ofw.c revision 1.32 1 /* $NetBSD: ofw.c,v 1.32 2003/07/15 03:36:02 lukem Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.32 2003/07/15 03:36:02 lukem Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <dev/cons.h>
55
56 #define _ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62
63 #include <dev/ofw/openfirm.h>
64 #include <machine/ofw.h>
65
66 #include <netinet/in.h>
67
68 #if BOOT_FW_DHCP
69 #include <nfs/bootdata.h>
70 #endif
71
72 #ifdef SHARK
73 #include "machine/pio.h"
74 #include "machine/isa_machdep.h"
75 #endif
76
77 #include "pc.h"
78 #include "isadma.h"
79
80 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
81 #define IO_VIRT_SIZE 0x01000000
82
83 #define KERNEL_IMG_PTS 2
84 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
85 #define KERNEL_OFW_PTS 4
86 #define KERNEL_IO_PTS 4
87
88 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
89 /*
90 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
91 * OFW sits at 0xf7000000
92 */
93 #define KERNEL_VM_SIZE 0x06000000
94
95 /*
96 * Imported variables
97 */
98 extern BootConfig bootconfig; /* temporary, I hope */
99
100 #ifdef DIAGNOSTIC
101 /* NOTE: These variables will be removed, well some of them */
102 extern u_int spl_mask;
103 extern u_int current_mask;
104 #endif
105
106 extern int ofw_handleticks;
107
108
109 /*
110 * Imported routines
111 */
112 extern void dump_spl_masks __P((void));
113 extern void dumpsys __P((void));
114 extern void dotickgrovelling __P((vm_offset_t));
115 #if defined(SHARK) && (NPC > 0)
116 extern void shark_screen_cleanup __P((int));
117 #endif
118
119 #define WriteWord(a, b) \
120 *((volatile unsigned int *)(a)) = (b)
121
122 #define ReadWord(a) \
123 (*((volatile unsigned int *)(a)))
124
125
126 /*
127 * Exported variables
128 */
129 /* These should all be in a meminfo structure. */
130 vm_offset_t physical_start;
131 vm_offset_t physical_freestart;
132 vm_offset_t physical_freeend;
133 vm_offset_t physical_end;
134 u_int free_pages;
135 int physmem;
136 pv_addr_t systempage;
137 #ifndef OFWGENCFG
138 pv_addr_t irqstack;
139 #endif
140 pv_addr_t undstack;
141 pv_addr_t abtstack;
142 pv_addr_t kernelstack;
143
144 vm_offset_t msgbufphys;
145
146 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
147 static vm_offset_t virt_freeptr;
148
149 int ofw_callbacks = 0; /* debugging counter */
150
151 /**************************************************************/
152
153
154 /*
155 * Declarations and definitions private to this module
156 *
157 */
158
159 struct mem_region {
160 vm_offset_t start;
161 vm_size_t size;
162 };
163
164 struct mem_translation {
165 vm_offset_t virt;
166 vm_size_t size;
167 vm_offset_t phys;
168 unsigned int mode;
169 };
170
171 struct isa_range {
172 vm_offset_t isa_phys_hi;
173 vm_offset_t isa_phys_lo;
174 vm_offset_t parent_phys_start;
175 vm_size_t isa_size;
176 };
177
178 struct vl_range {
179 vm_offset_t vl_phys_hi;
180 vm_offset_t vl_phys_lo;
181 vm_offset_t parent_phys_start;
182 vm_size_t vl_size;
183 };
184
185 struct vl_isa_range {
186 vm_offset_t isa_phys_hi;
187 vm_offset_t isa_phys_lo;
188 vm_offset_t parent_phys_hi;
189 vm_offset_t parent_phys_lo;
190 vm_size_t isa_size;
191 };
192
193 struct dma_range {
194 vm_offset_t start;
195 vm_size_t size;
196 };
197
198 struct ofw_cbargs {
199 char *name;
200 int nargs;
201 int nreturns;
202 int args_n_results[12];
203 };
204
205
206 /* Memory info */
207 static int nOFphysmem;
208 static struct mem_region *OFphysmem;
209 static int nOFphysavail;
210 static struct mem_region *OFphysavail;
211 static int nOFtranslations;
212 static struct mem_translation *OFtranslations;
213 static int nOFdmaranges;
214 static struct dma_range *OFdmaranges;
215
216 /* The OFW client services handle. */
217 /* Initialized by ofw_init(). */
218 static ofw_handle_t ofw_client_services_handle;
219
220
221 static void ofw_callbackhandler __P((void *));
222 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
223 static void ofw_getphysmeminfo __P((void));
224 static void ofw_getvirttranslations __P((void));
225 static void *ofw_malloc(vm_size_t size);
226 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
227 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
228 static int ofw_mem_ihandle __P((void));
229 static int ofw_mmu_ihandle __P((void));
230 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
231 #if 0
232 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
233 #endif
234 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
235 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
236 static void ofw_initallocator __P((void));
237 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
238 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
239 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
240
241
242 /*
243 * DHCP hooks. For a first cut, we look to see if there is a DHCP
244 * packet that was saved by the firmware. If not, we proceed as before,
245 * getting hand-configured data from NVRAM. If there is one, we get the
246 * packet, and extract the data from it. For now, we hand that data up
247 * in the boot_args string as before.
248 */
249
250
251 /**************************************************************/
252
253
254 /*
255 *
256 * Support routines for xxx_machdep.c
257 *
258 * The intent is that all OFW-based configurations use the
259 * exported routines in this file to do their business. If
260 * they need to override some function they are free to do so.
261 *
262 * The exported routines are:
263 *
264 * openfirmware
265 * ofw_init
266 * ofw_boot
267 * ofw_getbootinfo
268 * ofw_configmem
269 * ofw_configisa
270 * ofw_configisadma
271 * ofw_gettranslation
272 * ofw_map
273 * ofw_getcleaninfo
274 */
275
276
277 int
278 openfirmware(args)
279 void *args;
280 {
281 int ofw_result;
282 u_int saved_irq_state;
283
284 /* OFW is not re-entrant, so we wrap a mutex around the call. */
285 saved_irq_state = disable_interrupts(I32_bit);
286 ofw_result = ofw_client_services_handle(args);
287 (void)restore_interrupts(saved_irq_state);
288
289 return(ofw_result);
290 }
291
292
293 void
294 ofw_init(ofw_handle)
295 ofw_handle_t ofw_handle;
296 {
297 ofw_client_services_handle = ofw_handle;
298
299 /* Everything we allocate in the remainder of this block is
300 * constrained to be in the "kernel-static" portion of the
301 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
302 * This is because all such objects are expected to be in
303 * that range by NetBSD, or the objects will be re-mapped
304 * after the page-table-switch to other specific locations.
305 * In the latter case, it's simplest if our pre-switch handles
306 * on those objects are in regions that are already "well-
307 * known." (Otherwise, the cloning of the OFW-managed address-
308 * space becomes more awkward.) To minimize the number of L2
309 * page tables that we use, we are further restricting the
310 * remaining allocations in this block to the bottom quarter of
311 * the legal range. OFW will have loaded the kernel text+data+bss
312 * starting at the bottom of the range, and we will allocate
313 * objects from the top, moving downwards. The two sub-regions
314 * will collide if their total sizes hit 8MB. The current total
315 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
316 * limit. The variable virt-freeptr represents the next free va
317 * (moving downwards).
