ofw.c revision 1.39 1 /* $NetBSD: ofw.c,v 1.39 2007/07/30 13:02:01 jmmv Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.39 2007/07/30 13:02:01 jmmv Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <dev/cons.h>
55
56 #define _ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62 #include <machine/irqhandler.h>
63
64 #include <dev/ofw/openfirm.h>
65 #include <machine/ofw.h>
66
67 #include <netinet/in.h>
68
69 #if BOOT_FW_DHCP
70 #include <nfs/bootdata.h>
71 #endif
72
73 #ifdef SHARK
74 #include "machine/pio.h"
75 #include "machine/isa_machdep.h"
76 #endif
77
78 #include "pc.h"
79 #include "isadma.h"
80 #include "igsfb_ofbus.h"
81 #include "vga_ofbus.h"
82
83 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
84 #define IO_VIRT_SIZE 0x01000000
85
86 #define KERNEL_IMG_PTS 2
87 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
88 #define KERNEL_OFW_PTS 4
89 #define KERNEL_IO_PTS 4
90
91 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
92 /*
93 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
94 * OFW sits at 0xf7000000
95 */
96 #define KERNEL_VM_SIZE 0x06000000
97
98 /*
99 * Imported variables
100 */
101 extern BootConfig bootconfig; /* temporary, I hope */
102
103 #ifdef DIAGNOSTIC
104 /* NOTE: These variables will be removed, well some of them */
105 extern u_int spl_mask;
106 extern u_int current_mask;
107 #endif
108
109 extern int ofw_handleticks;
110
111
112 /*
113 * Imported routines
114 */
115 extern void dump_spl_masks __P((void));
116 extern void dumpsys __P((void));
117 extern void dotickgrovelling __P((vaddr_t));
118 #if defined(SHARK) && (NPC > 0)
119 extern void shark_screen_cleanup __P((int));
120 #endif
121
122 #define WriteWord(a, b) \
123 *((volatile unsigned int *)(a)) = (b)
124
125 #define ReadWord(a) \
126 (*((volatile unsigned int *)(a)))
127
128
129 /*
130 * Exported variables
131 */
132 /* These should all be in a meminfo structure. */
133 paddr_t physical_start;
134 paddr_t physical_freestart;
135 paddr_t physical_freeend;
136 paddr_t physical_end;
137 u_int free_pages;
138 int physmem;
139 pv_addr_t systempage;
140 #ifndef OFWGENCFG
141 pv_addr_t irqstack;
142 #endif
143 pv_addr_t undstack;
144 pv_addr_t abtstack;
145 pv_addr_t kernelstack;
146
147 paddr_t msgbufphys;
148
149 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
150 static vaddr_t virt_freeptr;
151
152 int ofw_callbacks = 0; /* debugging counter */
153
154 #if defined(SHARK) && (NPC > 0)
155 /* For consistency with the conditionals used in this file. */
156 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
157 int console_ihandle = 0;
158 static void reset_screen(void);
159 #endif
160
161 /**************************************************************/
162
163
164 /*
165 * Declarations and definitions private to this module
166 *
167 */
168
169 struct mem_region {
170 paddr_t start;
171 psize_t size;
172 };
173
174 struct mem_translation {
175 vaddr_t virt;
176 vsize_t size;
177 paddr_t phys;
178 unsigned int mode;
179 };
180
181 struct isa_range {
182 paddr_t isa_phys_hi;
183 paddr_t isa_phys_lo;
184 paddr_t parent_phys_start;
185 psize_t isa_size;
186 };
187
188 struct vl_range {
189 paddr_t vl_phys_hi;
190 paddr_t vl_phys_lo;
191 paddr_t parent_phys_start;
192 psize_t vl_size;
193 };
194
195 struct vl_isa_range {
196 paddr_t isa_phys_hi;
197 paddr_t isa_phys_lo;
198 paddr_t parent_phys_hi;
199 paddr_t parent_phys_lo;
200 psize_t isa_size;
201 };
202
203 struct dma_range {
204 paddr_t start;
205 psize_t size;
206 };
207
208 struct ofw_cbargs {
209 char *name;
210 int nargs;
211 int nreturns;
212 int args_n_results[12];
213 };
214
215
216 /* Memory info */
217 static int nOFphysmem;
218 static struct mem_region *OFphysmem;
219 static int nOFphysavail;
220 static struct mem_region *OFphysavail;
221 static int nOFtranslations;
222 static struct mem_translation *OFtranslations;
223 static int nOFdmaranges;
224 static struct dma_range *OFdmaranges;
225
226 /* The OFW client services handle. */
227 /* Initialized by ofw_init(). */
228 static ofw_handle_t ofw_client_services_handle;
229
230
231 static void ofw_callbackhandler __P((void *));
232 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
233 static void ofw_getphysmeminfo __P((void));
234 static void ofw_getvirttranslations __P((void));
235 static void *ofw_malloc(vsize_t size);
236 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
237 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
238 static int ofw_mem_ihandle __P((void));
239 static int ofw_mmu_ihandle __P((void));
240 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
241 #if 0
242 static paddr_t ofw_releasephys __P((paddr_t, psize_t));
243 #endif
244 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
245 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
246 static void ofw_initallocator __P((void));
247 static void ofw_configisaonly __P((paddr_t *, paddr_t *));
248 static void ofw_configvl __P((int, paddr_t *, paddr_t *));
249 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
250
251
252 /*
253 * DHCP hooks. For a first cut, we look to see if there is a DHCP
254 * packet that was saved by the firmware. If not, we proceed as before,
255 * getting hand-configured data from NVRAM. If there is one, we get the
256 * packet, and extract the data from it. For now, we hand that data up
257 * in the boot_args string as before.
258 */
259
260
261 /**************************************************************/
262
263
264 /*
265 *
266 * Support routines for xxx_machdep.c
267 *
268 * The intent is that all OFW-based configurations use the
269 * exported routines in this file to do their business. If
270 * they need to override some function they are free to do so.
271 *
272 * The exported routines are:
273 *
274 * openfirmware
275 * ofw_init
276 * ofw_boot
277 * ofw_getbootinfo
278 * ofw_configmem
279 * ofw_configisa
280 * ofw_configisadma
281 * ofw_gettranslation
282 * ofw_map
283 * ofw_getcleaninfo
284 */
285
286
287 int
288 openfirmware(args)
289 void *args;
290 {
291 int ofw_result;
292 u_int saved_irq_state;
293
294 /* OFW is not re-entrant, so we wrap a mutex around the call. */
295 saved_irq_state = disable_interrupts(I32_bit);
296 ofw_result = ofw_client_services_handle(args);
297 (void)restore_interrupts(saved_irq_state);
298
299 return(ofw_result);
300 }
301
302
303 void
304 ofw_init(ofw_handle)
305 ofw_handle_t ofw_handle;
306 {
307 ofw_client_services_handle = ofw_handle;
308
309 /* Everything we allocate in the remainder of this block is
310 * constrained to be in the "kernel-static" portion of the
311 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
312 * This is because all such objects are expected to be in
313 * that range by NetBSD, or the objects will be re-mapped
314 * after the page-table-switch to other specific locations.
