ofw.c revision 1.22 1 /* $NetBSD: ofw.c,v 1.22 2003/01/18 06:37:05 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #define _ARM32_BUS_DMA_PRIVATE
54 #include <machine/bus.h>
55 #include <machine/frame.h>
56 #include <machine/bootconfig.h>
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59
60 #include <dev/ofw/openfirm.h>
61 #include <machine/ofw.h>
62
63 #include <netinet/in.h>
64
65 #if BOOT_FW_DHCP
66 #include <nfs/bootdata.h>
67 #endif
68
69 #ifdef SHARK
70 #include "machine/pio.h"
71 #include "machine/isa_machdep.h"
72 #endif
73
74 #include "pc.h"
75 #include "isadma.h"
76
77 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
78 #define IO_VIRT_SIZE 0x01000000
79
80 #define KERNEL_IMG_PTS 2
81 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
82 #define KERNEL_OFW_PTS 4
83 #define KERNEL_IO_PTS 4
84
85 /*
86 * Imported variables
87 */
88 extern BootConfig bootconfig; /* temporary, I hope */
89
90 #ifdef DIAGNOSTIC
91 /* NOTE: These variables will be removed, well some of them */
92 extern u_int spl_mask;
93 extern u_int current_mask;
94 #endif
95
96 extern int ofw_handleticks;
97
98
99 /*
100 * Imported routines
101 */
102 extern void dump_spl_masks __P((void));
103 extern void dumpsys __P((void));
104 extern void dotickgrovelling __P((vm_offset_t));
105 #if defined(SHARK) && (NPC > 0)
106 extern void shark_screen_cleanup __P((int));
107 #endif
108
109 #define WriteWord(a, b) \
110 *((volatile unsigned int *)(a)) = (b)
111
112 #define ReadWord(a) \
113 (*((volatile unsigned int *)(a)))
114
115
116 /*
117 * Exported variables
118 */
119 /* These should all be in a meminfo structure. */
120 vm_offset_t physical_start;
121 vm_offset_t physical_freestart;
122 vm_offset_t physical_freeend;
123 vm_offset_t physical_end;
124 u_int free_pages;
125 int physmem;
126 pv_addr_t systempage;
127 #ifndef OFWGENCFG
128 pv_addr_t irqstack;
129 #endif
130 pv_addr_t undstack;
131 pv_addr_t abtstack;
132 pv_addr_t kernelstack;
133
134 vm_offset_t msgbufphys;
135
136 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
137 static vm_offset_t virt_freeptr;
138
139 int ofw_callbacks = 0; /* debugging counter */
140
141 /**************************************************************/
142
143
144 /*
145 * Declarations and definitions private to this module
146 *
147 */
148
149 struct mem_region {
150 vm_offset_t start;
151 vm_size_t size;
152 };
153
154 struct mem_translation {
155 vm_offset_t virt;
156 vm_size_t size;
157 vm_offset_t phys;
158 unsigned int mode;
159 };
160
161 struct isa_range {
162 vm_offset_t isa_phys_hi;
163 vm_offset_t isa_phys_lo;
164 vm_offset_t parent_phys_start;
165 vm_size_t isa_size;
166 };
167
168 struct vl_range {
169 vm_offset_t vl_phys_hi;
170 vm_offset_t vl_phys_lo;
171 vm_offset_t parent_phys_start;
172 vm_size_t vl_size;
173 };
174
175 struct vl_isa_range {
176 vm_offset_t isa_phys_hi;
177 vm_offset_t isa_phys_lo;
178 vm_offset_t parent_phys_hi;
179 vm_offset_t parent_phys_lo;
180 vm_size_t isa_size;
181 };
182
183 struct dma_range {
184 vm_offset_t start;
185 vm_size_t size;
186 };
187
188 struct ofw_cbargs {
189 char *name;
190 int nargs;
191 int nreturns;
192 int args_n_results[12];
193 };
194
195
196 /* Memory info */
197 static int nOFphysmem;
198 static struct mem_region *OFphysmem;
199 static int nOFphysavail;
200 static struct mem_region *OFphysavail;
201 static int nOFtranslations;
202 static struct mem_translation *OFtranslations;
203 static int nOFdmaranges;
204 static struct dma_range *OFdmaranges;
205
206 /* The OFW client services handle. */
207 /* Initialized by ofw_init(). */
208 static ofw_handle_t ofw_client_services_handle;
209
210
211 static void ofw_callbackhandler __P((void *));
212 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
213 static void ofw_getphysmeminfo __P((void));
214 static void ofw_getvirttranslations __P((void));
215 static void *ofw_malloc(vm_size_t size);
216 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
217 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
218 static int ofw_mem_ihandle __P((void));
219 static int ofw_mmu_ihandle __P((void));
220 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
221 #if 0
222 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
223 #endif
224 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
225 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
226 static void ofw_initallocator __P((void));
227 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
228 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
229 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
230
231
232 /*
233 * DHCP hooks. For a first cut, we look to see if there is a DHCP
234 * packet that was saved by the firmware. If not, we proceed as before,
235 * getting hand-configured data from NVRAM. If there is one, we get the
236 * packet, and extract the data from it. For now, we hand that data up
237 * in the boot_args string as before.
238 */
239
240
241 /**************************************************************/
242
243
244 /*
245 *
246 * Support routines for xxx_machdep.c
247 *
248 * The intent is that all OFW-based configurations use the
249 * exported routines in this file to do their business. If
250 * they need to override some function they are free to do so.
251 *
252 * The exported routines are:
253 *
254 * openfirmware
255 * ofw_init
256 * ofw_boot
257 * ofw_getbootinfo
258 * ofw_configmem
259 * ofw_configisa
260 * ofw_configisadma
261 * ofw_gettranslation
262 * ofw_map
263 * ofw_getcleaninfo
264 */
265
266
267 int
268 openfirmware(args)
269 void *args;
270 {
271 int ofw_result;
272 u_int saved_irq_state;
273
274 /* OFW is not re-entrant, so we wrap a mutex around the call. */
275 saved_irq_state = disable_interrupts(I32_bit);
276 ofw_result = ofw_client_services_handle(args);
277 (void)restore_interrupts(saved_irq_state);
278
279 return(ofw_result);
280 }
281
282
283 void
284 ofw_init(ofw_handle)
285 ofw_handle_t ofw_handle;
286 {
287 ofw_client_services_handle = ofw_handle;
288
289 /* Everything we allocate in the remainder of this block is
290 * constrained to be in the "kernel-static" portion of the
291 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
292 * This is because all such objects are expected to be in
293 * that range by NetBSD, or the objects will be re-mapped
294 * after the page-table-switch to other specific locations.
295 * In the latter case, it's simplest if our pre-switch handles
296 * on those objects are in regions that are already "well-
297 * known." (Otherwise, the cloning of the OFW-managed address-
298 * space becomes more awkward.) To minimize the number of L2
299 * page tables that we use, we are further restricting the
300 * remaining allocations in this block to the bottom quarter of
301 * the legal range. OFW will have loaded the kernel text+data+bss
302 * starting at the bottom of the range, and we will allocate
303 * objects from the top, moving downwards. The two sub-regions
304 * will collide if their total sizes hit 8MB. The current total
305 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
306 * limit. The variable virt-freeptr represents the next free va
307 * (moving downwards).
