Home | History | Annotate | Line # | Download | only in include
pmap.h revision 1.11
      1 /*	$NetBSD: pmap.h,v 1.11 2001/04/22 17:37:55 uch Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgment:
     17  *      This product includes software developed by Charles D. Cranor and
     18  *      Washington University.
     19  * 4. The name of the author may not be used to endorse or promote products
     20  *    derived from this software without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * pmap.h: see pmap.c for the history of this pmap module.
     36  */
     37 
     38 #ifndef _SH3_PMAP_H_
     39 #define _SH3_PMAP_H_
     40 
     41 #include <machine/cpufunc.h>
     42 #include <machine/pte.h>
     43 #include <uvm/uvm_object.h>
     44 
     45 /*
     46  * see pte.h for a description of i386 MMU terminology and hardware
     47  * interface.
     48  *
     49  * a pmap describes a processes' 4GB virtual address space.  this
     50  * virtual address space can be broken up into 1024 4MB regions which
     51  * are described by PDEs in the PDP.  the PDEs are defined as follows:
     52  *
     53  * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
     54  * (the following assumes that KERNBASE is 0xf0000000)
     55  *
     56  * PDE#s	VA range		usage
     57  * 0->959	0x0 -> 0xefc00000	user address space, note that the
     58  *					max user address is 0xefbfe000
     59  *					the final two pages in the last 4MB
     60  *					used to be reserved for the UAREA
     61  *					but now are no longer used
     62  * 959		0xefc00000->		recursive mapping of PDP (used for
     63  *			0xf0000000	linear mapping of PTPs)
     64  * 960->1023	0xf0000000->		kernel address space (constant
     65  *			0xffc00000	across all pmap's/processes)
     66  * 1023		0xffc00000->		"alternate" recursive PDP mapping
     67  *			<end>		(for other pmaps)
     68  *
     69  *
     70  * note: a recursive PDP mapping provides a way to map all the PTEs for
     71  * a 4GB address space into a linear chunk of virtual memory.  in other
     72  * words, the PTE for page 0 is the first int mapped into the 4MB recursive
     73  * area.  the PTE for page 1 is the second int.  the very last int in the
     74  * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
     75  * address).
     76  *
     77  * all pmap's PD's must have the same values in slots 960->1023 so that
     78  * the kernel is always mapped in every process.  these values are loaded
     79  * into the PD at pmap creation time.
     80  *
     81  * at any one time only one pmap can be active on a processor.  this is
     82  * the pmap whose PDP is pointed to by processor register %cr3.  this pmap
     83  * will have all its PTEs mapped into memory at the recursive mapping
     84  * point (slot #959 as show above).  when the pmap code wants to find the
     85  * PTE for a virtual address, all it has to do is the following:
     86  *
     87  * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
     88  *                = 0xefc00000 + (VA / 4096) * 4
     89  *
     90  * what happens if the pmap layer is asked to perform an operation
     91  * on a pmap that is not the one which is currently active?  in that
     92  * case we take the PA of the PDP of non-active pmap and put it in
     93  * slot 1023 of the active pmap.  this causes the non-active pmap's
     94  * PTEs to get mapped in the final 4MB of the 4GB address space
     95  * (e.g. starting at 0xffc00000).
     96  *
     97  * the following figure shows the effects of the recursive PDP mapping:
     98  *
     99  *   PDP (%cr3)
    100  *   +----+
    101  *   |   0| -> PTP#0 that maps VA 0x0 -> 0x400000
    102  *   |    |
    103  *   |    |
    104  *   | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
    105  *   | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
    106  *   |    |
    107  *   |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
    108  *   +----+
    109  *
    110  * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
    111  * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
    112  *
    113  * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
    114  * PTP:
    115  *
    116  * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
    117  *   +----+
    118  *   |   0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
    119  *   |    |
    120  *   |    |
    121  *   | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
    122  *   | 960| -> maps contents of first kernel PTP
    123  *   |    |
    124  *   |1023|
    125  *   +----+
    126  *
    127  * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
    128  * defined as "PDP_BASE".... within that mapping there are two
    129  * defines:
    130  *   "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
    131  *      which points back to itself.
    132  *   "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
    133  *      establishes the recursive mapping of the alternate pmap.
    134  *      to set the alternate PDP, one just has to put the correct
    135  *	PA info in *APDP_PDE.
    136  *
    137  * note that in the APTE_BASE space, the APDP appears at VA
    138  * "APDP_BASE" (0xfffff000).
    139  */
    140 
    141 /*
    142  * the following defines identify the slots used as described above.
