ofw.c revision 1.19 1 /* $NetBSD: ofw.c,v 1.19 2002/08/22 01:13:58 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #define _ARM32_BUS_DMA_PRIVATE
54 #include <machine/bus.h>
55 #include <machine/frame.h>
56 #include <machine/bootconfig.h>
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59
60 #include <dev/ofw/openfirm.h>
61 #include <machine/ofw.h>
62
63 #include <netinet/in.h>
64
65 #if BOOT_FW_DHCP
66 #include <nfs/bootdata.h>
67 #endif
68
69 #ifdef SHARK
70 #include "machine/pio.h"
71 #include "machine/isa_machdep.h"
72 #endif
73
74 #include "pc.h"
75 #include "isadma.h"
76
77 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
78 #define IO_VIRT_SIZE 0x01000000
79
80 #define KERNEL_IMG_PTS 2
81 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
82 #define KERNEL_OFW_PTS 4
83 #define KERNEL_IO_PTS 4
84
85 /*
86 * Imported variables
87 */
88 extern BootConfig bootconfig; /* temporary, I hope */
89
90 #ifdef DIAGNOSTIC
91 /* NOTE: These variables will be removed, well some of them */
92 extern u_int spl_mask;
93 extern u_int current_mask;
94 #endif
95
96 extern int ofw_handleticks;
97
98
99 /*
100 * Imported routines
101 */
102 extern void dump_spl_masks __P((void));
103 extern void dumpsys __P((void));
104 extern void dotickgrovelling __P((vm_offset_t));
105 #if defined(SHARK) && (NPC > 0)
106 extern void shark_screen_cleanup __P((int));
107 #endif
108
109 #define WriteWord(a, b) \
110 *((volatile unsigned int *)(a)) = (b)
111
112 #define ReadWord(a) \
113 (*((volatile unsigned int *)(a)))
114
115
116 /*
117 * Exported variables
118 */
119 /* These should all be in a meminfo structure. */
120 vm_offset_t physical_start;
121 vm_offset_t physical_freestart;
122 vm_offset_t physical_freeend;
123 vm_offset_t physical_end;
124 u_int free_pages;
125 int physmem;
126 pv_addr_t systempage;
127 #ifndef OFWGENCFG
128 pv_addr_t irqstack;
129 #endif
130 pv_addr_t undstack;
131 pv_addr_t abtstack;
132 pv_addr_t kernelstack;
133
134 vm_offset_t msgbufphys;
135
136 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
137 static vm_offset_t virt_freeptr;
138
139 int ofw_callbacks = 0; /* debugging counter */
140
141 /**************************************************************/
142
143
144 /*
145 * Declarations and definitions private to this module
146 *
147 */
148
149 struct mem_region {
150 vm_offset_t start;
151 vm_size_t size;
152 };
153
154 struct mem_translation {
155 vm_offset_t virt;
156 vm_size_t size;
157 vm_offset_t phys;
158 unsigned int mode;
159 };
160
161 struct isa_range {
162 vm_offset_t isa_phys_hi;
163 vm_offset_t isa_phys_lo;
164 vm_offset_t parent_phys_start;
165 vm_size_t isa_size;
166 };
167
168 struct vl_range {
169 vm_offset_t vl_phys_hi;
170 vm_offset_t vl_phys_lo;
171 vm_offset_t parent_phys_start;
172 vm_size_t vl_size;
173 };
174
175 struct vl_isa_range {
176 vm_offset_t isa_phys_hi;
177 vm_offset_t isa_phys_lo;
178 vm_offset_t parent_phys_hi;
179 vm_offset_t parent_phys_lo;
180 vm_size_t isa_size;
181 };
182
183 struct dma_range {
184 vm_offset_t start;
185 vm_size_t size;
186 };
187
188 struct ofw_cbargs {
189 char *name;
190 int nargs;
191 int nreturns;
192 int args_n_results[12];
193 };
194
195
196 /* Memory info */
197 static int nOFphysmem;
198 static struct mem_region *OFphysmem;
199 static int nOFphysavail;
200 static struct mem_region *OFphysavail;
201 static int nOFtranslations;
202 static struct mem_translation *OFtranslations;
203 static int nOFdmaranges;
204 static struct dma_range *OFdmaranges;
205
206 /* The OFW client services handle. */
207 /* Initialized by ofw_init(). */
208 static ofw_handle_t ofw_client_services_handle;
209
210
211 static void ofw_callbackhandler __P((struct ofw_cbargs *));
212 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
213 static void ofw_getphysmeminfo __P((void));
214 static void ofw_getvirttranslations __P((void));
215 static void *ofw_malloc(vm_size_t size);
216 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
217 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
218 static int ofw_mem_ihandle __P((void));
219 static int ofw_mmu_ihandle __P((void));
220 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
221 #if 0
222 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
223 #endif
224 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
225 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
226 static void ofw_initallocator __P((void));
227 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
228 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
229 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
230
231
232 /*
233 * DHCP hooks. For a first cut, we look to see if there is a DHCP
234 * packet that was saved by the firmware. If not, we proceed as before,
235 * getting hand-configured data from NVRAM. If there is one, we get the
236 * packet, and extract the data from it. For now, we hand that data up
237 * in the boot_args string as before.
238 */
239
240
241 /**************************************************************/
242
243
244 /*
245 *
246 * Support routines for xxx_machdep.c
247 *
248 * The intent is that all OFW-based configurations use the
249 * exported routines in this file to do their business. If
250 * they need to override some function they are free to do so.
251 *
252 * The exported routines are:
253 *
254 * openfirmware
255 * ofw_init
256 * ofw_boot
257 * ofw_getbootinfo
258 * ofw_configmem
259 * ofw_configisa
260 * ofw_configisadma
261 * ofw_gettranslation
262 * ofw_map
263 * ofw_getcleaninfo
264 */
265
266
267 int
268 openfirmware(args)
269 void *args;
270 {
271 int ofw_result;
272 u_int saved_irq_state;
273
274 /* OFW is not re-entrant, so we wrap a mutex around the call. */
275 saved_irq_state = disable_interrupts(I32_bit);
276 ofw_result = ofw_client_services_handle(args);
277 (void)restore_interrupts(saved_irq_state);
278
279 return(ofw_result);
280 }
281
282
283 void
284 ofw_init(ofw_handle)
285 ofw_handle_t ofw_handle;
286 {
287 ofw_client_services_handle = ofw_handle;
288
289 /* Everything we allocate in the remainder of this block is
290 * constrained to be in the "kernel-static" portion of the
291 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
292 * This is because all such objects are expected to be in
293 * that range by NetBSD, or the objects will be re-mapped
294 * after the page-table-switch to other specific locations.
295 * In the latter case, it's simplest if our pre-switch handles
296 * on those objects are in regions that are already "well-
297 * known." (Otherwise, the cloning of the OFW-managed address-
298 * space becomes more awkward.) To minimize the number of L2
299 * page tables that we use, we are further restricting the
300 * remaining allocations in this block to the bottom quarter of
301 * the legal range. OFW will have loaded the kernel text+data+bss
302 * starting at the bottom of the range, and we will allocate
303 * objects from the top, moving downwards. The two sub-regions
304 * will collide if their total sizes hit 8MB. The current total
305 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
306 * limit. The variable virt-freeptr represents the next free va
307 * (moving downwards).
