ofw.c revision 1.15 1 /* $NetBSD: ofw.c,v 1.15 2002/07/30 16:16:45 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #include <machine/bus.h>
54 #include <machine/frame.h>
55 #include <machine/bootconfig.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58
59 #include <dev/ofw/openfirm.h>
60 #include <machine/ofw.h>
61
62 #include <netinet/in.h>
63
64 #if BOOT_FW_DHCP
65 #include <nfs/bootdata.h>
66 #endif
67
68 #ifdef SHARK
69 #include "machine/pio.h"
70 #include "machine/isa_machdep.h"
71 #endif
72
73 #include "pc.h"
74 #include "isadma.h"
75
76 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
77 #define IO_VIRT_SIZE 0x01000000
78
79 #define KERNEL_IMG_PTS 2
80 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
81 #define KERNEL_OFW_PTS 4
82 #define KERNEL_IO_PTS 4
83
84 /*
85 * Imported variables
86 */
87 extern BootConfig bootconfig; /* temporary, I hope */
88
89 #ifdef DIAGNOSTIC
90 /* NOTE: These variables will be removed, well some of them */
91 extern u_int spl_mask;
92 extern u_int current_mask;
93 #endif
94
95 extern int ofw_handleticks;
96
97
98 /*
99 * Imported routines
100 */
101 extern void dump_spl_masks __P((void));
102 extern void dumpsys __P((void));
103 extern void dotickgrovelling __P((vm_offset_t));
104 #if defined(SHARK) && (NPC > 0)
105 extern void shark_screen_cleanup __P((int));
106 #endif
107
108 #define WriteWord(a, b) \
109 *((volatile unsigned int *)(a)) = (b)
110
111 #define ReadWord(a) \
112 (*((volatile unsigned int *)(a)))
113
114
115 /*
116 * Exported variables
117 */
118 /* These should all be in a meminfo structure. */
119 vm_offset_t physical_start;
120 vm_offset_t physical_freestart;
121 vm_offset_t physical_freeend;
122 vm_offset_t physical_end;
123 u_int free_pages;
124 int physmem;
125 pv_addr_t systempage;
126 #ifndef OFWGENCFG
127 pv_addr_t irqstack;
128 #endif
129 pv_addr_t undstack;
130 pv_addr_t abtstack;
131 pv_addr_t kernelstack;
132
133 vm_offset_t msgbufphys;
134
135 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
136 static vm_offset_t virt_freeptr;
137
138 int ofw_callbacks = 0; /* debugging counter */
139
140 /**************************************************************/
141
142
143 /*
144 * Declarations and definitions private to this module
145 *
146 */
147
148 struct mem_region {
149 vm_offset_t start;
150 vm_size_t size;
151 };
152
153 struct mem_translation {
154 vm_offset_t virt;
155 vm_size_t size;
156 vm_offset_t phys;
157 unsigned int mode;
158 };
159
160 struct isa_range {
161 vm_offset_t isa_phys_hi;
162 vm_offset_t isa_phys_lo;
163 vm_offset_t parent_phys_start;
164 vm_size_t isa_size;
165 };
166
167 struct vl_range {
168 vm_offset_t vl_phys_hi;
169 vm_offset_t vl_phys_lo;
170 vm_offset_t parent_phys_start;
171 vm_size_t vl_size;
172 };
173
174 struct vl_isa_range {
175 vm_offset_t isa_phys_hi;
176 vm_offset_t isa_phys_lo;
177 vm_offset_t parent_phys_hi;
178 vm_offset_t parent_phys_lo;
179 vm_size_t isa_size;
180 };
181
182 struct dma_range {
183 vm_offset_t start;
184 vm_size_t size;
185 };
186
187 struct ofw_cbargs {
188 char *name;
189 int nargs;
190 int nreturns;
191 int args_n_results[12];
192 };
193
194
195 /* Memory info */
196 static int nOFphysmem;
197 static struct mem_region *OFphysmem;
198 static int nOFphysavail;
199 static struct mem_region *OFphysavail;
200 static int nOFtranslations;
201 static struct mem_translation *OFtranslations;
202 static int nOFdmaranges;
203 static struct dma_range *OFdmaranges;
204
205 /* The OFW client services handle. */
206 /* Initialized by ofw_init(). */
207 static ofw_handle_t ofw_client_services_handle;
208
209
210 static void ofw_callbackhandler __P((struct ofw_cbargs *));
211 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
212 static void ofw_getphysmeminfo __P((void));
213 static void ofw_getvirttranslations __P((void));
214 static void *ofw_malloc(vm_size_t size);
215 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
216 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
217 static int ofw_mem_ihandle __P((void));
218 static int ofw_mmu_ihandle __P((void));
219 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
220 #if 0
221 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
222 #endif
223 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
224 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
225 static void ofw_initallocator __P((void));
226 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
227 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
228 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
229
230
231 /*
232 * DHCP hooks. For a first cut, we look to see if there is a DHCP
233 * packet that was saved by the firmware. If not, we proceed as before,
234 * getting hand-configured data from NVRAM. If there is one, we get the
235 * packet, and extract the data from it. For now, we hand that data up
236 * in the boot_args string as before.
237 */
238
239
240 /**************************************************************/
241
242
243 /*
244 *
245 * Support routines for xxx_machdep.c
246 *
247 * The intent is that all OFW-based configurations use the
248 * exported routines in this file to do their business. If
249 * they need to override some function they are free to do so.
250 *
251 * The exported routines are:
252 *
253 * openfirmware
254 * ofw_init
255 * ofw_boot
256 * ofw_getbootinfo
257 * ofw_configmem
258 * ofw_configisa
259 * ofw_configisadma
260 * ofw_gettranslation
261 * ofw_map
262 * ofw_getcleaninfo
263 */
264
265
266 int
267 openfirmware(args)
268 void *args;
269 {
270 int ofw_result;
271 u_int saved_irq_state;
272
273 /* OFW is not re-entrant, so we wrap a mutex around the call. */
274 saved_irq_state = disable_interrupts(I32_bit);
275 ofw_result = ofw_client_services_handle(args);
276 (void)restore_interrupts(saved_irq_state);
277
278 return(ofw_result);
279 }
280
281
282 void
283 ofw_init(ofw_handle)
284 ofw_handle_t ofw_handle;
285 {
286 ofw_client_services_handle = ofw_handle;
287
288 /* Everything we allocate in the remainder of this block is
289 * constrained to be in the "kernel-static" portion of the
290 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
291 * This is because all such objects are expected to be in
292 * that range by NetBSD, or the objects will be re-mapped
293 * after the page-table-switch to other specific locations.
294 * In the latter case, it's simplest if our pre-switch handles
295 * on those objects are in regions that are already "well-
296 * known." (Otherwise, the cloning of the OFW-managed address-
297 * space becomes more awkward.) To minimize the number of L2
298 * page tables that we use, we are further restricting the
299 * remaining allocations in this block to the bottom quarter of
300 * the legal range. OFW will have loaded the kernel text+data+bss
301 * starting at the bottom of the range, and we will allocate
302 * objects from the top, moving downwards. The two sub-regions
303 * will collide if their total sizes hit 8MB. The current total
304 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
305 * limit. The variable virt-freeptr represents the next free va
306 * (moving downwards).