    143  */
    144 
    145 #define PDSLOT_PTE	((u_int)0x33f)	/* PTDPTDI for recursive PDP map */
    146 #define PDSLOT_KERN	((u_int)0x340)	/* KPTDI start of kernel space */
    147 #define PDSLOT_APTE	((u_int)0x37f)	/* alternative recursive slot */
    148 
    149 /*
    150  * the following defines give the virtual addresses of various MMU
    151  * data structures:
    152  * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
    153  * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
    154  * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
    155  */
    156 
    157 #define PTE_BASE	((pt_entry_t *)  (PDSLOT_PTE * NBPD) )
    158 #define APTE_BASE	((pt_entry_t *)  (PDSLOT_APTE * NBPD) )
    159 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
    160 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
    161 #define PDP_PDE		(PDP_BASE + PDSLOT_PTE)
    162 #define APDP_PDE	(PDP_BASE + PDSLOT_APTE)
    163 
    164 /*
    165  * XXXCDC: tmp xlate from old names:
    166  * PTDPTDI -> PDSLOT_PTE
    167  * KPTDI -> PDSLOT_KERN
    168  * APTDPTDI -> PDSLOT_APTE
    169  */
    170 
    171 /*
    172  * the follow define determines how many PTPs should be set up for the
    173  * kernel by locore.s at boot time.  this should be large enough to
    174  * get the VM system running.  once the VM system is running, the
    175  * pmap module can add more PTPs to the kernel area on demand.
    176  */
    177 
    178 #ifndef NKPTP
    179 #define NKPTP		8	/* 32MB to start */
    180 #endif
    181 #define NKPTP_MIN	8	/* smallest value we allow */
    182 #define NKPTP_MAX	63	/* (1024 - (0xd0000000/NBPD) - 1) */
    183 				/* largest value (-1 for APTP space) */
    184 
    185 /*
    186  * various address macros
    187  *
    188  *  vtopte: return a pointer to the PTE mapping a VA
    189  *  kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
    190  *  ptetov: given a pointer to a PTE, return the VA that it maps
    191  *  vtophys: translate a VA to the PA mapped to it
    192  *
    193  * plus alternative versions of the above
    194  */
    195 
    196 #define vtopte(VA)	(PTE_BASE + sh3_btop(VA))
    197 #define kvtopte(VA)	vtopte(VA)
    198 #define ptetov(PT)	(sh3_ptob(PT - PTE_BASE))
    199 #define avtopte(VA)	(APTE_BASE + sh3_btop(VA))
    200 #define ptetoav(PT)	(sh3_ptob(PT - APTE_BASE))
    201 #define avtophys(VA)	((*avtopte(VA) & PG_FRAME) | \
    202 			 ((unsigned)(VA) & ~PG_FRAME))
    203 
    204 /*
    205  * pdei/ptei: generate index into PDP/PTP from a VA
    206  */
    207 #define	pdei(VA)	(((VA) & PD_MASK) >> PDSHIFT)
    208 #define	ptei(VA)	(((VA) & PT_MASK) >> PGSHIFT)
    209 
    210 /*
    211  * PTP macros:
    212  *   a PTP's index is the PD index of the PDE that points to it
    213  *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
    214  *   a PTP's VA is the first VA mapped by that PTP
    215  *
    216  * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
    217  *           NBPD == number of bytes a PTP can map (4MB)
    218  */
    219 
    220 #define ptp_i2o(I)	((I) * NBPG)	/* index => offset */
    221 #define ptp_o2i(O)	((O) / NBPG)	/* offset => index */
    222 #define ptp_i2v(I)	((I) * NBPD)	/* index => VA */
    223 #define ptp_v2i(V)	((V) / NBPD)	/* VA => index (same as pdei) */
    224 
    225 /*
    226  * PG_AVAIL usage: we make use of the ignored bits of the PTE
    227  */
    228 
    229 #define PG_PVLIST	PG_AVAIL1	/* mapping has entry on pvlist */
    230 
    231 #ifdef _KERNEL
    232 /*
    233  * pmap data structures: see pmap.c for details of locking.
    234  */
    235 
    236 struct pmap;
    237 typedef struct pmap *pmap_t;
    238 
    239 /*
    240  * we maintain a list of all non-kernel pmaps
    241  */
    242 
    243 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
    244 
    245 /*
    246  * the pmap structure
    247  *
    248  * note that the pm_obj contains the simple_lock, the reference count,
    249  * page list, and number of PTPs within the pmap.
