ofw.c revision 1.40 1 /* $NetBSD: ofw.c,v 1.40 2007/08/13 02:04:51 tsutsui Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.40 2007/08/13 02:04:51 tsutsui Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <dev/cons.h>
55
56 #define _ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62 #include <machine/irqhandler.h>
63
64 #include <dev/ofw/openfirm.h>
65 #include <machine/ofw.h>
66
67 #include <netinet/in.h>
68
69 #if BOOT_FW_DHCP
70 #include <nfs/bootdata.h>
71 #endif
72
73 #ifdef SHARK
74 #include "machine/pio.h"
75 #include "machine/isa_machdep.h"
76 #endif
77
78 #include "pc.h"
79 #include "isadma.h"
80 #include "igsfb_ofbus.h"
81 #include "vga_ofbus.h"
82
83 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
84 #define IO_VIRT_SIZE 0x01000000
85
86 #define KERNEL_IMG_PTS 2
87 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
88 #define KERNEL_OFW_PTS 4
89 #define KERNEL_IO_PTS 4
90
91 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
92 /*
93 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
94 * OFW sits at 0xf7000000
95 */
96 #define KERNEL_VM_SIZE 0x06000000
97
98 /*
99 * Imported variables
100 */
101 extern BootConfig bootconfig; /* temporary, I hope */
102
103 #ifdef DIAGNOSTIC
104 /* NOTE: These variables will be removed, well some of them */
105 extern u_int current_mask;
106 #endif
107
108 extern int ofw_handleticks;
109
110
111 /*
112 * Imported routines
113 */
114 extern void dump_spl_masks __P((void));
115 extern void dumpsys __P((void));
116 extern void dotickgrovelling __P((vaddr_t));
117 #if defined(SHARK) && (NPC > 0)
118 extern void shark_screen_cleanup __P((int));
119 #endif
120
121 #define WriteWord(a, b) \
122 *((volatile unsigned int *)(a)) = (b)
123
124 #define ReadWord(a) \
125 (*((volatile unsigned int *)(a)))
126
127
128 /*
129 * Exported variables
130 */
131 /* These should all be in a meminfo structure. */
132 paddr_t physical_start;
133 paddr_t physical_freestart;
134 paddr_t physical_freeend;
135 paddr_t physical_end;
136 u_int free_pages;
137 int physmem;
138 pv_addr_t systempage;
139 #ifndef OFWGENCFG
140 pv_addr_t irqstack;
141 #endif
142 pv_addr_t undstack;
143 pv_addr_t abtstack;
144 pv_addr_t kernelstack;
145
146 paddr_t msgbufphys;
147
148 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
149 static vaddr_t virt_freeptr;
150
151 int ofw_callbacks = 0; /* debugging counter */
152
153 #if defined(SHARK) && (NPC > 0)
154 /* For consistency with the conditionals used in this file. */
155 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
156 int console_ihandle = 0;
157 static void reset_screen(void);
158 #endif
159
160 /**************************************************************/
161
162
163 /*
164 * Declarations and definitions private to this module
165 *
166 */
167
168 struct mem_region {
169 paddr_t start;
170 psize_t size;
171 };
172
173 struct mem_translation {
174 vaddr_t virt;
175 vsize_t size;
176 paddr_t phys;
177 unsigned int mode;
178 };
179
180 struct isa_range {
181 paddr_t isa_phys_hi;
182 paddr_t isa_phys_lo;
183 paddr_t parent_phys_start;
184 psize_t isa_size;
185 };
186
187 struct vl_range {
188 paddr_t vl_phys_hi;
189 paddr_t vl_phys_lo;
190 paddr_t parent_phys_start;
191 psize_t vl_size;
192 };
193
194 struct vl_isa_range {
195 paddr_t isa_phys_hi;
196 paddr_t isa_phys_lo;
197 paddr_t parent_phys_hi;
198 paddr_t parent_phys_lo;
199 psize_t isa_size;
200 };
201
202 struct dma_range {
203 paddr_t start;
204 psize_t size;
205 };
206
207 struct ofw_cbargs {
208 char *name;
209 int nargs;
210 int nreturns;
211 int args_n_results[12];
212 };
213
214
215 /* Memory info */
216 static int nOFphysmem;
217 static struct mem_region *OFphysmem;
218 static int nOFphysavail;
219 static struct mem_region *OFphysavail;
220 static int nOFtranslations;
221 static struct mem_translation *OFtranslations;
222 static int nOFdmaranges;
223 static struct dma_range *OFdmaranges;
224
225 /* The OFW client services handle. */
226 /* Initialized by ofw_init(). */
227 static ofw_handle_t ofw_client_services_handle;
228
229
230 static void ofw_callbackhandler __P((void *));
231 static void ofw_construct_proc0_addrspace __P((pv_addr_t *));
232 static void ofw_getphysmeminfo __P((void));
233 static void ofw_getvirttranslations __P((void));
234 static void *ofw_malloc(vsize_t size);
235 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
236 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
237 static int ofw_mem_ihandle __P((void));
238 static int ofw_mmu_ihandle __P((void));
239 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
240 #if 0
241 static paddr_t ofw_releasephys __P((paddr_t, psize_t));
242 #endif
243 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
244 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
245 static void ofw_initallocator __P((void));
246 static void ofw_configisaonly __P((paddr_t *, paddr_t *));
247 static void ofw_configvl __P((int, paddr_t *, paddr_t *));
248 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
249
250
251 /*
252 * DHCP hooks. For a first cut, we look to see if there is a DHCP
253 * packet that was saved by the firmware. If not, we proceed as before,
254 * getting hand-configured data from NVRAM. If there is one, we get the
255 * packet, and extract the data from it. For now, we hand that data up
256 * in the boot_args string as before.
