Home | History | Annotate | Line # | Download | only in ofw
ofw.c revision 1.19
      1 /*	$NetBSD: ofw.c,v 1.19 2002/08/22 01:13:58 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright 1997
      5  * Digital Equipment Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and
      8  * copied only in accordance with the following terms and conditions.
      9  * Subject to these conditions, you may download, copy, install,
     10  * use, modify and distribute this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce
     14  *    and retain this copyright notice and list of conditions as
     15  *    they appear in the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Digital Equipment Corporation. Neither the "Digital Equipment
     19  *    Corporation" name nor any trademark or logo of Digital Equipment
     20  *    Corporation may be used to endorse or promote products derived
     21  *    from this software without the prior written permission of
     22  *    Digital Equipment Corporation.
     23  *
     24  * 3) This software is provided "AS-IS" and any express or implied
     25  *    warranties, including but not limited to, any implied warranties
     26  *    of merchantability, fitness for a particular purpose, or
     27  *    non-infringement are disclaimed. In no event shall DIGITAL be
     28  *    liable for any damages whatsoever, and in particular, DIGITAL
     29  *    shall not be liable for special, indirect, consequential, or
     30  *    incidental damages or damages for lost profits, loss of
     31  *    revenue or loss of use, whether such damages arise in contract,
     32  *    negligence, tort, under statute, in equity, at law or otherwise,
     33  *    even if advised of the possibility of such damage.
     34  */
     35 
     36 /*
     37  *  Routines for interfacing between NetBSD and OFW.
     38  *
     39  *  Parts of this could be moved to an MI file in time. -JJK
     40  *
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/reboot.h>
     47 #include <sys/mbuf.h>
     48 
     49 #include <uvm/uvm_extern.h>
     50 
     51 #include <dev/cons.h>
     52 
     53 #define	_ARM32_BUS_DMA_PRIVATE
     54 #include <machine/bus.h>
     55 #include <machine/frame.h>
     56 #include <machine/bootconfig.h>
     57 #include <machine/cpu.h>
     58 #include <machine/intr.h>
     59 
     60 #include <dev/ofw/openfirm.h>
     61 #include <machine/ofw.h>
     62 
     63 #include <netinet/in.h>
     64 
     65 #if	BOOT_FW_DHCP
     66 #include <nfs/bootdata.h>
     67 #endif
     68 
     69 #ifdef SHARK
     70 #include "machine/pio.h"
     71 #include "machine/isa_machdep.h"
     72 #endif
     73 
     74 #include "pc.h"
     75 #include "isadma.h"
     76 
     77 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
     78 #define IO_VIRT_SIZE 0x01000000
     79 
     80 #define	KERNEL_IMG_PTS		2
     81 #define	KERNEL_VMDATA_PTS	(KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
     82 #define	KERNEL_OFW_PTS		4
     83 #define	KERNEL_IO_PTS		4
     84 
     85 /*
     86  *  Imported variables
     87  */
     88 extern BootConfig bootconfig;	/* temporary, I hope */
     89 
     90 #ifdef	DIAGNOSTIC
     91 /* NOTE: These variables will be removed, well some of them */
     92 extern u_int spl_mask;
     93 extern u_int current_mask;
     94 #endif
     95 
     96 extern int ofw_handleticks;
     97 
     98 
     99 /*
    100  *  Imported routines
    101  */
    102 extern void dump_spl_masks  __P((void));
    103 extern void dumpsys	    __P((void));
    104 extern void dotickgrovelling __P((vm_offset_t));
    105 #if defined(SHARK) && (NPC > 0)
    106 extern void shark_screen_cleanup __P((int));
    107 #endif
    108 
    109 #define WriteWord(a, b) \
    110 *((volatile unsigned int *)(a)) = (b)
    111 
    112 #define ReadWord(a) \
    113 (*((volatile unsigned int *)(a)))
    114 
    115 
    116 /*
    117  *  Exported variables
    118  */
    119 /* These should all be in a meminfo structure. */
    120 vm_offset_t physical_start;
    121 vm_offset_t physical_freestart;
    122 vm_offset_t physical_freeend;
    123 vm_offset_t physical_end;
    124 u_int free_pages;
    125 int physmem;
    126 pv_addr_t systempage;
    127 #ifndef	OFWGENCFG
    128 pv_addr_t irqstack;
    129 #endif
    130 pv_addr_t undstack;
    131 pv_addr_t abtstack;
    132 pv_addr_t kernelstack;
    133 
    134 vm_offset_t msgbufphys;
    135 
    136 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
    137 static vm_offset_t  virt_freeptr;
    138 
    139 int ofw_callbacks = 0;		/* debugging counter */
    140 
    141 /**************************************************************/
    142 
    143 
    144 /*
    145  *  Declarations and definitions private to this module
    146  *
    147  */
    148 
    149 struct mem_region {
    150 	vm_offset_t start;
    151 	vm_size_t size;
    152 };
    153 
    154 struct mem_translation {
    155 	vm_offset_t virt;
    156 	vm_size_t size;
    157 	vm_offset_t phys;
    158 	unsigned int mode;
    159 };
    160 
    161 struct isa_range {
    162 	vm_offset_t isa_phys_hi;
    163 	vm_offset_t isa_phys_lo;
    164 	vm_offset_t parent_phys_start;
    165 	vm_size_t   isa_size;
    166 };
    167 
    168 struct vl_range {
    169 	vm_offset_t vl_phys_hi;
    170 	vm_offset_t vl_phys_lo;
    171 	vm_offset_t parent_phys_start;
    172 	vm_size_t   vl_size;
    173 };
    174 
    175 struct vl_isa_range {
    176 	vm_offset_t isa_phys_hi;
    177 	vm_offset_t isa_phys_lo;
    178 	vm_offset_t parent_phys_hi;
    179 	vm_offset_t parent_phys_lo;
    180 	vm_size_t   isa_size;
    181 };
    182 
    183 struct dma_range {
    184 	vm_offset_t start;
    185 	vm_size_t   size;
    186 };
    187 
    188 struct ofw_cbargs {
    189 	char *name;
    190 	int nargs;
    191 	int nreturns;
    192 	int args_n_results[12];
    193 };
    194 
    195 
    196 /* Memory info */
    197 static int nOFphysmem;
    198 static struct mem_region *OFphysmem;
    199 static int nOFphysavail;
    200 static struct mem_region *OFphysavail;
    201 static int nOFtranslations;
    202 static struct mem_translation *OFtranslations;
    203 static int nOFdmaranges;
    204 static struct dma_range *OFdmaranges;
    205 
    206 /* The OFW client services handle. */
    207 /* Initialized by ofw_init(). */
    208 static ofw_handle_t ofw_client_services_handle;
    209 
    210 
    211 static void ofw_callbackhandler __P((struct ofw_cbargs *));
    212 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
    213 static void ofw_getphysmeminfo __P((void));
    214 static void ofw_getvirttranslations __P((void));
    215 static void *ofw_malloc(vm_size_t size);
    216 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
    217 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
    218 static int ofw_mem_ihandle  __P((void));
    219 static int ofw_mmu_ihandle  __P((void));
    220 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
    221 #if 0
    222 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
    223 #endif
    224 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
    225 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
    226 static void ofw_initallocator __P((void));
    227 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
    228 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
    229 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
    230 
    231 
    232 /*
    233  * DHCP hooks.  For a first cut, we look to see if there is a DHCP
    234  * packet that was saved by the firmware.  If not, we proceed as before,
    235  * getting hand-configured data from NVRAM.  If there is one, we get the
    236  * packet, and extract the data from it.  For now, we hand that data up
    237  * in the boot_args string as before.
    238  */
    239 
    240 
    241 /**************************************************************/
    242 
    243 
    244 /*
    245  *
    246  *  Support routines for xxx_machdep.c
    247  *
    248  *  The intent is that all OFW-based configurations use the
    249  *  exported routines in this file to do their business.  If
    250  *  they need to override some function they are free to do so.
    251  *
    252  *  The exported routines are:
    253  *
    254  *    openfirmware
    255  *    ofw_init
    256  *    ofw_boot
    257  *    ofw_getbootinfo
    258  *    ofw_configmem
    259  *    ofw_configisa
    260  *    ofw_configisadma
    261  *    ofw_gettranslation
    262  *    ofw_map
    263  *    ofw_getcleaninfo
    264  */
    265 
    266 
    267 int
    268 openfirmware(args)
    269 	void *args;
    270 {
    271 	int ofw_result;
    272 	u_int saved_irq_state;
    273 
    274 	/* OFW is not re-entrant, so we wrap a mutex around the call. */
    275 	saved_irq_state = disable_interrupts(I32_bit);
    276 	ofw_result = ofw_client_services_handle(args);
    277 	(void)restore_interrupts(saved_irq_state);
    278 
    279 	return(ofw_result);
    280 }
    281 
    282 
    283 void
    284 ofw_init(ofw_handle)
    285 	ofw_handle_t ofw_handle;
    286 {
    287 	ofw_client_services_handle = ofw_handle;
    288 
    289 	/*  Everything we allocate in the remainder of this block is
    290 	 *  constrained to be in the "kernel-static" portion of the
    291 	 *  virtual address space (i.e., 0xF0000000 - 0xF1000000).