    250  */
    251 
    252 struct pmap {
    253 	struct uvm_object pm_obj;	/* object (lck by object lock) */
    254 #define	pm_lock	pm_obj.vmobjlock
    255 	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
    256 	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
    257 	u_int32_t pm_pdirpa;		/* PA of PD (read-only after create) */
    258 	struct vm_page *pm_ptphint;	/* pointer to a PTP in our pmap */
    259 	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
    260 
    261 	int pm_flags;			/* see below */
    262 };
    263 
    264 /* pm_flags */
    265 #define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
    266 
    267 /*
    268  * for each managed physical page we maintain a list of <PMAP,VA>'s
    269  * which it is mapped at.  the list is headed by a pv_head structure.
    270  * there is one pv_head per managed phys page (allocated at boot time).
    271  * the pv_head structure points to a list of pv_entry structures (each
    272  * describes one mapping).
    273  */
    274 
    275 struct pv_entry;
    276 
    277 struct pv_head {
    278 	simple_lock_data_t pvh_lock;	/* locks every pv on this list */
    279 	struct pv_entry *pvh_list;	/* head of list (locked by pvh_lock) */
    280 };
    281 
    282 /* These are kept in the vm_physseg array. */
    283 #define	PGA_REFERENCED	0x01		/* page is referenced */
    284 #define	PGA_MODIFIED	0x02		/* page is modified */
    285 
    286 struct pv_entry {			/* locked by its list's pvh_lock */
    287 	struct pv_entry *pv_next;	/* next entry */
    288 	struct pmap *pv_pmap;		/* the pmap */
    289 	vaddr_t pv_va;			/* the virtual address */
    290 	struct vm_page *pv_ptp;		/* the vm_page of the PTP */
    291 };
    292 
    293 /*
    294  * pv_entrys are dynamically allocated in chunks from a single page.
    295  * we keep track of how many pv_entrys are in use for each page and
    296  * we can free pv_entry pages if needed.  there is one lock for the
    297  * entire allocation system.
    298  */
    299 
    300 struct pv_page_info {
    301 	TAILQ_ENTRY(pv_page) pvpi_list;
    302 	struct pv_entry *pvpi_pvfree;
    303 	int pvpi_nfree;
    304 };
    305 
    306 /*
    307  * number of pv_entry's in a pv_page
    308  * (note: won't work on systems where NPBG isn't a constant)
    309  */
    310 
    311 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    312 			sizeof(struct pv_entry))
    313 
    314 /*
    315  * a pv_page: where pv_entrys are allocated from
    316  */
    317 
    318 struct pv_page {
    319 	struct pv_page_info pvinfo;
    320 	struct pv_entry pvents[PVE_PER_PVPAGE];
    321 };
    322 
    323 /*
    324  * pmap_remove_record: a record of VAs that have been unmapped, used to
    325  * flush TLB.  if we have more than PMAP_RR_MAX then we stop recording.
    326  */
    327 
    328 #define PMAP_RR_MAX	16	/* max of 16 pages (64K) */
    329 
    330 struct pmap_remove_record {
    331 	int prr_npages;
    332 	vaddr_t prr_vas[PMAP_RR_MAX];
    333 };
    334 
    335 /*
    336  * pmap_transfer_location: used to pass the current location in the
    337  * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
    338  * a pmap_copy].
    339  */
    340 
    341 struct pmap_transfer_location {
    342 	vaddr_t addr;			/* the address (page-aligned) */
    343 	pt_entry_t *pte;		/* the PTE that maps address */
    344 	struct vm_page *ptp;		/* the PTP that the PTE lives in */
    345 };
    346 
    347 /*
    348  * global kernel variables
    349  */
    350 
    351 /* PTDpaddr: is the physical address of the kernel's PDP */
    352 extern u_long PTDpaddr;
    353 
    354 extern struct pmap kernel_pmap_store;	/* kernel pmap */
    355 extern int nkpde;			/* current # of PDEs for kernel */
    356 extern int pmap_pg_g;			/* do we support PG_G? */
    357 
    358 /*
    359  * macros
    360  */
    361 
    362 /* XXX XXX XXX */
    363 #ifdef SH4
    364 #define	TLBFLUSH()			(cacheflush(), tlbflush())
    365 #else
    366 #define	TLBFLUSH()			tlbflush()
    367 #endif
    368 
    369 #define	pmap_kernel()			(&kernel_pmap_store)
    370 #define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
    371 #define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
    372 #define	pmap_update(pmap)		/* nothing (yet) */
    373 
    374 #define	pmap_is_referenced(pg)		pmap_test_attrs(pg, PGA_REFERENCED)
    375 #define	pmap_is_modified(pg)		pmap_test_attrs(pg, PGA_MODIFIED)
    376 
    377 #define pmap_copy(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, FALSE)
    378 #define pmap_move(DP,SP,D,L,S)		pmap_transfer(DP,SP,D,L,S, TRUE)
    379 #define pmap_phys_address(ppn)		sh3_ptob(ppn)
    380 #define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
    381 
    382 
    383 /*
    384  * prototypes
    385  */
    386 
    387 void		pmap_activate __P((struct proc *));
    388 void		pmap_bootstrap __P((vaddr_t));
    389 boolean_t	pmap_change_attrs __P((struct vm_page *, int, int));
    390 void		pmap_deactivate __P((struct proc *));
    391 void		pmap_page_remove  __P((struct vm_page *));
    392 static void	pmap_protect __P((struct pmap *, vaddr_t,
    393 				vaddr_t, vm_prot_t));
    394 void		pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
    395 boolean_t	pmap_test_attrs __P((struct vm_page *, int));
    396 void		pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
    397 				   vsize_t, vaddr_t, boolean_t));
    398 static void	pmap_update_pg __P((vaddr_t));
    399 static void	pmap_update_2pg __P((vaddr_t,vaddr_t));
    400 void		pmap_write_protect __P((struct pmap *, vaddr_t,
    401 				vaddr_t, vm_prot_t));
    402 
    403 vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
    404 
    405 #define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
    406 
    407 /*
    408  * Alternate mapping hooks for pool pages.  Avoids thrashing the TLB.