257 */
258
259
260 /**************************************************************/
261
262
263 /*
264 *
265 * Support routines for xxx_machdep.c
266 *
267 * The intent is that all OFW-based configurations use the
268 * exported routines in this file to do their business. If
269 * they need to override some function they are free to do so.
270 *
271 * The exported routines are:
272 *
273 * openfirmware
274 * ofw_init
275 * ofw_boot
276 * ofw_getbootinfo
277 * ofw_configmem
278 * ofw_configisa
279 * ofw_configisadma
280 * ofw_gettranslation
281 * ofw_map
282 * ofw_getcleaninfo
283 */
284
285
286 int
287 openfirmware(args)
288 void *args;
289 {
290 int ofw_result;
291 u_int saved_irq_state;
292
293 /* OFW is not re-entrant, so we wrap a mutex around the call. */
294 saved_irq_state = disable_interrupts(I32_bit);
295 ofw_result = ofw_client_services_handle(args);
296 (void)restore_interrupts(saved_irq_state);
297
298 return(ofw_result);
299 }
300
301
302 void
303 ofw_init(ofw_handle)
304 ofw_handle_t ofw_handle;
305 {
306 ofw_client_services_handle = ofw_handle;
307
308 /* Everything we allocate in the remainder of this block is
309 * constrained to be in the "kernel-static" portion of the
310 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
311 * This is because all such objects are expected to be in
312 * that range by NetBSD, or the objects will be re-mapped
313 * after the page-table-switch to other specific locations.
314 * In the latter case, it's simplest if our pre-switch handles
315 * on those objects are in regions that are already "well-
316 * known." (Otherwise, the cloning of the OFW-managed address-
317 * space becomes more awkward.) To minimize the number of L2
318 * page tables that we use, we are further restricting the
319 * remaining allocations in this block to the bottom quarter of
320 * the legal range. OFW will have loaded the kernel text+data+bss
321 * starting at the bottom of the range, and we will allocate
322 * objects from the top, moving downwards. The two sub-regions
323 * will collide if their total sizes hit 8MB. The current total
324 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
325 * limit. The variable virt-freeptr represents the next free va
326 * (moving downwards).
327 */
328 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
329 }
330
331
332 void
333 ofw_boot(howto, bootstr)
334 int howto;
335 char *bootstr;
336 {
337
338 #ifdef DIAGNOSTIC
339 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
340 printf("current_mask=%08x\n", current_mask);
341
342 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
343 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
344 irqmasks[IPL_VM]);
345 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
346 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
347
348 dump_spl_masks();
349 #endif
350
351 /*
352 * If we are still cold then hit the air brakes
353 * and crash to earth fast
354 */
355 if (cold) {
356 doshutdownhooks();
357 printf("Halted while still in the ICE age.\n");
358 printf("The operating system has halted.\n");
359 goto ofw_exit;
360 /*NOTREACHED*/
361 }
362
363 /*
364 * If RB_NOSYNC was not specified sync the discs.
365 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
366 * It looks like syslogd is getting woken up only to find that it cannot
367 * page part of the binary in as the filesystem has been unmounted.
