Home | History | Annotate | Line # | Download | only in ofw
ofw.c revision 1.3
      1 /*	$NetBSD: ofw.c,v 1.3 2002/02/20 02:32:59 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright 1997
      5  * Digital Equipment Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and
      8  * copied only in accordance with the following terms and conditions.
      9  * Subject to these conditions, you may download, copy, install,
     10  * use, modify and distribute this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce
     14  *    and retain this copyright notice and list of conditions as
     15  *    they appear in the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Digital Equipment Corporation. Neither the "Digital Equipment
     19  *    Corporation" name nor any trademark or logo of Digital Equipment
     20  *    Corporation may be used to endorse or promote products derived
     21  *    from this software without the prior written permission of
     22  *    Digital Equipment Corporation.
     23  *
     24  * 3) This software is provided "AS-IS" and any express or implied
     25  *    warranties, including but not limited to, any implied warranties
     26  *    of merchantability, fitness for a particular purpose, or
     27  *    non-infringement are disclaimed. In no event shall DIGITAL be
     28  *    liable for any damages whatsoever, and in particular, DIGITAL
     29  *    shall not be liable for special, indirect, consequential, or
     30  *    incidental damages or damages for lost profits, loss of
     31  *    revenue or loss of use, whether such damages arise in contract,
     32  *    negligence, tort, under statute, in equity, at law or otherwise,
     33  *    even if advised of the possibility of such damage.
     34  */
     35 
     36 /*
     37  *  Routines for interfacing between NetBSD and OFW.
     38  *
     39  *  Parts of this could be moved to an MI file in time. -JJK
     40  *
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/kernel.h>
     46 #include <sys/reboot.h>
     47 #include <sys/mbuf.h>
     48 
     49 #include <uvm/uvm_extern.h>
     50 
     51 #include <dev/cons.h>
     52 
     53 #include <machine/bus.h>
     54 #include <machine/frame.h>
     55 #include <machine/bootconfig.h>
     56 #include <machine/cpu.h>
     57 #include <machine/intr.h>
     58 
     59 #include <dev/ofw/openfirm.h>
     60 #include <machine/ofw.h>
     61 
     62 #include <netinet/in.h>
     63 
     64 #if	BOOT_FW_DHCP
     65 #include <nfs/bootdata.h>
     66 #endif
     67 
     68 #ifdef SHARK
     69 #include "machine/pio.h"
     70 #include "machine/isa_machdep.h"
     71 #endif
     72 
     73 #include "pc.h"
     74 #include "isadma.h"
     75 
     76 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
     77 #define IO_VIRT_SIZE 0x01000000
     78 
     79 /*
     80  *  Imported variables
     81  */
     82 extern BootConfig bootconfig;	/* temporary, I hope */
     83 
     84 #ifdef	DIAGNOSTIC
     85 /* NOTE: These variables will be removed, well some of them */
     86 extern u_int spl_mask;
     87 extern u_int current_mask;
     88 #endif
     89 
     90 extern int ofw_handleticks;
     91 
     92 
     93 /*
     94  *  Imported routines
     95  */
     96 extern void map_pagetable   __P((vm_offset_t pt, vm_offset_t va, vm_offset_t pa));
     97 extern void dump_spl_masks  __P((void));
     98 extern void dumpsys	    __P((void));
     99 extern void dotickgrovelling __P((vm_offset_t));
    100 #if defined(SHARK) && (NPC > 0)
    101 extern void shark_screen_cleanup __P((int));
    102 #endif
    103 
    104 #define WriteWord(a, b) \
    105 *((volatile unsigned int *)(a)) = (b)
    106 
    107 #define ReadWord(a) \
    108 (*((volatile unsigned int *)(a)))
    109 
    110 
    111 /*
    112  *  Exported variables
    113  */
    114 /* These should all be in a meminfo structure. */
    115 vm_offset_t physical_start;
    116 vm_offset_t physical_freestart;
    117 vm_offset_t physical_freeend;
    118 vm_offset_t physical_end;
    119 u_int free_pages;
    120 int physmem;
    121 pv_addr_t systempage;
    122 #ifndef	OFWGENCFG
    123 pv_addr_t irqstack;
    124 #endif
    125 pv_addr_t undstack;
    126 pv_addr_t abtstack;
    127 pv_addr_t kernelstack;
    128 
    129 vm_offset_t msgbufphys;
    130 
    131 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
    132 static vm_offset_t  virt_freeptr;
    133 
    134 int ofw_callbacks = 0;		/* debugging counter */
    135 
    136 /**************************************************************/
    137 
    138 
    139 /*
    140  *  Declarations and definitions private to this module
    141  *
    142  */
    143 
    144 struct mem_region {
    145 	vm_offset_t start;
    146 	vm_size_t size;
    147 };
    148 
    149 struct mem_translation {
    150 	vm_offset_t virt;
    151 	vm_size_t size;
    152 	vm_offset_t phys;
    153 	unsigned int mode;
    154 };
    155 
    156 struct isa_range {
    157 	vm_offset_t isa_phys_hi;
    158 	vm_offset_t isa_phys_lo;
    159 	vm_offset_t parent_phys_start;
    160 	vm_size_t   isa_size;
    161 };
    162 
    163 struct vl_range {
    164 	vm_offset_t vl_phys_hi;
    165 	vm_offset_t vl_phys_lo;
    166 	vm_offset_t parent_phys_start;
    167 	vm_size_t   vl_size;
    168 };
    169 
    170 struct vl_isa_range {
    171 	vm_offset_t isa_phys_hi;
    172 	vm_offset_t isa_phys_lo;
    173 	vm_offset_t parent_phys_hi;
    174 	vm_offset_t parent_phys_lo;
    175 	vm_size_t   isa_size;
    176 };
    177 
    178 struct dma_range {
    179 	vm_offset_t start;
    180 	vm_size_t   size;
    181 };
    182 
    183 struct ofw_cbargs {
    184 	char *name;
    185 	int nargs;
    186 	int nreturns;
    187 	int args_n_results[12];
    188 };
    189 
    190 
    191 /* Memory info */
    192 static int nOFphysmem;
    193 static struct mem_region *OFphysmem;
    194 static int nOFphysavail;
    195 static struct mem_region *OFphysavail;
    196 static int nOFtranslations;
    197 static struct mem_translation *OFtranslations;
    198 static int nOFdmaranges;
    199 static struct dma_range *OFdmaranges;
    200 
    201 /* The OFW client services handle. */
    202 /* Initialized by ofw_init(). */
    203 static ofw_handle_t ofw_client_services_handle;
    204 
    205 
    206 static void ofw_callbackhandler __P((struct ofw_cbargs *));
    207 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
    208 static void ofw_getphysmeminfo __P((void));
    209 static void ofw_getvirttranslations __P((void));
    210 static void *ofw_malloc(vm_size_t size);
    211 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
    212 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
    213 static int ofw_mem_ihandle  __P((void));
    214 static int ofw_mmu_ihandle  __P((void));
    215 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
    216 #if 0
    217 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
    218 #endif
    219 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
    220 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
    221 static void ofw_initallocator __P((void));
    222 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
    223 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
    224 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
    225 
    226 
    227 /*
    228  * DHCP hooks.  For a first cut, we look to see if there is a DHCP
    229  * packet that was saved by the firmware.  If not, we proceed as before,
    230  * getting hand-configured data from NVRAM.  If there is one, we get the
    231  * packet, and extract the data from it.  For now, we hand that data up
    232  * in the boot_args string as before.
    233  */
    234 
    235 
    236 /**************************************************************/
    237 
    238 
    239 /*
    240  *
    241  *  Support routines for xxx_machdep.c
    242  *
    243  *  The intent is that all OFW-based configurations use the
    244  *  exported routines in this file to do their business.  If
    245  *  they need to override some function they are free to do so.
    246  *
    247  *  The exported routines are:
    248  *
    249  *    openfirmware
    250  *    ofw_init
    251  *    ofw_boot
    252  *    ofw_getbootinfo
    253  *    ofw_configmem
    254  *    ofw_configisa
    255  *    ofw_configisadma
    256  *    ofw_gettranslation
    257  *    ofw_map
    258  *    ofw_getcleaninfo
    259  */
    260 
    261 
    262 int
    263 openfirmware(args)
    264 	void *args;
    265 {
    266 	int ofw_result;
    267 	u_int saved_irq_state;
    268 
    269 	/* OFW is not re-entrant, so we wrap a mutex around the call. */
    270 	saved_irq_state = disable_interrupts(I32_bit);
    271 	ofw_result = ofw_client_services_handle(args);
    272 	(void)restore_interrupts(saved_irq_state);
    273 
    274 	return(ofw_result);
    275 }
    276 
    277 
    278 void
    279 ofw_init(ofw_handle)
    280 	ofw_handle_t ofw_handle;
    281 {
    282 	ofw_client_services_handle = ofw_handle;
    283 
    284 	/*  Everything we allocate in the remainder of this block is
    285 	 *  constrained to be in the "kernel-static" portion of the
    286 	 *  virtual address space (i.e., 0xF0000000 - 0xF1000000).