318 */
319 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
320 }
321
322
323 void
324 ofw_boot(howto, bootstr)
325 int howto;
326 char *bootstr;
327 {
328
329 #ifdef DIAGNOSTIC
330 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
331 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
332
333 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
334 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
335 irqmasks[IPL_VM]);
336 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
337 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
338
339 dump_spl_masks();
340 #endif
341
342 /*
343 * If we are still cold then hit the air brakes
344 * and crash to earth fast
345 */
346 if (cold) {
347 doshutdownhooks();
348 printf("Halted while still in the ICE age.\n");
349 printf("The operating system has halted.\n");
350 goto ofw_exit;
351 /*NOTREACHED*/
352 }
353
354 /*
355 * If RB_NOSYNC was not specified sync the discs.
356 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
357 * It looks like syslogd is getting woken up only to find that it cannot
358 * page part of the binary in as the filesystem has been unmounted.
359 */
360 if (!(howto & RB_NOSYNC))
361 bootsync();
362
363 /* Say NO to interrupts */
364 splhigh();
365
366 /* Do a dump if requested. */
367 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
368 dumpsys();
369
370 /* Run any shutdown hooks */
371 doshutdownhooks();
372
373 /* Make sure IRQ's are disabled */
374 IRQdisable;
375
376 if (howto & RB_HALT) {
377 printf("The operating system has halted.\n");
378 goto ofw_exit;
379 }
380
381 /* Tell the user we are booting */
382 printf("rebooting...\n");
383
384 /* Jump into the OFW boot routine. */
385 {
386 static char str[256];
387 char *ap = str, *ap1 = ap;
388
389 if (bootstr && *bootstr) {
390 if (strlen(bootstr) > sizeof str - 5)
391 printf("boot string too large, ignored\n");
392 else {
393 strcpy(str, bootstr);
394 ap1 = ap = str + strlen(str);
395 *ap++ = ' ';
396 }
397 }
398 *ap++ = '-';
399 if (howto & RB_SINGLE)
400 *ap++ = 's';
401 if (howto & RB_KDB)
402 *ap++ = 'd';
403 *ap++ = 0;
404 if (ap[-2] == '-')
405 *ap1 = 0;
406 #if defined(SHARK) && (NPC > 0)
407 shark_screen_cleanup(0);
408 #endif
409 OF_boot(str);
410 /*NOTREACHED*/
411 }
412
413 ofw_exit:
414 printf("Calling OF_exit...\n");
415 #if defined(SHARK) && (NPC > 0)
416 shark_screen_cleanup(1);
417 #endif
418 OF_exit();
419 /*NOTREACHED*/
420 }
421
422
423 #if BOOT_FW_DHCP
424
425 extern char *ip2dotted __P((struct in_addr));
426
427 /*
428 * Get DHCP data from OFW
429 */
430
431 void
432 get_fw_dhcp_data(bdp)
433 struct bootdata *bdp;
434 {
435 int chosen;
436 int dhcplen;
437
438 bzero((char *)bdp, sizeof(*bdp));
439 if ((chosen = OF_finddevice("/chosen")) == -1)
440 panic("no /chosen from OFW");
441 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
442 u_char *cp;
443 int dhcp_type = 0;
444 char *ip;
445
446 /*
447 * OFW saved a DHCP (or BOOTP) packet for us.
448 */
449 if (dhcplen > sizeof(bdp->dhcp_packet))
450 panic("DHCP packet too large");
451 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
452 sizeof(bdp->dhcp_packet));
453 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
454 /*
455 * Collect the interesting data from DHCP into
456 * the bootdata structure.
457 */
458 bdp->ip_address = bdp->dhcp_packet.yiaddr;
459 ip = ip2dotted(bdp->ip_address);
460 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
461 parse_dhcp_options(&bdp->dhcp_packet,
462 bdp->dhcp_packet.options + 4,
463 &bdp->dhcp_packet.options[dhcplen
464 - DHCP_FIXED_NON_UDP], bdp, ip);
465 if (bdp->root_ip.s_addr == 0)
466 bdp->root_ip = bdp->dhcp_packet.siaddr;
467 if (bdp->swap_ip.s_addr == 0)
468 bdp->swap_ip = bdp->dhcp_packet.siaddr;
469 }
470 /*
471 * If the DHCP packet did not contain all the necessary data,
472 * look in NVRAM for the missing parts.
473 */
474 {
475 int options;
476 int proplen;
477 #define BOOTJUNKV_SIZE 256
478 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
479
480
481 if ((options = OF_finddevice("/options")) == -1)
482 panic("can't find /options");
483 if (bdp->ip_address.s_addr == 0 &&
484 (proplen = OF_getprop(options, "ipaddr",
485 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
486 bootjunkv[proplen] = '\0';
487 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
488 bdp->ip_address.s_addr = 0;
489 }
490 if (bdp->ip_mask.s_addr == 0 &&
491 (proplen = OF_getprop(options, "netmask",
492 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
493 bootjunkv[proplen] = '\0';
494 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
495 bdp->ip_mask.s_addr = 0;
496 }
497 if (bdp->hostname[0] == '\0' &&
498 (proplen = OF_getprop(options, "hostname",
499 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
500 bdp->hostname[proplen] = '\0';
501 }
502 if (bdp->root[0] == '\0' &&
503 (proplen = OF_getprop(options, "rootfs",
504 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
505 bootjunkv[proplen] = '\0';
506 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
507 }
508 if (bdp->swap[0] == '\0' &&
509 (proplen = OF_getprop(options, "swapfs",
510 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
511 bootjunkv[proplen] = '\0';
512 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
513 }
514 }
515 }
516
517 #endif /* BOOT_FW_DHCP */
518
519 void
520 ofw_getbootinfo(bp_pp, ba_pp)
521 char **bp_pp;
522 char **ba_pp;
523 {
524 int chosen;
525 int bp_len;
526 int ba_len;
527 char *bootpathv;
528 char *bootargsv;
529
530 /* Read the bootpath and bootargs out of OFW. */
531 /* XXX is bootpath still interesting? --emg */
532 if ((chosen = OF_finddevice("/chosen")) == -1)
533 panic("no /chosen from OFW");
534 bp_len = OF_getproplen(chosen, "bootpath");
535 ba_len = OF_getproplen(chosen, "bootargs");
536 if (bp_len < 0 || ba_len < 0)
537 panic("can't get boot data from OFW");
538
539 bootpathv = (char *)ofw_malloc(bp_len);
540 bootargsv = (char *)ofw_malloc(ba_len);
541
542 if (bp_len)
543 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
544 else
545 bootpathv[0] = '\0';
546
547 if (ba_len)
548 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
549 else
550 bootargsv[0] = '\0';
551
552 *bp_pp = bootpathv;
553 *ba_pp = bootargsv;
554 #ifdef DIAGNOSTIC
555 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
556 #endif
557 }
558
559 vm_offset_t
560 ofw_getcleaninfo(void)
561 {
562 int cpu;
563 vm_offset_t vclean, pclean;
564