307 */
308 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
309 }
310
311
312 void
313 ofw_boot(howto, bootstr)
314 int howto;
315 char *bootstr;
316 {
317
318 #ifdef DIAGNOSTIC
319 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
320 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
321
322 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
323 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
324 irqmasks[IPL_IMP]);
325 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
326 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
327
328 dump_spl_masks();
329 #endif
330
331 /*
332 * If we are still cold then hit the air brakes
333 * and crash to earth fast
334 */
335 if (cold) {
336 doshutdownhooks();
337 printf("Halted while still in the ICE age.\n");
338 printf("The operating system has halted.\n");
339 goto ofw_exit;
340 /*NOTREACHED*/
341 }
342
343 /*
344 * If RB_NOSYNC was not specified sync the discs.
345 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
346 * It looks like syslogd is getting woken up only to find that it cannot
347 * page part of the binary in as the filesystem has been unmounted.
348 */
349 if (!(howto & RB_NOSYNC))
350 bootsync();
351
352 /* Say NO to interrupts */
353 splhigh();
354
355 /* Do a dump if requested. */
356 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
357 dumpsys();
358
359 /* Run any shutdown hooks */
360 doshutdownhooks();
361
362 /* Make sure IRQ's are disabled */
363 IRQdisable;
364
365 if (howto & RB_HALT) {
366 printf("The operating system has halted.\n");
367 goto ofw_exit;
368 }
369
370 /* Tell the user we are booting */
371 printf("rebooting...\n");
372
373 /* Jump into the OFW boot routine. */
374 {
375 static char str[256];
376 char *ap = str, *ap1 = ap;
377
378 if (bootstr && *bootstr) {
379 if (strlen(bootstr) > sizeof str - 5)
380 printf("boot string too large, ignored\n");
381 else {
382 strcpy(str, bootstr);
383 ap1 = ap = str + strlen(str);
384 *ap++ = ' ';
385 }
386 }
387 *ap++ = '-';
388 if (howto & RB_SINGLE)
389 *ap++ = 's';
390 if (howto & RB_KDB)
391 *ap++ = 'd';
392 *ap++ = 0;
393 if (ap[-2] == '-')
394 *ap1 = 0;
395 #if defined(SHARK) && (NPC > 0)
396 shark_screen_cleanup(0);
397 #endif
398 OF_boot(str);
399 /*NOTREACHED*/
400 }
401
402 ofw_exit:
403 printf("Calling OF_exit...\n");
404 #if defined(SHARK) && (NPC > 0)
405 shark_screen_cleanup(1);
406 #endif
407 OF_exit();
408 /*NOTREACHED*/
409 }
410
411
412 #if BOOT_FW_DHCP
413
414 extern char *ip2dotted __P((struct in_addr));
415
416 /*
417 * Get DHCP data from OFW
418 */
419
420 void
421 get_fw_dhcp_data(bdp)
422 struct bootdata *bdp;
423 {
424 int chosen;
425 int dhcplen;
426
427 bzero((char *)bdp, sizeof(*bdp));
428 if ((chosen = OF_finddevice("/chosen")) == -1)
429 panic("no /chosen from OFW");
430 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
431 u_char *cp;
432 int dhcp_type = 0;
433 char *ip;
434
435 /*
436 * OFW saved a DHCP (or BOOTP) packet for us.
437 */
438 if (dhcplen > sizeof(bdp->dhcp_packet))
439 panic("DHCP packet too large");
440 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
441 sizeof(bdp->dhcp_packet));
442 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
443 /*
444 * Collect the interesting data from DHCP into
445 * the bootdata structure.
446 */
447 bdp->ip_address = bdp->dhcp_packet.yiaddr;
448 ip = ip2dotted(bdp->ip_address);
449 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
450 parse_dhcp_options(&bdp->dhcp_packet,
451 bdp->dhcp_packet.options + 4,
452 &bdp->dhcp_packet.options[dhcplen
453 - DHCP_FIXED_NON_UDP], bdp, ip);
454 if (bdp->root_ip.s_addr == 0)
455 bdp->root_ip = bdp->dhcp_packet.siaddr;
456 if (bdp->swap_ip.s_addr == 0)
457 bdp->swap_ip = bdp->dhcp_packet.siaddr;
458 }
459 /*
460 * If the DHCP packet did not contain all the necessary data,
461 * look in NVRAM for the missing parts.
462 */
463 {
464 int options;
465 int proplen;
466 #define BOOTJUNKV_SIZE 256
467 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
468
469
470 if ((options = OF_finddevice("/options")) == -1)
471 panic("can't find /options");
472 if (bdp->ip_address.s_addr == 0 &&
473 (proplen = OF_getprop(options, "ipaddr",
474 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
475 bootjunkv[proplen] = '\0';
476 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
477 bdp->ip_address.s_addr = 0;
478 }
479 if (bdp->ip_mask.s_addr == 0 &&
480 (proplen = OF_getprop(options, "netmask",
481 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
482 bootjunkv[proplen] = '\0';
483 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
484 bdp->ip_mask.s_addr = 0;
485 }
486 if (bdp->hostname[0] == '\0' &&
487 (proplen = OF_getprop(options, "hostname",
488 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
489 bdp->hostname[proplen] = '\0';
490 }
491 if (bdp->root[0] == '\0' &&
492 (proplen = OF_getprop(options, "rootfs",
493 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
494 bootjunkv[proplen] = '\0';
495 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
496 }
497 if (bdp->swap[0] == '\0' &&
498 (proplen = OF_getprop(options, "swapfs",
499 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
500 bootjunkv[proplen] = '\0';
501 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
502 }
503 }
504 }
505
506 #endif /* BOOT_FW_DHCP */
507
508 void
509 ofw_getbootinfo(bp_pp, ba_pp)
510 char **bp_pp;
511 char **ba_pp;
512 {
513 int chosen;
514 int bp_len;
515 int ba_len;
516 char *bootpathv;
517 char *bootargsv;
518
519 /* Read the bootpath and bootargs out of OFW. */
520 /* XXX is bootpath still interesting? --emg */
521 if ((chosen = OF_finddevice("/chosen")) == -1)
522 panic("no /chosen from OFW");
523 bp_len = OF_getproplen(chosen, "bootpath");
524 ba_len = OF_getproplen(chosen, "bootargs");
525 if (bp_len < 0 || ba_len < 0)
526 panic("can't get boot data from OFW");
527
528 bootpathv = (char *)ofw_malloc(bp_len);
529 bootargsv = (char *)ofw_malloc(ba_len);
530
531 if (bp_len)
532 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
533 else
534 bootpathv[0] = '\0';
535
536 if (ba_len)
537 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
538 else
539 bootargsv[0] = '\0';
540
541 *bp_pp = bootpathv;
542 *ba_pp = bootargsv;
543 #ifdef DIAGNOSTIC
544 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
545 #endif
546 }
547
548 vm_offset_t
549 ofw_getcleaninfo(void)
550 {
551 int cpu;
552 vm_offset_t vclean, pclean;
