Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.19
      1  1.19      uch /*	$NetBSD: pmap.h,v 1.19 2002/03/03 14:31:24 uch Exp $	*/
      2   1.1   itojun 
      3   1.1   itojun /*
      4   1.2   tsubai  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1   itojun  * All rights reserved.
      6   1.1   itojun  *
      7   1.1   itojun  * Redistribution and use in source and binary forms, with or without
      8   1.1   itojun  * modification, are permitted provided that the following conditions
      9   1.1   itojun  * are met:
     10   1.1   itojun  * 1. Redistributions of source code must retain the above copyright
     11   1.1   itojun  *    notice, this list of conditions and the following disclaimer.
     12   1.1   itojun  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1   itojun  *    notice, this list of conditions and the following disclaimer in the
     14   1.1   itojun  *    documentation and/or other materials provided with the distribution.
     15   1.1   itojun  * 3. All advertising materials mentioning features or use of this software
     16   1.2   tsubai  *    must display the following acknowledgment:
     17   1.2   tsubai  *      This product includes software developed by Charles D. Cranor and
     18   1.2   tsubai  *      Washington University.
     19   1.2   tsubai  * 4. The name of the author may not be used to endorse or promote products
     20   1.2   tsubai  *    derived from this software without specific prior written permission.
     21   1.2   tsubai  *
     22   1.2   tsubai  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23   1.2   tsubai  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24   1.2   tsubai  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25   1.2   tsubai  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26   1.2   tsubai  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27   1.2   tsubai  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28   1.2   tsubai  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29   1.2   tsubai  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30   1.2   tsubai  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31   1.2   tsubai  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32   1.1   itojun  */
     33   1.1   itojun 
     34   1.1   itojun /*
     35   1.2   tsubai  * pmap.h: see pmap.c for the history of this pmap module.
     36   1.2   tsubai  */
     37   1.2   tsubai 
     38   1.2   tsubai #ifndef _SH3_PMAP_H_
     39   1.2   tsubai #define _SH3_PMAP_H_
     40   1.2   tsubai 
     41  1.15      uch #include <sh3/cache.h>
     42  1.19      uch #include <sh3/psl.h>
     43  1.19      uch #include <sh3/pte.h>
     44   1.2   tsubai #include <uvm/uvm_object.h>
     45   1.2   tsubai 
     46   1.2   tsubai /*
     47   1.2   tsubai  * see pte.h for a description of i386 MMU terminology and hardware
     48   1.2   tsubai  * interface.
     49   1.2   tsubai  *
     50   1.2   tsubai  * a pmap describes a processes' 4GB virtual address space.  this
     51   1.2   tsubai  * virtual address space can be broken up into 1024 4MB regions which
     52   1.2   tsubai  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     53   1.2   tsubai  *
     54   1.2   tsubai  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     55   1.2   tsubai  * (the following assumes that KERNBASE is 0xf0000000)
     56   1.2   tsubai  *
     57   1.2   tsubai  * PDE#s	VA range		usage
     58   1.2   tsubai  * 0->959	0x0 -> 0xefc00000	user address space, note that the
     59   1.2   tsubai  *					max user address is 0xefbfe000
     60   1.2   tsubai  *					the final two pages in the last 4MB
     61   1.2   tsubai  *					used to be reserved for the UAREA
     62   1.2   tsubai  *					but now are no longer used
     63   1.2   tsubai  * 959		0xefc00000->		recursive mapping of PDP (used for
     64   1.2   tsubai  *			0xf0000000	linear mapping of PTPs)
     65   1.2   tsubai  * 960->1023	0xf0000000->		kernel address space (constant
     66   1.2   tsubai  *			0xffc00000	across all pmap's/processes)
     67   1.2   tsubai  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     68   1.2   tsubai  *			<end>		(for other pmaps)
     69   1.2   tsubai  *
     70   1.2   tsubai  *
     71   1.2   tsubai  * note: a recursive PDP mapping provides a way to map all the PTEs for
     72   1.2   tsubai  * a 4GB address space into a linear chunk of virtual memory.  in other
     73   1.2   tsubai  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     74   1.2   tsubai  * area.  the PTE for page 1 is the second int.  the very last int in the
     75   1.2   tsubai  * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
     76   1.2   tsubai  * address).