565 if ((cpu = OF_finddevice("/cpu")) == -1)
566 panic("no /cpu from OFW");
567
568 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
569 sizeof(vclean))) != sizeof(vclean)) {
570 #ifdef DEBUG
571 printf("no OFW d-cache-flush-address property\n");
572 #endif
573 return -1;
574 }
575
576 if ((pclean = ofw_gettranslation(
577 of_decode_int((unsigned char *)&vclean))) == -1)
578 panic("OFW failed to translate cache flush address");
579
580 return pclean;
581 }
582
583 void
584 ofw_configisa(pio, pmem)
585 vm_offset_t *pio;
586 vm_offset_t *pmem;
587 {
588 int vl;
589
590 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
591 ofw_configisaonly(pio, pmem);
592 else /* old style OFW dev info tree */
593 ofw_configvl(vl, pio, pmem);
594 }
595
596 static void
597 ofw_configisaonly(pio, pmem)
598 vm_offset_t *pio;
599 vm_offset_t *pmem;
600 {
601 int isa;
602 int rangeidx;
603 int size;
604 vm_offset_t hi, start;
605 struct isa_range ranges[2];
606
607 if ((isa = OF_finddevice("/isa")) == -1)
608 panic("OFW has no /isa device node");
609
610 /* expect to find two isa ranges: IO/data and memory/data */
611 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
612 != sizeof(ranges))
613 panic("unexpected size of OFW /isa ranges property: %d", size);
614
615 *pio = *pmem = -1;
616
617 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
618 hi = of_decode_int((unsigned char *)
619 &ranges[rangeidx].isa_phys_hi);
620 start = of_decode_int((unsigned char *)
621 &ranges[rangeidx].parent_phys_start);
622
623 if (hi & 1) { /* then I/O space */
624 *pio = start;
625 } else {
626 *pmem = start;
627 }
628 } /* END for */
629
630 if ((*pio == -1) || (*pmem == -1))
631 panic("bad OFW /isa ranges property");
632
633 }
634
635 static void
636 ofw_configvl(vl, pio, pmem)
637 int vl;
638 vm_offset_t *pio;
639 vm_offset_t *pmem;
640 {
641 int isa;
642 int ir, vr;
643 int size;
644 vm_offset_t hi, start;
645 struct vl_isa_range isa_ranges[2];
646 struct vl_range vl_ranges[2];
647
648 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
649 panic("OFW has no /vlbus/isa device node");
650
651 /* expect to find two isa ranges: IO/data and memory/data */
652 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
653 != sizeof(isa_ranges))
654 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
655 size);
656
657 /* expect to find two vl ranges: IO/data and memory/data */
658 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
659 != sizeof(vl_ranges))
660 panic("unexpected size of OFW /vlbus ranges property: %d", size);
661
662 *pio = -1;
663 *pmem = -1;
664
665 for (ir = 0; ir < 2; ++ir) {
666 for (vr = 0; vr < 2; ++vr) {
667 if ((isa_ranges[ir].parent_phys_hi
668 == vl_ranges[vr].vl_phys_hi) &&
669 (isa_ranges[ir].parent_phys_lo
670 == vl_ranges[vr].vl_phys_lo)) {
671 hi = of_decode_int((unsigned char *)
672 &isa_ranges[ir].isa_phys_hi);
673 start = of_decode_int((unsigned char *)
674 &vl_ranges[vr].parent_phys_start);
675
676 if (hi & 1) { /* then I/O space */
677 *pio = start;
678 } else {
679 *pmem = start;
680 }
681 } /* END if */
682 } /* END for */
683 } /* END for */
684
685 if ((*pio == -1) || (*pmem == -1))
686 panic("bad OFW /isa ranges property");
687 }
688
689 #if NISADMA > 0
690 struct arm32_dma_range *shark_isa_dma_ranges;
691 int shark_isa_dma_nranges;
692 #endif
693
694 void
695 ofw_configisadma(pdma)
696 vm_offset_t *pdma;
697 {
698 int root;
699 int rangeidx;
700 int size;
701 struct dma_range *dr;
702
703 if ((root = OF_finddevice("/")) == -1 ||
704 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
705 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
706 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
707 panic("bad / dma-ranges property");
708
709 nOFdmaranges = size / sizeof(struct dma_range);
710
711 #if NISADMA > 0
712 /* Allocate storage for non-OFW representation of the range. */
713 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
714 sizeof(*shark_isa_dma_ranges));
715 if (shark_isa_dma_ranges == NULL)
716 panic("unable to allocate shark_isa_dma_ranges");
717 shark_isa_dma_nranges = nOFdmaranges;
718 #endif
719
720 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
721 ++rangeidx, ++dr) {
722 dr->start = of_decode_int((unsigned char *)&dr->start);
723 dr->size = of_decode_int((unsigned char *)&dr->size);
724 #if NISADMA > 0
725 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
726 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
727 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
728 #endif
729 }
730
731 #ifdef DEBUG
732 printf("DMA ranges size = %d\n", size);
733
734 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
735 printf("%08lx %08lx\n",
736 (u_long)OFdmaranges[rangeidx].start,
737 (u_long)OFdmaranges[rangeidx].size);
738 }
739 #endif
740 }
741
742 /*
743 * Memory configuration:
744 *
745 * We start off running in the environment provided by OFW.
746 * This has the MMU turned on, the kernel code and data
747 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
748 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
749 * page0 mapped-in at 0x0.
750 *
751 * The strategy is to set-up the address space for proc0 --
752 * including the allocation of space for new page tables -- while
753 * memory is still managed by OFW. We then effectively create a
754 * copy of the address space by dumping all of OFW's translations
755 * and poking them into the new page tables. We then notify OFW
756 * that we are assuming control of memory-management by installing
757 * our callback-handler, and switch to the NetBSD-managed page
758 * tables with the setttb() call.
759 *
760 * This scheme may cause some amount of memory to be wasted within
761 * OFW as dead page tables, but it shouldn't be more than about
762 * 20-30KB. (It's also possible that OFW will re-use the space.)
763 */
764 void
765 ofw_configmem(void)
766 {
767 pv_addr_t proc0_ttbbase;
768 int i;
769
770 /* Set-up proc0 address space. */
771 ofw_construct_proc0_addrspace(&proc0_ttbbase);
772
773 /*
774 * Get a dump of OFW's picture of physical memory.
775 * This is used below to initialize a load of variables used by pmap.
776 * We get it now rather than later because we are about to
777 * tell OFW to stop managing memory.
778 */
779 ofw_getphysmeminfo();
780
781 /* We are about to take control of memory-management from OFW.
782 * Establish callbacks for OFW to use for its future memory needs.
783 * This is required for us to keep using OFW services.
