ofw.c revision 1.24 1 /* $NetBSD: ofw.c,v 1.24 2003/04/18 11:11:52 scw Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #define _ARM32_BUS_DMA_PRIVATE
54 #include <machine/bus.h>
55 #include <machine/frame.h>
56 #include <machine/bootconfig.h>
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59
60 #include <dev/ofw/openfirm.h>
61 #include <machine/ofw.h>
62
63 #include <netinet/in.h>
64
65 #if BOOT_FW_DHCP
66 #include <nfs/bootdata.h>
67 #endif
68
69 #ifdef SHARK
70 #include "machine/pio.h"
71 #include "machine/isa_machdep.h"
72 #endif
73
74 #include "pc.h"
75 #include "isadma.h"
76
77 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
78 #define IO_VIRT_SIZE 0x01000000
79
80 #define KERNEL_IMG_PTS 2
81 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
82 #define KERNEL_OFW_PTS 4
83 #define KERNEL_IO_PTS 4
84
85 /*
86 * Imported variables
87 */
88 extern BootConfig bootconfig; /* temporary, I hope */
89
90 #ifdef DIAGNOSTIC
91 /* NOTE: These variables will be removed, well some of them */
92 extern u_int spl_mask;
93 extern u_int current_mask;
94 #endif
95
96 extern int ofw_handleticks;
97
98
99 /*
100 * Imported routines
101 */
102 extern void dump_spl_masks __P((void));
103 extern void dumpsys __P((void));
104 extern void dotickgrovelling __P((vm_offset_t));
105 #if defined(SHARK) && (NPC > 0)
106 extern void shark_screen_cleanup __P((int));
107 #endif
108
109 #define WriteWord(a, b) \
110 *((volatile unsigned int *)(a)) = (b)
111
112 #define ReadWord(a) \
113 (*((volatile unsigned int *)(a)))
114
115
116 /*
117 * Exported variables
118 */
119 /* These should all be in a meminfo structure. */
120 vm_offset_t physical_start;
121 vm_offset_t physical_freestart;
122 vm_offset_t physical_freeend;
123 vm_offset_t physical_end;
124 u_int free_pages;
125 int physmem;
126 pv_addr_t systempage;
127 #ifndef OFWGENCFG
128 pv_addr_t irqstack;
129 #endif
130 pv_addr_t undstack;
131 pv_addr_t abtstack;
132 pv_addr_t kernelstack;
133
134 vm_offset_t msgbufphys;
135
136 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
137 static vm_offset_t virt_freeptr;
138
139 int ofw_callbacks = 0; /* debugging counter */
140
141 /**************************************************************/
142
143
144 /*
145 * Declarations and definitions private to this module
146 *
147 */
148
149 struct mem_region {
150 vm_offset_t start;
151 vm_size_t size;
152 };
153
154 struct mem_translation {
155 vm_offset_t virt;
156 vm_size_t size;
157 vm_offset_t phys;
158 unsigned int mode;
159 };
160
161 struct isa_range {
162 vm_offset_t isa_phys_hi;
163 vm_offset_t isa_phys_lo;
164 vm_offset_t parent_phys_start;
165 vm_size_t isa_size;
166 };
167
168 struct vl_range {
169 vm_offset_t vl_phys_hi;
170 vm_offset_t vl_phys_lo;
171 vm_offset_t parent_phys_start;
172 vm_size_t vl_size;
173 };
174
175 struct vl_isa_range {
176 vm_offset_t isa_phys_hi;
177 vm_offset_t isa_phys_lo;
178 vm_offset_t parent_phys_hi;
179 vm_offset_t parent_phys_lo;
180 vm_size_t isa_size;
181 };
182
183 struct dma_range {
184 vm_offset_t start;
185 vm_size_t size;
186 };
187
188 struct ofw_cbargs {
189 char *name;
190 int nargs;
191 int nreturns;
192 int args_n_results[12];
193 };
194
195
196 /* Memory info */
197 static int nOFphysmem;
198 static struct mem_region *OFphysmem;
199 static int nOFphysavail;
200 static struct mem_region *OFphysavail;
201 static int nOFtranslations;
202 static struct mem_translation *OFtranslations;
203 static int nOFdmaranges;
204 static struct dma_range *OFdmaranges;
205
206 /* The OFW client services handle. */
207 /* Initialized by ofw_init(). */
208 static ofw_handle_t ofw_client_services_handle;
209
210
211 static void ofw_callbackhandler __P((void *));
212 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
213 static void ofw_getphysmeminfo __P((void));
214 static void ofw_getvirttranslations __P((void));
215 static void *ofw_malloc(vm_size_t size);
216 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
217 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
218 static int ofw_mem_ihandle __P((void));
219 static int ofw_mmu_ihandle __P((void));
220 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
221 #if 0
222 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
223 #endif
224 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
225 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
226 static void ofw_initallocator __P((void));
227 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
228 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
229 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
230
231
232 /*
233 * DHCP hooks. For a first cut, we look to see if there is a DHCP
234 * packet that was saved by the firmware. If not, we proceed as before,
235 * getting hand-configured data from NVRAM. If there is one, we get the
236 * packet, and extract the data from it. For now, we hand that data up
237 * in the boot_args string as before.
238 */
239
240
241 /**************************************************************/
242
243
244 /*
245 *
246 * Support routines for xxx_machdep.c
247 *
248 * The intent is that all OFW-based configurations use the
249 * exported routines in this file to do their business. If
250 * they need to override some function they are free to do so.
251 *
252 * The exported routines are:
253 *
254 * openfirmware
255 * ofw_init
256 * ofw_boot
257 * ofw_getbootinfo
258 * ofw_configmem
259 * ofw_configisa
260 * ofw_configisadma
261 * ofw_gettranslation
262 * ofw_map
263 * ofw_getcleaninfo
264 */
265
266
267 int
268 openfirmware(args)
269 void *args;
270 {
271 int ofw_result;
272 u_int saved_irq_state;
273
274 /* OFW is not re-entrant, so we wrap a mutex around the call. */
275 saved_irq_state = disable_interrupts(I32_bit);
276 ofw_result = ofw_client_services_handle(args);
277 (void)restore_interrupts(saved_irq_state);
278
279 return(ofw_result);
280 }
281
282
283 void
284 ofw_init(ofw_handle)
285 ofw_handle_t ofw_handle;
286 {
287 ofw_client_services_handle = ofw_handle;
288
289 /* Everything we allocate in the remainder of this block is
290 * constrained to be in the "kernel-static" portion of the
291 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
292 * This is because all such objects are expected to be in
293 * that range by NetBSD, or the objects will be re-mapped
294 * after the page-table-switch to other specific locations.
295 * In the latter case, it's simplest if our pre-switch handles
296 * on those objects are in regions that are already "well-
297 * known." (Otherwise, the cloning of the OFW-managed address-
298 * space becomes more awkward.) To minimize the number of L2
299 * page tables that we use, we are further restricting the
300 * remaining allocations in this block to the bottom quarter of
301 * the legal range. OFW will have loaded the kernel text+data+bss
302 * starting at the bottom of the range, and we will allocate
303 * objects from the top, moving downwards. The two sub-regions
304 * will collide if their total sizes hit 8MB. The current total
305 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
306 * limit. The variable virt-freeptr represents the next free va
307 * (moving downwards).
308 */
309 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
310 }
311
312
313 void
314 ofw_boot(howto, bootstr)
315 int howto;
316 char *bootstr;
317 {
318
319 #ifdef DIAGNOSTIC
320 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
321 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
322
323 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
324 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
325 irqmasks[IPL_IMP]);
326 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
327 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
328
329 dump_spl_masks();
330 #endif
331
332 /*
333 * If we are still cold then hit the air brakes
334 * and crash to earth fast
335 */
336 if (cold) {
337 doshutdownhooks();
338 printf("Halted while still in the ICE age.\n");
339 printf("The operating system has halted.\n");
340 goto ofw_exit;
341 /*NOTREACHED*/
342 }
343
344 /*
345 * If RB_NOSYNC was not specified sync the discs.
