ofw.c revision 1.27 1 /* $NetBSD: ofw.c,v 1.27 2003/05/03 03:49:08 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #define _ARM32_BUS_DMA_PRIVATE
54 #include <machine/bus.h>
55 #include <machine/frame.h>
56 #include <machine/bootconfig.h>
57 #include <machine/cpu.h>
58 #include <machine/intr.h>
59
60 #include <dev/ofw/openfirm.h>
61 #include <machine/ofw.h>
62
63 #include <netinet/in.h>
64
65 #if BOOT_FW_DHCP
66 #include <nfs/bootdata.h>
67 #endif
68
69 #ifdef SHARK
70 #include "machine/pio.h"
71 #include "machine/isa_machdep.h"
72 #endif
73
74 #include "pc.h"
75 #include "isadma.h"
76
77 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
78 #define IO_VIRT_SIZE 0x01000000
79
80 #define KERNEL_IMG_PTS 2
81 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
82 #define KERNEL_OFW_PTS 4
83 #define KERNEL_IO_PTS 4
84
85 /*
86 * Imported variables
87 */
88 extern BootConfig bootconfig; /* temporary, I hope */
89
90 #ifdef DIAGNOSTIC
91 /* NOTE: These variables will be removed, well some of them */
92 extern u_int spl_mask;
93 extern u_int current_mask;
94 #endif
95
96 extern int ofw_handleticks;
97
98
99 /*
100 * Imported routines
101 */
102 extern void dump_spl_masks __P((void));
103 extern void dumpsys __P((void));
104 extern void dotickgrovelling __P((vm_offset_t));
105 #if defined(SHARK) && (NPC > 0)
106 extern void shark_screen_cleanup __P((int));
107 #endif
108
109 #define WriteWord(a, b) \
110 *((volatile unsigned int *)(a)) = (b)
111
112 #define ReadWord(a) \
113 (*((volatile unsigned int *)(a)))
114
115
116 /*
117 * Exported variables
118 */
119 /* These should all be in a meminfo structure. */
120 vm_offset_t physical_start;
121 vm_offset_t physical_freestart;
122 vm_offset_t physical_freeend;
123 vm_offset_t physical_end;
124 u_int free_pages;
125 int physmem;
126 pv_addr_t systempage;
127 #ifndef OFWGENCFG
128 pv_addr_t irqstack;
129 #endif
130 pv_addr_t undstack;
131 pv_addr_t abtstack;
132 pv_addr_t kernelstack;
133
134 vm_offset_t msgbufphys;
135
136 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
137 static vm_offset_t virt_freeptr;
138
139 int ofw_callbacks = 0; /* debugging counter */
140
141 /**************************************************************/
142
143
144 /*
145 * Declarations and definitions private to this module
146 *
147 */
148
149 struct mem_region {
150 vm_offset_t start;
151 vm_size_t size;
152 };
153
154 struct mem_translation {
155 vm_offset_t virt;
156 vm_size_t size;
157 vm_offset_t phys;
158 unsigned int mode;
159 };
160
161 struct isa_range {
162 vm_offset_t isa_phys_hi;
163 vm_offset_t isa_phys_lo;
164 vm_offset_t parent_phys_start;
165 vm_size_t isa_size;
166 };
167
168 struct vl_range {
169 vm_offset_t vl_phys_hi;
170 vm_offset_t vl_phys_lo;
171 vm_offset_t parent_phys_start;
172 vm_size_t vl_size;
173 };
174
175 struct vl_isa_range {
176 vm_offset_t isa_phys_hi;
177 vm_offset_t isa_phys_lo;
178 vm_offset_t parent_phys_hi;
179 vm_offset_t parent_phys_lo;
180 vm_size_t isa_size;
181 };
182
183 struct dma_range {
184 vm_offset_t start;
185 vm_size_t size;
186 };
187
188 struct ofw_cbargs {
189 char *name;
190 int nargs;
191 int nreturns;
192 int args_n_results[12];
193 };
194
195
196 /* Memory info */
197 static int nOFphysmem;
198 static struct mem_region *OFphysmem;
199 static int nOFphysavail;
200 static struct mem_region *OFphysavail;
201 static int nOFtranslations;
202 static struct mem_translation *OFtranslations;
203 static int nOFdmaranges;
204 static struct dma_range *OFdmaranges;
205
206 /* The OFW client services handle. */
207 /* Initialized by ofw_init(). */
208 static ofw_handle_t ofw_client_services_handle;
209
210
211 static void ofw_callbackhandler __P((void *));
212 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
213 static void ofw_getphysmeminfo __P((void));
214 static void ofw_getvirttranslations __P((void));
215 static void *ofw_malloc(vm_size_t size);
216 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
217 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
218 static int ofw_mem_ihandle __P((void));
219 static int ofw_mmu_ihandle __P((void));
220 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
221 #if 0
222 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
223 #endif
224 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
225 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
226 static void ofw_initallocator __P((void));
227 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
228 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
229 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
230
231
232 /*
233 * DHCP hooks. For a first cut, we look to see if there is a DHCP
234 * packet that was saved by the firmware. If not, we proceed as before,
235 * getting hand-configured data from NVRAM. If there is one, we get the
236 * packet, and extract the data from it. For now, we hand that data up
237 * in the boot_args string as before.
238 */
239
240
241 /**************************************************************/
242
243
244 /*
245 *
246 * Support routines for xxx_machdep.c
247 *
248 * The intent is that all OFW-based configurations use the
249 * exported routines in this file to do their business. If
250 * they need to override some function they are free to do so.
251 *
252 * The exported routines are:
253 *
254 * openfirmware
255 * ofw_init
256 * ofw_boot
257 * ofw_getbootinfo
258 * ofw_configmem
259 * ofw_configisa
260 * ofw_configisadma
261 * ofw_gettranslation
262 * ofw_map
263 * ofw_getcleaninfo
264 */
265
266
267 int
268 openfirmware(args)
269 void *args;
270 {
271 int ofw_result;
272 u_int saved_irq_state;
273
274 /* OFW is not re-entrant, so we wrap a mutex around the call. */
275 saved_irq_state = disable_interrupts(I32_bit);
276 ofw_result = ofw_client_services_handle(args);
277 (void)restore_interrupts(saved_irq_state);
278
279 return(ofw_result);
280 }
281
282
283 void
284 ofw_init(ofw_handle)
285 ofw_handle_t ofw_handle;
286 {
287 ofw_client_services_handle = ofw_handle;
288
289 /* Everything we allocate in the remainder of this block is
290 * constrained to be in the "kernel-static" portion of the
291 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
292 * This is because all such objects are expected to be in
293 * that range by NetBSD, or the objects will be re-mapped
294 * after the page-table-switch to other specific locations.
295 * In the latter case, it's simplest if our pre-switch handles
296 * on those objects are in regions that are already "well-
297 * known." (Otherwise, the cloning of the OFW-managed address-
298 * space becomes more awkward.) To minimize the number of L2
299 * page tables that we use, we are further restricting the
300 * remaining allocations in this block to the bottom quarter of
301 * the legal range. OFW will have loaded the kernel text+data+bss
302 * starting at the bottom of the range, and we will allocate
303 * objects from the top, moving downwards. The two sub-regions
304 * will collide if their total sizes hit 8MB. The current total
305 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
306 * limit. The variable virt-freeptr represents the next free va
307 * (moving downwards).