     77   1.2   tsubai  *
     78   1.2   tsubai  * all pmap's PD's must have the same values in slots 960->1023 so that
     79   1.2   tsubai  * the kernel is always mapped in every process.  these values are loaded
     80   1.2   tsubai  * into the PD at pmap creation time.
     81   1.1   itojun  *
     82   1.2   tsubai  * at any one time only one pmap can be active on a processor.  this is
     83   1.2   tsubai  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     84   1.2   tsubai  * will have all its PTEs mapped into memory at the recursive mapping
     85   1.2   tsubai  * point (slot #959 as show above).  when the pmap code wants to find the
     86   1.2   tsubai  * PTE for a virtual address, all it has to do is the following:
     87   1.2   tsubai  *
     88   1.2   tsubai  * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
     89   1.2   tsubai  *                = 0xefc00000 + (VA / 4096) * 4
     90   1.2   tsubai  *
     91   1.2   tsubai  * what happens if the pmap layer is asked to perform an operation
     92   1.2   tsubai  * on a pmap that is not the one which is currently active?  in that
     93   1.2   tsubai  * case we take the PA of the PDP of non-active pmap and put it in
     94   1.2   tsubai  * slot 1023 of the active pmap.  this causes the non-active pmap's
     95   1.2   tsubai  * PTEs to get mapped in the final 4MB of the 4GB address space
     96   1.2   tsubai  * (e.g. starting at 0xffc00000).
     97   1.2   tsubai  *
     98   1.2   tsubai  * the following figure shows the effects of the recursive PDP mapping:
     99   1.2   tsubai  *
    100   1.2   tsubai  *   PDP (%cr3)
    101   1.2   tsubai  *   +----+
    102   1.2   tsubai  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    103   1.2   tsubai  *   |    |
    104   1.2   tsubai  *   |    |
    105   1.2   tsubai  *   | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
    106   1.2   tsubai  *   | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
    107   1.2   tsubai  *   |    |
    108   1.2   tsubai  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    109   1.2   tsubai  *   +----+
    110   1.2   tsubai  *
    111   1.2   tsubai  * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
    112   1.2   tsubai  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    113   1.2   tsubai  *
    114   1.2   tsubai  * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
    115   1.2   tsubai  * PTP:
    116   1.2   tsubai  *
    117   1.2   tsubai  * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
    118   1.2   tsubai  *   +----+
    119   1.2   tsubai  *   |   0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
    120   1.2   tsubai  *   |    |
    121   1.2   tsubai  *   |    |
    122   1.2   tsubai  *   | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
    123   1.2   tsubai  *   | 960| -> maps contents of first kernel PTP
    124   1.2   tsubai  *   |    |
    125   1.2   tsubai  *   |1023|
    126   1.2   tsubai  *   +----+
    127   1.2   tsubai  *
    128   1.2   tsubai  * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
    129   1.2   tsubai  * defined as "PDP_BASE".... within that mapping there are two
    130   1.2   tsubai  * defines:
    131   1.2   tsubai  *   "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
    132   1.2   tsubai  *      which points back to itself.
    133   1.2   tsubai  *   "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
    134   1.2   tsubai  *      establishes the recursive mapping of the alternate pmap.
    135   1.2   tsubai  *      to set the alternate PDP, one just has to put the correct
    136   1.2   tsubai  *	PA info in *APDP_PDE.
    137   1.2   tsubai  *
    138   1.2   tsubai  * note that in the APTE_BASE space, the APDP appears at VA
    139   1.2   tsubai  * "APDP_BASE" (0xfffff000).