346 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
347 * It looks like syslogd is getting woken up only to find that it cannot
348 * page part of the binary in as the filesystem has been unmounted.
349 */
350 if (!(howto & RB_NOSYNC))
351 bootsync();
352
353 /* Say NO to interrupts */
354 splhigh();
355
356 /* Do a dump if requested. */
357 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
358 dumpsys();
359
360 /* Run any shutdown hooks */
361 doshutdownhooks();
362
363 /* Make sure IRQ's are disabled */
364 IRQdisable;
365
366 if (howto & RB_HALT) {
367 printf("The operating system has halted.\n");
368 goto ofw_exit;
369 }
370
371 /* Tell the user we are booting */
372 printf("rebooting...\n");
373
374 /* Jump into the OFW boot routine. */
375 {
376 static char str[256];
377 char *ap = str, *ap1 = ap;
378
379 if (bootstr && *bootstr) {
380 if (strlen(bootstr) > sizeof str - 5)
381 printf("boot string too large, ignored\n");
382 else {
383 strcpy(str, bootstr);
384 ap1 = ap = str + strlen(str);
385 *ap++ = ' ';
386 }
387 }
388 *ap++ = '-';
389 if (howto & RB_SINGLE)
390 *ap++ = 's';
391 if (howto & RB_KDB)
392 *ap++ = 'd';
393 *ap++ = 0;
394 if (ap[-2] == '-')
395 *ap1 = 0;
396 #if defined(SHARK) && (NPC > 0)
397 shark_screen_cleanup(0);
398 #endif
399 OF_boot(str);
400 /*NOTREACHED*/
401 }
402
403 ofw_exit:
404 printf("Calling OF_exit...\n");
405 #if defined(SHARK) && (NPC > 0)
406 shark_screen_cleanup(1);
407 #endif
408 OF_exit();
409 /*NOTREACHED*/
410 }
411
412
413 #if BOOT_FW_DHCP
414
415 extern char *ip2dotted __P((struct in_addr));
416
417 /*
418 * Get DHCP data from OFW
419 */
420
421 void
422 get_fw_dhcp_data(bdp)
423 struct bootdata *bdp;
424 {
425 int chosen;
426 int dhcplen;
427
428 bzero((char *)bdp, sizeof(*bdp));
429 if ((chosen = OF_finddevice("/chosen")) == -1)
430 panic("no /chosen from OFW");
431 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
432 u_char *cp;
433 int dhcp_type = 0;
434 char *ip;
435
436 /*
437 * OFW saved a DHCP (or BOOTP) packet for us.
438 */
439 if (dhcplen > sizeof(bdp->dhcp_packet))
440 panic("DHCP packet too large");
441 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
442 sizeof(bdp->dhcp_packet));
443 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
444 /*
445 * Collect the interesting data from DHCP into
446 * the bootdata structure.
447 */
448 bdp->ip_address = bdp->dhcp_packet.yiaddr;
449 ip = ip2dotted(bdp->ip_address);
450 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
451 parse_dhcp_options(&bdp->dhcp_packet,
452 bdp->dhcp_packet.options + 4,
453 &bdp->dhcp_packet.options[dhcplen
454 - DHCP_FIXED_NON_UDP], bdp, ip);
455 if (bdp->root_ip.s_addr == 0)
456 bdp->root_ip = bdp->dhcp_packet.siaddr;
457 if (bdp->swap_ip.s_addr == 0)
458 bdp->swap_ip = bdp->dhcp_packet.siaddr;
459 }
460 /*
461 * If the DHCP packet did not contain all the necessary data,
462 * look in NVRAM for the missing parts.
463 */
464 {
465 int options;
466 int proplen;
467 #define BOOTJUNKV_SIZE 256
468 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
469
470
471 if ((options = OF_finddevice("/options")) == -1)
472 panic("can't find /options");
473 if (bdp->ip_address.s_addr == 0 &&
474 (proplen = OF_getprop(options, "ipaddr",
475 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 bootjunkv[proplen] = '\0';
477 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
478 bdp->ip_address.s_addr = 0;
479 }
480 if (bdp->ip_mask.s_addr == 0 &&
481 (proplen = OF_getprop(options, "netmask",
482 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
483 bootjunkv[proplen] = '\0';
484 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
485 bdp->ip_mask.s_addr = 0;
486 }
487 if (bdp->hostname[0] == '\0' &&
488 (proplen = OF_getprop(options, "hostname",
489 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
490 bdp->hostname[proplen] = '\0';
491 }
492 if (bdp->root[0] == '\0' &&
493 (proplen = OF_getprop(options, "rootfs",
494 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
495 bootjunkv[proplen] = '\0';
496 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
497 }
498 if (bdp->swap[0] == '\0' &&
499 (proplen = OF_getprop(options, "swapfs",
500 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
501 bootjunkv[proplen] = '\0';
502 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
503 }
504 }
505 }
506
507 #endif /* BOOT_FW_DHCP */
508
509 void
510 ofw_getbootinfo(bp_pp, ba_pp)
511 char **bp_pp;
512 char **ba_pp;
513 {
514 int chosen;
515 int bp_len;
516 int ba_len;
517 char *bootpathv;
518 char *bootargsv;
519
520 /* Read the bootpath and bootargs out of OFW. */
521 /* XXX is bootpath still interesting? --emg */
522 if ((chosen = OF_finddevice("/chosen")) == -1)
523 panic("no /chosen from OFW");
524 bp_len = OF_getproplen(chosen, "bootpath");
525 ba_len = OF_getproplen(chosen, "bootargs");
526 if (bp_len < 0 || ba_len < 0)
527 panic("can't get boot data from OFW");
528
529 bootpathv = (char *)ofw_malloc(bp_len);
530 bootargsv = (char *)ofw_malloc(ba_len);
531
532 if (bp_len)
533 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
534 else
535 bootpathv[0] = '\0';
536
537 if (ba_len)
538 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
539 else
540 bootargsv[0] = '\0';
541
542 *bp_pp = bootpathv;
543 *ba_pp = bootargsv;
544 #ifdef DIAGNOSTIC
545 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
546 #endif
547 }
548
549 vm_offset_t
550 ofw_getcleaninfo(void)
551 {
552 int cpu;
553 vm_offset_t vclean, pclean;
554
555 if ((cpu = OF_finddevice("/cpu")) == -1)
556 panic("no /cpu from OFW");
557
558 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
559 sizeof(vclean))) != sizeof(vclean)) {
560 #ifdef DEBUG
561 printf("no OFW d-cache-flush-address property\n");
562 #endif
563 return -1;
564 }
565
566 if ((pclean = ofw_gettranslation(
567 of_decode_int((unsigned char *)&vclean))) == -1)
568 panic("OFW failed to translate cache flush address");
569
570 return pclean;
571 }
572
573 void
574 ofw_configisa(pio, pmem)
575 vm_offset_t *pio;
576 vm_offset_t *pmem;
577 {
578 int vl;
579
580 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
581 ofw_configisaonly(pio, pmem);
582 else /* old style OFW dev info tree */
583 ofw_configvl(vl, pio, pmem);
584 }
585
586 static void
587 ofw_configisaonly(pio, pmem)
588 vm_offset_t *pio;
589 vm_offset_t *pmem;
590 {
591 int isa;
592 int rangeidx;
593 int size;
594 vm_offset_t hi, start;
595 struct isa_range ranges[2];
596
597 if ((isa = OF_finddevice("/isa")) == -1)
598 panic("OFW has no /isa device node");
599
600 /* expect to find two isa ranges: IO/data and memory/data */
601 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
602 != sizeof(ranges))
603 panic("unexpected size of OFW /isa ranges property: %d", size);
604
605 *pio = *pmem = -1;
606
607 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
608 hi = of_decode_int((unsigned char *)
609 &ranges[rangeidx].isa_phys_hi);
610 start = of_decode_int((unsigned char *)
611 &ranges[rangeidx].parent_phys_start);
612
613 if (hi & 1) { /* then I/O space */
614 *pio = start;
615 } else {
616 *pmem = start;
617 }
618 } /* END for */
619
620 if ((*pio == -1) || (*pmem == -1))