308 */
309 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
310 }
311
312
313 void
314 ofw_boot(howto, bootstr)
315 int howto;
316 char *bootstr;
317 {
318
319 #ifdef DIAGNOSTIC
320 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
321 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
322
323 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
324 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
325 irqmasks[IPL_IMP]);
326 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
327 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
328
329 dump_spl_masks();
330 #endif
331
332 /*
333 * If we are still cold then hit the air brakes
334 * and crash to earth fast
335 */
336 if (cold) {
337 doshutdownhooks();
338 printf("Halted while still in the ICE age.\n");
339 printf("The operating system has halted.\n");
340 goto ofw_exit;
341 /*NOTREACHED*/
342 }
343
344 /*
345 * If RB_NOSYNC was not specified sync the discs.
346 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
347 * It looks like syslogd is getting woken up only to find that it cannot
348 * page part of the binary in as the filesystem has been unmounted.
349 */
350 if (!(howto & RB_NOSYNC))
351 bootsync();
352
353 /* Say NO to interrupts */
354 splhigh();
355
356 /* Do a dump if requested. */
357 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
358 dumpsys();
359
360 /* Run any shutdown hooks */
361 doshutdownhooks();
362
363 /* Make sure IRQ's are disabled */
364 IRQdisable;
365
366 if (howto & RB_HALT) {
367 printf("The operating system has halted.\n");
368 goto ofw_exit;
369 }
370
371 /* Tell the user we are booting */
372 printf("rebooting...\n");
373
374 /* Jump into the OFW boot routine. */
375 {
376 static char str[256];
377 char *ap = str, *ap1 = ap;
378
379 if (bootstr && *bootstr) {
380 if (strlen(bootstr) > sizeof str - 5)
381 printf("boot string too large, ignored\n");
382 else {
383 strcpy(str, bootstr);
384 ap1 = ap = str + strlen(str);
385 *ap++ = ' ';
386 }
387 }
388 *ap++ = '-';
389 if (howto & RB_SINGLE)
390 *ap++ = 's';
391 if (howto & RB_KDB)
392 *ap++ = 'd';
393 *ap++ = 0;
394 if (ap[-2] == '-')
395 *ap1 = 0;
396 #if defined(SHARK) && (NPC > 0)
397 shark_screen_cleanup(0);
398 #endif
399 OF_boot(str);
400 /*NOTREACHED*/
401 }
402
403 ofw_exit:
404 printf("Calling OF_exit...\n");
405 #if defined(SHARK) && (NPC > 0)
406 shark_screen_cleanup(1);
407 #endif
408 OF_exit();
409 /*NOTREACHED*/
410 }
411
412
413 #if BOOT_FW_DHCP
414
415 extern char *ip2dotted __P((struct in_addr));
416
417 /*
418 * Get DHCP data from OFW
419 */
420
421 void
422 get_fw_dhcp_data(bdp)
423 struct bootdata *bdp;
424 {
425 int chosen;
426 int dhcplen;
427
428 bzero((char *)bdp, sizeof(*bdp));
429 if ((chosen = OF_finddevice("/chosen")) == -1)
430 panic("no /chosen from OFW");
431 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
432 u_char *cp;
433 int dhcp_type = 0;
434 char *ip;
435
436 /*
437 * OFW saved a DHCP (or BOOTP) packet for us.
438 */
439 if (dhcplen > sizeof(bdp->dhcp_packet))
440 panic("DHCP packet too large");
441 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
442 sizeof(bdp->dhcp_packet));
443 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
444 /*
445 * Collect the interesting data from DHCP into
446 * the bootdata structure.
447 */
448 bdp->ip_address = bdp->dhcp_packet.yiaddr;
449 ip = ip2dotted(bdp->ip_address);
450 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
451 parse_dhcp_options(&bdp->dhcp_packet,
452 bdp->dhcp_packet.options + 4,
453 &bdp->dhcp_packet.options[dhcplen
454 - DHCP_FIXED_NON_UDP], bdp, ip);
455 if (bdp->root_ip.s_addr == 0)
456 bdp->root_ip = bdp->dhcp_packet.siaddr;
457 if (bdp->swap_ip.s_addr == 0)
458 bdp->swap_ip = bdp->dhcp_packet.siaddr;
459 }
460 /*
461 * If the DHCP packet did not contain all the necessary data,
462 * look in NVRAM for the missing parts.
463 */
464 {
465 int options;
466 int proplen;
467 #define BOOTJUNKV_SIZE 256
468 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
469
470
471 if ((options = OF_finddevice("/options")) == -1)
472 panic("can't find /options");
473 if (bdp->ip_address.s_addr == 0 &&
474 (proplen = OF_getprop(options, "ipaddr",
475 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 bootjunkv[proplen] = '\0';
477 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
478 bdp->ip_address.s_addr = 0;
479 }
480 if (bdp->ip_mask.s_addr == 0 &&
481 (proplen = OF_getprop(options, "netmask",
482 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
483 bootjunkv[proplen] = '\0';
484 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
485 bdp->ip_mask.s_addr = 0;
486 }
487 if (bdp->hostname[0] == '\0' &&
488 (proplen = OF_getprop(options, "hostname",
489 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
490 bdp->hostname[proplen] = '\0';
491 }
492 if (bdp->root[0] == '\0' &&
493 (proplen = OF_getprop(options, "rootfs",
494 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
495 bootjunkv[proplen] = '\0';
496 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
497 }
498 if (bdp->swap[0] == '\0' &&
499 (proplen = OF_getprop(options, "swapfs",
500 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
501 bootjunkv[proplen] = '\0';
502 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
503 }
504 }
505 }
506
507 #endif /* BOOT_FW_DHCP */
508
509 void
510 ofw_getbootinfo(bp_pp, ba_pp)
511 char **bp_pp;
512 char **ba_pp;
513 {
514 int chosen;
515 int bp_len;
516 int ba_len;
517 char *bootpathv;
518 char *bootargsv;
519
520 /* Read the bootpath and bootargs out of OFW. */
521 /* XXX is bootpath still interesting? --emg */
522 if ((chosen = OF_finddevice("/chosen")) == -1)
523 panic("no /chosen from OFW");
524 bp_len = OF_getproplen(chosen, "bootpath");
525 ba_len = OF_getproplen(chosen, "bootargs");
526 if (bp_len < 0 || ba_len < 0)
527 panic("can't get boot data from OFW");
528
529 bootpathv = (char *)ofw_malloc(bp_len);
530 bootargsv = (char *)ofw_malloc(ba_len);
531
532 if (bp_len)
533 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
534 else
535 bootpathv[0] = '\0';
536
537 if (ba_len)
538 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
539 else
540 bootargsv[0] = '\0';
541
542 *bp_pp = bootpathv;
543 *ba_pp = bootargsv;
544 #ifdef DIAGNOSTIC
545 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
546 #endif
547 }
548
549 vm_offset_t
550 ofw_getcleaninfo(void)
551 {
552 int cpu;
553 vm_offset_t vclean, pclean;
554
555 if ((cpu = OF_finddevice("/cpu")) == -1)
556 panic("no /cpu from OFW");
557
558 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
559 sizeof(vclean))) != sizeof(vclean)) {
560 #ifdef DEBUG
561 printf("no OFW d-cache-flush-address property\n");
562 #endif
563 return -1;
564 }
565
566 if ((pclean = ofw_gettranslation(
567 of_decode_int((unsigned char *)&vclean))) == -1)
568 panic("OFW failed to translate cache flush address");
569
570 return pclean;
571 }
572
573 void
574 ofw_configisa(pio, pmem)
575 vm_offset_t *pio;
576 vm_offset_t *pmem;
577 {
578 int vl;
579
580 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
581 ofw_configisaonly(pio, pmem);
582 else /* old style OFW dev info tree */
583 ofw_configvl(vl, pio, pmem);
584 }