    287 	 *  This is because all such objects are expected to be in
    288 	 *  that range by NetBSD, or the objects will be re-mapped
    289 	 *  after the page-table-switch to other specific locations.
    290 	 *  In the latter case, it's simplest if our pre-switch handles
    291 	 *  on those objects are in regions that are already "well-
    292 	 *  known."  (Otherwise, the cloning of the OFW-managed address-
    293 	 *  space becomes more awkward.)  To minimize the number of L2
    294 	 *  page tables that we use, we are further restricting the
    295 	 *  remaining allocations in this block to the bottom quarter of
    296 	 *  the legal range.  OFW will have loaded the kernel text+data+bss
    297 	 *  starting at the bottom of the range, and we will allocate
    298 	 *  objects from the top, moving downwards.  The two sub-regions
    299 	 *  will collide if their total sizes hit 4MB.  The current total
    300 	 *  is <1.5MB, so we aren't in any real danger yet.  The variable
    301 	 *  virt-freeptr represents the next free va (moving downwards).
    302 	 */
    303 	virt_freeptr = KERNEL_BASE + 0x00400000;
    304 }
    305 
    306 
    307 void
    308 ofw_boot(howto, bootstr)
    309 	int howto;
    310 	char *bootstr;
    311 {
    312 
    313 #ifdef DIAGNOSTIC
    314 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
    315 	printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
    316 
    317 	printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
    318 	    irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
    319 	    irqmasks[IPL_IMP]);
    320 	printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
    321 	    irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
    322 
    323 	dump_spl_masks();
    324 #endif
    325 
    326 	/*
    327 	 * If we are still cold then hit the air brakes
    328 	 * and crash to earth fast
    329 	 */
    330 	if (cold) {
    331 		doshutdownhooks();
    332 		printf("Halted while still in the ICE age.\n");
    333 		printf("The operating system has halted.\n");
    334 		goto ofw_exit;
    335 		/*NOTREACHED*/
    336 	}
    337 
    338 	/*
    339 	 * If RB_NOSYNC was not specified sync the discs.
    340 	 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
    341 	 * It looks like syslogd is getting woken up only to find that it cannot
    342 	 * page part of the binary in as the filesystem has been unmounted.
    343 	 */
    344 	if (!(howto & RB_NOSYNC))
    345 		bootsync();
    346 
    347 	/* Say NO to interrupts */
    348 	splhigh();
    349 
    350 	/* Do a dump if requested. */
    351 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    352 		dumpsys();
    353 
    354 	/* Run any shutdown hooks */
    355 	doshutdownhooks();
    356 
    357 	/* Make sure IRQ's are disabled */
    358 	IRQdisable;
    359 
    360 	if (howto & RB_HALT) {
    361 		printf("The operating system has halted.\n");
    362 		goto ofw_exit;
    363 	}
    364 
    365 	/* Tell the user we are booting */
    366 	printf("rebooting...\n");
    367 
    368 	/* Jump into the OFW boot routine. */
    369 	{
    370 		static char str[256];
    371 		char *ap = str, *ap1 = ap;
    372 
    373 		if (bootstr && *bootstr) {
    374 			if (strlen(bootstr) > sizeof str - 5)
    375 				printf("boot string too large, ignored\n");
    376 			else {
    377 				strcpy(str, bootstr);
    378 				ap1 = ap = str + strlen(str);
    379 				*ap++ = ' ';
    380 			}
    381 		}
    382 		*ap++ = '-';
    383 		if (howto & RB_SINGLE)
    384 			*ap++ = 's';
    385 		if (howto & RB_KDB)
    386 			*ap++ = 'd';
    387 		*ap++ = 0;
    388 		if (ap[-2] == '-')
    389 			*ap1 = 0;
    390 #if defined(SHARK) && (NPC > 0)
    391 		shark_screen_cleanup(0);
    392 #endif
    393 		OF_boot(str);
    394 		/*NOTREACHED*/
    395 	}
    396 
    397 ofw_exit:
    398 	printf("Calling OF_exit...\n");
    399 #if defined(SHARK) && (NPC > 0)
    400 	shark_screen_cleanup(1);
    401 #endif
    402 	OF_exit();
    403 	/*NOTREACHED*/
    404 }
    405 
    406 
    407 #if	BOOT_FW_DHCP
    408 
    409 extern	char	*ip2dotted	__P((struct in_addr));
    410 
    411 /*
    412  * Get DHCP data from OFW
    413  */
    414 
    415 void
    416 get_fw_dhcp_data(bdp)
    417 	struct bootdata *bdp;
    418 {
    419 	int chosen;
    420 	int dhcplen;
    421 
    422 	bzero((char *)bdp, sizeof(*bdp));
    423 	if ((chosen = OF_finddevice("/chosen")) == -1)
    424 		panic("no /chosen from OFW");
    425 	if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
    426 		u_char *cp;
    427 		int dhcp_type = 0;
    428 		char *ip;
    429 
    430 		/*
    431 		 * OFW saved a DHCP (or BOOTP) packet for us.
    432 		 */
    433 		if (dhcplen > sizeof(bdp->dhcp_packet))
    434 			panic("DHCP packet too large");
    435 		OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
    436 		    sizeof(bdp->dhcp_packet));
    437 		SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
    438 		/*
    439 		 * Collect the interesting data from DHCP into
    440 		 * the bootdata structure.
    441 		 */
    442 		bdp->ip_address = bdp->dhcp_packet.yiaddr;
    443 		ip = ip2dotted(bdp->ip_address);
    444 		if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
    445 			parse_dhcp_options(&bdp->dhcp_packet,
    446 			    bdp->dhcp_packet.options + 4,
    447 			    &bdp->dhcp_packet.options[dhcplen
    448 			    - DHCP_FIXED_NON_UDP], bdp, ip);
    449 		if (bdp->root_ip.s_addr == 0)
    450 			bdp->root_ip = bdp->dhcp_packet.siaddr;
    451 		if (bdp->swap_ip.s_addr == 0)
    452 			bdp->swap_ip = bdp->dhcp_packet.siaddr;
    453 	}
    454 	/*
    455 	 * If the DHCP packet did not contain all the necessary data,
    456 	 * look in NVRAM for the missing parts.
    457 	 */
    458 	{
    459 		int options;
    460 		int proplen;
    461 #define BOOTJUNKV_SIZE	256
    462 		char bootjunkv[BOOTJUNKV_SIZE];	/* minimize stack usage */
    463 
    464 
    465 		if ((options = OF_finddevice("/options")) == -1)
    466 			panic("can't find /options");
    467 		if (bdp->ip_address.s_addr == 0 &&
    468 		    (proplen = OF_getprop(options, "ipaddr",
    469 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    470 			bootjunkv[proplen] = '\0';
    471 			if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
    472 				bdp->ip_address.s_addr = 0;
    473 		}
    474 		if (bdp->ip_mask.s_addr == 0 &&
    475 		    (proplen = OF_getprop(options, "netmask",
    476 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    477 			bootjunkv[proplen] = '\0';
    478 			if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
    479 				bdp->ip_mask.s_addr = 0;
    480 		}
    481 		if (bdp->hostname[0] == '\0' &&
    482 		    (proplen = OF_getprop(options, "hostname",
    483 		    bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
    484 			bdp->hostname[proplen] = '\0';
    485 		}
    486 		if (bdp->root[0] == '\0' &&
    487 		    (proplen = OF_getprop(options, "rootfs",
    488 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    489 			bootjunkv[proplen] = '\0';
    490 			parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
    491 		}
    492 		if (bdp->swap[0] == '\0' &&
    493 		    (proplen = OF_getprop(options, "swapfs",
    494 		    bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
    495 			bootjunkv[proplen] = '\0';
    496 			parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
    497 		}
    498 	}
    499 }
    500 
    501 #endif	/* BOOT_FW_DHCP */
    502 
    503 void
    504 ofw_getbootinfo(bp_pp, ba_pp)
    505 	char **bp_pp;
    506 	char **ba_pp;
    507 {
    508 	int chosen;
    509 	int bp_len;
    510 	int ba_len;
    511 	char *bootpathv;
    512 	char *bootargsv;
    513 
    514 	/* Read the bootpath and bootargs out of OFW. */
    515 	/* XXX is bootpath still interesting?  --emg */
    516 	if ((chosen = OF_finddevice("/chosen")) == -1)
    517 		panic("no /chosen from OFW");
    518 	bp_len = OF_getproplen(chosen, "bootpath");
    519 	ba_len = OF_getproplen(chosen, "bootargs");
    520 	if (bp_len < 0 || ba_len < 0)
    521 		panic("can't get boot data from OFW");
    522 
    523 	bootpathv = (char *)ofw_malloc(bp_len);