553
554 if ((cpu = OF_finddevice("/cpu")) == -1)
555 panic("no /cpu from OFW");
556
557 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
558 sizeof(vclean))) != sizeof(vclean)) {
559 #ifdef DEBUG
560 printf("no OFW d-cache-flush-address property\n");
561 #endif
562 return -1;
563 }
564
565 if ((pclean = ofw_gettranslation(
566 of_decode_int((unsigned char *)&vclean))) == -1)
567 panic("OFW failed to translate cache flush address");
568
569 return pclean;
570 }
571
572 void
573 ofw_configisa(pio, pmem)
574 vm_offset_t *pio;
575 vm_offset_t *pmem;
576 {
577 int vl;
578
579 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
580 ofw_configisaonly(pio, pmem);
581 else /* old style OFW dev info tree */
582 ofw_configvl(vl, pio, pmem);
583 }
584
585 static void
586 ofw_configisaonly(pio, pmem)
587 vm_offset_t *pio;
588 vm_offset_t *pmem;
589 {
590 int isa;
591 int rangeidx;
592 int size;
593 vm_offset_t hi, start;
594 struct isa_range ranges[2];
595
596 if ((isa = OF_finddevice("/isa")) == -1)
597 panic("OFW has no /isa device node");
598
599 /* expect to find two isa ranges: IO/data and memory/data */
600 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
601 != sizeof(ranges))
602 panic("unexpected size of OFW /isa ranges property: %d", size);
603
604 *pio = *pmem = -1;
605
606 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
607 hi = of_decode_int((unsigned char *)
608 &ranges[rangeidx].isa_phys_hi);
609 start = of_decode_int((unsigned char *)
610 &ranges[rangeidx].parent_phys_start);
611
612 if (hi & 1) { /* then I/O space */
613 *pio = start;
614 } else {
615 *pmem = start;
616 }
617 } /* END for */
618
619 if ((*pio == -1) || (*pmem == -1))
620 panic("bad OFW /isa ranges property");
621
622 }
623
624 static void
625 ofw_configvl(vl, pio, pmem)
626 int vl;
627 vm_offset_t *pio;
628 vm_offset_t *pmem;
629 {
630 int isa;
631 int ir, vr;
632 int size;
633 vm_offset_t hi, start;
634 struct vl_isa_range isa_ranges[2];
635 struct vl_range vl_ranges[2];
636
637 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
638 panic("OFW has no /vlbus/isa device node");
639
640 /* expect to find two isa ranges: IO/data and memory/data */
641 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
642 != sizeof(isa_ranges))
643 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
644 size);
645
646 /* expect to find two vl ranges: IO/data and memory/data */
647 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
648 != sizeof(vl_ranges))
649 panic("unexpected size of OFW /vlbus ranges property: %d", size);
650
651 *pio = -1;
652 *pmem = -1;
653
654 for (ir = 0; ir < 2; ++ir) {
655 for (vr = 0; vr < 2; ++vr) {
656 if ((isa_ranges[ir].parent_phys_hi
657 == vl_ranges[vr].vl_phys_hi) &&
658 (isa_ranges[ir].parent_phys_lo
659 == vl_ranges[vr].vl_phys_lo)) {
660 hi = of_decode_int((unsigned char *)
661 &isa_ranges[ir].isa_phys_hi);
662 start = of_decode_int((unsigned char *)
663 &vl_ranges[vr].parent_phys_start);
664
665 if (hi & 1) { /* then I/O space */
666 *pio = start;
667 } else {
668 *pmem = start;
669 }
670 } /* END if */
671 } /* END for */
672 } /* END for */
673
674 if ((*pio == -1) || (*pmem == -1))
675 panic("bad OFW /isa ranges property");
676 }
677
678 void
679 ofw_configisadma(pdma)
680 vm_offset_t *pdma;
681 {
682 int root;
683 int rangeidx;
684 int size;
685 struct dma_range *dr;
686 #if NISADMA > 0
687 extern bus_dma_segment_t *pmap_isa_dma_ranges;
688 extern int pmap_isa_dma_nranges;
689 #endif
690
691 if ((root = OF_finddevice("/")) == -1 ||
692 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
693 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
694 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
695 panic("bad / dma-ranges property");
696
697 nOFdmaranges = size / sizeof(struct dma_range);
698
699 #if NISADMA > 0
700 /* Allocate storage for non-OFW representation of the range. */
701 pmap_isa_dma_ranges = ofw_malloc(nOFdmaranges *
702 sizeof(bus_dma_segment_t));
703 if (pmap_isa_dma_ranges == NULL)
704 panic("unable to allocate pmap_isa_dma_ranges");
705 pmap_isa_dma_nranges = nOFdmaranges;
706 #endif
707
708 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
709 ++rangeidx, ++dr) {
710 dr->start = of_decode_int((unsigned char *)&dr->start);
711 dr->size = of_decode_int((unsigned char *)&dr->size);
712 #if NISADMA > 0
713 pmap_isa_dma_ranges[rangeidx].ds_addr = dr->start;
714 pmap_isa_dma_ranges[rangeidx].ds_len = dr->size;
715 #endif
716 }
717
718 #ifdef DEBUG
719 printf("dma ranges size = %d\n", size);
720
721 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
722 printf("%08lx %08lx\n",
723 (u_long)OFdmaranges[rangeidx].start,
724 (u_long)OFdmaranges[rangeidx].size);
725 }
726 #endif
727 }
728
729 /*
730 * Memory configuration:
731 *
732 * We start off running in the environment provided by OFW.
733 * This has the MMU turned on, the kernel code and data
734 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
735 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
736 * page0 mapped-in at 0x0.
737 *
738 * The strategy is to set-up the address space for proc0 --
739 * including the allocation of space for new page tables -- while
740 * memory is still managed by OFW. We then effectively create a
741 * copy of the address space by dumping all of OFW's translations
742 * and poking them into the new page tables. We then notify OFW
743 * that we are assuming control of memory-management by installing
744 * our callback-handler, and switch to the NetBSD-managed page
745 * tables with the setttb() call.
746 *
747 * This scheme may cause some amount of memory to be wasted within
748 * OFW as dead page tables, but it shouldn't be more than about
749 * 20-30KB. (It's also possible that OFW will re-use the space.)
750 */
751 void
752 ofw_configmem(void)
753 {
754 pv_addr_t proc0_ttbbase;
755 pv_addr_t proc0_ptpt;
756
757 /* Set-up proc0 address space. */
758 ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
759
760 /*
761 * Get a dump of OFW's picture of physical memory.
762 * This is used below to initialize a load of variables used by pmap.
763 * We get it now rather than later because we are about to
764 * tell OFW to stop managing memory.
765 */
766 ofw_getphysmeminfo();
767
768 /* We are about to take control of memory-management from OFW.
769 * Establish callbacks for OFW to use for its future memory needs.
770 * This is required for us to keep using OFW services.