308 */
309 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
310 }
311
312
313 void
314 ofw_boot(howto, bootstr)
315 int howto;
316 char *bootstr;
317 {
318
319 #ifdef DIAGNOSTIC
320 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
321 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
322
323 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
324 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
325 irqmasks[IPL_IMP]);
326 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
327 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
328
329 dump_spl_masks();
330 #endif
331
332 /*
333 * If we are still cold then hit the air brakes
334 * and crash to earth fast
335 */
336 if (cold) {
337 doshutdownhooks();
338 printf("Halted while still in the ICE age.\n");
339 printf("The operating system has halted.\n");
340 goto ofw_exit;
341 /*NOTREACHED*/
342 }
343
344 /*
345 * If RB_NOSYNC was not specified sync the discs.
346 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
347 * It looks like syslogd is getting woken up only to find that it cannot
348 * page part of the binary in as the filesystem has been unmounted.
349 */
350 if (!(howto & RB_NOSYNC))
351 bootsync();
352
353 /* Say NO to interrupts */
354 splhigh();
355
356 /* Do a dump if requested. */
357 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
358 dumpsys();
359
360 /* Run any shutdown hooks */
361 doshutdownhooks();
362
363 /* Make sure IRQ's are disabled */
364 IRQdisable;
365
366 if (howto & RB_HALT) {
367 printf("The operating system has halted.\n");
368 goto ofw_exit;
369 }
370
371 /* Tell the user we are booting */
372 printf("rebooting...\n");
373
374 /* Jump into the OFW boot routine. */
375 {
376 static char str[256];
377 char *ap = str, *ap1 = ap;
378
379 if (bootstr && *bootstr) {
380 if (strlen(bootstr) > sizeof str - 5)
381 printf("boot string too large, ignored\n");
382 else {
383 strcpy(str, bootstr);
384 ap1 = ap = str + strlen(str);
385 *ap++ = ' ';
386 }
387 }
388 *ap++ = '-';
389 if (howto & RB_SINGLE)
390 *ap++ = 's';
391 if (howto & RB_KDB)
392 *ap++ = 'd';
393 *ap++ = 0;
394 if (ap[-2] == '-')
395 *ap1 = 0;
396 #if defined(SHARK) && (NPC > 0)
397 shark_screen_cleanup(0);
398 #endif
399 OF_boot(str);
400 /*NOTREACHED*/
401 }
402
403 ofw_exit:
404 printf("Calling OF_exit...\n");
405 #if defined(SHARK) && (NPC > 0)
406 shark_screen_cleanup(1);
407 #endif
408 OF_exit();
409 /*NOTREACHED*/
410 }
411
412
413 #if BOOT_FW_DHCP
414
415 extern char *ip2dotted __P((struct in_addr));
416
417 /*
418 * Get DHCP data from OFW
419 */
420
421 void
422 get_fw_dhcp_data(bdp)
423 struct bootdata *bdp;
424 {
425 int chosen;
426 int dhcplen;
427
428 bzero((char *)bdp, sizeof(*bdp));
429 if ((chosen = OF_finddevice("/chosen")) == -1)
430 panic("no /chosen from OFW");
431 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
432 u_char *cp;
433 int dhcp_type = 0;
434 char *ip;
435
436 /*
437 * OFW saved a DHCP (or BOOTP) packet for us.
438 */
439 if (dhcplen > sizeof(bdp->dhcp_packet))
440 panic("DHCP packet too large");
441 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
442 sizeof(bdp->dhcp_packet));
443 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
444 /*
445 * Collect the interesting data from DHCP into
446 * the bootdata structure.
447 */
448 bdp->ip_address = bdp->dhcp_packet.yiaddr;
449 ip = ip2dotted(bdp->ip_address);
450 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
451 parse_dhcp_options(&bdp->dhcp_packet,
452 bdp->dhcp_packet.options + 4,
453 &bdp->dhcp_packet.options[dhcplen
454 - DHCP_FIXED_NON_UDP], bdp, ip);
455 if (bdp->root_ip.s_addr == 0)
456 bdp->root_ip = bdp->dhcp_packet.siaddr;
457 if (bdp->swap_ip.s_addr == 0)
458 bdp->swap_ip = bdp->dhcp_packet.siaddr;
459 }
460 /*
461 * If the DHCP packet did not contain all the necessary data,
462 * look in NVRAM for the missing parts.
463 */
464 {
465 int options;
466 int proplen;
467 #define BOOTJUNKV_SIZE 256
468 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
469
470
471 if ((options = OF_finddevice("/options")) == -1)
472 panic("can't find /options");
473 if (bdp->ip_address.s_addr == 0 &&
474 (proplen = OF_getprop(options, "ipaddr",
475 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 bootjunkv[proplen] = '\0';
477 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
478 bdp->ip_address.s_addr = 0;
479 }
480 if (bdp->ip_mask.s_addr == 0 &&
481 (proplen = OF_getprop(options, "netmask",
482 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
483 bootjunkv[proplen] = '\0';
484 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
485 bdp->ip_mask.s_addr = 0;
486 }
487 if (bdp->hostname[0] == '\0' &&
488 (proplen = OF_getprop(options, "hostname",
489 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
490 bdp->hostname[proplen] = '\0';
491 }
492 if (bdp->root[0] == '\0' &&
493 (proplen = OF_getprop(options, "rootfs",
494 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
495 bootjunkv[proplen] = '\0';
496 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
497 }
498 if (bdp->swap[0] == '\0' &&
499 (proplen = OF_getprop(options, "swapfs",
500 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
501 bootjunkv[proplen] = '\0';
502 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
503 }
504 }
505 }
506
507 #endif /* BOOT_FW_DHCP */
508
509 void
510 ofw_getbootinfo(bp_pp, ba_pp)
511 char **bp_pp;
512 char **ba_pp;
513 {
514 int chosen;
515 int bp_len;
516 int ba_len;
517 char *bootpathv;
518 char *bootargsv;
519
520 /* Read the bootpath and bootargs out of OFW. */
521 /* XXX is bootpath still interesting? --emg */
522 if ((chosen = OF_finddevice("/chosen")) == -1)
523 panic("no /chosen from OFW");
524 bp_len = OF_getproplen(chosen, "bootpath");
525 ba_len = OF_getproplen(chosen, "bootargs");
526 if (bp_len < 0 || ba_len < 0)
527 panic("can't get boot data from OFW");
528
529 bootpathv = (char *)ofw_malloc(bp_len);
530 bootargsv = (char *)ofw_malloc(ba_len);
531
532 if (bp_len)
533 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
534 else
535 bootpathv[0] = '\0';
536
537 if (ba_len)
538 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
539 else
540 bootargsv[0] = '\0';
541
542 *bp_pp = bootpathv;
543 *ba_pp = bootargsv;
544 #ifdef DIAGNOSTIC
545 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
546 #endif
547 }
548
549 vm_offset_t
550 ofw_getcleaninfo(void)
551 {
552 int cpu;
553 vm_offset_t vclean, pclean;
554
555 if ((cpu = OF_finddevice("/cpu")) == -1)
556 panic("no /cpu from OFW");
557
558 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
559 sizeof(vclean))) != sizeof(vclean)) {
560 #ifdef DEBUG
561 printf("no OFW d-cache-flush-address property\n");
562 #endif
563 return -1;
564 }
565
566 if ((pclean = ofw_gettranslation(
567 of_decode_int((unsigned char *)&vclean))) == -1)
568 panic("OFW failed to translate cache flush address");
569
570 return pclean;
571 }
572
573 void
574 ofw_configisa(pio, pmem)
575 vm_offset_t *pio;
576 vm_offset_t *pmem;
577 {
578 int vl;
579
580 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
581 ofw_configisaonly(pio, pmem);
582 else /* old style OFW dev info tree */
583 ofw_configvl(vl, pio, pmem);