    292 	 *  This is because all such objects are expected to be in
    293 	 *  that range by NetBSD, or the objects will be re-mapped
    294 	 *  after the page-table-switch to other specific locations.
    295 	 *  In the latter case, it's simplest if our pre-switch handles
    296 	 *  on those objects are in regions that are already "well-
    297 	 *  known."  (Otherwise, the cloning of the OFW-managed address-
    298 	 *  space becomes more awkward.)  To minimize the number of L2
    299 	 *  page tables that we use, we are further restricting the
    300 	 *  remaining allocations in this block to the bottom quarter of
    301 	 *  the legal range.  OFW will have loaded the kernel text+data+bss
    302 	 *  starting at the bottom of the range, and we will allocate
    303 	 *  objects from the top, moving downwards.  The two sub-regions
    304 	 *  will collide if their total sizes hit 8MB.  The current total
    305 	 *  is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
    306 	 *  limit.  The variable virt-freeptr represents the next free va
    307 	 *  (moving downwards).
    308 	 */
    309 	virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
    310 }
    311 
    312 
    313 void
    314 ofw_boot(howto, bootstr)
    315 	int howto;
    316 	char *bootstr;
    317 {
    318 
    319 #ifdef DIAGNOSTIC
    320 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    321 	printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
    322 
    323 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
    324 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
    325 	    irqmasks[IPL_IMP]);
    326 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
    327 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
    328 
    329 	dump_spl_masks();
    330 #endif
    331 
    332 	/*
    333 	 * If we are still cold then hit the air brakes
    334 	 * and crash to earth fast
    335 	 */
    336 	if (cold) {
    337 		doshutdownhooks();
    338 		printf("Halted while still in the ICE age.\n");
    339 		printf("The operating system has halted.\n");
    340 		goto ofw_exit;
    341 		/*NOTREACHED*/
    342 	}
    343 
    344 	/*
    345 	 * If RB_NOSYNC was not specified sync the discs.
    346 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
    347 	 * It looks like syslogd is getting woken up only to find that it cannot
    348 	 * page part of the binary in as the filesystem has been unmounted.
    349 	 */
    350 	if (!(howto & RB_NOSYNC))
    351 		bootsync();
    352 
    353 	/* Say NO to interrupts */
    354 	splhigh();
    355 
    356 	/* Do a dump if requested. */
    357 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    358 		dumpsys();
    359 
    360 	/* Run any shutdown hooks */
    361 	doshutdownhooks();
    362 
    363 	/* Make sure IRQ's are disabled */
    364 	IRQdisable;
    365 
    366 	if (howto & RB_HALT) {
    367 		printf("The operating system has halted.\n");
    368 		goto ofw_exit;
    369 	}
    370 
    371 	/* Tell the user we are booting */
    372 	printf("rebooting...\n");
    373 
    374 	/* Jump into the OFW boot routine. */
    375 	{
    376 		static char str[256];
    377 		char *ap = str, *ap1 = ap;
    378 
    379 		if (bootstr && *bootstr) {
    380 			if (strlen(bootstr) > sizeof str - 5)
    381 				printf("boot string too large, ignored\n");
    382 			else {
    383 				strcpy(str, bootstr);
    384 				ap1 = ap = str + strlen(str);
    385 				*ap++ = ' ';
    386 			}
    387 		}
    388 		*ap++ = '-';
    389 		if (howto & RB_SINGLE)
    390 			*ap++ = 's';
    391 		if (howto & RB_KDB)
    392 			*ap++ = 'd';
    393 		*ap++ = 0;
    394 		if (ap[-2] == '-')
    395 			*ap1 = 0;
    396 #if defined(SHARK) && (NPC > 0)
    397 		shark_screen_cleanup(0);
    398 #endif
    399 		OF_boot(str);
    400 		/*NOTREACHED*/
    401 	}
    402 
    403 ofw_exit:
    404 	printf("Calling OF_exit...\n");
    405 #if defined(SHARK) && (NPC > 0)
    406 	shark_screen_cleanup(1);
    407 #endif
    408 	OF_exit();
    409 	/*NOTREACHED*/
    410 }
    411 
    412 
    413 #if	BOOT_FW_DHCP
    414 
    415 extern	char	*ip2dotted	__P((struct in_addr));
    416 
    417 /*
    418  * Get DHCP data from OFW
    419  */
    420 
    421 void
    422 get_fw_dhcp_data(bdp)
    423 	struct bootdata *bdp;
    424 {
    425 	int chosen;
    426 	int dhcplen;
    427 
    428 	bzero((char *)bdp, sizeof(*bdp));
    429 	if ((chosen = OF_finddevice("/chosen")) == -1)
    430 		panic("no /chosen from OFW");
    431 	if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
    432 		u_char *cp;
    433 		int dhcp_type = 0;
    434 		char *ip;
    435 
    436 		/*
    437 		 * OFW saved a DHCP (or BOOTP) packet for us.
    438 		 */
    439 		if (dhcplen > sizeof(bdp->dhcp_packet))
    440 			panic("DHCP packet too large");
    441 		OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
    442 		    sizeof(bdp->dhcp_packet));
    443 		SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
    444 		/*
    445 		 * Collect the interesting data from DHCP into
    446 		 * the bootdata structure.
    447 		 */
    448 		bdp->ip_address = bdp->dhcp_packet.yiaddr;
    449 		ip = ip2dotted(bdp->ip_address);
    450 		if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
    451 			parse_dhcp_options(&bdp->dhcp_packet,
    452 			    bdp->dhcp_packet.options + 4,
    453 			    &bdp->dhcp_packet.options[dhcplen
    454 			    - DHCP_FIXED_NON_UDP], bdp, ip);
    455 		if (bdp->root_ip.s_addr == 0)
    456 			bdp->root_ip = bdp->dhcp_packet.siaddr;
    457 		if (bdp->swap_ip.s_addr == 0)
    458 			bdp->swap_ip = bdp->dhcp_packet.siaddr;
    459 	}
    460 	/*
    461 	 * If the DHCP packet did not contain all the necessary data,
    462 	 * look in NVRAM for the missing parts.
    463 	 */
    464 	{
    465 		int options;
    466 		int proplen;
    467 #define BOOTJUNKV_SIZE	256
    468 		char bootjunkv[BOOTJUNKV_SIZE];	/* minimize stack usage */
    469 
    470 
    471 		if ((options = OF_finddevice("/options")) == -1)
    472 			panic("can't find /options");
    473 		if (bdp->ip_address.s_addr == 0 &&
    474 		    (proplen = OF_getprop(options, "ipaddr",
    475 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    476 			bootjunkv[proplen] = '\0';
    477 			if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
    478 				bdp->ip_address.s_addr = 0;
    479 		}
    480 		if (bdp->ip_mask.s_addr == 0 &&
    481 		    (proplen = OF_getprop(options, "netmask",
    482 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    483 			bootjunkv[proplen] = '\0';
    484 			if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
    485 				bdp->ip_mask.s_addr = 0;
    486 		}
    487 		if (bdp->hostname[0] == '\0' &&
    488 		    (proplen = OF_getprop(options, "hostname",
    489 		    bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
    490 			bdp->hostname[proplen] = '\0';
    491 		}
    492 		if (bdp->root[0] == '\0' &&
    493 		    (proplen = OF_getprop(options, "rootfs",
    494 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    495 			bootjunkv[proplen] = '\0';
    496 			parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
    497 		}
    498 		if (bdp->swap[0] == '\0' &&
    499 		    (proplen = OF_getprop(options, "swapfs",
    500 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    501 			bootjunkv[proplen] = '\0';
    502 			parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
    503 		}
    504 	}
    505 }
    506 
    507 #endif	/* BOOT_FW_DHCP */
    508 
    509 void
    510 ofw_getbootinfo(bp_pp, ba_pp)
    511 	char **bp_pp;
    512 	char **ba_pp;
    513 {
    514 	int chosen;
    515 	int bp_len;
    516 	int ba_len;
    517 	char *bootpathv;
    518 	char *bootargsv;
    519 
    520 	/* Read the bootpath and bootargs out of OFW. */
    521 	/* XXX is bootpath still interesting?  --emg */
    522 	if ((chosen = OF_finddevice("/chosen")) == -1)
    523 		panic("no /chosen from OFW");
    524 	bp_len = OF_getproplen(chosen, "bootpath");
    525 	ba_len = OF_getproplen(chosen, "bootargs");
    526 	if (bp_len < 0 || ba_len < 0)
    527 		panic("can't get boot data from OFW");
    528 
    529 	bootpathv = (char *)ofw_malloc(bp_len);
    530 	bootargsv = (char *)ofw_malloc(ba_len);
    531 