315 * In the latter case, it's simplest if our pre-switch handles
316 * on those objects are in regions that are already "well-
317 * known." (Otherwise, the cloning of the OFW-managed address-
318 * space becomes more awkward.) To minimize the number of L2
319 * page tables that we use, we are further restricting the
320 * remaining allocations in this block to the bottom quarter of
321 * the legal range. OFW will have loaded the kernel text+data+bss
322 * starting at the bottom of the range, and we will allocate
323 * objects from the top, moving downwards. The two sub-regions
324 * will collide if their total sizes hit 8MB. The current total
325 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
326 * limit. The variable virt-freeptr represents the next free va
327 * (moving downwards).
328 */
329 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
330 }
331
332
333 void
334 ofw_boot(howto, bootstr)
335 int howto;
336 char *bootstr;
337 {
338
339 #ifdef DIAGNOSTIC
340 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
341 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
342
343 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
344 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
345 irqmasks[IPL_VM]);
346 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
347 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
348
349 dump_spl_masks();
350 #endif
351
352 /*
353 * If we are still cold then hit the air brakes
354 * and crash to earth fast
355 */
356 if (cold) {
357 doshutdownhooks();
358 printf("Halted while still in the ICE age.\n");
359 printf("The operating system has halted.\n");
360 goto ofw_exit;
361 /*NOTREACHED*/
362 }
363
364 /*
365 * If RB_NOSYNC was not specified sync the discs.
366 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
367 * It looks like syslogd is getting woken up only to find that it cannot
368 * page part of the binary in as the filesystem has been unmounted.
369 */
370 if (!(howto & RB_NOSYNC))
371 bootsync();
372
373 /* Say NO to interrupts */
374 splhigh();
375
376 /* Do a dump if requested. */
377 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
378 dumpsys();
379
380 /* Run any shutdown hooks */
381 doshutdownhooks();
382
383 /* Make sure IRQ's are disabled */
384 IRQdisable;
385
386 if (howto & RB_HALT) {
387 printf("The operating system has halted.\n");
388 goto ofw_exit;
389 }
390
391 /* Tell the user we are booting */
392 printf("rebooting...\n");
393
394 /* Jump into the OFW boot routine. */
395 {
396 static char str[256];
397 char *ap = str, *ap1 = ap;
398
399 if (bootstr && *bootstr) {
400 if (strlen(bootstr) > sizeof str - 5)
401 printf("boot string too large, ignored\n");
402 else {
403 strcpy(str, bootstr);
404 ap1 = ap = str + strlen(str);
405 *ap++ = ' ';
406 }
407 }
408 *ap++ = '-';
409 if (howto & RB_SINGLE)
410 *ap++ = 's';
411 if (howto & RB_KDB)
412 *ap++ = 'd';
413 *ap++ = 0;
414 if (ap[-2] == '-')
415 *ap1 = 0;
416 #if defined(SHARK) && (NPC > 0)
417 shark_screen_cleanup(0);
418 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
419 reset_screen();
420 #endif
421 OF_boot(str);
422 /*NOTREACHED*/
423 }
424
425 ofw_exit:
426 printf("Calling OF_exit...\n");
427 #if defined(SHARK) && (NPC > 0)
428 shark_screen_cleanup(1);
429 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
430 reset_screen();
431 #endif
432 OF_exit();
433 /*NOTREACHED*/
434 }
435
436
437 #if BOOT_FW_DHCP
438
439 extern char *ip2dotted __P((struct in_addr));
440
441 /*
442 * Get DHCP data from OFW
443 */
444
445 void
446 get_fw_dhcp_data(bdp)
447 struct bootdata *bdp;
448 {
449 int chosen;
450 int dhcplen;
451
452 bzero((char *)bdp, sizeof(*bdp));
453 if ((chosen = OF_finddevice("/chosen")) == -1)
454 panic("no /chosen from OFW");
455 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
456 u_char *cp;
457 int dhcp_type = 0;
458 char *ip;
459
460 /*
461 * OFW saved a DHCP (or BOOTP) packet for us.
462 */
463 if (dhcplen > sizeof(bdp->dhcp_packet))
464 panic("DHCP packet too large");
465 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
466 sizeof(bdp->dhcp_packet));
467 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
468 /*
469 * Collect the interesting data from DHCP into
470 * the bootdata structure.
471 */
472 bdp->ip_address = bdp->dhcp_packet.yiaddr;
473 ip = ip2dotted(bdp->ip_address);
474 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
475 parse_dhcp_options(&bdp->dhcp_packet,
476 bdp->dhcp_packet.options + 4,
477 &bdp->dhcp_packet.options[dhcplen
478 - DHCP_FIXED_NON_UDP], bdp, ip);
479 if (bdp->root_ip.s_addr == 0)
480 bdp->root_ip = bdp->dhcp_packet.siaddr;
481 if (bdp->swap_ip.s_addr == 0)
482 bdp->swap_ip = bdp->dhcp_packet.siaddr;
483 }
484 /*
485 * If the DHCP packet did not contain all the necessary data,
486 * look in NVRAM for the missing parts.
487 */
488 {
489 int options;
490 int proplen;
491 #define BOOTJUNKV_SIZE 256
492 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
493
494
495 if ((options = OF_finddevice("/options")) == -1)
496 panic("can't find /options");
497 if (bdp->ip_address.s_addr == 0 &&
498 (proplen = OF_getprop(options, "ipaddr",
499 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
500 bootjunkv[proplen] = '\0';
501 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
502 bdp->ip_address.s_addr = 0;
503 }
504 if (bdp->ip_mask.s_addr == 0 &&
505 (proplen = OF_getprop(options, "netmask",
506 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
507 bootjunkv[proplen] = '\0';
508 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
509 bdp->ip_mask.s_addr = 0;
510 }
511 if (bdp->hostname[0] == '\0' &&
512 (proplen = OF_getprop(options, "hostname",
513 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
514 bdp->hostname[proplen] = '\0';
515 }
516 if (bdp->root[0] == '\0' &&
517 (proplen = OF_getprop(options, "rootfs",
518 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
519 bootjunkv[proplen] = '\0';
520 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
521 }
522 if (bdp->swap[0] == '\0' &&
523 (proplen = OF_getprop(options, "swapfs",
524 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
525 bootjunkv[proplen] = '\0';
526 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
527 }
528 }
529 }
530
531 #endif /* BOOT_FW_DHCP */
532
533 void
534 ofw_getbootinfo(bp_pp, ba_pp)
535 char **bp_pp;
536 char **ba_pp;
537 {
538 int chosen;
539 int bp_len;
540 int ba_len;
541 char *bootpathv;
542 char *bootargsv;
543
544 /* Read the bootpath and bootargs out of OFW. */
545 /* XXX is bootpath still interesting? --emg */
546 if ((chosen = OF_finddevice("/chosen")) == -1)
547 panic("no /chosen from OFW");
548 bp_len = OF_getproplen(chosen, "bootpath");
549 ba_len = OF_getproplen(chosen, "bootargs");
550 if (bp_len < 0 || ba_len < 0)
551 panic("can't get boot data from OFW");
552
553 bootpathv = (char *)ofw_malloc(bp_len);
554 bootargsv = (char *)ofw_malloc(ba_len);