584 }
585
586 static void
587 ofw_configisaonly(pio, pmem)
588 vm_offset_t *pio;
589 vm_offset_t *pmem;
590 {
591 int isa;
592 int rangeidx;
593 int size;
594 vm_offset_t hi, start;
595 struct isa_range ranges[2];
596
597 if ((isa = OF_finddevice("/isa")) == -1)
598 panic("OFW has no /isa device node");
599
600 /* expect to find two isa ranges: IO/data and memory/data */
601 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
602 != sizeof(ranges))
603 panic("unexpected size of OFW /isa ranges property: %d", size);
604
605 *pio = *pmem = -1;
606
607 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
608 hi = of_decode_int((unsigned char *)
609 &ranges[rangeidx].isa_phys_hi);
610 start = of_decode_int((unsigned char *)
611 &ranges[rangeidx].parent_phys_start);
612
613 if (hi & 1) { /* then I/O space */
614 *pio = start;
615 } else {
616 *pmem = start;
617 }
618 } /* END for */
619
620 if ((*pio == -1) || (*pmem == -1))
621 panic("bad OFW /isa ranges property");
622
623 }
624
625 static void
626 ofw_configvl(vl, pio, pmem)
627 int vl;
628 vm_offset_t *pio;
629 vm_offset_t *pmem;
630 {
631 int isa;
632 int ir, vr;
633 int size;
634 vm_offset_t hi, start;
635 struct vl_isa_range isa_ranges[2];
636 struct vl_range vl_ranges[2];
637
638 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
639 panic("OFW has no /vlbus/isa device node");
640
641 /* expect to find two isa ranges: IO/data and memory/data */
642 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
643 != sizeof(isa_ranges))
644 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
645 size);
646
647 /* expect to find two vl ranges: IO/data and memory/data */
648 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
649 != sizeof(vl_ranges))
650 panic("unexpected size of OFW /vlbus ranges property: %d", size);
651
652 *pio = -1;
653 *pmem = -1;
654
655 for (ir = 0; ir < 2; ++ir) {
656 for (vr = 0; vr < 2; ++vr) {
657 if ((isa_ranges[ir].parent_phys_hi
658 == vl_ranges[vr].vl_phys_hi) &&
659 (isa_ranges[ir].parent_phys_lo
660 == vl_ranges[vr].vl_phys_lo)) {
661 hi = of_decode_int((unsigned char *)
662 &isa_ranges[ir].isa_phys_hi);
663 start = of_decode_int((unsigned char *)
664 &vl_ranges[vr].parent_phys_start);
665
666 if (hi & 1) { /* then I/O space */
667 *pio = start;
668 } else {
669 *pmem = start;
670 }
671 } /* END if */
672 } /* END for */
673 } /* END for */
674
675 if ((*pio == -1) || (*pmem == -1))
676 panic("bad OFW /isa ranges property");
677 }
678
679 #if NISADMA > 0
680 struct arm32_dma_range *shark_isa_dma_ranges;
681 int shark_isa_dma_nranges;
682 #endif
683
684 void
685 ofw_configisadma(pdma)
686 vm_offset_t *pdma;
687 {
688 int root;
689 int rangeidx;
690 int size;
691 struct dma_range *dr;
692
693 if ((root = OF_finddevice("/")) == -1 ||
694 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
695 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
696 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
697 panic("bad / dma-ranges property");
698
699 nOFdmaranges = size / sizeof(struct dma_range);
700
701 #if NISADMA > 0
702 /* Allocate storage for non-OFW representation of the range. */
703 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
704 sizeof(*shark_isa_dma_ranges));
705 if (shark_isa_dma_ranges == NULL)
706 panic("unable to allocate shark_isa_dma_ranges");
707 shark_isa_dma_nranges = nOFdmaranges;
708 #endif
709
710 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
711 ++rangeidx, ++dr) {
712 dr->start = of_decode_int((unsigned char *)&dr->start);
713 dr->size = of_decode_int((unsigned char *)&dr->size);
714 #if NISADMA > 0
715 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
716 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
717 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
718 #endif
719 }
720
721 #ifdef DEBUG
722 printf("dma ranges size = %d\n", size);
723
724 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
725 printf("%08lx %08lx\n",
726 (u_long)OFdmaranges[rangeidx].start,
727 (u_long)OFdmaranges[rangeidx].size);
728 }
729 #endif
730 }
731
732 /*
733 * Memory configuration:
734 *
735 * We start off running in the environment provided by OFW.
736 * This has the MMU turned on, the kernel code and data
737 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
738 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
739 * page0 mapped-in at 0x0.
740 *
741 * The strategy is to set-up the address space for proc0 --
742 * including the allocation of space for new page tables -- while
743 * memory is still managed by OFW. We then effectively create a
744 * copy of the address space by dumping all of OFW's translations
745 * and poking them into the new page tables. We then notify OFW
746 * that we are assuming control of memory-management by installing
747 * our callback-handler, and switch to the NetBSD-managed page
748 * tables with the setttb() call.
749 *
750 * This scheme may cause some amount of memory to be wasted within
751 * OFW as dead page tables, but it shouldn't be more than about
752 * 20-30KB. (It's also possible that OFW will re-use the space.)
753 */
754 void
755 ofw_configmem(void)
756 {
757 pv_addr_t proc0_ttbbase;
758 pv_addr_t proc0_ptpt;
759 int i;
760
761 /* Set-up proc0 address space. */
762 ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
763
764 /*
765 * Get a dump of OFW's picture of physical memory.
766 * This is used below to initialize a load of variables used by pmap.
767 * We get it now rather than later because we are about to
768 * tell OFW to stop managing memory.
769 */
770 ofw_getphysmeminfo();
771
772 /* We are about to take control of memory-management from OFW.
773 * Establish callbacks for OFW to use for its future memory needs.
774 * This is required for us to keep using OFW services.
775 */
776
777 /* First initialize our callback memory allocator. */
778 ofw_initallocator();
779
780 OF_set_callback(ofw_callbackhandler);
781
782 /* Switch to the proc0 pagetables. */
783 setttb(proc0_ttbbase.pv_pa);
784
785 /* Aaaaaaaah, running in the proc0 address space! */
786 /* I feel good... */
787
788 /* Set-up the various globals which describe physical memory for pmap. */
789 {
790 struct mem_region *mp;
791 int totalcnt;
792 int availcnt;
793
794 /* physmem, physical_start, physical_end */
795 physmem = 0;
796 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
797 totalcnt++, mp++) {
798 #ifdef OLDPRINTFS
799 printf("physmem: %x, %x\n", mp->start, mp->size);
800 #endif
801 physmem += btoc(mp->size);
802 }
803 physical_start = OFphysmem[0].start;
804 mp--;
805 physical_end = mp->start + mp->size;
806
807 /* free_pages, physical_freestart, physical_freeend */
808 free_pages = 0;
809 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
810 availcnt++, mp++) {
811 #ifdef OLDPRINTFS
812 printf("physavail: %x, %x\n", mp->start, mp->size);
813 #endif
814 free_pages += btoc(mp->size);
815 }
816 physical_freestart = OFphysavail[0].start;
817 mp--;
818 physical_freeend = mp->start + mp->size;
819 #ifdef OLDPRINTFS
820 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
821 physmem, free_pages);
822 #endif
823
824 /*
825 * This is a hack to work with the existing pmap code.
