pmap.h revision 1.18 1 /* $NetBSD: pmap.h,v 1.18 2002/02/28 01:58:53 uch Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgment:
17 * This product includes software developed by Charles D. Cranor and
18 * Washington University.
19 * 4. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * pmap.h: see pmap.c for the history of this pmap module.
36 */
37
38 #ifndef _SH3_PMAP_H_
39 #define _SH3_PMAP_H_
40
41 #include <sh3/cache.h>
42 #include <machine/cpufunc.h>
43 #include <machine/pte.h>
44 #include <uvm/uvm_object.h>
45
46 /*
47 * see pte.h for a description of i386 MMU terminology and hardware
48 * interface.
49 *
50 * a pmap describes a processes' 4GB virtual address space. this
51 * virtual address space can be broken up into 1024 4MB regions which
52 * are described by PDEs in the PDP. the PDEs are defined as follows:
53 *
54 * (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
55 * (the following assumes that KERNBASE is 0xf0000000)
56 *
57 * PDE#s VA range usage
58 * 0->959 0x0 -> 0xefc00000 user address space, note that the
59 * max user address is 0xefbfe000
60 * the final two pages in the last 4MB
61 * used to be reserved for the UAREA
62 * but now are no longer used
63 * 959 0xefc00000-> recursive mapping of PDP (used for
64 * 0xf0000000 linear mapping of PTPs)
65 * 960->1023 0xf0000000-> kernel address space (constant
66 * 0xffc00000 across all pmap's/processes)
67 * 1023 0xffc00000-> "alternate" recursive PDP mapping
68 * <end> (for other pmaps)
69 *
70 *
71 * note: a recursive PDP mapping provides a way to map all the PTEs for
72 * a 4GB address space into a linear chunk of virtual memory. in other
73 * words, the PTE for page 0 is the first int mapped into the 4MB recursive
74 * area. the PTE for page 1 is the second int. the very last int in the
75 * 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
76 * address).
77 *
78 * all pmap's PD's must have the same values in slots 960->1023 so that
79 * the kernel is always mapped in every process. these values are loaded
80 * into the PD at pmap creation time.
81 *
82 * at any one time only one pmap can be active on a processor. this is
83 * the pmap whose PDP is pointed to by processor register %cr3. this pmap
84 * will have all its PTEs mapped into memory at the recursive mapping
85 * point (slot #959 as show above). when the pmap code wants to find the
86 * PTE for a virtual address, all it has to do is the following:
87 *
88 * address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
89 * = 0xefc00000 + (VA / 4096) * 4
90 *
91 * what happens if the pmap layer is asked to perform an operation
92 * on a pmap that is not the one which is currently active? in that
93 * case we take the PA of the PDP of non-active pmap and put it in
94 * slot 1023 of the active pmap. this causes the non-active pmap's
95 * PTEs to get mapped in the final 4MB of the 4GB address space
96 * (e.g. starting at 0xffc00000).
97 *
98 * the following figure shows the effects of the recursive PDP mapping:
99 *
100 * PDP (%cr3)
101 * +----+
102 * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
103 * | |
104 * | |
105 * | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
106 * | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
107 * | |
108 * |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
109 * +----+
110 *
111 * note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
112 * note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
113 *
114 * starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
115 * PTP:
116 *
117 * PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
118 * +----+
119 * | 0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
120 * | |
121 * | |
122 * | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
123 * | 960| -> maps contents of first kernel PTP
124 * | |
125 * |1023|
126 * +----+
127 *
128 * note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
129 * defined as "PDP_BASE".... within that mapping there are two
130 * defines:
131 * "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
132 * which points back to itself.
133 * "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
134 * establishes the recursive mapping of the alternate pmap.
135 * to set the alternate PDP, one just has to put the correct
136 * PA info in *APDP_PDE.
137 *
138 * note that in the APTE_BASE space, the APDP appears at VA
139 * "APDP_BASE" (0xfffff000).
140 */
141
142 /*
143 * the following defines identify the slots used as described above.