585
586 static void
587 ofw_configisaonly(pio, pmem)
588 vm_offset_t *pio;
589 vm_offset_t *pmem;
590 {
591 int isa;
592 int rangeidx;
593 int size;
594 vm_offset_t hi, start;
595 struct isa_range ranges[2];
596
597 if ((isa = OF_finddevice("/isa")) == -1)
598 panic("OFW has no /isa device node");
599
600 /* expect to find two isa ranges: IO/data and memory/data */
601 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
602 != sizeof(ranges))
603 panic("unexpected size of OFW /isa ranges property: %d", size);
604
605 *pio = *pmem = -1;
606
607 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
608 hi = of_decode_int((unsigned char *)
609 &ranges[rangeidx].isa_phys_hi);
610 start = of_decode_int((unsigned char *)
611 &ranges[rangeidx].parent_phys_start);
612
613 if (hi & 1) { /* then I/O space */
614 *pio = start;
615 } else {
616 *pmem = start;
617 }
618 } /* END for */
619
620 if ((*pio == -1) || (*pmem == -1))
621 panic("bad OFW /isa ranges property");
622
623 }
624
625 static void
626 ofw_configvl(vl, pio, pmem)
627 int vl;
628 vm_offset_t *pio;
629 vm_offset_t *pmem;
630 {
631 int isa;
632 int ir, vr;
633 int size;
634 vm_offset_t hi, start;
635 struct vl_isa_range isa_ranges[2];
636 struct vl_range vl_ranges[2];
637
638 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
639 panic("OFW has no /vlbus/isa device node");
640
641 /* expect to find two isa ranges: IO/data and memory/data */
642 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
643 != sizeof(isa_ranges))
644 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
645 size);
646
647 /* expect to find two vl ranges: IO/data and memory/data */
648 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
649 != sizeof(vl_ranges))
650 panic("unexpected size of OFW /vlbus ranges property: %d", size);
651
652 *pio = -1;
653 *pmem = -1;
654
655 for (ir = 0; ir < 2; ++ir) {
656 for (vr = 0; vr < 2; ++vr) {
657 if ((isa_ranges[ir].parent_phys_hi
658 == vl_ranges[vr].vl_phys_hi) &&
659 (isa_ranges[ir].parent_phys_lo
660 == vl_ranges[vr].vl_phys_lo)) {
661 hi = of_decode_int((unsigned char *)
662 &isa_ranges[ir].isa_phys_hi);
663 start = of_decode_int((unsigned char *)
664 &vl_ranges[vr].parent_phys_start);
665
666 if (hi & 1) { /* then I/O space */
667 *pio = start;
668 } else {
669 *pmem = start;
670 }
671 } /* END if */
672 } /* END for */
673 } /* END for */
674
675 if ((*pio == -1) || (*pmem == -1))
676 panic("bad OFW /isa ranges property");
677 }
678
679 #if NISADMA > 0
680 struct arm32_dma_range *shark_isa_dma_ranges;
681 int shark_isa_dma_nranges;
682 #endif
683
684 void
685 ofw_configisadma(pdma)
686 vm_offset_t *pdma;
687 {
688 int root;
689 int rangeidx;
690 int size;
691 struct dma_range *dr;
692
693 if ((root = OF_finddevice("/")) == -1 ||
694 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
695 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
696 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
697 panic("bad / dma-ranges property");
698
699 nOFdmaranges = size / sizeof(struct dma_range);
700
701 #if NISADMA > 0
702 /* Allocate storage for non-OFW representation of the range. */
703 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
704 sizeof(*shark_isa_dma_ranges));
705 if (shark_isa_dma_ranges == NULL)
706 panic("unable to allocate shark_isa_dma_ranges");
707 shark_isa_dma_nranges = nOFdmaranges;
708 #endif
709
710 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
711 ++rangeidx, ++dr) {
712 dr->start = of_decode_int((unsigned char *)&dr->start);
713 dr->size = of_decode_int((unsigned char *)&dr->size);
714 #if NISADMA > 0
715 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
716 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
717 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
718 #endif
719 }
720
721 #ifdef DEBUG
722 printf("dma ranges size = %d\n", size);
723
724 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
725 printf("%08lx %08lx\n",
726 (u_long)OFdmaranges[rangeidx].start,
727 (u_long)OFdmaranges[rangeidx].size);
728 }
729 #endif
730 }
731
732 /*
733 * Memory configuration:
734 *
735 * We start off running in the environment provided by OFW.
736 * This has the MMU turned on, the kernel code and data
737 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
738 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
739 * page0 mapped-in at 0x0.
740 *
741 * The strategy is to set-up the address space for proc0 --
742 * including the allocation of space for new page tables -- while
743 * memory is still managed by OFW. We then effectively create a
744 * copy of the address space by dumping all of OFW's translations
745 * and poking them into the new page tables. We then notify OFW
746 * that we are assuming control of memory-management by installing
747 * our callback-handler, and switch to the NetBSD-managed page
748 * tables with the setttb() call.
749 *
750 * This scheme may cause some amount of memory to be wasted within
751 * OFW as dead page tables, but it shouldn't be more than about
752 * 20-30KB. (It's also possible that OFW will re-use the space.)
753 */
754 void
755 ofw_configmem(void)
756 {
757 pv_addr_t proc0_ttbbase;
758 pv_addr_t proc0_ptpt;
759 int i;
760
761 /* Set-up proc0 address space. */
762 ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
763
764 /*
765 * Get a dump of OFW's picture of physical memory.
766 * This is used below to initialize a load of variables used by pmap.
767 * We get it now rather than later because we are about to
768 * tell OFW to stop managing memory.
769 */
770 ofw_getphysmeminfo();
771
772 /* We are about to take control of memory-management from OFW.
773 * Establish callbacks for OFW to use for its future memory needs.
774 * This is required for us to keep using OFW services.
775 */
776
777 /* First initialize our callback memory allocator. */
778 ofw_initallocator();
779
780 OF_set_callback((void(*)())ofw_callbackhandler);
781
782 /* Switch to the proc0 pagetables. */
783 setttb(proc0_ttbbase.pv_pa);
784
785 /* Aaaaaaaah, running in the proc0 address space! */
786 /* I feel good... */
787
788 /* Set-up the various globals which describe physical memory for pmap. */
789 {
790 struct mem_region *mp;
791 int totalcnt;
792 int availcnt;
793
794 /* physmem, physical_start, physical_end */
795 physmem = 0;
796 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
797 totalcnt++, mp++) {
798 #ifdef OLDPRINTFS
799 printf("physmem: %x, %x\n", mp->start, mp->size);
800 #endif
801 physmem += btoc(mp->size);
802 }
803 physical_start = OFphysmem[0].start;
804 mp--;
805 physical_end = mp->start + mp->size;
806
807 /* free_pages, physical_freestart, physical_freeend */
808 free_pages = 0;
809 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
810 availcnt++, mp++) {
811 #ifdef OLDPRINTFS
812 printf("physavail: %x, %x\n", mp->start, mp->size);
813 #endif
814 free_pages += btoc(mp->size);
815 }
816 physical_freestart = OFphysavail[0].start;
817 mp--;
818 physical_freeend = mp->start + mp->size;
819 #ifdef OLDPRINTFS
820 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
821 physmem, free_pages);
822 #endif
823
824 /*
825 * This is a hack to work with the existing pmap code.