826 * That code depends on a RiscPC BootConfig structure
827 * containing, among other things, an array describing
828 * the regions of physical memory. So, for now, we need
829 * to stuff our OFW-derived physical memory info into a
830 * "fake" BootConfig structure.
831 *
832 * An added twist is that we initialize the BootConfig
833 * structure with our "available" physical memory regions
834 * rather than the "total" physical memory regions. Why?
835 * Because:
836 *
837 * (a) the VM code requires that the "free" pages it is
838 * initialized with have consecutive indices. This
839 * allows it to use more efficient data structures
840 * (presumably).
841 * (b) the current pmap routines which report the initial
842 * set of free page indices (pmap_next_page) and
843 * which map addresses to indices (pmap_page_index)
844 * assume that the free pages are consecutive across
845 * memory region boundaries.
846 *
847 * This means that memory which is "stolen" at startup time
848 * (say, for page descriptors) MUST come from either the
849 * bottom of the first region or the top of the last.
850 *
851 * This requirement doesn't mesh well with OFW (or at least
852 * our use of it). We can get around it for the time being
853 * by pretending that our "available" region array describes
854 * all of our physical memory. This may cause some important
855 * information to be excluded from a dump file, but so far
856 * I haven't come across any other negative effects.
857 *
858 * In the long-run we should fix the index
859 * generation/translation code in the pmap module.
860 */
861
862 if (DRAM_BLOCKS < (availcnt + 1))
863 panic("more ofw memory regions than bootconfig blocks");
864
865 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
866 bootconfig.dram[i].address = mp->start;
867 bootconfig.dram[i].pages = btoc(mp->size);
868 }
869 bootconfig.dramblocks = availcnt;
870 }
871
872 /* Load memory into UVM. */
873 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
874
875 /* XXX Please kill this code dead. */
876 for (i = 0; i < bootconfig.dramblocks; i++) {
877 paddr_t start = (paddr_t)bootconfig.dram[i].address;
878 paddr_t end = start + (bootconfig.dram[i].pages * NBPG);
879 #if NISADMA > 0
880 paddr_t istart, isize;
881 #endif
882
883 if (start < physical_freestart)
884 start = physical_freestart;
885 if (end > physical_freeend)
886 end = physical_freeend;
887
888 #if 0
889 printf("%d: %lx -> %lx\n", loop, start, end - 1);
890 #endif
891
892 #if NISADMA > 0
893 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
894 shark_isa_dma_nranges,
895 start, end - start,
896 &istart, &isize)) {
897 /*
898 * Place the pages that intersect with the
899 * ISA DMA range onto the ISA DMA free list.
900 */
901 #if 0
902 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
903 istart + isize - 1);
904 #endif
905 uvm_page_physload(atop(istart),
906 atop(istart + isize), atop(istart),
907 atop(istart + isize), VM_FREELIST_ISADMA);
908
909 /*
910 * Load the pieces that come before the
911 * intersection onto the default free list.
912 */
913 if (start < istart) {
914 #if 0
915 printf(" BEFORE 0x%lx -> 0x%lx\n",
916 start, istart - 1);
917 #endif
918 uvm_page_physload(atop(start),
919 atop(istart), atop(start),
920 atop(istart), VM_FREELIST_DEFAULT);
921 }
922
923 /*
924 * Load the pieces that come after the
925 * intersection onto the default free list.
926 */
927 if ((istart + isize) < end) {
928 #if 0
929 printf(" AFTER 0x%lx -> 0x%lx\n",
930 (istart + isize), end - 1);
931 #endif
932 uvm_page_physload(atop(istart + isize),
933 atop(end), atop(istart + isize),
934 atop(end), VM_FREELIST_DEFAULT);
935 }
936 } else {
937 uvm_page_physload(atop(start), atop(end),
938 atop(start), atop(end), VM_FREELIST_DEFAULT);
939 }
940 #else /* NISADMA > 0 */
941 uvm_page_physload(atop(start), atop(end),
942 atop(start), atop(end), VM_FREELIST_DEFAULT);
943 #endif /* NISADMA > 0 */
944 }
945
946 /* Initialize pmap module. */
947 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
948 }
949
950
951 /*
952 ************************************************************
953
954 Routines private to this module
955
956 ************************************************************
957 */
958
959 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
960 static void
961 ofw_callbackhandler(v)
962 void *v;
963 {
964 struct ofw_cbargs *args = v;
965 char *name = args->name;
966 int nargs = args->nargs;
967 int nreturns = args->nreturns;
968 int *args_n_results = args->args_n_results;
969
970 ofw_callbacks++;
971
972 #if defined(OFWGENCFG)
973 /* Check this first, so that we don't waste IRQ time parsing. */
974 if (strcmp(name, "tick") == 0) {
975 vm_offset_t frame;
976
977 /* Check format. */
978 if (nargs != 1 || nreturns < 1) {
979 args_n_results[nargs] = -1;
980 args->nreturns = 1;
981 return;
982 }
983 args_n_results[nargs] = 0; /* properly formatted request */
984
985 /*
986 * Note that we are running in the IRQ frame, with interrupts
987 * disabled.
988 *
989 * We need to do two things here:
990 * - copy a few words out of the input frame into a global
991 * area, for later use by our real tick-handling code
992 * - patch a few words in the frame so that when OFW returns
993 * from the interrupt it will resume with our handler
994 * rather than the code that was actually interrupted.
995 * Our handler will resume when it finishes with the code
996 * that was actually interrupted.
997 *
998 * It's simplest to do this in assembler, since it requires
999 * switching frames and grovelling about with registers.