    140   1.2   tsubai  */
    141   1.2   tsubai 
    142   1.2   tsubai /*
    143   1.2   tsubai  * the following defines identify the slots used as described above.
    144   1.1   itojun  */
    145   1.1   itojun 
    146   1.2   tsubai #define PDSLOT_PTE	((u_int)0x33f)	/* PTDPTDI for recursive PDP map */
    147   1.2   tsubai #define PDSLOT_KERN	((u_int)0x340)	/* KPTDI start of kernel space */
    148   1.2   tsubai #define PDSLOT_APTE	((u_int)0x37f)	/* alternative recursive slot */
    149   1.2   tsubai 
    150   1.2   tsubai /*
    151   1.2   tsubai  * the following defines give the virtual addresses of various MMU
    152   1.2   tsubai  * data structures:
    153   1.2   tsubai  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    154   1.2   tsubai  * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
    155   1.2   tsubai  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    156   1.2   tsubai  */
    157   1.2   tsubai 
    158   1.2   tsubai #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    159   1.2   tsubai #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    160   1.2   tsubai #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
    161   1.2   tsubai #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
    162   1.2   tsubai #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    163   1.2   tsubai #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    164   1.1   itojun 
    165   1.2   tsubai /*
    166   1.2   tsubai  * XXXCDC: tmp xlate from old names:
    167   1.2   tsubai  * PTDPTDI -> PDSLOT_PTE
    168   1.2   tsubai  * KPTDI -> PDSLOT_KERN
    169   1.2   tsubai  * APTDPTDI -> PDSLOT_APTE
    170   1.2   tsubai  */
    171   1.1   itojun 
    172   1.2   tsubai /*
    173   1.2   tsubai  * the follow define determines how many PTPs should be set up for the
    174   1.2   tsubai  * kernel by locore.s at boot time.  this should be large enough to
    175   1.2   tsubai  * get the VM system running.  once the VM system is running, the
    176   1.2   tsubai  * pmap module can add more PTPs to the kernel area on demand.
    177   1.2   tsubai  */
    178   1.1   itojun 
    179   1.2   tsubai #ifndef NKPTP
    180   1.2   tsubai #define NKPTP		8	/* 32MB to start */
    181   1.2   tsubai #endif
    182   1.2   tsubai #define NKPTP_MIN	8	/* smallest value we allow */
    183   1.2   tsubai #define NKPTP_MAX	63	/* (1024 - (0xd0000000/NBPD) - 1) */
    184   1.2   tsubai 				/* largest value (-1 for APTP space) */
    185   1.1   itojun 
    186   1.1   itojun /*
    187   1.2   tsubai  * various address macros
    188   1.2   tsubai  *
    189   1.2   tsubai  *  vtopte: return a pointer to the PTE mapping a VA
    190   1.2   tsubai  *  kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
    191   1.2   tsubai  *  ptetov: given a pointer to a PTE, return the VA that it maps
    192   1.2   tsubai  *  vtophys: translate a VA to the PA mapped to it
    193   1.2   tsubai  *
    194   1.2   tsubai  * plus alternative versions of the above
    195   1.1   itojun  */
    196   1.1   itojun 
    197   1.2   tsubai #define vtopte(VA)	(PTE_BASE + sh3_btop(VA))
    198   1.2   tsubai #define kvtopte(VA)	vtopte(VA)
    199   1.2   tsubai #define ptetov(PT)	(sh3_ptob(PT - PTE_BASE))
    200   1.2   tsubai #define avtopte(VA)	(APTE_BASE + sh3_btop(VA))
    201   1.2   tsubai #define ptetoav(PT)	(sh3_ptob(PT - APTE_BASE))
    202   1.2   tsubai #define avtophys(VA)	((*avtopte(VA) & PG_FRAME) | \
    203   1.2   tsubai 			 ((unsigned)(VA) & ~PG_FRAME))
    204   1.2   tsubai 
    205   1.1   itojun /*
    206   1.2   tsubai  * pdei/ptei: generate index into PDP/PTP from a VA
    207   1.1   itojun  */
    208   1.2   tsubai #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    209   1.2   tsubai #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    210   1.2   tsubai 
    211   1.1   itojun /*
    212   1.2   tsubai  * PTP macros:
    213   1.2   tsubai  *   a PTP's index is the PD index of the PDE that points to it
    214   1.2   tsubai  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    215   1.2   tsubai  *   a PTP's VA is the first VA mapped by that PTP
    216   1.2   tsubai  *
    217   1.2   tsubai  * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
    218   1.2   tsubai  *           NBPD == number of bytes a PTP can map (4MB)
    219   1.1   itojun  */
    220   1.1   itojun 
    221   1.2   tsubai #define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
    222   1.2   tsubai #define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
    223   1.2   tsubai #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    224   1.2   tsubai #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    225   1.2   tsubai 
    226   1.1   itojun #ifdef _KERNEL
    227   1.1   itojun /*
    228   1.2   tsubai  * pmap data structures: see pmap.c for details of locking.