784 */
785
786 /* First initialize our callback memory allocator. */
787 ofw_initallocator();
788
789 OF_set_callback(ofw_callbackhandler);
790
791 /* Switch to the proc0 pagetables. */
792 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
793 setttb(proc0_ttbbase.pv_pa);
794 cpu_tlb_flushID();
795 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
796
797 /*
798 * Moved from cpu_startup() as data_abort_handler() references
799 * this during uvm init
800 */
801 {
802 extern struct user *proc0paddr;
803 proc0paddr = (struct user *)kernelstack.pv_va;
804 lwp0.l_addr = proc0paddr;
805 }
806
807 /* Aaaaaaaah, running in the proc0 address space! */
808 /* I feel good... */
809
810 /* Set-up the various globals which describe physical memory for pmap. */
811 {
812 struct mem_region *mp;
813 int totalcnt;
814 int availcnt;
815
816 /* physmem, physical_start, physical_end */
817 physmem = 0;
818 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
819 totalcnt++, mp++) {
820 #ifdef OLDPRINTFS
821 printf("physmem: %x, %x\n", mp->start, mp->size);
822 #endif
823 physmem += btoc(mp->size);
824 }
825 physical_start = OFphysmem[0].start;
826 mp--;
827 physical_end = mp->start + mp->size;
828
829 /* free_pages, physical_freestart, physical_freeend */
830 free_pages = 0;
831 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
832 availcnt++, mp++) {
833 #ifdef OLDPRINTFS
834 printf("physavail: %x, %x\n", mp->start, mp->size);
835 #endif
836 free_pages += btoc(mp->size);
837 }
838 physical_freestart = OFphysavail[0].start;
839 mp--;
840 physical_freeend = mp->start + mp->size;
841 #ifdef OLDPRINTFS
842 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
843 physmem, free_pages);
844 #endif
845
846 /*
847 * This is a hack to work with the existing pmap code.
848 * That code depends on a RiscPC BootConfig structure
849 * containing, among other things, an array describing
850 * the regions of physical memory. So, for now, we need
851 * to stuff our OFW-derived physical memory info into a
852 * "fake" BootConfig structure.
853 *
854 * An added twist is that we initialize the BootConfig
855 * structure with our "available" physical memory regions
856 * rather than the "total" physical memory regions. Why?
857 * Because:
858 *
859 * (a) the VM code requires that the "free" pages it is
860 * initialized with have consecutive indices. This
861 * allows it to use more efficient data structures
862 * (presumably).
863 * (b) the current pmap routines which report the initial
864 * set of free page indices (pmap_next_page) and
865 * which map addresses to indices (pmap_page_index)
866 * assume that the free pages are consecutive across
867 * memory region boundaries.
868 *
869 * This means that memory which is "stolen" at startup time
870 * (say, for page descriptors) MUST come from either the
871 * bottom of the first region or the top of the last.
872 *
873 * This requirement doesn't mesh well with OFW (or at least
874 * our use of it). We can get around it for the time being
875 * by pretending that our "available" region array describes
876 * all of our physical memory. This may cause some important
877 * information to be excluded from a dump file, but so far
878 * I haven't come across any other negative effects.
879 *
880 * In the long-run we should fix the index
881 * generation/translation code in the pmap module.
882 */
883
884 if (DRAM_BLOCKS < (availcnt + 1))
885 panic("more ofw memory regions than bootconfig blocks");
886
887 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
888 bootconfig.dram[i].address = mp->start;
889 bootconfig.dram[i].pages = btoc(mp->size);
890 }
891 bootconfig.dramblocks = availcnt;
892 }
893
894 /* Load memory into UVM. */
895 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
896
897 /* XXX Please kill this code dead. */
898 for (i = 0; i < bootconfig.dramblocks; i++) {
899 paddr_t start = (paddr_t)bootconfig.dram[i].address;
900 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
901 #if NISADMA > 0
902 paddr_t istart, isize;
903 #endif
904
905 if (start < physical_freestart)
906 start = physical_freestart;
907 if (end > physical_freeend)
908 end = physical_freeend;
909
910 #if 0
911 printf("%d: %lx -> %lx\n", loop, start, end - 1);
912 #endif
913
914 #if NISADMA > 0
915 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
916 shark_isa_dma_nranges,
917 start, end - start,
918 &istart, &isize)) {
919 /*
920 * Place the pages that intersect with the
921 * ISA DMA range onto the ISA DMA free list.
922 */
923 #if 0
924 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
925 istart + isize - 1);
926 #endif
927 uvm_page_physload(atop(istart),
928 atop(istart + isize), atop(istart),
929 atop(istart + isize), VM_FREELIST_ISADMA);
930
931 /*
932 * Load the pieces that come before the
933 * intersection onto the default free list.
934 */
935 if (start < istart) {
936 #if 0
937 printf(" BEFORE 0x%lx -> 0x%lx\n",
938 start, istart - 1);
939 #endif
940 uvm_page_physload(atop(start),
941 atop(istart), atop(start),
942 atop(istart), VM_FREELIST_DEFAULT);
943 }
944
945 /*
946 * Load the pieces that come after the
947 * intersection onto the default free list.
948 */
949 if ((istart + isize) < end) {
950 #if 0
951 printf(" AFTER 0x%lx -> 0x%lx\n",
952 (istart + isize), end - 1);
953 #endif
954 uvm_page_physload(atop(istart + isize),
955 atop(end), atop(istart + isize),
956 atop(end), VM_FREELIST_DEFAULT);
957 }
958 } else {
959 uvm_page_physload(atop(start), atop(end),
960 atop(start), atop(end), VM_FREELIST_DEFAULT);
961 }
962 #else /* NISADMA > 0 */
963 uvm_page_physload(atop(start), atop(end),
964 atop(start), atop(end), VM_FREELIST_DEFAULT);
965 #endif /* NISADMA > 0 */
966 }
967
968 /* Initialize pmap module. */
969 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
970 KERNEL_VM_BASE + KERNEL_VM_SIZE);
971 }
972
973
974 /*
975 ************************************************************
976
977 Routines private to this module
978
979 ************************************************************
980 */
981
982 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
983 static void
984 ofw_callbackhandler(v)
985 void *v;
986 {
987 struct ofw_cbargs *args = v;
988 char *name = args->name;
989 int nargs = args->nargs;
990 int nreturns = args->nreturns;
991 int *args_n_results = args->args_n_results;
992
993 ofw_callbacks++;
994
995 #if defined(OFWGENCFG)
996 /* Check this first, so that we don't waste IRQ time parsing. */
997 if (strcmp(name, "tick") == 0) {
998 vm_offset_t frame;
999
1000 /* Check format. */
1001 if (nargs != 1 || nreturns < 1) {
1002 args_n_results[nargs] = -1;
1003 args->nreturns = 1;
1004 return;
1005 }
1006 args_n_results[nargs] = 0; /* properly formatted request */
1007
1008 /*
1009 * Note that we are running in the IRQ frame, with interrupts
1010 * disabled.
1011 *
1012 * We need to do two things here:
1013 * - copy a few words out of the input frame into a global
1014 * area, for later use by our real tick-handling code
1015 * - patch a few words in the frame so that when OFW returns
1016 * from the interrupt it will resume with our handler
1017 * rather than the code that was actually interrupted.
1018 * Our handler will resume when it finishes with the code
1019 * that was actually interrupted.
