ofw.c revision 1.37 1 /* $NetBSD: ofw.c,v 1.37 2007/02/23 05:53:36 mrg Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.37 2007/02/23 05:53:36 mrg Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <dev/cons.h>
55
56 #define _ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62
63 #include <dev/ofw/openfirm.h>
64 #include <machine/ofw.h>
65
66 #include <netinet/in.h>
67
68 #if BOOT_FW_DHCP
69 #include <nfs/bootdata.h>
70 #endif
71
72 #ifdef SHARK
73 #include "machine/pio.h"
74 #include "machine/isa_machdep.h"
75 #endif
76
77 #include "pc.h"
78 #include "isadma.h"
79 #include "igsfb_ofbus.h"
80 #include "vga_ofbus.h"
81
82 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
83 #define IO_VIRT_SIZE 0x01000000
84
85 #define KERNEL_IMG_PTS 2
86 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
87 #define KERNEL_OFW_PTS 4
88 #define KERNEL_IO_PTS 4
89
90 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
91 /*
92 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
93 * OFW sits at 0xf7000000
94 */
95 #define KERNEL_VM_SIZE 0x06000000
96
97 /*
98 * Imported variables
99 */
100 extern BootConfig bootconfig; /* temporary, I hope */
101
102 #ifdef DIAGNOSTIC
103 /* NOTE: These variables will be removed, well some of them */
104 extern u_int spl_mask;
105 extern u_int current_mask;
106 #endif
107
108 extern int ofw_handleticks;
109
110
111 /*
112 * Imported routines
113 */
114 extern void dump_spl_masks __P((void));
115 extern void dumpsys __P((void));
116 extern void dotickgrovelling __P((vaddr_t));
117 #if defined(SHARK) && (NPC > 0)
118 extern void shark_screen_cleanup __P((int));
119 #endif
120
121 #define WriteWord(a, b) \
122 *((volatile unsigned int *)(a)) = (b)
123
124 #define ReadWord(a) \
125 (*((volatile unsigned int *)(a)))
126
127
128 /*
129 * Exported variables
130 */
131 /* These should all be in a meminfo structure. */
132 paddr_t physical_start;
133 paddr_t physical_freestart;
134 paddr_t physical_freeend;
135 paddr_t physical_end;
136 u_int free_pages;
137 int physmem;
138 pv_addr_t systempage;
139 #ifndef OFWGENCFG
140 pv_addr_t irqstack;
141 #endif
142 pv_addr_t undstack;
143 pv_addr_t abtstack;
144 pv_addr_t kernelstack;
145
146 paddr_t msgbufphys;
147
148 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
149 static vaddr_t virt_freeptr;
150
151 int ofw_callbacks = 0; /* debugging counter */
152
153 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
154 int console_ihandle = 0;
155 static void reset_screen(void);
156 #endif
157
158 /**************************************************************/
159
160
161 /*
162 * Declarations and definitions private to this module
163 *
164 */
165
166 struct mem_region {
167 paddr_t start;
168 psize_t size;
169 };
170
171 struct mem_translation {
172 vaddr_t virt;
173 vsize_t size;
174 paddr_t phys;
175 unsigned int mode;
176 };
177
178 struct isa_range {
179 paddr_t isa_phys_hi;
180 paddr_t isa_phys_lo;
181 paddr_t parent_phys_start;
182 psize_t isa_size;
183 };
184
185 struct vl_range {
186 paddr_t vl_phys_hi;
187 paddr_t vl_phys_lo;
188 paddr_t parent_phys_start;
189 psize_t vl_size;
190 };
191
192 struct vl_isa_range {
193 paddr_t isa_phys_hi;
194 paddr_t isa_phys_lo;
195 paddr_t parent_phys_hi;
196 paddr_t parent_phys_lo;
197 psize_t isa_size;
198 };
199
200 struct dma_range {
201 paddr_t start;
202 psize_t size;
203 };
204
205 struct ofw_cbargs {
206 char *name;
207 int nargs;
208 int nreturns;
209 int args_n_results[12];
210 };
211
212
213 /* Memory info */
214 static int nOFphysmem;
215 static struct mem_region *OFphysmem;
216 static int nOFphysavail;
217 static struct mem_region *OFphysavail;
218 static int nOFtranslations;
219 static struct mem_translation *OFtranslations;
220 static int nOFdmaranges;
221 static struct dma_range *OFdmaranges;
222
223 /* The OFW client services handle. */
224 /* Initialized by ofw_init(). */
225 static ofw_handle_t ofw_client_services_handle;
226
227
228 static void ofw_callbackhandler __P((void *));
229 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
230 static void ofw_getphysmeminfo __P((void));
231 static void ofw_getvirttranslations __P((void));
232 static void *ofw_malloc(vsize_t size);
233 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
234 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
235 static int ofw_mem_ihandle __P((void));
236 static int ofw_mmu_ihandle __P((void));
237 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
238 #if 0
239 static paddr_t ofw_releasephys __P((paddr_t, psize_t));
240 #endif
241 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
242 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
243 static void ofw_initallocator __P((void));
244 static void ofw_configisaonly __P((paddr_t *, paddr_t *));
245 static void ofw_configvl __P((int, paddr_t *, paddr_t *));
246 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
247
248
249 /*
250 * DHCP hooks. For a first cut, we look to see if there is a DHCP
251 * packet that was saved by the firmware. If not, we proceed as before,
252 * getting hand-configured data from NVRAM. If there is one, we get the
253 * packet, and extract the data from it. For now, we hand that data up
254 * in the boot_args string as before.
255 */
256
257
258 /**************************************************************/
259
260
261 /*
262 *
263 * Support routines for xxx_machdep.c
264 *
265 * The intent is that all OFW-based configurations use the
266 * exported routines in this file to do their business. If
267 * they need to override some function they are free to do so.
268 *
269 * The exported routines are:
270 *
271 * openfirmware
272 * ofw_init
273 * ofw_boot
274 * ofw_getbootinfo
275 * ofw_configmem
276 * ofw_configisa
277 * ofw_configisadma
278 * ofw_gettranslation
279 * ofw_map
280 * ofw_getcleaninfo
281 */
282
283
284 int
285 openfirmware(args)
286 void *args;
287 {
288 int ofw_result;
289 u_int saved_irq_state;
290
291 /* OFW is not re-entrant, so we wrap a mutex around the call. */
292 saved_irq_state = disable_interrupts(I32_bit);
293 ofw_result = ofw_client_services_handle(args);
294 (void)restore_interrupts(saved_irq_state);
295
296 return(ofw_result);
297 }
298
299
300 void
301 ofw_init(ofw_handle)
302 ofw_handle_t ofw_handle;
303 {
304 ofw_client_services_handle = ofw_handle;
305
306 /* Everything we allocate in the remainder of this block is
307 * constrained to be in the "kernel-static" portion of the
308 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
309 * This is because all such objects are expected to be in
310 * that range by NetBSD, or the objects will be re-mapped
311 * after the page-table-switch to other specific locations.
