Home | History | Annotate | Line # | Download | only in hpc
if_sq.c revision 1.59
      1 /*	$NetBSD: if_sq.c,v 1.59 2024/06/29 12:11:11 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2001 Rafal K. Boni
      5  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * Portions of this code are derived from software contributed to The
      9  * NetBSD Foundation by Jason R. Thorpe of the Numerical Aerospace
     10  * Simulation Facility, NASA Ames Research Center.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_sq.c,v 1.59 2024/06/29 12:11:11 riastradh Exp $");
     37 
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/device.h>
     42 #include <sys/callout.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/kernel.h>
     45 #include <sys/socket.h>
     46 #include <sys/ioctl.h>
     47 #include <sys/errno.h>
     48 #include <sys/syslog.h>
     49 
     50 #include <uvm/uvm_extern.h>
     51 
     52 #include <machine/endian.h>
     53 
     54 #include <net/if.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_media.h>
     57 #include <net/if_ether.h>
     58 
     59 #include <net/bpf.h>
     60 
     61 #include <sys/bus.h>
     62 #include <machine/intr.h>
     63 #include <machine/sysconf.h>
     64 
     65 #include <dev/ic/seeq8003reg.h>
     66 
     67 #include <sgimips/hpc/sqvar.h>
     68 #include <sgimips/hpc/hpcvar.h>
     69 #include <sgimips/hpc/hpcreg.h>
     70 
     71 #include <dev/arcbios/arcbios.h>
     72 #include <dev/arcbios/arcbiosvar.h>
     73 
     74 #define static
     75 
     76 /*
     77  * Short TODO list:
     78  *	(1) Do counters for bad-RX packets.
     79  *	(2) Allow multi-segment transmits, instead of copying to a single,
     80  *	    contiguous mbuf.
     81  *	(3) Verify sq_stop() turns off enough stuff; I was still getting
     82  *	    seeq interrupts after sq_stop().
     83  *	(4) Implement EDLC modes: especially packet auto-pad and simplex
     84  *	    mode.
     85  *	(5) Should the driver filter out its own transmissions in non-EDLC
     86  *	    mode?
     87  *	(6) Multicast support -- multicast filter, address management, ...
     88  *	(7) Deal with RB0 (recv buffer overflow) on reception.  Will need
     89  *	    to figure out if RB0 is read-only as stated in one spot in the
     90  *	    HPC spec or read-write (ie, is the 'write a one to clear it')
     91  *	    the correct thing?
     92  */
     93 
     94 #if defined(SQ_DEBUG)
     95  int sq_debug = 0;
     96  #define SQ_DPRINTF(x) if (sq_debug) printf x
     97 #else
     98  #define SQ_DPRINTF(x)
     99 #endif
    100 
    101 static int	sq_match(device_t, cfdata_t, void *);
    102 static void	sq_attach(device_t, device_t, void *);
    103 static int	sq_init(struct ifnet *);
    104 static void	sq_start(struct ifnet *);
    105 static void	sq_stop(struct ifnet *, int);
    106 static void	sq_watchdog(struct ifnet *);
    107 static int	sq_ioctl(struct ifnet *, u_long, void *);
    108 
    109 static void	sq_set_filter(struct sq_softc *);
    110 static int	sq_intr(void *);
    111 static int	sq_rxintr(struct sq_softc *);
    112 static int	sq_txintr(struct sq_softc *);
    113 static void	sq_txring_hpc1(struct sq_softc *);
    114 static void	sq_txring_hpc3(struct sq_softc *);
    115 static void	sq_reset(struct sq_softc *);
    116 static int	sq_add_rxbuf(struct sq_softc *, int);
    117 static void	sq_dump_buffer(paddr_t, psize_t);
    118 static void	sq_trace_dump(struct sq_softc *);
    119 
    120 CFATTACH_DECL_NEW(sq, sizeof(struct sq_softc),
    121     sq_match, sq_attach, NULL, NULL);
    122 
    123 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
    124 
    125 #define sq_seeq_read(sc, off) \
    126 	bus_space_read_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3)
    127 #define sq_seeq_write(sc, off, val) \
    128 	bus_space_write_1(sc->sc_regt, sc->sc_regh, (off << 2) + 3, val)
    129 
    130 #define sq_hpc_read(sc, off) \
    131 	bus_space_read_4(sc->sc_hpct, sc->sc_hpch, off)
    132 #define sq_hpc_write(sc, off, val) \
    133 	bus_space_write_4(sc->sc_hpct, sc->sc_hpch, off, val)
    134 
    135 /* MAC address offset for non-onboard implementations */
    136 #define SQ_HPC_EEPROM_ENADDR	250
    137 
    138 #define SGI_OUI_0		0x08
    139 #define SGI_OUI_1		0x00
    140 #define SGI_OUI_2		0x69
    141 
    142 static int
    143 sq_match(device_t parent, cfdata_t cf, void *aux)
    144 {
    145 	struct hpc_attach_args *ha = aux;
    146 
    147 	if (strcmp(ha->ha_name, cf->cf_name) == 0) {
    148 		vaddr_t reset, txstat;
    149 
    150 		reset = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    151 		    ha->ha_dmaoff + ha->hpc_regs->enetr_reset);
    152 		txstat = MIPS_PHYS_TO_KSEG1(ha->ha_sh +
    153 		    ha->ha_devoff + (SEEQ_TXSTAT << 2));
    154 
    155 		if (platform.badaddr((void *)reset, sizeof(reset)))
    156 			return 0;
    157 
    158 		*(volatile uint32_t *)reset = 0x1;
    159 		delay(20);
    160 		*(volatile uint32_t *)reset = 0x0;
    161 
    162 		if (platform.badaddr((void *)txstat, sizeof(txstat)))
    163 			return 0;
    164 
    165 		if ((*(volatile uint32_t *)txstat & 0xff) == TXSTAT_OLDNEW)
    166 			return 1;
    167 	}
    168 
    169 	return 0;
    170 }
    171 
    172 static void
    173 sq_attach(device_t parent, device_t self, void *aux)
    174 {
    175 	int i, err;
    176 	const char* macaddr;
    177 	struct sq_softc *sc = device_private(self);
    178 	struct hpc_attach_args *haa = aux;
    179 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    180 
    181 	sc->sc_dev = self;
    182 	sc->sc_hpct = haa->ha_st;
    183 	sc->hpc_regs = haa->hpc_regs;	   /* HPC register definitions */