1020 *
1021 * It's simplest to do this in assembler, since it requires
1022 * switching frames and grovelling about with registers.
1023 */
1024 frame = (vm_offset_t)args_n_results[0];
1025 if (ofw_handleticks)
1026 dotickgrovelling(frame);
1027 args_n_results[nargs + 1] = frame;
1028 args->nreturns = 1;
1029 } else
1030 #endif
1031
1032 if (strcmp(name, "map") == 0) {
1033 vm_offset_t va;
1034 vm_offset_t pa;
1035 vm_size_t size;
1036 int mode;
1037 int ap_bits;
1038 int dom_bits;
1039 int cb_bits;
1040
1041 /* Check format. */
1042 if (nargs != 4 || nreturns < 2) {
1043 args_n_results[nargs] = -1;
1044 args->nreturns = 1;
1045 return;
1046 }
1047 args_n_results[nargs] = 0; /* properly formatted request */
1048
1049 pa = (vm_offset_t)args_n_results[0];
1050 va = (vm_offset_t)args_n_results[1];
1051 size = (vm_size_t)args_n_results[2];
1052 mode = args_n_results[3];
1053 ap_bits = (mode & 0x00000C00);
1054 dom_bits = (mode & 0x000001E0);
1055 cb_bits = (mode & 0x000000C0);
1056
1057 /* Sanity checks. */
1058 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1059 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1060 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1061 size == 0 || (dom_bits >> 5) != 0) {
1062 args_n_results[nargs + 1] = -1;
1063 args->nreturns = 1;
1064 return;
1065 }
1066
1067 /* Write-back anything stuck in the cache. */
1068 cpu_idcache_wbinv_all();
1069
1070 /* Install new mappings. */
1071 {
1072 pt_entry_t *pte = vtopte(va);
1073 int npages = size >> PGSHIFT;
1074
1075 ap_bits >>= 10;
1076 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1077 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1078 cb_bits);
1079 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1080 }
1081
1082 /* Clean out tlb. */
1083 tlb_flush();
1084
1085 args_n_results[nargs + 1] = 0;
1086 args->nreturns = 2;
1087 } else if (strcmp(name, "unmap") == 0) {
1088 vm_offset_t va;
1089 vm_size_t size;
1090
1091 /* Check format. */
1092 if (nargs != 2 || nreturns < 1) {
1093 args_n_results[nargs] = -1;
1094 args->nreturns = 1;
1095 return;
1096 }
1097 args_n_results[nargs] = 0; /* properly formatted request */
1098
1099 va = (vm_offset_t)args_n_results[0];
1100 size = (vm_size_t)args_n_results[1];
1101
1102 /* Sanity checks. */
1103 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1104 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1105 (size & PGOFSET) != 0 || size == 0) {
1106 args_n_results[nargs + 1] = -1;
1107 args->nreturns = 1;
1108 return;
1109 }
1110
1111 /* Write-back anything stuck in the cache. */
1112 cpu_idcache_wbinv_all();
1113
1114 /* Zero the mappings. */
1115 {
1116 pt_entry_t *pte = vtopte(va);
1117 int npages = size >> PGSHIFT;
1118
1119 for (; npages > 0; pte++, npages--)
1120 *pte = 0;
1121 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1122 }
1123
1124 /* Clean out tlb. */
1125 tlb_flush();
1126
1127 args->nreturns = 1;
1128 } else if (strcmp(name, "translate") == 0) {
1129 vm_offset_t va;
1130 vm_offset_t pa;
1131 int mode;
1132 pt_entry_t pte;
1133
1134 /* Check format. */
1135 if (nargs != 1 || nreturns < 4) {
1136 args_n_results[nargs] = -1;
1137 args->nreturns = 1;
1138 return;
1139 }
1140 args_n_results[nargs] = 0; /* properly formatted request */
1141
1142 va = (vm_offset_t)args_n_results[0];
1143
1144 /* Sanity checks.
1145 * For now, I am only willing to translate va's in the
1146 * "ofw range." Eventually, I may be more generous. -JJK
1147 */
1148 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1149 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1150 args_n_results[nargs + 1] = -1;
1151 args->nreturns = 1;
1152 return;
1153 }
1154
1155 /* Lookup mapping. */
1156 pte = *vtopte(va);
1157 if (pte == 0) {
1158 /* No mapping. */
1159 args_n_results[nargs + 1] = -1;
1160 args->nreturns = 2;
1161 } else {
1162 /* Existing mapping. */
1163 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1164 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1165
1166 args_n_results[nargs + 1] = 0;
1167 args_n_results[nargs + 2] = pa;
1168 args_n_results[nargs + 3] = mode;
1169 args->nreturns = 4;
1170 }
1171 } else if (strcmp(name, "claim-phys") == 0) {
1172 struct pglist alloclist;
1173 vm_offset_t low, high;
1174 vm_size_t align, size;
1175
1176 /*
1177 * XXX
1178 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1179 * XXX
1180 */
1181
1182 /* Check format. */
1183 if (nargs != 4 || nreturns < 3) {
1184 args_n_results[nargs] = -1;
1185 args->nreturns = 1;
1186 return;
1187 }
1188 args_n_results[nargs] = 0; /* properly formatted request */
1189
1190 low = args_n_results[0];
1191 size = args_n_results[2];
1192 align = args_n_results[3];
1193 high = args_n_results[1] + size;
1194
1195 #if 0
1196 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1197 low, size, align, high);
1198 align = size;
1199 printf("forcing align to be 0x%x\n", align);
1200 #endif
1201
1202 args_n_results[nargs + 1] =
1203 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1204 #if 0
1205 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1206 #endif
1207 if (args_n_results[nargs + 1] != 0) {
1208 #if 0
1209 printf("(failed)\n");
1210 #endif
1211 args_n_results[nargs + 1] = -1;
1212 args->nreturns = 2;
1213 return;
1214 }
1215 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1216 #if 0
1217 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1218 #endif
1219 args->nreturns = 3;
1220
1221 } else if (strcmp(name, "release-phys") == 0) {
1222 printf("unimplemented ofw callback - %s\n", name);
1223 args_n_results[nargs] = -1;
1224 args->nreturns = 1;
1225 } else if (strcmp(name, "claim-virt") == 0) {
1226 vm_offset_t va;
1227 vm_size_t size;
1228 vm_offset_t align;
1229
1230 /* XXX - notyet */
1231 /* printf("unimplemented ofw callback - %s\n", name);*/
1232 args_n_results[nargs] = -1;
1233 args->nreturns = 1;
1234 return;
1235
1236 /* Check format. */
1237 if (nargs != 2 || nreturns < 3) {
1238 args_n_results[nargs] = -1;
1239 args->nreturns = 1;
1240 return;
1241 }
1242 args_n_results[nargs] = 0; /* properly formatted request */
1243
1244 /* Allocate size bytes with specified alignment. */
1245 size = (vm_size_t)args_n_results[0];
1246 align = (vm_offset_t)args_n_results[1];
1247 if (align % PAGE_SIZE != 0) {
1248 args_n_results[nargs + 1] = -1;
1249 args->nreturns = 2;
1250 return;
1251 }
1252
1253 if (va == 0) {
1254 /* Couldn't allocate. */
1255 args_n_results[nargs + 1] = -1;
1256 args->nreturns = 2;
1257 } else {
1258 /* Successful allocation. */
1259 args_n_results[nargs + 1] = 0;
1260 args_n_results[nargs + 2] = va;
1261 args->nreturns = 3;
1262 }
1263 } else if (strcmp(name, "release-virt") == 0) {
1264 vm_offset_t va;
1265 vm_size_t size;
1266
1267 /* XXX - notyet */
1268 printf("unimplemented ofw callback - %s\n", name);
1269 args_n_results[nargs] = -1;
1270 args->nreturns = 1;
1271 return;
1272
1273 /* Check format. */
1274 if (nargs != 2 || nreturns < 1) {
1275 args_n_results[nargs] = -1;
1276 args->nreturns = 1;
1277 return;
1278 }
1279 args_n_results[nargs] = 0; /* properly formatted request */
1280
1281 /* Release bytes. */
1282 va = (vm_offset_t)args_n_results[0];
1283 size = (vm_size_t)args_n_results[1];
1284
1285 args->nreturns = 1;
1286 } else {
1287 args_n_results[nargs] = -1;
1288 args->nreturns = 1;
1289 }
1290 }
1291
1292 static void
1293 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1294 {