144 */
145
146 #define PDSLOT_PTE ((u_int)0x33f) /* PTDPTDI for recursive PDP map */
147 #define PDSLOT_KERN ((u_int)0x340) /* KPTDI start of kernel space */
148 #define PDSLOT_APTE ((u_int)0x37f) /* alternative recursive slot */
149
150 /*
151 * the following defines give the virtual addresses of various MMU
152 * data structures:
153 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
154 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
155 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
156 */
157
158 #define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
159 #define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
160 #define PDP_BASE ((pd_entry_t *)(((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)))
161 #define APDP_BASE ((pd_entry_t *)(((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)))
162 #define PDP_PDE (PDP_BASE + PDSLOT_PTE)
163 #define APDP_PDE (PDP_BASE + PDSLOT_APTE)
164
165 /*
166 * XXXCDC: tmp xlate from old names:
167 * PTDPTDI -> PDSLOT_PTE
168 * KPTDI -> PDSLOT_KERN
169 * APTDPTDI -> PDSLOT_APTE
170 */
171
172 /*
173 * the follow define determines how many PTPs should be set up for the
174 * kernel by locore.s at boot time. this should be large enough to
175 * get the VM system running. once the VM system is running, the
176 * pmap module can add more PTPs to the kernel area on demand.
177 */
178
179 #ifndef NKPTP
180 #define NKPTP 8 /* 32MB to start */
181 #endif
182 #define NKPTP_MIN 8 /* smallest value we allow */
183 #define NKPTP_MAX 63 /* (1024 - (0xd0000000/NBPD) - 1) */
184 /* largest value (-1 for APTP space) */
185
186 /*
187 * various address macros
188 *
189 * vtopte: return a pointer to the PTE mapping a VA
190 * kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
191 * ptetov: given a pointer to a PTE, return the VA that it maps
192 * vtophys: translate a VA to the PA mapped to it
193 *
194 * plus alternative versions of the above
195 */
196
197 #define vtopte(VA) (PTE_BASE + sh3_btop(VA))
198 #define kvtopte(VA) vtopte(VA)
199 #define ptetov(PT) (sh3_ptob(PT - PTE_BASE))
200 #define avtopte(VA) (APTE_BASE + sh3_btop(VA))
201 #define ptetoav(PT) (sh3_ptob(PT - APTE_BASE))
202 #define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | \
203 ((unsigned)(VA) & ~PG_FRAME))
204
205 /*
206 * pdei/ptei: generate index into PDP/PTP from a VA
207 */
208 #define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
209 #define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
210
211 /*
212 * PTP macros:
213 * a PTP's index is the PD index of the PDE that points to it
214 * a PTP's offset is the byte-offset in the PTE space that this PTP is at
215 * a PTP's VA is the first VA mapped by that PTP
216 *
217 * note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
218 * NBPD == number of bytes a PTP can map (4MB)
219 */
220
221 #define ptp_i2o(I) ((I) * NBPG) /* index => offset */
222 #define ptp_o2i(O) ((O) / NBPG) /* offset => index */
223 #define ptp_i2v(I) ((I) * NBPD) /* index => VA */
224 #define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
225
226 #ifdef _KERNEL
227 /*
228 * pmap data structures: see pmap.c for details of locking.
229 */
230
231 struct pmap;
232 typedef struct pmap *pmap_t;
233
234 /*
235 * we maintain a list of all non-kernel pmaps
236 */
237
238 LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
239
240 /*
241 * the pmap structure
242 *
243 * note that the pm_obj contains the simple_lock, the reference count,
244 * page list, and number of PTPs within the pmap.
245 */
246
247 struct pmap {
248 struct uvm_object pm_obj; /* object (lck by object lock) */
249 #define pm_lock pm_obj.vmobjlock
250 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
251 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
252 u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
253 struct vm_page *pm_ptphint; /* pointer to a PTP in our pmap */
254 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
255
256 int pm_flags; /* see below */
257 };
258
259 /* pm_flags */
260 #define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
261
262 /*
263 * for each managed physical page we maintain a list of <PMAP,VA>'s
264 * which it is mapped at. the list is headed by a pv_head structure.
265 * there is one pv_head per managed phys page (allocated at boot time).
266 * the pv_head structure points to a list of pv_entry structures (each
267 * describes one mapping).
268 */
269
270 struct pv_entry;
271
272 struct pv_head {
273 struct simplelock pvh_lock; /* locks every pv on this list */
274 struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
275 };
276
277 /* These are kept in the vm_physseg array. */
278 #define PGA_REFERENCED 0x01 /* page is referenced */
279 #define PGA_MODIFIED 0x02 /* page is modified */
280
281 struct pv_entry { /* locked by its list's pvh_lock */
282 struct pv_entry *pv_next; /* next entry */
283 struct pmap *pv_pmap; /* the pmap */
284 vaddr_t pv_va; /* the virtual address */
285 struct vm_page *pv_ptp; /* the vm_page of the PTP */
286 };
287
288 /*
289 * pv_entrys are dynamically allocated in chunks from a single page.