368 */
369 if (!(howto & RB_NOSYNC))
370 bootsync();
371
372 /* Say NO to interrupts */
373 splhigh();
374
375 /* Do a dump if requested. */
376 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
377 dumpsys();
378
379 /* Run any shutdown hooks */
380 doshutdownhooks();
381
382 /* Make sure IRQ's are disabled */
383 IRQdisable;
384
385 if (howto & RB_HALT) {
386 printf("The operating system has halted.\n");
387 goto ofw_exit;
388 }
389
390 /* Tell the user we are booting */
391 printf("rebooting...\n");
392
393 /* Jump into the OFW boot routine. */
394 {
395 static char str[256];
396 char *ap = str, *ap1 = ap;
397
398 if (bootstr && *bootstr) {
399 if (strlen(bootstr) > sizeof str - 5)
400 printf("boot string too large, ignored\n");
401 else {
402 strcpy(str, bootstr);
403 ap1 = ap = str + strlen(str);
404 *ap++ = ' ';
405 }
406 }
407 *ap++ = '-';
408 if (howto & RB_SINGLE)
409 *ap++ = 's';
410 if (howto & RB_KDB)
411 *ap++ = 'd';
412 *ap++ = 0;
413 if (ap[-2] == '-')
414 *ap1 = 0;
415 #if defined(SHARK) && (NPC > 0)
416 shark_screen_cleanup(0);
417 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
418 reset_screen();
419 #endif
420 OF_boot(str);
421 /*NOTREACHED*/
422 }
423
424 ofw_exit:
425 printf("Calling OF_exit...\n");
426 #if defined(SHARK) && (NPC > 0)
427 shark_screen_cleanup(1);
428 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
429 reset_screen();
430 #endif
431 OF_exit();
432 /*NOTREACHED*/
433 }
434
435
436 #if BOOT_FW_DHCP
437
438 extern char *ip2dotted __P((struct in_addr));
439
440 /*
441 * Get DHCP data from OFW
442 */
443
444 void
445 get_fw_dhcp_data(bdp)
446 struct bootdata *bdp;
447 {
448 int chosen;
449 int dhcplen;
450
451 bzero((char *)bdp, sizeof(*bdp));
452 if ((chosen = OF_finddevice("/chosen")) == -1)
453 panic("no /chosen from OFW");
454 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
455 u_char *cp;
456 int dhcp_type = 0;
457 char *ip;
458
459 /*
460 * OFW saved a DHCP (or BOOTP) packet for us.
461 */
462 if (dhcplen > sizeof(bdp->dhcp_packet))
463 panic("DHCP packet too large");
464 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
465 sizeof(bdp->dhcp_packet));
466 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
467 /*
468 * Collect the interesting data from DHCP into
469 * the bootdata structure.
470 */
471 bdp->ip_address = bdp->dhcp_packet.yiaddr;
472 ip = ip2dotted(bdp->ip_address);
473 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
474 parse_dhcp_options(&bdp->dhcp_packet,
475 bdp->dhcp_packet.options + 4,
476 &bdp->dhcp_packet.options[dhcplen
477 - DHCP_FIXED_NON_UDP], bdp, ip);
478 if (bdp->root_ip.s_addr == 0)
479 bdp->root_ip = bdp->dhcp_packet.siaddr;
480 if (bdp->swap_ip.s_addr == 0)
481 bdp->swap_ip = bdp->dhcp_packet.siaddr;
482 }
483 /*
484 * If the DHCP packet did not contain all the necessary data,
485 * look in NVRAM for the missing parts.
486 */
487 {
488 int options;
489 int proplen;
490 #define BOOTJUNKV_SIZE 256
491 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
492
493
494 if ((options = OF_finddevice("/options")) == -1)
495 panic("can't find /options");
496 if (bdp->ip_address.s_addr == 0 &&
497 (proplen = OF_getprop(options, "ipaddr",
498 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
499 bootjunkv[proplen] = '\0';
500 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
501 bdp->ip_address.s_addr = 0;
502 }
503 if (bdp->ip_mask.s_addr == 0 &&
504 (proplen = OF_getprop(options, "netmask",
505 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
506 bootjunkv[proplen] = '\0';
507 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
508 bdp->ip_mask.s_addr = 0;
509 }
510 if (bdp->hostname[0] == '\0' &&
511 (proplen = OF_getprop(options, "hostname",
512 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
513 bdp->hostname[proplen] = '\0';
514 }
515 if (bdp->root[0] == '\0' &&
516 (proplen = OF_getprop(options, "rootfs",
517 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
518 bootjunkv[proplen] = '\0';
519 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
520 }
521 if (bdp->swap[0] == '\0' &&
522 (proplen = OF_getprop(options, "swapfs",
523 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
524 bootjunkv[proplen] = '\0';
525 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
526 }
527 }
528 }
529
530 #endif /* BOOT_FW_DHCP */
531
532 void
533 ofw_getbootinfo(bp_pp, ba_pp)
534 char **bp_pp;
535 char **ba_pp;
536 {
537 int chosen;
538 int bp_len;
539 int ba_len;
540 char *bootpathv;
541 char *bootargsv;
542
543 /* Read the bootpath and bootargs out of OFW. */
544 /* XXX is bootpath still interesting? --emg */
545 if ((chosen = OF_finddevice("/chosen")) == -1)
546 panic("no /chosen from OFW");
547 bp_len = OF_getproplen(chosen, "bootpath");
548 ba_len = OF_getproplen(chosen, "bootargs");
549 if (bp_len < 0 || ba_len < 0)
550 panic("can't get boot data from OFW");
551
552 bootpathv = (char *)ofw_malloc(bp_len);
553 bootargsv = (char *)ofw_malloc(ba_len);
554
555 if (bp_len)
556 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
557 else
558 bootpathv[0] = '\0';
559
560 if (ba_len)
561 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