    532 	if (bp_len)
    533 		OF_getprop(chosen, "bootpath", bootpathv, bp_len);
    534 	else
    535 		bootpathv[0] = '\0';
    536 
    537 	if (ba_len)
    538 		OF_getprop(chosen, "bootargs", bootargsv, ba_len);
    539 	else
    540 		bootargsv[0] = '\0';
    541 
    542 	*bp_pp = bootpathv;
    543 	*ba_pp = bootargsv;
    544 #ifdef DIAGNOSTIC
    545 	printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
    546 #endif
    547 }
    548 
    549 vm_offset_t
    550 ofw_getcleaninfo(void)
    551 {
    552 	int cpu;
    553 	vm_offset_t vclean, pclean;
    554 
    555 	if ((cpu = OF_finddevice("/cpu")) == -1)
    556 		panic("no /cpu from OFW");
    557 
    558 	if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
    559 	    sizeof(vclean))) != sizeof(vclean)) {
    560 #ifdef DEBUG
    561 		printf("no OFW d-cache-flush-address property\n");
    562 #endif
    563 		return -1;
    564 	}
    565 
    566 	if ((pclean = ofw_gettranslation(
    567 	    of_decode_int((unsigned char *)&vclean))) == -1)
    568 	panic("OFW failed to translate cache flush address");
    569 
    570 	return pclean;
    571 }
    572 
    573 void
    574 ofw_configisa(pio, pmem)
    575 	vm_offset_t *pio;
    576 	vm_offset_t *pmem;
    577 {
    578 	int vl;
    579 
    580 	if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
    581 		ofw_configisaonly(pio, pmem);
    582 	else /* old style OFW dev info tree */
    583 		ofw_configvl(vl, pio, pmem);
    584 }
    585 
    586 static void
    587 ofw_configisaonly(pio, pmem)
    588 	vm_offset_t *pio;
    589 	vm_offset_t *pmem;
    590 {
    591 	int isa;
    592 	int rangeidx;
    593 	int size;
    594 	vm_offset_t hi, start;
    595 	struct isa_range ranges[2];
    596 
    597 	if ((isa = OF_finddevice("/isa")) == -1)
    598 	panic("OFW has no /isa device node");
    599 
    600 	/* expect to find two isa ranges: IO/data and memory/data */
    601 	if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
    602 	    != sizeof(ranges))
    603 		panic("unexpected size of OFW /isa ranges property: %d", size);
    604 
    605 	*pio = *pmem = -1;
    606 
    607 	for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
    608 		hi    = of_decode_int((unsigned char *)
    609 		    &ranges[rangeidx].isa_phys_hi);
    610 		start = of_decode_int((unsigned char *)
    611 		    &ranges[rangeidx].parent_phys_start);
    612 
    613 	if (hi & 1) { /* then I/O space */
    614 		*pio = start;
    615 	} else {
    616 		*pmem = start;
    617 	}
    618 	} /* END for */
    619 
    620 	if ((*pio == -1) || (*pmem == -1))
    621 		panic("bad OFW /isa ranges property");
    622 
    623 }
    624 
    625 static void
    626 ofw_configvl(vl, pio, pmem)
    627 	int vl;
    628 	vm_offset_t *pio;
    629 	vm_offset_t *pmem;
    630 {
    631 	int isa;
    632 	int ir, vr;
    633 	int size;
    634 	vm_offset_t hi, start;
    635 	struct vl_isa_range isa_ranges[2];
    636 	struct vl_range     vl_ranges[2];
    637 
    638 	if ((isa = OF_finddevice("/vlbus/isa")) == -1)
    639 		panic("OFW has no /vlbus/isa device node");
    640 
    641 	/* expect to find two isa ranges: IO/data and memory/data */
    642 	if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
    643 	    != sizeof(isa_ranges))
    644 		panic("unexpected size of OFW /vlbus/isa ranges property: %d",
    645 		     size);
    646 
    647 	/* expect to find two vl ranges: IO/data and memory/data */
    648 	if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
    649 	    != sizeof(vl_ranges))
    650 		panic("unexpected size of OFW /vlbus ranges property: %d", size);
    651 
    652 	*pio = -1;
    653 	*pmem = -1;
    654 
    655 	for (ir = 0; ir < 2; ++ir) {
    656 		for (vr = 0; vr < 2; ++vr) {
    657 			if ((isa_ranges[ir].parent_phys_hi
    658 			    == vl_ranges[vr].vl_phys_hi) &&
    659 			    (isa_ranges[ir].parent_phys_lo
    660 			    == vl_ranges[vr].vl_phys_lo)) {
    661 				hi    = of_decode_int((unsigned char *)
    662 				    &isa_ranges[ir].isa_phys_hi);
    663 				start = of_decode_int((unsigned char *)
    664 				    &vl_ranges[vr].parent_phys_start);
    665 
    666 				if (hi & 1) { /* then I/O space */
    667 					*pio = start;
    668 				} else {
    669 					*pmem = start;
    670 				}
    671 			} /* END if */
    672 		} /* END for */
    673 	} /* END for */
    674 
    675 	if ((*pio == -1) || (*pmem == -1))
    676 		panic("bad OFW /isa ranges property");
    677 }
    678 
    679 #if NISADMA > 0
    680 struct arm32_dma_range *shark_isa_dma_ranges;
    681 int shark_isa_dma_nranges;
    682 #endif
    683 
    684 void
    685 ofw_configisadma(pdma)
    686 	vm_offset_t *pdma;
    687 {
    688 	int root;
    689 	int rangeidx;
    690 	int size;
    691 	struct dma_range *dr;
    692 
    693 	if ((root = OF_finddevice("/")) == -1 ||
    694 	    (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
    695 	    (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
    696  	    OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
    697 		panic("bad / dma-ranges property");
    698 
    699 	nOFdmaranges = size / sizeof(struct dma_range);
    700 
    701 #if NISADMA > 0
    702 	/* Allocate storage for non-OFW representation of the range. */
    703 	shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
    704 	    sizeof(*shark_isa_dma_ranges));
    705 	if (shark_isa_dma_ranges == NULL)
    706 		panic("unable to allocate shark_isa_dma_ranges");
    707 	shark_isa_dma_nranges = nOFdmaranges;
    708 #endif
    709 
    710 	for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
    711 	    ++rangeidx, ++dr) {
    712 		dr->start = of_decode_int((unsigned char *)&dr->start);
    713 		dr->size = of_decode_int((unsigned char *)&dr->size);
    714 #if NISADMA > 0
    715 		shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
    716 		shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
    717 		shark_isa_dma_ranges[rangeidx].dr_len  = dr->size;
    718 #endif
    719 	}
    720 
    721 #ifdef DEBUG
    722 	printf("dma ranges size = %d\n", size);
    723 
    724 	for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
    725 		printf("%08lx %08lx\n",
    726 		(u_long)OFdmaranges[rangeidx].start,
    727 		(u_long)OFdmaranges[rangeidx].size);
    728 	}
    729 #endif
    730 }
    731 
    732 /*
    733  *  Memory configuration:
    734  *
    735  *  We start off running in the environment provided by OFW.
    736  *  This has the MMU turned on, the kernel code and data
    737  *  mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
    738  *  data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
    739  *  page0 mapped-in at 0x0.
    740  *
    741  *  The strategy is to set-up the address space for proc0 --
    742  *  including the allocation of space for new page tables -- while
    743  *  memory is still managed by OFW.  We then effectively create a
    744  *  copy of the address space by dumping all of OFW's translations
    745  *  and poking them into the new page tables.  We then notify OFW
    746  *  that we are assuming control of memory-management by installing
    747  *  our callback-handler, and switch to the NetBSD-managed page
    748  *  tables with the setttb() call.
    749  *
    750  *  This scheme may cause some amount of memory to be wasted within
    751  *  OFW as dead page tables, but it shouldn't be more than about
    752  *  20-30KB.  (It's also possible that OFW will re-use the space.)
    753  */
    754 void
    755 ofw_configmem(void)
    756 {
    757 	pv_addr_t proc0_ttbbase;
    758 	pv_addr_t proc0_ptpt;
    759 	int i;
    760 
    761 	/* Set-up proc0 address space. */
    762 	ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
    763 
    764 	/*
    765 	 * Get a dump of OFW's picture of physical memory.
    766 	 * This is used below to initialize a load of variables used by pmap.
    767 	 * We get it now rather than later because we are about to
    768 	 * tell OFW to stop managing memory.
    769 	 */
    770 	ofw_getphysmeminfo();
    771 
    772 	/* We are about to take control of memory-management from OFW.
    773 	 * Establish callbacks for OFW to use for its future memory needs.
    774 	 * This is required for us to keep using OFW services.