    184 
    185 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    186 	    haa->ha_dmaoff, sc->hpc_regs->enet_regs_size,
    187 	    &sc->sc_hpch)) != 0) {
    188 		printf(": unable to map HPC DMA registers, error = %d\n", err);
    189 		goto fail_0;
    190 	}
    191 
    192 	sc->sc_regt = haa->ha_st;
    193 	if ((err = bus_space_subregion(haa->ha_st, haa->ha_sh,
    194 	    haa->ha_devoff, sc->hpc_regs->enet_devregs_size,
    195 	    &sc->sc_regh)) != 0) {
    196 		printf(": unable to map Seeq registers, error = %d\n", err);
    197 		goto fail_0;
    198 	}
    199 
    200 	sc->sc_dmat = haa->ha_dmat;
    201 
    202 	if ((err = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sq_control),
    203 	    PAGE_SIZE, PAGE_SIZE, &sc->sc_cdseg, 1, &sc->sc_ncdseg,
    204 	    BUS_DMA_NOWAIT)) != 0) {
    205 		printf(": unable to allocate control data, error = %d\n", err);
    206 		goto fail_0;
    207 	}
    208 
    209 	if ((err = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg,
    210 	    sizeof(struct sq_control), (void **)&sc->sc_control,
    211 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
    212 		printf(": unable to map control data, error = %d\n", err);
    213 		goto fail_1;
    214 	}
    215 
    216 	if ((err = bus_dmamap_create(sc->sc_dmat,
    217 	    sizeof(struct sq_control), 1, sizeof(struct sq_control), PAGE_SIZE,
    218 	    BUS_DMA_NOWAIT, &sc->sc_cdmap)) != 0) {
    219 		printf(": unable to create DMA map for control data, error "
    220 		    "= %d\n", err);
    221 		goto fail_2;
    222 	}
    223 
    224 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_cdmap,
    225 	    sc->sc_control, sizeof(struct sq_control), NULL,
    226 	    BUS_DMA_NOWAIT)) != 0) {
    227 		printf(": unable to load DMA map for control data, error "
    228 		    "= %d\n", err);
    229 		goto fail_3;
    230 	}
    231 
    232 	memset(sc->sc_control, 0, sizeof(struct sq_control));
    233 
    234 	/* Create transmit buffer DMA maps */
    235 	for (i = 0; i < SQ_NTXDESC; i++) {
    236 		if ((err = bus_dmamap_create(sc->sc_dmat,
    237 		    MCLBYTES, 1, MCLBYTES, 0,
    238 		    BUS_DMA_NOWAIT, &sc->sc_txmap[i])) != 0) {
    239 			printf(": unable to create tx DMA map %d, error = %d\n",
    240 			    i, err);
    241 			goto fail_4;
    242 		}
    243 	}
    244 
    245 	/* Create receive buffer DMA maps */
    246 	for (i = 0; i < SQ_NRXDESC; i++) {
    247 		if ((err = bus_dmamap_create(sc->sc_dmat,
    248 		    MCLBYTES, 1, MCLBYTES, 0,
    249 		    BUS_DMA_NOWAIT, &sc->sc_rxmap[i])) != 0) {
    250 			printf(": unable to create rx DMA map %d, error = %d\n",
    251 			    i, err);
    252 			goto fail_5;
    253 		}
    254 	}
    255 
    256 	/* Pre-allocate the receive buffers.  */
    257 	for (i = 0; i < SQ_NRXDESC; i++) {
    258 		if ((err = sq_add_rxbuf(sc, i)) != 0) {
    259 			printf(": unable to allocate or map rx buffer %d\n,"
    260 			    " error = %d\n", i, err);
    261 			goto fail_6;
    262 		}
    263 	}
    264 
    265 	memcpy(sc->sc_enaddr, &haa->hpc_eeprom[SQ_HPC_EEPROM_ENADDR],
    266 	    ETHER_ADDR_LEN);
    267 
    268 	/*
    269 	 * If our mac address is bogus, obtain it from ARCBIOS. This will
    270 	 * be true of the onboard HPC3 on IP22, since there is no eeprom,
    271 	 * but rather the DS1386 RTC's battery-backed ram is used.
    272 	 */
    273 	if (sc->sc_enaddr[0] != SGI_OUI_0 ||
    274 	    sc->sc_enaddr[1] != SGI_OUI_1 ||
    275 	    sc->sc_enaddr[2] != SGI_OUI_2) {
    276 		macaddr = arcbios_GetEnvironmentVariable("eaddr");
    277 		if (macaddr == NULL) {
    278 			printf(": unable to get MAC address!\n");
    279 			goto fail_6;
    280 		}
    281 		ether_aton_r(sc->sc_enaddr, sizeof(sc->sc_enaddr), macaddr);
    282 	}
    283 
    284 	evcnt_attach_dynamic(&sc->sq_intrcnt, EVCNT_TYPE_INTR, NULL,
    285 	    device_xname(self), "intr");
    286 
    287 	if ((cpu_intr_establish(haa->ha_irq, IPL_NET, sq_intr, sc)) == NULL) {
    288 		printf(": unable to establish interrupt!\n");
    289 		goto fail_6;
    290 	}
    291 
    292 	/* Reset the chip to a known state. */
    293 	sq_reset(sc);
    294 
    295 	/*
    296 	 * Determine if we're an 8003 or 80c03 by setting the first
    297 	 * MAC address register to non-zero, and then reading it back.
    298 	 * If it's zero, we have an 80c03, because we will have read
    299 	 * the TxCollLSB register.
    300 	 */
    301 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0xa5);
    302 	if (sq_seeq_read(sc, SEEQ_TXCOLLS0) == 0)
    303 		sc->sc_type = SQ_TYPE_80C03;
    304 	else
    305 		sc->sc_type = SQ_TYPE_8003;
    306 	sq_seeq_write(sc, SEEQ_TXCOLLS0, 0x00);
    307 
    308 	printf(": SGI Seeq %s\n",
    309 	    sc->sc_type == SQ_TYPE_80C03 ? "80c03" : "8003");
    310 
    311 	printf("%s: Ethernet address %s\n",
    312 	    device_xname(self), ether_sprintf(sc->sc_enaddr));
    313 
    314 	strcpy(ifp->if_xname, device_xname(self));
    315 	ifp->if_softc = sc;
    316 	ifp->if_mtu = ETHERMTU;
    317 	ifp->if_init = sq_init;
    318 	ifp->if_stop = sq_stop;
    319 	ifp->if_start = sq_start;
    320 	ifp->if_ioctl = sq_ioctl;
    321 	ifp->if_watchdog = sq_watchdog;
    322 	ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST;
    323 	IFQ_SET_READY(&ifp->if_snd);
    324 
    325 	if_attach(ifp);
    326 	if_deferred_start_init(ifp, NULL);
    327 	ether_ifattach(ifp, sc->sc_enaddr);
    328 
    329 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    330 	/* Done! */
    331 	return;
    332 
    333 	/*
    334 	 * Free any resources we've allocated during the failed attach
    335 	 * attempt.  Do this in reverse order and fall through.