555
556 if (bp_len)
557 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
558 else
559 bootpathv[0] = '\0';
560
561 if (ba_len)
562 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
563 else
564 bootargsv[0] = '\0';
565
566 *bp_pp = bootpathv;
567 *ba_pp = bootargsv;
568 #ifdef DIAGNOSTIC
569 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
570 #endif
571 }
572
573 paddr_t
574 ofw_getcleaninfo(void)
575 {
576 int cpu;
577 vaddr_t vclean;
578 paddr_t pclean;
579
580 if ((cpu = OF_finddevice("/cpu")) == -1)
581 panic("no /cpu from OFW");
582
583 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
584 sizeof(vclean))) != sizeof(vclean)) {
585 #ifdef DEBUG
586 printf("no OFW d-cache-flush-address property\n");
587 #endif
588 return -1;
589 }
590
591 if ((pclean = ofw_gettranslation(
592 of_decode_int((unsigned char *)&vclean))) == -1)
593 panic("OFW failed to translate cache flush address");
594
595 return pclean;
596 }
597
598 void
599 ofw_configisa(pio, pmem)
600 paddr_t *pio;
601 paddr_t *pmem;
602 {
603 int vl;
604
605 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
606 ofw_configisaonly(pio, pmem);
607 else /* old style OFW dev info tree */
608 ofw_configvl(vl, pio, pmem);
609 }
610
611 static void
612 ofw_configisaonly(pio, pmem)
613 paddr_t *pio;
614 paddr_t *pmem;
615 {
616 int isa;
617 int rangeidx;
618 int size;
619 paddr_t hi, start;
620 struct isa_range ranges[2];
621
622 if ((isa = OF_finddevice("/isa")) == -1)
623 panic("OFW has no /isa device node");
624
625 /* expect to find two isa ranges: IO/data and memory/data */
626 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
627 != sizeof(ranges))
628 panic("unexpected size of OFW /isa ranges property: %d", size);
629
630 *pio = *pmem = -1;
631
632 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
633 hi = of_decode_int((unsigned char *)
634 &ranges[rangeidx].isa_phys_hi);
635 start = of_decode_int((unsigned char *)
636 &ranges[rangeidx].parent_phys_start);
637
638 if (hi & 1) { /* then I/O space */
639 *pio = start;
640 } else {
641 *pmem = start;
642 }
643 } /* END for */
644
645 if ((*pio == -1) || (*pmem == -1))
646 panic("bad OFW /isa ranges property");
647
648 }
649
650 static void
651 ofw_configvl(vl, pio, pmem)
652 int vl;
653 paddr_t *pio;
654 paddr_t *pmem;
655 {
656 int isa;
657 int ir, vr;
658 int size;
659 paddr_t hi, start;
660 struct vl_isa_range isa_ranges[2];
661 struct vl_range vl_ranges[2];
662
663 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
664 panic("OFW has no /vlbus/isa device node");
665
666 /* expect to find two isa ranges: IO/data and memory/data */
667 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
668 != sizeof(isa_ranges))
669 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
670 size);
671
672 /* expect to find two vl ranges: IO/data and memory/data */
673 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
674 != sizeof(vl_ranges))
675 panic("unexpected size of OFW /vlbus ranges property: %d", size);
676
677 *pio = -1;
678 *pmem = -1;
679
680 for (ir = 0; ir < 2; ++ir) {
681 for (vr = 0; vr < 2; ++vr) {
682 if ((isa_ranges[ir].parent_phys_hi
683 == vl_ranges[vr].vl_phys_hi) &&
684 (isa_ranges[ir].parent_phys_lo
685 == vl_ranges[vr].vl_phys_lo)) {
686 hi = of_decode_int((unsigned char *)
687 &isa_ranges[ir].isa_phys_hi);
688 start = of_decode_int((unsigned char *)
689 &vl_ranges[vr].parent_phys_start);
690
691 if (hi & 1) { /* then I/O space */
692 *pio = start;
693 } else {
694 *pmem = start;
695 }
696 } /* END if */
697 } /* END for */
698 } /* END for */
699
700 if ((*pio == -1) || (*pmem == -1))
701 panic("bad OFW /isa ranges property");
702 }
703
704 #if NISADMA > 0
705 struct arm32_dma_range *shark_isa_dma_ranges;
706 int shark_isa_dma_nranges;
707 #endif
708
709 void
710 ofw_configisadma(pdma)
711 paddr_t *pdma;
712 {
713 int root;
714 int rangeidx;
715 int size;
716 struct dma_range *dr;
717
718 if ((root = OF_finddevice("/")) == -1 ||
719 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
720 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
721 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
722 panic("bad / dma-ranges property");
723
724 nOFdmaranges = size / sizeof(struct dma_range);
725
726 #if NISADMA > 0
727 /* Allocate storage for non-OFW representation of the range. */
728 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
729 sizeof(*shark_isa_dma_ranges));
730 if (shark_isa_dma_ranges == NULL)
731 panic("unable to allocate shark_isa_dma_ranges");
732 shark_isa_dma_nranges = nOFdmaranges;
733 #endif
734
735 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
736 ++rangeidx, ++dr) {
737 dr->start = of_decode_int((unsigned char *)&dr->start);
738 dr->size = of_decode_int((unsigned char *)&dr->size);
739 #if NISADMA > 0
740 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
741 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
742 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
743 #endif
744 }
745
746 #ifdef DEBUG
747 printf("DMA ranges size = %d\n", size);
748
749 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
750 printf("%08lx %08lx\n",
751 (u_long)OFdmaranges[rangeidx].start,
752 (u_long)OFdmaranges[rangeidx].size);
753 }
754 #endif
755 }
756
757 /*
758 * Memory configuration:
759 *
760 * We start off running in the environment provided by OFW.
761 * This has the MMU turned on, the kernel code and data
762 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
763 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
764 * page0 mapped-in at 0x0.
765 *
766 * The strategy is to set-up the address space for proc0 --
767 * including the allocation of space for new page tables -- while
768 * memory is still managed by OFW. We then effectively create a
769 * copy of the address space by dumping all of OFW's translations
770 * and poking them into the new page tables. We then notify OFW
771 * that we are assuming control of memory-management by installing
772 * our callback-handler, and switch to the NetBSD-managed page
773 * tables with the setttb() call.
774 *
775 * This scheme may cause some amount of memory to be wasted within
776 * OFW as dead page tables, but it shouldn't be more than about
777 * 20-30KB. (It's also possible that OFW will re-use the space.)
778 */
779 void
780 ofw_configmem(void)
781 {
782 pv_addr_t proc0_ttbbase;
783 int i;
784
785 /* Set-up proc0 address space. */
786 ofw_construct_proc0_addrspace(&proc0_ttbbase);
787
788 /*
789 * Get a dump of OFW's picture of physical memory.
790 * This is used below to initialize a load of variables used by pmap.
791 * We get it now rather than later because we are about to
792 * tell OFW to stop managing memory.
793 */
794 ofw_getphysmeminfo();
795
796 /* We are about to take control of memory-management from OFW.
797 * Establish callbacks for OFW to use for its future memory needs.
798 * This is required for us to keep using OFW services.
