPC1_ENETX_CTL_ACTIVE);
806 } else
807 sq_txring_hpc1(sc);
808 }
809
810 /* Set a watchdog timer in case the chip flakes out. */
811 ifp->if_timer = 5;
812 }
813 }
814
815 void
816 sq_stop(struct ifnet *ifp, int disable)
817 {
818 int i;
819 struct sq_softc *sc = ifp->if_softc;
820
821 for (i = 0; i < SQ_NTXDESC; i++) {
822 if (sc->sc_txmbuf[i] != NULL) {
823 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
824 m_freem(sc->sc_txmbuf[i]);
825 sc->sc_txmbuf[i] = NULL;
826 }
827 }
828
829 /* Clear Seeq transmit/receive command registers */
830 sq_seeq_write(sc, SEEQ_TXCMD, 0);
831 sq_seeq_write(sc, SEEQ_RXCMD, 0);
832
833 sq_reset(sc);
834
835 ifp->if_flags &= ~IFF_RUNNING;
836 ifp->if_timer = 0;
837 }
838
839 /* Device timeout/watchdog routine. */
840 void
841 sq_watchdog(struct ifnet *ifp)
842 {
843 uint32_t status;
844 struct sq_softc *sc = ifp->if_softc;
845
846 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
847 log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
848 "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
849 sc->sc_nexttx, sc->sc_nfreetx, status);
850
851 sq_trace_dump(sc);
852
853 memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
854 sc->sq_trace_idx = 0;
855
856 if_statinc(ifp, if_oerrors);
857
858 sq_init(ifp);
859 }
860
861 static void
862 sq_trace_dump(struct sq_softc *sc)
863 {
864 int i;
865 const char *act;
866
867 for (i = 0; i < sc->sq_trace_idx; i++) {
868 switch (sc->sq_trace[i].action) {
869 case SQ_RESET: act = "SQ_RESET"; break;
870 case SQ_ADD_TO_DMA: act = "SQ_ADD_TO_DMA"; break;
871 case SQ_START_DMA: act = "SQ_START_DMA"; break;
872 case SQ_DONE_DMA: act = "SQ_DONE_DMA"; break;
873 case SQ_RESTART_DMA: act = "SQ_RESTART_DMA"; break;
874 case SQ_TXINTR_ENTER: act = "SQ_TXINTR_ENTER"; break;
875 case SQ_TXINTR_EXIT: act = "SQ_TXINTR_EXIT"; break;
876 case SQ_TXINTR_BUSY: act = "SQ_TXINTR_BUSY"; break;
877 case SQ_IOCTL: act = "SQ_IOCTL"; break;
878 case SQ_ENQUEUE: act = "SQ_ENQUEUE"; break;
879 default: act = "UNKNOWN";
880 }
881
882 printf("%s: [%03d] action %-16s buf %03d free %03d "
883 "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
884 sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
885 sc->sq_trace[i].status, sc->sq_trace[i].line);
886 }
887 }
888
889 static int
890 sq_intr(void *arg)
891 {
892 struct sq_softc *sc = arg;
893 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
894 int handled = 0;
895 uint32_t stat;
896
897 stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
898
899 if ((stat & 2) == 0)
900 SQ_DPRINTF(("%s: Unexpected interrupt!\n",
901 device_xname(sc->sc_dev)));
902 else
903 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
904
905 /*
906 * If the interface isn't running, the interrupt couldn't
907 * possibly have come from us.
908 */
909 if ((ifp->if_flags & IFF_RUNNING) == 0)
910 return 0;
911
912 sc->sq_intrcnt.ev_count++;
913
914 /* Always check for received packets */
915 if (sq_rxintr(sc) != 0)
916 handled++;
917
918 /* Only handle transmit interrupts if we actually sent something */
919 if (sc->sc_nfreetx < SQ_NTXDESC) {
920 sq_txintr(sc);
921 handled++;
922 }
923
924 if (handled)
925 rnd_add_uint32(&sc->rnd_source, stat);
926 return handled;
927 }
928
929 static int
930 sq_rxintr(struct sq_softc *sc)
931 {
932 int count = 0;
933 struct mbuf* m;
934 int i, framelen;
935 uint8_t pktstat;
936 uint32_t status;
937 uint32_t ctl_reg;
938 int new_end, orig_end;
939 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
940
941 for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
942 SQ_CDRXSYNC(sc, i,
943 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
944
945 /*
946 * If this is a CPU-owned buffer, we're at the end of the list.