    524 	bootargsv = (char *)ofw_malloc(ba_len);
    525 
    526 	if (bp_len)
    527 		OF_getprop(chosen, "bootpath", bootpathv, bp_len);
    528 	else
    529 		bootpathv[0] = '\0';
    530 
    531 	if (ba_len)
    532 		OF_getprop(chosen, "bootargs", bootargsv, ba_len);
    533 	else
    534 		bootargsv[0] = '\0';
    535 
    536 	*bp_pp = bootpathv;
    537 	*ba_pp = bootargsv;
    538 #ifdef DIAGNOSTIC
    539 	printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
    540 #endif
    541 }
    542 
    543 vm_offset_t
    544 ofw_getcleaninfo(void)
    545 {
    546 	int cpu;
    547 	vm_offset_t vclean, pclean;
    548 
    549 	if ((cpu = OF_finddevice("/cpu")) == -1)
    550 		panic("no /cpu from OFW");
    551 
    552 	if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
    553 	    sizeof(vclean))) != sizeof(vclean)) {
    554 #ifdef DEBUG
    555 		printf("no OFW d-cache-flush-address property\n");
    556 #endif
    557 		return -1;
    558 	}
    559 
    560 	if ((pclean = ofw_gettranslation(
    561 	    of_decode_int((unsigned char *)&vclean))) == -1)
    562 	panic("OFW failed to translate cache flush address");
    563 
    564 	return pclean;
    565 }
    566 
    567 void
    568 ofw_configisa(pio, pmem)
    569 	vm_offset_t *pio;
    570 	vm_offset_t *pmem;
    571 {
    572 	int vl;
    573 
    574 	if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
    575 		ofw_configisaonly(pio, pmem);
    576 	else /* old style OFW dev info tree */
    577 		ofw_configvl(vl, pio, pmem);
    578 }
    579 
    580 static void
    581 ofw_configisaonly(pio, pmem)
    582 	vm_offset_t *pio;
    583 	vm_offset_t *pmem;
    584 {
    585 	int isa;
    586 	int rangeidx;
    587 	int size;
    588 	vm_offset_t hi, start;
    589 	struct isa_range ranges[2];
    590 
    591 	if ((isa = OF_finddevice("/isa")) == -1)
    592 	panic("OFW has no /isa device node");
    593 
    594 	/* expect to find two isa ranges: IO/data and memory/data */
    595 	if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
    596 	    != sizeof(ranges))
    597 		panic("unexpected size of OFW /isa ranges property: %d", size);
    598 
    599 	*pio = *pmem = -1;
    600 
    601 	for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
    602 		hi    = of_decode_int((unsigned char *)
    603 		    &ranges[rangeidx].isa_phys_hi);
    604 		start = of_decode_int((unsigned char *)
    605 		    &ranges[rangeidx].parent_phys_start);
    606 
    607 	if (hi & 1) { /* then I/O space */
    608 		*pio = start;
    609 	} else {
    610 		*pmem = start;
    611 	}
    612 	} /* END for */
    613 
    614 	if ((*pio == -1) || (*pmem == -1))
    615 		panic("bad OFW /isa ranges property");
    616 
    617 }
    618 
    619 static void
    620 ofw_configvl(vl, pio, pmem)
    621 	int vl;
    622 	vm_offset_t *pio;
    623 	vm_offset_t *pmem;
    624 {
    625 	int isa;
    626 	int ir, vr;
    627 	int size;
    628 	vm_offset_t hi, start;
    629 	struct vl_isa_range isa_ranges[2];
    630 	struct vl_range     vl_ranges[2];
    631 
    632 	if ((isa = OF_finddevice("/vlbus/isa")) == -1)
    633 		panic("OFW has no /vlbus/isa device node");
    634 
    635 	/* expect to find two isa ranges: IO/data and memory/data */
    636 	if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
    637 	    != sizeof(isa_ranges))
    638 		panic("unexpected size of OFW /vlbus/isa ranges property: %d",
    639 		     size);
    640 
    641 	/* expect to find two vl ranges: IO/data and memory/data */
    642 	if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
    643 	    != sizeof(vl_ranges))
    644 		panic("unexpected size of OFW /vlbus ranges property: %d", size);
    645 
    646 	*pio = -1;
    647 	*pmem = -1;
    648 
    649 	for (ir = 0; ir < 2; ++ir) {
    650 		for (vr = 0; vr < 2; ++vr) {
    651 			if ((isa_ranges[ir].parent_phys_hi
    652 			    == vl_ranges[vr].vl_phys_hi) &&
    653 			    (isa_ranges[ir].parent_phys_lo
    654 			    == vl_ranges[vr].vl_phys_lo)) {
    655 				hi    = of_decode_int((unsigned char *)
    656 				    &isa_ranges[ir].isa_phys_hi);
    657 				start = of_decode_int((unsigned char *)
    658 				    &vl_ranges[vr].parent_phys_start);
    659 
    660 				if (hi & 1) { /* then I/O space */
    661 					*pio = start;
    662 				} else {
    663 					*pmem = start;
    664 				}
    665 			} /* END if */
    666 		} /* END for */
    667 	} /* END for */
    668 
    669 	if ((*pio == -1) || (*pmem == -1))
    670 		panic("bad OFW /isa ranges property");
    671 }
    672 
    673 void
    674 ofw_configisadma(pdma)
    675 	vm_offset_t *pdma;
    676 {
    677 	int root;
    678 	int rangeidx;
    679 	int size;
    680 	struct dma_range *dr;
    681 #if NISADMA > 0
    682 	extern bus_dma_segment_t *pmap_isa_dma_ranges;
    683 	extern int pmap_isa_dma_nranges;
    684 #endif
    685 
    686 	if ((root = OF_finddevice("/")) == -1 ||
    687 	    (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
    688 	    (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
    689  	    OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
    690 		panic("bad / dma-ranges property");
    691 
    692 	nOFdmaranges = size / sizeof(struct dma_range);
    693 
    694 #if NISADMA > 0
    695 	/* Allocate storage for non-OFW representation of the range. */
    696 	pmap_isa_dma_ranges = ofw_malloc(nOFdmaranges *
    697 	    sizeof(bus_dma_segment_t));
    698 	if (pmap_isa_dma_ranges == NULL)
    699 		panic("unable to allocate pmap_isa_dma_ranges");
    700 	pmap_isa_dma_nranges = nOFdmaranges;
    701 #endif
    702 
    703 	for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
    704 	    ++rangeidx, ++dr) {
    705 		dr->start = of_decode_int((unsigned char *)&dr->start);
    706 		dr->size = of_decode_int((unsigned char *)&dr->size);
    707 #if NISADMA > 0
    708 		pmap_isa_dma_ranges[rangeidx].ds_addr = dr->start;
    709 		pmap_isa_dma_ranges[rangeidx].ds_len  = dr->size;
    710 #endif
    711 	}
    712 
    713 #ifdef DEBUG
    714 	printf("dma ranges size = %d\n", size);
    715 
    716 	for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
    717 		printf("%08lx %08lx\n",
    718 		(u_long)OFdmaranges[rangeidx].start,
    719 		(u_long)OFdmaranges[rangeidx].size);
    720 	}
    721 #endif
    722 }
    723 
    724 /*
    725  *  Memory configuration:
    726  *
    727  *  We start off running in the environment provided by OFW.
    728  *  This has the MMU turned on, the kernel code and data
    729  *  mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
    730  *  data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
    731  *  page0 mapped-in at 0x0.
    732  *
    733  *  The strategy is to set-up the address space for proc0 --
    734  *  including the allocation of space for new page tables -- while
    735  *  memory is still managed by OFW.  We then effectively create a
    736  *  copy of the address space by dumping all of OFW's translations
    737  *  and poking them into the new page tables.  We then notify OFW
    738  *  that we are assuming control of memory-management by installing
    739  *  our callback-handler, and switch to the NetBSD-managed page
    740  *  tables with the setttb() call.
    741  *
    742  *  This scheme may cause some amount of memory to be wasted within
    743  *  OFW as dead page tables, but it shouldn't be more than about
    744  *  20-30KB.  (It's also possible that OFW will re-use the space.)
    745  */
    746 void
    747 ofw_configmem(void)
    748 {
    749 	pv_addr_t proc0_ttbbase;
    750 	pv_addr_t proc0_ptpt;
    751 
    752 	/* Set-up proc0 address space. */
    753 	ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
    754 
    755 	/*
    756 	 * Get a dump of OFW's picture of physical memory.
    757 	 * This is used below to initialize a load of variables used by pmap.
    758 	 * We get it now rather than later because we are about to
    759 	 * tell OFW to stop managing memory.
    760 	 */
    761 	ofw_getphysmeminfo();
    762 
    763 	/* We are about to take control of memory-management from OFW.
    764 	 * Establish callbacks for OFW to use for its future memory needs.
    765 	 * This is required for us to keep using OFW services.