826 * That code depends on a RiscPC BootConfig structure
827 * containing, among other things, an array describing
828 * the regions of physical memory. So, for now, we need
829 * to stuff our OFW-derived physical memory info into a
830 * "fake" BootConfig structure.
831 *
832 * An added twist is that we initialize the BootConfig
833 * structure with our "available" physical memory regions
834 * rather than the "total" physical memory regions. Why?
835 * Because:
836 *
837 * (a) the VM code requires that the "free" pages it is
838 * initialized with have consecutive indices. This
839 * allows it to use more efficient data structures
840 * (presumably).
841 * (b) the current pmap routines which report the initial
842 * set of free page indices (pmap_next_page) and
843 * which map addresses to indices (pmap_page_index)
844 * assume that the free pages are consecutive across
845 * memory region boundaries.
846 *
847 * This means that memory which is "stolen" at startup time
848 * (say, for page descriptors) MUST come from either the
849 * bottom of the first region or the top of the last.
850 *
851 * This requirement doesn't mesh well with OFW (or at least
852 * our use of it). We can get around it for the time being
853 * by pretending that our "available" region array describes
854 * all of our physical memory. This may cause some important
855 * information to be excluded from a dump file, but so far
856 * I haven't come across any other negative effects.
857 *
858 * In the long-run we should fix the index
859 * generation/translation code in the pmap module.
860 */
861
862 if (DRAM_BLOCKS < (availcnt + 1))
863 panic("more ofw memory regions than bootconfig blocks");
864
865 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
866 bootconfig.dram[i].address = mp->start;
867 bootconfig.dram[i].pages = btoc(mp->size);
868 }
869 bootconfig.dramblocks = availcnt;
870 }
871
872 /* Load memory into UVM. */
873 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
874
875 /* XXX Please kill this code dead. */
876 for (i = 0; i < bootconfig.dramblocks; i++) {
877 paddr_t start = (paddr_t)bootconfig.dram[i].address;
878 paddr_t end = start + (bootconfig.dram[i].pages * NBPG);
879 #if NISADMA > 0
880 paddr_t istart, isize;
881 #endif
882
883 if (start < physical_freestart)
884 start = physical_freestart;
885 if (end > physical_freeend)
886 end = physical_freeend;
887
888 #if 0
889 printf("%d: %lx -> %lx\n", loop, start, end - 1);
890 #endif
891
892 #if NISADMA > 0
893 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
894 shark_isa_dma_nranges,
895 start, end - start,
896 &istart, &isize)) {
897 /*
898 * Place the pages that intersect with the
899 * ISA DMA range onto the ISA DMA free list.
900 */
901 #if 0
902 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
903 istart + isize - 1);
904 #endif
905 uvm_page_physload(atop(istart),
906 atop(istart + isize), atop(istart),
907 atop(istart + isize), VM_FREELIST_ISADMA);
908
909 /*
910 * Load the pieces that come before the
911 * intersection onto the default free list.
912 */
913 if (start < istart) {
914 #if 0
915 printf(" BEFORE 0x%lx -> 0x%lx\n",
916 start, istart - 1);
917 #endif
918 uvm_page_physload(atop(start),
919 atop(istart), atop(start),
920 atop(istart), VM_FREELIST_DEFAULT);
921 }
922
923 /*
924 * Load the pieces that come after the
925 * intersection onto the default free list.
926 */
927 if ((istart + isize) < end) {
928 #if 0
929 printf(" AFTER 0x%lx -> 0x%lx\n",
930 (istart + isize), end - 1);
931 #endif
932 uvm_page_physload(atop(istart + isize),
933 atop(end), atop(istart + isize),
934 atop(end), VM_FREELIST_DEFAULT);
935 }
936 } else {
937 uvm_page_physload(atop(start), atop(end),
938 atop(start), atop(end), VM_FREELIST_DEFAULT);
939 }
940 #else /* NISADMA > 0 */
941 uvm_page_physload(atop(start), atop(end),
942 atop(start), atop(end), VM_FREELIST_DEFAULT);
943 #endif /* NISADMA > 0 */
944 }
945
946 /* Initialize pmap module. */
947 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
948 }
949
950
951 /*
952 ************************************************************
953
954 Routines private to this module
955
956 ************************************************************
957 */
958
959 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
960 static void
961 ofw_callbackhandler(args)
962 struct ofw_cbargs *args;
963 {
964 char *name = args->name;
965 int nargs = args->nargs;
966 int nreturns = args->nreturns;
967 int *args_n_results = args->args_n_results;
968
969 ofw_callbacks++;
970
971 #if defined(OFWGENCFG)
972 /* Check this first, so that we don't waste IRQ time parsing. */
973 if (strcmp(name, "tick") == 0) {
974 vm_offset_t frame;
975
976 /* Check format. */
977 if (nargs != 1 || nreturns < 1) {
978 args_n_results[nargs] = -1;
979 args->nreturns = 1;
980 return;
981 }
982 args_n_results[nargs] = 0; /* properly formatted request */
983
984 /*
985 * Note that we are running in the IRQ frame, with interrupts
986 * disabled.
987 *
988 * We need to do two things here:
989 * - copy a few words out of the input frame into a global
990 * area, for later use by our real tick-handling code
991 * - patch a few words in the frame so that when OFW returns
992 * from the interrupt it will resume with our handler
993 * rather than the code that was actually interrupted.
994 * Our handler will resume when it finishes with the code
995 * that was actually interrupted.
996 *
997 * It's simplest to do this in assembler, since it requires
998 * switching frames and grovelling about with registers.