1000 */
1001 frame = (vm_offset_t)args_n_results[0];
1002 if (ofw_handleticks)
1003 dotickgrovelling(frame);
1004 args_n_results[nargs + 1] = frame;
1005 args->nreturns = 1;
1006 } else
1007 #endif
1008
1009 if (strcmp(name, "map") == 0) {
1010 vm_offset_t va;
1011 vm_offset_t pa;
1012 vm_size_t size;
1013 int mode;
1014 int ap_bits;
1015 int dom_bits;
1016 int cb_bits;
1017
1018 /* Check format. */
1019 if (nargs != 4 || nreturns < 2) {
1020 args_n_results[nargs] = -1;
1021 args->nreturns = 1;
1022 return;
1023 }
1024 args_n_results[nargs] = 0; /* properly formatted request */
1025
1026 pa = (vm_offset_t)args_n_results[0];
1027 va = (vm_offset_t)args_n_results[1];
1028 size = (vm_size_t)args_n_results[2];
1029 mode = args_n_results[3];
1030 ap_bits = (mode & 0x00000C00);
1031 dom_bits = (mode & 0x000001E0);
1032 cb_bits = (mode & 0x000000C0);
1033
1034 /* Sanity checks. */
1035 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1036 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1037 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1038 size == 0 || (dom_bits >> 5) != 0) {
1039 args_n_results[nargs + 1] = -1;
1040 args->nreturns = 1;
1041 return;
1042 }
1043
1044 /* Write-back anything stuck in the cache. */
1045 cpu_idcache_wbinv_all();
1046
1047 /* Install new mappings. */
1048 {
1049 pt_entry_t *pte = vtopte(va);
1050 int npages = size >> PGSHIFT;
1051
1052 ap_bits >>= 10;
1053 for (; npages > 0; pte++, pa += NBPG, npages--)
1054 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1055 cb_bits);
1056 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1057 }
1058
1059 /* Clean out tlb. */
1060 tlb_flush();
1061
1062 args_n_results[nargs + 1] = 0;
1063 args->nreturns = 2;
1064 } else if (strcmp(name, "unmap") == 0) {
1065 vm_offset_t va;
1066 vm_size_t size;
1067
1068 /* Check format. */
1069 if (nargs != 2 || nreturns < 1) {
1070 args_n_results[nargs] = -1;
1071 args->nreturns = 1;
1072 return;
1073 }
1074 args_n_results[nargs] = 0; /* properly formatted request */
1075
1076 va = (vm_offset_t)args_n_results[0];
1077 size = (vm_size_t)args_n_results[1];
1078
1079 /* Sanity checks. */
1080 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1081 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1082 (size & PGOFSET) != 0 || size == 0) {
1083 args_n_results[nargs + 1] = -1;
1084 args->nreturns = 1;
1085 return;
1086 }
1087
1088 /* Write-back anything stuck in the cache. */
1089 cpu_idcache_wbinv_all();
1090
1091 /* Zero the mappings. */
1092 {
1093 pt_entry_t *pte = vtopte(va);
1094 int npages = size >> PGSHIFT;
1095
1096 for (; npages > 0; pte++, npages--)
1097 *pte = 0;
1098 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1099 }
1100
1101 /* Clean out tlb. */
1102 tlb_flush();
1103
1104 args->nreturns = 1;
1105 } else if (strcmp(name, "translate") == 0) {
1106 vm_offset_t va;
1107 vm_offset_t pa;
1108 int mode;
1109 pt_entry_t pte;
1110
1111 /* Check format. */
1112 if (nargs != 1 || nreturns < 4) {
1113 args_n_results[nargs] = -1;
1114 args->nreturns = 1;
1115 return;
1116 }
1117 args_n_results[nargs] = 0; /* properly formatted request */
1118
1119 va = (vm_offset_t)args_n_results[0];
1120
1121 /* Sanity checks.
1122 * For now, I am only willing to translate va's in the
1123 * "ofw range." Eventually, I may be more generous. -JJK
1124 */
1125 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1126 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1127 args_n_results[nargs + 1] = -1;
1128 args->nreturns = 1;
1129 return;
1130 }
1131
1132 /* Lookup mapping. */
1133 pte = *vtopte(va);
1134 if (pte == 0) {
1135 /* No mapping. */
1136 args_n_results[nargs + 1] = -1;
1137 args->nreturns = 2;
1138 } else {
1139 /* Existing mapping. */
1140 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1141 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1142
1143 args_n_results[nargs + 1] = 0;
1144 args_n_results[nargs + 2] = pa;
1145 args_n_results[nargs + 3] = mode;
1146 args->nreturns = 4;
1147 }
1148 } else if (strcmp(name, "claim-phys") == 0) {
1149 struct pglist alloclist;
1150 vm_offset_t low, high;
1151 vm_size_t align, size;
1152
1153 /*
1154 * XXX
1155 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1156 * XXX
1157 */
1158
1159 /* Check format. */
1160 if (nargs != 4 || nreturns < 3) {
1161 args_n_results[nargs] = -1;
1162 args->nreturns = 1;
1163 return;
1164 }
1165 args_n_results[nargs] = 0; /* properly formatted request */
1166
1167 low = args_n_results[0];
1168 size = args_n_results[2];
1169 align = args_n_results[3];
1170 high = args_n_results[1] + size;
1171
1172 #if 0
1173 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1174 low, size, align, high);
1175 align = size;
1176 printf("forcing align to be 0x%x\n", align);
1177 #endif
1178
1179 args_n_results[nargs + 1] =
1180 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1181 #if 0
1182 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1183 #endif
1184 if (args_n_results[nargs + 1] != 0) {
1185 #if 0
1186 printf("(failed)\n");
1187 #endif
1188 args_n_results[nargs + 1] = -1;
1189 args->nreturns = 2;
1190 return;
1191 }
1192 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1193 #if 0
1194 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1195 #endif
1196 args->nreturns = 3;
1197
1198 } else if (strcmp(name, "release-phys") == 0) {
1199 printf("unimplemented ofw callback - %s\n", name);
1200 args_n_results[nargs] = -1;
1201 args->nreturns = 1;
1202 } else if (strcmp(name, "claim-virt") == 0) {
1203 vm_offset_t va;
1204 vm_size_t size;
1205 vm_offset_t align;
1206
1207 /* XXX - notyet */
1208 /* printf("unimplemented ofw callback - %s\n", name);*/
1209 args_n_results[nargs] = -1;
1210 args->nreturns = 1;
1211 return;
1212
1213 /* Check format. */
1214 if (nargs != 2 || nreturns < 3) {
1215 args_n_results[nargs] = -1;
1216 args->nreturns = 1;
1217 return;
1218 }
1219 args_n_results[nargs] = 0; /* properly formatted request */
1220
1221 /* Allocate size bytes with specified alignment. */
1222 size = (vm_size_t)args_n_results[0];
1223 align = (vm_offset_t)args_n_results[1];
1224 if (align % NBPG != 0) {
1225 args_n_results[nargs + 1] = -1;
1226 args->nreturns = 2;
1227 return;
1228 }
1229
1230 if (va == 0) {
1231 /* Couldn't allocate. */
1232 args_n_results[nargs + 1] = -1;
1233 args->nreturns = 2;
1234 } else {
1235 /* Successful allocation. */
1236 args_n_results[nargs + 1] = 0;
1237 args_n_results[nargs + 2] = va;
1238 args->nreturns = 3;
1239 }
1240 } else if (strcmp(name, "release-virt") == 0) {
1241 vm_offset_t va;
1242 vm_size_t size;
1243
1244 /* XXX - notyet */
1245 printf("unimplemented ofw callback - %s\n", name);
1246 args_n_results[nargs] = -1;
1247 args->nreturns = 1;
1248 return;
1249
1250 /* Check format. */
1251 if (nargs != 2 || nreturns < 1) {
1252 args_n_results[nargs] = -1;
1253 args->nreturns = 1;
1254 return;
1255 }
1256 args_n_results[nargs] = 0; /* properly formatted request */
1257
1258 /* Release bytes. */
1259 va = (vm_offset_t)args_n_results[0];
1260 size = (vm_size_t)args_n_results[1];
1261
1262 args->nreturns = 1;
1263 } else {
1264 args_n_results[nargs] = -1;
1265 args->nreturns = 1;
1266 }
1267 }
1268
1269 static void
1270 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1271 pv_addr_t *proc0_ttbbase;
1272 pv_addr_t *proc0_ptpt;
1273 {
1274 int i, oft;
1275 pv_addr_t proc0_pagedir;
1276 pv_addr_t proc0_pt_pte;
1277 pv_addr_t proc0_pt_sys;
1278 pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1279 pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1280 pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1281 pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1282 pv_addr_t msgbuf;
1283 vm_offset_t L1pagetable;
1284 struct mem_translation *tp;
1285
1286 /* Set-up the system page. */
1287 KASSERT(vector_page == 0); /* XXX for now */
1288 systempage.pv_va = ofw_claimvirt(vector_page, NBPG, 0);
1289 if (systempage.pv_va == -1) {
1290 /* Something was already mapped to vector_page's VA. */
1291 systempage.pv_va = vector_page;