312 * In the latter case, it's simplest if our pre-switch handles
313 * on those objects are in regions that are already "well-
314 * known." (Otherwise, the cloning of the OFW-managed address-
315 * space becomes more awkward.) To minimize the number of L2
316 * page tables that we use, we are further restricting the
317 * remaining allocations in this block to the bottom quarter of
318 * the legal range. OFW will have loaded the kernel text+data+bss
319 * starting at the bottom of the range, and we will allocate
320 * objects from the top, moving downwards. The two sub-regions
321 * will collide if their total sizes hit 8MB. The current total
322 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
323 * limit. The variable virt-freeptr represents the next free va
324 * (moving downwards).
325 */
326 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
327 }
328
329
330 void
331 ofw_boot(howto, bootstr)
332 int howto;
333 char *bootstr;
334 {
335
336 #ifdef DIAGNOSTIC
337 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
338 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
339
340 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
341 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
342 irqmasks[IPL_VM]);
343 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
344 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
345
346 dump_spl_masks();
347 #endif
348
349 /*
350 * If we are still cold then hit the air brakes
351 * and crash to earth fast
352 */
353 if (cold) {
354 doshutdownhooks();
355 printf("Halted while still in the ICE age.\n");
356 printf("The operating system has halted.\n");
357 goto ofw_exit;
358 /*NOTREACHED*/
359 }
360
361 /*
362 * If RB_NOSYNC was not specified sync the discs.
363 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
364 * It looks like syslogd is getting woken up only to find that it cannot
365 * page part of the binary in as the filesystem has been unmounted.
366 */
367 if (!(howto & RB_NOSYNC))
368 bootsync();
369
370 /* Say NO to interrupts */
371 splhigh();
372
373 /* Do a dump if requested. */
374 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
375 dumpsys();
376
377 /* Run any shutdown hooks */
378 doshutdownhooks();
379
380 /* Make sure IRQ's are disabled */
381 IRQdisable;
382
383 if (howto & RB_HALT) {
384 printf("The operating system has halted.\n");
385 goto ofw_exit;
386 }
387
388 /* Tell the user we are booting */
389 printf("rebooting...\n");
390
391 /* Jump into the OFW boot routine. */
392 {
393 static char str[256];
394 char *ap = str, *ap1 = ap;
395
396 if (bootstr && *bootstr) {
397 if (strlen(bootstr) > sizeof str - 5)
398 printf("boot string too large, ignored\n");
399 else {
400 strcpy(str, bootstr);
401 ap1 = ap = str + strlen(str);
402 *ap++ = ' ';
403 }
404 }
405 *ap++ = '-';
406 if (howto & RB_SINGLE)
407 *ap++ = 's';
408 if (howto & RB_KDB)
409 *ap++ = 'd';
410 *ap++ = 0;
411 if (ap[-2] == '-')
412 *ap1 = 0;
413 #if defined(SHARK) && (NPC > 0)
414 shark_screen_cleanup(0);
415 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
416 reset_screen();
417 #endif
418 OF_boot(str);
419 /*NOTREACHED*/
420 }
421
422 ofw_exit:
423 printf("Calling OF_exit...\n");
424 #if defined(SHARK) && (NPC > 0)
425 shark_screen_cleanup(1);
426 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
427 reset_screen();
428 #endif
429 OF_exit();
430 /*NOTREACHED*/
431 }
432
433
434 #if BOOT_FW_DHCP
435
436 extern char *ip2dotted __P((struct in_addr));
437
438 /*
439 * Get DHCP data from OFW
440 */
441
442 void
443 get_fw_dhcp_data(bdp)
444 struct bootdata *bdp;
445 {
446 int chosen;
447 int dhcplen;
448
449 bzero((char *)bdp, sizeof(*bdp));
450 if ((chosen = OF_finddevice("/chosen")) == -1)
451 panic("no /chosen from OFW");
452 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
453 u_char *cp;
454 int dhcp_type = 0;
455 char *ip;
456
457 /*
458 * OFW saved a DHCP (or BOOTP) packet for us.
459 */
460 if (dhcplen > sizeof(bdp->dhcp_packet))
461 panic("DHCP packet too large");
462 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
463 sizeof(bdp->dhcp_packet));
464 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
465 /*
466 * Collect the interesting data from DHCP into
467 * the bootdata structure.
468 */
469 bdp->ip_address = bdp->dhcp_packet.yiaddr;
470 ip = ip2dotted(bdp->ip_address);
471 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
472 parse_dhcp_options(&bdp->dhcp_packet,
473 bdp->dhcp_packet.options + 4,
474 &bdp->dhcp_packet.options[dhcplen
475 - DHCP_FIXED_NON_UDP], bdp, ip);
476 if (bdp->root_ip.s_addr == 0)
477 bdp->root_ip = bdp->dhcp_packet.siaddr;
478 if (bdp->swap_ip.s_addr == 0)
479 bdp->swap_ip = bdp->dhcp_packet.siaddr;
480 }
481 /*
482 * If the DHCP packet did not contain all the necessary data,
483 * look in NVRAM for the missing parts.
484 */
485 {
486 int options;
487 int proplen;
488 #define BOOTJUNKV_SIZE 256
489 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
490
491
492 if ((options = OF_finddevice("/options")) == -1)
493 panic("can't find /options");
494 if (bdp->ip_address.s_addr == 0 &&
495 (proplen = OF_getprop(options, "ipaddr",
496 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
497 bootjunkv[proplen] = '\0';
498 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
499 bdp->ip_address.s_addr = 0;
500 }
501 if (bdp->ip_mask.s_addr == 0 &&
502 (proplen = OF_getprop(options, "netmask",
503 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
504 bootjunkv[proplen] = '\0';
505 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
506 bdp->ip_mask.s_addr = 0;
507 }
508 if (bdp->hostname[0] == '\0' &&
509 (proplen = OF_getprop(options, "hostname",
510 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
511 bdp->hostname[proplen] = '\0';
512 }
513 if (bdp->root[0] == '\0' &&
514 (proplen = OF_getprop(options, "rootfs",
515 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
516 bootjunkv[proplen] = '\0';
517 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
518 }
519 if (bdp->swap[0] == '\0' &&
520 (proplen = OF_getprop(options, "swapfs",
521 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
522 bootjunkv[proplen] = '\0';
523 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
524 }
525 }
526 }
527
528 #endif /* BOOT_FW_DHCP */
529
530 void
531 ofw_getbootinfo(bp_pp, ba_pp)
532 char **bp_pp;
533 char **ba_pp;
534 {
535 int chosen;
536 int bp_len;
537 int ba_len;
538 char *bootpathv;
539 char *bootargsv;
540
541 /* Read the bootpath and bootargs out of OFW. */
542 /* XXX is bootpath still interesting? --emg */
543 if ((chosen = OF_finddevice("/chosen")) == -1)
544 panic("no /chosen from OFW");
545 bp_len = OF_getproplen(chosen, "bootpath");
546 ba_len = OF_getproplen(chosen, "bootargs");
547 if (bp_len < 0 || ba_len < 0)
548 panic("can't get boot data from OFW");
549
550 bootpathv = (char *)ofw_malloc(bp_len);
551 bootargsv = (char *)ofw_malloc(ba_len);