    775 	 */
    776 
    777 	/* First initialize our callback memory allocator. */
    778 	ofw_initallocator();
    779 
    780 	OF_set_callback((void(*)())ofw_callbackhandler);
    781 
    782 	/* Switch to the proc0 pagetables. */
    783 	setttb(proc0_ttbbase.pv_pa);
    784 
    785 	/* Aaaaaaaah, running in the proc0 address space! */
    786 	/* I feel good... */
    787 
    788 	/* Set-up the various globals which describe physical memory for pmap. */
    789 	{
    790 		struct mem_region *mp;
    791 		int totalcnt;
    792 		int availcnt;
    793 
    794 		/* physmem, physical_start, physical_end */
    795 		physmem = 0;
    796 		for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
    797 		    totalcnt++, mp++) {
    798 #ifdef	OLDPRINTFS
    799 			printf("physmem: %x, %x\n", mp->start, mp->size);
    800 #endif
    801 			physmem += btoc(mp->size);
    802 		}
    803 		physical_start = OFphysmem[0].start;
    804 		mp--;
    805 		physical_end = mp->start + mp->size;
    806 
    807 		/* free_pages, physical_freestart, physical_freeend */
    808 		free_pages = 0;
    809 		for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
    810 		    availcnt++, mp++) {
    811 #ifdef	OLDPRINTFS
    812 			printf("physavail: %x, %x\n", mp->start, mp->size);
    813 #endif
    814 			free_pages += btoc(mp->size);
    815 		}
    816 		physical_freestart = OFphysavail[0].start;
    817 		mp--;
    818 		physical_freeend = mp->start + mp->size;
    819 #ifdef	OLDPRINTFS
    820 		printf("pmap_bootstrap:  physmem = %x, free_pages = %x\n",
    821 		    physmem, free_pages);
    822 #endif
    823 
    824 		/*
    825 		 *  This is a hack to work with the existing pmap code.
    826 		 *  That code depends on a RiscPC BootConfig structure
    827 		 *  containing, among other things, an array describing
    828 		 *  the regions of physical memory.  So, for now, we need
    829 		 *  to stuff our OFW-derived physical memory info into a
    830 		 *  "fake" BootConfig structure.
    831 		 *
    832 		 *  An added twist is that we initialize the BootConfig
    833 		 *  structure with our "available" physical memory regions
    834 		 *  rather than the "total" physical memory regions.  Why?
    835 		 *  Because:
    836 		 *
    837 		 *   (a) the VM code requires that the "free" pages it is
    838 		 *       initialized with have consecutive indices.  This
    839 		 *       allows it to use more efficient data structures
    840 		 *       (presumably).
    841 		 *   (b) the current pmap routines which report the initial
    842 		 *       set of free page indices (pmap_next_page) and
    843 		 *       which map addresses to indices (pmap_page_index)
    844 		 *       assume that the free pages are consecutive across
    845 		 *       memory region boundaries.
    846 		 *
    847 		 *  This means that memory which is "stolen" at startup time
    848 		 *  (say, for page descriptors) MUST come from either the
    849 		 *  bottom of the first region or the top of the last.
    850 		 *
    851 		 *  This requirement doesn't mesh well with OFW (or at least
    852 		 *  our use of it).  We can get around it for the time being
    853 		 *  by pretending that our "available" region array describes
    854 		 *  all of our physical memory.  This may cause some important
    855 		 *  information to be excluded from a dump file, but so far
    856 		 *  I haven't come across any other negative effects.
    857 		 *
    858 		 *  In the long-run we should fix the index
    859 		 *  generation/translation code in the pmap module.
    860 		 */
    861 
    862 		if (DRAM_BLOCKS < (availcnt + 1))
    863 			panic("more ofw memory regions than bootconfig blocks");
    864 
    865 		for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
    866 			bootconfig.dram[i].address = mp->start;
    867 			bootconfig.dram[i].pages = btoc(mp->size);
    868 		}
    869 		bootconfig.dramblocks = availcnt;
    870 	}
    871 
    872 	/* Load memory into UVM. */
    873 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
    874 
    875 	/* XXX Please kill this code dead. */
    876 	for (i = 0; i < bootconfig.dramblocks; i++) {
    877 		paddr_t start = (paddr_t)bootconfig.dram[i].address;
    878 		paddr_t end = start + (bootconfig.dram[i].pages * NBPG);
    879 #if NISADMA > 0
    880 		paddr_t istart, isize;
    881 #endif
    882 
    883 		if (start < physical_freestart)
    884 			start = physical_freestart;
    885 		if (end > physical_freeend)
    886 			end = physical_freeend;
    887 
    888 #if 0
    889 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
    890 #endif
    891 
    892 #if NISADMA > 0
    893 		if (arm32_dma_range_intersect(shark_isa_dma_ranges,
    894 					      shark_isa_dma_nranges,
    895 					      start, end - start,
    896 					      &istart, &isize)) {
    897 			/*
    898 			 * Place the pages that intersect with the
    899 			 * ISA DMA range onto the ISA DMA free list.
    900 			 */
    901 #if 0
    902 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
    903 			    istart + isize - 1);
    904 #endif
    905 			uvm_page_physload(atop(istart),
    906 			    atop(istart + isize), atop(istart),
    907 			    atop(istart + isize), VM_FREELIST_ISADMA);
    908 
    909 			/*
    910 			 * Load the pieces that come before the
    911 			 * intersection onto the default free list.
    912 			 */
    913 			if (start < istart) {
    914 #if 0
    915 				printf("    BEFORE 0x%lx -> 0x%lx\n",
    916 				    start, istart - 1);
    917 #endif
    918 				uvm_page_physload(atop(start),
    919 				    atop(istart), atop(start),
    920 				    atop(istart), VM_FREELIST_DEFAULT);
    921 			}
    922 
    923 			/*
    924 			 * Load the pieces that come after the
    925 			 * intersection onto the default free list.
    926 			 */
    927 			if ((istart + isize) < end) {
    928 #if 0
    929 				printf("     AFTER 0x%lx -> 0x%lx\n",
    930 				    (istart + isize), end - 1);
    931 #endif
    932 				uvm_page_physload(atop(istart + isize),
    933 				    atop(end), atop(istart + isize),
    934 				    atop(end), VM_FREELIST_DEFAULT);
    935 			}
    936 		} else {
    937 			uvm_page_physload(atop(start), atop(end),
    938 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
    939 		}
    940 #else /* NISADMA > 0 */
    941 		uvm_page_physload(atop(start), atop(end),
    942 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
    943 #endif /* NISADMA > 0 */
    944 	}
    945 
    946 	/* Initialize pmap module. */
    947 	pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
    948 }
    949 
    950 
    951 /*
    952  ************************************************************
    953 
    954   Routines private to this module
    955 
    956  ************************************************************
    957  */
    958 
    959 /* N.B.  Not supposed to call printf in callback-handler!  Could deadlock! */
    960 static void
    961 ofw_callbackhandler(args)
    962 	struct ofw_cbargs *args;
    963 {
    964 	char *name = args->name;
    965 	int nargs = args->nargs;
    966 	int nreturns = args->nreturns;
    967 	int *args_n_results = args->args_n_results;
    968 
    969 	ofw_callbacks++;
    970 
    971 #if defined(OFWGENCFG)
    972 	/* Check this first, so that we don't waste IRQ time parsing. */
    973 	if (strcmp(name, "tick") == 0) {
    974 		vm_offset_t frame;
    975 
    976 		/* Check format. */
    977 		if (nargs != 1 || nreturns < 1) {
    978 			args_n_results[nargs] = -1;
    979 			args->nreturns = 1;
    980 			return;
    981 		}
    982 		args_n_results[nargs] =	0;	/* properly formatted request */
    983 
    984 		/*
    985 		 *  Note that we are running in the IRQ frame, with interrupts
    986 		 *  disabled.
    987 		 *
    988 		 *  We need to do two things here:
    989 		 *    - copy a few words out of the input frame into a global
    990 		 *      area, for later use by our real tick-handling code
    991 		 *    - patch a few words in the frame so that when OFW returns
    992 		 *      from the interrupt it will resume with our handler
    993 		 *      rather than the code that was actually interrupted.
    994 		 *      Our handler will resume when it finishes with the code
    995 		 *      that was actually interrupted.
    996 		 *
    997 		 *  It's simplest to do this in assembler, since it requires
    998 		 *  switching frames and grovelling about with registers.
