pmap.h revision 1.11 1 /* $NetBSD: pmap.h,v 1.11 2001/04/22 17:37:55 uch Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgment:
17 * This product includes software developed by Charles D. Cranor and
18 * Washington University.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * pmap.h: see pmap.c for the history of this pmap module.
36 */
37
38 #ifndef _SH3_PMAP_H_
39 #define _SH3_PMAP_H_
40
41 #include <machine/cpufunc.h>
42 #include <machine/pte.h>
43 #include <uvm/uvm_object.h>
44
45 /*
46 * see pte.h for a description of i386 MMU terminology and hardware
47 * interface.
48 *
49 * a pmap describes a processes' 4GB virtual address space. this
50 * virtual address space can be broken up into 1024 4MB regions which
51 * are described by PDEs in the PDP. the PDEs are defined as follows:
52 *
53 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
54 * (the following assumes that KERNBASE is 0xf0000000)
55 *
56 * PDE#s VA range usage
57 * 0->959 0x0 -> 0xefc00000 user address space, note that the
58 * max user address is 0xefbfe000
59 * the final two pages in the last 4MB
60 * used to be reserved for the UAREA
61 * but now are no longer used
62 * 959 0xefc00000-> recursive mapping of PDP (used for
63 * 0xf0000000 linear mapping of PTPs)
64 * 960->1023 0xf0000000-> kernel address space (constant
65 * 0xffc00000 across all pmap's/processes)
66 * 1023 0xffc00000-> "alternate" recursive PDP mapping
67 * <end> (for other pmaps)
68 *
69 *
70 * note: a recursive PDP mapping provides a way to map all the PTEs for
71 * a 4GB address space into a linear chunk of virtual memory. in other
72 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
73 * area. the PTE for page 1 is the second int. the very last int in the
74 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
75 * address).
76 *
77 * all pmap's PD's must have the same values in slots 960->1023 so that
78 * the kernel is always mapped in every process. these values are loaded
79 * into the PD at pmap creation time.
80 *
81 * at any one time only one pmap can be active on a processor. this is
82 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
83 * will have all its PTEs mapped into memory at the recursive mapping
84 * point (slot #959 as show above). when the pmap code wants to find the
85 * PTE for a virtual address, all it has to do is the following:
86 *
87 * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
88 * = 0xefc00000 + (VA / 4096) * 4
89 *
90 * what happens if the pmap layer is asked to perform an operation
91 * on a pmap that is not the one which is currently active? in that
92 * case we take the PA of the PDP of non-active pmap and put it in
93 * slot 1023 of the active pmap. this causes the non-active pmap's
94 * PTEs to get mapped in the final 4MB of the 4GB address space
95 * (e.g. starting at 0xffc00000).
96 *
97 * the following figure shows the effects of the recursive PDP mapping:
98 *
99 * PDP (%cr3)
100 * +----+
101 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
102 * | |
103 * | |
104 * | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
105 * | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
106 * | |
107 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
108 * +----+
109 *
110 * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
111 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
112 *
113 * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
114 * PTP:
115 *
116 * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
117 * +----+
118 * | 0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
119 * | |
120 * | |
121 * | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
122 * | 960| -> maps contents of first kernel PTP
123 * | |
124 * |1023|
125 * +----+
126 *
127 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
128 * defined as "PDP_BASE".... within that mapping there are two
129 * defines:
130 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
131 * which points back to itself.
132 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
133 * establishes the recursive mapping of the alternate pmap.
134 * to set the alternate PDP, one just has to put the correct
135 * PA info in *APDP_PDE.
136 *
137 * note that in the APTE_BASE space, the APDP appears at VA
138 * "APDP_BASE" (0xfffff000).
139 */
140
141 /*
142 * the following defines identify the slots used as described above.
143 */
144
145 #define PDSLOT_PTE ((u_int)0x33f) /* PTDPTDI for recursive PDP map */
146 #define PDSLOT_KERN ((u_int)0x340) /* KPTDI start of kernel space */
147 #define PDSLOT_APTE ((u_int)0x37f) /* alternative recursive slot */
148
149 /*
150 * the following defines give the virtual addresses of various MMU
151 * data structures:
152 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
153 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
154 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
155 */
156
157 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
158 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
159 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
160 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
161 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
162 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
163
164 /*
165 * XXXCDC: tmp xlate from old names:
166 * PTDPTDI -> PDSLOT_PTE
167 * KPTDI -> PDSLOT_KERN
168 * APTDPTDI -> PDSLOT_APTE
169 */
170
171 /*
172 * the follow define determines how many PTPs should be set up for the
173 * kernel by locore.s at boot time. this should be large enough to
174 * get the VM system running. once the VM system is running, the
175 * pmap module can add more PTPs to the kernel area on demand.