799 */
800
801 /* First initialize our callback memory allocator. */
802 ofw_initallocator();
803
804 OF_set_callback(ofw_callbackhandler);
805
806 /* Switch to the proc0 pagetables. */
807 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
808 setttb(proc0_ttbbase.pv_pa);
809 cpu_tlb_flushID();
810 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
811
812 /*
813 * Moved from cpu_startup() as data_abort_handler() references
814 * this during uvm init
815 */
816 {
817 extern struct user *proc0paddr;
818 proc0paddr = (struct user *)kernelstack.pv_va;
819 lwp0.l_addr = proc0paddr;
820 }
821
822 /* Aaaaaaaah, running in the proc0 address space! */
823 /* I feel good... */
824
825 /* Set-up the various globals which describe physical memory for pmap. */
826 {
827 struct mem_region *mp;
828 int totalcnt;
829 int availcnt;
830
831 /* physmem, physical_start, physical_end */
832 physmem = 0;
833 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
834 totalcnt++, mp++) {
835 #ifdef OLDPRINTFS
836 printf("physmem: %x, %x\n", mp->start, mp->size);
837 #endif
838 physmem += btoc(mp->size);
839 }
840 physical_start = OFphysmem[0].start;
841 mp--;
842 physical_end = mp->start + mp->size;
843
844 /* free_pages, physical_freestart, physical_freeend */
845 free_pages = 0;
846 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
847 availcnt++, mp++) {
848 #ifdef OLDPRINTFS
849 printf("physavail: %x, %x\n", mp->start, mp->size);
850 #endif
851 free_pages += btoc(mp->size);
852 }
853 physical_freestart = OFphysavail[0].start;
854 mp--;
855 physical_freeend = mp->start + mp->size;
856 #ifdef OLDPRINTFS
857 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
858 physmem, free_pages);
859 #endif
860
861 /*
862 * This is a hack to work with the existing pmap code.
863 * That code depends on a RiscPC BootConfig structure
864 * containing, among other things, an array describing
865 * the regions of physical memory. So, for now, we need
866 * to stuff our OFW-derived physical memory info into a
867 * "fake" BootConfig structure.
868 *
869 * An added twist is that we initialize the BootConfig
870 * structure with our "available" physical memory regions
871 * rather than the "total" physical memory regions. Why?
872 * Because:
873 *
874 * (a) the VM code requires that the "free" pages it is
875 * initialized with have consecutive indices. This
876 * allows it to use more efficient data structures
877 * (presumably).
878 * (b) the current pmap routines which report the initial
879 * set of free page indices (pmap_next_page) and
880 * which map addresses to indices (pmap_page_index)
881 * assume that the free pages are consecutive across
882 * memory region boundaries.
883 *
884 * This means that memory which is "stolen" at startup time
885 * (say, for page descriptors) MUST come from either the
886 * bottom of the first region or the top of the last.
887 *
888 * This requirement doesn't mesh well with OFW (or at least
889 * our use of it). We can get around it for the time being
890 * by pretending that our "available" region array describes
891 * all of our physical memory. This may cause some important
892 * information to be excluded from a dump file, but so far
893 * I haven't come across any other negative effects.
894 *
895 * In the long-run we should fix the index
896 * generation/translation code in the pmap module.
897 */
898
899 if (DRAM_BLOCKS < (availcnt + 1))
900 panic("more ofw memory regions than bootconfig blocks");
901
902 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
903 bootconfig.dram[i].address = mp->start;
904 bootconfig.dram[i].pages = btoc(mp->size);
905 }
906 bootconfig.dramblocks = availcnt;
907 }
908
909 /* Load memory into UVM. */
910 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
911
912 /* XXX Please kill this code dead. */
913 for (i = 0; i < bootconfig.dramblocks; i++) {
914 paddr_t start = (paddr_t)bootconfig.dram[i].address;
915 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
916 #if NISADMA > 0
917 paddr_t istart, isize;
918 #endif
919
920 if (start < physical_freestart)
921 start = physical_freestart;
922 if (end > physical_freeend)
923 end = physical_freeend;
924
925 #if 0
926 printf("%d: %lx -> %lx\n", loop, start, end - 1);
927 #endif
928
929 #if NISADMA > 0
930 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
931 shark_isa_dma_nranges,
932 start, end - start,
933 &istart, &isize)) {
934 /*
935 * Place the pages that intersect with the
936 * ISA DMA range onto the ISA DMA free list.
937 */
938 #if 0
939 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
940 istart + isize - 1);
941 #endif
942 uvm_page_physload(atop(istart),
943 atop(istart + isize), atop(istart),
944 atop(istart + isize), VM_FREELIST_ISADMA);
945
946 /*
947 * Load the pieces that come before the
948 * intersection onto the default free list.
949 */
950 if (start < istart) {
951 #if 0
952 printf(" BEFORE 0x%lx -> 0x%lx\n",
953 start, istart - 1);
954 #endif
955 uvm_page_physload(atop(start),
956 atop(istart), atop(start),
957 atop(istart), VM_FREELIST_DEFAULT);
958 }
959
960 /*
961 * Load the pieces that come after the
962 * intersection onto the default free list.
963 */
964 if ((istart + isize) < end) {
965 #if 0
966 printf(" AFTER 0x%lx -> 0x%lx\n",
967 (istart + isize), end - 1);
968 #endif
969 uvm_page_physload(atop(istart + isize),
970 atop(end), atop(istart + isize),
971 atop(end), VM_FREELIST_DEFAULT);
972 }
973 } else {
974 uvm_page_physload(atop(start), atop(end),
975 atop(start), atop(end), VM_FREELIST_DEFAULT);
976 }
977 #else /* NISADMA > 0 */
978 uvm_page_physload(atop(start), atop(end),
979 atop(start), atop(end), VM_FREELIST_DEFAULT);
980 #endif /* NISADMA > 0 */
981 }
982
983 /* Initialize pmap module. */
984 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
985 KERNEL_VM_BASE + KERNEL_VM_SIZE);
986 }
987
988
989 /*
990 ************************************************************
991
992 Routines private to this module
993
994 ************************************************************
995 */
996
997 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
998 static void
999 ofw_callbackhandler(v)
1000 void *v;
1001 {
1002 struct ofw_cbargs *args = v;
1003 char *name = args->name;
1004 int nargs = args->nargs;
1005 int nreturns = args->nreturns;
1006 int *args_n_results = args->args_n_results;
1007
1008 ofw_callbacks++;
1009
1010 #if defined(OFWGENCFG)
1011 /* Check this first, so that we don't waste IRQ time parsing. */
1012 if (strcmp(name, "tick") == 0) {
1013 vaddr_t frame;
1014
1015 /* Check format. */
1016 if (nargs != 1 || nreturns < 1) {
1017 args_n_results[nargs] = -1;
1018 args->nreturns = 1;
1019 return;
1020 }
1021 args_n_results[nargs] = 0; /* properly formatted request */
1022
1023 /*
1024 * Note that we are running in the IRQ frame, with interrupts
1025 * disabled.
1026 *
1027 * We need to do two things here:
1028 * - copy a few words out of the input frame into a global
1029 * area, for later use by our real tick-handling code
1030 * - patch a few words in the frame so that when OFW returns
1031 * from the interrupt it will resume with our handler
1032 * rather than the code that was actually interrupted.