    229   1.1   itojun  */
    230   1.1   itojun 
    231   1.2   tsubai struct pmap;
    232   1.2   tsubai typedef struct pmap *pmap_t;
    233   1.1   itojun 
    234   1.1   itojun /*
    235   1.2   tsubai  * we maintain a list of all non-kernel pmaps
    236   1.1   itojun  */
    237   1.2   tsubai 
    238   1.2   tsubai LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    239   1.1   itojun 
    240   1.1   itojun /*
    241   1.2   tsubai  * the pmap structure
    242   1.2   tsubai  *
    243   1.2   tsubai  * note that the pm_obj contains the simple_lock, the reference count,
    244   1.2   tsubai  * page list, and number of PTPs within the pmap.
    245   1.1   itojun  */
    246   1.2   tsubai 
    247   1.2   tsubai struct pmap {
    248   1.2   tsubai 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    249   1.2   tsubai #define	pm_lock	pm_obj.vmobjlock
    250   1.2   tsubai 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    251   1.2   tsubai 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    252   1.2   tsubai 	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    253   1.2   tsubai 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    254   1.2   tsubai 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    255   1.2   tsubai 
    256   1.2   tsubai 	int pm_flags;			/* see below */
    257   1.2   tsubai };
    258   1.2   tsubai 
    259   1.2   tsubai /* pm_flags */
    260   1.2   tsubai #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    261   1.1   itojun 
    262   1.1   itojun /*
    263   1.2   tsubai  * for each managed physical page we maintain a list of <PMAP,VA>'s
    264   1.2   tsubai  * which it is mapped at.  the list is headed by a pv_head structure.
    265   1.2   tsubai  * there is one pv_head per managed phys page (allocated at boot time).
    266   1.2   tsubai  * the pv_head structure points to a list of pv_entry structures (each
    267   1.2   tsubai  * describes one mapping).
    268   1.1   itojun  */
    269   1.2   tsubai 
    270   1.2   tsubai struct pv_entry;
    271   1.2   tsubai 
    272   1.2   tsubai struct pv_head {
    273  1.13      chs 	struct simplelock pvh_lock;	/* locks every pv on this list */
    274   1.2   tsubai 	struct pv_entry *pvh_list;	/* head of list (locked by pvh_lock) */
    275   1.2   tsubai };
    276   1.2   tsubai 
    277   1.7  thorpej /* These are kept in the vm_physseg array. */
    278   1.7  thorpej #define	PGA_REFERENCED	0x01		/* page is referenced */
    279   1.7  thorpej #define	PGA_MODIFIED	0x02		/* page is modified */
    280   1.7  thorpej 
    281   1.2   tsubai struct pv_entry {			/* locked by its list's pvh_lock */
    282   1.2   tsubai 	struct pv_entry *pv_next;	/* next entry */
    283   1.2   tsubai 	struct pmap *pv_pmap;		/* the pmap */
    284   1.2   tsubai 	vaddr_t pv_va;			/* the virtual address */
    285   1.2   tsubai 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    286   1.1   itojun };
    287   1.1   itojun 
    288   1.2   tsubai /*
    289   1.2   tsubai  * pv_entrys are dynamically allocated in chunks from a single page.