562 else
563 bootargsv[0] = '\0';
564
565 *bp_pp = bootpathv;
566 *ba_pp = bootargsv;
567 #ifdef DIAGNOSTIC
568 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
569 #endif
570 }
571
572 paddr_t
573 ofw_getcleaninfo(void)
574 {
575 int cpu;
576 vaddr_t vclean;
577 paddr_t pclean;
578
579 if ((cpu = OF_finddevice("/cpu")) == -1)
580 panic("no /cpu from OFW");
581
582 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
583 sizeof(vclean))) != sizeof(vclean)) {
584 #ifdef DEBUG
585 printf("no OFW d-cache-flush-address property\n");
586 #endif
587 return -1;
588 }
589
590 if ((pclean = ofw_gettranslation(
591 of_decode_int((unsigned char *)&vclean))) == -1)
592 panic("OFW failed to translate cache flush address");
593
594 return pclean;
595 }
596
597 void
598 ofw_configisa(pio, pmem)
599 paddr_t *pio;
600 paddr_t *pmem;
601 {
602 int vl;
603
604 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
605 ofw_configisaonly(pio, pmem);
606 else /* old style OFW dev info tree */
607 ofw_configvl(vl, pio, pmem);
608 }
609
610 static void
611 ofw_configisaonly(pio, pmem)
612 paddr_t *pio;
613 paddr_t *pmem;
614 {
615 int isa;
616 int rangeidx;
617 int size;
618 paddr_t hi, start;
619 struct isa_range ranges[2];
620
621 if ((isa = OF_finddevice("/isa")) == -1)
622 panic("OFW has no /isa device node");
623
624 /* expect to find two isa ranges: IO/data and memory/data */
625 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
626 != sizeof(ranges))
627 panic("unexpected size of OFW /isa ranges property: %d", size);
628
629 *pio = *pmem = -1;
630
631 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
632 hi = of_decode_int((unsigned char *)
633 &ranges[rangeidx].isa_phys_hi);
634 start = of_decode_int((unsigned char *)
635 &ranges[rangeidx].parent_phys_start);
636
637 if (hi & 1) { /* then I/O space */
638 *pio = start;
639 } else {
640 *pmem = start;
641 }
642 } /* END for */
643
644 if ((*pio == -1) || (*pmem == -1))
645 panic("bad OFW /isa ranges property");
646
647 }
648
649 static void
650 ofw_configvl(vl, pio, pmem)
651 int vl;
652 paddr_t *pio;
653 paddr_t *pmem;
654 {
655 int isa;
656 int ir, vr;
657 int size;
658 paddr_t hi, start;
659 struct vl_isa_range isa_ranges[2];
660 struct vl_range vl_ranges[2];
661
662 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
663 panic("OFW has no /vlbus/isa device node");
664
665 /* expect to find two isa ranges: IO/data and memory/data */
666 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
667 != sizeof(isa_ranges))
668 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
669 size);
670
671 /* expect to find two vl ranges: IO/data and memory/data */
672 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
673 != sizeof(vl_ranges))
674 panic("unexpected size of OFW /vlbus ranges property: %d", size);
675
676 *pio = -1;
677 *pmem = -1;
678
679 for (ir = 0; ir < 2; ++ir) {
680 for (vr = 0; vr < 2; ++vr) {
681 if ((isa_ranges[ir].parent_phys_hi
682 == vl_ranges[vr].vl_phys_hi) &&
683 (isa_ranges[ir].parent_phys_lo
684 == vl_ranges[vr].vl_phys_lo)) {
685 hi = of_decode_int((unsigned char *)
686 &isa_ranges[ir].isa_phys_hi);
687 start = of_decode_int((unsigned char *)
688 &vl_ranges[vr].parent_phys_start);
689
690 if (hi & 1) { /* then I/O space */
691 *pio = start;
692 } else {
693 *pmem = start;
694 }
695 } /* END if */
696 } /* END for */
697 } /* END for */
698
699 if ((*pio == -1) || (*pmem == -1))
700 panic("bad OFW /isa ranges property");
701 }
702
703 #if NISADMA > 0
704 struct arm32_dma_range *shark_isa_dma_ranges;
705 int shark_isa_dma_nranges;
706 #endif
707
708 void
709 ofw_configisadma(pdma)
710 paddr_t *pdma;
711 {
712 int root;
713 int rangeidx;
714 int size;
715 struct dma_range *dr;
716
717 if ((root = OF_finddevice("/")) == -1 ||
718 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
719 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
720 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
721 panic("bad / dma-ranges property");
722
723 nOFdmaranges = size / sizeof(struct dma_range);
724
725 #if NISADMA > 0
726 /* Allocate storage for non-OFW representation of the range. */
727 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
728 sizeof(*shark_isa_dma_ranges));
729 if (shark_isa_dma_ranges == NULL)
730 panic("unable to allocate shark_isa_dma_ranges");
731 shark_isa_dma_nranges = nOFdmaranges;
732 #endif
733
734 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
735 ++rangeidx, ++dr) {
736 dr->start = of_decode_int((unsigned char *)&dr->start);
737 dr->size = of_decode_int((unsigned char *)&dr->size);
738 #if NISADMA > 0
739 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
740 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
741 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
742 #endif
743 }
744
745 #ifdef DEBUG
746 printf("DMA ranges size = %d\n", size);
747
748 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
749 printf("%08lx %08lx\n",
750 (u_long)OFdmaranges[rangeidx].start,
751 (u_long)OFdmaranges[rangeidx].size);
752 }
753 #endif
754 }
755
756 /*
757 * Memory configuration:
758 *
759 * We start off running in the environment provided by OFW.