308 */
309 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
310 }
311
312
313 void
314 ofw_boot(howto, bootstr)
315 int howto;
316 char *bootstr;
317 {
318
319 #ifdef DIAGNOSTIC
320 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
321 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
322
323 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
324 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
325 irqmasks[IPL_IMP]);
326 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
327 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
328
329 dump_spl_masks();
330 #endif
331
332 /*
333 * If we are still cold then hit the air brakes
334 * and crash to earth fast
335 */
336 if (cold) {
337 doshutdownhooks();
338 printf("Halted while still in the ICE age.\n");
339 printf("The operating system has halted.\n");
340 goto ofw_exit;
341 /*NOTREACHED*/
342 }
343
344 /*
345 * If RB_NOSYNC was not specified sync the discs.
346 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
347 * It looks like syslogd is getting woken up only to find that it cannot
348 * page part of the binary in as the filesystem has been unmounted.
349 */
350 if (!(howto & RB_NOSYNC))
351 bootsync();
352
353 /* Say NO to interrupts */
354 splhigh();
355
356 /* Do a dump if requested. */
357 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
358 dumpsys();
359
360 /* Run any shutdown hooks */
361 doshutdownhooks();
362
363 /* Make sure IRQ's are disabled */
364 IRQdisable;
365
366 if (howto & RB_HALT) {
367 printf("The operating system has halted.\n");
368 goto ofw_exit;
369 }
370
371 /* Tell the user we are booting */
372 printf("rebooting...\n");
373
374 /* Jump into the OFW boot routine. */
375 {
376 static char str[256];
377 char *ap = str, *ap1 = ap;
378
379 if (bootstr && *bootstr) {
380 if (strlen(bootstr) > sizeof str - 5)
381 printf("boot string too large, ignored\n");
382 else {
383 strcpy(str, bootstr);
384 ap1 = ap = str + strlen(str);
385 *ap++ = ' ';
386 }
387 }
388 *ap++ = '-';
389 if (howto & RB_SINGLE)
390 *ap++ = 's';
391 if (howto & RB_KDB)
392 *ap++ = 'd';
393 *ap++ = 0;
394 if (ap[-2] == '-')
395 *ap1 = 0;
396 #if defined(SHARK) && (NPC > 0)
397 shark_screen_cleanup(0);
398 #endif
399 OF_boot(str);
400 /*NOTREACHED*/
401 }
402
403 ofw_exit:
404 printf("Calling OF_exit...\n");
405 #if defined(SHARK) && (NPC > 0)
406 shark_screen_cleanup(1);
407 #endif
408 OF_exit();
409 /*NOTREACHED*/
410 }
411
412
413 #if BOOT_FW_DHCP
414
415 extern char *ip2dotted __P((struct in_addr));
416
417 /*
418 * Get DHCP data from OFW
419 */
420
421 void
422 get_fw_dhcp_data(bdp)
423 struct bootdata *bdp;
424 {
425 int chosen;
426 int dhcplen;
427
428 bzero((char *)bdp, sizeof(*bdp));
429 if ((chosen = OF_finddevice("/chosen")) == -1)
430 panic("no /chosen from OFW");
431 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
432 u_char *cp;
433 int dhcp_type = 0;
434 char *ip;
435
436 /*
437 * OFW saved a DHCP (or BOOTP) packet for us.
438 */
439 if (dhcplen > sizeof(bdp->dhcp_packet))
440 panic("DHCP packet too large");
441 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
442 sizeof(bdp->dhcp_packet));
443 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
444 /*
445 * Collect the interesting data from DHCP into
446 * the bootdata structure.
447 */
448 bdp->ip_address = bdp->dhcp_packet.yiaddr;
449 ip = ip2dotted(bdp->ip_address);
450 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
451 parse_dhcp_options(&bdp->dhcp_packet,
452 bdp->dhcp_packet.options + 4,
453 &bdp->dhcp_packet.options[dhcplen
454 - DHCP_FIXED_NON_UDP], bdp, ip);
455 if (bdp->root_ip.s_addr == 0)
456 bdp->root_ip = bdp->dhcp_packet.siaddr;
457 if (bdp->swap_ip.s_addr == 0)
458 bdp->swap_ip = bdp->dhcp_packet.siaddr;
459 }
460 /*
461 * If the DHCP packet did not contain all the necessary data,
462 * look in NVRAM for the missing parts.
463 */
464 {
465 int options;
466 int proplen;
467 #define BOOTJUNKV_SIZE 256
468 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
469
470
471 if ((options = OF_finddevice("/options")) == -1)
472 panic("can't find /options");
473 if (bdp->ip_address.s_addr == 0 &&
474 (proplen = OF_getprop(options, "ipaddr",
475 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 bootjunkv[proplen] = '\0';
477 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
478 bdp->ip_address.s_addr = 0;
479 }
480 if (bdp->ip_mask.s_addr == 0 &&
481 (proplen = OF_getprop(options, "netmask",
482 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
483 bootjunkv[proplen] = '\0';
484 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
485 bdp->ip_mask.s_addr = 0;
486 }
487 if (bdp->hostname[0] == '\0' &&
488 (proplen = OF_getprop(options, "hostname",
489 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
490 bdp->hostname[proplen] = '\0';
491 }
492 if (bdp->root[0] == '\0' &&
493 (proplen = OF_getprop(options, "rootfs",
494 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
495 bootjunkv[proplen] = '\0';
496 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
497 }
498 if (bdp->swap[0] == '\0' &&
499 (proplen = OF_getprop(options, "swapfs",
500 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
501 bootjunkv[proplen] = '\0';
502 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
503 }
504 }
505 }
506
507 #endif /* BOOT_FW_DHCP */
508
509 void
510 ofw_getbootinfo(bp_pp, ba_pp)
511 char **bp_pp;
512 char **ba_pp;
513 {
514 int chosen;
515 int bp_len;
516 int ba_len;
517 char *bootpathv;
518 char *bootargsv;
519
520 /* Read the bootpath and bootargs out of OFW. */
521 /* XXX is bootpath still interesting? --emg */
522 if ((chosen = OF_finddevice("/chosen")) == -1)
523 panic("no /chosen from OFW");
524 bp_len = OF_getproplen(chosen, "bootpath");
525 ba_len = OF_getproplen(chosen, "bootargs");
526 if (bp_len < 0 || ba_len < 0)
527 panic("can't get boot data from OFW");
528
529 bootpathv = (char *)ofw_malloc(bp_len);
530 bootargsv = (char *)ofw_malloc(ba_len);
531
532 if (bp_len)
533 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
534 else
535 bootpathv[0] = '\0';
536
537 if (ba_len)
538 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
539 else
540 bootargsv[0] = '\0';
541
542 *bp_pp = bootpathv;
543 *ba_pp = bootargsv;
544 #ifdef DIAGNOSTIC
545 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
546 #endif
547 }
548
549 vm_offset_t
550 ofw_getcleaninfo(void)
551 {
552 int cpu;
553 vm_offset_t vclean, pclean;
554
555 if ((cpu = OF_finddevice("/cpu")) == -1)