1292 systempage.pv_pa = ofw_gettranslation(vector_page);
1293 if (systempage.pv_pa == -1)
1294 panic("bogus result from gettranslation(vector_page)");
1295 } else {
1296 /* We were just allocated the page-length range at VA 0. */
1297 if (systempage.pv_va != vector_page)
1298 panic("bogus result from claimvirt(vector_page, NBPG, 0)");
1299
1300 /* Now allocate a physical page, and establish the mapping. */
1301 systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
1302 if (systempage.pv_pa == -1)
1303 panic("bogus result from claimphys(0, NBPG, NBPG)");
1304 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1305 NBPG, -1); /* XXX - mode? -JJK */
1306
1307 /* Zero the memory. */
1308 bzero((char *)systempage.pv_va, NBPG);
1309 }
1310
1311 /* Allocate/initialize space for the proc0, NetBSD-managed */
1312 /* page tables that we will be switching to soon. */
1313 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1314 ofw_claimpages(&virt_freeptr, &proc0_pt_pte, L2_TABLE_SIZE);
1315 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1316 for (i = 0; i < KERNEL_IMG_PTS; i++)
1317 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1318 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1319 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1320 for (i = 0; i < KERNEL_OFW_PTS; i++)
1321 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1322 for (i = 0; i < KERNEL_IO_PTS; i++)
1323 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1324
1325 /* Allocate/initialize space for stacks. */
1326 #ifndef OFWGENCFG
1327 ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
1328 #endif
1329 ofw_claimpages(&virt_freeptr, &undstack, NBPG);
1330 ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
1331 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
1332
1333 /* Allocate/initialize space for msgbuf area. */
1334 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1335 msgbufphys = msgbuf.pv_pa;
1336
1337 /* Construct the proc0 L1 pagetable. */
1338 L1pagetable = proc0_pagedir.pv_va;
1339
1340 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1341 for (i = 0; i < KERNEL_IMG_PTS; i++)
1342 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1343 &proc0_pt_kernel[i]);
1344 pmap_link_l2pt(L1pagetable, PTE_BASE,
1345 &proc0_pt_pte);
1346 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1347 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1348 &proc0_pt_vmdata[i]);
1349 for (i = 0; i < KERNEL_OFW_PTS; i++)
1350 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1351 &proc0_pt_ofw[i]);
1352 for (i = 0; i < KERNEL_IO_PTS; i++)
1353 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1354 &proc0_pt_io[i]);
1355
1356 /*
1357 * OK, we're done allocating.
1358 * Get a dump of OFW's translations, and make the appropriate
1359 * entries in the L2 pagetables that we just allocated.
1360 */
1361
1362 ofw_getvirttranslations();
1363
1364 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1365 oft++, tp++) {
1366
1367 vm_offset_t va, pa;
1368 int npages = tp->size / NBPG;
1369
1370 /* Size must be an integral number of pages. */
1371 if (npages == 0 || tp->size % NBPG != 0)
1372 panic("illegal ofw translation (size)");
1373
1374 /* Make an entry for each page in the appropriate table. */
1375 for (va = tp->virt, pa = tp->phys; npages > 0;
1376 va += NBPG, pa += NBPG, npages--) {
1377 /*
1378 * Map the top bits to the appropriate L2 pagetable.
1379 * The only allowable regions are page0, the
1380 * kernel-static area, and the ofw area.
1381 */
1382 switch (va >> (L1_S_SHIFT + 2)) {
1383 case 0:
1384 /* page0 */
1385 break;
1386
1387 #if KERNEL_IMG_PTS != 2
1388 #error "Update ofw translation range list"
1389 #endif
1390 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1391 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1392 /* kernel static area */
1393 break;
1394
1395 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1396 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1397 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1398 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1399 /* ofw area */
1400 break;
1401
1402 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1403 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1404 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1405 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1406 /* io area */
1407 break;
1408
1409 default:
1410 /* illegal */
1411 panic("illegal ofw translation (addr) %#lx",
1412 va);
1413 }
1414
1415 /* Make the entry. */
1416 pmap_map_entry(L1pagetable, va, pa,
1417 VM_PROT_READ|VM_PROT_WRITE,
1418 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1419 : PTE_NOCACHE);
1420 }
1421 }
1422
1423 /*
1424 * We don't actually want some of the mappings that we just
1425 * set up to appear in proc0's address space. In particular,
1426 * we don't want aliases to physical addresses that the kernel
1427 * has-mapped/will-map elsewhere.
1428 */
1429 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1430 proc0_pt_sys.pv_va, L2_TABLE_SIZE);
1431 for (i = 0; i < KERNEL_IMG_PTS; i++)
1432 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1433 proc0_pt_kernel[i].pv_va, L2_TABLE_SIZE);
1434 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1435 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1436 proc0_pt_vmdata[i].pv_va, L2_TABLE_SIZE);
1437 for (i = 0; i < KERNEL_OFW_PTS; i++)
1438 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1439 proc0_pt_ofw[i].pv_va, L2_TABLE_SIZE);
1440 for (i = 0; i < KERNEL_IO_PTS; i++)
1441 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1442 proc0_pt_io[i].pv_va, L2_TABLE_SIZE);
1443 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1444 msgbuf.pv_va, MSGBUFSIZE);
1445
1446 /*
1447 * We did not throw away the proc0_pt_pte and proc0_pagedir
1448 * mappings as well still want them. However we don't want them
1449 * cached ...
1450 * Really these should be uncached when allocated.
1451 */
1452 pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
1453 proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1454 for (i = 0; i < (L1_TABLE_SIZE / NBPG); ++i)
1455 pmap_map_entry(L1pagetable,
1456 proc0_pagedir.pv_va + NBPG * i,
1457 proc0_pagedir.pv_pa + NBPG * i,
1458 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1459
1460 /*
1461 * Construct the proc0 L2 pagetables that map page tables.
1462 */
1463
1464 /* Map entries in the L2pagetable used to map L2PTs. */
1465 pmap_map_entry(L1pagetable,
1466 PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
1467 proc0_pt_sys.pv_pa,
1468 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1469 for (i = 0; i < KERNEL_IMG_PTS; i++)
1470 pmap_map_entry(L1pagetable,
1471 PTE_BASE + ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2)),
1472 proc0_pt_kernel[i].pv_pa,
1473 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1474 pmap_map_entry(L1pagetable,
1475 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
1476 proc0_pt_pte.pv_pa,
1477 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1478 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1479 pmap_map_entry(L1pagetable,
1480 PTE_BASE + ((KERNEL_VM_BASE + i * 0x00400000)
1481 >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1482 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1483 for (i = 0; i < KERNEL_OFW_PTS; i++)
1484 pmap_map_entry(L1pagetable,
1485 PTE_BASE + ((OFW_VIRT_BASE + i * 0x00400000)
1486 >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1487 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1488 for (i = 0; i < KERNEL_IO_PTS; i++)
1489 pmap_map_entry(L1pagetable,
1490 PTE_BASE + ((IO_VIRT_BASE + i * 0x00400000)
1491 >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1492 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1493
1494 /* update the top of the kernel VM */
1495 pmap_curmaxkvaddr =
1496 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1497
1498 /*
1499 * gross hack for the sake of not thrashing the TLB and making
1500 * cache flush more efficient: blast l1 ptes for sections.