    999 		 */
   1000 		frame = (vm_offset_t)args_n_results[0];
   1001 		if (ofw_handleticks)
   1002 			dotickgrovelling(frame);
   1003 		args_n_results[nargs + 1] = frame;
   1004 		args->nreturns = 1;
   1005 	} else
   1006 #endif
   1007 
   1008 	if (strcmp(name, "map") == 0) {
   1009 		vm_offset_t va;
   1010 		vm_offset_t pa;
   1011 		vm_size_t size;
   1012 		int mode;
   1013 		int ap_bits;
   1014 		int dom_bits;
   1015 		int cb_bits;
   1016 
   1017 		/* Check format. */
   1018 		if (nargs != 4 || nreturns < 2) {
   1019 			args_n_results[nargs] = -1;
   1020 			args->nreturns = 1;
   1021 			return;
   1022 		}
   1023 		args_n_results[nargs] =	0;	/* properly formatted request */
   1024 
   1025 		pa = (vm_offset_t)args_n_results[0];
   1026 		va = (vm_offset_t)args_n_results[1];
   1027 		size = (vm_size_t)args_n_results[2];
   1028 		mode = args_n_results[3];
   1029 		ap_bits =  (mode & 0x00000C00);
   1030 		dom_bits = (mode & 0x000001E0);
   1031 		cb_bits =  (mode & 0x000000C0);
   1032 
   1033 		/* Sanity checks. */
   1034 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
   1035 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
   1036 		    (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
   1037 		    size == 0 || (dom_bits >> 5) != 0) {
   1038 			args_n_results[nargs + 1] = -1;
   1039 			args->nreturns = 1;
   1040 			return;
   1041 		}
   1042 
   1043 		/* Write-back anything stuck in the cache. */
   1044 		cpu_idcache_wbinv_all();
   1045 
   1046 		/* Install new mappings. */
   1047 		{
   1048 			pt_entry_t *pte = vtopte(va);
   1049 			int npages = size >> PGSHIFT;
   1050 
   1051 			ap_bits >>= 10;
   1052 			for (; npages > 0; pte++, pa += NBPG, npages--)
   1053 				*pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
   1054 				    cb_bits);
   1055 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
   1056 		}
   1057 
   1058 		/* Clean out tlb. */
   1059 		tlb_flush();
   1060 
   1061 		args_n_results[nargs + 1] = 0;
   1062 		args->nreturns = 2;
   1063 	} else if (strcmp(name, "unmap") == 0) {
   1064 		vm_offset_t va;
   1065 		vm_size_t size;
   1066 
   1067 		/* Check format. */
   1068 		if (nargs != 2 || nreturns < 1) {
   1069 			args_n_results[nargs] = -1;
   1070 			args->nreturns = 1;
   1071 			return;
   1072 		}
   1073 		args_n_results[nargs] =	0;	/* properly formatted request */
   1074 
   1075 		va = (vm_offset_t)args_n_results[0];
   1076 		size = (vm_size_t)args_n_results[1];
   1077 
   1078 		/* Sanity checks. */
   1079 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
   1080 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
   1081 		    (size & PGOFSET) != 0 || size == 0) {
   1082 			args_n_results[nargs + 1] = -1;
   1083 			args->nreturns = 1;
   1084 			return;
   1085 		}
   1086 
   1087 		/* Write-back anything stuck in the cache. */
   1088 		cpu_idcache_wbinv_all();
   1089 
   1090 		/* Zero the mappings. */
   1091 		{
   1092 			pt_entry_t *pte = vtopte(va);
   1093 			int npages = size >> PGSHIFT;
   1094 
   1095 			for (; npages > 0; pte++, npages--)
   1096 				*pte = 0;
   1097 			PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
   1098 		}
   1099 
   1100 		/* Clean out tlb. */
   1101 		tlb_flush();
   1102 
   1103 		args->nreturns = 1;
   1104 	} else if (strcmp(name, "translate") == 0) {
   1105 		vm_offset_t va;
   1106 		vm_offset_t pa;
   1107 		int mode;
   1108 		pt_entry_t pte;
   1109 
   1110 		/* Check format. */
   1111 		if (nargs != 1 || nreturns < 4) {
   1112 			args_n_results[nargs] = -1;
   1113 			args->nreturns = 1;
   1114 			return;
   1115 		}
   1116 		args_n_results[nargs] =	0;	/* properly formatted request */
   1117 
   1118 		va = (vm_offset_t)args_n_results[0];
   1119 
   1120 		/* Sanity checks.
   1121 		 * For now, I am only willing to translate va's in the
   1122 		 * "ofw range." Eventually, I may be more generous. -JJK
   1123 		 */
   1124 		if ((va & PGOFSET) != 0 ||  va < OFW_VIRT_BASE ||
   1125 		    va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
   1126 			args_n_results[nargs + 1] = -1;
   1127 			args->nreturns = 1;
   1128 			return;
   1129 		}
   1130 
   1131 		/* Lookup mapping. */
   1132 		pte = *vtopte(va);
   1133 		if (pte == 0) {
   1134 			/* No mapping. */
   1135 			args_n_results[nargs + 1] = -1;
   1136 			args->nreturns = 2;
   1137 		} else {
   1138 			/* Existing mapping. */
   1139 			pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   1140 			mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C);	/* AP | DOM | CB */
   1141 
   1142 			args_n_results[nargs + 1] = 0;
   1143 			args_n_results[nargs + 2] = pa;
   1144 			args_n_results[nargs + 3] =	mode;
   1145 			args->nreturns = 4;
   1146 		}
   1147 	} else if (strcmp(name, "claim-phys") == 0) {
   1148 		struct pglist alloclist;
   1149 		vm_offset_t low, high;
   1150 		vm_size_t align, size;
   1151 
   1152 		/*
   1153 		 * XXX
   1154 		 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
   1155 		 * XXX
   1156 		 */
   1157 
   1158 		/* Check format. */
   1159 		if (nargs != 4 || nreturns < 3) {
   1160 			args_n_results[nargs] = -1;
   1161 			args->nreturns = 1;
   1162 			return;
   1163 		}
   1164 		args_n_results[nargs] =	0;	/* properly formatted request */
   1165 
   1166 		low = args_n_results[0];
   1167 		size = args_n_results[2];
   1168 		align = args_n_results[3];
   1169 		high = args_n_results[1] + size;
   1170 
   1171 #if 0
   1172 		printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
   1173 		    low, size, align, high);
   1174 		align = size;
   1175 		printf("forcing align to be 0x%x\n", align);
   1176 #endif
   1177 
   1178 		args_n_results[nargs + 1] =
   1179 		uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
   1180 #if 0
   1181 		printf(" -> 0x%lx", args_n_results[nargs + 1]);
   1182 #endif
   1183 		if (args_n_results[nargs + 1] != 0) {
   1184 #if 0
   1185 			printf("(failed)\n");
   1186 #endif
   1187 			args_n_results[nargs + 1] = -1;
   1188 			args->nreturns = 2;
   1189 			return;
   1190 		}
   1191 		args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
   1192 #if 0
   1193 		printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
   1194 #endif
   1195 		args->nreturns = 3;
   1196 
   1197 	} else if (strcmp(name, "release-phys") == 0) {
   1198 		printf("unimplemented ofw callback - %s\n", name);
   1199 		args_n_results[nargs] = -1;
   1200 		args->nreturns = 1;
   1201 	} else if (strcmp(name, "claim-virt") == 0) {
   1202 		vm_offset_t va;
   1203 		vm_size_t size;
   1204 		vm_offset_t align;
   1205 
   1206 		/* XXX - notyet */
   1207 /*		printf("unimplemented ofw callback - %s\n", name);*/
   1208 		args_n_results[nargs] = -1;
   1209 		args->nreturns = 1;
   1210 		return;
   1211 
   1212 		/* Check format. */
   1213 		if (nargs != 2 || nreturns < 3) {
   1214 		    args_n_results[nargs] = -1;
   1215 		    args->nreturns = 1;
   1216 		    return;
   1217 		}
   1218 		args_n_results[nargs] =	0;	/* properly formatted request */
   1219 
   1220 		/* Allocate size bytes with specified alignment. */
   1221 		size = (vm_size_t)args_n_results[0];
   1222 		align = (vm_offset_t)args_n_results[1];
   1223 		if (align % NBPG != 0) {
   1224 			args_n_results[nargs + 1] = -1;
   1225 			args->nreturns = 2;
   1226 			return;
   1227 		}
   1228 
   1229 		if (va == 0) {
   1230 			/* Couldn't allocate. */
   1231 			args_n_results[nargs + 1] = -1;
   1232 			args->nreturns = 2;
   1233 		} else {
   1234 			/* Successful allocation. */
   1235 			args_n_results[nargs + 1] = 0;
   1236 			args_n_results[nargs + 2] = va;
   1237 			args->nreturns = 3;
   1238 		}
   1239 	} else if (strcmp(name, "release-virt") == 0) {
   1240 		vm_offset_t va;
   1241 		vm_size_t size;
   1242 
   1243 		/* XXX - notyet */
   1244 		printf("unimplemented ofw callback - %s\n", name);
   1245 		args_n_results[nargs] = -1;
   1246 		args->nreturns = 1;
   1247 		return;
   1248 
   1249 		/* Check format. */
   1250 		if (nargs != 2 || nreturns < 1) {
   1251 			args_n_results[nargs] = -1;
   1252 			args->nreturns = 1;
   1253 			return;
   1254 		}
   1255 		args_n_results[nargs] =	0;	/* properly formatted request */
   1256 
   1257 		/* Release bytes. */
   1258 		va = (vm_offset_t)args_n_results[0];
   1259 		size = (vm_size_t)args_n_results[1];
   1260 
   1261 		args->nreturns = 1;
   1262 	} else {
   1263 		args_n_results[nargs] = -1;
   1264 		args->nreturns = 1;
   1265 	}
   1266 }
   1267 
   1268 static void
   1269 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
   1270 	pv_addr_t *proc0_ttbbase;
   1271 	pv_addr_t *proc0_ptpt;
   1272 {
   1273 	int i, oft;
   1274 	pv_addr_t proc0_pagedir;
   1275 	pv_addr_t proc0_pt_pte;
   1276 	pv_addr_t proc0_pt_sys;
   1277 	pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
   1278 	pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
   1279 	pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
   1280 	pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
   1281 	pv_addr_t msgbuf;
   1282 	vm_offset_t L1pagetable;
   1283 	struct mem_translation *tp;
   1284 
   1285 	/* Set-up the system page. */
   1286 	KASSERT(vector_page == 0);	/* XXX for now */
   1287 	systempage.pv_va = ofw_claimvirt(vector_page, NBPG, 0);
   1288 	if (systempage.pv_va == -1) {
   1289 		/* Something was already mapped to vector_page's VA. */
   1290 		systempage.pv_va = vector_page;
   1291 		systempage.pv_pa = ofw_gettranslation(vector_page);
   1292 		if (systempage.pv_pa == -1)
   1293 			panic("bogus result from gettranslation(vector_page)");
   1294 	} else {
   1295 		/* We were just allocated the page-length range at VA 0. */
   1296 		if (systempage.pv_va != vector_page)
   1297 			panic("bogus result from claimvirt(vector_page, NBPG, 0)");
   1298 
   1299 		/* Now allocate a physical page, and establish the mapping. */
   1300 		systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
   1301 		if (systempage.pv_pa == -1)
   1302 			panic("bogus result from claimphys(0, NBPG, NBPG)");
   1303 		ofw_settranslation(systempage.pv_va, systempage.pv_pa,
   1304 		    NBPG, -1);	/* XXX - mode? -JJK */
   1305 
   1306 		/* Zero the memory. */
   1307 		bzero((char *)systempage.pv_va, NBPG);
   1308 	}
   1309 
   1310 	/* Allocate/initialize space for the proc0, NetBSD-managed */
   1311 	/* page tables that we will be switching to soon. */
   1312 	ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
   1313 	ofw_claimpages(&virt_freeptr, &proc0_pt_pte, L2_TABLE_SIZE);
   1314 	ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
   1315 	for (i = 0; i < KERNEL_IMG_PTS; i++)
   1316 		ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
   1317 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1318 		ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
   1319 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1320 		ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
   1321 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1322 		ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
   1323 
   1324 	/* Allocate/initialize space for stacks. */
   1325 #ifndef	OFWGENCFG
   1326 	ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
   1327 #endif
   1328 	ofw_claimpages(&virt_freeptr, &undstack, NBPG);
   1329 	ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
   1330 	ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
   1331 
   1332 	/* Allocate/initialize space for msgbuf area. */
   1333 	ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
   1334 	msgbufphys = msgbuf.pv_pa;
   1335 
   1336 	/* Construct the proc0 L1 pagetable. */
   1337 	L1pagetable = proc0_pagedir.pv_va;
   1338 
   1339 	pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
   1340 	for (i = 0; i < KERNEL_IMG_PTS; i++)
   1341 		pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
   1342 		    &proc0_pt_kernel[i]);
   1343 	pmap_link_l2pt(L1pagetable, PTE_BASE,
   1344 	    &proc0_pt_pte);
   1345 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1346 		pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
   1347 		    &proc0_pt_vmdata[i]);
   1348 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1349 		pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
   1350 		    &proc0_pt_ofw[i]);
   1351 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1352 		pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
   1353 		    &proc0_pt_io[i]);
   1354 
   1355 	/*
   1356 	 * OK, we're done allocating.