1033 * Our handler will resume when it finishes with the code
1034 * that was actually interrupted.
1035 *
1036 * It's simplest to do this in assembler, since it requires
1037 * switching frames and grovelling about with registers.
1038 */
1039 frame = (vaddr_t)args_n_results[0];
1040 if (ofw_handleticks)
1041 dotickgrovelling(frame);
1042 args_n_results[nargs + 1] = frame;
1043 args->nreturns = 1;
1044 } else
1045 #endif
1046
1047 if (strcmp(name, "map") == 0) {
1048 vaddr_t va;
1049 paddr_t pa;
1050 vsize_t size;
1051 int mode;
1052 int ap_bits;
1053 int dom_bits;
1054 int cb_bits;
1055
1056 /* Check format. */
1057 if (nargs != 4 || nreturns < 2) {
1058 args_n_results[nargs] = -1;
1059 args->nreturns = 1;
1060 return;
1061 }
1062 args_n_results[nargs] = 0; /* properly formatted request */
1063
1064 pa = (paddr_t)args_n_results[0];
1065 va = (vaddr_t)args_n_results[1];
1066 size = (vsize_t)args_n_results[2];
1067 mode = args_n_results[3];
1068 ap_bits = (mode & 0x00000C00);
1069 dom_bits = (mode & 0x000001E0);
1070 cb_bits = (mode & 0x000000C0);
1071
1072 /* Sanity checks. */
1073 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1074 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1075 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1076 size == 0 || (dom_bits >> 5) != 0) {
1077 args_n_results[nargs + 1] = -1;
1078 args->nreturns = 1;
1079 return;
1080 }
1081
1082 /* Write-back anything stuck in the cache. */
1083 cpu_idcache_wbinv_all();
1084
1085 /* Install new mappings. */
1086 {
1087 pt_entry_t *pte = vtopte(va);
1088 int npages = size >> PGSHIFT;
1089
1090 ap_bits >>= 10;
1091 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1092 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1093 cb_bits);
1094 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1095 }
1096
1097 /* Clean out tlb. */
1098 tlb_flush();
1099
1100 args_n_results[nargs + 1] = 0;
1101 args->nreturns = 2;
1102 } else if (strcmp(name, "unmap") == 0) {
1103 vaddr_t va;
1104 vsize_t size;
1105
1106 /* Check format. */
1107 if (nargs != 2 || nreturns < 1) {
1108 args_n_results[nargs] = -1;
1109 args->nreturns = 1;
1110 return;
1111 }
1112 args_n_results[nargs] = 0; /* properly formatted request */
1113
1114 va = (vaddr_t)args_n_results[0];
1115 size = (vsize_t)args_n_results[1];
1116
1117 /* Sanity checks. */
1118 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1119 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1120 (size & PGOFSET) != 0 || size == 0) {
1121 args_n_results[nargs + 1] = -1;
1122 args->nreturns = 1;
1123 return;
1124 }
1125
1126 /* Write-back anything stuck in the cache. */
1127 cpu_idcache_wbinv_all();
1128
1129 /* Zero the mappings. */
1130 {
1131 pt_entry_t *pte = vtopte(va);
1132 int npages = size >> PGSHIFT;
1133
1134 for (; npages > 0; pte++, npages--)
1135 *pte = 0;
1136 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1137 }
1138
1139 /* Clean out tlb. */
1140 tlb_flush();
1141
1142 args->nreturns = 1;
1143 } else if (strcmp(name, "translate") == 0) {
1144 vaddr_t va;
1145 paddr_t pa;
1146 int mode;
1147 pt_entry_t pte;
1148
1149 /* Check format. */
1150 if (nargs != 1 || nreturns < 4) {
1151 args_n_results[nargs] = -1;
1152 args->nreturns = 1;
1153 return;
1154 }
1155 args_n_results[nargs] = 0; /* properly formatted request */
1156
1157 va = (vaddr_t)args_n_results[0];
1158
1159 /* Sanity checks.
1160 * For now, I am only willing to translate va's in the
1161 * "ofw range." Eventually, I may be more generous. -JJK
1162 */
1163 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1164 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1165 args_n_results[nargs + 1] = -1;
1166 args->nreturns = 1;
1167 return;
1168 }
1169
1170 /* Lookup mapping. */
1171 pte = *vtopte(va);
1172 if (pte == 0) {
1173 /* No mapping. */
1174 args_n_results[nargs + 1] = -1;
1175 args->nreturns = 2;
1176 } else {
1177 /* Existing mapping. */
1178 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1179 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1180
1181 args_n_results[nargs + 1] = 0;
1182 args_n_results[nargs + 2] = pa;
1183 args_n_results[nargs + 3] = mode;
1184 args->nreturns = 4;
1185 }
1186 } else if (strcmp(name, "claim-phys") == 0) {
1187 struct pglist alloclist;
1188 paddr_t low, high, align;
1189 psize_t size;
1190
1191 /*
1192 * XXX
1193 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1194 * XXX
1195 */
1196
1197 /* Check format. */
1198 if (nargs != 4 || nreturns < 3) {
1199 args_n_results[nargs] = -1;
1200 args->nreturns = 1;
1201 return;
1202 }
1203 args_n_results[nargs] = 0; /* properly formatted request */
1204
1205 low = args_n_results[0];
1206 size = args_n_results[2];
1207 align = args_n_results[3];
1208 high = args_n_results[1] + size;
1209
1210 #if 0
1211 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1212 low, size, align, high);
1213 align = size;
1214 printf("forcing align to be 0x%x\n", align);
1215 #endif
1216
1217 args_n_results[nargs + 1] =
1218 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1219 #if 0
1220 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1221 #endif
1222 if (args_n_results[nargs + 1] != 0) {
1223 #if 0
1224 printf("(failed)\n");
1225 #endif
1226 args_n_results[nargs + 1] = -1;
1227 args->nreturns = 2;
1228 return;
1229 }
1230 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1231 #if 0
1232 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1233 #endif
1234 args->nreturns = 3;
1235
1236 } else if (strcmp(name, "release-phys") == 0) {
1237 printf("unimplemented ofw callback - %s\n", name);
1238 args_n_results[nargs] = -1;
1239 args->nreturns = 1;
1240 } else if (strcmp(name, "claim-virt") == 0) {
1241 vaddr_t va;
1242 vsize_t size;
1243 vaddr_t align;
1244
1245 /* XXX - notyet */
1246 /* printf("unimplemented ofw callback - %s\n", name);*/
1247 args_n_results[nargs] = -1;
1248 args->nreturns = 1;
1249 return;
1250
1251 /* Check format. */
1252 if (nargs != 2 || nreturns < 3) {
1253 args_n_results[nargs] = -1;
1254 args->nreturns = 1;
1255 return;
1256 }
1257 args_n_results[nargs] = 0; /* properly formatted request */
1258
1259 /* Allocate size bytes with specified alignment. */
1260 size = (vsize_t)args_n_results[0];
1261 align = (vaddr_t)args_n_results[1];
1262 if (align % PAGE_SIZE != 0) {
1263 args_n_results[nargs + 1] = -1;
1264 args->nreturns = 2;
1265 return;
1266 }
1267
1268 if (va == 0) {
1269 /* Couldn't allocate. */
1270 args_n_results[nargs + 1] = -1;
1271 args->nreturns = 2;
1272 } else {
1273 /* Successful allocation. */
1274 args_n_results[nargs + 1] = 0;
1275 args_n_results[nargs + 2] = va;
1276 args->nreturns = 3;
1277 }
1278 } else if (strcmp(name, "release-virt") == 0) {
1279 vaddr_t va;
1280 vsize_t size;
1281
1282 /* XXX - notyet */
1283 printf("unimplemented ofw callback - %s\n", name);
1284 args_n_results[nargs] = -1;
1285 args->nreturns = 1;
1286 return;
1287
1288 /* Check format. */
1289 if (nargs != 2 || nreturns < 1) {
1290 args_n_results[nargs] = -1;
1291 args->nreturns = 1;
1292 return;
1293 }
1294 args_n_results[nargs] = 0; /* properly formatted request */
1295
1296 /* Release bytes. */
1297 va = (vaddr_t)args_n_results[0];
1298 size = (vsize_t)args_n_results[1];
1299
1300 args->nreturns = 1;
1301 } else {
1302 args_n_results[nargs] = -1;
1303 args->nreturns = 1;
1304 }
1305 }
1306
1307 static void