    766 	 */
    767 
    768 	/* First initialize our callback memory allocator. */
    769 	ofw_initallocator();
    770 
    771 	OF_set_callback((void(*)())ofw_callbackhandler);
    772 
    773 	/* Switch to the proc0 pagetables. */
    774 	setttb(proc0_ttbbase.pv_pa);
    775 
    776 	/* Aaaaaaaah, running in the proc0 address space! */
    777 	/* I feel good... */
    778 
    779 	/* Set-up the various globals which describe physical memory for pmap. */
    780 	{
    781 		struct mem_region *mp;
    782 		int totalcnt;
    783 		int availcnt;
    784 		int i;
    785 
    786 		/* physmem, physical_start, physical_end */
    787 		physmem = 0;
    788 		for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
    789 		    totalcnt++, mp++) {
    790 #ifdef	OLDPRINTFS
    791 			printf("physmem: %x, %x\n", mp->start, mp->size);
    792 #endif
    793 			physmem += btoc(mp->size);
    794 		}
    795 		physical_start = OFphysmem[0].start;
    796 		mp--;
    797 		physical_end = mp->start + mp->size;
    798 
    799 		/* free_pages, physical_freestart, physical_freeend */
    800 		free_pages = 0;
    801 		for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
    802 		    availcnt++, mp++) {
    803 #ifdef	OLDPRINTFS
    804 			printf("physavail: %x, %x\n", mp->start, mp->size);
    805 #endif
    806 			free_pages += btoc(mp->size);
    807 		}
    808 		physical_freestart = OFphysavail[0].start;
    809 		mp--;
    810 		physical_freeend = mp->start + mp->size;
    811 #ifdef	OLDPRINTFS
    812 		printf("pmap_bootstrap:  physmem = %x, free_pages = %x\n",
    813 		    physmem, free_pages);
    814 #endif
    815 
    816 		/*
    817 		 *  This is a hack to work with the existing pmap code.
    818 		 *  That code depends on a RiscPC BootConfig structure
    819 		 *  containing, among other things, an array describing
    820 		 *  the regions of physical memory.  So, for now, we need
    821 		 *  to stuff our OFW-derived physical memory info into a
    822 		 *  "fake" BootConfig structure.
    823 		 *
    824 		 *  An added twist is that we initialize the BootConfig
    825 		 *  structure with our "available" physical memory regions
    826 		 *  rather than the "total" physical memory regions.  Why?
    827 		 *  Because:
    828 		 *
    829 		 *   (a) the VM code requires that the "free" pages it is
    830 		 *       initialized with have consecutive indices.  This
    831 		 *       allows it to use more efficient data structures
    832 		 *       (presumably).
    833 		 *   (b) the current pmap routines which report the initial
    834 		 *       set of free page indices (pmap_next_page) and
    835 		 *       which map addresses to indices (pmap_page_index)
    836 		 *       assume that the free pages are consecutive across
    837 		 *       memory region boundaries.
    838 		 *
    839 		 *  This means that memory which is "stolen" at startup time
    840 		 *  (say, for page descriptors) MUST come from either the
    841 		 *  bottom of the first region or the top of the last.
    842 		 *
    843 		 *  This requirement doesn't mesh well with OFW (or at least
    844 		 *  our use of it).  We can get around it for the time being
    845 		 *  by pretending that our "available" region array describes
    846 		 *  all of our physical memory.  This may cause some important
    847 		 *  information to be excluded from a dump file, but so far
    848 		 *  I haven't come across any other negative effects.
    849 		 *
    850 		 *  In the long-run we should fix the index
    851 		 *  generation/translation code in the pmap module.
    852 		 */
    853 
    854 		if (DRAM_BLOCKS < (availcnt + 1))
    855 			panic("more ofw memory regions than bootconfig blocks");
    856 
    857 		for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
    858 			bootconfig.dram[i].address = mp->start;
    859 			bootconfig.dram[i].pages = btoc(mp->size);
    860 		}
    861 		bootconfig.dramblocks = availcnt;
    862 	}
    863 
    864 	/* Initialize pmap module. */
    865 	pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
    866 }
    867 
    868 
    869 /*
    870  ************************************************************
    871 
    872   Routines private to this module
    873 
    874  ************************************************************
    875  */
    876 
    877 /* N.B.  Not supposed to call printf in callback-handler!  Could deadlock! */
    878 static void
    879 ofw_callbackhandler(args)
    880 	struct ofw_cbargs *args;
    881 {
    882 	char *name = args->name;
    883 	int nargs = args->nargs;
    884 	int nreturns = args->nreturns;
    885 	int *args_n_results = args->args_n_results;
    886 
    887 	ofw_callbacks++;
    888 
    889 #if defined(OFWGENCFG)
    890 	/* Check this first, so that we don't waste IRQ time parsing. */
    891 	if (strcmp(name, "tick") == 0) {
    892 		vm_offset_t frame;
    893 
    894 		/* Check format. */
    895 		if (nargs != 1 || nreturns < 1) {
    896 			args_n_results[nargs] = -1;
    897 			args->nreturns = 1;
    898 			return;
    899 		}
    900 		args_n_results[nargs] =	0;	/* properly formatted request */
    901 
    902 		/*
    903 		 *  Note that we are running in the IRQ frame, with interrupts
    904 		 *  disabled.
    905 		 *
    906 		 *  We need to do two things here:
    907 		 *    - copy a few words out of the input frame into a global
    908 		 *      area, for later use by our real tick-handling code
    909 		 *    - patch a few words in the frame so that when OFW returns
    910 		 *      from the interrupt it will resume with our handler
    911 		 *      rather than the code that was actually interrupted.
    912 		 *      Our handler will resume when it finishes with the code
    913 		 *      that was actually interrupted.
    914 		 *
    915 		 *  It's simplest to do this in assembler, since it requires
    916 		 *  switching frames and grovelling about with registers.
    917 		 */
    918 		frame = (vm_offset_t)args_n_results[0];
    919 		if (ofw_handleticks)
    920 			dotickgrovelling(frame);
    921 		args_n_results[nargs + 1] = frame;
    922 		args->nreturns = 1;
    923 	} else
    924 #endif
    925 
    926 	if (strcmp(name, "map") == 0) {
    927 		vm_offset_t va;
    928 		vm_offset_t pa;
    929 		vm_size_t size;
    930 		int mode;
    931 		int ap_bits;
    932 		int dom_bits;
    933 		int cb_bits;
    934 
    935 		/* Check format. */
    936 		if (nargs != 4 || nreturns < 2) {
    937 			args_n_results[nargs] = -1;
    938 			args->nreturns = 1;
    939 			return;
    940 		}
    941 		args_n_results[nargs] =	0;	/* properly formatted request */
    942 
    943 		pa = (vm_offset_t)args_n_results[0];
    944 		va = (vm_offset_t)args_n_results[1];
    945 		size = (vm_size_t)args_n_results[2];
    946 		mode = args_n_results[3];
    947 		ap_bits =  (mode & 0x00000C00);
    948 		dom_bits = (mode & 0x000001E0);
    949 		cb_bits =  (mode & 0x000000C0);
    950 
    951 		/* Sanity checks. */
    952 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
    953 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
    954 		    (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
    955 		    size == 0 || (dom_bits >> 5) != 0) {
    956 			args_n_results[nargs + 1] = -1;
    957 			args->nreturns = 1;
    958 			return;
    959 		}
    960 
    961 		/* Write-back anything stuck in the cache. */
    962 		cpu_idcache_wbinv_all();
    963 
    964 		/* Install new mappings. */
    965 		{
    966 			pt_entry_t *pte = vtopte(va);
    967 			int npages = size >> PGSHIFT;
    968 
    969 			ap_bits >>= 10;
    970 			for (; npages > 0; pte++, pa += NBPG, npages--)
    971 				*pte = (pa | PT_AP(ap_bits) | L2_SPAGE | cb_bits);
    972 		}
    973 
    974 		/* Clean out tlb. */
    975 		tlb_flush();
    976 
    977 		args_n_results[nargs + 1] = 0;
    978 		args->nreturns = 2;
    979 	} else if (strcmp(name, "unmap") == 0) {
    980 		vm_offset_t va;
    981 		vm_size_t size;
    982 
    983 		/* Check format. */
    984 		if (nargs != 2 || nreturns < 1) {
    985 			args_n_results[nargs] = -1;
    986 			args->nreturns = 1;
    987 			return;
    988 		}
    989 		args_n_results[nargs] =	0;	/* properly formatted request */
    990 
    991 		va = (vm_offset_t)args_n_results[0];
    992 		size = (vm_size_t)args_n_results[1];
    993 
    994 		/* Sanity checks. */
    995 		if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
    996 		    (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
    997 		    (size & PGOFSET) != 0 || size == 0) {
    998 			args_n_results[nargs + 1] = -1;
    999 			args->nreturns = 1;
   1000 			return;
   1001 		}
   1002 
   1003 		/* Write-back anything stuck in the cache. */
   1004 		cpu_idcache_wbinv_all();
   1005 
   1006 		/* Zero the mappings. */
   1007 		{
   1008 			pt_entry_t *pte = vtopte(va);
   1009 			int npages = size >> PGSHIFT;
   1010 
   1011 			for (; npages > 0; pte++, npages--)
   1012 				*pte = 0;
   1013 		}
   1014 
   1015 		/* Clean out tlb. */
   1016 		tlb_flush();
   1017 
   1018 		args->nreturns = 1;
   1019 	} else if (strcmp(name, "translate") == 0) {
   1020 		vm_offset_t va;
   1021 		vm_offset_t pa;
   1022 		int mode;
   1023 		pt_entry_t pte;
   1024 
   1025 		/* Check format. */
   1026 		if (nargs != 1 || nreturns < 4) {
   1027 			args_n_results[nargs] = -1;
   1028 			args->nreturns = 1;
   1029 			return;
   1030 		}
   1031 		args_n_results[nargs] =	0;	/* properly formatted request */
   1032 
   1033 		va = (vm_offset_t)args_n_results[0];
   1034 
   1035 		/* Sanity checks.