    290   1.2   tsubai  * we keep track of how many pv_entrys are in use for each page and
    291   1.2   tsubai  * we can free pv_entry pages if needed.  there is one lock for the
    292   1.2   tsubai  * entire allocation system.
    293   1.2   tsubai  */
    294   1.1   itojun 
    295   1.1   itojun struct pv_page_info {
    296   1.2   tsubai 	TAILQ_ENTRY(pv_page) pvpi_list;
    297   1.2   tsubai 	struct pv_entry *pvpi_pvfree;
    298   1.2   tsubai 	int pvpi_nfree;
    299   1.1   itojun };
    300   1.1   itojun 
    301   1.1   itojun /*
    302   1.2   tsubai  * number of pv_entry's in a pv_page
    303   1.2   tsubai  * (note: won't work on systems where NPBG isn't a constant)
    304   1.2   tsubai  */
    305   1.2   tsubai 
    306   1.2   tsubai #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    307   1.2   tsubai 			sizeof(struct pv_entry))
    308   1.2   tsubai 
    309   1.2   tsubai /*
    310   1.2   tsubai  * a pv_page: where pv_entrys are allocated from
    311   1.1   itojun  */
    312   1.1   itojun 
    313   1.1   itojun struct pv_page {
    314   1.2   tsubai 	struct pv_page_info pvinfo;
    315   1.2   tsubai 	struct pv_entry pvents[PVE_PER_PVPAGE];
    316   1.2   tsubai };
    317   1.2   tsubai 
    318   1.2   tsubai /*
    319   1.2   tsubai  * pmap_remove_record: a record of VAs that have been unmapped, used to
    320   1.2   tsubai  * flush TLB.  if we have more than PMAP_RR_MAX then we stop recording.
    321   1.2   tsubai  */
    322   1.2   tsubai 
    323   1.2   tsubai #define PMAP_RR_MAX	16	/* max of 16 pages (64K) */
    324   1.2   tsubai 
    325   1.2   tsubai struct pmap_remove_record {
    326   1.2   tsubai 	int prr_npages;
    327   1.2   tsubai 	vaddr_t prr_vas[PMAP_RR_MAX];
    328   1.2   tsubai };
    329   1.2   tsubai 
    330   1.2   tsubai /*
    331   1.2   tsubai  * pmap_transfer_location: used to pass the current location in the
    332   1.2   tsubai  * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
    333   1.2   tsubai  * a pmap_copy].