1308 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1309 {
1310 int i, oft;
1311 static pv_addr_t proc0_pagedir;
1312 static pv_addr_t proc0_pt_sys;
1313 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1314 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1315 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1316 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1317 static pv_addr_t msgbuf;
1318 vaddr_t L1pagetable;
1319 struct mem_translation *tp;
1320
1321 /* Set-up the system page. */
1322 KASSERT(vector_page == 0); /* XXX for now */
1323 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1324 if (systempage.pv_va == -1) {
1325 /* Something was already mapped to vector_page's VA. */
1326 systempage.pv_va = vector_page;
1327 systempage.pv_pa = ofw_gettranslation(vector_page);
1328 if (systempage.pv_pa == -1)
1329 panic("bogus result from gettranslation(vector_page)");
1330 } else {
1331 /* We were just allocated the page-length range at VA 0. */
1332 if (systempage.pv_va != vector_page)
1333 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1334
1335 /* Now allocate a physical page, and establish the mapping. */
1336 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1337 if (systempage.pv_pa == -1)
1338 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1339 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1340 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1341
1342 /* Zero the memory. */
1343 bzero((char *)systempage.pv_va, PAGE_SIZE);
1344 }
1345
1346 /* Allocate/initialize space for the proc0, NetBSD-managed */
1347 /* page tables that we will be switching to soon. */
1348 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1349 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1350 for (i = 0; i < KERNEL_IMG_PTS; i++)
1351 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1352 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1353 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1354 for (i = 0; i < KERNEL_OFW_PTS; i++)
1355 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1356 for (i = 0; i < KERNEL_IO_PTS; i++)
1357 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1358
1359 /* Allocate/initialize space for stacks. */
1360 #ifndef OFWGENCFG
1361 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1362 #endif
1363 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1364 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1365 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1366
1367 /* Allocate/initialize space for msgbuf area. */
1368 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1369 msgbufphys = msgbuf.pv_pa;
1370
1371 /* Construct the proc0 L1 pagetable. */
1372 L1pagetable = proc0_pagedir.pv_va;
1373
1374 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1375 for (i = 0; i < KERNEL_IMG_PTS; i++)
1376 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1377 &proc0_pt_kernel[i]);
1378 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1379 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1380 &proc0_pt_vmdata[i]);
1381 for (i = 0; i < KERNEL_OFW_PTS; i++)
1382 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1383 &proc0_pt_ofw[i]);
1384 for (i = 0; i < KERNEL_IO_PTS; i++)
1385 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1386 &proc0_pt_io[i]);
1387
1388 /*
1389 * OK, we're done allocating.
1390 * Get a dump of OFW's translations, and make the appropriate
1391 * entries in the L2 pagetables that we just allocated.
1392 */
1393
1394 ofw_getvirttranslations();
1395
1396 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1397 oft++, tp++) {
1398
1399 vaddr_t va;
1400 paddr_t pa;
1401 int npages = tp->size / PAGE_SIZE;
1402
1403 /* Size must be an integral number of pages. */
1404 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1405 panic("illegal ofw translation (size)");
1406
1407 /* Make an entry for each page in the appropriate table. */
1408 for (va = tp->virt, pa = tp->phys; npages > 0;
1409 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1410 /*
1411 * Map the top bits to the appropriate L2 pagetable.
1412 * The only allowable regions are page0, the
1413 * kernel-static area, and the ofw area.
1414 */
1415 switch (va >> (L1_S_SHIFT + 2)) {
1416 case 0:
1417 /* page0 */
1418 break;
1419
1420 #if KERNEL_IMG_PTS != 2
1421 #error "Update ofw translation range list"
1422 #endif
1423 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1424 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1425 /* kernel static area */
1426 break;
1427
1428 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1429 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1430 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1431 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1432 /* ofw area */
1433 break;
1434
1435 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1436 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1437 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1438 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1439 /* io area */
1440 break;
1441
1442 default:
1443 /* illegal */
1444 panic("illegal ofw translation (addr) %#lx",
1445 va);
1446 }
1447
1448 /* Make the entry. */
1449 pmap_map_entry(L1pagetable, va, pa,
1450 VM_PROT_READ|VM_PROT_WRITE,
1451 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1452 : PTE_NOCACHE);
1453 }
1454 }
1455
1456 /*
1457 * We don't actually want some of the mappings that we just
1458 * set up to appear in proc0's address space. In particular,
1459 * we don't want aliases to physical addresses that the kernel
1460 * has-mapped/will-map elsewhere.
1461 */
1462 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1463 msgbuf.pv_va, MSGBUFSIZE);
1464
1465 /* update the top of the kernel VM */
1466 pmap_curmaxkvaddr =
1467 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1468
1469 /*
1470 * gross hack for the sake of not thrashing the TLB and making
1471 * cache flush more efficient: blast l1 ptes for sections.
1472 */
1473 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1474 vaddr_t va = tp->virt;
1475 paddr_t pa = tp->phys;
1476
1477 if (((va | pa) & L1_S_OFFSET) == 0) {
1478 int nsections = tp->size / L1_S_SIZE;
1479
1480 while (nsections--) {
1481 /* XXXJRT prot?? */
1482 pmap_map_section(L1pagetable, va, pa,
1483 VM_PROT_READ|VM_PROT_WRITE,
1484 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1485 : PTE_NOCACHE);
1486 va += L1_S_SIZE;
1487 pa += L1_S_SIZE;
1488 }
1489 }
1490 }
1491
1492 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1493 *proc0_ttbbase = proc0_pagedir;
1494 }
1495
1496
1497 static void
1498 ofw_getphysmeminfo()
1499 {
1500 int phandle;
1501 int mem_len;
1502 int avail_len;
1503 int i;
1504
1505 if ((phandle = OF_finddevice("/memory")) == -1 ||
1506 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1507 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1508 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1509 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1510 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1511 OF_getprop(phandle, "available", OFphysavail, avail_len)
1512 != avail_len)
1513 panic("can't get physmeminfo from OFW");
1514
1515 nOFphysmem = mem_len / sizeof(struct mem_region);
1516 nOFphysavail = avail_len / sizeof(struct mem_region);
1517
1518 /*
1519 * Sort the blocks in each array into ascending address order.