   1036 		 * For now, I am only willing to translate va's in the
   1037 		 * "ofw range." Eventually, I may be more generous. -JJK
   1038 		 */
   1039 		if ((va & PGOFSET) != 0 ||  va < OFW_VIRT_BASE ||
   1040 		    va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
   1041 			args_n_results[nargs + 1] = -1;
   1042 			args->nreturns = 1;
   1043 			return;
   1044 		}
   1045 
   1046 		/* Lookup mapping. */
   1047 		pte = *vtopte(va);
   1048 		if (pte == 0) {
   1049 			/* No mapping. */
   1050 			args_n_results[nargs + 1] = -1;
   1051 			args->nreturns = 2;
   1052 		} else {
   1053 			/* Existing mapping. */
   1054 			pa = (pte & PG_FRAME) | (va & ~PG_FRAME);
   1055 			mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C);	/* AP | DOM | CB */
   1056 
   1057 			args_n_results[nargs + 1] = 0;
   1058 			args_n_results[nargs + 2] = pa;
   1059 			args_n_results[nargs + 3] =	mode;
   1060 			args->nreturns = 4;
   1061 		}
   1062 	} else if (strcmp(name, "claim-phys") == 0) {
   1063 		struct pglist alloclist = TAILQ_HEAD_INITIALIZER(alloclist);
   1064 		vm_offset_t low, high;
   1065 		vm_size_t align, size;
   1066 
   1067 		/*
   1068 		 * XXX
   1069 		 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
   1070 		 * XXX
   1071 		 */
   1072 
   1073 		/* Check format. */
   1074 		if (nargs != 4 || nreturns < 3) {
   1075 			args_n_results[nargs] = -1;
   1076 			args->nreturns = 1;
   1077 			return;
   1078 		}
   1079 		args_n_results[nargs] =	0;	/* properly formatted request */
   1080 
   1081 		low = args_n_results[0];
   1082 		size = args_n_results[2];
   1083 		align = args_n_results[3];
   1084 		high = args_n_results[1] + size;
   1085 
   1086 #if 0
   1087 		printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
   1088 		    low, size, align, high);
   1089 		align = size;
   1090 		printf("forcing align to be 0x%x\n", align);
   1091 #endif
   1092 
   1093 		args_n_results[nargs + 1] =
   1094 		uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
   1095 #if 0
   1096 		printf(" -> 0x%lx", args_n_results[nargs + 1]);
   1097 #endif
   1098 		if (args_n_results[nargs + 1] != 0) {
   1099 #if 0
   1100 			printf("(failed)\n");
   1101 #endif
   1102 			args_n_results[nargs + 1] = -1;
   1103 			args->nreturns = 2;
   1104 			return;
   1105 		}
   1106 		args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
   1107 #if 0
   1108 		printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
   1109 #endif
   1110 		args->nreturns = 3;
   1111 
   1112 	} else if (strcmp(name, "release-phys") == 0) {
   1113 		printf("unimplemented ofw callback - %s\n", name);
   1114 		args_n_results[nargs] = -1;
   1115 		args->nreturns = 1;
   1116 	} else if (strcmp(name, "claim-virt") == 0) {
   1117 		vm_offset_t va;
   1118 		vm_size_t size;
   1119 		vm_offset_t align;
   1120 
   1121 		/* XXX - notyet */
   1122 /*		printf("unimplemented ofw callback - %s\n", name);*/
   1123 		args_n_results[nargs] = -1;
   1124 		args->nreturns = 1;
   1125 		return;
   1126 
   1127 		/* Check format. */
   1128 		if (nargs != 2 || nreturns < 3) {
   1129 		    args_n_results[nargs] = -1;
   1130 		    args->nreturns = 1;
   1131 		    return;
   1132 		}
   1133 		args_n_results[nargs] =	0;	/* properly formatted request */
   1134 
   1135 		/* Allocate size bytes with specified alignment. */
   1136 		size = (vm_size_t)args_n_results[0];
   1137 		align = (vm_offset_t)args_n_results[1];
   1138 		if (align % NBPG != 0) {
   1139 			args_n_results[nargs + 1] = -1;
   1140 			args->nreturns = 2;
   1141 			return;
   1142 		}
   1143 
   1144 		if (va == 0) {
   1145 			/* Couldn't allocate. */
   1146 			args_n_results[nargs + 1] = -1;
   1147 			args->nreturns = 2;
   1148 		} else {
   1149 			/* Successful allocation. */
   1150 			args_n_results[nargs + 1] = 0;
   1151 			args_n_results[nargs + 2] = va;
   1152 			args->nreturns = 3;
   1153 		}
   1154 	} else if (strcmp(name, "release-virt") == 0) {
   1155 		vm_offset_t va;
   1156 		vm_size_t size;
   1157 
   1158 		/* XXX - notyet */
   1159 		printf("unimplemented ofw callback - %s\n", name);
   1160 		args_n_results[nargs] = -1;
   1161 		args->nreturns = 1;
   1162 		return;
   1163 
   1164 		/* Check format. */
   1165 		if (nargs != 2 || nreturns < 1) {
   1166 			args_n_results[nargs] = -1;
   1167 			args->nreturns = 1;
   1168 			return;
   1169 		}
   1170 		args_n_results[nargs] =	0;	/* properly formatted request */
   1171 
   1172 		/* Release bytes. */
   1173 		va = (vm_offset_t)args_n_results[0];
   1174 		size = (vm_size_t)args_n_results[1];
   1175 
   1176 		args->nreturns = 1;
   1177 	} else {
   1178 		args_n_results[nargs] = -1;
   1179 		args->nreturns = 1;
   1180 	}
   1181 }
   1182 
   1183 #define	KERNEL_VMDATA_PTS	(KERNEL_VM_SIZE >> (PDSHIFT + 2))
   1184 #define	KERNEL_OFW_PTS		4
   1185 #define	KERNEL_IO_PTS		4
   1186 
   1187 static void
   1188 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
   1189 	pv_addr_t *proc0_ttbbase;
   1190 	pv_addr_t *proc0_ptpt;
   1191 {
   1192 	int i, oft;
   1193 	pv_addr_t proc0_pagedir;
   1194 	pv_addr_t proc0_pt_pte;
   1195 	pv_addr_t proc0_pt_sys;
   1196 	pv_addr_t proc0_pt_kernel;
   1197 	pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
   1198 	pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
   1199 	pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
   1200 	pv_addr_t msgbuf;
   1201 	vm_offset_t L1pagetable;
   1202 	vm_offset_t L2pagetable;
   1203 	struct mem_translation *tp;
   1204 
   1205 	/* Set-up the system page. */
   1206 	systempage.pv_va = ofw_claimvirt(0, NBPG, 0);
   1207 	if (systempage.pv_va == -1) {
   1208 		/* Something was already mapped to VA 0. */
   1209 		systempage.pv_va = 0;
   1210 		systempage.pv_pa = ofw_gettranslation(0);
   1211 		if (systempage.pv_pa == -1)
   1212 			panic("bogus result from gettranslation(0)");
   1213 	} else {
   1214 		/* We were just allocated the page-length range at VA 0. */
   1215 		if (systempage.pv_va != 0)
   1216 			panic("bogus result from claimvirt(0, NBPG, 0)");
   1217 
   1218 		/* Now allocate a physical page, and establish the mapping. */
   1219 		systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
   1220 		if (systempage.pv_pa == -1)
   1221 			panic("bogus result from claimphys(0, NBPG, NBPG)");
   1222 		ofw_settranslation(systempage.pv_va, systempage.pv_pa,
   1223 		    NBPG, -1);	/* XXX - mode? -JJK */
   1224 
   1225 		/* Zero the memory. */
   1226 		bzero((char *)systempage.pv_va, NBPG);
   1227 	}
   1228 
   1229 	/* Allocate/initialize space for the proc0, NetBSD-managed */
   1230 	/* page tables that we will be switching to soon. */
   1231 	ofw_claimpages(&virt_freeptr, &proc0_pagedir, PD_SIZE);
   1232 	ofw_claimpages(&virt_freeptr, &proc0_pt_pte, PT_SIZE);
   1233 	ofw_claimpages(&virt_freeptr, &proc0_pt_sys, PT_SIZE);
   1234 	ofw_claimpages(&virt_freeptr, &proc0_pt_kernel, PT_SIZE);
   1235 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1236 		ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], PT_SIZE);
   1237 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1238 		ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], PT_SIZE);
   1239 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1240 		ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], PT_SIZE);
   1241 
   1242 	/* Allocate/initialize space for stacks. */
   1243 #ifndef	OFWGENCFG
   1244 	ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
   1245 #endif
   1246 	ofw_claimpages(&virt_freeptr, &undstack, NBPG);
   1247 	ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
   1248 	ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
   1249 
   1250 	/* Allocate/initialize space for msgbuf area. */
   1251 	ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
   1252 	msgbufphys = msgbuf.pv_pa;
   1253 
   1254 	/*
   1255 	 * OK, we're done allocating.