556 panic("no /cpu from OFW");
557
558 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
559 sizeof(vclean))) != sizeof(vclean)) {
560 #ifdef DEBUG
561 printf("no OFW d-cache-flush-address property\n");
562 #endif
563 return -1;
564 }
565
566 if ((pclean = ofw_gettranslation(
567 of_decode_int((unsigned char *)&vclean))) == -1)
568 panic("OFW failed to translate cache flush address");
569
570 return pclean;
571 }
572
573 void
574 ofw_configisa(pio, pmem)
575 vm_offset_t *pio;
576 vm_offset_t *pmem;
577 {
578 int vl;
579
580 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
581 ofw_configisaonly(pio, pmem);
582 else /* old style OFW dev info tree */
583 ofw_configvl(vl, pio, pmem);
584 }
585
586 static void
587 ofw_configisaonly(pio, pmem)
588 vm_offset_t *pio;
589 vm_offset_t *pmem;
590 {
591 int isa;
592 int rangeidx;
593 int size;
594 vm_offset_t hi, start;
595 struct isa_range ranges[2];
596
597 if ((isa = OF_finddevice("/isa")) == -1)
598 panic("OFW has no /isa device node");
599
600 /* expect to find two isa ranges: IO/data and memory/data */
601 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
602 != sizeof(ranges))
603 panic("unexpected size of OFW /isa ranges property: %d", size);
604
605 *pio = *pmem = -1;
606
607 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
608 hi = of_decode_int((unsigned char *)
609 &ranges[rangeidx].isa_phys_hi);
610 start = of_decode_int((unsigned char *)
611 &ranges[rangeidx].parent_phys_start);
612
613 if (hi & 1) { /* then I/O space */
614 *pio = start;
615 } else {
616 *pmem = start;
617 }
618 } /* END for */
619
620 if ((*pio == -1) || (*pmem == -1))
621 panic("bad OFW /isa ranges property");
622
623 }
624
625 static void
626 ofw_configvl(vl, pio, pmem)
627 int vl;
628 vm_offset_t *pio;
629 vm_offset_t *pmem;
630 {
631 int isa;
632 int ir, vr;
633 int size;
634 vm_offset_t hi, start;
635 struct vl_isa_range isa_ranges[2];
636 struct vl_range vl_ranges[2];
637
638 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
639 panic("OFW has no /vlbus/isa device node");
640
641 /* expect to find two isa ranges: IO/data and memory/data */
642 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
643 != sizeof(isa_ranges))
644 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
645 size);
646
647 /* expect to find two vl ranges: IO/data and memory/data */
648 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
649 != sizeof(vl_ranges))
650 panic("unexpected size of OFW /vlbus ranges property: %d", size);
651
652 *pio = -1;
653 *pmem = -1;
654
655 for (ir = 0; ir < 2; ++ir) {
656 for (vr = 0; vr < 2; ++vr) {
657 if ((isa_ranges[ir].parent_phys_hi
658 == vl_ranges[vr].vl_phys_hi) &&
659 (isa_ranges[ir].parent_phys_lo
660 == vl_ranges[vr].vl_phys_lo)) {
661 hi = of_decode_int((unsigned char *)
662 &isa_ranges[ir].isa_phys_hi);
663 start = of_decode_int((unsigned char *)
664 &vl_ranges[vr].parent_phys_start);
665
666 if (hi & 1) { /* then I/O space */
667 *pio = start;
668 } else {
669 *pmem = start;
670 }
671 } /* END if */
672 } /* END for */
673 } /* END for */
674
675 if ((*pio == -1) || (*pmem == -1))
676 panic("bad OFW /isa ranges property");
677 }
678
679 #if NISADMA > 0
680 struct arm32_dma_range *shark_isa_dma_ranges;
681 int shark_isa_dma_nranges;
682 #endif
683
684 void
685 ofw_configisadma(pdma)
686 vm_offset_t *pdma;
687 {
688 int root;
689 int rangeidx;
690 int size;
691 struct dma_range *dr;
692
693 if ((root = OF_finddevice("/")) == -1 ||
694 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
695 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
696 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
697 panic("bad / dma-ranges property");
698
699 nOFdmaranges = size / sizeof(struct dma_range);
700
701 #if NISADMA > 0
702 /* Allocate storage for non-OFW representation of the range. */
703 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
704 sizeof(*shark_isa_dma_ranges));
705 if (shark_isa_dma_ranges == NULL)
706 panic("unable to allocate shark_isa_dma_ranges");
707 shark_isa_dma_nranges = nOFdmaranges;
708 #endif
709
710 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
711 ++rangeidx, ++dr) {
712 dr->start = of_decode_int((unsigned char *)&dr->start);
713 dr->size = of_decode_int((unsigned char *)&dr->size);
714 #if NISADMA > 0
715 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
716 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
717 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
718 #endif
719 }
720
721 #ifdef DEBUG
722 printf("dma ranges size = %d\n", size);
723
724 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
725 printf("%08lx %08lx\n",
726 (u_long)OFdmaranges[rangeidx].start,
727 (u_long)OFdmaranges[rangeidx].size);
728 }
729 #endif
730 }
731
732 /*
733 * Memory configuration:
734 *
735 * We start off running in the environment provided by OFW.
736 * This has the MMU turned on, the kernel code and data
737 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
738 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
739 * page0 mapped-in at 0x0.
740 *
741 * The strategy is to set-up the address space for proc0 --
742 * including the allocation of space for new page tables -- while
743 * memory is still managed by OFW. We then effectively create a
744 * copy of the address space by dumping all of OFW's translations
745 * and poking them into the new page tables. We then notify OFW
746 * that we are assuming control of memory-management by installing
747 * our callback-handler, and switch to the NetBSD-managed page
748 * tables with the setttb() call.
749 *
750 * This scheme may cause some amount of memory to be wasted within
751 * OFW as dead page tables, but it shouldn't be more than about
752 * 20-30KB. (It's also possible that OFW will re-use the space.)
753 */
754 void
755 ofw_configmem(void)
756 {
757 pv_addr_t proc0_ttbbase;
758 int i;
759
760 /* Set-up proc0 address space. */
761 ofw_construct_proc0_addrspace(&proc0_ttbbase);
762
763 /*
764 * Get a dump of OFW's picture of physical memory.
765 * This is used below to initialize a load of variables used by pmap.
766 * We get it now rather than later because we are about to
767 * tell OFW to stop managing memory.
768 */
769 ofw_getphysmeminfo();
770
771 /* We are about to take control of memory-management from OFW.
772 * Establish callbacks for OFW to use for its future memory needs.
773 * This is required for us to keep using OFW services.