760 * This has the MMU turned on, the kernel code and data
761 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
762 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
763 * page0 mapped-in at 0x0.
764 *
765 * The strategy is to set-up the address space for proc0 --
766 * including the allocation of space for new page tables -- while
767 * memory is still managed by OFW. We then effectively create a
768 * copy of the address space by dumping all of OFW's translations
769 * and poking them into the new page tables. We then notify OFW
770 * that we are assuming control of memory-management by installing
771 * our callback-handler, and switch to the NetBSD-managed page
772 * tables with the setttb() call.
773 *
774 * This scheme may cause some amount of memory to be wasted within
775 * OFW as dead page tables, but it shouldn't be more than about
776 * 20-30KB. (It's also possible that OFW will re-use the space.)
777 */
778 void
779 ofw_configmem(void)
780 {
781 pv_addr_t proc0_ttbbase;
782 int i;
783
784 /* Set-up proc0 address space. */
785 ofw_construct_proc0_addrspace(&proc0_ttbbase);
786
787 /*
788 * Get a dump of OFW's picture of physical memory.
789 * This is used below to initialize a load of variables used by pmap.
790 * We get it now rather than later because we are about to
791 * tell OFW to stop managing memory.
792 */
793 ofw_getphysmeminfo();
794
795 /* We are about to take control of memory-management from OFW.
796 * Establish callbacks for OFW to use for its future memory needs.
797 * This is required for us to keep using OFW services.
798 */
799
800 /* First initialize our callback memory allocator. */
801 ofw_initallocator();
802
803 OF_set_callback(ofw_callbackhandler);
804
805 /* Switch to the proc0 pagetables. */
806 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
807 setttb(proc0_ttbbase.pv_pa);
808 cpu_tlb_flushID();
809 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
810
811 /*
812 * Moved from cpu_startup() as data_abort_handler() references
813 * this during uvm init
814 */
815 {
816 extern struct user *proc0paddr;
817 proc0paddr = (struct user *)kernelstack.pv_va;
818 lwp0.l_addr = proc0paddr;
819 }
820
821 /* Aaaaaaaah, running in the proc0 address space! */
822 /* I feel good... */
823
824 /* Set-up the various globals which describe physical memory for pmap. */
825 {
826 struct mem_region *mp;
827 int totalcnt;
828 int availcnt;
829
830 /* physmem, physical_start, physical_end */
831 physmem = 0;
832 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
833 totalcnt++, mp++) {
834 #ifdef OLDPRINTFS
835 printf("physmem: %x, %x\n", mp->start, mp->size);
836 #endif
837 physmem += btoc(mp->size);
838 }
839 physical_start = OFphysmem[0].start;
840 mp--;
841 physical_end = mp->start + mp->size;
842
843 /* free_pages, physical_freestart, physical_freeend */
844 free_pages = 0;
845 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
846 availcnt++, mp++) {
847 #ifdef OLDPRINTFS
848 printf("physavail: %x, %x\n", mp->start, mp->size);
849 #endif
850 free_pages += btoc(mp->size);
851 }
852 physical_freestart = OFphysavail[0].start;
853 mp--;
854 physical_freeend = mp->start + mp->size;
855 #ifdef OLDPRINTFS
856 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
857 physmem, free_pages);
858 #endif
859
860 /*
861 * This is a hack to work with the existing pmap code.
862 * That code depends on a RiscPC BootConfig structure
863 * containing, among other things, an array describing
864 * the regions of physical memory. So, for now, we need
865 * to stuff our OFW-derived physical memory info into a
866 * "fake" BootConfig structure.
867 *
868 * An added twist is that we initialize the BootConfig
869 * structure with our "available" physical memory regions
870 * rather than the "total" physical memory regions. Why?
871 * Because:
872 *
873 * (a) the VM code requires that the "free" pages it is
874 * initialized with have consecutive indices. This
875 * allows it to use more efficient data structures
876 * (presumably).
877 * (b) the current pmap routines which report the initial
878 * set of free page indices (pmap_next_page) and
879 * which map addresses to indices (pmap_page_index)
880 * assume that the free pages are consecutive across
881 * memory region boundaries.
882 *
883 * This means that memory which is "stolen" at startup time
884 * (say, for page descriptors) MUST come from either the
885 * bottom of the first region or the top of the last.
886 *
887 * This requirement doesn't mesh well with OFW (or at least
888 * our use of it). We can get around it for the time being
889 * by pretending that our "available" region array describes
890 * all of our physical memory. This may cause some important
891 * information to be excluded from a dump file, but so far
892 * I haven't come across any other negative effects.