771 */
772
773 /* First initialize our callback memory allocator. */
774 ofw_initallocator();
775
776 OF_set_callback((void(*)())ofw_callbackhandler);
777
778 /* Switch to the proc0 pagetables. */
779 setttb(proc0_ttbbase.pv_pa);
780
781 /* Aaaaaaaah, running in the proc0 address space! */
782 /* I feel good... */
783
784 /* Set-up the various globals which describe physical memory for pmap. */
785 {
786 struct mem_region *mp;
787 int totalcnt;
788 int availcnt;
789 int i;
790
791 /* physmem, physical_start, physical_end */
792 physmem = 0;
793 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
794 totalcnt++, mp++) {
795 #ifdef OLDPRINTFS
796 printf("physmem: %x, %x\n", mp->start, mp->size);
797 #endif
798 physmem += btoc(mp->size);
799 }
800 physical_start = OFphysmem[0].start;
801 mp--;
802 physical_end = mp->start + mp->size;
803
804 /* free_pages, physical_freestart, physical_freeend */
805 free_pages = 0;
806 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
807 availcnt++, mp++) {
808 #ifdef OLDPRINTFS
809 printf("physavail: %x, %x\n", mp->start, mp->size);
810 #endif
811 free_pages += btoc(mp->size);
812 }
813 physical_freestart = OFphysavail[0].start;
814 mp--;
815 physical_freeend = mp->start + mp->size;
816 #ifdef OLDPRINTFS
817 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
818 physmem, free_pages);
819 #endif
820
821 /*
822 * This is a hack to work with the existing pmap code.
823 * That code depends on a RiscPC BootConfig structure
824 * containing, among other things, an array describing
825 * the regions of physical memory. So, for now, we need
826 * to stuff our OFW-derived physical memory info into a
827 * "fake" BootConfig structure.
828 *
829 * An added twist is that we initialize the BootConfig
830 * structure with our "available" physical memory regions
831 * rather than the "total" physical memory regions. Why?
832 * Because:
833 *
834 * (a) the VM code requires that the "free" pages it is
835 * initialized with have consecutive indices. This
836 * allows it to use more efficient data structures
837 * (presumably).
838 * (b) the current pmap routines which report the initial
839 * set of free page indices (pmap_next_page) and
840 * which map addresses to indices (pmap_page_index)
841 * assume that the free pages are consecutive across
842 * memory region boundaries.
843 *
844 * This means that memory which is "stolen" at startup time
845 * (say, for page descriptors) MUST come from either the
846 * bottom of the first region or the top of the last.
847 *
848 * This requirement doesn't mesh well with OFW (or at least
849 * our use of it). We can get around it for the time being
850 * by pretending that our "available" region array describes
851 * all of our physical memory. This may cause some important
852 * information to be excluded from a dump file, but so far
853 * I haven't come across any other negative effects.
854 *
855 * In the long-run we should fix the index
856 * generation/translation code in the pmap module.
857 */
858
859 if (DRAM_BLOCKS < (availcnt + 1))
860 panic("more ofw memory regions than bootconfig blocks");
861
862 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
863 bootconfig.dram[i].address = mp->start;
864 bootconfig.dram[i].pages = btoc(mp->size);
865 }
866 bootconfig.dramblocks = availcnt;
867 }
868
869 /* Initialize pmap module. */
870 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
871 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
872 }
873
874
875 /*
876 ************************************************************
877
878 Routines private to this module
879
880 ************************************************************
881 */
882
883 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
884 static void
885 ofw_callbackhandler(args)
886 struct ofw_cbargs *args;
887 {
888 char *name = args->name;
889 int nargs = args->nargs;
890 int nreturns = args->nreturns;
891 int *args_n_results = args->args_n_results;
892
893 ofw_callbacks++;
894
895 #if defined(OFWGENCFG)
896 /* Check this first, so that we don't waste IRQ time parsing. */
897 if (strcmp(name, "tick") == 0) {
898 vm_offset_t frame;
899
900 /* Check format. */
901 if (nargs != 1 || nreturns < 1) {
902 args_n_results[nargs] = -1;
903 args->nreturns = 1;
904 return;
905 }
906 args_n_results[nargs] = 0; /* properly formatted request */
907
908 /*
909 * Note that we are running in the IRQ frame, with interrupts
910 * disabled.
911 *
912 * We need to do two things here:
913 * - copy a few words out of the input frame into a global
914 * area, for later use by our real tick-handling code
915 * - patch a few words in the frame so that when OFW returns
916 * from the interrupt it will resume with our handler
917 * rather than the code that was actually interrupted.
918 * Our handler will resume when it finishes with the code
919 * that was actually interrupted.
920 *
921 * It's simplest to do this in assembler, since it requires
922 * switching frames and grovelling about with registers.
923 */
924 frame = (vm_offset_t)args_n_results[0];
925 if (ofw_handleticks)
926 dotickgrovelling(frame);
927 args_n_results[nargs + 1] = frame;
928 args->nreturns = 1;
929 } else
930 #endif
931
932 if (strcmp(name, "map") == 0) {
933 vm_offset_t va;
934 vm_offset_t pa;
935 vm_size_t size;
936 int mode;
937 int ap_bits;
938 int dom_bits;
939 int cb_bits;
940
941 /* Check format. */
942 if (nargs != 4 || nreturns < 2) {
943 args_n_results[nargs] = -1;
944 args->nreturns = 1;
945 return;
946 }
947 args_n_results[nargs] = 0; /* properly formatted request */
948
949 pa = (vm_offset_t)args_n_results[0];
950 va = (vm_offset_t)args_n_results[1];
951 size = (vm_size_t)args_n_results[2];
952 mode = args_n_results[3];
953 ap_bits = (mode & 0x00000C00);
954 dom_bits = (mode & 0x000001E0);
955 cb_bits = (mode & 0x000000C0);
956
957 /* Sanity checks. */
958 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
959 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
960 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
961 size == 0 || (dom_bits >> 5) != 0) {
962 args_n_results[nargs + 1] = -1;
963 args->nreturns = 1;
964 return;
965 }
966
967 /* Write-back anything stuck in the cache. */
968 cpu_idcache_wbinv_all();
969
970 /* Install new mappings. */
971 {
972 pt_entry_t *pte = vtopte(va);
973 int npages = size >> PGSHIFT;
974
975 ap_bits >>= 10;
976 for (; npages > 0; pte++, pa += NBPG, npages--)
977 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S | cb_bits);
978 }
979
980 /* Clean out tlb. */
981 tlb_flush();
982
983 args_n_results[nargs + 1] = 0;
984 args->nreturns = 2;
985 } else if (strcmp(name, "unmap") == 0) {
986 vm_offset_t va;
987 vm_size_t size;
988
989 /* Check format. */
990 if (nargs != 2 || nreturns < 1) {
991 args_n_results[nargs] = -1;
992 args->nreturns = 1;
993 return;
994 }
995 args_n_results[nargs] = 0; /* properly formatted request */
996
997 va = (vm_offset_t)args_n_results[0];
998 size = (vm_size_t)args_n_results[1];
999
1000 /* Sanity checks. */
1001 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1002 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1003 (size & PGOFSET) != 0 || size == 0) {
1004 args_n_results[nargs + 1] = -1;
1005 args->nreturns = 1;
1006 return;
1007 }
1008
1009 /* Write-back anything stuck in the cache. */
1010 cpu_idcache_wbinv_all();
1011
1012 /* Zero the mappings. */
1013 {
1014 pt_entry_t *pte = vtopte(va);
1015 int npages = size >> PGSHIFT;
1016
1017 for (; npages > 0; pte++, npages--)
1018 *pte = 0;
1019 }
1020
1021 /* Clean out tlb. */
1022 tlb_flush();
1023
1024 args->nreturns = 1;
1025 } else if (strcmp(name, "translate") == 0) {
1026 vm_offset_t va;
1027 vm_offset_t pa;
1028 int mode;
1029 pt_entry_t pte;
1030
1031 /* Check format. */
1032 if (nargs != 1 || nreturns < 4) {
1033 args_n_results[nargs] = -1;
1034 args->nreturns = 1;
1035 return;
1036 }
1037 args_n_results[nargs] = 0; /* properly formatted request */
1038
1039 va = (vm_offset_t)args_n_results[0];
1040
1041 /* Sanity checks.