774 */
775
776 /* First initialize our callback memory allocator. */
777 ofw_initallocator();
778
779 OF_set_callback(ofw_callbackhandler);
780
781 /* Switch to the proc0 pagetables. */
782 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
783 setttb(proc0_ttbbase.pv_pa);
784 cpu_tlb_flushID();
785 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
786
787 /*
788 * Moved from cpu_startup() as data_abort_handler() references
789 * this during uvm init
790 */
791 {
792 extern struct user *proc0paddr;
793 proc0paddr = (struct user *)kernelstack.pv_va;
794 lwp0.l_addr = proc0paddr;
795 }
796
797 /* Aaaaaaaah, running in the proc0 address space! */
798 /* I feel good... */
799
800 /* Set-up the various globals which describe physical memory for pmap. */
801 {
802 struct mem_region *mp;
803 int totalcnt;
804 int availcnt;
805
806 /* physmem, physical_start, physical_end */
807 physmem = 0;
808 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
809 totalcnt++, mp++) {
810 #ifdef OLDPRINTFS
811 printf("physmem: %x, %x\n", mp->start, mp->size);
812 #endif
813 physmem += btoc(mp->size);
814 }
815 physical_start = OFphysmem[0].start;
816 mp--;
817 physical_end = mp->start + mp->size;
818
819 /* free_pages, physical_freestart, physical_freeend */
820 free_pages = 0;
821 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
822 availcnt++, mp++) {
823 #ifdef OLDPRINTFS
824 printf("physavail: %x, %x\n", mp->start, mp->size);
825 #endif
826 free_pages += btoc(mp->size);
827 }
828 physical_freestart = OFphysavail[0].start;
829 mp--;
830 physical_freeend = mp->start + mp->size;
831 #ifdef OLDPRINTFS
832 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
833 physmem, free_pages);
834 #endif
835
836 /*
837 * This is a hack to work with the existing pmap code.
838 * That code depends on a RiscPC BootConfig structure
839 * containing, among other things, an array describing
840 * the regions of physical memory. So, for now, we need
841 * to stuff our OFW-derived physical memory info into a
842 * "fake" BootConfig structure.
843 *
844 * An added twist is that we initialize the BootConfig
845 * structure with our "available" physical memory regions
846 * rather than the "total" physical memory regions. Why?
847 * Because:
848 *
849 * (a) the VM code requires that the "free" pages it is
850 * initialized with have consecutive indices. This
851 * allows it to use more efficient data structures
852 * (presumably).
853 * (b) the current pmap routines which report the initial
854 * set of free page indices (pmap_next_page) and
855 * which map addresses to indices (pmap_page_index)
856 * assume that the free pages are consecutive across
857 * memory region boundaries.
858 *
859 * This means that memory which is "stolen" at startup time
860 * (say, for page descriptors) MUST come from either the
861 * bottom of the first region or the top of the last.
862 *
863 * This requirement doesn't mesh well with OFW (or at least
864 * our use of it). We can get around it for the time being
865 * by pretending that our "available" region array describes
866 * all of our physical memory. This may cause some important
867 * information to be excluded from a dump file, but so far
868 * I haven't come across any other negative effects.
869 *
870 * In the long-run we should fix the index
871 * generation/translation code in the pmap module.
872 */
873
874 if (DRAM_BLOCKS < (availcnt + 1))
875 panic("more ofw memory regions than bootconfig blocks");
876
877 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
878 bootconfig.dram[i].address = mp->start;
879 bootconfig.dram[i].pages = btoc(mp->size);
880 }
881 bootconfig.dramblocks = availcnt;
882 }
883
884 /* Load memory into UVM. */
885 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
886
887 /* XXX Please kill this code dead. */
888 for (i = 0; i < bootconfig.dramblocks; i++) {
889 paddr_t start = (paddr_t)bootconfig.dram[i].address;
890 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
891 #if NISADMA > 0
892 paddr_t istart, isize;
893 #endif
894
895 if (start < physical_freestart)
896 start = physical_freestart;
897 if (end > physical_freeend)
898 end = physical_freeend;
899
900 #if 0
901 printf("%d: %lx -> %lx\n", loop, start, end - 1);
902 #endif
903
904 #if NISADMA > 0
905 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
906 shark_isa_dma_nranges,
907 start, end - start,
908 &istart, &isize)) {
909 /*
910 * Place the pages that intersect with the
911 * ISA DMA range onto the ISA DMA free list.
912 */
913 #if 0
914 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
915 istart + isize - 1);
916 #endif
917 uvm_page_physload(atop(istart),
918 atop(istart + isize), atop(istart),
919 atop(istart + isize), VM_FREELIST_ISADMA);
920
921 /*
922 * Load the pieces that come before the
923 * intersection onto the default free list.
924 */
925 if (start < istart) {
926 #if 0
927 printf(" BEFORE 0x%lx -> 0x%lx\n",
928 start, istart - 1);
929 #endif
930 uvm_page_physload(atop(start),
931 atop(istart), atop(start),
932 atop(istart), VM_FREELIST_DEFAULT);
933 }
934
935 /*
936 * Load the pieces that come after the
937 * intersection onto the default free list.
938 */
939 if ((istart + isize) < end) {
940 #if 0
941 printf(" AFTER 0x%lx -> 0x%lx\n",
942 (istart + isize), end - 1);
943 #endif
944 uvm_page_physload(atop(istart + isize),
945 atop(end), atop(istart + isize),
946 atop(end), VM_FREELIST_DEFAULT);
947 }
948 } else {
949 uvm_page_physload(atop(start), atop(end),
950 atop(start), atop(end), VM_FREELIST_DEFAULT);
951 }
952 #else /* NISADMA > 0 */
953 uvm_page_physload(atop(start), atop(end),
954 atop(start), atop(end), VM_FREELIST_DEFAULT);
955 #endif /* NISADMA > 0 */
956 }
957
958 /* Initialize pmap module. */
959 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
960 KERNEL_VM_BASE + KERNEL_VM_SIZE);
961 }
962
963
964 /*
965 ************************************************************
966
967 Routines private to this module
968
969 ************************************************************
970 */
971
972 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
973 static void
974 ofw_callbackhandler(v)
975 void *v;
976 {
977 struct ofw_cbargs *args = v;
978 char *name = args->name;
979 int nargs = args->nargs;
980 int nreturns = args->nreturns;
981 int *args_n_results = args->args_n_results;
982
983 ofw_callbacks++;
984
985 #if defined(OFWGENCFG)
986 /* Check this first, so that we don't waste IRQ time parsing. */
987 if (strcmp(name, "tick") == 0) {
988 vm_offset_t frame;
989
990 /* Check format. */
991 if (nargs != 1 || nreturns < 1) {
992 args_n_results[nargs] = -1;
993 args->nreturns = 1;
994 return;
995 }
996 args_n_results[nargs] = 0; /* properly formatted request */
997
998 /*
999 * Note that we are running in the IRQ frame, with interrupts
1000 * disabled.
1001 *
1002 * We need to do two things here:
1003 * - copy a few words out of the input frame into a global
1004 * area, for later use by our real tick-handling code
1005 * - patch a few words in the frame so that when OFW returns
1006 * from the interrupt it will resume with our handler
1007 * rather than the code that was actually interrupted.
1008 * Our handler will resume when it finishes with the code
1009 * that was actually interrupted.