552
553 if (bp_len)
554 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
555 else
556 bootpathv[0] = '\0';
557
558 if (ba_len)
559 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
560 else
561 bootargsv[0] = '\0';
562
563 *bp_pp = bootpathv;
564 *ba_pp = bootargsv;
565 #ifdef DIAGNOSTIC
566 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
567 #endif
568 }
569
570 paddr_t
571 ofw_getcleaninfo(void)
572 {
573 int cpu;
574 vaddr_t vclean;
575 paddr_t pclean;
576
577 if ((cpu = OF_finddevice("/cpu")) == -1)
578 panic("no /cpu from OFW");
579
580 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
581 sizeof(vclean))) != sizeof(vclean)) {
582 #ifdef DEBUG
583 printf("no OFW d-cache-flush-address property\n");
584 #endif
585 return -1;
586 }
587
588 if ((pclean = ofw_gettranslation(
589 of_decode_int((unsigned char *)&vclean))) == -1)
590 panic("OFW failed to translate cache flush address");
591
592 return pclean;
593 }
594
595 void
596 ofw_configisa(pio, pmem)
597 paddr_t *pio;
598 paddr_t *pmem;
599 {
600 int vl;
601
602 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
603 ofw_configisaonly(pio, pmem);
604 else /* old style OFW dev info tree */
605 ofw_configvl(vl, pio, pmem);
606 }
607
608 static void
609 ofw_configisaonly(pio, pmem)
610 paddr_t *pio;
611 paddr_t *pmem;
612 {
613 int isa;
614 int rangeidx;
615 int size;
616 paddr_t hi, start;
617 struct isa_range ranges[2];
618
619 if ((isa = OF_finddevice("/isa")) == -1)
620 panic("OFW has no /isa device node");
621
622 /* expect to find two isa ranges: IO/data and memory/data */
623 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
624 != sizeof(ranges))
625 panic("unexpected size of OFW /isa ranges property: %d", size);
626
627 *pio = *pmem = -1;
628
629 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
630 hi = of_decode_int((unsigned char *)
631 &ranges[rangeidx].isa_phys_hi);
632 start = of_decode_int((unsigned char *)
633 &ranges[rangeidx].parent_phys_start);
634
635 if (hi & 1) { /* then I/O space */
636 *pio = start;
637 } else {
638 *pmem = start;
639 }
640 } /* END for */
641
642 if ((*pio == -1) || (*pmem == -1))
643 panic("bad OFW /isa ranges property");
644
645 }
646
647 static void
648 ofw_configvl(vl, pio, pmem)
649 int vl;
650 paddr_t *pio;
651 paddr_t *pmem;
652 {
653 int isa;
654 int ir, vr;
655 int size;
656 paddr_t hi, start;
657 struct vl_isa_range isa_ranges[2];
658 struct vl_range vl_ranges[2];
659
660 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
661 panic("OFW has no /vlbus/isa device node");
662
663 /* expect to find two isa ranges: IO/data and memory/data */
664 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
665 != sizeof(isa_ranges))
666 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
667 size);
668
669 /* expect to find two vl ranges: IO/data and memory/data */
670 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
671 != sizeof(vl_ranges))
672 panic("unexpected size of OFW /vlbus ranges property: %d", size);
673
674 *pio = -1;
675 *pmem = -1;
676
677 for (ir = 0; ir < 2; ++ir) {
678 for (vr = 0; vr < 2; ++vr) {
679 if ((isa_ranges[ir].parent_phys_hi
680 == vl_ranges[vr].vl_phys_hi) &&
681 (isa_ranges[ir].parent_phys_lo
682 == vl_ranges[vr].vl_phys_lo)) {
683 hi = of_decode_int((unsigned char *)
684 &isa_ranges[ir].isa_phys_hi);
685 start = of_decode_int((unsigned char *)
686 &vl_ranges[vr].parent_phys_start);
687
688 if (hi & 1) { /* then I/O space */
689 *pio = start;
690 } else {
691 *pmem = start;
692 }
693 } /* END if */
694 } /* END for */
695 } /* END for */
696
697 if ((*pio == -1) || (*pmem == -1))
698 panic("bad OFW /isa ranges property");
699 }
700
701 #if NISADMA > 0
702 struct arm32_dma_range *shark_isa_dma_ranges;
703 int shark_isa_dma_nranges;
704 #endif
705
706 void
707 ofw_configisadma(pdma)
708 paddr_t *pdma;
709 {
710 int root;
711 int rangeidx;
712 int size;
713 struct dma_range *dr;
714
715 if ((root = OF_finddevice("/")) == -1 ||
716 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
717 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
718 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
719 panic("bad / dma-ranges property");
720
721 nOFdmaranges = size / sizeof(struct dma_range);
722
723 #if NISADMA > 0
724 /* Allocate storage for non-OFW representation of the range. */
725 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
726 sizeof(*shark_isa_dma_ranges));
727 if (shark_isa_dma_ranges == NULL)
728 panic("unable to allocate shark_isa_dma_ranges");
729 shark_isa_dma_nranges = nOFdmaranges;
730 #endif
731
732 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
733 ++rangeidx, ++dr) {
734 dr->start = of_decode_int((unsigned char *)&dr->start);
735 dr->size = of_decode_int((unsigned char *)&dr->size);
736 #if NISADMA > 0
737 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
738 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
739 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
740 #endif
741 }
742
743 #ifdef DEBUG
744 printf("DMA ranges size = %d\n", size);
745
746 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
747 printf("%08lx %08lx\n",
748 (u_long)OFdmaranges[rangeidx].start,
749 (u_long)OFdmaranges[rangeidx].size);
750 }
751 #endif
752 }
753
754 /*
755 * Memory configuration:
756 *
757 * We start off running in the environment provided by OFW.
758 * This has the MMU turned on, the kernel code and data
759 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
760 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
761 * page0 mapped-in at 0x0.
762 *
763 * The strategy is to set-up the address space for proc0 --
764 * including the allocation of space for new page tables -- while
765 * memory is still managed by OFW. We then effectively create a
766 * copy of the address space by dumping all of OFW's translations
767 * and poking them into the new page tables. We then notify OFW
768 * that we are assuming control of memory-management by installing
769 * our callback-handler, and switch to the NetBSD-managed page
770 * tables with the setttb() call.
771 *
772 * This scheme may cause some amount of memory to be wasted within
773 * OFW as dead page tables, but it shouldn't be more than about
774 * 20-30KB. (It's also possible that OFW will re-use the space.)
775 */
776 void
777 ofw_configmem(void)
778 {
779 pv_addr_t proc0_ttbbase;
780 int i;
781
782 /* Set-up proc0 address space. */
783 ofw_construct_proc0_addrspace(&proc0_ttbbase);
784
785 /*
786 * Get a dump of OFW's picture of physical memory.
787 * This is used below to initialize a load of variables used by pmap.
788 * We get it now rather than later because we are about to
789 * tell OFW to stop managing memory.
790 */
791 ofw_getphysmeminfo();
792
793 /* We are about to take control of memory-management from OFW.
794 * Establish callbacks for OFW to use for its future memory needs.
795 * This is required for us to keep using OFW services.