    336 	 */
    337  fail_6:
    338 	for (i = 0; i < SQ_NRXDESC; i++) {
    339 		if (sc->sc_rxmbuf[i] != NULL) {
    340 			bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[i]);
    341 			m_freem(sc->sc_rxmbuf[i]);
    342 		}
    343 	}
    344  fail_5:
    345 	for (i = 0; i < SQ_NRXDESC; i++) {
    346 		if (sc->sc_rxmap[i] != NULL)
    347 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmap[i]);
    348 	}
    349  fail_4:
    350 	for (i = 0; i < SQ_NTXDESC; i++) {
    351 		if (sc->sc_txmap[i] != NULL)
    352 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_txmap[i]);
    353 	}
    354 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cdmap);
    355  fail_3:
    356 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cdmap);
    357  fail_2:
    358 	bus_dmamem_unmap(sc->sc_dmat,
    359 	    (void *)sc->sc_control, sizeof(struct sq_control));
    360  fail_1:
    361 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_ncdseg);
    362  fail_0:
    363 	return;
    364 }
    365 
    366 /* Set up data to get the interface up and running. */
    367 int
    368 sq_init(struct ifnet *ifp)
    369 {
    370 	int i;
    371 	struct sq_softc *sc = ifp->if_softc;
    372 
    373 	/* Cancel any in-progress I/O */
    374 	sq_stop(ifp, 0);
    375 
    376 	sc->sc_nextrx = 0;
    377 
    378 	sc->sc_nfreetx = SQ_NTXDESC;
    379 	sc->sc_nexttx = sc->sc_prevtx = 0;
    380 
    381 	SQ_TRACE(SQ_RESET, sc, 0, 0);
    382 
    383 	/* Set into 8003 mode, bank 0 to program ethernet address */
    384 	sq_seeq_write(sc, SEEQ_TXCMD, TXCMD_BANK0);
    385 
    386 	/* Now write the address */
    387 	for (i = 0; i < ETHER_ADDR_LEN; i++)
    388 		sq_seeq_write(sc, i, sc->sc_enaddr[i]);
    389 
    390 	sc->sc_rxcmd =
    391 	    RXCMD_IE_CRC |
    392 	    RXCMD_IE_DRIB |
    393 	    RXCMD_IE_SHORT |
    394 	    RXCMD_IE_END |
    395 	    RXCMD_IE_GOOD;
    396 
    397 	/*
    398 	 * Set the receive filter -- this will add some bits to the
    399 	 * prototype RXCMD register.  Do this before setting the
    400 	 * transmit config register, since we might need to switch
    401 	 * banks.
    402 	 */
    403 	sq_set_filter(sc);
    404 
    405 	/* Set up Seeq transmit command register */
    406 	sq_seeq_write(sc, SEEQ_TXCMD,
    407 	    TXCMD_IE_UFLOW |
    408 	    TXCMD_IE_COLL |
    409 	    TXCMD_IE_16COLL |
    410 	    TXCMD_IE_GOOD);
    411 
    412 	/* Now write the receive command register. */
    413 	sq_seeq_write(sc, SEEQ_RXCMD, sc->sc_rxcmd);
    414 
    415 	/*
    416 	 * Set up HPC ethernet PIO and DMA configurations.
    417 	 *
    418 	 * The PROM appears to do most of this for the onboard HPC3, but
    419 	 * not for the Challenge S's IOPLUS chip. We copy how the onboard
    420 	 * chip is configured and assume that it's correct for both.
    421 	 */
    422 	if (sc->hpc_regs->revision == 3) {
    423 		uint32_t dmareg, pioreg;
    424 
    425 		pioreg =
    426 		    HPC3_ENETR_PIOCFG_P1(1) |
    427 		    HPC3_ENETR_PIOCFG_P2(6) |
    428 		    HPC3_ENETR_PIOCFG_P3(1);
    429 
    430 		dmareg =
    431 		    HPC3_ENETR_DMACFG_D1(6) |
    432 		    HPC3_ENETR_DMACFG_D2(2) |
    433 		    HPC3_ENETR_DMACFG_D3(0) |
    434 		    HPC3_ENETR_DMACFG_FIX_RXDC |
    435 		    HPC3_ENETR_DMACFG_FIX_INTR |
    436 		    HPC3_ENETR_DMACFG_FIX_EOP |
    437 		    HPC3_ENETR_DMACFG_TIMEOUT;
    438 
    439 		sq_hpc_write(sc, HPC3_ENETR_PIOCFG, pioreg);
    440 		sq_hpc_write(sc, HPC3_ENETR_DMACFG, dmareg);
    441 	}
    442 
    443 	/* Pass the start of the receive ring to the HPC */
    444 	sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp, SQ_CDRXADDR(sc, 0));
    445 
    446 	/* And turn on the HPC ethernet receive channel */
    447 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
    448 	    sc->hpc_regs->enetr_ctl_active);
    449 
    450 	/*
    451 	 * Turn off delayed receive interrupts on HPC1.
    452 	 * (see Hollywood HPC Specification 2.1.4.3)
    453 	 */
    454 	if (sc->hpc_regs->revision != 3)
    455 		sq_hpc_write(sc, HPC1_ENET_INTDELAY, HPC1_ENET_INTDELAY_OFF);
    456 
    457 	ifp->if_flags |= IFF_RUNNING;
    458 
    459 	return 0;
    460 }
    461 
    462 static void
    463 sq_set_filter(struct sq_softc *sc)
    464 {
    465 	struct ethercom *ec = &sc->sc_ethercom;
    466 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    467 	struct ether_multi *enm;
    468 	struct ether_multistep step;
    469 
    470 	/*
    471 	 * Check for promiscuous mode.  Also implies
    472 	 * all-multicast.
    473 	 */
    474 	if (ifp->if_flags & IFF_PROMISC) {
    475 		sc->sc_rxcmd |= RXCMD_REC_ALL;
    476 		ifp->if_flags |= IFF_ALLMULTI;
    477 		return;
    478 	}
    479 
    480 	/*
    481 	 * The 8003 has no hash table.  If we have any multicast
    482 	 * addresses on the list, enable reception of all multicast
    483 	 * frames.
    484 	 *
    485 	 * XXX The 80c03 has a hash table.  We should use it.
    486 	 */
    487 
    488 	ETHER_FIRST_MULTI(step, ec, enm);
    489 
    490 	if (enm == NULL) {
    491 		sc->sc_rxcmd &= ~RXCMD_REC_MASK;
    492 		sc->sc_rxcmd |= RXCMD_REC_BROAD;
    493 
    494 		ifp->if_flags &= ~IFF_ALLMULTI;
    495 		return;
    496 	}
    497 
    498 	sc->sc_rxcmd |= RXCMD_REC_MULTI;
    499 	ifp->if_flags |= IFF_ALLMULTI;
    500 }
    501 
    502 int
    503 sq_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    504 {
    505 	int s, error = 0;
    506 
    507 	SQ_TRACE(SQ_IOCTL, (struct sq_softc *)ifp->if_softc, 0, 0);
    508 
    509 	s = splnet();
    510 
    511 	error = ether_ioctl(ifp, cmd, data);
    512 	if (error == ENETRESET) {
    513 		/*
    514 		 * Multicast list has changed; set the hardware filter
    515 		 * accordingly.