1010 *
1011 * It's simplest to do this in assembler, since it requires
1012 * switching frames and grovelling about with registers.
1013 */
1014 frame = (vm_offset_t)args_n_results[0];
1015 if (ofw_handleticks)
1016 dotickgrovelling(frame);
1017 args_n_results[nargs + 1] = frame;
1018 args->nreturns = 1;
1019 } else
1020 #endif
1021
1022 if (strcmp(name, "map") == 0) {
1023 vm_offset_t va;
1024 vm_offset_t pa;
1025 vm_size_t size;
1026 int mode;
1027 int ap_bits;
1028 int dom_bits;
1029 int cb_bits;
1030
1031 /* Check format. */
1032 if (nargs != 4 || nreturns < 2) {
1033 args_n_results[nargs] = -1;
1034 args->nreturns = 1;
1035 return;
1036 }
1037 args_n_results[nargs] = 0; /* properly formatted request */
1038
1039 pa = (vm_offset_t)args_n_results[0];
1040 va = (vm_offset_t)args_n_results[1];
1041 size = (vm_size_t)args_n_results[2];
1042 mode = args_n_results[3];
1043 ap_bits = (mode & 0x00000C00);
1044 dom_bits = (mode & 0x000001E0);
1045 cb_bits = (mode & 0x000000C0);
1046
1047 /* Sanity checks. */
1048 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1049 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1050 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1051 size == 0 || (dom_bits >> 5) != 0) {
1052 args_n_results[nargs + 1] = -1;
1053 args->nreturns = 1;
1054 return;
1055 }
1056
1057 /* Write-back anything stuck in the cache. */
1058 cpu_idcache_wbinv_all();
1059
1060 /* Install new mappings. */
1061 {
1062 pt_entry_t *pte = vtopte(va);
1063 int npages = size >> PGSHIFT;
1064
1065 ap_bits >>= 10;
1066 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1067 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1068 cb_bits);
1069 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1070 }
1071
1072 /* Clean out tlb. */
1073 tlb_flush();
1074
1075 args_n_results[nargs + 1] = 0;
1076 args->nreturns = 2;
1077 } else if (strcmp(name, "unmap") == 0) {
1078 vm_offset_t va;
1079 vm_size_t size;
1080
1081 /* Check format. */
1082 if (nargs != 2 || nreturns < 1) {
1083 args_n_results[nargs] = -1;
1084 args->nreturns = 1;
1085 return;
1086 }
1087 args_n_results[nargs] = 0; /* properly formatted request */
1088
1089 va = (vm_offset_t)args_n_results[0];
1090 size = (vm_size_t)args_n_results[1];
1091
1092 /* Sanity checks. */
1093 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1094 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1095 (size & PGOFSET) != 0 || size == 0) {
1096 args_n_results[nargs + 1] = -1;
1097 args->nreturns = 1;
1098 return;
1099 }
1100
1101 /* Write-back anything stuck in the cache. */
1102 cpu_idcache_wbinv_all();
1103
1104 /* Zero the mappings. */
1105 {
1106 pt_entry_t *pte = vtopte(va);
1107 int npages = size >> PGSHIFT;
1108
1109 for (; npages > 0; pte++, npages--)
1110 *pte = 0;
1111 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1112 }
1113
1114 /* Clean out tlb. */
1115 tlb_flush();
1116
1117 args->nreturns = 1;
1118 } else if (strcmp(name, "translate") == 0) {
1119 vm_offset_t va;
1120 vm_offset_t pa;
1121 int mode;
1122 pt_entry_t pte;
1123
1124 /* Check format. */
1125 if (nargs != 1 || nreturns < 4) {
1126 args_n_results[nargs] = -1;
1127 args->nreturns = 1;
1128 return;
1129 }
1130 args_n_results[nargs] = 0; /* properly formatted request */
1131
1132 va = (vm_offset_t)args_n_results[0];
1133
1134 /* Sanity checks.
1135 * For now, I am only willing to translate va's in the
1136 * "ofw range." Eventually, I may be more generous. -JJK
1137 */
1138 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1139 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1140 args_n_results[nargs + 1] = -1;
1141 args->nreturns = 1;
1142 return;
1143 }
1144
1145 /* Lookup mapping. */
1146 pte = *vtopte(va);
1147 if (pte == 0) {
1148 /* No mapping. */
1149 args_n_results[nargs + 1] = -1;
1150 args->nreturns = 2;
1151 } else {
1152 /* Existing mapping. */
1153 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1154 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1155
1156 args_n_results[nargs + 1] = 0;
1157 args_n_results[nargs + 2] = pa;
1158 args_n_results[nargs + 3] = mode;
1159 args->nreturns = 4;
1160 }
1161 } else if (strcmp(name, "claim-phys") == 0) {
1162 struct pglist alloclist;
1163 vm_offset_t low, high;
1164 vm_size_t align, size;
1165
1166 /*
1167 * XXX
1168 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1169 * XXX
1170 */
1171
1172 /* Check format. */
1173 if (nargs != 4 || nreturns < 3) {
1174 args_n_results[nargs] = -1;
1175 args->nreturns = 1;
1176 return;
1177 }
1178 args_n_results[nargs] = 0; /* properly formatted request */
1179
1180 low = args_n_results[0];
1181 size = args_n_results[2];
1182 align = args_n_results[3];
1183 high = args_n_results[1] + size;
1184
1185 #if 0
1186 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1187 low, size, align, high);
1188 align = size;
1189 printf("forcing align to be 0x%x\n", align);
1190 #endif
1191
1192 args_n_results[nargs + 1] =
1193 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1194 #if 0
1195 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1196 #endif
1197 if (args_n_results[nargs + 1] != 0) {
1198 #if 0
1199 printf("(failed)\n");
1200 #endif
1201 args_n_results[nargs + 1] = -1;
1202 args->nreturns = 2;
1203 return;
1204 }
1205 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1206 #if 0
1207 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1208 #endif
1209 args->nreturns = 3;
1210
1211 } else if (strcmp(name, "release-phys") == 0) {
1212 printf("unimplemented ofw callback - %s\n", name);
1213 args_n_results[nargs] = -1;
1214 args->nreturns = 1;
1215 } else if (strcmp(name, "claim-virt") == 0) {
1216 vm_offset_t va;
1217 vm_size_t size;
1218 vm_offset_t align;
1219
1220 /* XXX - notyet */
1221 /* printf("unimplemented ofw callback - %s\n", name);*/
1222 args_n_results[nargs] = -1;
1223 args->nreturns = 1;
1224 return;
1225
1226 /* Check format. */
1227 if (nargs != 2 || nreturns < 3) {
1228 args_n_results[nargs] = -1;
1229 args->nreturns = 1;
1230 return;
1231 }
1232 args_n_results[nargs] = 0; /* properly formatted request */
1233
1234 /* Allocate size bytes with specified alignment. */
1235 size = (vm_size_t)args_n_results[0];
1236 align = (vm_offset_t)args_n_results[1];
1237 if (align % PAGE_SIZE != 0) {
1238 args_n_results[nargs + 1] = -1;
1239 args->nreturns = 2;
1240 return;
1241 }
1242
1243 if (va == 0) {
1244 /* Couldn't allocate. */
1245 args_n_results[nargs + 1] = -1;
1246 args->nreturns = 2;
1247 } else {
1248 /* Successful allocation. */
1249 args_n_results[nargs + 1] = 0;
1250 args_n_results[nargs + 2] = va;
1251 args->nreturns = 3;
1252 }
1253 } else if (strcmp(name, "release-virt") == 0) {
1254 vm_offset_t va;
1255 vm_size_t size;
1256
1257 /* XXX - notyet */
1258 printf("unimplemented ofw callback - %s\n", name);
1259 args_n_results[nargs] = -1;
1260 args->nreturns = 1;
1261 return;
1262
1263 /* Check format. */
1264 if (nargs != 2 || nreturns < 1) {
1265 args_n_results[nargs] = -1;
1266 args->nreturns = 1;
1267 return;
1268 }
1269 args_n_results[nargs] = 0; /* properly formatted request */
1270
1271 /* Release bytes. */
1272 va = (vm_offset_t)args_n_results[0];
1273 size = (vm_size_t)args_n_results[1];
1274
1275 args->nreturns = 1;
1276 } else {
1277 args_n_results[nargs] = -1;
1278 args->nreturns = 1;
1279 }
1280 }
1281
1282 static void
1283 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1284 {