999 */
1000 frame = (vm_offset_t)args_n_results[0];
1001 if (ofw_handleticks)
1002 dotickgrovelling(frame);
1003 args_n_results[nargs + 1] = frame;
1004 args->nreturns = 1;
1005 } else
1006 #endif
1007
1008 if (strcmp(name, "map") == 0) {
1009 vm_offset_t va;
1010 vm_offset_t pa;
1011 vm_size_t size;
1012 int mode;
1013 int ap_bits;
1014 int dom_bits;
1015 int cb_bits;
1016
1017 /* Check format. */
1018 if (nargs != 4 || nreturns < 2) {
1019 args_n_results[nargs] = -1;
1020 args->nreturns = 1;
1021 return;
1022 }
1023 args_n_results[nargs] = 0; /* properly formatted request */
1024
1025 pa = (vm_offset_t)args_n_results[0];
1026 va = (vm_offset_t)args_n_results[1];
1027 size = (vm_size_t)args_n_results[2];
1028 mode = args_n_results[3];
1029 ap_bits = (mode & 0x00000C00);
1030 dom_bits = (mode & 0x000001E0);
1031 cb_bits = (mode & 0x000000C0);
1032
1033 /* Sanity checks. */
1034 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1035 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1036 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1037 size == 0 || (dom_bits >> 5) != 0) {
1038 args_n_results[nargs + 1] = -1;
1039 args->nreturns = 1;
1040 return;
1041 }
1042
1043 /* Write-back anything stuck in the cache. */
1044 cpu_idcache_wbinv_all();
1045
1046 /* Install new mappings. */
1047 {
1048 pt_entry_t *pte = vtopte(va);
1049 int npages = size >> PGSHIFT;
1050
1051 ap_bits >>= 10;
1052 for (; npages > 0; pte++, pa += NBPG, npages--)
1053 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1054 cb_bits);
1055 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1056 }
1057
1058 /* Clean out tlb. */
1059 tlb_flush();
1060
1061 args_n_results[nargs + 1] = 0;
1062 args->nreturns = 2;
1063 } else if (strcmp(name, "unmap") == 0) {
1064 vm_offset_t va;
1065 vm_size_t size;
1066
1067 /* Check format. */
1068 if (nargs != 2 || nreturns < 1) {
1069 args_n_results[nargs] = -1;
1070 args->nreturns = 1;
1071 return;
1072 }
1073 args_n_results[nargs] = 0; /* properly formatted request */
1074
1075 va = (vm_offset_t)args_n_results[0];
1076 size = (vm_size_t)args_n_results[1];
1077
1078 /* Sanity checks. */
1079 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1080 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1081 (size & PGOFSET) != 0 || size == 0) {
1082 args_n_results[nargs + 1] = -1;
1083 args->nreturns = 1;
1084 return;
1085 }
1086
1087 /* Write-back anything stuck in the cache. */
1088 cpu_idcache_wbinv_all();
1089
1090 /* Zero the mappings. */
1091 {
1092 pt_entry_t *pte = vtopte(va);
1093 int npages = size >> PGSHIFT;
1094
1095 for (; npages > 0; pte++, npages--)
1096 *pte = 0;
1097 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1098 }
1099
1100 /* Clean out tlb. */
1101 tlb_flush();
1102
1103 args->nreturns = 1;
1104 } else if (strcmp(name, "translate") == 0) {
1105 vm_offset_t va;
1106 vm_offset_t pa;
1107 int mode;
1108 pt_entry_t pte;
1109
1110 /* Check format. */
1111 if (nargs != 1 || nreturns < 4) {
1112 args_n_results[nargs] = -1;
1113 args->nreturns = 1;
1114 return;
1115 }
1116 args_n_results[nargs] = 0; /* properly formatted request */
1117
1118 va = (vm_offset_t)args_n_results[0];
1119
1120 /* Sanity checks.
1121 * For now, I am only willing to translate va's in the
1122 * "ofw range." Eventually, I may be more generous. -JJK
1123 */
1124 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1125 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1126 args_n_results[nargs + 1] = -1;
1127 args->nreturns = 1;
1128 return;
1129 }
1130
1131 /* Lookup mapping. */
1132 pte = *vtopte(va);
1133 if (pte == 0) {
1134 /* No mapping. */
1135 args_n_results[nargs + 1] = -1;
1136 args->nreturns = 2;
1137 } else {
1138 /* Existing mapping. */
1139 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1140 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1141
1142 args_n_results[nargs + 1] = 0;
1143 args_n_results[nargs + 2] = pa;
1144 args_n_results[nargs + 3] = mode;
1145 args->nreturns = 4;
1146 }
1147 } else if (strcmp(name, "claim-phys") == 0) {
1148 struct pglist alloclist;
1149 vm_offset_t low, high;
1150 vm_size_t align, size;
1151
1152 /*
1153 * XXX
1154 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1155 * XXX
1156 */
1157
1158 /* Check format. */
1159 if (nargs != 4 || nreturns < 3) {
1160 args_n_results[nargs] = -1;
1161 args->nreturns = 1;
1162 return;
1163 }
1164 args_n_results[nargs] = 0; /* properly formatted request */
1165
1166 low = args_n_results[0];
1167 size = args_n_results[2];
1168 align = args_n_results[3];
1169 high = args_n_results[1] + size;
1170
1171 #if 0
1172 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1173 low, size, align, high);
1174 align = size;
1175 printf("forcing align to be 0x%x\n", align);
1176 #endif
1177
1178 args_n_results[nargs + 1] =
1179 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1180 #if 0
1181 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1182 #endif
1183 if (args_n_results[nargs + 1] != 0) {
1184 #if 0
1185 printf("(failed)\n");
1186 #endif
1187 args_n_results[nargs + 1] = -1;
1188 args->nreturns = 2;
1189 return;
1190 }
1191 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1192 #if 0
1193 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1194 #endif
1195 args->nreturns = 3;
1196
1197 } else if (strcmp(name, "release-phys") == 0) {
1198 printf("unimplemented ofw callback - %s\n", name);
1199 args_n_results[nargs] = -1;
1200 args->nreturns = 1;
1201 } else if (strcmp(name, "claim-virt") == 0) {
1202 vm_offset_t va;
1203 vm_size_t size;
1204 vm_offset_t align;
1205
1206 /* XXX - notyet */
1207 /* printf("unimplemented ofw callback - %s\n", name);*/
1208 args_n_results[nargs] = -1;
1209 args->nreturns = 1;
1210 return;
1211
1212 /* Check format. */
1213 if (nargs != 2 || nreturns < 3) {
1214 args_n_results[nargs] = -1;
1215 args->nreturns = 1;
1216 return;
1217 }
1218 args_n_results[nargs] = 0; /* properly formatted request */
1219
1220 /* Allocate size bytes with specified alignment. */
1221 size = (vm_size_t)args_n_results[0];
1222 align = (vm_offset_t)args_n_results[1];
1223 if (align % NBPG != 0) {
1224 args_n_results[nargs + 1] = -1;
1225 args->nreturns = 2;
1226 return;
1227 }
1228
1229 if (va == 0) {
1230 /* Couldn't allocate. */
1231 args_n_results[nargs + 1] = -1;
1232 args->nreturns = 2;
1233 } else {
1234 /* Successful allocation. */
1235 args_n_results[nargs + 1] = 0;
1236 args_n_results[nargs + 2] = va;
1237 args->nreturns = 3;
1238 }
1239 } else if (strcmp(name, "release-virt") == 0) {
1240 vm_offset_t va;
1241 vm_size_t size;
1242
1243 /* XXX - notyet */
1244 printf("unimplemented ofw callback - %s\n", name);
1245 args_n_results[nargs] = -1;
1246 args->nreturns = 1;
1247 return;
1248
1249 /* Check format. */
1250 if (nargs != 2 || nreturns < 1) {
1251 args_n_results[nargs] = -1;
1252 args->nreturns = 1;
1253 return;
1254 }
1255 args_n_results[nargs] = 0; /* properly formatted request */
1256
1257 /* Release bytes. */
1258 va = (vm_offset_t)args_n_results[0];
1259 size = (vm_size_t)args_n_results[1];
1260
1261 args->nreturns = 1;
1262 } else {
1263 args_n_results[nargs] = -1;
1264 args->nreturns = 1;
1265 }
1266 }
1267
1268 static void
1269 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1270 pv_addr_t *proc0_ttbbase;
1271 pv_addr_t *proc0_ptpt;
1272 {
1273 int i, oft;
1274 pv_addr_t proc0_pagedir;
1275 pv_addr_t proc0_pt_pte;
1276 pv_addr_t proc0_pt_sys;
1277 pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1278 pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1279 pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1280 pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1281 pv_addr_t msgbuf;
1282 vm_offset_t L1pagetable;
1283 struct mem_translation *tp;
1284
1285 /* Set-up the system page. */
1286 KASSERT(vector_page == 0); /* XXX for now */
1287 systempage.pv_va = ofw_claimvirt(vector_page, NBPG, 0);
1288 if (systempage.pv_va == -1) {
1289 /* Something was already mapped to vector_page's VA. */
1290 systempage.pv_va = vector_page;