1295 int i, oft;
1296 static pv_addr_t proc0_pagedir;
1297 static pv_addr_t proc0_pt_sys;
1298 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1299 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1300 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1301 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1302 static pv_addr_t msgbuf;
1303 vm_offset_t L1pagetable;
1304 struct mem_translation *tp;
1305
1306 /* Set-up the system page. */
1307 KASSERT(vector_page == 0); /* XXX for now */
1308 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1309 if (systempage.pv_va == -1) {
1310 /* Something was already mapped to vector_page's VA. */
1311 systempage.pv_va = vector_page;
1312 systempage.pv_pa = ofw_gettranslation(vector_page);
1313 if (systempage.pv_pa == -1)
1314 panic("bogus result from gettranslation(vector_page)");
1315 } else {
1316 /* We were just allocated the page-length range at VA 0. */
1317 if (systempage.pv_va != vector_page)
1318 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1319
1320 /* Now allocate a physical page, and establish the mapping. */
1321 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1322 if (systempage.pv_pa == -1)
1323 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1324 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1325 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1326
1327 /* Zero the memory. */
1328 bzero((char *)systempage.pv_va, PAGE_SIZE);
1329 }
1330
1331 /* Allocate/initialize space for the proc0, NetBSD-managed */
1332 /* page tables that we will be switching to soon. */
1333 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1334 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1335 for (i = 0; i < KERNEL_IMG_PTS; i++)
1336 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1337 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1338 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1339 for (i = 0; i < KERNEL_OFW_PTS; i++)
1340 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1341 for (i = 0; i < KERNEL_IO_PTS; i++)
1342 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1343
1344 /* Allocate/initialize space for stacks. */
1345 #ifndef OFWGENCFG
1346 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1347 #endif
1348 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1349 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1350 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1351
1352 /* Allocate/initialize space for msgbuf area. */
1353 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1354 msgbufphys = msgbuf.pv_pa;
1355
1356 /* Construct the proc0 L1 pagetable. */
1357 L1pagetable = proc0_pagedir.pv_va;
1358
1359 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1360 for (i = 0; i < KERNEL_IMG_PTS; i++)
1361 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1362 &proc0_pt_kernel[i]);
1363 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1364 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1365 &proc0_pt_vmdata[i]);
1366 for (i = 0; i < KERNEL_OFW_PTS; i++)
1367 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1368 &proc0_pt_ofw[i]);
1369 for (i = 0; i < KERNEL_IO_PTS; i++)
1370 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1371 &proc0_pt_io[i]);
1372
1373 /*
1374 * OK, we're done allocating.
1375 * Get a dump of OFW's translations, and make the appropriate
1376 * entries in the L2 pagetables that we just allocated.
1377 */
1378
1379 ofw_getvirttranslations();
1380
1381 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1382 oft++, tp++) {
1383
1384 vm_offset_t va, pa;
1385 int npages = tp->size / PAGE_SIZE;
1386
1387 /* Size must be an integral number of pages. */
1388 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1389 panic("illegal ofw translation (size)");
1390
1391 /* Make an entry for each page in the appropriate table. */
1392 for (va = tp->virt, pa = tp->phys; npages > 0;
1393 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1394 /*
1395 * Map the top bits to the appropriate L2 pagetable.
1396 * The only allowable regions are page0, the
1397 * kernel-static area, and the ofw area.
1398 */
1399 switch (va >> (L1_S_SHIFT + 2)) {
1400 case 0:
1401 /* page0 */
1402 break;
1403
1404 #if KERNEL_IMG_PTS != 2
1405 #error "Update ofw translation range list"
1406 #endif
1407 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1408 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1409 /* kernel static area */
1410 break;
1411
1412 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1413 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1414 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1415 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1416 /* ofw area */
1417 break;
1418
1419 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1420 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1421 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1422 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1423 /* io area */
1424 break;
1425
1426 default:
1427 /* illegal */
1428 panic("illegal ofw translation (addr) %#lx",
1429 va);
1430 }
1431
1432 /* Make the entry. */
1433 pmap_map_entry(L1pagetable, va, pa,
1434 VM_PROT_READ|VM_PROT_WRITE,
1435 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1436 : PTE_NOCACHE);
1437 }
1438 }
1439
1440 /*
1441 * We don't actually want some of the mappings that we just
1442 * set up to appear in proc0's address space. In particular,
1443 * we don't want aliases to physical addresses that the kernel
1444 * has-mapped/will-map elsewhere.
1445 */
1446 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1447 msgbuf.pv_va, MSGBUFSIZE);
1448
1449 /* update the top of the kernel VM */
1450 pmap_curmaxkvaddr =
1451 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1452
1453 /*
1454 * gross hack for the sake of not thrashing the TLB and making
1455 * cache flush more efficient: blast l1 ptes for sections.
1456 */
1457 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1458 vm_offset_t va = tp->virt;
1459 vm_offset_t pa = tp->phys;
1460
1461 if (((va | pa) & L1_S_OFFSET) == 0) {
1462 int nsections = tp->size / L1_S_SIZE;
1463
1464 while (nsections--) {
1465 /* XXXJRT prot?? */
1466 pmap_map_section(L1pagetable, va, pa,
1467 VM_PROT_READ|VM_PROT_WRITE,
1468 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1469 : PTE_NOCACHE);
1470 va += L1_S_SIZE;
1471 pa += L1_S_SIZE;
1472 }
1473 }
1474 }
1475
1476 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1477 *proc0_ttbbase = proc0_pagedir;
1478 }
1479
1480
1481 static void
1482 ofw_getphysmeminfo()
1483 {
1484 int phandle;
1485 int mem_len;
1486 int avail_len;
1487 int i;
1488
1489 if ((phandle = OF_finddevice("/memory")) == -1 ||
1490 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1491 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1492 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1493 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1494 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1495 OF_getprop(phandle, "available", OFphysavail, avail_len)
1496 != avail_len)
1497 panic("can't get physmeminfo from OFW");
1498
1499 nOFphysmem = mem_len / sizeof(struct mem_region);
1500 nOFphysavail = avail_len / sizeof(struct mem_region);
1501
1502 /*
1503 * Sort the blocks in each array into ascending address order.