621 panic("bad OFW /isa ranges property");
622
623 }
624
625 static void
626 ofw_configvl(vl, pio, pmem)
627 int vl;
628 vm_offset_t *pio;
629 vm_offset_t *pmem;
630 {
631 int isa;
632 int ir, vr;
633 int size;
634 vm_offset_t hi, start;
635 struct vl_isa_range isa_ranges[2];
636 struct vl_range vl_ranges[2];
637
638 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
639 panic("OFW has no /vlbus/isa device node");
640
641 /* expect to find two isa ranges: IO/data and memory/data */
642 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
643 != sizeof(isa_ranges))
644 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
645 size);
646
647 /* expect to find two vl ranges: IO/data and memory/data */
648 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
649 != sizeof(vl_ranges))
650 panic("unexpected size of OFW /vlbus ranges property: %d", size);
651
652 *pio = -1;
653 *pmem = -1;
654
655 for (ir = 0; ir < 2; ++ir) {
656 for (vr = 0; vr < 2; ++vr) {
657 if ((isa_ranges[ir].parent_phys_hi
658 == vl_ranges[vr].vl_phys_hi) &&
659 (isa_ranges[ir].parent_phys_lo
660 == vl_ranges[vr].vl_phys_lo)) {
661 hi = of_decode_int((unsigned char *)
662 &isa_ranges[ir].isa_phys_hi);
663 start = of_decode_int((unsigned char *)
664 &vl_ranges[vr].parent_phys_start);
665
666 if (hi & 1) { /* then I/O space */
667 *pio = start;
668 } else {
669 *pmem = start;
670 }
671 } /* END if */
672 } /* END for */
673 } /* END for */
674
675 if ((*pio == -1) || (*pmem == -1))
676 panic("bad OFW /isa ranges property");
677 }
678
679 #if NISADMA > 0
680 struct arm32_dma_range *shark_isa_dma_ranges;
681 int shark_isa_dma_nranges;
682 #endif
683
684 void
685 ofw_configisadma(pdma)
686 vm_offset_t *pdma;
687 {
688 int root;
689 int rangeidx;
690 int size;
691 struct dma_range *dr;
692
693 if ((root = OF_finddevice("/")) == -1 ||
694 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
695 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
696 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
697 panic("bad / dma-ranges property");
698
699 nOFdmaranges = size / sizeof(struct dma_range);
700
701 #if NISADMA > 0
702 /* Allocate storage for non-OFW representation of the range. */
703 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
704 sizeof(*shark_isa_dma_ranges));
705 if (shark_isa_dma_ranges == NULL)
706 panic("unable to allocate shark_isa_dma_ranges");
707 shark_isa_dma_nranges = nOFdmaranges;
708 #endif
709
710 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
711 ++rangeidx, ++dr) {
712 dr->start = of_decode_int((unsigned char *)&dr->start);
713 dr->size = of_decode_int((unsigned char *)&dr->size);
714 #if NISADMA > 0
715 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
716 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
717 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
718 #endif
719 }
720
721 #ifdef DEBUG
722 printf("dma ranges size = %d\n", size);
723
724 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
725 printf("%08lx %08lx\n",
726 (u_long)OFdmaranges[rangeidx].start,
727 (u_long)OFdmaranges[rangeidx].size);
728 }
729 #endif
730 }
731
732 /*
733 * Memory configuration:
734 *
735 * We start off running in the environment provided by OFW.
736 * This has the MMU turned on, the kernel code and data
737 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
738 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
739 * page0 mapped-in at 0x0.
740 *
741 * The strategy is to set-up the address space for proc0 --
742 * including the allocation of space for new page tables -- while
743 * memory is still managed by OFW. We then effectively create a
744 * copy of the address space by dumping all of OFW's translations
745 * and poking them into the new page tables. We then notify OFW
746 * that we are assuming control of memory-management by installing
747 * our callback-handler, and switch to the NetBSD-managed page
748 * tables with the setttb() call.
749 *
750 * This scheme may cause some amount of memory to be wasted within
751 * OFW as dead page tables, but it shouldn't be more than about
752 * 20-30KB. (It's also possible that OFW will re-use the space.)
753 */
754 void
755 ofw_configmem(void)
756 {
757 pv_addr_t proc0_ttbbase;
758 pv_addr_t proc0_ptpt;
759 int i;
760
761 /* Set-up proc0 address space. */
762 ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
763
764 /*
765 * Get a dump of OFW's picture of physical memory.
766 * This is used below to initialize a load of variables used by pmap.
767 * We get it now rather than later because we are about to
768 * tell OFW to stop managing memory.
769 */
770 ofw_getphysmeminfo();
771
772 /* We are about to take control of memory-management from OFW.
773 * Establish callbacks for OFW to use for its future memory needs.
774 * This is required for us to keep using OFW services.
775 */
776
777 /* First initialize our callback memory allocator. */
778 ofw_initallocator();
779
780 OF_set_callback(ofw_callbackhandler);
781
782 /* Switch to the proc0 pagetables. */
783 #ifndef ARM32_PMAP_NEW
784 setttb(proc0_ttbbase.pv_pa);
785 #else
786 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
787 setttb(proc0_ttbbase.pv_pa);
788 cpu_tlb_flushID();
789 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
790
791 /*
792 * Moved from cpu_startup() as data_abort_handler() references
793 * this during uvm init
794 */
795 {
796 extern struct user *proc0paddr;
797 proc0paddr = (struct user *)kernelstack.pv_va;
798 lwp0.l_addr = proc0paddr;
799 }
800 #endif
801
802 /* Aaaaaaaah, running in the proc0 address space! */
803 /* I feel good... */
804
805 /* Set-up the various globals which describe physical memory for pmap. */
806 {
807 struct mem_region *mp;
808 int totalcnt;
809 int availcnt;
810
811 /* physmem, physical_start, physical_end */
812 physmem = 0;
813 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
814 totalcnt++, mp++) {
815 #ifdef OLDPRINTFS
816 printf("physmem: %x, %x\n", mp->start, mp->size);
817 #endif
818 physmem += btoc(mp->size);
819 }
820 physical_start = OFphysmem[0].start;
821 mp--;
822 physical_end = mp->start + mp->size;
823
824 /* free_pages, physical_freestart, physical_freeend */
825 free_pages = 0;
826 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
827 availcnt++, mp++) {
828 #ifdef OLDPRINTFS
829 printf("physavail: %x, %x\n", mp->start, mp->size);
830 #endif
831 free_pages += btoc(mp->size);
832 }
833 physical_freestart = OFphysavail[0].start;
834 mp--;
835 physical_freeend = mp->start + mp->size;
836 #ifdef OLDPRINTFS
837 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
838 physmem, free_pages);
839 #endif
840
841 /*
842 * This is a hack to work with the existing pmap code.
843 * That code depends on a RiscPC BootConfig structure
844 * containing, among other things, an array describing
845 * the regions of physical memory. So, for now, we need
846 * to stuff our OFW-derived physical memory info into a
847 * "fake" BootConfig structure.
848 *
849 * An added twist is that we initialize the BootConfig
850 * structure with our "available" physical memory regions
851 * rather than the "total" physical memory regions. Why?