1291 systempage.pv_pa = ofw_gettranslation(vector_page);
1292 if (systempage.pv_pa == -1)
1293 panic("bogus result from gettranslation(vector_page)");
1294 } else {
1295 /* We were just allocated the page-length range at VA 0. */
1296 if (systempage.pv_va != vector_page)
1297 panic("bogus result from claimvirt(vector_page, NBPG, 0)");
1298
1299 /* Now allocate a physical page, and establish the mapping. */
1300 systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
1301 if (systempage.pv_pa == -1)
1302 panic("bogus result from claimphys(0, NBPG, NBPG)");
1303 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1304 NBPG, -1); /* XXX - mode? -JJK */
1305
1306 /* Zero the memory. */
1307 bzero((char *)systempage.pv_va, NBPG);
1308 }
1309
1310 /* Allocate/initialize space for the proc0, NetBSD-managed */
1311 /* page tables that we will be switching to soon. */
1312 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1313 ofw_claimpages(&virt_freeptr, &proc0_pt_pte, L2_TABLE_SIZE);
1314 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1315 for (i = 0; i < KERNEL_IMG_PTS; i++)
1316 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1317 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1318 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1319 for (i = 0; i < KERNEL_OFW_PTS; i++)
1320 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1321 for (i = 0; i < KERNEL_IO_PTS; i++)
1322 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1323
1324 /* Allocate/initialize space for stacks. */
1325 #ifndef OFWGENCFG
1326 ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
1327 #endif
1328 ofw_claimpages(&virt_freeptr, &undstack, NBPG);
1329 ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
1330 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
1331
1332 /* Allocate/initialize space for msgbuf area. */
1333 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1334 msgbufphys = msgbuf.pv_pa;
1335
1336 /* Construct the proc0 L1 pagetable. */
1337 L1pagetable = proc0_pagedir.pv_va;
1338
1339 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1340 for (i = 0; i < KERNEL_IMG_PTS; i++)
1341 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1342 &proc0_pt_kernel[i]);
1343 pmap_link_l2pt(L1pagetable, PTE_BASE,
1344 &proc0_pt_pte);
1345 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1346 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1347 &proc0_pt_vmdata[i]);
1348 for (i = 0; i < KERNEL_OFW_PTS; i++)
1349 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1350 &proc0_pt_ofw[i]);
1351 for (i = 0; i < KERNEL_IO_PTS; i++)
1352 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1353 &proc0_pt_io[i]);
1354
1355 /*
1356 * OK, we're done allocating.
1357 * Get a dump of OFW's translations, and make the appropriate
1358 * entries in the L2 pagetables that we just allocated.
1359 */
1360
1361 ofw_getvirttranslations();
1362
1363 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1364 oft++, tp++) {
1365
1366 vm_offset_t va, pa;
1367 int npages = tp->size / NBPG;
1368
1369 /* Size must be an integral number of pages. */
1370 if (npages == 0 || tp->size % NBPG != 0)
1371 panic("illegal ofw translation (size)");
1372
1373 /* Make an entry for each page in the appropriate table. */
1374 for (va = tp->virt, pa = tp->phys; npages > 0;
1375 va += NBPG, pa += NBPG, npages--) {
1376 /*
1377 * Map the top bits to the appropriate L2 pagetable.
1378 * The only allowable regions are page0, the
1379 * kernel-static area, and the ofw area.
1380 */
1381 switch (va >> (L1_S_SHIFT + 2)) {
1382 case 0:
1383 /* page0 */
1384 break;
1385
1386 #if KERNEL_IMG_PTS != 2
1387 #error "Update ofw translation range list"
1388 #endif
1389 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1390 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1391 /* kernel static area */
1392 break;
1393
1394 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1395 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1396 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1397 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1398 /* ofw area */
1399 break;
1400
1401 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1402 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1403 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1404 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1405 /* io area */
1406 break;
1407
1408 default:
1409 /* illegal */
1410 panic("illegal ofw translation (addr) %#lx",
1411 va);
1412 }
1413
1414 /* Make the entry. */
1415 pmap_map_entry(L1pagetable, va, pa,
1416 VM_PROT_READ|VM_PROT_WRITE,
1417 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1418 : PTE_NOCACHE);
1419 }
1420 }
1421
1422 /*
1423 * We don't actually want some of the mappings that we just
1424 * set up to appear in proc0's address space. In particular,
1425 * we don't want aliases to physical addresses that the kernel
1426 * has-mapped/will-map elsewhere.
1427 */
1428 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1429 proc0_pt_sys.pv_va, L2_TABLE_SIZE);
1430 for (i = 0; i < KERNEL_IMG_PTS; i++)
1431 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1432 proc0_pt_kernel[i].pv_va, L2_TABLE_SIZE);
1433 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1434 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1435 proc0_pt_vmdata[i].pv_va, L2_TABLE_SIZE);
1436 for (i = 0; i < KERNEL_OFW_PTS; i++)
1437 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1438 proc0_pt_ofw[i].pv_va, L2_TABLE_SIZE);
1439 for (i = 0; i < KERNEL_IO_PTS; i++)
1440 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1441 proc0_pt_io[i].pv_va, L2_TABLE_SIZE);
1442 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1443 msgbuf.pv_va, MSGBUFSIZE);
1444
1445 /*
1446 * We did not throw away the proc0_pt_pte and proc0_pagedir
1447 * mappings as well still want them. However we don't want them
1448 * cached ...
1449 * Really these should be uncached when allocated.
1450 */
1451 pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
1452 proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1453 for (i = 0; i < (L1_TABLE_SIZE / NBPG); ++i)
1454 pmap_map_entry(L1pagetable,
1455 proc0_pagedir.pv_va + NBPG * i,
1456 proc0_pagedir.pv_pa + NBPG * i,
1457 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1458
1459 /*
1460 * Construct the proc0 L2 pagetables that map page tables.
1461 */
1462
1463 /* Map entries in the L2pagetable used to map L2PTs. */
1464 pmap_map_entry(L1pagetable,
1465 PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
1466 proc0_pt_sys.pv_pa,
1467 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1468 for (i = 0; i < KERNEL_IMG_PTS; i++)
1469 pmap_map_entry(L1pagetable,
1470 PTE_BASE + ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2)),
1471 proc0_pt_kernel[i].pv_pa,
1472 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1473 pmap_map_entry(L1pagetable,
1474 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
1475 proc0_pt_pte.pv_pa,
1476 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1477 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1478 pmap_map_entry(L1pagetable,
1479 PTE_BASE + ((KERNEL_VM_BASE + i * 0x00400000)
1480 >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1481 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1482 for (i = 0; i < KERNEL_OFW_PTS; i++)
1483 pmap_map_entry(L1pagetable,
1484 PTE_BASE + ((OFW_VIRT_BASE + i * 0x00400000)
1485 >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1486 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1487 for (i = 0; i < KERNEL_IO_PTS; i++)
1488 pmap_map_entry(L1pagetable,
1489 PTE_BASE + ((IO_VIRT_BASE + i * 0x00400000)
1490 >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1491 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1492
1493 /* update the top of the kernel VM */
1494 pmap_curmaxkvaddr =
1495 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1496
1497 /*
1498 * gross hack for the sake of not thrashing the TLB and making
1499 * cache flush more efficient: blast l1 ptes for sections.