   1256 	 * Get a dump of OFW's translations, and make the appropriate
   1257 	 * entries in the L2 pagetables that we just allocated.
   1258 	 */
   1259 
   1260 	ofw_getvirttranslations();
   1261 
   1262 	for (oft = 0,  tp = OFtranslations; oft < nOFtranslations;
   1263 	    oft++, tp++) {
   1264 
   1265 		vm_offset_t va, pa;
   1266 		int npages = tp->size / NBPG;
   1267 
   1268 		/* Size must be an integral number of pages. */
   1269 		if (npages == 0 || tp->size % NBPG != 0)
   1270 			panic("illegal ofw translation (size)");
   1271 
   1272 		/* Make an entry for each page in the appropriate table. */
   1273 		for (va = tp->virt, pa = tp->phys; npages > 0;
   1274 		    va += NBPG, pa += NBPG, npages--) {
   1275 			vm_offset_t L2pagetable;
   1276 
   1277 			/*
   1278 			 * Map the top bits to the appropriate L2 pagetable.
   1279 			 * The only allowable regions are page0, the
   1280 			 * kernel-static area, and the ofw area.
   1281 			 */
   1282 			switch (va >> (PDSHIFT + 2)) {
   1283 			case 0:
   1284 				/* page0 */
   1285 				L2pagetable = proc0_pt_sys.pv_va;
   1286 				break;
   1287 
   1288 			case (KERNEL_BASE >> (PDSHIFT +	2)):
   1289 				/* kernel static area */
   1290 				L2pagetable = proc0_pt_kernel.pv_va;
   1291 				break;
   1292 
   1293 			case ( OFW_VIRT_BASE               >> (PDSHIFT + 2)):
   1294 			case ((OFW_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
   1295 			case ((OFW_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
   1296 			case ((OFW_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
   1297 				/* ofw area */
   1298 				L2pagetable = proc0_pt_ofw[(va >> (PDSHIFT + 2))
   1299 				    & 0x3].pv_va;
   1300 				break;
   1301 
   1302 			case ( IO_VIRT_BASE               >> (PDSHIFT + 2)):
   1303 			case ((IO_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
   1304 			case ((IO_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
   1305 			case ((IO_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
   1306 				/* io area */
   1307 				L2pagetable = proc0_pt_io[(va >> (PDSHIFT + 2))
   1308 				    & 0x3].pv_va;
   1309 				break;
   1310 
   1311 			default:
   1312 				/* illegal */
   1313 				panic("illegal ofw translation (addr) %#lx", va);
   1314 			}
   1315 
   1316 			/* Sanity.  The current entry should be null. */
   1317 			{
   1318 				pt_entry_t pte;
   1319 				pte = ReadWord(L2pagetable + ((va >> 10)
   1320 				    & 0x00000FFC));
   1321 				if (pte != 0)
   1322 					panic("illegal ofw translation (%#lx, %#lx, %#lx, %x)",
   1323 					    L2pagetable, va, pa, pte);
   1324 			}
   1325 
   1326 			/* Make the entry. */
   1327 			pmap_map_entry(L2pagetable, va, pa,
   1328 			    VM_PROT_READ|VM_PROT_WRITE,
   1329 			    (tp->mode & 0xC) == 0xC ? PTE_CACHE
   1330 						    : PTE_NOCACHE);
   1331 		}
   1332 	}
   1333 
   1334 	/*
   1335 	 * We don't actually want some of the mappings that we just
   1336 	 * set up to appear in proc0's address space.  In particular,
   1337 	 * we don't want aliases to physical addresses that the kernel
   1338 	 * has-mapped/will-map elsewhere.
   1339 	 */
   1340 	ofw_discardmappings(proc0_pt_kernel.pv_va,
   1341 	    proc0_pt_sys.pv_va, PT_SIZE);
   1342 	ofw_discardmappings(proc0_pt_kernel.pv_va,
   1343 	    proc0_pt_kernel.pv_va, PT_SIZE);
   1344 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1345 		ofw_discardmappings(proc0_pt_kernel.pv_va,
   1346 		    proc0_pt_vmdata[i].pv_va, PT_SIZE);
   1347 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1348 		ofw_discardmappings(proc0_pt_kernel.pv_va,
   1349 		    proc0_pt_ofw[i].pv_va, PT_SIZE);
   1350 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1351 		ofw_discardmappings(proc0_pt_kernel.pv_va,
   1352 		    proc0_pt_io[i].pv_va, PT_SIZE);
   1353 	ofw_discardmappings(proc0_pt_kernel.pv_va,
   1354 	    msgbuf.pv_va, MSGBUFSIZE);
   1355 
   1356 	/*
   1357 	 * We did not throw away the proc0_pt_pte and proc0_pagedir
   1358 	 * mappings as well still want them. However we don't want them
   1359 	 * cached ...
   1360 	 * Really these should be uncached when allocated.
   1361 	 */
   1362 	pmap_map_entry(proc0_pt_kernel.pv_va, proc0_pt_pte.pv_va,
   1363 	    proc0_pt_pte.pv_pa,
   1364 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1365 	for (i = 0; i < (PD_SIZE / NBPG); ++i)
   1366 		pmap_map_entry(proc0_pt_kernel.pv_va,
   1367 		    proc0_pagedir.pv_va + NBPG * i,
   1368 		    proc0_pagedir.pv_pa + NBPG * i,
   1369 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1370 
   1371 	/*
   1372 	 * Construct the proc0 L2 pagetables that map page tables.
   1373 	 */
   1374 
   1375 	/* Map entries in the L2pagetable used to map L2PTs. */
   1376 	L2pagetable = proc0_pt_pte.pv_va;
   1377 	pmap_map_entry(L2pagetable, (0x00000000 >> (PGSHIFT-2)),
   1378 	    proc0_pt_sys.pv_pa,
   1379 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1380 	pmap_map_entry(L2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
   1381 	    proc0_pt_kernel.pv_pa,
   1382 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1383 	pmap_map_entry(L2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
   1384 	    proc0_pt_pte.pv_pa,
   1385 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1386 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1387 		pmap_map_entry(L2pagetable, ((KERNEL_VM_BASE + i * 0x00400000)
   1388 		    >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
   1389 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1390 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1391 		pmap_map_entry(L2pagetable, ((OFW_VIRT_BASE + i * 0x00400000)
   1392 		    >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
   1393 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1394 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1395 		pmap_map_entry(L2pagetable, ((IO_VIRT_BASE + i * 0x00400000)
   1396 		    >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
   1397 		    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
   1398 
   1399 	/* Construct the proc0 L1 pagetable. */
   1400 	L1pagetable = proc0_pagedir.pv_va;
   1401 
   1402 	map_pagetable(L1pagetable, 0x0, proc0_pt_sys.pv_pa);
   1403 	map_pagetable(L1pagetable, KERNEL_BASE, proc0_pt_kernel.pv_pa);
   1404 	map_pagetable(L1pagetable, PROCESS_PAGE_TBLS_BASE,
   1405 	    proc0_pt_pte.pv_pa);
   1406 	for (i = 0; i < KERNEL_VMDATA_PTS; i++)
   1407 		map_pagetable(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
   1408 		    proc0_pt_vmdata[i].pv_pa);
   1409 	for (i = 0; i < KERNEL_OFW_PTS; i++)
   1410 		map_pagetable(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
   1411 		    proc0_pt_ofw[i].pv_pa);
   1412 	for (i = 0; i < KERNEL_IO_PTS; i++)
   1413 		map_pagetable(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
   1414 		    proc0_pt_io[i].pv_pa);
   1415 
   1416 	/*
   1417          * gross hack for the sake of not thrashing the TLB and making
   1418 	 * cache flush more efficient: blast l1 ptes for sections.
   1419          */
   1420 	for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
   1421 		vm_offset_t va = tp->virt;
   1422 		vm_offset_t pa = tp->phys;
   1423 
   1424 		if (((va & (NBPD - 1)) == 0) && ((pa & (NBPD - 1)) == 0)) {
   1425 			int nsections = tp->size / NBPD;
   1426 
   1427 			while (nsections--) {
   1428 				/* XXXJRT prot?? */
   1429 				pmap_map_section(L1pagetable, va, pa,
   1430 				    VM_PROT_READ|VM_PROT_WRITE,
   1431 				    (tp->mode & 0xC) == 0xC ? PTE_CACHE
   1432 							    : PTE_NOCACHE);
   1433 				va += NBPD;
   1434 				pa += NBPD;
   1435 			} /* END while */
   1436 		} /* END if */
   1437 	} /* END for */
   1438 
   1439 	/* OUT parameters are the new ttbbase and the pt which maps pts. */
   1440 	*proc0_ttbbase = proc0_pagedir;
   1441 	*proc0_ptpt = proc0_pt_pte;
   1442 }
   1443 
   1444 
   1445 static void
   1446 ofw_getphysmeminfo()
   1447 {
   1448 	int phandle;
   1449 	int mem_len;
   1450 	int avail_len;
   1451 	int i;
   1452 
   1453 	if ((phandle = OF_finddevice("/memory")) == -1 ||
   1454 	    (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
   1455 	    (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
   1456 	    OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
   1457 	    (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
   1458  	    (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
   1459 	    OF_getprop(phandle, "available", OFphysavail, avail_len)
   1460 	    != avail_len)
   1461 		panic("can't get physmeminfo from OFW");
   1462 
   1463 	nOFphysmem = mem_len / sizeof(struct mem_region);
   1464 	nOFphysavail = avail_len / sizeof(struct mem_region);
   1465 
   1466 	/*
   1467 	 * Sort the blocks in each array into ascending address order.