    409  */
    410 /*
    411  * XXX Indeed, first, we should refine physical address v.s. virtual
    412  *	address mapping.
    413  * See
    414  *	uvm_km.c:uvm_km_free_poolpage1,
    415  *	vm_page.h:PHYS_TO_VM_PAGE, vm_physseg_find
    416  *	machdep.c:pmap_bootstrap (uvm_page_physload, etc)
    417  */
    418 #if 0
    419 /* broken */
    420 #define PMAP_MAP_POOLPAGE(pa)	SH3_PHYS_TO_P1SEG((pa))
    421 #define PMAP_UNMAP_POOLPAGE(va)	SH3_P1SEG_TO_PHYS((va))
    422 #else
    423 #define PMAP_MAP_POOLPAGE(pa)	(pa)
    424 #define PMAP_UNMAP_POOLPAGE(va)	(va)
    425 #endif
    426 
    427 /*
    428  * inline functions
    429  */
    430 
    431 /*
    432  * pmap_update_pg: flush one page from the TLB
    433  */
    434 
    435 __inline static void
    436 pmap_update_pg(va)
    437 	vaddr_t va;
    438 {
    439 #ifdef SH4
    440 #if 1
    441 	tlbflush();
    442 	cacheflush();
    443 #else
    444 	u_int32_t *addr, data;
    445 
    446 	addr = (void *)(0xf6000080 | (va & 0x00003f00)); /* 13-8 */
    447 	data =         (0x00000000 | (va & 0xfffff000)); /* 31-17, 11-10 */
    448 	*addr = data;
    449 #endif
    450 #else
    451 	u_int32_t *addr, data;
    452 
    453 	addr = (void *)(0xf2000080 | (va & 0x0001f000)); /* 16-12 */
    454 	data =         (0x00000000 | (va & 0xfffe0c00)); /* 31-17, 11-10 */
    455 
    456 	*addr = data;
    457 #endif
    458 }
    459 
    460 /*
    461  * pmap_update_2pg: flush two pages from the TLB
    462  */
    463 
    464 __inline static void
    465 pmap_update_2pg(va, vb)
    466 	vaddr_t va, vb;
    467 {
    468 #ifdef SH4
    469 	tlbflush();
    470 	cacheflush();
    471 #else
    472 	pmap_update_pg(va);
    473 	pmap_update_pg(vb);
    474 #endif
    475 }
    476 
    477 /*
    478  * pmap_protect: change the protection of pages in a pmap
    479  *
    480  * => this function is a frontend for pmap_remove/pmap_write_protect
    481  * => we only have to worry about making the page more protected.
    482  *	unprotecting a page is done on-demand at fault time.
    483  */
    484 
    485 __inline static void
    486 pmap_protect(pmap, sva, eva, prot)
    487 	struct pmap *pmap;
    488 	vaddr_t sva, eva;
    489 	vm_prot_t prot;
    490 {
    491 	if ((prot & VM_PROT_WRITE) == 0) {
    492 		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
    493 			pmap_write_protect(pmap, sva, eva, prot);
    494 		} else {
    495 			pmap_remove(pmap, sva, eva);
    496 		}
    497 	}
    498 }
    499 
    500 vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
    501 paddr_t vtophys __P((vaddr_t));
    502 void pmap_emulate_reference __P((struct proc *, vaddr_t, int, int));
    503 
    504 /* XXX */
    505 #define PG_U 0		/* referenced bit */
    506 
    507 #endif /* _KERNEL */
    508 #endif /* _SH3_PMAP_H_ */
    509