852 * Because:
853 *
854 * (a) the VM code requires that the "free" pages it is
855 * initialized with have consecutive indices. This
856 * allows it to use more efficient data structures
857 * (presumably).
858 * (b) the current pmap routines which report the initial
859 * set of free page indices (pmap_next_page) and
860 * which map addresses to indices (pmap_page_index)
861 * assume that the free pages are consecutive across
862 * memory region boundaries.
863 *
864 * This means that memory which is "stolen" at startup time
865 * (say, for page descriptors) MUST come from either the
866 * bottom of the first region or the top of the last.
867 *
868 * This requirement doesn't mesh well with OFW (or at least
869 * our use of it). We can get around it for the time being
870 * by pretending that our "available" region array describes
871 * all of our physical memory. This may cause some important
872 * information to be excluded from a dump file, but so far
873 * I haven't come across any other negative effects.
874 *
875 * In the long-run we should fix the index
876 * generation/translation code in the pmap module.
877 */
878
879 if (DRAM_BLOCKS < (availcnt + 1))
880 panic("more ofw memory regions than bootconfig blocks");
881
882 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
883 bootconfig.dram[i].address = mp->start;
884 bootconfig.dram[i].pages = btoc(mp->size);
885 }
886 bootconfig.dramblocks = availcnt;
887 }
888
889 /* Load memory into UVM. */
890 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
891
892 /* XXX Please kill this code dead. */
893 for (i = 0; i < bootconfig.dramblocks; i++) {
894 paddr_t start = (paddr_t)bootconfig.dram[i].address;
895 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
896 #if NISADMA > 0
897 paddr_t istart, isize;
898 #endif
899
900 if (start < physical_freestart)
901 start = physical_freestart;
902 if (end > physical_freeend)
903 end = physical_freeend;
904
905 #if 0
906 printf("%d: %lx -> %lx\n", loop, start, end - 1);
907 #endif
908
909 #if NISADMA > 0
910 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
911 shark_isa_dma_nranges,
912 start, end - start,
913 &istart, &isize)) {
914 /*
915 * Place the pages that intersect with the
916 * ISA DMA range onto the ISA DMA free list.
917 */
918 #if 0
919 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
920 istart + isize - 1);
921 #endif
922 uvm_page_physload(atop(istart),
923 atop(istart + isize), atop(istart),
924 atop(istart + isize), VM_FREELIST_ISADMA);
925
926 /*
927 * Load the pieces that come before the
928 * intersection onto the default free list.
929 */
930 if (start < istart) {
931 #if 0
932 printf(" BEFORE 0x%lx -> 0x%lx\n",
933 start, istart - 1);
934 #endif
935 uvm_page_physload(atop(start),
936 atop(istart), atop(start),
937 atop(istart), VM_FREELIST_DEFAULT);
938 }
939
940 /*
941 * Load the pieces that come after the
942 * intersection onto the default free list.
943 */
944 if ((istart + isize) < end) {
945 #if 0
946 printf(" AFTER 0x%lx -> 0x%lx\n",
947 (istart + isize), end - 1);
948 #endif
949 uvm_page_physload(atop(istart + isize),
950 atop(end), atop(istart + isize),
951 atop(end), VM_FREELIST_DEFAULT);
952 }
953 } else {
954 uvm_page_physload(atop(start), atop(end),
955 atop(start), atop(end), VM_FREELIST_DEFAULT);
956 }
957 #else /* NISADMA > 0 */
958 uvm_page_physload(atop(start), atop(end),
959 atop(start), atop(end), VM_FREELIST_DEFAULT);
960 #endif /* NISADMA > 0 */
961 }
962
963 /* Initialize pmap module. */
964 #ifndef ARM32_PMAP_NEW
965 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
966 #else
967 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va);
968 #endif
969 }
970
971
972 /*
973 ************************************************************
974
975 Routines private to this module
976
977 ************************************************************
978 */
979
980 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
981 static void
982 ofw_callbackhandler(v)
983 void *v;
984 {
985 struct ofw_cbargs *args = v;
986 char *name = args->name;
987 int nargs = args->nargs;
988 int nreturns = args->nreturns;
989 int *args_n_results = args->args_n_results;
990
991 ofw_callbacks++;
992
993 #if defined(OFWGENCFG)
994 /* Check this first, so that we don't waste IRQ time parsing. */
995 if (strcmp(name, "tick") == 0) {
996 vm_offset_t frame;
997
998 /* Check format. */
999 if (nargs != 1 || nreturns < 1) {
1000 args_n_results[nargs] = -1;
1001 args->nreturns = 1;
1002 return;
1003 }
1004 args_n_results[nargs] = 0; /* properly formatted request */
1005
1006 /*
1007 * Note that we are running in the IRQ frame, with interrupts
1008 * disabled.
1009 *
1010 * We need to do two things here:
1011 * - copy a few words out of the input frame into a global
1012 * area, for later use by our real tick-handling code
1013 * - patch a few words in the frame so that when OFW returns
1014 * from the interrupt it will resume with our handler
1015 * rather than the code that was actually interrupted.
1016 * Our handler will resume when it finishes with the code
1017 * that was actually interrupted.
1018 *
1019 * It's simplest to do this in assembler, since it requires
1020 * switching frames and grovelling about with registers.
1021 */
1022 frame = (vm_offset_t)args_n_results[0];
1023 if (ofw_handleticks)
1024 dotickgrovelling(frame);
1025 args_n_results[nargs + 1] = frame;
1026 args->nreturns = 1;
1027 } else
1028 #endif
1029
1030 if (strcmp(name, "map") == 0) {
1031 vm_offset_t va;
1032 vm_offset_t pa;
1033 vm_size_t size;
1034 int mode;
1035 int ap_bits;
1036 int dom_bits;
1037 int cb_bits;
1038
1039 /* Check format. */
1040 if (nargs != 4 || nreturns < 2) {
1041 args_n_results[nargs] = -1;
1042 args->nreturns = 1;
1043 return;
1044 }
1045 args_n_results[nargs] = 0; /* properly formatted request */
1046
1047 pa = (vm_offset_t)args_n_results[0];
1048 va = (vm_offset_t)args_n_results[1];
1049 size = (vm_size_t)args_n_results[2];
1050 mode = args_n_results[3];
1051 ap_bits = (mode & 0x00000C00);
1052 dom_bits = (mode & 0x000001E0);
1053 cb_bits = (mode & 0x000000C0);
1054
1055 /* Sanity checks. */
1056 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1057 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1058 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1059 size == 0 || (dom_bits >> 5) != 0) {
1060 args_n_results[nargs + 1] = -1;
1061 args->nreturns = 1;
1062 return;
1063 }
1064
1065 /* Write-back anything stuck in the cache. */
1066 cpu_idcache_wbinv_all();
1067
1068 /* Install new mappings. */
1069 {
1070 pt_entry_t *pte = vtopte(va);
1071 int npages = size >> PGSHIFT;
1072
1073 ap_bits >>= 10;
1074 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1075 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1076 cb_bits);
1077 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1078 }
1079
1080 /* Clean out tlb. */
1081 tlb_flush();
1082
1083 args_n_results[nargs + 1] = 0;
1084 args->nreturns = 2;
1085 } else if (strcmp(name, "unmap") == 0) {
1086 vm_offset_t va;
1087 vm_size_t size;
1088
1089 /* Check format. */
1090 if (nargs != 2 || nreturns < 1) {
1091 args_n_results[nargs] = -1;
1092 args->nreturns = 1;
1093 return;
1094 }
1095 args_n_results[nargs] = 0; /* properly formatted request */
1096
1097 va = (vm_offset_t)args_n_results[0];
1098 size = (vm_size_t)args_n_results[1];
1099
1100 /* Sanity checks. */
1101 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1102 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1103 (size & PGOFSET) != 0 || size == 0) {
1104 args_n_results[nargs + 1] = -1;
1105 args->nreturns = 1;
1106 return;
1107 }
1108
1109 /* Write-back anything stuck in the cache. */
1110 cpu_idcache_wbinv_all();
1111
1112 /* Zero the mappings. */
1113 {
1114 pt_entry_t *pte = vtopte(va);
1115 int npages = size >> PGSHIFT;
1116
1117 for (; npages > 0; pte++, npages--)
1118 *pte = 0;
1119 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1120 }
1121
1122 /* Clean out tlb. */
1123 tlb_flush();
1124
1125 args->nreturns = 1;
1126 } else if (strcmp(name, "translate") == 0) {
1127 vm_offset_t va;
1128 vm_offset_t pa;
1129 int mode;
1130 pt_entry_t pte;
1131
1132 /* Check format. */
1133 if (nargs != 1 || nreturns < 4) {
1134 args_n_results[nargs] = -1;
1135 args->nreturns = 1;
1136 return;
1137 }
1138 args_n_results[nargs] = 0; /* properly formatted request */
1139
1140 va = (vm_offset_t)args_n_results[0];
1141
1142 /* Sanity checks.