1500 */
1501 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1502 vm_offset_t va = tp->virt;
1503 vm_offset_t pa = tp->phys;
1504
1505 if (((va | pa) & L1_S_OFFSET) == 0) {
1506 int nsections = tp->size / L1_S_SIZE;
1507
1508 while (nsections--) {
1509 /* XXXJRT prot?? */
1510 pmap_map_section(L1pagetable, va, pa,
1511 VM_PROT_READ|VM_PROT_WRITE,
1512 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1513 : PTE_NOCACHE);
1514 va += L1_S_SIZE;
1515 pa += L1_S_SIZE;
1516 }
1517 }
1518 }
1519
1520 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1521 *proc0_ttbbase = proc0_pagedir;
1522 *proc0_ptpt = proc0_pt_pte;
1523 }
1524
1525
1526 static void
1527 ofw_getphysmeminfo()
1528 {
1529 int phandle;
1530 int mem_len;
1531 int avail_len;
1532 int i;
1533
1534 if ((phandle = OF_finddevice("/memory")) == -1 ||
1535 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1536 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1537 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1538 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1539 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1540 OF_getprop(phandle, "available", OFphysavail, avail_len)
1541 != avail_len)
1542 panic("can't get physmeminfo from OFW");
1543
1544 nOFphysmem = mem_len / sizeof(struct mem_region);
1545 nOFphysavail = avail_len / sizeof(struct mem_region);
1546
1547 /*
1548 * Sort the blocks in each array into ascending address order.
1549 * Also, page-align all blocks.
1550 */
1551 for (i = 0; i < 2; i++) {
1552 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1553 struct mem_region *mp;
1554 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1555 int j;
1556
1557 #ifdef OLDPRINTFS
1558 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1559 #endif
1560
1561 /* XXX - Convert all the values to host order. -JJK */
1562 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1563 mp->start = of_decode_int((unsigned char *)&mp->start);
1564 mp->size = of_decode_int((unsigned char *)&mp->size);
1565 }
1566
1567 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1568 u_int s, sz;
1569 struct mem_region *mp1;
1570
1571 /* Page-align start of the block. */
1572 s = mp->start % NBPG;
1573 if (s != 0) {
1574 s = (NBPG - s);
1575
1576 if (mp->size >= s) {
1577 mp->start += s;
1578 mp->size -= s;
1579 }
1580 }
1581
1582 /* Page-align the size. */
1583 mp->size -= mp->size % NBPG;
1584
1585 /* Handle empty block. */
1586 if (mp->size == 0) {
1587 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1588 * sizeof(struct mem_region));
1589 cnt--;
1590 mp--;
1591 continue;
1592 }
1593
1594 /* Bubble sort. */
1595 s = mp->start;
1596 sz = mp->size;
1597 for (mp1 = tmp; mp1 < mp; mp1++)
1598 if (s < mp1->start)
1599 break;
1600 if (mp1 < mp) {
1601 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1602 mp1->start = s;
1603 mp1->size = sz;
1604 }
1605 }
1606
1607 #ifdef OLDPRINTFS
1608 for (mp = tmp; mp->size; mp++) {
1609 printf("%x, %x\n", mp->start, mp->size);
1610 }
1611 #endif
1612 }
1613 }
1614
1615
1616 static void
1617 ofw_getvirttranslations(void)
1618 {
1619 int mmu_phandle;
1620 int mmu_ihandle;
1621 int trans_len;
1622 int over, len;
1623 int i;
1624 struct mem_translation *tp;
1625
1626 mmu_ihandle = ofw_mmu_ihandle();
1627
1628 /* overallocate to avoid increases during allocation */
1629 over = 4 * sizeof(struct mem_translation);
1630 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1631 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1632 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1633 (trans_len = OF_getprop(mmu_phandle, "translations",
1634 OFtranslations, len + over)) > (len + over))
1635 panic("can't get virttranslations from OFW");
1636
1637 /* XXX - Convert all the values to host order. -JJK */
1638 nOFtranslations = trans_len / sizeof(struct mem_translation);
1639 #ifdef OLDPRINTFS
1640 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1641 #endif
1642 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1643 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1644 tp->size = of_decode_int((unsigned char *)&tp->size);
1645 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1646 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1647 }
1648 }
1649
1650 /*
1651 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1652 */
1653 typedef struct _vfree {
1654 struct _vfree *pNext;
1655 vm_offset_t start;
1656 vm_size_t size;
1657 } VFREE, *PVFREE;
1658
1659 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1660
1661 static PVFREE vflist = &vfinitial;
1662
1663 static vm_offset_t
1664 ofw_valloc(size, align)
1665 vm_offset_t size;
1666 vm_offset_t align;
1667 {
1668 PVFREE *ppvf;
1669 PVFREE pNew;
1670 vm_offset_t new;
1671 vm_offset_t lead;
1672
1673 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1674 if (align == 0) {
1675 new = (*ppvf)->start;
1676 lead = 0;
1677 } else {
1678 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1679 lead = new - (*ppvf)->start;
1680 }
1681
1682 if (((*ppvf)->size - lead) >= size) {
1683 if (lead == 0) {
1684 /* using whole block */
1685 if (size == (*ppvf)->size) {
1686 /* splice out of list */
1687 (*ppvf) = (*ppvf)->pNext;
1688 } else { /* tail of block is free */
1689 (*ppvf)->start = new + size;
1690 (*ppvf)->size -= size;
1691 }
1692 } else {
1693 vm_size_t tail = ((*ppvf)->start
1694 + (*ppvf)->size) - (new + size);
1695 /* free space at beginning */
1696 (*ppvf)->size = lead;
1697
1698 if (tail != 0) {
1699 /* free space at tail */
1700 pNew = ofw_malloc(sizeof(VFREE));
1701 pNew->pNext = (*ppvf)->pNext;
1702 (*ppvf)->pNext = pNew;
1703 pNew->start = new + size;
1704 pNew->size = tail;
1705 }
1706 }
1707 return new;
1708 } /* END if */
1709 } /* END for */
1710
1711 return -1;
1712 }
1713
1714 vm_offset_t
1715 ofw_map(pa, size, cb_bits)
1716 vm_offset_t pa;
1717 vm_size_t size;
1718 int cb_bits;
1719 {
1720 vm_offset_t va;
1721
1722 if ((va = ofw_valloc(size, size)) == -1)
1723 panic("cannot alloc virtual memory for %#lx", pa);
1724
1725 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1726
1727 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1728
1729 return va;
1730 }
1731
1732 static int
1733 ofw_mem_ihandle(void)
1734 {
1735 static int mem_ihandle = 0;
1736 int chosen;
1737
1738 if (mem_ihandle != 0)
1739 return(mem_ihandle);
1740
1741 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1742 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1743 panic("ofw_mem_ihandle");
1744
1745 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1746
1747 return(mem_ihandle);
1748 }
1749
1750
1751 static int
1752 ofw_mmu_ihandle(void)
1753 {
1754 static int mmu_ihandle = 0;
1755 int chosen;
1756
1757 if (mmu_ihandle != 0)
1758 return(mmu_ihandle);
1759
1760 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1761 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1762 panic("ofw_mmu_ihandle");
1763
1764 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1765
1766 return(mmu_ihandle);
1767 }
1768
1769
1770 /* Return -1 on failure. */
1771 static vm_offset_t
1772 ofw_claimphys(pa, size, align)
1773 vm_offset_t pa;
1774 vm_size_t size;
1775 vm_offset_t align;
1776 {
1777 int mem_ihandle = ofw_mem_ihandle();
1778
1779 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1780 if (align == 0) {
1781 /* Allocate at specified base; alignment is ignored. */
1782 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1783 } else {
1784 /* Allocate anywhere, with specified alignment. */
1785 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1786 }
1787
1788 /* printf("%x\n", pa);*/
1789 return(pa);
1790 }
1791
1792
1793 #if 0
1794 /* Return -1 on failure. */
1795 static vm_offset_t
1796 ofw_releasephys(pa, size)
1797 vm_offset_t pa;
1798 vm_size_t size;
1799 {
1800 int mem_ihandle = ofw_mem_ihandle();
1801
1802 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1803
1804 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1805 }
1806 #endif
1807
1808 /* Return -1 on failure. */
1809 static vm_offset_t
1810 ofw_claimvirt(va, size, align)
1811 vm_offset_t va;
1812 vm_size_t size;
1813 vm_offset_t align;
1814 {
1815 int mmu_ihandle = ofw_mmu_ihandle();
1816
1817 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1818 if (align == 0) {
1819 /* Allocate at specified base; alignment is ignored. */
1820 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1821 } else {
1822 /* Allocate anywhere, with specified alignment. */
1823 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1824 }
1825
1826 /*printf("%x\n", va);*/
1827 return(va);
1828 }
1829
1830
1831 /* Return -1 if no mapping. */
1832 vm_offset_t
1833 ofw_gettranslation(va)
1834 vm_offset_t va;
1835 {
1836 int mmu_ihandle = ofw_mmu_ihandle();
1837 vm_offset_t pa;
1838 int mode;
1839 int exists;
1840
1841 /*printf("ofw_gettranslation (%x) --> ", va);*/
1842 exists = 0; /* gets set to true if translation exists */
1843 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1844 &exists) != 0)
1845 return(-1);
1846
1847 /*printf("%x\n", exists ? pa : -1);*/
1848 return(exists ? pa : -1);
1849 }
1850
1851
1852 static void
1853 ofw_settranslation(va, pa, size, mode)
1854 vm_offset_t va;
1855 vm_offset_t pa;
1856 vm_size_t size;
1857 int mode;
1858 {
1859 int mmu_ihandle = ofw_mmu_ihandle();
1860
1861 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1862 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1863 panic("ofw_settranslation failed");
1864 }
1865
1866 /*
1867 * Allocation routine used before the kernel takes over memory.