    516 		 */
    517 		if (ifp->if_flags & IFF_RUNNING)
    518 			error = sq_init(ifp);
    519 		else
    520 			error = 0;
    521 	}
    522 
    523 	splx(s);
    524 	return error;
    525 }
    526 
    527 void
    528 sq_start(struct ifnet *ifp)
    529 {
    530 	struct sq_softc *sc = ifp->if_softc;
    531 	uint32_t status;
    532 	struct mbuf *m0, *m;
    533 	bus_dmamap_t dmamap;
    534 	int err, totlen, nexttx, firsttx, lasttx = -1, ofree, seg;
    535 
    536 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    537 		return;
    538 
    539 	/*
    540 	 * Remember the previous number of free descriptors and
    541 	 * the first descriptor we'll use.
    542 	 */
    543 	ofree = sc->sc_nfreetx;
    544 	firsttx = sc->sc_nexttx;
    545 
    546 	/*
    547 	 * Loop through the send queue, setting up transmit descriptors
    548 	 * until we drain the queue, or use up all available transmit
    549 	 * descriptors.
    550 	 */
    551 	while (sc->sc_nfreetx != 0) {
    552 		/*
    553 		 * Grab a packet off the queue.
    554 		 */
    555 		IFQ_POLL(&ifp->if_snd, m0);
    556 		if (m0 == NULL)
    557 			break;
    558 		m = NULL;
    559 
    560 		dmamap = sc->sc_txmap[sc->sc_nexttx];
    561 
    562 		/*
    563 		 * Load the DMA map.  If this fails, the packet either
    564 		 * didn't fit in the allotted number of segments, or we were
    565 		 * short on resources.  In this case, we'll copy and try
    566 		 * again.
    567 		 * Also copy it if we need to pad, so that we are sure there
    568 		 * is room for the pad buffer.
    569 		 * XXX the right way of doing this is to use a static buffer
    570 		 * for padding and adding it to the transmit descriptor (see
    571 		 * sys/dev/pci/if_tl.c for example). We can't do this here yet
    572 		 * because we can't send packets with more than one fragment.
    573 		 */
    574 		if (m0->m_pkthdr.len < ETHER_PAD_LEN ||
    575 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    576 		    BUS_DMA_NOWAIT) != 0) {
    577 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    578 			if (m == NULL) {
    579 				printf("%s: unable to allocate Tx mbuf\n",
    580 				    device_xname(sc->sc_dev));
    581 				break;
    582 			}
    583 			if (m0->m_pkthdr.len > MHLEN) {
    584 				MCLGET(m, M_DONTWAIT);
    585 				if ((m->m_flags & M_EXT) == 0) {
    586 					printf("%s: unable to allocate Tx "
    587 					    "cluster\n",
    588 					    device_xname(sc->sc_dev));
    589 					m_freem(m);
    590 					break;
    591 				}
    592 			}
    593 
    594 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    595 			if (m0->m_pkthdr.len < ETHER_PAD_LEN) {
    596 				memset(mtod(m, char *) + m0->m_pkthdr.len, 0,
    597 				    ETHER_PAD_LEN - m0->m_pkthdr.len);
    598 				m->m_pkthdr.len = m->m_len = ETHER_PAD_LEN;
    599 			} else
    600 				m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    601 
    602 			if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    603 			    m, BUS_DMA_NOWAIT)) != 0) {
    604 				printf("%s: unable to load Tx buffer, "
    605 				    "error = %d\n",
    606 				    device_xname(sc->sc_dev), err);
    607 				break;
    608 			}
    609 		}
    610 
    611 		/*
    612 		 * Ensure we have enough descriptors free to describe
    613 		 * the packet.
    614 		 */
    615 		if (dmamap->dm_nsegs > sc->sc_nfreetx) {
    616 			/*
    617 			 * Not enough free descriptors to transmit this
    618 			 * packet.  We haven't committed to anything yet,
    619 			 * so just unload the DMA map, put the packet
    620 			 * back on the queue, and punt.
    621 			 *
    622 			 * XXX We could allocate an mbuf and copy, but
    623 			 * XXX it is worth it?
    624 			 */
    625 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    626 			if (m != NULL)
    627 				m_freem(m);
    628 			break;
    629 		}
    630 
    631 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    632 		/*
    633 		 * Pass the packet to any BPF listeners.
    634 		 */
    635 		bpf_mtap(ifp, m0, BPF_D_OUT);
    636 		if (m != NULL) {
    637 			m_freem(m0);
    638 			m0 = m;
    639 		}
    640 
    641 		/*
    642 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    643 		 */
    644 
    645 		SQ_TRACE(SQ_ENQUEUE, sc, sc->sc_nexttx, 0);
    646 
    647 		/* Sync the DMA map. */
    648 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    649 		    BUS_DMASYNC_PREWRITE);
    650 
    651 		/*
    652 		 * Initialize the transmit descriptors.
    653 		 */
    654 		for (nexttx = sc->sc_nexttx, seg = 0, totlen = 0;
    655 		     seg < dmamap->dm_nsegs;
    656 		     seg++, nexttx = SQ_NEXTTX(nexttx)) {
    657 			if (sc->hpc_regs->revision == 3) {
    658 				sc->sc_txdesc[nexttx].hpc3_hdd_bufptr =
    659 				    dmamap->dm_segs[seg].ds_addr;
    660 				sc->sc_txdesc[nexttx].hpc3_hdd_ctl =
    661 				    dmamap->dm_segs[seg].ds_len;
    662 			} else {
    663 				sc->sc_txdesc[nexttx].hpc1_hdd_bufptr =
    664 				    dmamap->dm_segs[seg].ds_addr;
    665 				sc->sc_txdesc[nexttx].hpc1_hdd_ctl =
    666 				    dmamap->dm_segs[seg].ds_len;
    667 			}
    668 			sc->sc_txdesc[nexttx].hdd_descptr =
    669 			    SQ_CDTXADDR(sc, SQ_NEXTTX(nexttx));
    670 			lasttx = nexttx;
    671 			totlen += dmamap->dm_segs[seg].ds_len;
    672 		}
    673 
    674 		/* Last descriptor gets end-of-packet */
    675 		KASSERT(lasttx != -1);
    676 		if (sc->hpc_regs->revision == 3)
    677 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    678 			    HPC3_HDD_CTL_EOPACKET;
    679 		else
    680 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |=
    681 			    HPC1_HDD_CTL_EOPACKET;
    682 
    683 		SQ_DPRINTF(("%s: transmit %d-%d, len %d\n",
    684 		    device_xname(sc->sc_dev), sc->sc_nexttx, lasttx, totlen));
    685 
    686 		if (ifp->if_flags & IFF_DEBUG) {
    687 			printf("     transmit chain:\n");
    688 			for (seg = sc->sc_nexttx;; seg = SQ_NEXTTX(seg)) {
    689 				printf("     descriptor %d:\n", seg);
    690 				printf("       hdd_bufptr:      0x%08x\n",
    691 				    (sc->hpc_regs->revision == 3) ?