1143 * For now, I am only willing to translate va's in the
1144 * "ofw range." Eventually, I may be more generous. -JJK
1145 */
1146 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1147 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1148 args_n_results[nargs + 1] = -1;
1149 args->nreturns = 1;
1150 return;
1151 }
1152
1153 /* Lookup mapping. */
1154 pte = *vtopte(va);
1155 if (pte == 0) {
1156 /* No mapping. */
1157 args_n_results[nargs + 1] = -1;
1158 args->nreturns = 2;
1159 } else {
1160 /* Existing mapping. */
1161 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1162 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1163
1164 args_n_results[nargs + 1] = 0;
1165 args_n_results[nargs + 2] = pa;
1166 args_n_results[nargs + 3] = mode;
1167 args->nreturns = 4;
1168 }
1169 } else if (strcmp(name, "claim-phys") == 0) {
1170 struct pglist alloclist;
1171 vm_offset_t low, high;
1172 vm_size_t align, size;
1173
1174 /*
1175 * XXX
1176 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1177 * XXX
1178 */
1179
1180 /* Check format. */
1181 if (nargs != 4 || nreturns < 3) {
1182 args_n_results[nargs] = -1;
1183 args->nreturns = 1;
1184 return;
1185 }
1186 args_n_results[nargs] = 0; /* properly formatted request */
1187
1188 low = args_n_results[0];
1189 size = args_n_results[2];
1190 align = args_n_results[3];
1191 high = args_n_results[1] + size;
1192
1193 #if 0
1194 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1195 low, size, align, high);
1196 align = size;
1197 printf("forcing align to be 0x%x\n", align);
1198 #endif
1199
1200 args_n_results[nargs + 1] =
1201 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1202 #if 0
1203 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1204 #endif
1205 if (args_n_results[nargs + 1] != 0) {
1206 #if 0
1207 printf("(failed)\n");
1208 #endif
1209 args_n_results[nargs + 1] = -1;
1210 args->nreturns = 2;
1211 return;
1212 }
1213 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1214 #if 0
1215 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1216 #endif
1217 args->nreturns = 3;
1218
1219 } else if (strcmp(name, "release-phys") == 0) {
1220 printf("unimplemented ofw callback - %s\n", name);
1221 args_n_results[nargs] = -1;
1222 args->nreturns = 1;
1223 } else if (strcmp(name, "claim-virt") == 0) {
1224 vm_offset_t va;
1225 vm_size_t size;
1226 vm_offset_t align;
1227
1228 /* XXX - notyet */
1229 /* printf("unimplemented ofw callback - %s\n", name);*/
1230 args_n_results[nargs] = -1;
1231 args->nreturns = 1;
1232 return;
1233
1234 /* Check format. */
1235 if (nargs != 2 || nreturns < 3) {
1236 args_n_results[nargs] = -1;
1237 args->nreturns = 1;
1238 return;
1239 }
1240 args_n_results[nargs] = 0; /* properly formatted request */
1241
1242 /* Allocate size bytes with specified alignment. */
1243 size = (vm_size_t)args_n_results[0];
1244 align = (vm_offset_t)args_n_results[1];
1245 if (align % PAGE_SIZE != 0) {
1246 args_n_results[nargs + 1] = -1;
1247 args->nreturns = 2;
1248 return;
1249 }
1250
1251 if (va == 0) {
1252 /* Couldn't allocate. */
1253 args_n_results[nargs + 1] = -1;
1254 args->nreturns = 2;
1255 } else {
1256 /* Successful allocation. */
1257 args_n_results[nargs + 1] = 0;
1258 args_n_results[nargs + 2] = va;
1259 args->nreturns = 3;
1260 }
1261 } else if (strcmp(name, "release-virt") == 0) {
1262 vm_offset_t va;
1263 vm_size_t size;
1264
1265 /* XXX - notyet */
1266 printf("unimplemented ofw callback - %s\n", name);
1267 args_n_results[nargs] = -1;
1268 args->nreturns = 1;
1269 return;
1270
1271 /* Check format. */
1272 if (nargs != 2 || nreturns < 1) {
1273 args_n_results[nargs] = -1;
1274 args->nreturns = 1;
1275 return;
1276 }
1277 args_n_results[nargs] = 0; /* properly formatted request */
1278
1279 /* Release bytes. */
1280 va = (vm_offset_t)args_n_results[0];
1281 size = (vm_size_t)args_n_results[1];
1282
1283 args->nreturns = 1;
1284 } else {
1285 args_n_results[nargs] = -1;
1286 args->nreturns = 1;
1287 }
1288 }
1289
1290 static void
1291 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1292 pv_addr_t *proc0_ttbbase;
1293 pv_addr_t *proc0_ptpt;
1294 {
1295 int i, oft;
1296 #ifndef ARM32_PMAP_NEW
1297 pv_addr_t proc0_pagedir;
1298 pv_addr_t proc0_pt_pte;
1299 pv_addr_t proc0_pt_sys;
1300 pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1301 pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1302 pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1303 pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1304 pv_addr_t msgbuf;
1305 #else
1306 static pv_addr_t proc0_pagedir;
1307 static pv_addr_t proc0_pt_pte;
1308 static pv_addr_t proc0_pt_sys;
1309 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1310 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1311 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1312 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1313 static pv_addr_t msgbuf;
1314 #endif
1315 vm_offset_t L1pagetable;
1316 struct mem_translation *tp;
1317
1318 /* Set-up the system page. */
1319 KASSERT(vector_page == 0); /* XXX for now */
1320 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1321 if (systempage.pv_va == -1) {
1322 /* Something was already mapped to vector_page's VA. */
1323 systempage.pv_va = vector_page;
1324 systempage.pv_pa = ofw_gettranslation(vector_page);
1325 if (systempage.pv_pa == -1)
1326 panic("bogus result from gettranslation(vector_page)");
1327 } else {
1328 /* We were just allocated the page-length range at VA 0. */
1329 if (systempage.pv_va != vector_page)
1330 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1331
1332 /* Now allocate a physical page, and establish the mapping. */
1333 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1334 if (systempage.pv_pa == -1)
1335 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1336 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1337 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1338
1339 /* Zero the memory. */
1340 bzero((char *)systempage.pv_va, PAGE_SIZE);
1341 }
1342
1343 /* Allocate/initialize space for the proc0, NetBSD-managed */
1344 /* page tables that we will be switching to soon. */
1345 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1346 ofw_claimpages(&virt_freeptr, &proc0_pt_pte, L2_TABLE_SIZE);
1347 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1348 for (i = 0; i < KERNEL_IMG_PTS; i++)
1349 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1350 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1351 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1352 for (i = 0; i < KERNEL_OFW_PTS; i++)
1353 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1354 for (i = 0; i < KERNEL_IO_PTS; i++)
1355 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1356
1357 /* Allocate/initialize space for stacks. */
1358 #ifndef OFWGENCFG
1359 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1360 #endif
1361 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1362 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1363 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1364
1365 /* Allocate/initialize space for msgbuf area. */
1366 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1367 msgbufphys = msgbuf.pv_pa;
1368
1369 /* Construct the proc0 L1 pagetable. */
1370 L1pagetable = proc0_pagedir.pv_va;
1371
1372 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1373 for (i = 0; i < KERNEL_IMG_PTS; i++)
1374 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1375 &proc0_pt_kernel[i]);
1376 pmap_link_l2pt(L1pagetable, PTE_BASE,
1377 &proc0_pt_pte);
1378 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1379 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1380 &proc0_pt_vmdata[i]);
1381 for (i = 0; i < KERNEL_OFW_PTS; i++)
1382 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1383 &proc0_pt_ofw[i]);
1384 for (i = 0; i < KERNEL_IO_PTS; i++)
1385 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1386 &proc0_pt_io[i]);
1387
1388 /*
1389 * OK, we're done allocating.