893 *
894 * In the long-run we should fix the index
895 * generation/translation code in the pmap module.
896 */
897
898 if (DRAM_BLOCKS < (availcnt + 1))
899 panic("more ofw memory regions than bootconfig blocks");
900
901 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
902 bootconfig.dram[i].address = mp->start;
903 bootconfig.dram[i].pages = btoc(mp->size);
904 }
905 bootconfig.dramblocks = availcnt;
906 }
907
908 /* Load memory into UVM. */
909 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
910
911 /* XXX Please kill this code dead. */
912 for (i = 0; i < bootconfig.dramblocks; i++) {
913 paddr_t start = (paddr_t)bootconfig.dram[i].address;
914 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
915 #if NISADMA > 0
916 paddr_t istart, isize;
917 #endif
918
919 if (start < physical_freestart)
920 start = physical_freestart;
921 if (end > physical_freeend)
922 end = physical_freeend;
923
924 #if 0
925 printf("%d: %lx -> %lx\n", loop, start, end - 1);
926 #endif
927
928 #if NISADMA > 0
929 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
930 shark_isa_dma_nranges,
931 start, end - start,
932 &istart, &isize)) {
933 /*
934 * Place the pages that intersect with the
935 * ISA DMA range onto the ISA DMA free list.
936 */
937 #if 0
938 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
939 istart + isize - 1);
940 #endif
941 uvm_page_physload(atop(istart),
942 atop(istart + isize), atop(istart),
943 atop(istart + isize), VM_FREELIST_ISADMA);
944
945 /*
946 * Load the pieces that come before the
947 * intersection onto the default free list.
948 */
949 if (start < istart) {
950 #if 0
951 printf(" BEFORE 0x%lx -> 0x%lx\n",
952 start, istart - 1);
953 #endif
954 uvm_page_physload(atop(start),
955 atop(istart), atop(start),
956 atop(istart), VM_FREELIST_DEFAULT);
957 }
958
959 /*
960 * Load the pieces that come after the
961 * intersection onto the default free list.
962 */
963 if ((istart + isize) < end) {
964 #if 0
965 printf(" AFTER 0x%lx -> 0x%lx\n",
966 (istart + isize), end - 1);
967 #endif
968 uvm_page_physload(atop(istart + isize),
969 atop(end), atop(istart + isize),
970 atop(end), VM_FREELIST_DEFAULT);
971 }
972 } else {
973 uvm_page_physload(atop(start), atop(end),
974 atop(start), atop(end), VM_FREELIST_DEFAULT);
975 }
976 #else /* NISADMA > 0 */
977 uvm_page_physload(atop(start), atop(end),
978 atop(start), atop(end), VM_FREELIST_DEFAULT);
979 #endif /* NISADMA > 0 */
980 }
981
982 /* Initialize pmap module. */
983 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, KERNEL_VM_BASE,
984 KERNEL_VM_BASE + KERNEL_VM_SIZE);
985 }
986
987
988 /*
989 ************************************************************
990
991 Routines private to this module
992
993 ************************************************************
994 */
995
996 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
997 static void
998 ofw_callbackhandler(v)
999 void *v;
1000 {
1001 struct ofw_cbargs *args = v;
1002 char *name = args->name;
1003 int nargs = args->nargs;
1004 int nreturns = args->nreturns;
1005 int *args_n_results = args->args_n_results;
1006
1007 ofw_callbacks++;
1008
1009 #if defined(OFWGENCFG)
1010 /* Check this first, so that we don't waste IRQ time parsing. */
1011 if (strcmp(name, "tick") == 0) {
1012 vaddr_t frame;
1013
1014 /* Check format. */
1015 if (nargs != 1 || nreturns < 1) {
1016 args_n_results[nargs] = -1;
1017 args->nreturns = 1;
1018 return;
1019 }
1020 args_n_results[nargs] = 0; /* properly formatted request */
1021
1022 /*
1023 * Note that we are running in the IRQ frame, with interrupts
1024 * disabled.
1025 *
1026 * We need to do two things here:
1027 * - copy a few words out of the input frame into a global
1028 * area, for later use by our real tick-handling code
1029 * - patch a few words in the frame so that when OFW returns
1030 * from the interrupt it will resume with our handler
1031 * rather than the code that was actually interrupted.
1032 * Our handler will resume when it finishes with the code
1033 * that was actually interrupted.
1034 *
1035 * It's simplest to do this in assembler, since it requires
1036 * switching frames and grovelling about with registers.