176 */
177
178 #ifndef NKPTP
179 #define NKPTP 8 /* 32MB to start */
180 #endif
181 #define NKPTP_MIN 8 /* smallest value we allow */
182 #define NKPTP_MAX 63 /* (1024 - (0xd0000000/NBPD) - 1) */
183 /* largest value (-1 for APTP space) */
184
185 /*
186 * various address macros
187 *
188 * vtopte: return a pointer to the PTE mapping a VA
189 * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
190 * ptetov: given a pointer to a PTE, return the VA that it maps
191 * vtophys: translate a VA to the PA mapped to it
192 *
193 * plus alternative versions of the above
194 */
195
196 #define vtopte(VA) (PTE_BASE + sh3_btop(VA))
197 #define kvtopte(VA) vtopte(VA)
198 #define ptetov(PT) (sh3_ptob(PT - PTE_BASE))
199 #define avtopte(VA) (APTE_BASE + sh3_btop(VA))
200 #define ptetoav(PT) (sh3_ptob(PT - APTE_BASE))
201 #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
202 ((unsigned)(VA) & ~PG_FRAME))
203
204 /*
205 * pdei/ptei: generate index into PDP/PTP from a VA
206 */
207 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
208 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
209
210 /*
211 * PTP macros:
212 * a PTP's index is the PD index of the PDE that points to it
213 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
214 * a PTP's VA is the first VA mapped by that PTP
215 *
216 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
217 * NBPD == number of bytes a PTP can map (4MB)
218 */
219
220 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
221 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
222 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
223 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
224
225 /*
226 * PG_AVAIL usage: we make use of the ignored bits of the PTE
227 */
228
229 #define PG_PVLIST PG_AVAIL1 /* mapping has entry on pvlist */
230
231 #ifdef _KERNEL
232 /*
233 * pmap data structures: see pmap.c for details of locking.
234 */
235
236 struct pmap;
237 typedef struct pmap *pmap_t;
238
239 /*
240 * we maintain a list of all non-kernel pmaps
241 */
242
243 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
244
245 /*
246 * the pmap structure
247 *
248 * note that the pm_obj contains the simple_lock, the reference count,
249 * page list, and number of PTPs within the pmap.
250 */
251
252 struct pmap {
253 struct uvm_object pm_obj; /* object (lck by object lock) */
254 #define pm_lock pm_obj.vmobjlock
255 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
256 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
257 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
258 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
259 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
260
261 int pm_flags; /* see below */
262 };
263
264 /* pm_flags */
265 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
266
267 /*
268 * for each managed physical page we maintain a list of <PMAP,VA>'s
269 * which it is mapped at. the list is headed by a pv_head structure.
270 * there is one pv_head per managed phys page (allocated at boot time).
271 * the pv_head structure points to a list of pv_entry structures (each
272 * describes one mapping).
273 */
274
275 struct pv_entry;
276
277 struct pv_head {
278 simple_lock_data_t pvh_lock; /* locks every pv on this list */
279 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
280 };
281
282 /* These are kept in the vm_physseg array. */
283 #define PGA_REFERENCED 0x01 /* page is referenced */
284 #define PGA_MODIFIED 0x02 /* page is modified */
285
286 struct pv_entry { /* locked by its list's pvh_lock */
287 struct pv_entry *pv_next; /* next entry */
288 struct pmap *pv_pmap; /* the pmap */
289 vaddr_t pv_va; /* the virtual address */
290 struct vm_page *pv_ptp; /* the vm_page of the PTP */
291 };
292
293 /*
294 * pv_entrys are dynamically allocated in chunks from a single page.
295 * we keep track of how many pv_entrys are in use for each page and
296 * we can free pv_entry pages if needed. there is one lock for the
297 * entire allocation system.
298 */
299
300 struct pv_page_info {
301 TAILQ_ENTRY(pv_page) pvpi_list;
302 struct pv_entry *pvpi_pvfree;
303 int pvpi_nfree;
304 };
305
306 /*
307 * number of pv_entry's in a pv_page
308 * (note: won't work on systems where NPBG isn't a constant)
309 */
310
311 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
312 sizeof(struct pv_entry))
313
314 /*
315 * a pv_page: where pv_entrys are allocated from
316 */
317
318 struct pv_page {
319 struct pv_page_info pvinfo;
320 struct pv_entry pvents[PVE_PER_PVPAGE];
321 };
322
323 /*
324 * pmap_remove_record: a record of VAs that have been unmapped, used to
325 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
326 */
327
328 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
329
330 struct pmap_remove_record {
331 int prr_npages;
332 vaddr_t prr_vas[PMAP_RR_MAX];
333 };
334
335 /*
336 * pmap_transfer_location: used to pass the current location in the
337 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
338 * a pmap_copy].