796 */
797
798 /* First initialize our callback memory allocator. */
799 ofw_initallocator();
800
801 OF_set_callback(ofw_callbackhandler);
802
803 /* Switch to the proc0 pagetables. */
804 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
805 setttb(proc0_ttbbase.pv_pa);
806 cpu_tlb_flushID();
807 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
808
809 /*
810 * Moved from cpu_startup() as data_abort_handler() references
811 * this during uvm init
812 */
813 {
814 extern struct user *proc0paddr;
815 proc0paddr = (struct user *)kernelstack.pv_va;
816 lwp0.l_addr = proc0paddr;
817 }
818
819 /* Aaaaaaaah, running in the proc0 address space! */
820 /* I feel good... */
821
822 /* Set-up the various globals which describe physical memory for pmap. */
823 {
824 struct mem_region *mp;
825 int totalcnt;
826 int availcnt;
827
828 /* physmem, physical_start, physical_end */
829 physmem = 0;
830 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
831 totalcnt++, mp++) {
832 #ifdef OLDPRINTFS
833 printf("physmem: %x, %x\n", mp->start, mp->size);
834 #endif
835 physmem += btoc(mp->size);
836 }
837 physical_start = OFphysmem[0].start;
838 mp--;
839 physical_end = mp->start + mp->size;
840
841 /* free_pages, physical_freestart, physical_freeend */
842 free_pages = 0;
843 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
844 availcnt++, mp++) {
845 #ifdef OLDPRINTFS
846 printf("physavail: %x, %x\n", mp->start, mp->size);
847 #endif
848 free_pages += btoc(mp->size);
849 }
850 physical_freestart = OFphysavail[0].start;
851 mp--;
852 physical_freeend = mp->start + mp->size;
853 #ifdef OLDPRINTFS
854 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
855 physmem, free_pages);
856 #endif
857
858 /*
859 * This is a hack to work with the existing pmap code.
860 * That code depends on a RiscPC BootConfig structure
861 * containing, among other things, an array describing
862 * the regions of physical memory. So, for now, we need
863 * to stuff our OFW-derived physical memory info into a
864 * "fake" BootConfig structure.
865 *
866 * An added twist is that we initialize the BootConfig
867 * structure with our "available" physical memory regions
868 * rather than the "total" physical memory regions. Why?
869 * Because:
870 *
871 * (a) the VM code requires that the "free" pages it is
872 * initialized with have consecutive indices. This
873 * allows it to use more efficient data structures
874 * (presumably).
875 * (b) the current pmap routines which report the initial
876 * set of free page indices (pmap_next_page) and
877 * which map addresses to indices (pmap_page_index)
878 * assume that the free pages are consecutive across
879 * memory region boundaries.
880 *
881 * This means that memory which is "stolen" at startup time
882 * (say, for page descriptors) MUST come from either the
883 * bottom of the first region or the top of the last.
884 *
885 * This requirement doesn't mesh well with OFW (or at least
886 * our use of it). We can get around it for the time being
887 * by pretending that our "available" region array describes
888 * all of our physical memory. This may cause some important
889 * information to be excluded from a dump file, but so far
890 * I haven't come across any other negative effects.
891 *
892 * In the long-run we should fix the index
893 * generation/translation code in the pmap module.
894 */
895
896 if (DRAM_BLOCKS < (availcnt + 1))
897 panic("more ofw memory regions than bootconfig blocks");
898
899 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
900 bootconfig.dram[i].address = mp->start;
901 bootconfig.dram[i].pages = btoc(mp->size);
902 }
903 bootconfig.dramblocks = availcnt;
904 }
905
906 /* Load memory into UVM. */
907 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
908
909 /* XXX Please kill this code dead. */
910 for (i = 0; i < bootconfig.dramblocks; i++) {
911 paddr_t start = (paddr_t)bootconfig.dram[i].address;
912 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
913 #if NISADMA > 0
914 paddr_t istart, isize;
915 #endif
916
917 if (start < physical_freestart)
918 start = physical_freestart;
919 if (end > physical_freeend)
920 end = physical_freeend;
921
922 #if 0
923 printf("%d: %lx -> %lx\n", loop, start, end - 1);
924 #endif
925
926 #if NISADMA > 0
927 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
928 shark_isa_dma_nranges,
929 start, end - start,
930 &istart, &isize)) {
931 /*
932 * Place the pages that intersect with the
933 * ISA DMA range onto the ISA DMA free list.
934 */
935 #if 0
936 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
937 istart + isize - 1);
938 #endif
939 uvm_page_physload(atop(istart),
940 atop(istart + isize), atop(istart),
941 atop(istart + isize), VM_FREELIST_ISADMA);
942
943 /*
944 * Load the pieces that come before the
945 * intersection onto the default free list.
946 */
947 if (start < istart) {
948 #if 0
949 printf(" BEFORE 0x%lx -> 0x%lx\n",
950 start, istart - 1);
951 #endif
952 uvm_page_physload(atop(start),
953 atop(istart), atop(start),
954 atop(istart), VM_FREELIST_DEFAULT);
955 }
956
957 /*
958 * Load the pieces that come after the
959 * intersection onto the default free list.
960 */
961 if ((istart + isize) < end) {
962 #if 0
963 printf(" AFTER 0x%lx -> 0x%lx\n",
964 (istart + isize), end - 1);
965 #endif
966 uvm_page_physload(atop(istart + isize),
967 atop(end), atop(istart + isize),
968 atop(end), VM_FREELIST_DEFAULT);
969 }
970 } else {
971 uvm_page_physload(atop(start), atop(end),
972 atop(start), atop(end), VM_FREELIST_DEFAULT);
973 }
974 #else /* NISADMA > 0 */
975 uvm_page_physload(atop(start), atop(end),
976 atop(start), atop(end), VM_FREELIST_DEFAULT);
977 #endif /* NISADMA > 0 */
978 }
979
980 /* Initialize pmap module. */
981 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
982 KERNEL_VM_BASE + KERNEL_VM_SIZE);
983 }
984
985
986 /*
987 ************************************************************
988
989 Routines private to this module
990
991 ************************************************************
992 */
993
994 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
995 static void
996 ofw_callbackhandler(v)
997 void *v;
998 {
999 struct ofw_cbargs *args = v;
1000 char *name = args->name;
1001 int nargs = args->nargs;
1002 int nreturns = args->nreturns;
1003 int *args_n_results = args->args_n_results;
1004
1005 ofw_callbacks++;
1006
1007 #if defined(OFWGENCFG)
1008 /* Check this first, so that we don't waste IRQ time parsing. */
1009 if (strcmp(name, "tick") == 0) {
1010 vaddr_t frame;
1011
1012 /* Check format. */
1013 if (nargs != 1 || nreturns < 1) {
1014 args_n_results[nargs] = -1;
1015 args->nreturns = 1;
1016 return;
1017 }
1018 args_n_results[nargs] = 0; /* properly formatted request */
1019
1020 /*
1021 * Note that we are running in the IRQ frame, with interrupts
1022 * disabled.
1023 *
1024 * We need to do two things here:
1025 * - copy a few words out of the input frame into a global
1026 * area, for later use by our real tick-handling code
1027 * - patch a few words in the frame so that when OFW returns
1028 * from the interrupt it will resume with our handler
1029 * rather than the code that was actually interrupted.