    692 				    sc->sc_txdesc[seg].hpc3_hdd_bufptr :
    693 				    sc->sc_txdesc[seg].hpc1_hdd_bufptr);
    694 				printf("       hdd_ctl: 0x%08x\n",
    695 				    (sc->hpc_regs->revision == 3) ?
    696 				    sc->sc_txdesc[seg].hpc3_hdd_ctl:
    697 				    sc->sc_txdesc[seg].hpc1_hdd_ctl);
    698 				printf("       hdd_descptr:      0x%08x\n",
    699 				    sc->sc_txdesc[seg].hdd_descptr);
    700 
    701 				if (seg == lasttx)
    702 					break;
    703 			}
    704 		}
    705 
    706 		/* Sync the descriptors we're using. */
    707 		SQ_CDTXSYNC(sc, sc->sc_nexttx, dmamap->dm_nsegs,
    708 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    709 
    710 		/* Store a pointer to the packet so we can free it later */
    711 		sc->sc_txmbuf[sc->sc_nexttx] = m0;
    712 
    713 		/* Advance the tx pointer. */
    714 		sc->sc_nfreetx -= dmamap->dm_nsegs;
    715 		sc->sc_nexttx = nexttx;
    716 	}
    717 
    718 	if (sc->sc_nfreetx != ofree) {
    719 		SQ_DPRINTF(("%s: %d packets enqueued, first %d, INTR on %d\n",
    720 		    device_xname(sc->sc_dev), lasttx - firsttx + 1,
    721 		    firsttx, lasttx));
    722 
    723 		/*
    724 		 * Cause a transmit interrupt to happen on the
    725 		 * last packet we enqueued, mark it as the last
    726 		 * descriptor.
    727 		 *
    728 		 * HPC1_HDD_CTL_INTR will generate an interrupt on
    729 		 * HPC1. HPC3 requires HPC3_HDD_CTL_EOPACKET in
    730 		 * addition to HPC3_HDD_CTL_INTR to interrupt.
    731 		 */
    732 		KASSERT(lasttx != -1);
    733 		if (sc->hpc_regs->revision == 3) {
    734 			sc->sc_txdesc[lasttx].hpc3_hdd_ctl |=
    735 			    HPC3_HDD_CTL_INTR | HPC3_HDD_CTL_EOCHAIN;
    736 		} else {
    737 			sc->sc_txdesc[lasttx].hpc1_hdd_ctl |= HPC1_HDD_CTL_INTR;
    738 			sc->sc_txdesc[lasttx].hpc1_hdd_bufptr |=
    739 			    HPC1_HDD_CTL_EOCHAIN;
    740 		}
    741 
    742 		SQ_CDTXSYNC(sc, lasttx, 1,
    743 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    744 
    745 		/*
    746 		 * There is a potential race condition here if the HPC
    747 		 * DMA channel is active and we try and either update
    748 		 * the 'next descriptor' pointer in the HPC PIO space
    749 		 * or the 'next descriptor' pointer in a previous desc-
    750 		 * riptor.
    751 		 *
    752 		 * To avoid this, if the channel is active, we rely on
    753 		 * the transmit interrupt routine noticing that there
    754 		 * are more packets to send and restarting the HPC DMA
    755 		 * engine, rather than mucking with the DMA state here.
    756 		 */
    757 		status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    758 
    759 		if ((status & sc->hpc_regs->enetx_ctl_active) != 0) {
    760 			SQ_TRACE(SQ_ADD_TO_DMA, sc, firsttx, status);
    761 
    762 			/*
    763 			 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
    764 			 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
    765 			 */
    766 			sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc3_hdd_ctl &=
    767 			    ~HPC3_HDD_CTL_EOCHAIN;
    768 
    769 			if (sc->hpc_regs->revision != 3)
    770 				sc->sc_txdesc[SQ_PREVTX(firsttx)].hpc1_hdd_ctl
    771 				    &= ~HPC1_HDD_CTL_INTR;
    772 
    773 			SQ_CDTXSYNC(sc, SQ_PREVTX(firsttx),  1,
    774 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    775 		} else if (sc->hpc_regs->revision == 3) {
    776 			SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    777 
    778 			sq_hpc_write(sc, HPC3_ENETX_NDBP, SQ_CDTXADDR(sc,
    779 			    firsttx));
    780 
    781 			/* Kick DMA channel into life */
    782 			sq_hpc_write(sc, HPC3_ENETX_CTL, HPC3_ENETX_CTL_ACTIVE);
    783 		} else {
    784 			/*
    785 			 * In the HPC1 case where transmit DMA is
    786 			 * inactive, we can either kick off if
    787 			 * the ring was previously empty, or call
    788 			 * our transmit interrupt handler to
    789 			 * figure out if the ring stopped short
    790 			 * and restart at the right place.