1037 */
1038 frame = (vaddr_t)args_n_results[0];
1039 if (ofw_handleticks)
1040 dotickgrovelling(frame);
1041 args_n_results[nargs + 1] = frame;
1042 args->nreturns = 1;
1043 } else
1044 #endif
1045
1046 if (strcmp(name, "map") == 0) {
1047 vaddr_t va;
1048 paddr_t pa;
1049 vsize_t size;
1050 int mode;
1051 int ap_bits;
1052 int dom_bits;
1053 int cb_bits;
1054
1055 /* Check format. */
1056 if (nargs != 4 || nreturns < 2) {
1057 args_n_results[nargs] = -1;
1058 args->nreturns = 1;
1059 return;
1060 }
1061 args_n_results[nargs] = 0; /* properly formatted request */
1062
1063 pa = (paddr_t)args_n_results[0];
1064 va = (vaddr_t)args_n_results[1];
1065 size = (vsize_t)args_n_results[2];
1066 mode = args_n_results[3];
1067 ap_bits = (mode & 0x00000C00);
1068 dom_bits = (mode & 0x000001E0);
1069 cb_bits = (mode & 0x000000C0);
1070
1071 /* Sanity checks. */
1072 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1073 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1074 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1075 size == 0 || (dom_bits >> 5) != 0) {
1076 args_n_results[nargs + 1] = -1;
1077 args->nreturns = 1;
1078 return;
1079 }
1080
1081 /* Write-back anything stuck in the cache. */
1082 cpu_idcache_wbinv_all();
1083
1084 /* Install new mappings. */
1085 {
1086 pt_entry_t *pte = vtopte(va);
1087 int npages = size >> PGSHIFT;
1088
1089 ap_bits >>= 10;
1090 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1091 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1092 cb_bits);
1093 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1094 }
1095
1096 /* Clean out tlb. */
1097 tlb_flush();
1098
1099 args_n_results[nargs + 1] = 0;
1100 args->nreturns = 2;
1101 } else if (strcmp(name, "unmap") == 0) {
1102 vaddr_t va;
1103 vsize_t size;
1104
1105 /* Check format. */
1106 if (nargs != 2 || nreturns < 1) {
1107 args_n_results[nargs] = -1;
1108 args->nreturns = 1;
1109 return;
1110 }
1111 args_n_results[nargs] = 0; /* properly formatted request */
1112
1113 va = (vaddr_t)args_n_results[0];
1114 size = (vsize_t)args_n_results[1];
1115
1116 /* Sanity checks. */
1117 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1118 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1119 (size & PGOFSET) != 0 || size == 0) {
1120 args_n_results[nargs + 1] = -1;
1121 args->nreturns = 1;
1122 return;
1123 }
1124
1125 /* Write-back anything stuck in the cache. */
1126 cpu_idcache_wbinv_all();
1127
1128 /* Zero the mappings. */
1129 {
1130 pt_entry_t *pte = vtopte(va);
1131 int npages = size >> PGSHIFT;
1132
1133 for (; npages > 0; pte++, npages--)
1134 *pte = 0;
1135 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1136 }
1137
1138 /* Clean out tlb. */
1139 tlb_flush();
1140
1141 args->nreturns = 1;
1142 } else if (strcmp(name, "translate") == 0) {
1143 vaddr_t va;
1144 paddr_t pa;
1145 int mode;
1146 pt_entry_t pte;
1147
1148 /* Check format. */
1149 if (nargs != 1 || nreturns < 4) {
1150 args_n_results[nargs] = -1;
1151 args->nreturns = 1;
1152 return;
1153 }
1154 args_n_results[nargs] = 0; /* properly formatted request */
1155
1156 va = (vaddr_t)args_n_results[0];
1157
1158 /* Sanity checks.
1159 * For now, I am only willing to translate va's in the
1160 * "ofw range." Eventually, I may be more generous. -JJK
1161 */
1162 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1163 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1164 args_n_results[nargs + 1] = -1;
1165 args->nreturns = 1;
1166 return;
1167 }
1168
1169 /* Lookup mapping. */
1170 pte = *vtopte(va);
1171 if (pte == 0) {
1172 /* No mapping. */
1173 args_n_results[nargs + 1] = -1;
1174 args->nreturns = 2;
1175 } else {
1176 /* Existing mapping. */
1177 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1178 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1179
1180 args_n_results[nargs + 1] = 0;
1181 args_n_results[nargs + 2] = pa;
1182 args_n_results[nargs + 3] = mode;
1183 args->nreturns = 4;
1184 }
1185 } else if (strcmp(name, "claim-phys") == 0) {
1186 struct pglist alloclist;
1187 paddr_t low, high, align;
1188 psize_t size;
1189
1190 /*
1191 * XXX
1192 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1193 * XXX
1194 */
1195
1196 /* Check format. */
1197 if (nargs != 4 || nreturns < 3) {
1198 args_n_results[nargs] = -1;
1199 args->nreturns = 1;
1200 return;
1201 }
1202 args_n_results[nargs] = 0; /* properly formatted request */
1203
1204 low = args_n_results[0];
1205 size = args_n_results[2];
1206 align = args_n_results[3];
1207 high = args_n_results[1] + size;
1208
1209 #if 0
1210 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1211 low, size, align, high);
1212 align = size;
1213 printf("forcing align to be 0x%x\n", align);
1214 #endif
1215
1216 args_n_results[nargs + 1] =
1217 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1218 #if 0
1219 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1220 #endif
1221 if (args_n_results[nargs + 1] != 0) {