1504 * Also, page-align all blocks.
1505 */
1506 for (i = 0; i < 2; i++) {
1507 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1508 struct mem_region *mp;
1509 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1510 int j;
1511
1512 #ifdef OLDPRINTFS
1513 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1514 #endif
1515
1516 /* XXX - Convert all the values to host order. -JJK */
1517 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1518 mp->start = of_decode_int((unsigned char *)&mp->start);
1519 mp->size = of_decode_int((unsigned char *)&mp->size);
1520 }
1521
1522 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1523 u_int s, sz;
1524 struct mem_region *mp1;
1525
1526 /* Page-align start of the block. */
1527 s = mp->start % PAGE_SIZE;
1528 if (s != 0) {
1529 s = (PAGE_SIZE - s);
1530
1531 if (mp->size >= s) {
1532 mp->start += s;
1533 mp->size -= s;
1534 }
1535 }
1536
1537 /* Page-align the size. */
1538 mp->size -= mp->size % PAGE_SIZE;
1539
1540 /* Handle empty block. */
1541 if (mp->size == 0) {
1542 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1543 * sizeof(struct mem_region));
1544 cnt--;
1545 mp--;
1546 continue;
1547 }
1548
1549 /* Bubble sort. */
1550 s = mp->start;
1551 sz = mp->size;
1552 for (mp1 = tmp; mp1 < mp; mp1++)
1553 if (s < mp1->start)
1554 break;
1555 if (mp1 < mp) {
1556 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1557 mp1->start = s;
1558 mp1->size = sz;
1559 }
1560 }
1561
1562 #ifdef OLDPRINTFS
1563 for (mp = tmp; mp->size; mp++) {
1564 printf("%x, %x\n", mp->start, mp->size);
1565 }
1566 #endif
1567 }
1568 }
1569
1570
1571 static void
1572 ofw_getvirttranslations(void)
1573 {
1574 int mmu_phandle;
1575 int mmu_ihandle;
1576 int trans_len;
1577 int over, len;
1578 int i;
1579 struct mem_translation *tp;
1580
1581 mmu_ihandle = ofw_mmu_ihandle();
1582
1583 /* overallocate to avoid increases during allocation */
1584 over = 4 * sizeof(struct mem_translation);
1585 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1586 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1587 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1588 (trans_len = OF_getprop(mmu_phandle, "translations",
1589 OFtranslations, len + over)) > (len + over))
1590 panic("can't get virttranslations from OFW");
1591
1592 /* XXX - Convert all the values to host order. -JJK */
1593 nOFtranslations = trans_len / sizeof(struct mem_translation);
1594 #ifdef OLDPRINTFS
1595 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1596 #endif
1597 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1598 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1599 tp->size = of_decode_int((unsigned char *)&tp->size);
1600 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1601 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1602 }
1603 }
1604
1605 /*
1606 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1607 */
1608 typedef struct _vfree {
1609 struct _vfree *pNext;
1610 vm_offset_t start;
1611 vm_size_t size;
1612 } VFREE, *PVFREE;
1613
1614 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1615
1616 static PVFREE vflist = &vfinitial;
1617
1618 static vm_offset_t
1619 ofw_valloc(size, align)
1620 vm_offset_t size;
1621 vm_offset_t align;
1622 {
1623 PVFREE *ppvf;
1624 PVFREE pNew;
1625 vm_offset_t new;
1626 vm_offset_t lead;
1627
1628 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1629 if (align == 0) {
1630 new = (*ppvf)->start;
1631 lead = 0;
1632 } else {
1633 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1634 lead = new - (*ppvf)->start;
1635 }
1636
1637 if (((*ppvf)->size - lead) >= size) {
1638 if (lead == 0) {
1639 /* using whole block */
1640 if (size == (*ppvf)->size) {
1641 /* splice out of list */
1642 (*ppvf) = (*ppvf)->pNext;
1643 } else { /* tail of block is free */
1644 (*ppvf)->start = new + size;
1645 (*ppvf)->size -= size;
1646 }
1647 } else {
1648 vm_size_t tail = ((*ppvf)->start
1649 + (*ppvf)->size) - (new + size);
1650 /* free space at beginning */
1651 (*ppvf)->size = lead;
1652
1653 if (tail != 0) {
1654 /* free space at tail */
1655 pNew = ofw_malloc(sizeof(VFREE));
1656 pNew->pNext = (*ppvf)->pNext;
1657 (*ppvf)->pNext = pNew;
1658 pNew->start = new + size;
1659 pNew->size = tail;
1660 }
1661 }
1662 return new;
1663 } /* END if */
1664 } /* END for */
1665
1666 return -1;
1667 }
1668
1669 vm_offset_t
1670 ofw_map(pa, size, cb_bits)
1671 vm_offset_t pa;
1672 vm_size_t size;
1673 int cb_bits;
1674 {
1675 vm_offset_t va;
1676
1677 if ((va = ofw_valloc(size, size)) == -1)
1678 panic("cannot alloc virtual memory for %#lx", pa);
1679
1680 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1681
1682 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1683
1684 return va;
1685 }
1686
1687 static int
1688 ofw_mem_ihandle(void)
1689 {
1690 static int mem_ihandle = 0;
1691 int chosen;
1692
1693 if (mem_ihandle != 0)
1694 return(mem_ihandle);
1695
1696 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1697 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1698 panic("ofw_mem_ihandle");
1699
1700 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1701
1702 return(mem_ihandle);
1703 }
1704
1705
1706 static int
1707 ofw_mmu_ihandle(void)
1708 {
1709 static int mmu_ihandle = 0;
1710 int chosen;
1711
1712 if (mmu_ihandle != 0)
1713 return(mmu_ihandle);
1714
1715 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1716 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1717 panic("ofw_mmu_ihandle");
1718
1719 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1720
1721 return(mmu_ihandle);
1722 }
1723
1724
1725 /* Return -1 on failure. */
1726 static vm_offset_t
1727 ofw_claimphys(pa, size, align)
1728 vm_offset_t pa;
1729 vm_size_t size;
1730 vm_offset_t align;
1731 {
1732 int mem_ihandle = ofw_mem_ihandle();
1733
1734 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1735 if (align == 0) {
1736 /* Allocate at specified base; alignment is ignored. */
1737 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1738 } else {
1739 /* Allocate anywhere, with specified alignment. */
1740 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1741 }
1742
1743 /* printf("%x\n", pa);*/
1744 return(pa);
1745 }
1746
1747
1748 #if 0
1749 /* Return -1 on failure. */
1750 static vm_offset_t
1751 ofw_releasephys(pa, size)
1752 vm_offset_t pa;
1753 vm_size_t size;
1754 {
1755 int mem_ihandle = ofw_mem_ihandle();
1756
1757 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1758
1759 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1760 }
1761 #endif
1762
1763 /* Return -1 on failure. */
1764 static vm_offset_t
1765 ofw_claimvirt(va, size, align)
1766 vm_offset_t va;
1767 vm_size_t size;
1768 vm_offset_t align;
1769 {
1770 int mmu_ihandle = ofw_mmu_ihandle();
1771
1772 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1773 if (align == 0) {
1774 /* Allocate at specified base; alignment is ignored. */
1775 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1776 } else {
1777 /* Allocate anywhere, with specified alignment. */
1778 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1779 }
1780
1781 /*printf("%x\n", va);*/
1782 return(va);
1783 }
1784
1785
1786 /* Return -1 if no mapping. */
1787 vm_offset_t
1788 ofw_gettranslation(va)
1789 vm_offset_t va;
1790 {
1791 int mmu_ihandle = ofw_mmu_ihandle();
1792 vm_offset_t pa;
1793 int mode;
1794 int exists;
1795
1796 /*printf("ofw_gettranslation (%x) --> ", va);*/
1797 exists = 0; /* gets set to true if translation exists */
1798 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1799 &exists) != 0)
1800 return(-1);
1801
1802 /*printf("%x\n", exists ? pa : -1);*/
1803 return(exists ? pa : -1);
1804 }
1805
1806
1807 static void
1808 ofw_settranslation(va, pa, size, mode)
1809 vm_offset_t va;
1810 vm_offset_t pa;
1811 vm_size_t size;
1812 int mode;
1813 {
1814 int mmu_ihandle = ofw_mmu_ihandle();
1815
1816 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1817 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1818 panic("ofw_settranslation failed");
1819 }
1820
1821 /*
1822 * Allocation routine used before the kernel takes over memory.