1390 * Get a dump of OFW's translations, and make the appropriate
1391 * entries in the L2 pagetables that we just allocated.
1392 */
1393
1394 ofw_getvirttranslations();
1395
1396 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1397 oft++, tp++) {
1398
1399 vm_offset_t va, pa;
1400 int npages = tp->size / PAGE_SIZE;
1401
1402 /* Size must be an integral number of pages. */
1403 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1404 panic("illegal ofw translation (size)");
1405
1406 /* Make an entry for each page in the appropriate table. */
1407 for (va = tp->virt, pa = tp->phys; npages > 0;
1408 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1409 /*
1410 * Map the top bits to the appropriate L2 pagetable.
1411 * The only allowable regions are page0, the
1412 * kernel-static area, and the ofw area.
1413 */
1414 switch (va >> (L1_S_SHIFT + 2)) {
1415 case 0:
1416 /* page0 */
1417 break;
1418
1419 #if KERNEL_IMG_PTS != 2
1420 #error "Update ofw translation range list"
1421 #endif
1422 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1423 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1424 /* kernel static area */
1425 break;
1426
1427 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1428 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1429 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1430 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1431 /* ofw area */
1432 break;
1433
1434 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1435 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1436 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1437 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1438 /* io area */
1439 break;
1440
1441 default:
1442 /* illegal */
1443 panic("illegal ofw translation (addr) %#lx",
1444 va);
1445 }
1446
1447 /* Make the entry. */
1448 pmap_map_entry(L1pagetable, va, pa,
1449 VM_PROT_READ|VM_PROT_WRITE,
1450 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1451 : PTE_NOCACHE);
1452 }
1453 }
1454
1455 /*
1456 * We don't actually want some of the mappings that we just
1457 * set up to appear in proc0's address space. In particular,
1458 * we don't want aliases to physical addresses that the kernel
1459 * has-mapped/will-map elsewhere.
1460 */
1461 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1462 proc0_pt_sys.pv_va, L2_TABLE_SIZE);
1463 for (i = 0; i < KERNEL_IMG_PTS; i++)
1464 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1465 proc0_pt_kernel[i].pv_va, L2_TABLE_SIZE);
1466 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1467 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1468 proc0_pt_vmdata[i].pv_va, L2_TABLE_SIZE);
1469 for (i = 0; i < KERNEL_OFW_PTS; i++)
1470 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1471 proc0_pt_ofw[i].pv_va, L2_TABLE_SIZE);
1472 for (i = 0; i < KERNEL_IO_PTS; i++)
1473 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1474 proc0_pt_io[i].pv_va, L2_TABLE_SIZE);
1475 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1476 msgbuf.pv_va, MSGBUFSIZE);
1477
1478 /*
1479 * We did not throw away the proc0_pt_pte and proc0_pagedir
1480 * mappings as well still want them. However we don't want them
1481 * cached ...
1482 * Really these should be uncached when allocated.
1483 */
1484 #ifndef ARM32_PMAP_NEW
1485 pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
1486 proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1487 #else
1488 pmap_map_entry(L1pagetable, proc0_pt_pte.pv_va,
1489 proc0_pt_pte.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1490 #endif
1491 for (i = 0; i < (L1_TABLE_SIZE / PAGE_SIZE); ++i)
1492 pmap_map_entry(L1pagetable,
1493 proc0_pagedir.pv_va + PAGE_SIZE * i,
1494 proc0_pagedir.pv_pa + PAGE_SIZE * i,
1495 #ifndef ARM32_PMAP_NEW
1496 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1497 #else
1498 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1499 #endif
1500
1501 /*
1502 * Construct the proc0 L2 pagetables that map page tables.
1503 */
1504
1505 /* Map entries in the L2pagetable used to map L2PTs. */
1506 pmap_map_entry(L1pagetable,
1507 PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
1508 proc0_pt_sys.pv_pa,
1509 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1510 for (i = 0; i < KERNEL_IMG_PTS; i++)
1511 pmap_map_entry(L1pagetable,
1512 PTE_BASE + ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2)),
1513 proc0_pt_kernel[i].pv_pa,
1514 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1515 #ifndef ARM32_PMAP_NEW
1516 pmap_map_entry(L1pagetable,
1517 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
1518 proc0_pt_pte.pv_pa,
1519 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1520 #else
1521 pmap_map_entry(L1pagetable,
1522 PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
1523 proc0_pt_pte.pv_pa,
1524 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
1525 #endif
1526 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1527 pmap_map_entry(L1pagetable,
1528 PTE_BASE + ((KERNEL_VM_BASE + i * 0x00400000)
1529 >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1530 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1531 for (i = 0; i < KERNEL_OFW_PTS; i++)
1532 pmap_map_entry(L1pagetable,
1533 PTE_BASE + ((OFW_VIRT_BASE + i * 0x00400000)
1534 >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1535 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1536 for (i = 0; i < KERNEL_IO_PTS; i++)
1537 pmap_map_entry(L1pagetable,
1538 PTE_BASE + ((IO_VIRT_BASE + i * 0x00400000)
1539 >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1540 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
1541
1542 /* update the top of the kernel VM */
1543 pmap_curmaxkvaddr =
1544 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1545
1546 /*
1547 * gross hack for the sake of not thrashing the TLB and making
1548 * cache flush more efficient: blast l1 ptes for sections.
1549 */
1550 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1551 vm_offset_t va = tp->virt;
1552 vm_offset_t pa = tp->phys;
1553
1554 if (((va | pa) & L1_S_OFFSET) == 0) {
1555 int nsections = tp->size / L1_S_SIZE;
1556
1557 while (nsections--) {
1558 /* XXXJRT prot?? */
1559 pmap_map_section(L1pagetable, va, pa,
1560 VM_PROT_READ|VM_PROT_WRITE,
1561 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1562 : PTE_NOCACHE);
1563 va += L1_S_SIZE;
1564 pa += L1_S_SIZE;
1565 }
1566 }
1567 }
1568
1569 #ifdef ARM32_PMAP_NEW
1570 /*
1571 * This is not a pretty sight, but it works.