    334   1.2   tsubai  */
    335   1.2   tsubai 
    336   1.2   tsubai struct pmap_transfer_location {
    337   1.2   tsubai 	vaddr_t addr;			/* the address (page-aligned) */
    338   1.2   tsubai 	pt_entry_t *pte;		/* the PTE that maps address */
    339   1.2   tsubai 	struct vm_page *ptp;		/* the PTP that the PTE lives in */
    340   1.1   itojun };
    341   1.1   itojun 
    342   1.2   tsubai /*
    343   1.2   tsubai  * global kernel variables
    344   1.2   tsubai  */
    345   1.2   tsubai 
    346   1.2   tsubai /* PTDpaddr: is the physical address of the kernel's PDP */
    347   1.2   tsubai extern u_long PTDpaddr;
    348   1.2   tsubai 
    349   1.2   tsubai extern struct pmap kernel_pmap_store;	/* kernel pmap */
    350   1.2   tsubai extern int nkpde;			/* current # of PDEs for kernel */
    351   1.2   tsubai extern int pmap_pg_g;			/* do we support PG_G? */
    352   1.2   tsubai 
    353   1.2   tsubai /*
    354   1.2   tsubai  * macros
    355   1.2   tsubai  */
    356   1.1   itojun 
    357   1.1   itojun #define	pmap_kernel()			(&kernel_pmap_store)
    358   1.1   itojun #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    359   1.6       is #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    360  1.14    chris #define	pmap_update(pmap)		/* nothing (yet) */
    361   1.1   itojun 
    362   1.7  thorpej #define	pmap_is_referenced(pg)		pmap_test_attrs(pg, PGA_REFERENCED)
    363   1.7  thorpej #define	pmap_is_modified(pg)		pmap_test_attrs(pg, PGA_MODIFIED)
    364   1.7  thorpej 
    365   1.2   tsubai #define pmap_copy(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, FALSE)
    366   1.2   tsubai #define pmap_move(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, TRUE)
    367   1.2   tsubai #define pmap_phys_address(ppn)		sh3_ptob(ppn)
    368   1.2   tsubai #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    369   1.2   tsubai 
    370   1.2   tsubai 
    371   1.2   tsubai /*
    372   1.2   tsubai  * prototypes
    373   1.2   tsubai  */
    374   1.1   itojun 
    375  1.16      uch void		pmap_activate(struct proc *);
    376  1.16      uch void		pmap_bootstrap(vaddr_t);
    377  1.16      uch boolean_t	pmap_change_attrs(struct vm_page *, int, int);
    378  1.16      uch void		pmap_deactivate(struct proc *);
    379  1.16      uch void		pmap_page_remove (struct vm_page *);
    380  1.17      uch void		pmap_protect(struct pmap *, vaddr_t,
    381  1.16      uch 				vaddr_t, vm_prot_t);
    382  1.16      uch void		pmap_remove(struct pmap *, vaddr_t, vaddr_t);
    383  1.16      uch boolean_t	pmap_test_attrs(struct vm_page *, int);
    384  1.16      uch void		pmap_transfer(struct pmap *, struct pmap *, vaddr_t,
    385  1.16      uch 				   vsize_t, vaddr_t, boolean_t);
    386  1.17      uch void		pmap_update_pg(vaddr_t);
    387  1.17      uch void		pmap_update_2pg(vaddr_t,vaddr_t);
    388  1.16      uch void		pmap_write_protect(struct pmap *, vaddr_t,
    389  1.16      uch 				vaddr_t, vm_prot_t);
    390   1.2   tsubai 
    391  1.16      uch vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
    392   1.2   tsubai 
    393   1.2   tsubai #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    394   1.5   tsubai 
    395   1.5   tsubai /*
    396   1.5   tsubai  * Alternate mapping hooks for pool pages.  Avoids thrashing the TLB.
    397   1.5   tsubai  */
    398   1.8  msaitoh /*
    399   1.8  msaitoh  * XXX Indeed, first, we should refine physical address v.s. virtual
    400   1.8  msaitoh  *	address mapping.
    401   1.8  msaitoh  * See
    402   1.8  msaitoh  *	uvm_km.c:uvm_km_free_poolpage1,
    403   1.8  msaitoh  *	vm_page.h:PHYS_TO_VM_PAGE, vm_physseg_find
    404   1.8  msaitoh  *	machdep.c:pmap_bootstrap (uvm_page_physload, etc)
    405   1.8  msaitoh  */
    406  1.18      uch /* XXX broken */
    407   1.8  msaitoh #define PMAP_MAP_POOLPAGE(pa)	(pa)
    408   1.8  msaitoh #define PMAP_UNMAP_POOLPAGE(va)	(va)
    409   1.2   tsubai 
    410  1.16      uch vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
    411  1.16      uch paddr_t vtophys(vaddr_t);
    412  1.16      uch void pmap_emulate_reference(struct proc *, vaddr_t, int, int);
    413   1.2   tsubai 
    414   1.1   itojun #endif /* _KERNEL */
    415   1.1   itojun #endif /* _SH3_PMAP_H_ */
    416