1042 * For now, I am only willing to translate va's in the
1043 * "ofw range." Eventually, I may be more generous. -JJK
1044 */
1045 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1046 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1047 args_n_results[nargs + 1] = -1;
1048 args->nreturns = 1;
1049 return;
1050 }
1051
1052 /* Lookup mapping. */
1053 pte = *vtopte(va);
1054 if (pte == 0) {
1055 /* No mapping. */
1056 args_n_results[nargs + 1] = -1;
1057 args->nreturns = 2;
1058 } else {
1059 /* Existing mapping. */
1060 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1061 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1062
1063 args_n_results[nargs + 1] = 0;
1064 args_n_results[nargs + 2] = pa;
1065 args_n_results[nargs + 3] = mode;
1066 args->nreturns = 4;
1067 }
1068 } else if (strcmp(name, "claim-phys") == 0) {
1069 struct pglist alloclist;
1070 vm_offset_t low, high;
1071 vm_size_t align, size;
1072
1073 /*
1074 * XXX
1075 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1076 * XXX
1077 */
1078
1079 /* Check format. */
1080 if (nargs != 4 || nreturns < 3) {
1081 args_n_results[nargs] = -1;
1082 args->nreturns = 1;
1083 return;
1084 }
1085 args_n_results[nargs] = 0; /* properly formatted request */
1086
1087 low = args_n_results[0];
1088 size = args_n_results[2];
1089 align = args_n_results[3];
1090 high = args_n_results[1] + size;
1091
1092 #if 0
1093 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1094 low, size, align, high);
1095 align = size;
1096 printf("forcing align to be 0x%x\n", align);
1097 #endif
1098
1099 args_n_results[nargs + 1] =
1100 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1101 #if 0
1102 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1103 #endif
1104 if (args_n_results[nargs + 1] != 0) {
1105 #if 0
1106 printf("(failed)\n");
1107 #endif
1108 args_n_results[nargs + 1] = -1;
1109 args->nreturns = 2;
1110 return;
1111 }
1112 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1113 #if 0
1114 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1115 #endif
1116 args->nreturns = 3;
1117
1118 } else if (strcmp(name, "release-phys") == 0) {
1119 printf("unimplemented ofw callback - %s\n", name);
1120 args_n_results[nargs] = -1;
1121 args->nreturns = 1;
1122 } else if (strcmp(name, "claim-virt") == 0) {
1123 vm_offset_t va;
1124 vm_size_t size;
1125 vm_offset_t align;
1126
1127 /* XXX - notyet */
1128 /* printf("unimplemented ofw callback - %s\n", name);*/
1129 args_n_results[nargs] = -1;
1130 args->nreturns = 1;
1131 return;
1132
1133 /* Check format. */
1134 if (nargs != 2 || nreturns < 3) {
1135 args_n_results[nargs] = -1;
1136 args->nreturns = 1;
1137 return;
1138 }
1139 args_n_results[nargs] = 0; /* properly formatted request */
1140
1141 /* Allocate size bytes with specified alignment. */
1142 size = (vm_size_t)args_n_results[0];
1143 align = (vm_offset_t)args_n_results[1];
1144 if (align % NBPG != 0) {
1145 args_n_results[nargs + 1] = -1;
1146 args->nreturns = 2;
1147 return;
1148 }
1149
1150 if (va == 0) {
1151 /* Couldn't allocate. */
1152 args_n_results[nargs + 1] = -1;
1153 args->nreturns = 2;
1154 } else {
1155 /* Successful allocation. */
1156 args_n_results[nargs + 1] = 0;
1157 args_n_results[nargs + 2] = va;
1158 args->nreturns = 3;
1159 }
1160 } else if (strcmp(name, "release-virt") == 0) {
1161 vm_offset_t va;
1162 vm_size_t size;
1163
1164 /* XXX - notyet */
1165 printf("unimplemented ofw callback - %s\n", name);
1166 args_n_results[nargs] = -1;
1167 args->nreturns = 1;
1168 return;
1169
1170 /* Check format. */
1171 if (nargs != 2 || nreturns < 1) {
1172 args_n_results[nargs] = -1;
1173 args->nreturns = 1;
1174 return;
1175 }
1176 args_n_results[nargs] = 0; /* properly formatted request */
1177
1178 /* Release bytes. */
1179 va = (vm_offset_t)args_n_results[0];
1180 size = (vm_size_t)args_n_results[1];
1181
1182 args->nreturns = 1;
1183 } else {
1184 args_n_results[nargs] = -1;
1185 args->nreturns = 1;
1186 }
1187 }
1188
1189 static void
1190 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1191 pv_addr_t *proc0_ttbbase;
1192 pv_addr_t *proc0_ptpt;
1193 {
1194 int i, oft;
1195 pv_addr_t proc0_pagedir;
1196 pv_addr_t proc0_pt_pte;
1197 pv_addr_t proc0_pt_sys;
1198 pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1199 pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1200 pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1201 pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1202 pv_addr_t msgbuf;
1203 vm_offset_t L1pagetable;
1204 struct mem_translation *tp;
1205
1206 /* Set-up the system page. */
1207 KASSERT(vector_page == 0); /* XXX for now */
1208 systempage.pv_va = ofw_claimvirt(vector_page, NBPG, 0);
1209 if (systempage.pv_va == -1) {
1210 /* Something was already mapped to vector_page's VA. */
1211 systempage.pv_va = vector_page;
1212 systempage.pv_pa = ofw_gettranslation(vector_page);
1213 if (systempage.pv_pa == -1)
1214 panic("bogus result from gettranslation(vector_page)");
1215 } else {
1216 /* We were just allocated the page-length range at VA 0. */
1217 if (systempage.pv_va != vector_page)
1218 panic("bogus result from claimvirt(vector_page, NBPG, 0)");
1219
1220 /* Now allocate a physical page, and establish the mapping. */
1221 systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
1222 if (systempage.pv_pa == -1)
1223 panic("bogus result from claimphys(0, NBPG, NBPG)");
1224 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1225 NBPG, -1); /* XXX - mode? -JJK */
1226
1227 /* Zero the memory. */
1228 bzero((char *)systempage.pv_va, NBPG);
1229 }
1230
1231 /* Allocate/initialize space for the proc0, NetBSD-managed */
1232 /* page tables that we will be switching to soon. */
1233 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1234 ofw_claimpages(&virt_freeptr, &proc0_pt_pte, L2_TABLE_SIZE);
1235 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1236 for (i = 0; i < KERNEL_IMG_PTS; i++)
1237 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1238 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1239 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1240 for (i = 0; i < KERNEL_OFW_PTS; i++)
1241 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1242 for (i = 0; i < KERNEL_IO_PTS; i++)
1243 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1244
1245 /* Allocate/initialize space for stacks. */
1246 #ifndef OFWGENCFG
1247 ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
1248 #endif
1249 ofw_claimpages(&virt_freeptr, &undstack, NBPG);
1250 ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
1251 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
1252
1253 /* Allocate/initialize space for msgbuf area. */
1254 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1255 msgbufphys = msgbuf.pv_pa;
1256
1257 /* Construct the proc0 L1 pagetable. */
1258 L1pagetable = proc0_pagedir.pv_va;
1259
1260 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1261 for (i = 0; i < KERNEL_IMG_PTS; i++)
1262 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1263 &proc0_pt_kernel[i]);
1264 pmap_link_l2pt(L1pagetable, PTE_BASE,
1265 &proc0_pt_pte);
1266 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1267 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1268 &proc0_pt_vmdata[i]);
1269 for (i = 0; i < KERNEL_OFW_PTS; i++)
1270 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1271 &proc0_pt_ofw[i]);
1272 for (i = 0; i < KERNEL_IO_PTS; i++)
1273 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1274 &proc0_pt_io[i]);
1275
1276 /*
1277 * OK, we're done allocating.