1572 */
1573 proc0_pt_sys.pv_va = PTE_BASE + (0x00000000 >> (PGSHIFT-2));
1574 proc0_pt_pte.pv_va = PTE_BASE + (PTE_BASE >> (PGSHIFT-2));
1575 for (i = 0; i < KERNEL_IMG_PTS; i++) {
1576 proc0_pt_kernel[i].pv_va = PTE_BASE +
1577 ((KERNEL_BASE + i * 0x00400000) >> (PGSHIFT-2));
1578 }
1579 for (i = 0; i < KERNEL_VMDATA_PTS; i++) {
1580 proc0_pt_vmdata[i].pv_va = PTE_BASE +
1581 ((KERNEL_VM_BASE + i * 0x00400000) >> (PGSHIFT-2));
1582 }
1583 for (i = 0; i < KERNEL_OFW_PTS; i++) {
1584 proc0_pt_ofw[i].pv_va = PTE_BASE +
1585 ((OFW_VIRT_BASE + i * 0x00400000) >> (PGSHIFT-2));
1586 }
1587 for (i = 0; i < KERNEL_IO_PTS; i++) {
1588 proc0_pt_io[i].pv_va = PTE_BASE +
1589 ((IO_VIRT_BASE + i * 0x00400000) >> (PGSHIFT-2));
1590 }
1591 #endif
1592
1593 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1594 *proc0_ttbbase = proc0_pagedir;
1595 *proc0_ptpt = proc0_pt_pte;
1596 }
1597
1598
1599 static void
1600 ofw_getphysmeminfo()
1601 {
1602 int phandle;
1603 int mem_len;
1604 int avail_len;
1605 int i;
1606
1607 if ((phandle = OF_finddevice("/memory")) == -1 ||
1608 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1609 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1610 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1611 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1612 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1613 OF_getprop(phandle, "available", OFphysavail, avail_len)
1614 != avail_len)
1615 panic("can't get physmeminfo from OFW");
1616
1617 nOFphysmem = mem_len / sizeof(struct mem_region);
1618 nOFphysavail = avail_len / sizeof(struct mem_region);
1619
1620 /*
1621 * Sort the blocks in each array into ascending address order.
1622 * Also, page-align all blocks.
1623 */
1624 for (i = 0; i < 2; i++) {
1625 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1626 struct mem_region *mp;
1627 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1628 int j;
1629
1630 #ifdef OLDPRINTFS
1631 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1632 #endif
1633
1634 /* XXX - Convert all the values to host order. -JJK */
1635 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1636 mp->start = of_decode_int((unsigned char *)&mp->start);
1637 mp->size = of_decode_int((unsigned char *)&mp->size);
1638 }
1639
1640 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1641 u_int s, sz;
1642 struct mem_region *mp1;
1643
1644 /* Page-align start of the block. */
1645 s = mp->start % PAGE_SIZE;
1646 if (s != 0) {
1647 s = (PAGE_SIZE - s);
1648
1649 if (mp->size >= s) {
1650 mp->start += s;
1651 mp->size -= s;
1652 }
1653 }
1654
1655 /* Page-align the size. */
1656 mp->size -= mp->size % PAGE_SIZE;
1657
1658 /* Handle empty block. */
1659 if (mp->size == 0) {
1660 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1661 * sizeof(struct mem_region));
1662 cnt--;
1663 mp--;
1664 continue;
1665 }
1666
1667 /* Bubble sort. */
1668 s = mp->start;
1669 sz = mp->size;
1670 for (mp1 = tmp; mp1 < mp; mp1++)
1671 if (s < mp1->start)
1672 break;
1673 if (mp1 < mp) {
1674 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1675 mp1->start = s;
1676 mp1->size = sz;
1677 }
1678 }
1679
1680 #ifdef OLDPRINTFS
1681 for (mp = tmp; mp->size; mp++) {
1682 printf("%x, %x\n", mp->start, mp->size);
1683 }
1684 #endif
1685 }
1686 }
1687
1688
1689 static void
1690 ofw_getvirttranslations(void)
1691 {
1692 int mmu_phandle;
1693 int mmu_ihandle;
1694 int trans_len;
1695 int over, len;
1696 int i;
1697 struct mem_translation *tp;
1698
1699 mmu_ihandle = ofw_mmu_ihandle();
1700
1701 /* overallocate to avoid increases during allocation */
1702 over = 4 * sizeof(struct mem_translation);
1703 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1704 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1705 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1706 (trans_len = OF_getprop(mmu_phandle, "translations",
1707 OFtranslations, len + over)) > (len + over))
1708 panic("can't get virttranslations from OFW");
1709
1710 /* XXX - Convert all the values to host order. -JJK */
1711 nOFtranslations = trans_len / sizeof(struct mem_translation);
1712 #ifdef OLDPRINTFS
1713 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1714 #endif
1715 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1716 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1717 tp->size = of_decode_int((unsigned char *)&tp->size);
1718 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1719 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1720 }
1721 }
1722
1723 /*
1724 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1725 */
1726 typedef struct _vfree {
1727 struct _vfree *pNext;
1728 vm_offset_t start;
1729 vm_size_t size;
1730 } VFREE, *PVFREE;
1731
1732 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1733
1734 static PVFREE vflist = &vfinitial;
1735
1736 static vm_offset_t
1737 ofw_valloc(size, align)
1738 vm_offset_t size;
1739 vm_offset_t align;
1740 {
1741 PVFREE *ppvf;
1742 PVFREE pNew;
1743 vm_offset_t new;
1744 vm_offset_t lead;
1745
1746 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1747 if (align == 0) {
1748 new = (*ppvf)->start;
1749 lead = 0;
1750 } else {
1751 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1752 lead = new - (*ppvf)->start;
1753 }
1754
1755 if (((*ppvf)->size - lead) >= size) {
1756 if (lead == 0) {
1757 /* using whole block */
1758 if (size == (*ppvf)->size) {
1759 /* splice out of list */
1760 (*ppvf) = (*ppvf)->pNext;
1761 } else { /* tail of block is free */
1762 (*ppvf)->start = new + size;
1763 (*ppvf)->size -= size;
1764 }
1765 } else {
1766 vm_size_t tail = ((*ppvf)->start
1767 + (*ppvf)->size) - (new + size);
1768 /* free space at beginning */
1769 (*ppvf)->size = lead;
1770
1771 if (tail != 0) {
1772 /* free space at tail */
1773 pNew = ofw_malloc(sizeof(VFREE));
1774 pNew->pNext = (*ppvf)->pNext;
1775 (*ppvf)->pNext = pNew;
1776 pNew->start = new + size;
1777 pNew->size = tail;
1778 }
1779 }
1780 return new;
1781 } /* END if */
1782 } /* END for */
1783
1784 return -1;
1785 }
1786
1787 vm_offset_t
1788 ofw_map(pa, size, cb_bits)
1789 vm_offset_t pa;
1790 vm_size_t size;
1791 int cb_bits;
1792 {
1793 vm_offset_t va;
1794
1795 if ((va = ofw_valloc(size, size)) == -1)
1796 panic("cannot alloc virtual memory for %#lx", pa);
1797
1798 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1799
1800 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1801
1802 return va;
1803 }
1804
1805 static int
1806 ofw_mem_ihandle(void)
1807 {
1808 static int mem_ihandle = 0;
1809 int chosen;
1810
1811 if (mem_ihandle != 0)
1812 return(mem_ihandle);
1813
1814 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1815 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1816 panic("ofw_mem_ihandle");
1817
1818 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1819
1820 return(mem_ihandle);
1821 }
1822
1823
1824 static int
1825 ofw_mmu_ihandle(void)
1826 {
1827 static int mmu_ihandle = 0;
1828 int chosen;
1829
1830 if (mmu_ihandle != 0)
1831 return(mmu_ihandle);
1832
1833 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1834 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1835 panic("ofw_mmu_ihandle");
1836
1837 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1838
1839 return(mmu_ihandle);
1840 }
1841
1842
1843 /* Return -1 on failure. */
1844 static vm_offset_t
1845 ofw_claimphys(pa, size, align)