   1468 	 * Also, page-align all blocks.
   1469 	 */
   1470 	for (i = 0; i < 2; i++) {
   1471 		struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
   1472 		struct mem_region *mp;
   1473 		int cnt =  (i == 0) ? nOFphysmem : nOFphysavail;
   1474 		int j;
   1475 
   1476 #ifdef	OLDPRINTFS
   1477 		printf("ofw_getphysmeminfo:  %d blocks\n", cnt);
   1478 #endif
   1479 
   1480 		/* XXX - Convert all the values to host order. -JJK */
   1481 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
   1482 			mp->start = of_decode_int((unsigned char *)&mp->start);
   1483 			mp->size = of_decode_int((unsigned char *)&mp->size);
   1484 		}
   1485 
   1486 		for (j = 0, mp = tmp; j < cnt; j++, mp++) {
   1487 			u_int s, sz;
   1488 			struct mem_region *mp1;
   1489 
   1490 			/* Page-align start of the block. */
   1491 			s = mp->start % NBPG;
   1492 			if (s != 0) {
   1493 				s = (NBPG - s);
   1494 
   1495 				if (mp->size >= s) {
   1496 					mp->start += s;
   1497 					mp->size -= s;
   1498 				}
   1499 			}
   1500 
   1501 			/* Page-align the size. */
   1502 			mp->size -= mp->size % NBPG;
   1503 
   1504 			/* Handle empty block. */
   1505 			if (mp->size == 0) {
   1506 				bcopy(mp + 1, mp, (cnt - (mp - tmp))
   1507 				    * sizeof(struct mem_region));
   1508 				cnt--;
   1509 				mp--;
   1510 				continue;
   1511 			}
   1512 
   1513 			/* Bubble sort. */
   1514 			s = mp->start;
   1515 			sz = mp->size;
   1516 			for (mp1 = tmp; mp1 < mp; mp1++)
   1517 				if (s < mp1->start)
   1518 					break;
   1519 			if (mp1 < mp) {
   1520 				bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
   1521 				mp1->start = s;
   1522 				mp1->size = sz;
   1523 			}
   1524 		}
   1525 
   1526 #ifdef	OLDPRINTFS
   1527 		for (mp = tmp; mp->size; mp++) {
   1528 			printf("%x, %x\n", mp->start, mp->size);
   1529 		}
   1530 #endif
   1531 	}
   1532 }
   1533 
   1534 
   1535 static void
   1536 ofw_getvirttranslations(void)
   1537 {
   1538 	int mmu_phandle;
   1539 	int mmu_ihandle;
   1540 	int trans_len;
   1541 	int over, len;
   1542 	int i;
   1543 	struct mem_translation *tp;
   1544 
   1545 	mmu_ihandle = ofw_mmu_ihandle();
   1546 
   1547 	/* overallocate to avoid increases during allocation */
   1548 	over = 4 * sizeof(struct mem_translation);
   1549 	if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
   1550 	    (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
   1551 	    (OFtranslations = ofw_malloc(len + over)) == 0 ||
   1552 	    (trans_len = OF_getprop(mmu_phandle, "translations",
   1553 	    OFtranslations, len + over)) > (len + over))
   1554 		panic("can't get virttranslations from OFW");
   1555 
   1556 	/* XXX - Convert all the values to host order. -JJK */
   1557 	nOFtranslations = trans_len / sizeof(struct mem_translation);
   1558 #ifdef	OLDPRINTFS
   1559 	printf("ofw_getvirtmeminfo:  %d blocks\n", nOFtranslations);
   1560 #endif
   1561 	for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
   1562 		tp->virt = of_decode_int((unsigned char *)&tp->virt);
   1563 		tp->size = of_decode_int((unsigned char *)&tp->size);
   1564 		tp->phys = of_decode_int((unsigned char *)&tp->phys);
   1565 		tp->mode = of_decode_int((unsigned char *)&tp->mode);
   1566 	}
   1567 }
   1568 
   1569 /*
   1570  * ofw_valloc: allocate blocks of VM for IO and other special purposes
   1571  */
   1572 typedef struct _vfree {
   1573 	struct _vfree *pNext;
   1574 	vm_offset_t start;
   1575 	vm_size_t   size;
   1576 } VFREE, *PVFREE;
   1577 
   1578 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
   1579 
   1580 static PVFREE vflist = &vfinitial;
   1581 
   1582 static vm_offset_t
   1583 ofw_valloc(size, align)
   1584 	vm_offset_t size;
   1585 	vm_offset_t align;
   1586 {
   1587 	PVFREE        *ppvf;
   1588 	PVFREE        pNew;
   1589 	vm_offset_t   new;
   1590 	vm_offset_t   lead;
   1591 
   1592 	for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
   1593 		if (align == 0) {
   1594 			new = (*ppvf)->start;
   1595 			lead = 0;
   1596 		} else {
   1597 			new  = ((*ppvf)->start + (align - 1)) & ~(align - 1);
   1598 			lead = new - (*ppvf)->start;
   1599 		}
   1600 
   1601 		if (((*ppvf)->size - lead) >= size) {
   1602  			if (lead == 0) {
   1603 				/* using whole block */
   1604 				if (size == (*ppvf)->size) {
   1605 					/* splice out of list */
   1606 					(*ppvf) = (*ppvf)->pNext;
   1607 				} else { /* tail of block is free */
   1608 					(*ppvf)->start = new + size;
   1609 					(*ppvf)->size -= size;
   1610 				}
   1611 			} else {
   1612 				vm_size_t tail = ((*ppvf)->start
   1613 				    + (*ppvf)->size) - (new + size);
   1614 				/* free space at beginning */
   1615 				(*ppvf)->size = lead;
   1616 
   1617 				if (tail != 0) {
   1618 					/* free space at tail */
   1619 					pNew = ofw_malloc(sizeof(VFREE));
   1620 					pNew->pNext  = (*ppvf)->pNext;
   1621 					(*ppvf)->pNext = pNew;
   1622 					pNew->start  = new + size;
   1623 					pNew->size   = tail;
   1624 				}
   1625 			}
   1626 			return new;
   1627 		} /* END if */
   1628 	} /* END for */
   1629 
   1630 	return -1;
   1631 }
   1632 
   1633 vm_offset_t
   1634 ofw_map(pa, size, cb_bits)
   1635 	vm_offset_t pa;
   1636 	vm_size_t size;
   1637 	int cb_bits;
   1638 {
   1639 	vm_offset_t va;
   1640 
   1641 	if ((va = ofw_valloc(size, size)) == -1)
   1642 		panic("cannot alloc virtual memory for %#lx", pa);
   1643 
   1644 	ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
   1645 
   1646 	ofw_settranslation(va, pa, size, PT_AP(AP_KRW) | cb_bits);
   1647 
   1648 	return va;
   1649 }
   1650 
   1651 static int
   1652 ofw_mem_ihandle(void)
   1653 {
   1654 	static int mem_ihandle = 0;
   1655 	int chosen;
   1656 
   1657 	if (mem_ihandle != 0)
   1658 		return(mem_ihandle);
   1659 
   1660 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
   1661 	    OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
   1662 		panic("ofw_mem_ihandle");
   1663 
   1664 	mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
   1665 
   1666 	return(mem_ihandle);
   1667 }
   1668 
   1669 
   1670 static int
   1671 ofw_mmu_ihandle(void)
   1672 {
   1673 	static int mmu_ihandle = 0;
   1674 	int chosen;
   1675 
   1676 	if (mmu_ihandle != 0)
   1677 		return(mmu_ihandle);
   1678 
   1679 	if ((chosen = OF_finddevice("/chosen")) == -1 ||
   1680 	    OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
   1681 		panic("ofw_mmu_ihandle");
   1682 
   1683 	mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
   1684 
   1685 	return(mmu_ihandle);
   1686 }
   1687 
   1688 
   1689 /* Return -1 on failure. */
   1690 static vm_offset_t
   1691 ofw_claimphys(pa, size, align)
   1692 	vm_offset_t pa;
   1693 	vm_size_t size;
   1694 	vm_offset_t align;
   1695 {
   1696 	int mem_ihandle = ofw_mem_ihandle();
   1697 
   1698 /*	printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
   1699 	if (align == 0) {
   1700 		/* Allocate at specified base; alignment is ignored. */
   1701 		pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
   1702 	} else {
   1703 		/* Allocate anywhere, with specified alignment. */
   1704 		pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
   1705 	}
   1706 
   1707 /*	printf("%x\n", pa);*/
   1708 	return(pa);
   1709 }
   1710 
   1711 
   1712 #if 0
   1713 /* Return -1 on failure. */
   1714 static vm_offset_t
   1715 ofw_releasephys(pa, size)
   1716 	vm_offset_t pa;
   1717 	vm_size_t size;
   1718 {
   1719 	int mem_ihandle = ofw_mem_ihandle();
   1720 