1285 int i, oft;
1286 static pv_addr_t proc0_pagedir;
1287 static pv_addr_t proc0_pt_sys;
1288 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1289 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1290 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1291 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1292 static pv_addr_t msgbuf;
1293 vm_offset_t L1pagetable;
1294 struct mem_translation *tp;
1295
1296 /* Set-up the system page. */
1297 KASSERT(vector_page == 0); /* XXX for now */
1298 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1299 if (systempage.pv_va == -1) {
1300 /* Something was already mapped to vector_page's VA. */
1301 systempage.pv_va = vector_page;
1302 systempage.pv_pa = ofw_gettranslation(vector_page);
1303 if (systempage.pv_pa == -1)
1304 panic("bogus result from gettranslation(vector_page)");
1305 } else {
1306 /* We were just allocated the page-length range at VA 0. */
1307 if (systempage.pv_va != vector_page)
1308 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1309
1310 /* Now allocate a physical page, and establish the mapping. */
1311 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1312 if (systempage.pv_pa == -1)
1313 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1314 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1315 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1316
1317 /* Zero the memory. */
1318 bzero((char *)systempage.pv_va, PAGE_SIZE);
1319 }
1320
1321 /* Allocate/initialize space for the proc0, NetBSD-managed */
1322 /* page tables that we will be switching to soon. */
1323 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1324 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1325 for (i = 0; i < KERNEL_IMG_PTS; i++)
1326 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1327 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1328 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1329 for (i = 0; i < KERNEL_OFW_PTS; i++)
1330 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1331 for (i = 0; i < KERNEL_IO_PTS; i++)
1332 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1333
1334 /* Allocate/initialize space for stacks. */
1335 #ifndef OFWGENCFG
1336 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1337 #endif
1338 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1339 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1340 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1341
1342 /* Allocate/initialize space for msgbuf area. */
1343 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1344 msgbufphys = msgbuf.pv_pa;
1345
1346 /* Construct the proc0 L1 pagetable. */
1347 L1pagetable = proc0_pagedir.pv_va;
1348
1349 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1350 for (i = 0; i < KERNEL_IMG_PTS; i++)
1351 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1352 &proc0_pt_kernel[i]);
1353 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1354 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1355 &proc0_pt_vmdata[i]);
1356 for (i = 0; i < KERNEL_OFW_PTS; i++)
1357 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1358 &proc0_pt_ofw[i]);
1359 for (i = 0; i < KERNEL_IO_PTS; i++)
1360 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1361 &proc0_pt_io[i]);
1362
1363 /*
1364 * OK, we're done allocating.
1365 * Get a dump of OFW's translations, and make the appropriate
1366 * entries in the L2 pagetables that we just allocated.
1367 */
1368
1369 ofw_getvirttranslations();
1370
1371 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1372 oft++, tp++) {
1373
1374 vm_offset_t va, pa;
1375 int npages = tp->size / PAGE_SIZE;
1376
1377 /* Size must be an integral number of pages. */
1378 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1379 panic("illegal ofw translation (size)");
1380
1381 /* Make an entry for each page in the appropriate table. */
1382 for (va = tp->virt, pa = tp->phys; npages > 0;
1383 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1384 /*
1385 * Map the top bits to the appropriate L2 pagetable.
1386 * The only allowable regions are page0, the
1387 * kernel-static area, and the ofw area.
1388 */
1389 switch (va >> (L1_S_SHIFT + 2)) {
1390 case 0:
1391 /* page0 */
1392 break;
1393
1394 #if KERNEL_IMG_PTS != 2
1395 #error "Update ofw translation range list"
1396 #endif
1397 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1398 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1399 /* kernel static area */
1400 break;
1401
1402 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1403 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1404 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1405 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1406 /* ofw area */
1407 break;
1408
1409 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1410 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1411 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1412 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1413 /* io area */
1414 break;
1415
1416 default:
1417 /* illegal */
1418 panic("illegal ofw translation (addr) %#lx",
1419 va);
1420 }
1421
1422 /* Make the entry. */
1423 pmap_map_entry(L1pagetable, va, pa,
1424 VM_PROT_READ|VM_PROT_WRITE,
1425 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1426 : PTE_NOCACHE);
1427 }
1428 }
1429
1430 /*
1431 * We don't actually want some of the mappings that we just
1432 * set up to appear in proc0's address space. In particular,
1433 * we don't want aliases to physical addresses that the kernel
1434 * has-mapped/will-map elsewhere.
1435 */
1436 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1437 msgbuf.pv_va, MSGBUFSIZE);
1438
1439 /* update the top of the kernel VM */
1440 pmap_curmaxkvaddr =
1441 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1442
1443 /*
1444 * gross hack for the sake of not thrashing the TLB and making
1445 * cache flush more efficient: blast l1 ptes for sections.
1446 */
1447 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1448 vm_offset_t va = tp->virt;
1449 vm_offset_t pa = tp->phys;
1450
1451 if (((va | pa) & L1_S_OFFSET) == 0) {
1452 int nsections = tp->size / L1_S_SIZE;
1453
1454 while (nsections--) {
1455 /* XXXJRT prot?? */
1456 pmap_map_section(L1pagetable, va, pa,
1457 VM_PROT_READ|VM_PROT_WRITE,
1458 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1459 : PTE_NOCACHE);
1460 va += L1_S_SIZE;
1461 pa += L1_S_SIZE;
1462 }
1463 }
1464 }
1465
1466 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1467 *proc0_ttbbase = proc0_pagedir;
1468 }
1469
1470
1471 static void
1472 ofw_getphysmeminfo()
1473 {
1474 int phandle;
1475 int mem_len;
1476 int avail_len;
1477 int i;
1478
1479 if ((phandle = OF_finddevice("/memory")) == -1 ||
1480 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1481 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1482 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1483 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1484 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1485 OF_getprop(phandle, "available", OFphysavail, avail_len)
1486 != avail_len)
1487 panic("can't get physmeminfo from OFW");
1488
1489 nOFphysmem = mem_len / sizeof(struct mem_region);
1490 nOFphysavail = avail_len / sizeof(struct mem_region);
1491
1492 /*
1493 * Sort the blocks in each array into ascending address order.