1520 * Also, page-align all blocks.
1521 */
1522 for (i = 0; i < 2; i++) {
1523 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1524 struct mem_region *mp;
1525 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1526 int j;
1527
1528 #ifdef OLDPRINTFS
1529 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1530 #endif
1531
1532 /* XXX - Convert all the values to host order. -JJK */
1533 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1534 mp->start = of_decode_int((unsigned char *)&mp->start);
1535 mp->size = of_decode_int((unsigned char *)&mp->size);
1536 }
1537
1538 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1539 u_int s, sz;
1540 struct mem_region *mp1;
1541
1542 /* Page-align start of the block. */
1543 s = mp->start % PAGE_SIZE;
1544 if (s != 0) {
1545 s = (PAGE_SIZE - s);
1546
1547 if (mp->size >= s) {
1548 mp->start += s;
1549 mp->size -= s;
1550 }
1551 }
1552
1553 /* Page-align the size. */
1554 mp->size -= mp->size % PAGE_SIZE;
1555
1556 /* Handle empty block. */
1557 if (mp->size == 0) {
1558 memmove(mp, mp + 1, (cnt - (mp - tmp))
1559 * sizeof(struct mem_region));
1560 cnt--;
1561 mp--;
1562 continue;
1563 }
1564
1565 /* Bubble sort. */
1566 s = mp->start;
1567 sz = mp->size;
1568 for (mp1 = tmp; mp1 < mp; mp1++)
1569 if (s < mp1->start)
1570 break;
1571 if (mp1 < mp) {
1572 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1573 mp1->start = s;
1574 mp1->size = sz;
1575 }
1576 }
1577
1578 #ifdef OLDPRINTFS
1579 for (mp = tmp; mp->size; mp++) {
1580 printf("%x, %x\n", mp->start, mp->size);
1581 }
1582 #endif
1583 }
1584 }
1585
1586
1587 static void
1588 ofw_getvirttranslations(void)
1589 {
1590 int mmu_phandle;
1591 int mmu_ihandle;
1592 int trans_len;
1593 int over, len;
1594 int i;
1595 struct mem_translation *tp;
1596
1597 mmu_ihandle = ofw_mmu_ihandle();
1598
1599 /* overallocate to avoid increases during allocation */
1600 over = 4 * sizeof(struct mem_translation);
1601 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1602 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1603 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1604 (trans_len = OF_getprop(mmu_phandle, "translations",
1605 OFtranslations, len + over)) > (len + over))
1606 panic("can't get virttranslations from OFW");
1607
1608 /* XXX - Convert all the values to host order. -JJK */
1609 nOFtranslations = trans_len / sizeof(struct mem_translation);
1610 #ifdef OLDPRINTFS
1611 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1612 #endif
1613 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1614 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1615 tp->size = of_decode_int((unsigned char *)&tp->size);
1616 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1617 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1618 }
1619 }
1620
1621 /*
1622 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1623 */
1624 typedef struct _vfree {
1625 struct _vfree *pNext;
1626 vaddr_t start;
1627 vsize_t size;
1628 } VFREE, *PVFREE;
1629
1630 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1631
1632 static PVFREE vflist = &vfinitial;
1633
1634 static vaddr_t
1635 ofw_valloc(size, align)
1636 vsize_t size;
1637 vaddr_t align;
1638 {
1639 PVFREE *ppvf;
1640 PVFREE pNew;
1641 vaddr_t new;
1642 vaddr_t lead;
1643
1644 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1645 if (align == 0) {
1646 new = (*ppvf)->start;
1647 lead = 0;
1648 } else {
1649 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1650 lead = new - (*ppvf)->start;
1651 }
1652
1653 if (((*ppvf)->size - lead) >= size) {
1654 if (lead == 0) {
1655 /* using whole block */
1656 if (size == (*ppvf)->size) {
1657 /* splice out of list */
1658 (*ppvf) = (*ppvf)->pNext;
1659 } else { /* tail of block is free */
1660 (*ppvf)->start = new + size;
1661 (*ppvf)->size -= size;
1662 }
1663 } else {
1664 vsize_t tail = ((*ppvf)->start
1665 + (*ppvf)->size) - (new + size);
1666 /* free space at beginning */
1667 (*ppvf)->size = lead;
1668
1669 if (tail != 0) {
1670 /* free space at tail */
1671 pNew = ofw_malloc(sizeof(VFREE));
1672 pNew->pNext = (*ppvf)->pNext;
1673 (*ppvf)->pNext = pNew;
1674 pNew->start = new + size;
1675 pNew->size = tail;
1676 }
1677 }
1678 return new;
1679 } /* END if */
1680 } /* END for */
1681
1682 return -1;
1683 }
1684
1685 vaddr_t
1686 ofw_map(pa, size, cb_bits)
1687 paddr_t pa;
1688 vsize_t size;
1689 int cb_bits;
1690 {
1691 vaddr_t va;
1692
1693 if ((va = ofw_valloc(size, size)) == -1)
1694 panic("cannot alloc virtual memory for %#lx", pa);
1695
1696 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1697
1698 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1699
1700 return va;
1701 }
1702
1703 static int
1704 ofw_mem_ihandle(void)
1705 {
1706 static int mem_ihandle = 0;
1707 int chosen;
1708
1709 if (mem_ihandle != 0)
1710 return(mem_ihandle);
1711
1712 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1713 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1714 panic("ofw_mem_ihandle");
1715
1716 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1717
1718 return(mem_ihandle);
1719 }
1720
1721
1722 static int
1723 ofw_mmu_ihandle(void)
1724 {
1725 static int mmu_ihandle = 0;
1726 int chosen;
1727
1728 if (mmu_ihandle != 0)
1729 return(mmu_ihandle);
1730
1731 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1732 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1733 panic("ofw_mmu_ihandle");
1734
1735 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1736
1737 return(mmu_ihandle);
1738 }
1739
1740
1741 /* Return -1 on failure. */
1742 static paddr_t
1743 ofw_claimphys(pa, size, align)
1744 paddr_t pa;
1745 psize_t size;
1746 paddr_t align;
1747 {
1748 int mem_ihandle = ofw_mem_ihandle();
1749
1750 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1751 if (align == 0) {
1752 /* Allocate at specified base; alignment is ignored. */
1753 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1754 } else {
1755 /* Allocate anywhere, with specified alignment. */
1756 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1757 }
1758
1759 /* printf("%x\n", pa);*/
1760 return(pa);
1761 }
1762
1763
1764 #if 0
1765 /* Return -1 on failure. */
1766 static paddr_t
1767 ofw_releasephys(pa, size)
1768 paddr_t pa;
1769 psize_t size;
1770 {
1771 int mem_ihandle = ofw_mem_ihandle();
1772
1773 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1774
1775 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1776 }
1777 #endif
1778
1779 /* Return -1 on failure. */
1780 static vaddr_t
1781 ofw_claimvirt(va, size, align)
1782 vaddr_t va;
1783 vsize_t size;
1784 vaddr_t align;
1785 {
1786 int mmu_ihandle = ofw_mmu_ihandle();
1787
1788 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1789 if (align == 0) {
1790 /* Allocate at specified base; alignment is ignored. */
1791 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1792 } else {
1793 /* Allocate anywhere, with specified alignment. */
1794 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1795 }
1796
1797 /*printf("%x\n", va);*/
1798 return(va);
1799 }
1800
1801 /* Return -1 if no mapping. */
1802 paddr_t
1803 ofw_gettranslation(va)
1804 vaddr_t va;
1805 {
1806 int mmu_ihandle = ofw_mmu_ihandle();
1807 paddr_t pa;
1808 int mode;
1809 int exists;
1810
1811 #ifdef OFW_DEBUG
1812 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1813 #endif
1814 exists = 0; /* gets set to true if translation exists */
1815 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1816 &exists) != 0)
1817 return(-1);
1818
1819 #ifdef OFW_DEBUG
1820 printf("%d %x\n", exists, (uint32_t)pa);
1821 #endif
1822 return(exists ? pa : -1);
1823 }
1824
1825
1826 static void
1827 ofw_settranslation(va, pa, size, mode)
1828 vaddr_t va;
1829 paddr_t pa;
1830 vsize_t size;
1831 int mode;
1832 {
1833 int mmu_ihandle = ofw_mmu_ihandle();
1834
1835 #ifdef OFW_DEBUG
1836 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1837 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1838 #endif
1839 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1840 panic("ofw_settranslation failed");
1841 }
1842
1843 /*
1844 * Allocation routine used before the kernel takes over memory.