   1357 	 * Get a dump of OFW's translations, and make the appropriate
   1358 	 * entries in the L2 pagetables that we just allocated.
   1359 	 */
   1360 
   1361 	ofw_getvirttranslations();
   1362 
   1363 	for (oft = 0,  tp = OFtranslations; oft < nOFtranslations;
   1364 	    oft++, tp++) {
   1365 
   1366 		vm_offset_t va, pa;
   1367 		int npages = tp->size / NBPG;
   1368 
   1369 		/* Size must be an integral number of pages. */
   1370 		if (npages == 0 || tp->size % NBPG != 0)
   1371 			panic("illegal ofw translation (size)");
   1372 
   1373 		/* Make an entry for each page in the appropriate table. */
   1374 		for (va = tp->virt, pa = tp->phys; npages > 0;
   1375 		    va += NBPG, pa += NBPG, npages--) {
   1376 			/*
   1377 			 * Map the top bits to the appropriate L2 pagetable.
   1378 			 * The only allowable regions are page0, the
   1379 			 * kernel-static area, and the ofw area.
   1380 			 */
   1381 			switch (va >> (L1_S_SHIFT + 2)) {
   1382 			case 0:
   1383 				/* page0 */
   1384 				break;
   1385 
   1386 #if KERNEL_IMG_PTS != 2
   1387 #error "Update ofw translation range list"
   1388 #endif
   1389 			case ( KERNEL_BASE                 >> (L1_S_SHIFT + 2)):
   1390 			case ((KERNEL_BASE   + 0x00400000) >> (L1_S_SHIFT + 2)):
   1391 				/* kernel static area */
   1392 				break;
   1393 
   1394 			case ( OFW_VIRT_BASE               >> (L1_S_SHIFT + 2)):
   1395 			case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
   1396 			case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
   1397 			case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
   1398 				/* ofw area */
   1399 				break;
   1400 
   1401 			case ( IO_VIRT_BASE               >> (L1_S_SHIFT + 2)):
   1402 			case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
   1403 			case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
   1404 			case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
   1405 				/* io area */
   1406 				break;
   1407 
   1408 			default:
   1409 				/* illegal */
   1410 				panic("illegal ofw translation (addr) %#lx",
   1411 				    va);
   1412 			}
   1413 
   1414 			/* Make the entry. */
   1415 			pmap_map_entry(L1pagetable, va, pa,
   1416 			    VM_PROT_READ|VM_PROT_WRITE,
   1417 			    (tp->mode & 0xC) == 0xC ? PTE_CACHE
   1418 						    : PTE_NOCACHE);
   1419 		}
   1420 	}
   1421 
   1422 	/*
   1423 	 * We don't actually want some of the mappings that we just
   1424 	 * set up to appear in proc0's address space.  In particular,
   1425 	 * we don't want aliases to physical addresses that the kernel
   1426 	 * has-mapped/will-map elsewhere.
   1427 	 */
   1428 	ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1429 	    proc0_pt_sys.pv_va, L2_TABLE_SIZE);
   1430 	for (i = 0; i < KERNEL_IMG_PTS; i++)
   1431 		ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1432 		    proc0_pt_kernel[i].pv_va, L2_TABLE_SIZE);
   1433 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1434 		ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1435 		    proc0_pt_vmdata[i].pv_va, L2_TABLE_SIZE);
   1436 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1437 		ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1438 		    proc0_pt_ofw[i].pv_va, L2_TABLE_SIZE);
   1439 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1440 		ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1441 		    proc0_pt_io[i].pv_va, L2_TABLE_SIZE);
   1442 	ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
   1443 	    msgbuf.pv_va, MSGBUFSIZE);
   1444 
   1445 	/*
   1446 	 * We did not throw away the proc0_pt_pte and proc0_pagedir
   1447 	 * mappings as well still want them. However we don't want them
   1448 	 * cached ...
   1449 	 * Really these should be uncached when allocated.
   1450 	 */
   1451 	pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
   1452 	    proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1453 	for (i = 0; i < (L1_TABLE_SIZE / NBPG); ++i)
   1454 		pmap_map_entry(L1pagetable,
   1455 		    proc0_pagedir.pv_va + NBPG * i,
   1456 		    proc0_pagedir.pv_pa + NBPG * i,
   1457 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
   1458 
   1459 	/*
   1460 	 * Construct the proc0 L2 pagetables that map page tables.
   1461 	 */
   1462 
   1463 	/* Map entries in the L2pagetable used to map L2PTs. */
   1464 	pmap_map_entry(L1pagetable,
   1465 	    PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
   1466 	    proc0_pt_sys.pv_pa,
   1467 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1468 	for (i = 0; i < KERNEL_IMG_PTS; i++)
   1469 		pmap_map_entry(L1pagetable,
   1470 		    PTE_BASE + ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2)),
   1471 		    proc0_pt_kernel[i].pv_pa,
   1472 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1473 	pmap_map_entry(L1pagetable,
   1474 	    PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
   1475 	    proc0_pt_pte.pv_pa,
   1476 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1477 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1478 		pmap_map_entry(L1pagetable,
   1479 		    PTE_BASE + ((KERNEL_VM_BASE + i * 0x00400000)
   1480 		    >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
   1481 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1482 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1483 		pmap_map_entry(L1pagetable,
   1484 		    PTE_BASE + ((OFW_VIRT_BASE + i * 0x00400000)
   1485 		    >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
   1486 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1487 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1488 		pmap_map_entry(L1pagetable,
   1489 		    PTE_BASE + ((IO_VIRT_BASE + i * 0x00400000)
   1490 		    >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
   1491 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1492 
   1493 	/* update the top of the kernel VM */
   1494 	pmap_curmaxkvaddr =
   1495 	    KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
   1496 
   1497 	/*
   1498          * gross hack for the sake of not thrashing the TLB and making
   1499 	 * cache flush more efficient: blast l1 ptes for sections.