    791 			 */
    792 			if (ofree == SQ_NTXDESC) {
    793 				SQ_TRACE(SQ_START_DMA, sc, firsttx, status);
    794 
    795 				sq_hpc_write(sc, HPC1_ENETX_NDBP,
    796 				    SQ_CDTXADDR(sc, firsttx));
    797 				sq_hpc_write(sc, HPC1_ENETX_CFXBP,
    798 				    SQ_CDTXADDR(sc, firsttx));
    799 				sq_hpc_write(sc, HPC1_ENETX_CBP,
    800 				    SQ_CDTXADDR(sc, firsttx));
    801 
    802 				/* Kick DMA channel into life */
    803 				sq_hpc_write(sc, HPC1_ENETX_CTL,
    804 				    HPC1_ENETX_CTL_ACTIVE);
    805 			} else
    806 				sq_txring_hpc1(sc);
    807 		}
    808 
    809 		/* Set a watchdog timer in case the chip flakes out. */
    810 		ifp->if_timer = 5;
    811 	}
    812 }
    813 
    814 void
    815 sq_stop(struct ifnet *ifp, int disable)
    816 {
    817 	int i;
    818 	struct sq_softc *sc = ifp->if_softc;
    819 
    820 	for (i = 0; i < SQ_NTXDESC; i++) {
    821 		if (sc->sc_txmbuf[i] != NULL) {
    822 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
    823 			m_freem(sc->sc_txmbuf[i]);
    824 			sc->sc_txmbuf[i] = NULL;
    825 		}
    826 	}
    827 
    828 	/* Clear Seeq transmit/receive command registers */
    829 	sq_seeq_write(sc, SEEQ_TXCMD, 0);
    830 	sq_seeq_write(sc, SEEQ_RXCMD, 0);
    831 
    832 	sq_reset(sc);
    833 
    834 	ifp->if_flags &= ~IFF_RUNNING;
    835 	ifp->if_timer = 0;
    836 }
    837 
    838 /* Device timeout/watchdog routine. */
    839 void
    840 sq_watchdog(struct ifnet *ifp)
    841 {
    842 	uint32_t status;
    843 	struct sq_softc *sc = ifp->if_softc;
    844 
    845 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl);
    846 	log(LOG_ERR, "%s: device timeout (prev %d, next %d, free %d, "
    847 	    "status %08x)\n", device_xname(sc->sc_dev), sc->sc_prevtx,
    848 	    sc->sc_nexttx, sc->sc_nfreetx, status);
    849 
    850 	sq_trace_dump(sc);
    851 
    852 	memset(&sc->sq_trace, 0, sizeof(sc->sq_trace));
    853 	sc->sq_trace_idx = 0;
    854 
    855 	if_statinc(ifp, if_oerrors);
    856 
    857 	sq_init(ifp);
    858 }
    859 
    860 static void
    861 sq_trace_dump(struct sq_softc *sc)
    862 {
    863 	int i;
    864 	const char *act;
    865 
    866 	for (i = 0; i < sc->sq_trace_idx; i++) {
    867 		switch (sc->sq_trace[i].action) {
    868 		case SQ_RESET:		act = "SQ_RESET";		break;
    869 		case SQ_ADD_TO_DMA:	act = "SQ_ADD_TO_DMA";		break;
    870 		case SQ_START_DMA:	act = "SQ_START_DMA";		break;
    871 		case SQ_DONE_DMA:	act = "SQ_DONE_DMA";		break;
    872 		case SQ_RESTART_DMA:	act = "SQ_RESTART_DMA";		break;
    873 		case SQ_TXINTR_ENTER:	act = "SQ_TXINTR_ENTER";	break;
    874 		case SQ_TXINTR_EXIT:	act = "SQ_TXINTR_EXIT";		break;
    875 		case SQ_TXINTR_BUSY:	act = "SQ_TXINTR_BUSY";		break;
    876 		case SQ_IOCTL:		act = "SQ_IOCTL";		break;
    877 		case SQ_ENQUEUE:	act = "SQ_ENQUEUE";		break;
    878 		default:		act = "UNKNOWN";
    879 		}
    880 
    881 		printf("%s: [%03d] action %-16s buf %03d free %03d "
    882 		    "status %08x line %d\n", device_xname(sc->sc_dev), i, act,
    883 		    sc->sq_trace[i].bufno, sc->sq_trace[i].freebuf,
    884 		    sc->sq_trace[i].status, sc->sq_trace[i].line);
    885 	}
    886 }
    887 
    888 static int
    889 sq_intr(void *arg)
    890 {
    891 	struct sq_softc *sc = arg;
    892 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    893 	int handled = 0;
    894 	uint32_t stat;
    895 
    896 	stat = sq_hpc_read(sc, sc->hpc_regs->enetr_reset);
    897 
    898 	if ((stat & 2) == 0) {
    899 		SQ_DPRINTF(("%s: Unexpected interrupt!\n",
    900 		    device_xname(sc->sc_dev)));
    901 	} else
    902 		sq_hpc_write(sc, sc->hpc_regs->enetr_reset, (stat | 2));
    903 
    904 	/*
    905 	 * If the interface isn't running, the interrupt couldn't
    906 	 * possibly have come from us.
    907 	 */
    908 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    909 		return 0;
    910 
    911 	sc->sq_intrcnt.ev_count++;
    912 
    913 	/* Always check for received packets */
    914 	if (sq_rxintr(sc) != 0)
    915 		handled++;
    916 
    917 	/* Only handle transmit interrupts if we actually sent something */
    918 	if (sc->sc_nfreetx < SQ_NTXDESC) {
    919 		sq_txintr(sc);
    920 		handled++;
    921 	}
    922 
    923 	if (handled)
    924 		rnd_add_uint32(&sc->rnd_source, stat);
    925 	return handled;
    926 }
    927 
    928 static int
    929 sq_rxintr(struct sq_softc *sc)
    930 {
    931 	int count = 0;
    932 	struct mbuf* m;
    933 	int i, framelen;
    934 	uint8_t pktstat;
    935 	uint32_t status;
    936 	uint32_t ctl_reg;
    937 	int new_end, orig_end;
    938 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    939 
    940 	for (i = sc->sc_nextrx;; i = SQ_NEXTRX(i)) {
    941 		SQ_CDRXSYNC(sc, i,
    942 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    943 
    944 		/*
    945 		 * If this is a CPU-owned buffer, we're at the end of the list.
    946 		 */
    947 		if (sc->hpc_regs->revision == 3)
    948 			ctl_reg =
    949 			    sc->sc_rxdesc[i].hpc3_hdd_ctl & HPC3_HDD_CTL_OWN;
    950 		else
    951 			ctl_reg =
    952 			    sc->sc_rxdesc[i].hpc1_hdd_ctl & HPC1_HDD_CTL_OWN;
    953 
    954 		if (ctl_reg) {
    955 #if defined(SQ_DEBUG)
    956 			uint32_t reg;
    957 
    958 			reg = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
    959 			SQ_DPRINTF(("%s: rxintr: done at %d (ctl %08x)\n",
    960 			    device_xname(sc->sc_dev), i, reg));
    961 #endif
    962 			break;
    963 		}
    964 
    965 		count++;
    966 
    967 		m = sc->sc_rxmbuf[i];
    968 		framelen = m->m_ext.ext_size - 3;
    969 		if (sc->hpc_regs->revision == 3)
    970 		    framelen -=
    971 			HPC3_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc3_hdd_ctl);
    972 		else
    973 		    framelen -=
    974 			HPC1_HDD_CTL_BYTECNT(sc->sc_rxdesc[i].hpc1_hdd_ctl);
    975 
    976 		/* Now sync the actual packet data */
    977 		bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    978 		    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_POSTREAD);
    979 
    980 		pktstat = *((uint8_t *)m->m_data + framelen + 2);
    981 
    982 		if ((pktstat & RXSTAT_GOOD) == 0) {
    983 			if_statinc(ifp, if_ierrors);
    984 
    985 			if (pktstat & RXSTAT_OFLOW)
    986 				printf("%s: receive FIFO overflow\n",
    987 				    device_xname(sc->sc_dev));
    988 
    989 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
    990 			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