1846 vm_offset_t pa;
1847 vm_size_t size;
1848 vm_offset_t align;
1849 {
1850 int mem_ihandle = ofw_mem_ihandle();
1851
1852 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1853 if (align == 0) {
1854 /* Allocate at specified base; alignment is ignored. */
1855 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1856 } else {
1857 /* Allocate anywhere, with specified alignment. */
1858 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1859 }
1860
1861 /* printf("%x\n", pa);*/
1862 return(pa);
1863 }
1864
1865
1866 #if 0
1867 /* Return -1 on failure. */
1868 static vm_offset_t
1869 ofw_releasephys(pa, size)
1870 vm_offset_t pa;
1871 vm_size_t size;
1872 {
1873 int mem_ihandle = ofw_mem_ihandle();
1874
1875 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1876
1877 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1878 }
1879 #endif
1880
1881 /* Return -1 on failure. */
1882 static vm_offset_t
1883 ofw_claimvirt(va, size, align)
1884 vm_offset_t va;
1885 vm_size_t size;
1886 vm_offset_t align;
1887 {
1888 int mmu_ihandle = ofw_mmu_ihandle();
1889
1890 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1891 if (align == 0) {
1892 /* Allocate at specified base; alignment is ignored. */
1893 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1894 } else {
1895 /* Allocate anywhere, with specified alignment. */
1896 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1897 }
1898
1899 /*printf("%x\n", va);*/
1900 return(va);
1901 }
1902
1903
1904 /* Return -1 if no mapping. */
1905 vm_offset_t
1906 ofw_gettranslation(va)
1907 vm_offset_t va;
1908 {
1909 int mmu_ihandle = ofw_mmu_ihandle();
1910 vm_offset_t pa;
1911 int mode;
1912 int exists;
1913
1914 /*printf("ofw_gettranslation (%x) --> ", va);*/
1915 exists = 0; /* gets set to true if translation exists */
1916 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1917 &exists) != 0)
1918 return(-1);
1919
1920 /*printf("%x\n", exists ? pa : -1);*/
1921 return(exists ? pa : -1);
1922 }
1923
1924
1925 static void
1926 ofw_settranslation(va, pa, size, mode)
1927 vm_offset_t va;
1928 vm_offset_t pa;
1929 vm_size_t size;
1930 int mode;
1931 {
1932 int mmu_ihandle = ofw_mmu_ihandle();
1933
1934 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1935 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1936 panic("ofw_settranslation failed");
1937 }
1938
1939 /*
1940 * Allocation routine used before the kernel takes over memory.
1941 * Use this for efficient storage for things that aren't rounded to
1942 * page size.
1943 *
1944 * The point here is not necessarily to be very efficient (even though
1945 * that's sort of nice), but to do proper dynamic allocation to avoid
1946 * size-limitation errors.
1947 *
1948 */
1949
1950 typedef struct _leftover {
1951 struct _leftover *pNext;
1952 vm_size_t size;
1953 } LEFTOVER, *PLEFTOVER;
1954
1955 /* leftover bits of pages. first word is pointer to next.
1956 second word is size of leftover */
1957 static PLEFTOVER leftovers = NULL;
1958
1959 static void *
1960 ofw_malloc(size)
1961 vm_size_t size;
1962 {
1963 PLEFTOVER *ppLeftover;
1964 PLEFTOVER pLeft;
1965 pv_addr_t new;
1966 vm_size_t newSize, claim_size;
1967
1968 /* round and set minimum size */
1969 size = max(sizeof(LEFTOVER),
1970 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1971
1972 for (ppLeftover = &leftovers; *ppLeftover;
1973 ppLeftover = &((*ppLeftover)->pNext))
1974 if ((*ppLeftover)->size >= size)
1975 break;
1976
1977 if (*ppLeftover) { /* have a leftover of the right size */
1978 /* remember the leftover */
1979 new.pv_va = (vm_offset_t)*ppLeftover;
1980 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1981 /* splice out of chain */
1982 *ppLeftover = (*ppLeftover)->pNext;
1983 } else {
1984 /* remember the next pointer */
1985 pLeft = (*ppLeftover)->pNext;
1986 newSize = (*ppLeftover)->size - size; /* reduce size */
1987 /* move pointer */
1988 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1989 + size);
1990 (*ppLeftover)->pNext = pLeft;
1991 (*ppLeftover)->size = newSize;
1992 }
1993 } else {
1994 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1995 ofw_claimpages(&virt_freeptr, &new, claim_size);
1996 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1997 pLeft = (PLEFTOVER)(new.pv_va + size);
1998 pLeft->pNext = leftovers;
1999 pLeft->size = claim_size - size;
2000 leftovers = pLeft;
2001 }
2002 }
2003
2004 return (void *)(new.pv_va);
2005 }
2006
2007 /*
2008 * Here is a really, really sleazy free. It's not used right now,
2009 * because it's not worth the extra complexity for just a few bytes.
2010 *
2011 */
2012 #if 0
2013 static void
2014 ofw_free(addr, size)
2015 vm_offset_t addr;
2016 vm_size_t size;
2017 {
2018 PLEFTOVER pLeftover = (PLEFTOVER)addr;
2019
2020 /* splice right into list without checks or compaction */
2021 pLeftover->pNext = leftovers;
2022 pLeftover->size = size;
2023 leftovers = pLeftover;
2024 }
2025 #endif
2026
2027 /*
2028 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
2029 * We guarantee that the allocated memory will be
2030 * aligned to a boundary equal to the smallest power of
2031 * 2 greater than or equal to size.
2032 * free_pp is an IN/OUT parameter which points to the
2033 * last allocated virtual address in an allocate-downwards
2034 * stack. pv_p is an OUT parameter which contains the
2035 * virtual and physical base addresses of the allocated
2036 * memory.
2037 */
2038 static void
2039 ofw_claimpages(free_pp, pv_p, size)
2040 vm_offset_t *free_pp;
2041 pv_addr_t *pv_p;
2042 vm_size_t size;
2043 {
2044 /* round-up to page boundary */
2045 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
2046 vm_size_t aligned_size;
2047 vm_offset_t va, pa;
2048
2049 if (alloc_size == 0)
2050 panic("ofw_claimpages zero");
2051
2052 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
2053 ;
2054
2055 /* The only way to provide the alignment guarantees is to
2056 * allocate the virtual and physical ranges separately,
2057 * then do an explicit map call.
2058 */
2059 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
2060 if (ofw_claimvirt(va, alloc_size, 0) != va)
2061 panic("ofw_claimpages va alloc");
2062 pa = ofw_claimphys(0, alloc_size, aligned_size);
2063 if (pa == -1)
2064 panic("ofw_claimpages pa alloc");
2065 /* XXX - what mode? -JJK */
2066 ofw_settranslation(va, pa, alloc_size, -1);
2067
2068 /* The memory's mapped-in now, so we can zero it. */
2069 bzero((char *)va, alloc_size);
2070
2071 /* Set OUT parameters. */
2072 *free_pp = va;
2073 pv_p->pv_va = va;
2074 pv_p->pv_pa = pa;
2075 }
2076
2077
2078 static void
2079 ofw_discardmappings(L2pagetable, va, size)
2080 vm_offset_t L2pagetable;
2081 vm_offset_t va;
2082 vm_size_t size;
2083 {
2084 /* round-up to page boundary */
2085 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
2086 int npages = alloc_size / PAGE_SIZE;
2087
2088 if (npages == 0)
2089 panic("ofw_discardmappings zero");
2090
2091 /* Discard each mapping. */
2092 for (; npages > 0; va += PAGE_SIZE, npages--) {
2093 /* Sanity. The current entry should be non-null. */
2094 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
2095 panic("ofw_discardmappings zero entry");
2096
2097 /* Clear the entry. */
2098 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2099 }
2100 }
2101
2102
2103 static void
2104 ofw_initallocator(void)
2105 {
2106
2107 }
2108