1030 * Our handler will resume when it finishes with the code
1031 * that was actually interrupted.
1032 *
1033 * It's simplest to do this in assembler, since it requires
1034 * switching frames and grovelling about with registers.
1035 */
1036 frame = (vaddr_t)args_n_results[0];
1037 if (ofw_handleticks)
1038 dotickgrovelling(frame);
1039 args_n_results[nargs + 1] = frame;
1040 args->nreturns = 1;
1041 } else
1042 #endif
1043
1044 if (strcmp(name, "map") == 0) {
1045 vaddr_t va;
1046 paddr_t pa;
1047 vsize_t size;
1048 int mode;
1049 int ap_bits;
1050 int dom_bits;
1051 int cb_bits;
1052
1053 /* Check format. */
1054 if (nargs != 4 || nreturns < 2) {
1055 args_n_results[nargs] = -1;
1056 args->nreturns = 1;
1057 return;
1058 }
1059 args_n_results[nargs] = 0; /* properly formatted request */
1060
1061 pa = (paddr_t)args_n_results[0];
1062 va = (vaddr_t)args_n_results[1];
1063 size = (vsize_t)args_n_results[2];
1064 mode = args_n_results[3];
1065 ap_bits = (mode & 0x00000C00);
1066 dom_bits = (mode & 0x000001E0);
1067 cb_bits = (mode & 0x000000C0);
1068
1069 /* Sanity checks. */
1070 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1071 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1072 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1073 size == 0 || (dom_bits >> 5) != 0) {
1074 args_n_results[nargs + 1] = -1;
1075 args->nreturns = 1;
1076 return;
1077 }
1078
1079 /* Write-back anything stuck in the cache. */
1080 cpu_idcache_wbinv_all();
1081
1082 /* Install new mappings. */
1083 {
1084 pt_entry_t *pte = vtopte(va);
1085 int npages = size >> PGSHIFT;
1086
1087 ap_bits >>= 10;
1088 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1089 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1090 cb_bits);
1091 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1092 }
1093
1094 /* Clean out tlb. */
1095 tlb_flush();
1096
1097 args_n_results[nargs + 1] = 0;
1098 args->nreturns = 2;
1099 } else if (strcmp(name, "unmap") == 0) {
1100 vaddr_t va;
1101 vsize_t size;
1102
1103 /* Check format. */
1104 if (nargs != 2 || nreturns < 1) {
1105 args_n_results[nargs] = -1;
1106 args->nreturns = 1;
1107 return;
1108 }
1109 args_n_results[nargs] = 0; /* properly formatted request */
1110
1111 va = (vaddr_t)args_n_results[0];
1112 size = (vsize_t)args_n_results[1];
1113
1114 /* Sanity checks. */
1115 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1116 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1117 (size & PGOFSET) != 0 || size == 0) {
1118 args_n_results[nargs + 1] = -1;
1119 args->nreturns = 1;
1120 return;
1121 }
1122
1123 /* Write-back anything stuck in the cache. */
1124 cpu_idcache_wbinv_all();
1125
1126 /* Zero the mappings. */
1127 {
1128 pt_entry_t *pte = vtopte(va);
1129 int npages = size >> PGSHIFT;
1130
1131 for (; npages > 0; pte++, npages--)
1132 *pte = 0;
1133 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1134 }
1135
1136 /* Clean out tlb. */
1137 tlb_flush();
1138
1139 args->nreturns = 1;
1140 } else if (strcmp(name, "translate") == 0) {
1141 vaddr_t va;
1142 paddr_t pa;
1143 int mode;
1144 pt_entry_t pte;
1145
1146 /* Check format. */
1147 if (nargs != 1 || nreturns < 4) {
1148 args_n_results[nargs] = -1;
1149 args->nreturns = 1;
1150 return;
1151 }
1152 args_n_results[nargs] = 0; /* properly formatted request */
1153
1154 va = (vaddr_t)args_n_results[0];
1155
1156 /* Sanity checks.
1157 * For now, I am only willing to translate va's in the
1158 * "ofw range." Eventually, I may be more generous. -JJK
1159 */
1160 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1161 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1162 args_n_results[nargs + 1] = -1;
1163 args->nreturns = 1;
1164 return;
1165 }
1166
1167 /* Lookup mapping. */
1168 pte = *vtopte(va);
1169 if (pte == 0) {
1170 /* No mapping. */
1171 args_n_results[nargs + 1] = -1;
1172 args->nreturns = 2;
1173 } else {
1174 /* Existing mapping. */
1175 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1176 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1177
1178 args_n_results[nargs + 1] = 0;
1179 args_n_results[nargs + 2] = pa;
1180 args_n_results[nargs + 3] = mode;
1181 args->nreturns = 4;
1182 }
1183 } else if (strcmp(name, "claim-phys") == 0) {
1184 struct pglist alloclist;
1185 paddr_t low, high, align;
1186 psize_t size;
1187
1188 /*
1189 * XXX
1190 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1191 * XXX
1192 */
1193
1194 /* Check format. */
1195 if (nargs != 4 || nreturns < 3) {
1196 args_n_results[nargs] = -1;
1197 args->nreturns = 1;
1198 return;
1199 }
1200 args_n_results[nargs] = 0; /* properly formatted request */
1201
1202 low = args_n_results[0];
1203 size = args_n_results[2];
1204 align = args_n_results[3];
1205 high = args_n_results[1] + size;
1206
1207 #if 0
1208 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1209 low, size, align, high);
1210 align = size;
1211 printf("forcing align to be 0x%x\n", align);
1212 #endif
1213
1214 args_n_results[nargs + 1] =
1215 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1216 #if 0
1217 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1218 #endif
1219 if (args_n_results[nargs + 1] != 0) {
1220 #if 0
1221 printf("(failed)\n");
1222 #endif
1223 args_n_results[nargs + 1] = -1;
1224 args->nreturns = 2;
1225 return;
1226 }
1227 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1228 #if 0
1229 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1230 #endif
1231 args->nreturns = 3;
1232
1233 } else if (strcmp(name, "release-phys") == 0) {
1234 printf("unimplemented ofw callback - %s\n", name);
1235 args_n_results[nargs] = -1;
1236 args->nreturns = 1;
1237 } else if (strcmp(name, "claim-virt") == 0) {
1238 vaddr_t va;
1239 vsize_t size;
1240 vaddr_t align;
1241
1242 /* XXX - notyet */
1243 /* printf("unimplemented ofw callback - %s\n", name);*/
1244 args_n_results[nargs] = -1;
1245 args->nreturns = 1;
1246 return;
1247
1248 /* Check format. */
1249 if (nargs != 2 || nreturns < 3) {
1250 args_n_results[nargs] = -1;
1251 args->nreturns = 1;
1252 return;
1253 }
1254 args_n_results[nargs] = 0; /* properly formatted request */
1255
1256 /* Allocate size bytes with specified alignment. */
1257 size = (vsize_t)args_n_results[0];
1258 align = (vaddr_t)args_n_results[1];
1259 if (align % PAGE_SIZE != 0) {
1260 args_n_results[nargs + 1] = -1;
1261 args->nreturns = 2;
1262 return;
1263 }
1264
1265 if (va == 0) {
1266 /* Couldn't allocate. */
1267 args_n_results[nargs + 1] = -1;
1268 args->nreturns = 2;
1269 } else {
1270 /* Successful allocation. */
1271 args_n_results[nargs + 1] = 0;
1272 args_n_results[nargs + 2] = va;
1273 args->nreturns = 3;
1274 }
1275 } else if (strcmp(name, "release-virt") == 0) {
1276 vaddr_t va;
1277 vsize_t size;
1278
1279 /* XXX - notyet */
1280 printf("unimplemented ofw callback - %s\n", name);
1281 args_n_results[nargs] = -1;
1282 args->nreturns = 1;
1283 return;
1284
1285 /* Check format. */
1286 if (nargs != 2 || nreturns < 1) {
1287 args_n_results[nargs] = -1;
1288 args->nreturns = 1;
1289 return;
1290 }
1291 args_n_results[nargs] = 0; /* properly formatted request */
1292
1293 /* Release bytes. */
1294 va = (vaddr_t)args_n_results[0];
1295 size = (vsize_t)args_n_results[1];
1296
1297 args->nreturns = 1;
1298 } else {
1299 args_n_results[nargs] = -1;
1300 args->nreturns = 1;
1301 }
1302 }
1303
1304 static void