1868 * Use this for efficient storage for things that aren't rounded to
1869 * page size.
1870 *
1871 * The point here is not necessarily to be very efficient (even though
1872 * that's sort of nice), but to do proper dynamic allocation to avoid
1873 * size-limitation errors.
1874 *
1875 */
1876
1877 typedef struct _leftover {
1878 struct _leftover *pNext;
1879 vm_size_t size;
1880 } LEFTOVER, *PLEFTOVER;
1881
1882 /* leftover bits of pages. first word is pointer to next.
1883 second word is size of leftover */
1884 static PLEFTOVER leftovers = NULL;
1885
1886 static void *
1887 ofw_malloc(size)
1888 vm_size_t size;
1889 {
1890 PLEFTOVER *ppLeftover;
1891 PLEFTOVER pLeft;
1892 pv_addr_t new;
1893 vm_size_t newSize, claim_size;
1894
1895 /* round and set minimum size */
1896 size = max(sizeof(LEFTOVER),
1897 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1898
1899 for (ppLeftover = &leftovers; *ppLeftover;
1900 ppLeftover = &((*ppLeftover)->pNext))
1901 if ((*ppLeftover)->size >= size)
1902 break;
1903
1904 if (*ppLeftover) { /* have a leftover of the right size */
1905 /* remember the leftover */
1906 new.pv_va = (vm_offset_t)*ppLeftover;
1907 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1908 /* splice out of chain */
1909 *ppLeftover = (*ppLeftover)->pNext;
1910 } else {
1911 /* remember the next pointer */
1912 pLeft = (*ppLeftover)->pNext;
1913 newSize = (*ppLeftover)->size - size; /* reduce size */
1914 /* move pointer */
1915 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1916 + size);
1917 (*ppLeftover)->pNext = pLeft;
1918 (*ppLeftover)->size = newSize;
1919 }
1920 } else {
1921 claim_size = (size + NBPG - 1) & ~(NBPG - 1);
1922 ofw_claimpages(&virt_freeptr, &new, claim_size);
1923 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1924 pLeft = (PLEFTOVER)(new.pv_va + size);
1925 pLeft->pNext = leftovers;
1926 pLeft->size = claim_size - size;
1927 leftovers = pLeft;
1928 }
1929 }
1930
1931 return (void *)(new.pv_va);
1932 }
1933
1934 /*
1935 * Here is a really, really sleazy free. It's not used right now,
1936 * because it's not worth the extra complexity for just a few bytes.
1937 *
1938 */
1939 #if 0
1940 static void
1941 ofw_free(addr, size)
1942 vm_offset_t addr;
1943 vm_size_t size;
1944 {
1945 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1946
1947 /* splice right into list without checks or compaction */
1948 pLeftover->pNext = leftovers;
1949 pLeftover->size = size;
1950 leftovers = pLeftover;
1951 }
1952 #endif
1953
1954 /*
1955 * Allocate and zero round(size)/NBPG pages of memory.
1956 * We guarantee that the allocated memory will be
1957 * aligned to a boundary equal to the smallest power of
1958 * 2 greater than or equal to size.
1959 * free_pp is an IN/OUT parameter which points to the
1960 * last allocated virtual address in an allocate-downwards
1961 * stack. pv_p is an OUT parameter which contains the
1962 * virtual and physical base addresses of the allocated
1963 * memory.
1964 */
1965 static void
1966 ofw_claimpages(free_pp, pv_p, size)
1967 vm_offset_t *free_pp;
1968 pv_addr_t *pv_p;
1969 vm_size_t size;
1970 {
1971 /* round-up to page boundary */
1972 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1973 vm_size_t aligned_size;
1974 vm_offset_t va, pa;
1975
1976 if (alloc_size == 0)
1977 panic("ofw_claimpages zero");
1978
1979 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1980 ;
1981
1982 /* The only way to provide the alignment guarantees is to
1983 * allocate the virtual and physical ranges separately,
1984 * then do an explicit map call.
1985 */
1986 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1987 if (ofw_claimvirt(va, alloc_size, 0) != va)
1988 panic("ofw_claimpages va alloc");
1989 pa = ofw_claimphys(0, alloc_size, aligned_size);
1990 if (pa == -1)
1991 panic("ofw_claimpages pa alloc");
1992 /* XXX - what mode? -JJK */
1993 ofw_settranslation(va, pa, alloc_size, -1);
1994
1995 /* The memory's mapped-in now, so we can zero it. */
1996 bzero((char *)va, alloc_size);
1997
1998 /* Set OUT parameters. */
1999 *free_pp = va;
2000 pv_p->pv_va = va;
2001 pv_p->pv_pa = pa;
2002 }
2003
2004
2005 static void
2006 ofw_discardmappings(L2pagetable, va, size)
2007 vm_offset_t L2pagetable;
2008 vm_offset_t va;
2009 vm_size_t size;
2010 {
2011 /* round-up to page boundary */
2012 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
2013 int npages = alloc_size / NBPG;
2014
2015 if (npages == 0)
2016 panic("ofw_discardmappings zero");
2017
2018 /* Discard each mapping. */
2019 for (; npages > 0; va += NBPG, npages--) {
2020 /* Sanity. The current entry should be non-null. */
2021 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
2022 panic("ofw_discardmappings zero entry");
2023
2024 /* Clear the entry. */
2025 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2026 }
2027 }
2028
2029
2030 static void
2031 ofw_initallocator(void)
2032 {
2033
2034 }
2035