1845 * Use this for efficient storage for things that aren't rounded to
1846 * page size.
1847 *
1848 * The point here is not necessarily to be very efficient (even though
1849 * that's sort of nice), but to do proper dynamic allocation to avoid
1850 * size-limitation errors.
1851 *
1852 */
1853
1854 typedef struct _leftover {
1855 struct _leftover *pNext;
1856 vsize_t size;
1857 } LEFTOVER, *PLEFTOVER;
1858
1859 /* leftover bits of pages. first word is pointer to next.
1860 second word is size of leftover */
1861 static PLEFTOVER leftovers = NULL;
1862
1863 static void *
1864 ofw_malloc(size)
1865 vsize_t size;
1866 {
1867 PLEFTOVER *ppLeftover;
1868 PLEFTOVER pLeft;
1869 pv_addr_t new;
1870 vsize_t newSize, claim_size;
1871
1872 /* round and set minimum size */
1873 size = max(sizeof(LEFTOVER),
1874 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1875
1876 for (ppLeftover = &leftovers; *ppLeftover;
1877 ppLeftover = &((*ppLeftover)->pNext))
1878 if ((*ppLeftover)->size >= size)
1879 break;
1880
1881 if (*ppLeftover) { /* have a leftover of the right size */
1882 /* remember the leftover */
1883 new.pv_va = (vaddr_t)*ppLeftover;
1884 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1885 /* splice out of chain */
1886 *ppLeftover = (*ppLeftover)->pNext;
1887 } else {
1888 /* remember the next pointer */
1889 pLeft = (*ppLeftover)->pNext;
1890 newSize = (*ppLeftover)->size - size; /* reduce size */
1891 /* move pointer */
1892 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1893 + size);
1894 (*ppLeftover)->pNext = pLeft;
1895 (*ppLeftover)->size = newSize;
1896 }
1897 } else {
1898 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1899 ofw_claimpages(&virt_freeptr, &new, claim_size);
1900 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1901 pLeft = (PLEFTOVER)(new.pv_va + size);
1902 pLeft->pNext = leftovers;
1903 pLeft->size = claim_size - size;
1904 leftovers = pLeft;
1905 }
1906 }
1907
1908 return (void *)(new.pv_va);
1909 }
1910
1911 /*
1912 * Here is a really, really sleazy free. It's not used right now,
1913 * because it's not worth the extra complexity for just a few bytes.
1914 *
1915 */
1916 #if 0
1917 static void
1918 ofw_free(addr, size)
1919 vaddr_t addr;
1920 vsize_t size;
1921 {
1922 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1923
1924 /* splice right into list without checks or compaction */
1925 pLeftover->pNext = leftovers;
1926 pLeftover->size = size;
1927 leftovers = pLeftover;
1928 }
1929 #endif
1930
1931 /*
1932 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1933 * We guarantee that the allocated memory will be
1934 * aligned to a boundary equal to the smallest power of
1935 * 2 greater than or equal to size.
1936 * free_pp is an IN/OUT parameter which points to the
1937 * last allocated virtual address in an allocate-downwards
1938 * stack. pv_p is an OUT parameter which contains the
1939 * virtual and physical base addresses of the allocated
1940 * memory.
1941 */
1942 static void
1943 ofw_claimpages(free_pp, pv_p, size)
1944 vaddr_t *free_pp;
1945 pv_addr_t *pv_p;
1946 vsize_t size;
1947 {
1948 /* round-up to page boundary */
1949 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1950 vsize_t aligned_size;
1951 vaddr_t va;
1952 paddr_t pa;
1953
1954 if (alloc_size == 0)
1955 panic("ofw_claimpages zero");
1956
1957 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1958 ;
1959
1960 /* The only way to provide the alignment guarantees is to
1961 * allocate the virtual and physical ranges separately,
1962 * then do an explicit map call.
1963 */
1964 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1965 if (ofw_claimvirt(va, alloc_size, 0) != va)
1966 panic("ofw_claimpages va alloc");
1967 pa = ofw_claimphys(0, alloc_size, aligned_size);
1968 if (pa == -1)
1969 panic("ofw_claimpages pa alloc");
1970 /* XXX - what mode? -JJK */
1971 ofw_settranslation(va, pa, alloc_size, -1);
1972
1973 /* The memory's mapped-in now, so we can zero it. */
1974 bzero((char *)va, alloc_size);
1975
1976 /* Set OUT parameters. */
1977 *free_pp = va;
1978 pv_p->pv_va = va;
1979 pv_p->pv_pa = pa;
1980 }
1981
1982
1983 static void
1984 ofw_discardmappings(L2pagetable, va, size)
1985 vaddr_t L2pagetable;
1986 vaddr_t va;
1987 vsize_t size;
1988 {
1989 /* round-up to page boundary */
1990 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1991 int npages = alloc_size / PAGE_SIZE;
1992
1993 if (npages == 0)
1994 panic("ofw_discardmappings zero");
1995
1996 /* Discard each mapping. */
1997 for (; npages > 0; va += PAGE_SIZE, npages--) {
1998 /* Sanity. The current entry should be non-null. */
1999 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
2000 panic("ofw_discardmappings zero entry");
2001
2002 /* Clear the entry. */
2003 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2004 }
2005 }
2006
2007
2008 static void
2009 ofw_initallocator(void)
2010 {
2011
2012 }
2013
2014 #if defined(SHARK) && (NPC > 0)
2015 /* For consistency with the conditionals used in this file. */
2016 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
2017 static void
2018 reset_screen()
2019 {
2020
2021 if ((console_ihandle == 0) || (console_ihandle == -1))
2022 return;
2023
2024 OF_call_method("install", console_ihandle, 0, 0);
2025 }
2026 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
2027