   1500          */
   1501 	for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
   1502 		vm_offset_t va = tp->virt;
   1503 		vm_offset_t pa = tp->phys;
   1504 
   1505 		if (((va | pa) & L1_S_OFFSET) == 0) {
   1506 			int nsections = tp->size / L1_S_SIZE;
   1507 
   1508 			while (nsections--) {
   1509 				/* XXXJRT prot?? */
   1510 				pmap_map_section(L1pagetable, va, pa,
   1511 				    VM_PROT_READ|VM_PROT_WRITE,
   1512 				    (tp->mode & 0xC) == 0xC ? PTE_CACHE
   1513 							    : PTE_NOCACHE);
   1514 				va += L1_S_SIZE;
   1515 				pa += L1_S_SIZE;
   1516 			}
   1517 		}
   1518 	}
   1519 
   1520 	/* OUT parameters are the new ttbbase and the pt which maps pts. */
   1521 	*proc0_ttbbase = proc0_pagedir;
   1522 	*proc0_ptpt = proc0_pt_pte;
   1523 }
   1524 
   1525 
   1526 static void
   1527 ofw_getphysmeminfo()
   1528 {
   1529 	int phandle;
   1530 	int mem_len;
   1531 	int avail_len;
   1532 	int i;
   1533 
   1534 	if ((phandle = OF_finddevice("/memory")) == -1 ||
   1535 	    (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
   1536 	    (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
   1537 	    OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
   1538 	    (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
   1539  	    (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
   1540 	    OF_getprop(phandle, "available", OFphysavail, avail_len)
   1541 	    != avail_len)
   1542 		panic("can't get physmeminfo from OFW");
   1543 
   1544 	nOFphysmem = mem_len / sizeof(struct mem_region);
   1545 	nOFphysavail = avail_len / sizeof(struct mem_region);
   1546 
   1547 	/*
   1548 	 * Sort the blocks in each array into ascending address order.
   1549 	 * Also, page-align all blocks.
   1550 	 */
   1551 	for (i = 0; i < 2; i++) {
   1552 		struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
   1553 		struct mem_region *mp;
   1554 		int cnt =  (i == 0) ? nOFphysmem : nOFphysavail;
   1555 		int j;
   1556 
   1557 #ifdef	OLDPRINTFS
   1558 		printf("ofw_getphysmeminfo:  %d blocks\n", cnt);
   1559 #endif
   1560 
   1561 		/* XXX - Convert all the values to host order. -JJK */
   1562 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
   1563 			mp->start = of_decode_int((unsigned char *)&mp->start);
   1564 			mp->size = of_decode_int((unsigned char *)&mp->size);
   1565 		}
   1566 
   1567 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
   1568 			u_int s, sz;
   1569 			struct mem_region *mp1;
   1570 
   1571 			/* Page-align start of the block. */
   1572 			s = mp->start % NBPG;
   1573 			if (s != 0) {
   1574 				s = (NBPG - s);
   1575 
   1576 				if (mp->size >= s) {
   1577 					mp->start += s;
   1578 					mp->size -= s;
   1579 				}
   1580 			}
   1581 
   1582 			/* Page-align the size. */
   1583 			mp->size -= mp->size % NBPG;
   1584 
   1585 			/* Handle empty block. */
   1586 			if (mp->size == 0) {
   1587 				bcopy(mp + 1, mp, (cnt - (mp - tmp))
   1588 				    * sizeof(struct mem_region));
   1589 				cnt--;
   1590 				mp--;
   1591 				continue;
   1592 			}
   1593 
   1594 			/* Bubble sort. */
   1595 			s = mp->start;
   1596 			sz = mp->size;
   1597 			for (mp1 = tmp; mp1 < mp; mp1++)
   1598 				if (s < mp1->start)
   1599 					break;
   1600 			if (mp1 < mp) {
   1601 				bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
   1602 				mp1->start = s;
   1603 				mp1->size = sz;
   1604 			}
   1605 		}
   1606 
   1607 #ifdef	OLDPRINTFS
   1608 		for (mp = tmp; mp->size; mp++) {
   1609 			printf("%x, %x\n", mp->start, mp->size);
   1610 		}
   1611 #endif
   1612 	}
   1613 }
   1614 
   1615 
   1616 static void
   1617 ofw_getvirttranslations(void)
   1618 {
   1619 	int mmu_phandle;
   1620 	int mmu_ihandle;
   1621 	int trans_len;
   1622 	int over, len;
   1623 	int i;
   1624 	struct mem_translation *tp;
   1625 
   1626 	mmu_ihandle = ofw_mmu_ihandle();
   1627 
   1628 	/* overallocate to avoid increases during allocation */
   1629 	over = 4 * sizeof(struct mem_translation);
   1630 	if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
   1631 	    (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
   1632 	    (OFtranslations = ofw_malloc(len + over)) == 0 ||
   1633 	    (trans_len = OF_getprop(mmu_phandle, "translations",
   1634 	    OFtranslations, len + over)) > (len + over))
   1635 		panic("can't get virttranslations from OFW");
   1636 
   1637 	/* XXX - Convert all the values to host order. -JJK */
   1638 	nOFtranslations = trans_len / sizeof(struct mem_translation);
   1639 #ifdef	OLDPRINTFS
   1640 	printf("ofw_getvirtmeminfo:  %d blocks\n", nOFtranslations);
   1641 #endif
   1642 	for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
   1643 		tp->virt = of_decode_int((unsigned char *)&tp->virt);
   1644 		tp->size = of_decode_int((unsigned char *)&tp->size);
   1645 		tp->phys = of_decode_int((unsigned char *)&tp->phys);
   1646 		tp->mode = of_decode_int((unsigned char *)&tp->mode);
   1647 	}
   1648 }
   1649 
   1650 /*
   1651  * ofw_valloc: allocate blocks of VM for IO and other special purposes
   1652  */
   1653 typedef struct _vfree {
   1654 	struct _vfree *pNext;
   1655 	vm_offset_t start;
   1656 	vm_size_t   size;
   1657 } VFREE, *PVFREE;
   1658 
   1659 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
   1660 
   1661 static PVFREE vflist = &vfinitial;
   1662 
   1663 static vm_offset_t
   1664 ofw_valloc(size, align)
   1665 	vm_offset_t size;
   1666 	vm_offset_t align;
   1667 {
   1668 	PVFREE        *ppvf;
   1669 	PVFREE        pNew;
   1670 	vm_offset_t   new;
   1671 	vm_offset_t   lead;
   1672 
   1673 	for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
   1674 		if (align == 0) {
   1675 			new = (*ppvf)->start;
   1676 			lead = 0;
   1677 		} else {
   1678 			new  = ((*ppvf)->start + (align - 1)) & ~(align - 1);
   1679 			lead = new - (*ppvf)->start;
   1680 		}
   1681 
   1682 		if (((*ppvf)->size - lead) >= size) {
   1683  			if (lead == 0) {
   1684 				/* using whole block */
   1685 				if (size == (*ppvf)->size) {
   1686 					/* splice out of list */
   1687 					(*ppvf) = (*ppvf)->pNext;
   1688 				} else { /* tail of block is free */
   1689 					(*ppvf)->start = new + size;
   1690 					(*ppvf)->size -= size;
   1691 				}
   1692 			} else {
   1693 				vm_size_t tail = ((*ppvf)->start
   1694 				    + (*ppvf)->size) - (new + size);
   1695 				/* free space at beginning */
   1696 				(*ppvf)->size = lead;
   1697 
   1698 				if (tail != 0) {
   1699 					/* free space at tail */
   1700 					pNew = ofw_malloc(sizeof(VFREE));
   1701 					pNew->pNext  = (*ppvf)->pNext;
   1702 					(*ppvf)->pNext = pNew;
   1703 					pNew->start  = new + size;
   1704 					pNew->size   = tail;
   1705 				}
   1706 			}
   1707 			return new;
   1708 		} /* END if */
   1709 	} /* END for */
   1710 
   1711 	return -1;
   1712 }
   1713 
   1714 vm_offset_t
   1715 ofw_map(pa, size, cb_bits)
   1716 	vm_offset_t pa;
   1717 	vm_size_t size;
   1718 	int cb_bits;
   1719 {
   1720 	vm_offset_t va;
   1721 
   1722 	if ((va = ofw_valloc(size, size)) == -1)
   1723 		panic("cannot alloc virtual memory for %#lx", pa);
   1724 
   1725 	ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
   1726 
   1727 	ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
   1728 
   1729 	return va;
   1730 }
   1731 
   1732 static int
   1733 ofw_mem_ihandle(void)
   1734 {
   1735 	static int mem_ihandle = 0;
   1736 	int chosen;
   1737 
   1738 	if (mem_ihandle != 0)
   1739 		return(mem_ihandle);
   1740 
   1741 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
   1742 	    OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
   1743 		panic("ofw_mem_ihandle");
   1744 
   1745 	mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
   1746 
   1747 	return(mem_ihandle);
   1748 }
   1749 
   1750 
   1751 static int
   1752 ofw_mmu_ihandle(void)
   1753 {
   1754 	static int mmu_ihandle = 0;
   1755 	int chosen;
   1756 
   1757 	if (mmu_ihandle != 0)
   1758 		return(mmu_ihandle);
   1759 
   1760 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
   1761 	    OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
   1762 		panic("ofw_mmu_ihandle");
   1763 
   1764 	mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
   1765 
   1766 	return(mmu_ihandle);
   1767 }
   1768 
   1769 
   1770 /* Return -1 on failure. */
   1771 static vm_offset_t