1501 */
1502 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1503 vm_offset_t va = tp->virt;
1504 vm_offset_t pa = tp->phys;
1505
1506 if (((va | pa) & L1_S_OFFSET) == 0) {
1507 int nsections = tp->size / L1_S_SIZE;
1508
1509 while (nsections--) {
1510 /* XXXJRT prot?? */
1511 pmap_map_section(L1pagetable, va, pa,
1512 VM_PROT_READ|VM_PROT_WRITE,
1513 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1514 : PTE_NOCACHE);
1515 va += L1_S_SIZE;
1516 pa += L1_S_SIZE;
1517 }
1518 }
1519 }
1520
1521 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1522 *proc0_ttbbase = proc0_pagedir;
1523 *proc0_ptpt = proc0_pt_pte;
1524 }
1525
1526
1527 static void
1528 ofw_getphysmeminfo()
1529 {
1530 int phandle;
1531 int mem_len;
1532 int avail_len;
1533 int i;
1534
1535 if ((phandle = OF_finddevice("/memory")) == -1 ||
1536 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1537 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1538 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1539 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1540 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1541 OF_getprop(phandle, "available", OFphysavail, avail_len)
1542 != avail_len)
1543 panic("can't get physmeminfo from OFW");
1544
1545 nOFphysmem = mem_len / sizeof(struct mem_region);
1546 nOFphysavail = avail_len / sizeof(struct mem_region);
1547
1548 /*
1549 * Sort the blocks in each array into ascending address order.
1550 * Also, page-align all blocks.
1551 */
1552 for (i = 0; i < 2; i++) {
1553 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1554 struct mem_region *mp;
1555 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1556 int j;
1557
1558 #ifdef OLDPRINTFS
1559 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1560 #endif
1561
1562 /* XXX - Convert all the values to host order. -JJK */
1563 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1564 mp->start = of_decode_int((unsigned char *)&mp->start);
1565 mp->size = of_decode_int((unsigned char *)&mp->size);
1566 }
1567
1568 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1569 u_int s, sz;
1570 struct mem_region *mp1;
1571
1572 /* Page-align start of the block. */
1573 s = mp->start % NBPG;
1574 if (s != 0) {
1575 s = (NBPG - s);
1576
1577 if (mp->size >= s) {
1578 mp->start += s;
1579 mp->size -= s;
1580 }
1581 }
1582
1583 /* Page-align the size. */
1584 mp->size -= mp->size % NBPG;
1585
1586 /* Handle empty block. */
1587 if (mp->size == 0) {
1588 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1589 * sizeof(struct mem_region));
1590 cnt--;
1591 mp--;
1592 continue;
1593 }
1594
1595 /* Bubble sort. */
1596 s = mp->start;
1597 sz = mp->size;
1598 for (mp1 = tmp; mp1 < mp; mp1++)
1599 if (s < mp1->start)
1600 break;
1601 if (mp1 < mp) {
1602 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1603 mp1->start = s;
1604 mp1->size = sz;
1605 }
1606 }
1607
1608 #ifdef OLDPRINTFS
1609 for (mp = tmp; mp->size; mp++) {
1610 printf("%x, %x\n", mp->start, mp->size);
1611 }
1612 #endif
1613 }
1614 }
1615
1616
1617 static void
1618 ofw_getvirttranslations(void)
1619 {
1620 int mmu_phandle;
1621 int mmu_ihandle;
1622 int trans_len;
1623 int over, len;
1624 int i;
1625 struct mem_translation *tp;
1626
1627 mmu_ihandle = ofw_mmu_ihandle();
1628
1629 /* overallocate to avoid increases during allocation */
1630 over = 4 * sizeof(struct mem_translation);
1631 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1632 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1633 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1634 (trans_len = OF_getprop(mmu_phandle, "translations",
1635 OFtranslations, len + over)) > (len + over))
1636 panic("can't get virttranslations from OFW");
1637
1638 /* XXX - Convert all the values to host order. -JJK */
1639 nOFtranslations = trans_len / sizeof(struct mem_translation);
1640 #ifdef OLDPRINTFS
1641 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1642 #endif
1643 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1644 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1645 tp->size = of_decode_int((unsigned char *)&tp->size);
1646 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1647 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1648 }
1649 }
1650
1651 /*
1652 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1653 */
1654 typedef struct _vfree {
1655 struct _vfree *pNext;
1656 vm_offset_t start;
1657 vm_size_t size;
1658 } VFREE, *PVFREE;
1659
1660 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1661
1662 static PVFREE vflist = &vfinitial;
1663
1664 static vm_offset_t
1665 ofw_valloc(size, align)
1666 vm_offset_t size;
1667 vm_offset_t align;
1668 {
1669 PVFREE *ppvf;
1670 PVFREE pNew;
1671 vm_offset_t new;
1672 vm_offset_t lead;
1673
1674 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1675 if (align == 0) {
1676 new = (*ppvf)->start;
1677 lead = 0;
1678 } else {
1679 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1680 lead = new - (*ppvf)->start;
1681 }
1682
1683 if (((*ppvf)->size - lead) >= size) {
1684 if (lead == 0) {
1685 /* using whole block */
1686 if (size == (*ppvf)->size) {
1687 /* splice out of list */
1688 (*ppvf) = (*ppvf)->pNext;
1689 } else { /* tail of block is free */
1690 (*ppvf)->start = new + size;
1691 (*ppvf)->size -= size;
1692 }
1693 } else {
1694 vm_size_t tail = ((*ppvf)->start
1695 + (*ppvf)->size) - (new + size);
1696 /* free space at beginning */
1697 (*ppvf)->size = lead;
1698
1699 if (tail != 0) {
1700 /* free space at tail */
1701 pNew = ofw_malloc(sizeof(VFREE));
1702 pNew->pNext = (*ppvf)->pNext;
1703 (*ppvf)->pNext = pNew;
1704 pNew->start = new + size;
1705 pNew->size = tail;
1706 }
1707 }
1708 return new;
1709 } /* END if */
1710 } /* END for */
1711
1712 return -1;
1713 }
1714
1715 vm_offset_t
1716 ofw_map(pa, size, cb_bits)
1717 vm_offset_t pa;
1718 vm_size_t size;
1719 int cb_bits;
1720 {
1721 vm_offset_t va;
1722
1723 if ((va = ofw_valloc(size, size)) == -1)
1724 panic("cannot alloc virtual memory for %#lx", pa);
1725
1726 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1727
1728 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1729
1730 return va;
1731 }
1732
1733 static int
1734 ofw_mem_ihandle(void)
1735 {
1736 static int mem_ihandle = 0;
1737 int chosen;
1738
1739 if (mem_ihandle != 0)
1740 return(mem_ihandle);
1741
1742 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1743 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1744 panic("ofw_mem_ihandle");
1745
1746 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1747
1748 return(mem_ihandle);
1749 }
1750
1751
1752 static int
1753 ofw_mmu_ihandle(void)
1754 {
1755 static int mmu_ihandle = 0;
1756 int chosen;
1757
1758 if (mmu_ihandle != 0)
1759 return(mmu_ihandle);
1760
1761 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1762 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1763 panic("ofw_mmu_ihandle");
1764
1765 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1766
1767 return(mmu_ihandle);
1768 }
1769
1770
1771 /* Return -1 on failure. */
1772 static vm_offset_t
1773 ofw_claimphys(pa, size, align)
1774 vm_offset_t pa;
1775 vm_size_t size;
1776 vm_offset_t align;
1777 {
1778 int mem_ihandle = ofw_mem_ihandle();
1779
1780 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1781 if (align == 0) {
1782 /* Allocate at specified base; alignment is ignored. */
1783 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1784 } else {
1785 /* Allocate anywhere, with specified alignment. */
1786 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1787 }
1788
1789 /* printf("%x\n", pa);*/
1790 return(pa);
1791 }
1792
1793
1794 #if 0
1795 /* Return -1 on failure. */
1796 static vm_offset_t
1797 ofw_releasephys(pa, size)
1798 vm_offset_t pa;
1799 vm_size_t size;
1800 {
1801 int mem_ihandle = ofw_mem_ihandle();
1802
1803 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1804
1805 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1806 }
1807 #endif
1808
1809 /* Return -1 on failure. */
1810 static vm_offset_t
1811 ofw_claimvirt(va, size, align)
1812 vm_offset_t va;
1813 vm_size_t size;
1814 vm_offset_t align;
1815 {
1816 int mmu_ihandle = ofw_mmu_ihandle();
1817
1818 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1819 if (align == 0) {
1820 /* Allocate at specified base; alignment is ignored. */
1821 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1822 } else {
1823 /* Allocate anywhere, with specified alignment. */
1824 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1825 }
1826
1827 /*printf("%x\n", va);*/
1828 return(va);
1829 }
1830
1831
1832 /* Return -1 if no mapping. */
1833 vm_offset_t
1834 ofw_gettranslation(va)
1835 vm_offset_t va;
1836 {
1837 int mmu_ihandle = ofw_mmu_ihandle();
1838 vm_offset_t pa;
1839 int mode;
1840 int exists;
1841
1842 /*printf("ofw_gettranslation (%x) --> ", va);*/
1843 exists = 0; /* gets set to true if translation exists */
1844 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1845 &exists) != 0)
1846 return(-1);
1847
1848 /*printf("%x\n", exists ? pa : -1);*/
1849 return(exists ? pa : -1);
1850 }
1851
1852
1853 static void
1854 ofw_settranslation(va, pa, size, mode)
1855 vm_offset_t va;
1856 vm_offset_t pa;
1857 vm_size_t size;
1858 int mode;
1859 {
1860 int mmu_ihandle = ofw_mmu_ihandle();
1861
1862 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1863 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1864 panic("ofw_settranslation failed");
1865 }
1866
1867 /*
1868 * Allocation routine used before the kernel takes over memory.