947 */
948 if (sc->hpc_regs->revision == 3)
949 ctl_reg =
950 sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
951 else
952 ctl_reg =
953 sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
954
955 if (ctl_reg) {
956 #if defined(SQ_DEBUG)
957 uint32_t reg;
958
959 reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
960 SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
961 device_xname(sc->sc_dev), i, reg));
962 #endif
963 break;
964 }
965
966 count++;
967
968 m = sc->sc_rxmbuf[i];
969 framelen = m->m_ext.ext_size - 3;
970 if (sc->hpc_regs->revision == 3)
971 framelen -=
972 HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
973 else
974 framelen -=
975 HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
976
977 /* Now sync the actual packet data */
978 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
979 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
980
981 pktstat = *((uint8_t *)m->m_data + framelen + 2);
982
983 if ((pktstat & RXSTAT_GOOD) == 0) {
984 if_statinc(ifp, if_ierrors);
985
986 if (pktstat & RXSTAT_OFLOW)
987 printf("%s: receive FIFO overflow\n",
988 device_xname(sc->sc_dev));
989
990 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
991 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
992 SQ_INIT_RXDESC(sc, i);
993 SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
994 device_xname(sc->sc_dev), i));
995 continue;
996 }
997
998 if (sq_add_rxbuf(sc, i) != 0) {
999 if_statinc(ifp, if_ierrors);
1000 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
1001 sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
1002 SQ_INIT_RXDESC(sc, i);
1003 SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
1004 "failed\n", device_xname(sc->sc_dev), i));
1005 continue;
1006 }
1007
1008
1009 m->m_data += 2;
1010 m_set_rcvif(m, ifp);
1011 m->m_pkthdr.len = m->m_len = framelen;
1012
1013 SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
1014 device_xname(sc->sc_dev), i, framelen));
1015
1016 if_percpuq_enqueue(ifp->if_percpuq, m);
1017 }
1018
1019
1020 /* If anything happened, move ring start/end pointers to new spot */
1021 if (i != sc->sc_nextrx) {
1022 /*
1023 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
1024 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
1025 */
1026
1027 new_end = SQ_PREVRX(i);
1028 sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
1029 SQ_CDRXSYNC(sc, new_end,
1030 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1031
1032 orig_end = SQ_PREVRX(sc->sc_nextrx);
1033 sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
1034 SQ_CDRXSYNC(sc, orig_end,
1035 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1036
1037 sc->sc_nextrx = i;
1038 }
1039
1040 status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
1041
1042 /* If receive channel is stopped, restart it... */
1043 if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
1044 /* Pass the start of the receive ring to the HPC */
1045 sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
1046 SQ_CDRXADDR(sc, sc->sc_nextrx));
1047
1048 /* And turn on the HPC ethernet receive channel */
1049 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
1050 sc->hpc_regs->enetr_ctl_active);
1051 }
1052
1053 return count;
1054 }
1055
1056 static int
1057 sq_txintr(struct sq_softc *sc)
1058 {
1059 int shift = 0;
1060 uint32_t status, tmp;
1061 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1062
1063 if (sc->hpc_regs->revision != 3)
1064 shift = 16;
1065
1066 status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
1067
1068 SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
1069
1070 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1071 tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
1072 if ((status & tmp) == 0) {
1073 if (status & TXSTAT_COLL)
1074 if_statinc_ref(nsr, if_collisions);
1075
1076 if (status & TXSTAT_UFLOW) {
1077 printf("%s: transmit underflow\n",
1078 device_xname(sc->sc_dev));
1079 if_statinc_ref(nsr, if_oerrors);
1080 }
1081
1082 if (status & TXSTAT_16COLL) {
1083 printf("%s: max collisions reached\n",
1084 device_xname(sc->sc_dev));
1085 if_statinc_ref(nsr, if_oerrors);
1086 if_statadd_ref(nsr, if_collisions, 16);
1087 }
1088 }
1089 IF_STAT_PUTREF(ifp);
1090
1091 /* prevtx now points to next xmit packet not yet finished */
1092 if (sc->hpc_regs->revision == 3)
1093 sq_txring_hpc3(sc);
1094 else
1095 sq_txring_hpc1(sc);
1096
1097 /* If all packets have left the coop, cancel watchdog */
1098 if (sc->sc_nfreetx == SQ_NTXDESC)
1099 ifp->if_timer = 0;
1100
1101 SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
1102 if_schedule_deferred_start(ifp);
1103
1104 return 1;
1105 }
1106
1107 /*
1108 * Reclaim used transmit descriptors and restart the transmit DMA
1109 * engine if necessary.
1110 */
1111 static void
1112 sq_txring_hpc1(struct sq_softc *sc)
1113 {
1114 /*
1115 * HPC1 doesn't tag transmitted descriptors, however,
1116 * the NDBP register points to the next descriptor that
1117 * has not yet been processed. If DMA is not in progress,
1118 * we can safely reclaim all descriptors up to NDBP, and,
1119 * if necessary, restart DMA at NDBP. Otherwise, if DMA
1120 * is active, we can only safely reclaim up to CBP.
1121 *
1122 * For now, we'll only reclaim on inactive DMA and assume
1123 * that a sufficiently large ring keeps us out of trouble.