1278 * Get a dump of OFW's translations, and make the appropriate
1279 * entries in the L2 pagetables that we just allocated.
1280 */
1281
1282 ofw_getvirttranslations();
1283
1284 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1285 oft++, tp++) {
1286
1287 vm_offset_t va, pa;
1288 int npages = tp->size / NBPG;
1289
1290 /* Size must be an integral number of pages. */
1291 if (npages == 0 || tp->size % NBPG != 0)
1292 panic("illegal ofw translation (size)");
1293
1294 /* Make an entry for each page in the appropriate table. */
1295 for (va = tp->virt, pa = tp->phys; npages > 0;
1296 va += NBPG, pa += NBPG, npages--) {
1297 /*
1298 * Map the top bits to the appropriate L2 pagetable.
1299 * The only allowable regions are page0, the
1300 * kernel-static area, and the ofw area.
1301 */
1302 switch (va >> (L1_S_SHIFT + 2)) {
1303 case 0:
1304 /* page0 */
1305 break;
1306
1307 #if KERNEL_IMG_PTS != 2
1308 #error "Update ofw translation range list"
1309 #endif
1310 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1311 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1312 /* kernel static area */
1313 break;
1314
1315 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1316 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1317 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1318 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1319 /* ofw area */
1320 break;
1321
1322 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1323 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1324 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1325 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1326 /* io area */
1327 break;
1328
1329 default:
1330 /* illegal */
1331 panic("illegal ofw translation (addr) %#lx",
1332 va);
1333 }
1334
1335 /* Make the entry. */
1336 pmap_map_entry(L1pagetable, va, pa,
1337 VM_PROT_READ|VM_PROT_WRITE,
1338 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1339 : PTE_NOCACHE);
1340 }
1341 }
1342
1343 /*
1344 * We don't actually want some of the mappings that we just
1345 * set up to appear in proc0's address space. In particular,
1346 * we don't want aliases to physical addresses that the kernel
1347 * has-mapped/will-map elsewhere.
1348 */
1349 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1350 proc0_pt_sys.pv_va, L2_TABLE_SIZE);
1351 for (i = 0; i < KERNEL_IMG_PTS; i++)
1352 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1353 proc0_pt_kernel[i].pv_va, L2_TABLE_SIZE);
1354 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1355 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1356 proc0_pt_vmdata[i].pv_va, L2_TABLE_SIZE);
1357 for (i = 0; i < KERNEL_OFW_PTS; i++)
1358 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1359 proc0_pt_ofw[i].pv_va, L2_TABLE_SIZE);
1360 for (i = 0; i < KERNEL_IO_PTS; i++)
1361 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1362 proc0_pt_io[i].pv_va, L2_TABLE_SIZE);
1363 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1364 msgbuf.pv_va, MSGBUFSIZE);
1365
1366 /*
1367 * We did not throw away the proc0_pt_pte and proc0_pagedir
1368 * mappings as well still want them. However we don't want them
1369 * cached ...
1370 * Really these should be uncached when allocated.
1371 */
1372 pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
1373 proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1374 for (i = 0; i < (L1_TABLE_SIZE / NBPG); ++i)
1375 pmap_map_entry(L1pagetable,
1376 proc0_pagedir.pv_va + NBPG * i,
1377 proc0_pagedir.pv_pa + NBPG * i,
1378 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1379
1380 /*
1381 * Construct the proc0 L2 pagetables that map page tables.
1382 */
1383
1384 /* Map entries in the L2pagetable used to map L2PTs. */
1385 pmap_map_entry(L1pagetable,
1386 PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
1387 proc0_pt_sys.pv_pa,
1388 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1389 for (i = 0; i < KERNEL_IMG_PTS; i++)
1390 pmap_map_entry(L1pagetable,
1391 PTE_BASE + ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2)),
1392 proc0_pt_kernel[i].pv_pa,
1393 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1394 pmap_map_entry(L1pagetable,
1395 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
1396 proc0_pt_pte.pv_pa,
1397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1398 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1399 pmap_map_entry(L1pagetable,
1400 PTE_BASE + ((KERNEL_VM_BASE + i * 0x00400000)
1401 >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1403 for (i = 0; i < KERNEL_OFW_PTS; i++)
1404 pmap_map_entry(L1pagetable,
1405 PTE_BASE + ((OFW_VIRT_BASE + i * 0x00400000)
1406 >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1407 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1408 for (i = 0; i < KERNEL_IO_PTS; i++)
1409 pmap_map_entry(L1pagetable,
1410 PTE_BASE + ((IO_VIRT_BASE + i * 0x00400000)
1411 >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1412 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1413
1414 /* update the top of the kernel VM */
1415 pmap_curmaxkvaddr =
1416 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1417
1418 /*
1419 * gross hack for the sake of not thrashing the TLB and making
1420 * cache flush more efficient: blast l1 ptes for sections.
1421 */
1422 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1423 vm_offset_t va = tp->virt;
1424 vm_offset_t pa = tp->phys;
1425
1426 if (((va | pa) & L1_S_OFFSET) == 0) {
1427 int nsections = tp->size / L1_S_SIZE;
1428
1429 while (nsections--) {
1430 /* XXXJRT prot?? */
1431 pmap_map_section(L1pagetable, va, pa,
1432 VM_PROT_READ|VM_PROT_WRITE,
1433 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1434 : PTE_NOCACHE);
1435 va += L1_S_SIZE;
1436 pa += L1_S_SIZE;
1437 }
1438 }
1439 }
1440
1441 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1442 *proc0_ttbbase = proc0_pagedir;
1443 *proc0_ptpt = proc0_pt_pte;
1444 }
1445
1446
1447 static void
1448 ofw_getphysmeminfo()
1449 {
1450 int phandle;
1451 int mem_len;
1452 int avail_len;
1453 int i;
1454
1455 if ((phandle = OF_finddevice("/memory")) == -1 ||
1456 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1457 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1458 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1459 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1460 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1461 OF_getprop(phandle, "available", OFphysavail, avail_len)
1462 != avail_len)
1463 panic("can't get physmeminfo from OFW");
1464
1465 nOFphysmem = mem_len / sizeof(struct mem_region);
1466 nOFphysavail = avail_len / sizeof(struct mem_region);
1467
1468 /*
1469 * Sort the blocks in each array into ascending address order.