    991 			SQ_INIT_RXDESC(sc, i);
    992 			SQ_DPRINTF(("%s: sq_rxintr: buf %d no RXSTAT_GOOD\n",
    993 			    device_xname(sc->sc_dev), i));
    994 			continue;
    995 		}
    996 
    997 		if (sq_add_rxbuf(sc, i) != 0) {
    998 			if_statinc(ifp, if_ierrors);
    999 			bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[i], 0,
   1000 			    sc->sc_rxmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
   1001 			SQ_INIT_RXDESC(sc, i);
   1002 			SQ_DPRINTF(("%s: sq_rxintr: buf %d sq_add_rxbuf() "
   1003 			    "failed\n", device_xname(sc->sc_dev), i));
   1004 			continue;
   1005 		}
   1006 
   1007 
   1008 		m->m_data += 2;
   1009 		m_set_rcvif(m, ifp);
   1010 		m->m_pkthdr.len = m->m_len = framelen;
   1011 
   1012 		SQ_DPRINTF(("%s: sq_rxintr: buf %d len %d\n",
   1013 		    device_xname(sc->sc_dev), i, framelen));
   1014 
   1015 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1016 	}
   1017 
   1018 
   1019 	/* If anything happened, move ring start/end pointers to new spot */
   1020 	if (i != sc->sc_nextrx) {
   1021 		/*
   1022 		 * NB: hpc3_hdd_ctl == hpc1_hdd_bufptr, and
   1023 		 * HPC1_HDD_CTL_EOCHAIN == HPC3_HDD_CTL_EOCHAIN
   1024 		 */
   1025 
   1026 		new_end = SQ_PREVRX(i);
   1027 		sc->sc_rxdesc[new_end].hpc3_hdd_ctl |= HPC3_HDD_CTL_EOCHAIN;
   1028 		SQ_CDRXSYNC(sc, new_end,
   1029 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1030 
   1031 		orig_end = SQ_PREVRX(sc->sc_nextrx);
   1032 		sc->sc_rxdesc[orig_end].hpc3_hdd_ctl &= ~HPC3_HDD_CTL_EOCHAIN;
   1033 		SQ_CDRXSYNC(sc, orig_end,
   1034 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1035 
   1036 		sc->sc_nextrx = i;
   1037 	}
   1038 
   1039 	status = sq_hpc_read(sc, sc->hpc_regs->enetr_ctl);
   1040 
   1041 	/* If receive channel is stopped, restart it... */
   1042 	if ((status & sc->hpc_regs->enetr_ctl_active) == 0) {
   1043 		/* Pass the start of the receive ring to the HPC */
   1044 		sq_hpc_write(sc, sc->hpc_regs->enetr_ndbp,
   1045 		    SQ_CDRXADDR(sc, sc->sc_nextrx));
   1046 
   1047 		/* And turn on the HPC ethernet receive channel */
   1048 		sq_hpc_write(sc, sc->hpc_regs->enetr_ctl,
   1049 		    sc->hpc_regs->enetr_ctl_active);
   1050 	}
   1051 
   1052 	return count;
   1053 }
   1054 
   1055 static int
   1056 sq_txintr(struct sq_softc *sc)
   1057 {
   1058 	int shift = 0;
   1059 	uint32_t status, tmp;
   1060 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1061 
   1062 	if (sc->hpc_regs->revision != 3)
   1063 		shift = 16;
   1064 
   1065 	status = sq_hpc_read(sc, sc->hpc_regs->enetx_ctl) >> shift;
   1066 
   1067 	SQ_TRACE(SQ_TXINTR_ENTER, sc, sc->sc_prevtx, status);
   1068 
   1069 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1070 	tmp = (sc->hpc_regs->enetx_ctl_active >> shift) | TXSTAT_GOOD;
   1071 	if ((status & tmp) == 0) {
   1072 		if (status & TXSTAT_COLL)
   1073 			if_statinc_ref(ifp, nsr, if_collisions);
   1074 
   1075 		if (status & TXSTAT_UFLOW) {
   1076 			printf("%s: transmit underflow\n",
   1077 			    device_xname(sc->sc_dev));
   1078 			if_statinc_ref(ifp, nsr, if_oerrors);
   1079 		}
   1080 
   1081 		if (status & TXSTAT_16COLL) {
   1082 			printf("%s: max collisions reached\n",
   1083 			    device_xname(sc->sc_dev));
   1084 			if_statinc_ref(ifp, nsr, if_oerrors);
   1085 			if_statadd_ref(ifp, nsr, if_collisions, 16);
   1086 		}
   1087 	}
   1088 	IF_STAT_PUTREF(ifp);
   1089 
   1090 	/* prevtx now points to next xmit packet not yet finished */
   1091 	if (sc->hpc_regs->revision == 3)
   1092 		sq_txring_hpc3(sc);
   1093 	else
   1094 		sq_txring_hpc1(sc);
   1095 
   1096 	/* If all packets have left the coop, cancel watchdog */
   1097 	if (sc->sc_nfreetx == SQ_NTXDESC)
   1098 		ifp->if_timer = 0;
   1099 
   1100 	SQ_TRACE(SQ_TXINTR_EXIT, sc, sc->sc_prevtx, status);
   1101 	if_schedule_deferred_start(ifp);
   1102 
   1103 	return 1;
   1104 }
   1105 
   1106 /*
   1107  * Reclaim used transmit descriptors and restart the transmit DMA
   1108  * engine if necessary.
   1109  */
   1110 static void
   1111 sq_txring_hpc1(struct sq_softc *sc)
   1112 {
   1113 	/*
   1114 	 * HPC1 doesn't tag transmitted descriptors, however,
   1115 	 * the NDBP register points to the next descriptor that
   1116 	 * has not yet been processed. If DMA is not in progress,
   1117 	 * we can safely reclaim all descriptors up to NDBP, and,
   1118 	 * if necessary, restart DMA at NDBP. Otherwise, if DMA
   1119 	 * is active, we can only safely reclaim up to CBP.
   1120 	 *
   1121 	 * For now, we'll only reclaim on inactive DMA and assume
   1122 	 * that a sufficiently large ring keeps us out of trouble.
   1123 	 */
   1124 	uint32_t reclaimto, status;
   1125 	int reclaimall, i = sc->sc_prevtx;
   1126 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1127 
   1128 	status = sq_hpc_read(sc, HPC1_ENETX_CTL);
   1129 	if (status & HPC1_ENETX_CTL_ACTIVE) {
   1130 		SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1131 		return;
   1132 	} else
   1133 		reclaimto = sq_hpc_read(sc, HPC1_ENETX_NDBP);
   1134 
   1135 	if (sc->sc_nfreetx == 0 && SQ_CDTXADDR(sc, i) == reclaimto)
   1136 		reclaimall = 1;
   1137 	else
   1138 		reclaimall = 0;
   1139 
   1140 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1141 		if (SQ_CDTXADDR(sc, i) == reclaimto && !reclaimall)
   1142 			break;
   1143 
   1144 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1145 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1146 
   1147 		/* Sync the packet data, unload DMA map, free mbuf */
   1148 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
   1149 		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1150 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1151 		m_freem(sc->sc_txmbuf[i]);
   1152 		sc->sc_txmbuf[i] = NULL;
   1153 
   1154 		if_statinc(ifp, if_opackets);
   1155 		sc->sc_nfreetx++;
   1156 
   1157 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1158 
   1159 		i = SQ_NEXTTX(i);
   1160 	}
   1161 
   1162 	if (sc->sc_nfreetx < SQ_NTXDESC) {
   1163 		SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1164 
   1165 		KASSERT(reclaimto == SQ_CDTXADDR(sc, i));
   1166 
   1167 		sq_hpc_write(sc, HPC1_ENETX_CFXBP, reclaimto);
   1168 		sq_hpc_write(sc, HPC1_ENETX_CBP, reclaimto);
   1169 
   1170 		/* Kick DMA channel into life */
   1171 		sq_hpc_write(sc, HPC1_ENETX_CTL, HPC1_ENETX_CTL_ACTIVE);
   1172 
   1173 		/*
   1174 		 * Set a watchdog timer in case the chip
   1175 		 * flakes out.