1124 */
1125 uint32_t reclaimto, status;
1126 int reclaimall, i = sc->sc_prevtx;
1127 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1128
1129 status = sq_hpc_read(sc, HPC1_ENETX_CTL);
1130 if (status & HPC1_ENETX_CTL_ACTIVE) {
1131 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1132 return;
1133 } else
1134 reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
1135
1136 if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
1137 reclaimall = 1;
1138 else
1139 reclaimall = 0;
1140
1141 while (sc->sc_nfreetx < SQ_NTXDESC) {
1142 if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
1143 break;
1144
1145 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1146 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1147
1148 /* Sync the packet data, unload DMA map, free mbuf */
1149 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1150 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1151 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1152 m_freem(sc->sc_txmbuf[i]);
1153 sc->sc_txmbuf[i] = NULL;
1154
1155 if_statinc(ifp, if_opackets);
1156 sc->sc_nfreetx++;
1157
1158 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1159
1160 i = SQ_NEXTTX(i);
1161 }
1162
1163 if (sc->sc_nfreetx < SQ_NTXDESC) {
1164 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1165
1166 KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
1167
1168 sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
1169 sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
1170
1171 /* Kick DMA channel into life */
1172 sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
1173
1174 /*
1175 * Set a watchdog timer in case the chip
1176 * flakes out.
1177 */
1178 ifp->if_timer = 5;
1179 }
1180
1181 sc->sc_prevtx = i;
1182 }
1183
1184 /*
1185 * Reclaim used transmit descriptors and restart the transmit DMA
1186 * engine if necessary.
1187 */
1188 static void
1189 sq_txring_hpc3(struct sq_softc *sc)
1190 {
1191 /*
1192 * HPC3 tags descriptors with a bit once they've been
1193 * transmitted. We need only free each XMITDONE'd
1194 * descriptor, and restart the DMA engine if any
1195 * descriptors are left over.
1196 */
1197 int i;
1198 uint32_t status = 0;
1199 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1200
1201 i = sc->sc_prevtx;
1202 while (sc->sc_nfreetx < SQ_NTXDESC) {
1203 /*
1204 * Check status first so we don't end up with a case of
1205 * the buffer not being finished while the DMA channel
1206 * has gone idle.
1207 */
1208 status = sq_hpc_read(sc, HPC3_ENETX_CTL);
1209
1210 SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
1211 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1212
1213 /* Check for used descriptor and restart DMA chain if needed */
1214 if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
1215 HPC3_HDD_CTL_XMITDONE) == 0) {
1216 if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
1217 SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
1218
1219 sq_hpc_write(sc, HPC3_ENETX_NDBP,
1220 SQ_CDTXADDR(sc, i));
1221
1222 /* Kick DMA channel into life */
1223 sq_hpc_write(sc, HPC3_ENETX_CTL,
1224 HPC3_ENETX_CTL_ACTIVE);
1225
1226 /*
1227 * Set a watchdog timer in case the chip
1228 * flakes out.
1229 */
1230 ifp->if_timer = 5;
1231 } else
1232 SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
1233 break;
1234 }
1235
1236 /* Sync the packet data, unload DMA map, free mbuf */
1237 bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
1238 0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1239 bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
1240 m_freem(sc->sc_txmbuf[i]);
1241 sc->sc_txmbuf[i] = NULL;
1242
1243 if_statinc(ifp, if_opackets);
1244 sc->sc_nfreetx++;
1245
1246 SQ_TRACE(SQ_DONE_DMA, sc, i, status);
1247 i = SQ_NEXTTX(i);
1248 }
1249
1250 sc->sc_prevtx = i;
1251 }
1252
1253 void
1254 sq_reset(struct sq_softc *sc)
1255 {
1256
1257 /* Stop HPC dma channels */
1258 sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
1259 sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
1260
1261 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
1262 delay(20);
1263 sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
1264 }
1265
1266 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
1267 int
1268 sq_add_rxbuf(struct sq_softc *sc, int idx)
1269 {
1270 int err;
1271 struct mbuf *m;
1272
1273 MGETHDR(m, M_DONTWAIT, MT_DATA);
1274 if (m == NULL)
1275 return ENOBUFS;
1276
1277 MCLGET(m, M_DONTWAIT);
1278 if ((m->m_flags & M_EXT) == 0) {
1279 m_freem(m);
1280 return ENOBUFS;
1281 }
1282
1283 if (sc->sc_rxmbuf[idx] != NULL)
1284 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
1285
1286 sc->sc_rxmbuf[idx] = m;
1287
1288 if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
1289 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
1290 printf("%s: can't load rx DMA map %d, error = %d\n",
1291 device_xname(sc->sc_dev), idx, err);
1292 panic("sq_add_rxbuf"); /* XXX */
1293 }
1294
1295 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
1296 0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
1297
1298 SQ_INIT_RXDESC(sc, idx);
1299
1300 return 0;
1301 }
1302
1303 void
1304 sq_dump_buffer(paddr_t addr, psize_t len)
1305 {
1306 u_int i;
1307 uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
1308
1309 if (len == 0)
1310 return;
1311
1312 printf("%p: ", physaddr);
1313
1314 for (i = 0; i < len; i++) {
1315 printf("%02x ", *(physaddr + i) & 0xff);
1316 if ((i % 16) == 15 && i != len - 1)
1317 printf("\n%p: ", physaddr + i);
1318 }
1319
1320 printf("\n");
1321 }
1322