   1721 /*	printf("ofw_releasephys (%x, %x)\n", pa, size);*/
   1722 
   1723 	return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
   1724 }
   1725 #endif
   1726 
   1727 /* Return -1 on failure. */
   1728 static vm_offset_t
   1729 ofw_claimvirt(va, size, align)
   1730 	vm_offset_t va;
   1731 	vm_size_t size;
   1732 	vm_offset_t align;
   1733 {
   1734 	int mmu_ihandle = ofw_mmu_ihandle();
   1735 
   1736 	/*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
   1737 	if (align == 0) {
   1738 		/* Allocate at specified base; alignment is ignored. */
   1739 		va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
   1740 	} else {
   1741 		/* Allocate anywhere, with specified alignment. */
   1742 		va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
   1743 	}
   1744 
   1745 	/*printf("%x\n", va);*/
   1746 	return(va);
   1747 }
   1748 
   1749 
   1750 /* Return -1 if no mapping. */
   1751 vm_offset_t
   1752 ofw_gettranslation(va)
   1753 	vm_offset_t va;
   1754 {
   1755 	int mmu_ihandle = ofw_mmu_ihandle();
   1756 	vm_offset_t pa;
   1757 	int mode;
   1758 	int exists;
   1759 
   1760 	/*printf("ofw_gettranslation (%x) --> ", va);*/
   1761 	exists = 0;	    /* gets set to true if translation exists */
   1762 	if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
   1763 	    &exists) != 0)
   1764 		return(-1);
   1765 
   1766 	/*printf("%x\n", exists ? pa : -1);*/
   1767 	return(exists ? pa : -1);
   1768 }
   1769 
   1770 
   1771 static void
   1772 ofw_settranslation(va, pa, size, mode)
   1773 	vm_offset_t va;
   1774 	vm_offset_t pa;
   1775 	vm_size_t size;
   1776 	int mode;
   1777 {
   1778 	int mmu_ihandle = ofw_mmu_ihandle();
   1779 
   1780 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
   1781 	if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
   1782 		panic("ofw_settranslation failed");
   1783 }
   1784 
   1785 /*
   1786  *  Allocation routine used before the kernel takes over memory.
   1787  *  Use this for efficient storage for things that aren't rounded to
   1788  *  page size.
   1789  *
   1790  *  The point here is not necessarily to be very efficient (even though
   1791  *  that's sort of nice), but to do proper dynamic allocation to avoid
   1792  *  size-limitation errors.
   1793  *
   1794  */
   1795 
   1796 typedef struct _leftover {
   1797 	struct _leftover *pNext;
   1798 	vm_size_t size;
   1799 } LEFTOVER, *PLEFTOVER;
   1800 
   1801 /* leftover bits of pages.  first word is pointer to next.
   1802    second word is size of leftover */
   1803 static PLEFTOVER leftovers = NULL;
   1804 
   1805 static void *
   1806 ofw_malloc(size)
   1807 	vm_size_t size;
   1808 {
   1809 	PLEFTOVER   *ppLeftover;
   1810 	PLEFTOVER   pLeft;
   1811 	pv_addr_t   new;
   1812 	vm_size_t   newSize, claim_size;
   1813 
   1814 	/* round and set minimum size */
   1815 	size = max(sizeof(LEFTOVER),
   1816 	    ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
   1817 
   1818 	for (ppLeftover = &leftovers; *ppLeftover;
   1819 	    ppLeftover = &((*ppLeftover)->pNext))
   1820 		if ((*ppLeftover)->size >= size)
   1821 			break;
   1822 
   1823 	if (*ppLeftover) { /* have a leftover of the right size */
   1824 		/* remember the leftover */
   1825 		new.pv_va = (vm_offset_t)*ppLeftover;
   1826 		if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
   1827 			/* splice out of chain */
   1828 			*ppLeftover = (*ppLeftover)->pNext;
   1829 		} else {
   1830 			/* remember the next pointer */
   1831 			pLeft = (*ppLeftover)->pNext;
   1832 			newSize = (*ppLeftover)->size - size; /* reduce size */
   1833 			/* move pointer */
   1834 			*ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
   1835 			    + size);
   1836 			(*ppLeftover)->pNext = pLeft;
   1837 			(*ppLeftover)->size  = newSize;
   1838 		}
   1839 	} else {
   1840 		claim_size = (size + NBPG - 1) & ~(NBPG - 1);
   1841 		ofw_claimpages(&virt_freeptr, &new, claim_size);
   1842 		if ((size + sizeof(LEFTOVER)) <= claim_size) {
   1843 			pLeft = (PLEFTOVER)(new.pv_va + size);
   1844 			pLeft->pNext = leftovers;
   1845 			pLeft->size = claim_size - size;
   1846 			leftovers = pLeft;
   1847 		}
   1848 	}
   1849 
   1850 	return (void *)(new.pv_va);
   1851 }
   1852 
   1853 /*
   1854  *  Here is a really, really sleazy free.  It's not used right now,
   1855  *  because it's not worth the extra complexity for just a few bytes.
   1856  *
   1857  */
   1858 #if 0
   1859 static void
   1860 ofw_free(addr, size)
   1861 	vm_offset_t addr;
   1862 	vm_size_t size;
   1863 {
   1864 	PLEFTOVER pLeftover = (PLEFTOVER)addr;
   1865 
   1866 	/* splice right into list without checks or compaction */
   1867 	pLeftover->pNext = leftovers;
   1868 	pLeftover->size  = size;
   1869 	leftovers        = pLeftover;
   1870 }
   1871 #endif
   1872 
   1873 /*
   1874  *  Allocate and zero round(size)/NBPG pages of memory.
   1875  *  We guarantee that the allocated memory will be
   1876  *  aligned to a boundary equal to the smallest power of
   1877  *  2 greater than or equal to size.
   1878  *  free_pp is an IN/OUT parameter which points to the
   1879  *  last allocated virtual address in an allocate-downwards
   1880  *  stack.  pv_p is an OUT parameter which contains the
   1881  *  virtual and physical base addresses of the allocated
   1882  *  memory.
   1883  */
   1884 static void
   1885 ofw_claimpages(free_pp, pv_p, size)
   1886 	vm_offset_t *free_pp;
   1887 	pv_addr_t *pv_p;
   1888 	vm_size_t size;
   1889 {
   1890 	/* round-up to page boundary */
   1891 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
   1892 	vm_size_t aligned_size;
   1893 	vm_offset_t va, pa;
   1894 
   1895 	if (alloc_size == 0)
   1896 		panic("ofw_claimpages zero");
   1897 
   1898 	for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
   1899 		;
   1900 
   1901 	/*  The only way to provide the alignment guarantees is to
   1902 	 *  allocate the virtual and physical ranges separately,
   1903 	 *  then do an explicit map call.
   1904 	 */
   1905 	va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
   1906 	if (ofw_claimvirt(va, alloc_size, 0) != va)
   1907 		panic("ofw_claimpages va alloc");
   1908 	pa = ofw_claimphys(0, alloc_size, aligned_size);
   1909 	if (pa == -1)
   1910 		panic("ofw_claimpages pa alloc");
   1911 	/* XXX - what mode? -JJK */
   1912 	ofw_settranslation(va, pa, alloc_size, -1);
   1913 
   1914 	/* The memory's mapped-in now, so we can zero it. */
   1915 	bzero((char *)va, alloc_size);
   1916 
   1917 	/* Set OUT parameters. */
   1918 	*free_pp = va;
   1919 	pv_p->pv_va = va;
   1920 	pv_p->pv_pa = pa;
   1921 }
   1922 
   1923 
   1924 static void
   1925 ofw_discardmappings(L2pagetable, va, size)
   1926 	vm_offset_t L2pagetable;
   1927 	vm_offset_t va;
   1928 	vm_size_t size;
   1929 {
   1930 	/* round-up to page boundary */
   1931 	vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
   1932 	int npages = alloc_size / NBPG;
   1933 
   1934 	if (npages == 0)
   1935 		panic("ofw_discardmappings zero");
   1936 
   1937 	/* Discard each mapping. */
   1938 	for (; npages > 0; va += NBPG, npages--) {
   1939 		/* Sanity. The current entry should be non-null. */
   1940 		if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
   1941 			panic("ofw_discardmappings zero entry");
   1942 
   1943 		/* Clear the entry. */
   1944 		WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
   1945 	}
   1946 }
   1947 
   1948 
   1949 static void
   1950 ofw_initallocator(void)
   1951 {
   1952 
   1953 }
   1954