290 * we keep track of how many pv_entrys are in use for each page and
291 * we can free pv_entry pages if needed. there is one lock for the
292 * entire allocation system.
293 */
294
295 struct pv_page_info {
296 TAILQ_ENTRY(pv_page) pvpi_list;
297 struct pv_entry *pvpi_pvfree;
298 int pvpi_nfree;
299 };
300
301 /*
302 * number of pv_entry's in a pv_page
303 * (note: won't work on systems where NPBG isn't a constant)
304 */
305
306 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
307 sizeof(struct pv_entry))
308
309 /*
310 * a pv_page: where pv_entrys are allocated from
311 */
312
313 struct pv_page {
314 struct pv_page_info pvinfo;
315 struct pv_entry pvents[PVE_PER_PVPAGE];
316 };
317
318 /*
319 * pmap_remove_record: a record of VAs that have been unmapped, used to
320 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
321 */
322
323 #define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
324
325 struct pmap_remove_record {
326 int prr_npages;
327 vaddr_t prr_vas[PMAP_RR_MAX];
328 };
329
330 /*
331 * pmap_transfer_location: used to pass the current location in the
332 * pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
333 * a pmap_copy].
334 */
335
336 struct pmap_transfer_location {
337 vaddr_t addr; /* the address (page-aligned) */
338 pt_entry_t *pte; /* the PTE that maps address */
339 struct vm_page *ptp; /* the PTP that the PTE lives in */
340 };
341
342 /*
343 * global kernel variables
344 */
345
346 /* PTDpaddr: is the physical address of the kernel's PDP */
347 extern u_long PTDpaddr;
348
349 extern struct pmap kernel_pmap_store; /* kernel pmap */
350 extern int nkpde; /* current # of PDEs for kernel */
351 extern int pmap_pg_g; /* do we support PG_G? */
352
353 /*
354 * macros
355 */
356
357 #define pmap_kernel() (&kernel_pmap_store)
358 #define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
359 #define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
360 #define pmap_update(pmap) /* nothing (yet) */
361
362 #define pmap_is_referenced(pg) pmap_test_attrs(pg, PGA_REFERENCED)
363 #define pmap_is_modified(pg) pmap_test_attrs(pg, PGA_MODIFIED)
364
365 #define pmap_copy(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, FALSE)
366 #define pmap_move(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, TRUE)
367 #define pmap_phys_address(ppn) sh3_ptob(ppn)
368 #define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
369
370
371 /*
372 * prototypes
373 */
374
375 void pmap_activate(struct proc *);
376 void pmap_bootstrap(vaddr_t);
377 boolean_t pmap_change_attrs(struct vm_page *, int, int);
378 void pmap_deactivate(struct proc *);
379 void pmap_page_remove (struct vm_page *);
380 void pmap_protect(struct pmap *, vaddr_t,
381 vaddr_t, vm_prot_t);
382 void pmap_remove(struct pmap *, vaddr_t, vaddr_t);
383 boolean_t pmap_test_attrs(struct vm_page *, int);
384 void pmap_transfer(struct pmap *, struct pmap *, vaddr_t,
385 vsize_t, vaddr_t, boolean_t);
386 void pmap_update_pg(vaddr_t);
387 void pmap_update_2pg(vaddr_t,vaddr_t);
388 void pmap_write_protect(struct pmap *, vaddr_t,
389 vaddr_t, vm_prot_t);
390
391 vaddr_t reserve_dumppages(vaddr_t); /* XXX: not a pmap fn */
392
393 #define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
394
395 /*
396 * Alternate mapping hooks for pool pages. Avoids thrashing the TLB.
397 */
398 /*
399 * XXX Indeed, first, we should refine physical address v.s. virtual
400 * address mapping.
401 * See
402 * uvm_km.c:uvm_km_free_poolpage1,
403 * vm_page.h:PHYS_TO_VM_PAGE, vm_physseg_find
404 * machdep.c:pmap_bootstrap (uvm_page_physload, etc)
405 */
406 /* XXX broken */
407 #define PMAP_MAP_POOLPAGE(pa) (pa)
408 #define PMAP_UNMAP_POOLPAGE(va) (va)
409
410 vaddr_t pmap_map(vaddr_t, paddr_t, paddr_t, vm_prot_t);
411 paddr_t vtophys(vaddr_t);
412 void pmap_emulate_reference(struct proc *, vaddr_t, int, int);
413
414 #endif /* _KERNEL */
415 #endif /* _SH3_PMAP_H_ */
416