1494 * Also, page-align all blocks.
1495 */
1496 for (i = 0; i < 2; i++) {
1497 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1498 struct mem_region *mp;
1499 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1500 int j;
1501
1502 #ifdef OLDPRINTFS
1503 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1504 #endif
1505
1506 /* XXX - Convert all the values to host order. -JJK */
1507 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1508 mp->start = of_decode_int((unsigned char *)&mp->start);
1509 mp->size = of_decode_int((unsigned char *)&mp->size);
1510 }
1511
1512 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1513 u_int s, sz;
1514 struct mem_region *mp1;
1515
1516 /* Page-align start of the block. */
1517 s = mp->start % PAGE_SIZE;
1518 if (s != 0) {
1519 s = (PAGE_SIZE - s);
1520
1521 if (mp->size >= s) {
1522 mp->start += s;
1523 mp->size -= s;
1524 }
1525 }
1526
1527 /* Page-align the size. */
1528 mp->size -= mp->size % PAGE_SIZE;
1529
1530 /* Handle empty block. */
1531 if (mp->size == 0) {
1532 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1533 * sizeof(struct mem_region));
1534 cnt--;
1535 mp--;
1536 continue;
1537 }
1538
1539 /* Bubble sort. */
1540 s = mp->start;
1541 sz = mp->size;
1542 for (mp1 = tmp; mp1 < mp; mp1++)
1543 if (s < mp1->start)
1544 break;
1545 if (mp1 < mp) {
1546 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1547 mp1->start = s;
1548 mp1->size = sz;
1549 }
1550 }
1551
1552 #ifdef OLDPRINTFS
1553 for (mp = tmp; mp->size; mp++) {
1554 printf("%x, %x\n", mp->start, mp->size);
1555 }
1556 #endif
1557 }
1558 }
1559
1560
1561 static void
1562 ofw_getvirttranslations(void)
1563 {
1564 int mmu_phandle;
1565 int mmu_ihandle;
1566 int trans_len;
1567 int over, len;
1568 int i;
1569 struct mem_translation *tp;
1570
1571 mmu_ihandle = ofw_mmu_ihandle();
1572
1573 /* overallocate to avoid increases during allocation */
1574 over = 4 * sizeof(struct mem_translation);
1575 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1576 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1577 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1578 (trans_len = OF_getprop(mmu_phandle, "translations",
1579 OFtranslations, len + over)) > (len + over))
1580 panic("can't get virttranslations from OFW");
1581
1582 /* XXX - Convert all the values to host order. -JJK */
1583 nOFtranslations = trans_len / sizeof(struct mem_translation);
1584 #ifdef OLDPRINTFS
1585 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1586 #endif
1587 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1588 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1589 tp->size = of_decode_int((unsigned char *)&tp->size);
1590 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1591 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1592 }
1593 }
1594
1595 /*
1596 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1597 */
1598 typedef struct _vfree {
1599 struct _vfree *pNext;
1600 vm_offset_t start;
1601 vm_size_t size;
1602 } VFREE, *PVFREE;
1603
1604 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1605
1606 static PVFREE vflist = &vfinitial;
1607
1608 static vm_offset_t
1609 ofw_valloc(size, align)
1610 vm_offset_t size;
1611 vm_offset_t align;
1612 {
1613 PVFREE *ppvf;
1614 PVFREE pNew;
1615 vm_offset_t new;
1616 vm_offset_t lead;
1617
1618 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1619 if (align == 0) {
1620 new = (*ppvf)->start;
1621 lead = 0;
1622 } else {
1623 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1624 lead = new - (*ppvf)->start;
1625 }
1626
1627 if (((*ppvf)->size - lead) >= size) {
1628 if (lead == 0) {
1629 /* using whole block */
1630 if (size == (*ppvf)->size) {
1631 /* splice out of list */
1632 (*ppvf) = (*ppvf)->pNext;
1633 } else { /* tail of block is free */
1634 (*ppvf)->start = new + size;
1635 (*ppvf)->size -= size;
1636 }
1637 } else {
1638 vm_size_t tail = ((*ppvf)->start
1639 + (*ppvf)->size) - (new + size);
1640 /* free space at beginning */
1641 (*ppvf)->size = lead;
1642
1643 if (tail != 0) {
1644 /* free space at tail */
1645 pNew = ofw_malloc(sizeof(VFREE));
1646 pNew->pNext = (*ppvf)->pNext;
1647 (*ppvf)->pNext = pNew;
1648 pNew->start = new + size;
1649 pNew->size = tail;
1650 }
1651 }
1652 return new;
1653 } /* END if */
1654 } /* END for */
1655
1656 return -1;
1657 }
1658
1659 vm_offset_t
1660 ofw_map(pa, size, cb_bits)
1661 vm_offset_t pa;
1662 vm_size_t size;
1663 int cb_bits;
1664 {
1665 vm_offset_t va;
1666
1667 if ((va = ofw_valloc(size, size)) == -1)
1668 panic("cannot alloc virtual memory for %#lx", pa);
1669
1670 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1671
1672 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1673
1674 return va;
1675 }
1676
1677 static int
1678 ofw_mem_ihandle(void)
1679 {
1680 static int mem_ihandle = 0;
1681 int chosen;
1682
1683 if (mem_ihandle != 0)
1684 return(mem_ihandle);
1685
1686 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1687 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1688 panic("ofw_mem_ihandle");
1689
1690 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1691
1692 return(mem_ihandle);
1693 }
1694
1695
1696 static int
1697 ofw_mmu_ihandle(void)
1698 {
1699 static int mmu_ihandle = 0;
1700 int chosen;
1701
1702 if (mmu_ihandle != 0)
1703 return(mmu_ihandle);
1704
1705 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1706 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1707 panic("ofw_mmu_ihandle");
1708
1709 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1710
1711 return(mmu_ihandle);
1712 }
1713
1714
1715 /* Return -1 on failure. */
1716 static vm_offset_t
1717 ofw_claimphys(pa, size, align)
1718 vm_offset_t pa;
1719 vm_size_t size;
1720 vm_offset_t align;
1721 {
1722 int mem_ihandle = ofw_mem_ihandle();
1723
1724 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1725 if (align == 0) {
1726 /* Allocate at specified base; alignment is ignored. */
1727 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1728 } else {
1729 /* Allocate anywhere, with specified alignment. */
1730 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1731 }
1732
1733 /* printf("%x\n", pa);*/
1734 return(pa);
1735 }
1736
1737
1738 #if 0
1739 /* Return -1 on failure. */
1740 static vm_offset_t
1741 ofw_releasephys(pa, size)
1742 vm_offset_t pa;
1743 vm_size_t size;
1744 {
1745 int mem_ihandle = ofw_mem_ihandle();
1746
1747 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1748
1749 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1750 }
1751 #endif
1752
1753 /* Return -1 on failure. */
1754 static vm_offset_t
1755 ofw_claimvirt(va, size, align)
1756 vm_offset_t va;
1757 vm_size_t size;
1758 vm_offset_t align;
1759 {
1760 int mmu_ihandle = ofw_mmu_ihandle();
1761
1762 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1763 if (align == 0) {
1764 /* Allocate at specified base; alignment is ignored. */
1765 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1766 } else {
1767 /* Allocate anywhere, with specified alignment. */
1768 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1769 }
1770
1771 /*printf("%x\n", va);*/
1772 return(va);
1773 }
1774
1775
1776 /* Return -1 if no mapping. */
1777 vm_offset_t
1778 ofw_gettranslation(va)
1779 vm_offset_t va;
1780 {
1781 int mmu_ihandle = ofw_mmu_ihandle();
1782 vm_offset_t pa;
1783 int mode;
1784 int exists;
1785
1786 /*printf("ofw_gettranslation (%x) --> ", va);*/
1787 exists = 0; /* gets set to true if translation exists */
1788 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1789 &exists) != 0)
1790 return(-1);
1791
1792 /*printf("%x\n", exists ? pa : -1);*/
1793 return(exists ? pa : -1);
1794 }
1795
1796
1797 static void
1798 ofw_settranslation(va, pa, size, mode)
1799 vm_offset_t va;
1800 vm_offset_t pa;
1801 vm_size_t size;
1802 int mode;
1803 {
1804 int mmu_ihandle = ofw_mmu_ihandle();
1805
1806 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1807 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1808 panic("ofw_settranslation failed");
1809 }
1810
1811 /*
1812 * Allocation routine used before the kernel takes over memory.