339 */
340
341 struct pmap_transfer_location {
342 vaddr_t addr; /* the address (page-aligned) */
343 pt_entry_t *pte; /* the PTE that maps address */
344 struct vm_page *ptp; /* the PTP that the PTE lives in */
345 };
346
347 /*
348 * global kernel variables
349 */
350
351 /* PTDpaddr: is the physical address of the kernel's PDP */
352 extern u_long PTDpaddr;
353
354 extern struct pmap kernel_pmap_store; /* kernel pmap */
355 extern int nkpde; /* current # of PDEs for kernel */
356 extern int pmap_pg_g; /* do we support PG_G? */
357
358 /*
359 * macros
360 */
361
362 /* XXX XXX XXX */
363 #ifdef SH4
364 #define TLBFLUSH() (cacheflush(), tlbflush())
365 #else
366 #define TLBFLUSH() tlbflush()
367 #endif
368
369 #define pmap_kernel() (&kernel_pmap_store)
370 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
371 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
372 #define pmap_update(pmap) /* nothing (yet) */
373
374 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PGA_REFERENCED)
375 #define pmap_is_modified(pg) pmap_test_attrs(pg, PGA_MODIFIED)
376
377 #define pmap_copy(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, FALSE)
378 #define pmap_move(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, TRUE)
379 #define pmap_phys_address(ppn) sh3_ptob(ppn)
380 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
381
382
383 /*
384 * prototypes
385 */
386
387 void pmap_activate __P((struct proc *));
388 void pmap_bootstrap __P((vaddr_t));
389 boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
390 void pmap_deactivate __P((struct proc *));
391 void pmap_page_remove __P((struct vm_page *));
392 static void pmap_protect __P((struct pmap *, vaddr_t,
393 vaddr_t, vm_prot_t));
394 void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
395 boolean_t pmap_test_attrs __P((struct vm_page *, int));
396 void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
397 vsize_t, vaddr_t, boolean_t));
398 static void pmap_update_pg __P((vaddr_t));
399 static void pmap_update_2pg __P((vaddr_t,vaddr_t));
400 void pmap_write_protect __P((struct pmap *, vaddr_t,
401 vaddr_t, vm_prot_t));
402
403 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
404
405 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
406
407 /*
408 * Alternate mapping hooks for pool pages. Avoids thrashing the TLB.
409 */
410 /*
411 * XXX Indeed, first, we should refine physical address v.s. virtual
412 * address mapping.
413 * See
414 * uvm_km.c:uvm_km_free_poolpage1,
415 * vm_page.h:PHYS_TO_VM_PAGE, vm_physseg_find
416 * machdep.c:pmap_bootstrap (uvm_page_physload, etc)
417 */
418 #if 0
419 /* broken */
420 #define PMAP_MAP_POOLPAGE(pa) SH3_PHYS_TO_P1SEG((pa))
421 #define PMAP_UNMAP_POOLPAGE(va) SH3_P1SEG_TO_PHYS((va))
422 #else
423 #define PMAP_MAP_POOLPAGE(pa) (pa)
424 #define PMAP_UNMAP_POOLPAGE(va) (va)
425 #endif
426
427 /*
428 * inline functions
429 */
430
431 /*
432 * pmap_update_pg: flush one page from the TLB
433 */
434
435 __inline static void
436 pmap_update_pg(va)
437 vaddr_t va;
438 {
439 #ifdef SH4
440 #if 1
441 tlbflush();
442 cacheflush();
443 #else
444 u_int32_t *addr, data;
445
446 addr = (void *)(0xf6000080 | (va & 0x00003f00)); /* 13-8 */
447 data = (0x00000000 | (va & 0xfffff000)); /* 31-17, 11-10 */
448 *addr = data;
449 #endif
450 #else
451 u_int32_t *addr, data;
452
453 addr = (void *)(0xf2000080 | (va & 0x0001f000)); /* 16-12 */
454 data = (0x00000000 | (va & 0xfffe0c00)); /* 31-17, 11-10 */
455
456 *addr = data;
457 #endif
458 }
459
460 /*
461 * pmap_update_2pg: flush two pages from the TLB
462 */
463
464 __inline static void
465 pmap_update_2pg(va, vb)
466 vaddr_t va, vb;
467 {
468 #ifdef SH4
469 tlbflush();
470 cacheflush();
471 #else
472 pmap_update_pg(va);
473 pmap_update_pg(vb);
474 #endif
475 }
476
477 /*
478 * pmap_protect: change the protection of pages in a pmap
479 *
480 * => this function is a frontend for pmap_remove/pmap_write_protect
481 * => we only have to worry about making the page more protected.
482 * unprotecting a page is done on-demand at fault time.
483 */
484
485 __inline static void
486 pmap_protect(pmap, sva, eva, prot)
487 struct pmap *pmap;
488 vaddr_t sva, eva;
489 vm_prot_t prot;
490 {
491 if ((prot & VM_PROT_WRITE) == 0) {
492 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
493 pmap_write_protect(pmap, sva, eva, prot);
494 } else {
495 pmap_remove(pmap, sva, eva);
496 }
497 }
498 }
499
500 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
501 paddr_t vtophys __P((vaddr_t));
502 void pmap_emulate_reference __P((struct proc *, vaddr_t, int, int));
503
504 /* XXX */
505 #define PG_U 0 /* referenced bit */
506
507 #endif /* _KERNEL */
508 #endif /* _SH3_PMAP_H_ */
509