1305 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1306 {
1307 int i, oft;
1308 static pv_addr_t proc0_pagedir;
1309 static pv_addr_t proc0_pt_sys;
1310 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1311 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1312 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1313 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1314 static pv_addr_t msgbuf;
1315 vaddr_t L1pagetable;
1316 struct mem_translation *tp;
1317
1318 /* Set-up the system page. */
1319 KASSERT(vector_page == 0); /* XXX for now */
1320 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1321 if (systempage.pv_va == -1) {
1322 /* Something was already mapped to vector_page's VA. */
1323 systempage.pv_va = vector_page;
1324 systempage.pv_pa = ofw_gettranslation(vector_page);
1325 if (systempage.pv_pa == -1)
1326 panic("bogus result from gettranslation(vector_page)");
1327 } else {
1328 /* We were just allocated the page-length range at VA 0. */
1329 if (systempage.pv_va != vector_page)
1330 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1331
1332 /* Now allocate a physical page, and establish the mapping. */
1333 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1334 if (systempage.pv_pa == -1)
1335 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1336 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1337 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1338
1339 /* Zero the memory. */
1340 bzero((char *)systempage.pv_va, PAGE_SIZE);
1341 }
1342
1343 /* Allocate/initialize space for the proc0, NetBSD-managed */
1344 /* page tables that we will be switching to soon. */
1345 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1346 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1347 for (i = 0; i < KERNEL_IMG_PTS; i++)
1348 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1349 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1350 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1351 for (i = 0; i < KERNEL_OFW_PTS; i++)
1352 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1353 for (i = 0; i < KERNEL_IO_PTS; i++)
1354 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1355
1356 /* Allocate/initialize space for stacks. */
1357 #ifndef OFWGENCFG
1358 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1359 #endif
1360 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1361 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1362 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1363
1364 /* Allocate/initialize space for msgbuf area. */
1365 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1366 msgbufphys = msgbuf.pv_pa;
1367
1368 /* Construct the proc0 L1 pagetable. */
1369 L1pagetable = proc0_pagedir.pv_va;
1370
1371 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1372 for (i = 0; i < KERNEL_IMG_PTS; i++)
1373 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1374 &proc0_pt_kernel[i]);
1375 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1376 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1377 &proc0_pt_vmdata[i]);
1378 for (i = 0; i < KERNEL_OFW_PTS; i++)
1379 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1380 &proc0_pt_ofw[i]);
1381 for (i = 0; i < KERNEL_IO_PTS; i++)
1382 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1383 &proc0_pt_io[i]);
1384
1385 /*
1386 * OK, we're done allocating.
1387 * Get a dump of OFW's translations, and make the appropriate
1388 * entries in the L2 pagetables that we just allocated.
1389 */
1390
1391 ofw_getvirttranslations();
1392
1393 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1394 oft++, tp++) {
1395
1396 vaddr_t va;
1397 paddr_t pa;
1398 int npages = tp->size / PAGE_SIZE;
1399
1400 /* Size must be an integral number of pages. */
1401 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1402 panic("illegal ofw translation (size)");
1403
1404 /* Make an entry for each page in the appropriate table. */
1405 for (va = tp->virt, pa = tp->phys; npages > 0;
1406 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1407 /*
1408 * Map the top bits to the appropriate L2 pagetable.
1409 * The only allowable regions are page0, the
1410 * kernel-static area, and the ofw area.
1411 */
1412 switch (va >> (L1_S_SHIFT + 2)) {
1413 case 0:
1414 /* page0 */
1415 break;
1416
1417 #if KERNEL_IMG_PTS != 2
1418 #error "Update ofw translation range list"
1419 #endif
1420 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1421 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1422 /* kernel static area */
1423 break;
1424
1425 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1426 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1427 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1428 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1429 /* ofw area */
1430 break;
1431
1432 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1433 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1434 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1435 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1436 /* io area */
1437 break;
1438
1439 default:
1440 /* illegal */
1441 panic("illegal ofw translation (addr) %#lx",
1442 va);
1443 }
1444
1445 /* Make the entry. */
1446 pmap_map_entry(L1pagetable, va, pa,
1447 VM_PROT_READ|VM_PROT_WRITE,
1448 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1449 : PTE_NOCACHE);
1450 }
1451 }
1452
1453 /*
1454 * We don't actually want some of the mappings that we just
1455 * set up to appear in proc0's address space. In particular,
1456 * we don't want aliases to physical addresses that the kernel
1457 * has-mapped/will-map elsewhere.
1458 */
1459 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1460 msgbuf.pv_va, MSGBUFSIZE);
1461
1462 /* update the top of the kernel VM */
1463 pmap_curmaxkvaddr =
1464 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1465
1466 /*
1467 * gross hack for the sake of not thrashing the TLB and making
1468 * cache flush more efficient: blast l1 ptes for sections.
1469 */
1470 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1471 vaddr_t va = tp->virt;
1472 paddr_t pa = tp->phys;
1473
1474 if (((va | pa) & L1_S_OFFSET) == 0) {
1475 int nsections = tp->size / L1_S_SIZE;
1476
1477 while (nsections--) {
1478 /* XXXJRT prot?? */
1479 pmap_map_section(L1pagetable, va, pa,
1480 VM_PROT_READ|VM_PROT_WRITE,
1481 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1482 : PTE_NOCACHE);
1483 va += L1_S_SIZE;
1484 pa += L1_S_SIZE;
1485 }
1486 }
1487 }
1488
1489 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1490 *proc0_ttbbase = proc0_pagedir;
1491 }
1492
1493
1494 static void
1495 ofw_getphysmeminfo()
1496 {
1497 int phandle;
1498 int mem_len;
1499 int avail_len;
1500 int i;
1501
1502 if ((phandle = OF_finddevice("/memory")) == -1 ||
1503 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1504 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1505 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1506 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1507 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1508 OF_getprop(phandle, "available", OFphysavail, avail_len)
1509 != avail_len)
1510 panic("can't get physmeminfo from OFW");
1511
1512 nOFphysmem = mem_len / sizeof(struct mem_region);
1513 nOFphysavail = avail_len / sizeof(struct mem_region);
1514
1515 /*
1516 * Sort the blocks in each array into ascending address order.