1823 * Use this for efficient storage for things that aren't rounded to
1824 * page size.
1825 *
1826 * The point here is not necessarily to be very efficient (even though
1827 * that's sort of nice), but to do proper dynamic allocation to avoid
1828 * size-limitation errors.
1829 *
1830 */
1831
1832 typedef struct _leftover {
1833 struct _leftover *pNext;
1834 vm_size_t size;
1835 } LEFTOVER, *PLEFTOVER;
1836
1837 /* leftover bits of pages. first word is pointer to next.
1838 second word is size of leftover */
1839 static PLEFTOVER leftovers = NULL;
1840
1841 static void *
1842 ofw_malloc(size)
1843 vm_size_t size;
1844 {
1845 PLEFTOVER *ppLeftover;
1846 PLEFTOVER pLeft;
1847 pv_addr_t new;
1848 vm_size_t newSize, claim_size;
1849
1850 /* round and set minimum size */
1851 size = max(sizeof(LEFTOVER),
1852 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1853
1854 for (ppLeftover = &leftovers; *ppLeftover;
1855 ppLeftover = &((*ppLeftover)->pNext))
1856 if ((*ppLeftover)->size >= size)
1857 break;
1858
1859 if (*ppLeftover) { /* have a leftover of the right size */
1860 /* remember the leftover */
1861 new.pv_va = (vm_offset_t)*ppLeftover;
1862 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1863 /* splice out of chain */
1864 *ppLeftover = (*ppLeftover)->pNext;
1865 } else {
1866 /* remember the next pointer */
1867 pLeft = (*ppLeftover)->pNext;
1868 newSize = (*ppLeftover)->size - size; /* reduce size */
1869 /* move pointer */
1870 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1871 + size);
1872 (*ppLeftover)->pNext = pLeft;
1873 (*ppLeftover)->size = newSize;
1874 }
1875 } else {
1876 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1877 ofw_claimpages(&virt_freeptr, &new, claim_size);
1878 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1879 pLeft = (PLEFTOVER)(new.pv_va + size);
1880 pLeft->pNext = leftovers;
1881 pLeft->size = claim_size - size;
1882 leftovers = pLeft;
1883 }
1884 }
1885
1886 return (void *)(new.pv_va);
1887 }
1888
1889 /*
1890 * Here is a really, really sleazy free. It's not used right now,
1891 * because it's not worth the extra complexity for just a few bytes.
1892 *
1893 */
1894 #if 0
1895 static void
1896 ofw_free(addr, size)
1897 vm_offset_t addr;
1898 vm_size_t size;
1899 {
1900 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1901
1902 /* splice right into list without checks or compaction */
1903 pLeftover->pNext = leftovers;
1904 pLeftover->size = size;
1905 leftovers = pLeftover;
1906 }
1907 #endif
1908
1909 /*
1910 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1911 * We guarantee that the allocated memory will be
1912 * aligned to a boundary equal to the smallest power of
1913 * 2 greater than or equal to size.
1914 * free_pp is an IN/OUT parameter which points to the
1915 * last allocated virtual address in an allocate-downwards
1916 * stack. pv_p is an OUT parameter which contains the
1917 * virtual and physical base addresses of the allocated
1918 * memory.
1919 */
1920 static void
1921 ofw_claimpages(free_pp, pv_p, size)
1922 vm_offset_t *free_pp;
1923 pv_addr_t *pv_p;
1924 vm_size_t size;
1925 {
1926 /* round-up to page boundary */
1927 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1928 vm_size_t aligned_size;
1929 vm_offset_t va, pa;
1930
1931 if (alloc_size == 0)
1932 panic("ofw_claimpages zero");
1933
1934 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1935 ;
1936
1937 /* The only way to provide the alignment guarantees is to
1938 * allocate the virtual and physical ranges separately,
1939 * then do an explicit map call.
1940 */
1941 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1942 if (ofw_claimvirt(va, alloc_size, 0) != va)
1943 panic("ofw_claimpages va alloc");
1944 pa = ofw_claimphys(0, alloc_size, aligned_size);
1945 if (pa == -1)
1946 panic("ofw_claimpages pa alloc");
1947 /* XXX - what mode? -JJK */
1948 ofw_settranslation(va, pa, alloc_size, -1);
1949
1950 /* The memory's mapped-in now, so we can zero it. */
1951 bzero((char *)va, alloc_size);
1952
1953 /* Set OUT parameters. */
1954 *free_pp = va;
1955 pv_p->pv_va = va;
1956 pv_p->pv_pa = pa;
1957 }
1958
1959
1960 static void
1961 ofw_discardmappings(L2pagetable, va, size)
1962 vm_offset_t L2pagetable;
1963 vm_offset_t va;
1964 vm_size_t size;
1965 {
1966 /* round-up to page boundary */
1967 vm_size_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1968 int npages = alloc_size / PAGE_SIZE;
1969
1970 if (npages == 0)
1971 panic("ofw_discardmappings zero");
1972
1973 /* Discard each mapping. */
1974 for (; npages > 0; va += PAGE_SIZE, npages--) {
1975 /* Sanity. The current entry should be non-null. */
1976 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1977 panic("ofw_discardmappings zero entry");
1978
1979 /* Clear the entry. */
1980 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1981 }
1982 }
1983
1984
1985 static void
1986 ofw_initallocator(void)
1987 {
1988
1989 }
1990