1869 * Use this for efficient storage for things that aren't rounded to
1870 * page size.
1871 *
1872 * The point here is not necessarily to be very efficient (even though
1873 * that's sort of nice), but to do proper dynamic allocation to avoid
1874 * size-limitation errors.
1875 *
1876 */
1877
1878 typedef struct _leftover {
1879 struct _leftover *pNext;
1880 vm_size_t size;
1881 } LEFTOVER, *PLEFTOVER;
1882
1883 /* leftover bits of pages. first word is pointer to next.
1884 second word is size of leftover */
1885 static PLEFTOVER leftovers = NULL;
1886
1887 static void *
1888 ofw_malloc(size)
1889 vm_size_t size;
1890 {
1891 PLEFTOVER *ppLeftover;
1892 PLEFTOVER pLeft;
1893 pv_addr_t new;
1894 vm_size_t newSize, claim_size;
1895
1896 /* round and set minimum size */
1897 size = max(sizeof(LEFTOVER),
1898 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1899
1900 for (ppLeftover = &leftovers; *ppLeftover;
1901 ppLeftover = &((*ppLeftover)->pNext))
1902 if ((*ppLeftover)->size >= size)
1903 break;
1904
1905 if (*ppLeftover) { /* have a leftover of the right size */
1906 /* remember the leftover */
1907 new.pv_va = (vm_offset_t)*ppLeftover;
1908 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1909 /* splice out of chain */
1910 *ppLeftover = (*ppLeftover)->pNext;
1911 } else {
1912 /* remember the next pointer */
1913 pLeft = (*ppLeftover)->pNext;
1914 newSize = (*ppLeftover)->size - size; /* reduce size */
1915 /* move pointer */
1916 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1917 + size);
1918 (*ppLeftover)->pNext = pLeft;
1919 (*ppLeftover)->size = newSize;
1920 }
1921 } else {
1922 claim_size = (size + NBPG - 1) & ~(NBPG - 1);
1923 ofw_claimpages(&virt_freeptr, &new, claim_size);
1924 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1925 pLeft = (PLEFTOVER)(new.pv_va + size);
1926 pLeft->pNext = leftovers;
1927 pLeft->size = claim_size - size;
1928 leftovers = pLeft;
1929 }
1930 }
1931
1932 return (void *)(new.pv_va);
1933 }
1934
1935 /*
1936 * Here is a really, really sleazy free. It's not used right now,
1937 * because it's not worth the extra complexity for just a few bytes.
1938 *
1939 */
1940 #if 0
1941 static void
1942 ofw_free(addr, size)
1943 vm_offset_t addr;
1944 vm_size_t size;
1945 {
1946 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1947
1948 /* splice right into list without checks or compaction */
1949 pLeftover->pNext = leftovers;
1950 pLeftover->size = size;
1951 leftovers = pLeftover;
1952 }
1953 #endif
1954
1955 /*
1956 * Allocate and zero round(size)/NBPG pages of memory.
1957 * We guarantee that the allocated memory will be
1958 * aligned to a boundary equal to the smallest power of
1959 * 2 greater than or equal to size.
1960 * free_pp is an IN/OUT parameter which points to the
1961 * last allocated virtual address in an allocate-downwards
1962 * stack. pv_p is an OUT parameter which contains the
1963 * virtual and physical base addresses of the allocated
1964 * memory.
1965 */
1966 static void
1967 ofw_claimpages(free_pp, pv_p, size)
1968 vm_offset_t *free_pp;
1969 pv_addr_t *pv_p;
1970 vm_size_t size;
1971 {
1972 /* round-up to page boundary */
1973 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1974 vm_size_t aligned_size;
1975 vm_offset_t va, pa;
1976
1977 if (alloc_size == 0)
1978 panic("ofw_claimpages zero");
1979
1980 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1981 ;
1982
1983 /* The only way to provide the alignment guarantees is to
1984 * allocate the virtual and physical ranges separately,
1985 * then do an explicit map call.
1986 */
1987 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1988 if (ofw_claimvirt(va, alloc_size, 0) != va)
1989 panic("ofw_claimpages va alloc");
1990 pa = ofw_claimphys(0, alloc_size, aligned_size);
1991 if (pa == -1)
1992 panic("ofw_claimpages pa alloc");
1993 /* XXX - what mode? -JJK */
1994 ofw_settranslation(va, pa, alloc_size, -1);
1995
1996 /* The memory's mapped-in now, so we can zero it. */
1997 bzero((char *)va, alloc_size);
1998
1999 /* Set OUT parameters. */
2000 *free_pp = va;
2001 pv_p->pv_va = va;
2002 pv_p->pv_pa = pa;
2003 }
2004
2005
2006 static void
2007 ofw_discardmappings(L2pagetable, va, size)
2008 vm_offset_t L2pagetable;
2009 vm_offset_t va;
2010 vm_size_t size;
2011 {
2012 /* round-up to page boundary */
2013 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
2014 int npages = alloc_size / NBPG;
2015
2016 if (npages == 0)
2017 panic("ofw_discardmappings zero");
2018
2019 /* Discard each mapping. */
2020 for (; npages > 0; va += NBPG, npages--) {
2021 /* Sanity. The current entry should be non-null. */
2022 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
2023 panic("ofw_discardmappings zero entry");
2024
2025 /* Clear the entry. */
2026 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2027 }
2028 }
2029
2030
2031 static void
2032 ofw_initallocator(void)
2033 {
2034
2035 }
2036