   1772 ofw_claimphys(pa, size, align)
   1773 	vm_offset_t pa;
   1774 	vm_size_t size;
   1775 	vm_offset_t align;
   1776 {
   1777 	int mem_ihandle = ofw_mem_ihandle();
   1778 
   1779 /*	printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
   1780 	if (align == 0) {
   1781 		/* Allocate at specified base; alignment is ignored. */
   1782 		pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
   1783 	} else {
   1784 		/* Allocate anywhere, with specified alignment. */
   1785 		pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
   1786 	}
   1787 
   1788 /*	printf("%x\n", pa);*/
   1789 	return(pa);
   1790 }
   1791 
   1792 
   1793 #if 0
   1794 /* Return -1 on failure. */
   1795 static vm_offset_t
   1796 ofw_releasephys(pa, size)
   1797 	vm_offset_t pa;
   1798 	vm_size_t size;
   1799 {
   1800 	int mem_ihandle = ofw_mem_ihandle();
   1801 
   1802 /*	printf("ofw_releasephys (%x, %x)\n", pa, size);*/
   1803 
   1804 	return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
   1805 }
   1806 #endif
   1807 
   1808 /* Return -1 on failure. */
   1809 static vm_offset_t
   1810 ofw_claimvirt(va, size, align)
   1811 	vm_offset_t va;
   1812 	vm_size_t size;
   1813 	vm_offset_t align;
   1814 {
   1815 	int mmu_ihandle = ofw_mmu_ihandle();
   1816 
   1817 	/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
   1818 	if (align == 0) {
   1819 		/* Allocate at specified base; alignment is ignored. */
   1820 		va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
   1821 	} else {
   1822 		/* Allocate anywhere, with specified alignment. */
   1823 		va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
   1824 	}
   1825 
   1826 	/*printf("%x\n", va);*/
   1827 	return(va);
   1828 }
   1829 
   1830 
   1831 /* Return -1 if no mapping. */
   1832 vm_offset_t
   1833 ofw_gettranslation(va)
   1834 	vm_offset_t va;
   1835 {
   1836 	int mmu_ihandle = ofw_mmu_ihandle();
   1837 	vm_offset_t pa;
   1838 	int mode;
   1839 	int exists;
   1840 
   1841 	/*printf("ofw_gettranslation (%x) --> ", va);*/
   1842 	exists = 0;	    /* gets set to true if translation exists */
   1843 	if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
   1844 	    &exists) != 0)
   1845 		return(-1);
   1846 
   1847 	/*printf("%x\n", exists ? pa : -1);*/
   1848 	return(exists ? pa : -1);
   1849 }
   1850 
   1851 
   1852 static void
   1853 ofw_settranslation(va, pa, size, mode)
   1854 	vm_offset_t va;
   1855 	vm_offset_t pa;
   1856 	vm_size_t size;
   1857 	int mode;
   1858 {
   1859 	int mmu_ihandle = ofw_mmu_ihandle();
   1860 
   1861 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
   1862 	if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
   1863 		panic("ofw_settranslation failed");
   1864 }
   1865 
   1866 /*
   1867  *  Allocation routine used before the kernel takes over memory.
   1868  *  Use this for efficient storage for things that aren't rounded to
   1869  *  page size.
   1870  *
   1871  *  The point here is not necessarily to be very efficient (even though
   1872  *  that's sort of nice), but to do proper dynamic allocation to avoid
   1873  *  size-limitation errors.
   1874  *
   1875  */
   1876 
   1877 typedef struct _leftover {
   1878 	struct _leftover *pNext;
   1879 	vm_size_t size;
   1880 } LEFTOVER, *PLEFTOVER;
   1881 
   1882 /* leftover bits of pages.  first word is pointer to next.
   1883    second word is size of leftover */
   1884 static PLEFTOVER leftovers = NULL;
   1885 
   1886 static void *
   1887 ofw_malloc(size)
   1888 	vm_size_t size;
   1889 {
   1890 	PLEFTOVER   *ppLeftover;
   1891 	PLEFTOVER   pLeft;
   1892 	pv_addr_t   new;
   1893 	vm_size_t   newSize, claim_size;
   1894 
   1895 	/* round and set minimum size */
   1896 	size = max(sizeof(LEFTOVER),
   1897 	    ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
   1898 
   1899 	for (ppLeftover = &leftovers; *ppLeftover;
   1900 	    ppLeftover = &((*ppLeftover)->pNext))
   1901 		if ((*ppLeftover)->size >= size)
   1902 			break;
   1903 
   1904 	if (*ppLeftover) { /* have a leftover of the right size */
   1905 		/* remember the leftover */
   1906 		new.pv_va = (vm_offset_t)*ppLeftover;
   1907 		if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
   1908 			/* splice out of chain */
   1909 			*ppLeftover = (*ppLeftover)->pNext;
   1910 		} else {
   1911 			/* remember the next pointer */
   1912 			pLeft = (*ppLeftover)->pNext;
   1913 			newSize = (*ppLeftover)->size - size; /* reduce size */
   1914 			/* move pointer */
   1915 			*ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
   1916 			    + size);
   1917 			(*ppLeftover)->pNext = pLeft;
   1918 			(*ppLeftover)->size  = newSize;
   1919 		}
   1920 	} else {
   1921 		claim_size = (size + NBPG - 1) & ~(NBPG - 1);
   1922 		ofw_claimpages(&virt_freeptr, &new, claim_size);
   1923 		if ((size + sizeof(LEFTOVER)) <= claim_size) {
   1924 			pLeft = (PLEFTOVER)(new.pv_va + size);
   1925 			pLeft->pNext = leftovers;
   1926 			pLeft->size = claim_size - size;
   1927 			leftovers = pLeft;
   1928 		}
   1929 	}
   1930 
   1931 	return (void *)(new.pv_va);
   1932 }
   1933 
   1934 /*
   1935  *  Here is a really, really sleazy free.  It's not used right now,
   1936  *  because it's not worth the extra complexity for just a few bytes.
   1937  *
   1938  */
   1939 #if 0
   1940 static void
   1941 ofw_free(addr, size)
   1942 	vm_offset_t addr;
   1943 	vm_size_t size;
   1944 {
   1945 	PLEFTOVER pLeftover = (PLEFTOVER)addr;
   1946 
   1947 	/* splice right into list without checks or compaction */
   1948 	pLeftover->pNext = leftovers;
   1949 	pLeftover->size  = size;
   1950 	leftovers        = pLeftover;
   1951 }
   1952 #endif
   1953 
   1954 /*
   1955  *  Allocate and zero round(size)/NBPG pages of memory.
   1956  *  We guarantee that the allocated memory will be
   1957  *  aligned to a boundary equal to the smallest power of
   1958  *  2 greater than or equal to size.
   1959  *  free_pp is an IN/OUT parameter which points to the
   1960  *  last allocated virtual address in an allocate-downwards
   1961  *  stack.  pv_p is an OUT parameter which contains the
   1962  *  virtual and physical base addresses of the allocated
   1963  *  memory.
   1964  */
   1965 static void
   1966 ofw_claimpages(free_pp, pv_p, size)
   1967 	vm_offset_t *free_pp;
   1968 	pv_addr_t *pv_p;
   1969 	vm_size_t size;
   1970 {
   1971 	/* round-up to page boundary */
   1972 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
   1973 	vm_size_t aligned_size;
   1974 	vm_offset_t va, pa;
   1975 
   1976 	if (alloc_size == 0)
   1977 		panic("ofw_claimpages zero");
   1978 
   1979 	for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
   1980 		;
   1981 
   1982 	/*  The only way to provide the alignment guarantees is to
   1983 	 *  allocate the virtual and physical ranges separately,
   1984 	 *  then do an explicit map call.
   1985 	 */
   1986 	va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
   1987 	if (ofw_claimvirt(va, alloc_size, 0) != va)
   1988 		panic("ofw_claimpages va alloc");
   1989 	pa = ofw_claimphys(0, alloc_size, aligned_size);
   1990 	if (pa == -1)
   1991 		panic("ofw_claimpages pa alloc");
   1992 	/* XXX - what mode? -JJK */
   1993 	ofw_settranslation(va, pa, alloc_size, -1);
   1994 
   1995 	/* The memory's mapped-in now, so we can zero it. */
   1996 	bzero((char *)va, alloc_size);
   1997 
   1998 	/* Set OUT parameters. */
   1999 	*free_pp = va;
   2000 	pv_p->pv_va = va;
   2001 	pv_p->pv_pa = pa;
   2002 }
   2003 
   2004 
   2005 static void
   2006 ofw_discardmappings(L2pagetable, va, size)
   2007 	vm_offset_t L2pagetable;
   2008 	vm_offset_t va;
   2009 	vm_size_t size;
   2010 {
   2011 	/* round-up to page boundary */
   2012 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
   2013 	int npages = alloc_size / NBPG;
   2014 
   2015 	if (npages == 0)
   2016 		panic("ofw_discardmappings zero");
   2017 
   2018 	/* Discard each mapping. */
   2019 	for (; npages > 0; va += NBPG, npages--) {
   2020 		/* Sanity. The current entry should be non-null. */
   2021 		if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
   2022 			panic("ofw_discardmappings zero entry");
   2023 
   2024 		/* Clear the entry. */
   2025 		WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
   2026 	}
   2027 }
   2028 
   2029 
   2030 static void
   2031 ofw_initallocator(void)
   2032 {
   2033 
   2034 }
   2035