1813 * Use this for efficient storage for things that aren't rounded to
1814 * page size.
1815 *
1816 * The point here is not necessarily to be very efficient (even though
1817 * that's sort of nice), but to do proper dynamic allocation to avoid
1818 * size-limitation errors.
1819 *
1820 */
1821
1822 typedef struct _leftover {
1823 struct _leftover *pNext;
1824 vm_size_t size;
1825 } LEFTOVER, *PLEFTOVER;
1826
1827 /* leftover bits of pages. first word is pointer to next.
1828 second word is size of leftover */
1829 static PLEFTOVER leftovers = NULL;
1830
1831 static void *
1832 ofw_malloc(size)
1833 vm_size_t size;
1834 {
1835 PLEFTOVER *ppLeftover;
1836 PLEFTOVER pLeft;
1837 pv_addr_t new;
1838 vm_size_t newSize, claim_size;
1839
1840 /* round and set minimum size */
1841 size = max(sizeof(LEFTOVER),
1842 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1843
1844 for (ppLeftover = &leftovers; *ppLeftover;
1845 ppLeftover = &((*ppLeftover)->pNext))
1846 if ((*ppLeftover)->size >= size)
1847 break;
1848
1849 if (*ppLeftover) { /* have a leftover of the right size */
1850 /* remember the leftover */
1851 new.pv_va = (vm_offset_t)*ppLeftover;
1852 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1853 /* splice out of chain */
1854 *ppLeftover = (*ppLeftover)->pNext;
1855 } else {
1856 /* remember the next pointer */
1857 pLeft = (*ppLeftover)->pNext;
1858 newSize = (*ppLeftover)->size - size; /* reduce size */
1859 /* move pointer */
1860 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1861 + size);
1862 (*ppLeftover)->pNext = pLeft;
1863 (*ppLeftover)->size = newSize;
1864 }
1865 } else {
1866 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1867 ofw_claimpages(&virt_freeptr, &new, claim_size);
1868 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1869 pLeft = (PLEFTOVER)(new.pv_va + size);
1870 pLeft->pNext = leftovers;
1871 pLeft->size = claim_size - size;
1872 leftovers = pLeft;
1873 }
1874 }
1875
1876 return (void *)(new.pv_va);
1877 }
1878
1879 /*
1880 * Here is a really, really sleazy free. It's not used right now,
1881 * because it's not worth the extra complexity for just a few bytes.
1882 *
1883 */
1884 #if 0
1885 static void
1886 ofw_free(addr, size)
1887 vm_offset_t addr;
1888 vm_size_t size;
1889 {
1890 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1891
1892 /* splice right into list without checks or compaction */
1893 pLeftover->pNext = leftovers;
1894 pLeftover->size = size;
1895 leftovers = pLeftover;
1896 }
1897 #endif
1898
1899 /*
1900 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1901 * We guarantee that the allocated memory will be
1902 * aligned to a boundary equal to the smallest power of
1903 * 2 greater than or equal to size.
1904 * free_pp is an IN/OUT parameter which points to the
1905 * last allocated virtual address in an allocate-downwards
1906 * stack. pv_p is an OUT parameter which contains the
1907 * virtual and physical base addresses of the allocated
1908 * memory.
1909 */
1910 static void
1911 ofw_claimpages(free_pp, pv_p, size)
1912 vm_offset_t *free_pp;
1913 pv_addr_t *pv_p;
1914 vm_size_t size;
1915 {
1916 /* round-up to page boundary */
1917 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1918 vm_size_t aligned_size;
1919 vm_offset_t va, pa;
1920
1921 if (alloc_size == 0)
1922 panic("ofw_claimpages zero");
1923
1924 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1925 ;
1926
1927 /* The only way to provide the alignment guarantees is to
1928 * allocate the virtual and physical ranges separately,
1929 * then do an explicit map call.
1930 */
1931 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1932 if (ofw_claimvirt(va, alloc_size, 0) != va)
1933 panic("ofw_claimpages va alloc");
1934 pa = ofw_claimphys(0, alloc_size, aligned_size);
1935 if (pa == -1)
1936 panic("ofw_claimpages pa alloc");
1937 /* XXX - what mode? -JJK */
1938 ofw_settranslation(va, pa, alloc_size, -1);
1939
1940 /* The memory's mapped-in now, so we can zero it. */
1941 bzero((char *)va, alloc_size);
1942
1943 /* Set OUT parameters. */
1944 *free_pp = va;
1945 pv_p->pv_va = va;
1946 pv_p->pv_pa = pa;
1947 }
1948
1949
1950 static void
1951 ofw_discardmappings(L2pagetable, va, size)
1952 vm_offset_t L2pagetable;
1953 vm_offset_t va;
1954 vm_size_t size;
1955 {
1956 /* round-up to page boundary */
1957 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1958 int npages = alloc_size / PAGE_SIZE;
1959
1960 if (npages == 0)
1961 panic("ofw_discardmappings zero");
1962
1963 /* Discard each mapping. */
1964 for (; npages > 0; va += PAGE_SIZE, npages--) {
1965 /* Sanity. The current entry should be non-null. */
1966 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1967 panic("ofw_discardmappings zero entry");
1968
1969 /* Clear the entry. */
1970 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1971 }
1972 }
1973
1974
1975 static void
1976 ofw_initallocator(void)
1977 {
1978
1979 }
1980