1470 * Also, page-align all blocks.
1471 */
1472 for (i = 0; i < 2; i++) {
1473 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1474 struct mem_region *mp;
1475 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1476 int j;
1477
1478 #ifdef OLDPRINTFS
1479 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1480 #endif
1481
1482 /* XXX - Convert all the values to host order. -JJK */
1483 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1484 mp->start = of_decode_int((unsigned char *)&mp->start);
1485 mp->size = of_decode_int((unsigned char *)&mp->size);
1486 }
1487
1488 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1489 u_int s, sz;
1490 struct mem_region *mp1;
1491
1492 /* Page-align start of the block. */
1493 s = mp->start % NBPG;
1494 if (s != 0) {
1495 s = (NBPG - s);
1496
1497 if (mp->size >= s) {
1498 mp->start += s;
1499 mp->size -= s;
1500 }
1501 }
1502
1503 /* Page-align the size. */
1504 mp->size -= mp->size % NBPG;
1505
1506 /* Handle empty block. */
1507 if (mp->size == 0) {
1508 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1509 * sizeof(struct mem_region));
1510 cnt--;
1511 mp--;
1512 continue;
1513 }
1514
1515 /* Bubble sort. */
1516 s = mp->start;
1517 sz = mp->size;
1518 for (mp1 = tmp; mp1 < mp; mp1++)
1519 if (s < mp1->start)
1520 break;
1521 if (mp1 < mp) {
1522 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1523 mp1->start = s;
1524 mp1->size = sz;
1525 }
1526 }
1527
1528 #ifdef OLDPRINTFS
1529 for (mp = tmp; mp->size; mp++) {
1530 printf("%x, %x\n", mp->start, mp->size);
1531 }
1532 #endif
1533 }
1534 }
1535
1536
1537 static void
1538 ofw_getvirttranslations(void)
1539 {
1540 int mmu_phandle;
1541 int mmu_ihandle;
1542 int trans_len;
1543 int over, len;
1544 int i;
1545 struct mem_translation *tp;
1546
1547 mmu_ihandle = ofw_mmu_ihandle();
1548
1549 /* overallocate to avoid increases during allocation */
1550 over = 4 * sizeof(struct mem_translation);
1551 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1552 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1553 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1554 (trans_len = OF_getprop(mmu_phandle, "translations",
1555 OFtranslations, len + over)) > (len + over))
1556 panic("can't get virttranslations from OFW");
1557
1558 /* XXX - Convert all the values to host order. -JJK */
1559 nOFtranslations = trans_len / sizeof(struct mem_translation);
1560 #ifdef OLDPRINTFS
1561 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1562 #endif
1563 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1564 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1565 tp->size = of_decode_int((unsigned char *)&tp->size);
1566 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1567 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1568 }
1569 }
1570
1571 /*
1572 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1573 */
1574 typedef struct _vfree {
1575 struct _vfree *pNext;
1576 vm_offset_t start;
1577 vm_size_t size;
1578 } VFREE, *PVFREE;
1579
1580 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1581
1582 static PVFREE vflist = &vfinitial;
1583
1584 static vm_offset_t
1585 ofw_valloc(size, align)
1586 vm_offset_t size;
1587 vm_offset_t align;
1588 {
1589 PVFREE *ppvf;
1590 PVFREE pNew;
1591 vm_offset_t new;
1592 vm_offset_t lead;
1593
1594 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1595 if (align == 0) {
1596 new = (*ppvf)->start;
1597 lead = 0;
1598 } else {
1599 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1600 lead = new - (*ppvf)->start;
1601 }
1602
1603 if (((*ppvf)->size - lead) >= size) {
1604 if (lead == 0) {
1605 /* using whole block */
1606 if (size == (*ppvf)->size) {
1607 /* splice out of list */
1608 (*ppvf) = (*ppvf)->pNext;
1609 } else { /* tail of block is free */
1610 (*ppvf)->start = new + size;
1611 (*ppvf)->size -= size;
1612 }
1613 } else {
1614 vm_size_t tail = ((*ppvf)->start
1615 + (*ppvf)->size) - (new + size);
1616 /* free space at beginning */
1617 (*ppvf)->size = lead;
1618
1619 if (tail != 0) {
1620 /* free space at tail */
1621 pNew = ofw_malloc(sizeof(VFREE));
1622 pNew->pNext = (*ppvf)->pNext;
1623 (*ppvf)->pNext = pNew;
1624 pNew->start = new + size;
1625 pNew->size = tail;
1626 }
1627 }
1628 return new;
1629 } /* END if */
1630 } /* END for */
1631
1632 return -1;
1633 }
1634
1635 vm_offset_t
1636 ofw_map(pa, size, cb_bits)
1637 vm_offset_t pa;
1638 vm_size_t size;
1639 int cb_bits;
1640 {
1641 vm_offset_t va;
1642
1643 if ((va = ofw_valloc(size, size)) == -1)
1644 panic("cannot alloc virtual memory for %#lx", pa);
1645
1646 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1647
1648 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1649
1650 return va;
1651 }
1652
1653 static int
1654 ofw_mem_ihandle(void)
1655 {
1656 static int mem_ihandle = 0;
1657 int chosen;
1658
1659 if (mem_ihandle != 0)
1660 return(mem_ihandle);
1661
1662 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1663 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1664 panic("ofw_mem_ihandle");
1665
1666 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1667
1668 return(mem_ihandle);
1669 }
1670
1671
1672 static int
1673 ofw_mmu_ihandle(void)
1674 {
1675 static int mmu_ihandle = 0;
1676 int chosen;
1677
1678 if (mmu_ihandle != 0)
1679 return(mmu_ihandle);
1680
1681 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1682 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1683 panic("ofw_mmu_ihandle");
1684
1685 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1686
1687 return(mmu_ihandle);
1688 }
1689
1690
1691 /* Return -1 on failure. */
1692 static vm_offset_t
1693 ofw_claimphys(pa, size, align)
1694 vm_offset_t pa;
1695 vm_size_t size;
1696 vm_offset_t align;
1697 {
1698 int mem_ihandle = ofw_mem_ihandle();
1699
1700 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1701 if (align == 0) {
1702 /* Allocate at specified base; alignment is ignored. */
1703 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1704 } else {
1705 /* Allocate anywhere, with specified alignment. */
1706 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1707 }
1708
1709 /* printf("%x\n", pa);*/
1710 return(pa);
1711 }
1712
1713
1714 #if 0
1715 /* Return -1 on failure. */
1716 static vm_offset_t
1717 ofw_releasephys(pa, size)
1718 vm_offset_t pa;
1719 vm_size_t size;
1720 {
1721 int mem_ihandle = ofw_mem_ihandle();
1722
1723 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1724
1725 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1726 }
1727 #endif
1728
1729 /* Return -1 on failure. */
1730 static vm_offset_t
1731 ofw_claimvirt(va, size, align)
1732 vm_offset_t va;
1733 vm_size_t size;
1734 vm_offset_t align;
1735 {
1736 int mmu_ihandle = ofw_mmu_ihandle();
1737
1738 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1739 if (align == 0) {
1740 /* Allocate at specified base; alignment is ignored. */
1741 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1742 } else {
1743 /* Allocate anywhere, with specified alignment. */
1744 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1745 }
1746
1747 /*printf("%x\n", va);*/
1748 return(va);
1749 }
1750
1751
1752 /* Return -1 if no mapping. */
1753 vm_offset_t
1754 ofw_gettranslation(va)
1755 vm_offset_t va;
1756 {
1757 int mmu_ihandle = ofw_mmu_ihandle();
1758 vm_offset_t pa;
1759 int mode;
1760 int exists;
1761
1762 /*printf("ofw_gettranslation (%x) --> ", va);*/
1763 exists = 0; /* gets set to true if translation exists */
1764 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1765 &exists) != 0)
1766 return(-1);
1767
1768 /*printf("%x\n", exists ? pa : -1);*/
1769 return(exists ? pa : -1);
1770 }
1771
1772
1773 static void
1774 ofw_settranslation(va, pa, size, mode)
1775 vm_offset_t va;
1776 vm_offset_t pa;
1777 vm_size_t size;
1778 int mode;
1779 {
1780 int mmu_ihandle = ofw_mmu_ihandle();
1781
1782 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1783 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1784 panic("ofw_settranslation failed");
1785 }
1786
1787 /*
1788 * Allocation routine used before the kernel takes over memory.