   1176 		 */
   1177 		ifp->if_timer = 5;
   1178 	}
   1179 
   1180 	sc->sc_prevtx = i;
   1181 }
   1182 
   1183 /*
   1184  * Reclaim used transmit descriptors and restart the transmit DMA
   1185  * engine if necessary.
   1186  */
   1187 static void
   1188 sq_txring_hpc3(struct sq_softc *sc)
   1189 {
   1190 	/*
   1191 	 * HPC3 tags descriptors with a bit once they've been
   1192 	 * transmitted. We need only free each XMITDONE'd
   1193 	 * descriptor, and restart the DMA engine if any
   1194 	 * descriptors are left over.
   1195 	 */
   1196 	int i;
   1197 	uint32_t status = 0;
   1198 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1199 
   1200 	i = sc->sc_prevtx;
   1201 	while (sc->sc_nfreetx < SQ_NTXDESC) {
   1202 		/*
   1203 		 * Check status first so we don't end up with a case of
   1204 		 * the buffer not being finished while the DMA channel
   1205 		 * has gone idle.
   1206 		 */
   1207 		status = sq_hpc_read(sc, HPC3_ENETX_CTL);
   1208 
   1209 		SQ_CDTXSYNC(sc, i, sc->sc_txmap[i]->dm_nsegs,
   1210 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1211 
   1212 		/* Check for used descriptor and restart DMA chain if needed */
   1213 		if ((sc->sc_txdesc[i].hpc3_hdd_ctl &
   1214 		    HPC3_HDD_CTL_XMITDONE) == 0) {
   1215 			if ((status & HPC3_ENETX_CTL_ACTIVE) == 0) {
   1216 				SQ_TRACE(SQ_RESTART_DMA, sc, i, status);
   1217 
   1218 				sq_hpc_write(sc, HPC3_ENETX_NDBP,
   1219 				    SQ_CDTXADDR(sc, i));
   1220 
   1221 				/* Kick DMA channel into life */
   1222 				sq_hpc_write(sc, HPC3_ENETX_CTL,
   1223 				    HPC3_ENETX_CTL_ACTIVE);
   1224 
   1225 				/*
   1226 				 * Set a watchdog timer in case the chip
   1227 				 * flakes out.
   1228 				 */
   1229 				ifp->if_timer = 5;
   1230 			} else
   1231 				SQ_TRACE(SQ_TXINTR_BUSY, sc, i, status);
   1232 			break;
   1233 		}
   1234 
   1235 		/* Sync the packet data, unload DMA map, free mbuf */
   1236 		bus_dmamap_sync(sc->sc_dmat, sc->sc_txmap[i],
   1237 		    0, sc->sc_txmap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1238 		bus_dmamap_unload(sc->sc_dmat, sc->sc_txmap[i]);
   1239 		m_freem(sc->sc_txmbuf[i]);
   1240 		sc->sc_txmbuf[i] = NULL;
   1241 
   1242 		if_statinc(ifp, if_opackets);
   1243 		sc->sc_nfreetx++;
   1244 
   1245 		SQ_TRACE(SQ_DONE_DMA, sc, i, status);
   1246 		i = SQ_NEXTTX(i);
   1247 	}
   1248 
   1249 	sc->sc_prevtx = i;
   1250 }
   1251 
   1252 void
   1253 sq_reset(struct sq_softc *sc)
   1254 {
   1255 
   1256 	/* Stop HPC dma channels */
   1257 	sq_hpc_write(sc, sc->hpc_regs->enetr_ctl, 0);
   1258 	sq_hpc_write(sc, sc->hpc_regs->enetx_ctl, 0);
   1259 
   1260 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 3);
   1261 	delay(20);
   1262 	sq_hpc_write(sc, sc->hpc_regs->enetr_reset, 0);
   1263 }
   1264 
   1265 /* sq_add_rxbuf: Add a receive buffer to the indicated descriptor. */
   1266 int
   1267 sq_add_rxbuf(struct sq_softc *sc, int idx)
   1268 {
   1269 	int err;
   1270 	struct mbuf *m;
   1271 
   1272 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1273 	if (m == NULL)
   1274 		return ENOBUFS;
   1275 
   1276 	MCLGET(m, M_DONTWAIT);
   1277 	if ((m->m_flags & M_EXT) == 0) {
   1278 		m_freem(m);
   1279 		return ENOBUFS;
   1280 	}
   1281 
   1282 	if (sc->sc_rxmbuf[idx] != NULL)
   1283 		bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmap[idx]);
   1284 
   1285 	sc->sc_rxmbuf[idx] = m;
   1286 
   1287 	if ((err = bus_dmamap_load(sc->sc_dmat, sc->sc_rxmap[idx],
   1288 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT)) != 0) {
   1289 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1290 		    device_xname(sc->sc_dev), idx, err);
   1291 		panic("sq_add_rxbuf");	/* XXX */
   1292 	}
   1293 
   1294 	bus_dmamap_sync(sc->sc_dmat, sc->sc_rxmap[idx],
   1295 	    0, sc->sc_rxmap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD);
   1296 
   1297 	SQ_INIT_RXDESC(sc, idx);
   1298 
   1299 	return 0;
   1300 }
   1301 
   1302 void
   1303 sq_dump_buffer(paddr_t addr, psize_t len)
   1304 {
   1305 	u_int i;
   1306 	uint8_t *physaddr = (uint8_t *)MIPS_PHYS_TO_KSEG1(addr);
   1307 
   1308 	if (len == 0)
   1309 		return;
   1310 
   1311 	printf("%p: ", physaddr);
   1312 
   1313 	for (i = 0; i < len; i++) {
   1314 		printf("%02x ", *(physaddr + i) & 0xff);
   1315 		if ((i % 16) == 15 && i != len - 1)
   1316 		    printf("\n%p: ", physaddr + i);
   1317 	}
   1318 
   1319 	printf("\n");
   1320 }
   1321