1517 * Also, page-align all blocks.
1518 */
1519 for (i = 0; i < 2; i++) {
1520 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1521 struct mem_region *mp;
1522 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1523 int j;
1524
1525 #ifdef OLDPRINTFS
1526 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1527 #endif
1528
1529 /* XXX - Convert all the values to host order. -JJK */
1530 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1531 mp->start = of_decode_int((unsigned char *)&mp->start);
1532 mp->size = of_decode_int((unsigned char *)&mp->size);
1533 }
1534
1535 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1536 u_int s, sz;
1537 struct mem_region *mp1;
1538
1539 /* Page-align start of the block. */
1540 s = mp->start % PAGE_SIZE;
1541 if (s != 0) {
1542 s = (PAGE_SIZE - s);
1543
1544 if (mp->size >= s) {
1545 mp->start += s;
1546 mp->size -= s;
1547 }
1548 }
1549
1550 /* Page-align the size. */
1551 mp->size -= mp->size % PAGE_SIZE;
1552
1553 /* Handle empty block. */
1554 if (mp->size == 0) {
1555 memmove(mp, mp + 1, (cnt - (mp - tmp))
1556 * sizeof(struct mem_region));
1557 cnt--;
1558 mp--;
1559 continue;
1560 }
1561
1562 /* Bubble sort. */
1563 s = mp->start;
1564 sz = mp->size;
1565 for (mp1 = tmp; mp1 < mp; mp1++)
1566 if (s < mp1->start)
1567 break;
1568 if (mp1 < mp) {
1569 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1570 mp1->start = s;
1571 mp1->size = sz;
1572 }
1573 }
1574
1575 #ifdef OLDPRINTFS
1576 for (mp = tmp; mp->size; mp++) {
1577 printf("%x, %x\n", mp->start, mp->size);
1578 }
1579 #endif
1580 }
1581 }
1582
1583
1584 static void
1585 ofw_getvirttranslations(void)
1586 {
1587 int mmu_phandle;
1588 int mmu_ihandle;
1589 int trans_len;
1590 int over, len;
1591 int i;
1592 struct mem_translation *tp;
1593
1594 mmu_ihandle = ofw_mmu_ihandle();
1595
1596 /* overallocate to avoid increases during allocation */
1597 over = 4 * sizeof(struct mem_translation);
1598 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1599 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1600 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1601 (trans_len = OF_getprop(mmu_phandle, "translations",
1602 OFtranslations, len + over)) > (len + over))
1603 panic("can't get virttranslations from OFW");
1604
1605 /* XXX - Convert all the values to host order. -JJK */
1606 nOFtranslations = trans_len / sizeof(struct mem_translation);
1607 #ifdef OLDPRINTFS
1608 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1609 #endif
1610 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1611 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1612 tp->size = of_decode_int((unsigned char *)&tp->size);
1613 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1614 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1615 }
1616 }
1617
1618 /*
1619 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1620 */
1621 typedef struct _vfree {
1622 struct _vfree *pNext;
1623 vaddr_t start;
1624 vsize_t size;
1625 } VFREE, *PVFREE;
1626
1627 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1628
1629 static PVFREE vflist = &vfinitial;
1630
1631 static vaddr_t
1632 ofw_valloc(size, align)
1633 vsize_t size;
1634 vaddr_t align;
1635 {
1636 PVFREE *ppvf;
1637 PVFREE pNew;
1638 vaddr_t new;
1639 vaddr_t lead;
1640
1641 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1642 if (align == 0) {
1643 new = (*ppvf)->start;
1644 lead = 0;
1645 } else {
1646 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1647 lead = new - (*ppvf)->start;
1648 }
1649
1650 if (((*ppvf)->size - lead) >= size) {
1651 if (lead == 0) {
1652 /* using whole block */
1653 if (size == (*ppvf)->size) {
1654 /* splice out of list */
1655 (*ppvf) = (*ppvf)->pNext;
1656 } else { /* tail of block is free */
1657 (*ppvf)->start = new + size;
1658 (*ppvf)->size -= size;
1659 }
1660 } else {
1661 vsize_t tail = ((*ppvf)->start
1662 + (*ppvf)->size) - (new + size);
1663 /* free space at beginning */
1664 (*ppvf)->size = lead;
1665
1666 if (tail != 0) {
1667 /* free space at tail */
1668 pNew = ofw_malloc(sizeof(VFREE));
1669 pNew->pNext = (*ppvf)->pNext;
1670 (*ppvf)->pNext = pNew;
1671 pNew->start = new + size;
1672 pNew->size = tail;
1673 }
1674 }
1675 return new;
1676 } /* END if */
1677 } /* END for */
1678
1679 return -1;
1680 }
1681
1682 vaddr_t
1683 ofw_map(pa, size, cb_bits)
1684 paddr_t pa;
1685 vsize_t size;
1686 int cb_bits;
1687 {
1688 vaddr_t va;
1689
1690 if ((va = ofw_valloc(size, size)) == -1)
1691 panic("cannot alloc virtual memory for %#lx", pa);
1692
1693 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1694
1695 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1696
1697 return va;
1698 }
1699
1700 static int
1701 ofw_mem_ihandle(void)
1702 {
1703 static int mem_ihandle = 0;
1704 int chosen;
1705
1706 if (mem_ihandle != 0)
1707 return(mem_ihandle);
1708
1709 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1710 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1711 panic("ofw_mem_ihandle");
1712
1713 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1714
1715 return(mem_ihandle);
1716 }
1717
1718
1719 static int
1720 ofw_mmu_ihandle(void)
1721 {
1722 static int mmu_ihandle = 0;
1723 int chosen;
1724
1725 if (mmu_ihandle != 0)
1726 return(mmu_ihandle);
1727
1728 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1729 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1730 panic("ofw_mmu_ihandle");
1731
1732 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1733
1734 return(mmu_ihandle);
1735 }
1736
1737
1738 /* Return -1 on failure. */
1739 static paddr_t
1740 ofw_claimphys(pa, size, align)
1741 paddr_t pa;
1742 psize_t size;
1743 paddr_t align;
1744 {
1745 int mem_ihandle = ofw_mem_ihandle();
1746
1747 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1748 if (align == 0) {
1749 /* Allocate at specified base; alignment is ignored. */
1750 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1751 } else {
1752 /* Allocate anywhere, with specified alignment. */
1753 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1754 }
1755
1756 /* printf("%x\n", pa);*/
1757 return(pa);
1758 }
1759
1760
1761 #if 0
1762 /* Return -1 on failure. */
1763 static paddr_t
1764 ofw_releasephys(pa, size)
1765 paddr_t pa;
1766 psize_t size;
1767 {
1768 int mem_ihandle = ofw_mem_ihandle();
1769
1770 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1771
1772 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1773 }
1774 #endif
1775
1776 /* Return -1 on failure. */
1777 static vaddr_t
1778 ofw_claimvirt(va, size, align)
1779 vaddr_t va;
1780 vsize_t size;
1781 vaddr_t align;
1782 {
1783 int mmu_ihandle = ofw_mmu_ihandle();
1784
1785 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1786 if (align == 0) {
1787 /* Allocate at specified base; alignment is ignored. */
1788 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1789 } else {
1790 /* Allocate anywhere, with specified alignment. */
1791 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1792 }
1793
1794 /*printf("%x\n", va);*/
1795 return(va);
1796 }
1797
1798 /* Return -1 if no mapping. */
1799 paddr_t
1800 ofw_gettranslation(va)
1801 vaddr_t va;
1802 {
1803 int mmu_ihandle = ofw_mmu_ihandle();
1804 paddr_t pa;
1805 int mode;
1806 int exists;
1807
1808 #ifdef OFW_DEBUG
1809 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1810 #endif
1811 exists = 0; /* gets set to true if translation exists */
1812 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1813 &exists) != 0)
1814 return(-1);
1815
1816 #ifdef OFW_DEBUG
1817 printf("%d %x\n", exists, (uint32_t)pa);
1818 #endif
1819 return(exists ? pa : -1);
1820 }
1821
1822
1823 static void
1824 ofw_settranslation(va, pa, size, mode)
1825 vaddr_t va;
1826 paddr_t pa;
1827 vsize_t size;
1828 int mode;
1829 {
1830 int mmu_ihandle = ofw_mmu_ihandle();
1831
1832 #ifdef OFW_DEBUG
1833 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1834 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1835 #endif
1836 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1837 panic("ofw_settranslation failed");
1838 }
1839
1840 /*
1841 * Allocation routine used before the kernel takes over memory.