1789 * Use this for efficient storage for things that aren't rounded to
1790 * page size.
1791 *
1792 * The point here is not necessarily to be very efficient (even though
1793 * that's sort of nice), but to do proper dynamic allocation to avoid
1794 * size-limitation errors.
1795 *
1796 */
1797
1798 typedef struct _leftover {
1799 struct _leftover *pNext;
1800 vm_size_t size;
1801 } LEFTOVER, *PLEFTOVER;
1802
1803 /* leftover bits of pages. first word is pointer to next.
1804 second word is size of leftover */
1805 static PLEFTOVER leftovers = NULL;
1806
1807 static void *
1808 ofw_malloc(size)
1809 vm_size_t size;
1810 {
1811 PLEFTOVER *ppLeftover;
1812 PLEFTOVER pLeft;
1813 pv_addr_t new;
1814 vm_size_t newSize, claim_size;
1815
1816 /* round and set minimum size */
1817 size = max(sizeof(LEFTOVER),
1818 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1819
1820 for (ppLeftover = &leftovers; *ppLeftover;
1821 ppLeftover = &((*ppLeftover)->pNext))
1822 if ((*ppLeftover)->size >= size)
1823 break;
1824
1825 if (*ppLeftover) { /* have a leftover of the right size */
1826 /* remember the leftover */
1827 new.pv_va = (vm_offset_t)*ppLeftover;
1828 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1829 /* splice out of chain */
1830 *ppLeftover = (*ppLeftover)->pNext;
1831 } else {
1832 /* remember the next pointer */
1833 pLeft = (*ppLeftover)->pNext;
1834 newSize = (*ppLeftover)->size - size; /* reduce size */
1835 /* move pointer */
1836 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1837 + size);
1838 (*ppLeftover)->pNext = pLeft;
1839 (*ppLeftover)->size = newSize;
1840 }
1841 } else {
1842 claim_size = (size + NBPG - 1) & ~(NBPG - 1);
1843 ofw_claimpages(&virt_freeptr, &new, claim_size);
1844 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1845 pLeft = (PLEFTOVER)(new.pv_va + size);
1846 pLeft->pNext = leftovers;
1847 pLeft->size = claim_size - size;
1848 leftovers = pLeft;
1849 }
1850 }
1851
1852 return (void *)(new.pv_va);
1853 }
1854
1855 /*
1856 * Here is a really, really sleazy free. It's not used right now,
1857 * because it's not worth the extra complexity for just a few bytes.
1858 *
1859 */
1860 #if 0
1861 static void
1862 ofw_free(addr, size)
1863 vm_offset_t addr;
1864 vm_size_t size;
1865 {
1866 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1867
1868 /* splice right into list without checks or compaction */
1869 pLeftover->pNext = leftovers;
1870 pLeftover->size = size;
1871 leftovers = pLeftover;
1872 }
1873 #endif
1874
1875 /*
1876 * Allocate and zero round(size)/NBPG pages of memory.
1877 * We guarantee that the allocated memory will be
1878 * aligned to a boundary equal to the smallest power of
1879 * 2 greater than or equal to size.
1880 * free_pp is an IN/OUT parameter which points to the
1881 * last allocated virtual address in an allocate-downwards
1882 * stack. pv_p is an OUT parameter which contains the
1883 * virtual and physical base addresses of the allocated
1884 * memory.
1885 */
1886 static void
1887 ofw_claimpages(free_pp, pv_p, size)
1888 vm_offset_t *free_pp;
1889 pv_addr_t *pv_p;
1890 vm_size_t size;
1891 {
1892 /* round-up to page boundary */
1893 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1894 vm_size_t aligned_size;
1895 vm_offset_t va, pa;
1896
1897 if (alloc_size == 0)
1898 panic("ofw_claimpages zero");
1899
1900 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1901 ;
1902
1903 /* The only way to provide the alignment guarantees is to
1904 * allocate the virtual and physical ranges separately,
1905 * then do an explicit map call.
1906 */
1907 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1908 if (ofw_claimvirt(va, alloc_size, 0) != va)
1909 panic("ofw_claimpages va alloc");
1910 pa = ofw_claimphys(0, alloc_size, aligned_size);
1911 if (pa == -1)
1912 panic("ofw_claimpages pa alloc");
1913 /* XXX - what mode? -JJK */
1914 ofw_settranslation(va, pa, alloc_size, -1);
1915
1916 /* The memory's mapped-in now, so we can zero it. */
1917 bzero((char *)va, alloc_size);
1918
1919 /* Set OUT parameters. */
1920 *free_pp = va;
1921 pv_p->pv_va = va;
1922 pv_p->pv_pa = pa;
1923 }
1924
1925
1926 static void
1927 ofw_discardmappings(L2pagetable, va, size)
1928 vm_offset_t L2pagetable;
1929 vm_offset_t va;
1930 vm_size_t size;
1931 {
1932 /* round-up to page boundary */
1933 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1934 int npages = alloc_size / NBPG;
1935
1936 if (npages == 0)
1937 panic("ofw_discardmappings zero");
1938
1939 /* Discard each mapping. */
1940 for (; npages > 0; va += NBPG, npages--) {
1941 /* Sanity. The current entry should be non-null. */
1942 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1943 panic("ofw_discardmappings zero entry");
1944
1945 /* Clear the entry. */
1946 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1947 }
1948 }
1949
1950
1951 static void
1952 ofw_initallocator(void)
1953 {
1954
1955 }
1956