1842 * Use this for efficient storage for things that aren't rounded to
1843 * page size.
1844 *
1845 * The point here is not necessarily to be very efficient (even though
1846 * that's sort of nice), but to do proper dynamic allocation to avoid
1847 * size-limitation errors.
1848 *
1849 */
1850
1851 typedef struct _leftover {
1852 struct _leftover *pNext;
1853 vsize_t size;
1854 } LEFTOVER, *PLEFTOVER;
1855
1856 /* leftover bits of pages. first word is pointer to next.
1857 second word is size of leftover */
1858 static PLEFTOVER leftovers = NULL;
1859
1860 static void *
1861 ofw_malloc(size)
1862 vsize_t size;
1863 {
1864 PLEFTOVER *ppLeftover;
1865 PLEFTOVER pLeft;
1866 pv_addr_t new;
1867 vsize_t newSize, claim_size;
1868
1869 /* round and set minimum size */
1870 size = max(sizeof(LEFTOVER),
1871 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1872
1873 for (ppLeftover = &leftovers; *ppLeftover;
1874 ppLeftover = &((*ppLeftover)->pNext))
1875 if ((*ppLeftover)->size >= size)
1876 break;
1877
1878 if (*ppLeftover) { /* have a leftover of the right size */
1879 /* remember the leftover */
1880 new.pv_va = (vaddr_t)*ppLeftover;
1881 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1882 /* splice out of chain */
1883 *ppLeftover = (*ppLeftover)->pNext;
1884 } else {
1885 /* remember the next pointer */
1886 pLeft = (*ppLeftover)->pNext;
1887 newSize = (*ppLeftover)->size - size; /* reduce size */
1888 /* move pointer */
1889 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1890 + size);
1891 (*ppLeftover)->pNext = pLeft;
1892 (*ppLeftover)->size = newSize;
1893 }
1894 } else {
1895 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1896 ofw_claimpages(&virt_freeptr, &new, claim_size);
1897 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1898 pLeft = (PLEFTOVER)(new.pv_va + size);
1899 pLeft->pNext = leftovers;
1900 pLeft->size = claim_size - size;
1901 leftovers = pLeft;
1902 }
1903 }
1904
1905 return (void *)(new.pv_va);
1906 }
1907
1908 /*
1909 * Here is a really, really sleazy free. It's not used right now,
1910 * because it's not worth the extra complexity for just a few bytes.
1911 *
1912 */
1913 #if 0
1914 static void
1915 ofw_free(addr, size)
1916 vaddr_t addr;
1917 vsize_t size;
1918 {
1919 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1920
1921 /* splice right into list without checks or compaction */
1922 pLeftover->pNext = leftovers;
1923 pLeftover->size = size;
1924 leftovers = pLeftover;
1925 }
1926 #endif
1927
1928 /*
1929 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1930 * We guarantee that the allocated memory will be
1931 * aligned to a boundary equal to the smallest power of
1932 * 2 greater than or equal to size.
1933 * free_pp is an IN/OUT parameter which points to the
1934 * last allocated virtual address in an allocate-downwards
1935 * stack. pv_p is an OUT parameter which contains the
1936 * virtual and physical base addresses of the allocated
1937 * memory.
1938 */
1939 static void
1940 ofw_claimpages(free_pp, pv_p, size)
1941 vaddr_t *free_pp;
1942 pv_addr_t *pv_p;
1943 vsize_t size;
1944 {
1945 /* round-up to page boundary */
1946 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1947 vsize_t aligned_size;
1948 vaddr_t va;
1949 paddr_t pa;
1950
1951 if (alloc_size == 0)
1952 panic("ofw_claimpages zero");
1953
1954 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1955 ;
1956
1957 /* The only way to provide the alignment guarantees is to
1958 * allocate the virtual and physical ranges separately,
1959 * then do an explicit map call.
1960 */
1961 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1962 if (ofw_claimvirt(va, alloc_size, 0) != va)
1963 panic("ofw_claimpages va alloc");
1964 pa = ofw_claimphys(0, alloc_size, aligned_size);
1965 if (pa == -1)
1966 panic("ofw_claimpages pa alloc");
1967 /* XXX - what mode? -JJK */
1968 ofw_settranslation(va, pa, alloc_size, -1);
1969
1970 /* The memory's mapped-in now, so we can zero it. */
1971 bzero((char *)va, alloc_size);
1972
1973 /* Set OUT parameters. */
1974 *free_pp = va;
1975 pv_p->pv_va = va;
1976 pv_p->pv_pa = pa;
1977 }
1978
1979
1980 static void
1981 ofw_discardmappings(L2pagetable, va, size)
1982 vaddr_t L2pagetable;
1983 vaddr_t va;
1984 vsize_t size;
1985 {
1986 /* round-up to page boundary */
1987 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1988 int npages = alloc_size / PAGE_SIZE;
1989
1990 if (npages == 0)
1991 panic("ofw_discardmappings zero");
1992
1993 /* Discard each mapping. */
1994 for (; npages > 0; va += PAGE_SIZE, npages--) {
1995 /* Sanity. The current entry should be non-null. */
1996 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1997 panic("ofw_discardmappings zero entry");
1998
1999 /* Clear the entry. */
2000 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2001 }
2002 }
2003
2004
2005 static void
2006 ofw_initallocator(void)
2007 {
2008
2009 }
2010
2011 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
2012 static void
2013 reset_screen()
2014 {
2015
2016 if ((console_ihandle == 0) || (console_ihandle == -1))
2017 return;
2018
2019 OF_call_method("install", console_ihandle, 0, 0);
2020 }
2021 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
2022