1222 #if 0
1223 printf("(failed)\n");
1224 #endif
1225 args_n_results[nargs + 1] = -1;
1226 args->nreturns = 2;
1227 return;
1228 }
1229 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1230 #if 0
1231 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1232 #endif
1233 args->nreturns = 3;
1234
1235 } else if (strcmp(name, "release-phys") == 0) {
1236 printf("unimplemented ofw callback - %s\n", name);
1237 args_n_results[nargs] = -1;
1238 args->nreturns = 1;
1239 } else if (strcmp(name, "claim-virt") == 0) {
1240 vaddr_t va;
1241 vsize_t size;
1242 vaddr_t align;
1243
1244 /* XXX - notyet */
1245 /* printf("unimplemented ofw callback - %s\n", name);*/
1246 args_n_results[nargs] = -1;
1247 args->nreturns = 1;
1248 return;
1249
1250 /* Check format. */
1251 if (nargs != 2 || nreturns < 3) {
1252 args_n_results[nargs] = -1;
1253 args->nreturns = 1;
1254 return;
1255 }
1256 args_n_results[nargs] = 0; /* properly formatted request */
1257
1258 /* Allocate size bytes with specified alignment. */
1259 size = (vsize_t)args_n_results[0];
1260 align = (vaddr_t)args_n_results[1];
1261 if (align % PAGE_SIZE != 0) {
1262 args_n_results[nargs + 1] = -1;
1263 args->nreturns = 2;
1264 return;
1265 }
1266
1267 if (va == 0) {
1268 /* Couldn't allocate. */
1269 args_n_results[nargs + 1] = -1;
1270 args->nreturns = 2;
1271 } else {
1272 /* Successful allocation. */
1273 args_n_results[nargs + 1] = 0;
1274 args_n_results[nargs + 2] = va;
1275 args->nreturns = 3;
1276 }
1277 } else if (strcmp(name, "release-virt") == 0) {
1278 vaddr_t va;
1279 vsize_t size;
1280
1281 /* XXX - notyet */
1282 printf("unimplemented ofw callback - %s\n", name);
1283 args_n_results[nargs] = -1;
1284 args->nreturns = 1;
1285 return;
1286
1287 /* Check format. */
1288 if (nargs != 2 || nreturns < 1) {
1289 args_n_results[nargs] = -1;
1290 args->nreturns = 1;
1291 return;
1292 }
1293 args_n_results[nargs] = 0; /* properly formatted request */
1294
1295 /* Release bytes. */
1296 va = (vaddr_t)args_n_results[0];
1297 size = (vsize_t)args_n_results[1];
1298
1299 args->nreturns = 1;
1300 } else {
1301 args_n_results[nargs] = -1;
1302 args->nreturns = 1;
1303 }
1304 }
1305
1306 static void
1307 ofw_construct_proc0_addrspace(pv_addr_t *proc0_ttbbase)
1308 {
1309 int i, oft;
1310 static pv_addr_t proc0_pagedir;
1311 static pv_addr_t proc0_pt_sys;
1312 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1313 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1314 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1315 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1316 static pv_addr_t msgbuf;
1317 vaddr_t L1pagetable;
1318 struct mem_translation *tp;
1319
1320 /* Set-up the system page. */
1321 KASSERT(vector_page == 0); /* XXX for now */
1322 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1323 if (systempage.pv_va == -1) {
1324 /* Something was already mapped to vector_page's VA. */
1325 systempage.pv_va = vector_page;
1326 systempage.pv_pa = ofw_gettranslation(vector_page);
1327 if (systempage.pv_pa == -1)
1328 panic("bogus result from gettranslation(vector_page)");
1329 } else {
1330 /* We were just allocated the page-length range at VA 0. */
1331 if (systempage.pv_va != vector_page)
1332 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1333
1334 /* Now allocate a physical page, and establish the mapping. */
1335 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1336 if (systempage.pv_pa == -1)
1337 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1338 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1339 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1340
1341 /* Zero the memory. */
1342 bzero((char *)systempage.pv_va, PAGE_SIZE);
1343 }
1344
1345 /* Allocate/initialize space for the proc0, NetBSD-managed */
1346 /* page tables that we will be switching to soon. */
1347 ofw_claimpages(&virt_freeptr, &proc0_pagedir, L1_TABLE_SIZE);
1348 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1349 for (i = 0; i < KERNEL_IMG_PTS; i++)
1350 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1351 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1352 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1353 for (i = 0; i < KERNEL_OFW_PTS; i++)
1354 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1355 for (i = 0; i < KERNEL_IO_PTS; i++)
1356 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1357
1358 /* Allocate/initialize space for stacks. */
1359 #ifndef OFWGENCFG
1360 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1361 #endif
1362 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1363 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1364 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1365
1366 /* Allocate/initialize space for msgbuf area. */
1367 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1368 msgbufphys = msgbuf.pv_pa;
1369
1370 /* Construct the proc0 L1 pagetable. */
1371 L1pagetable = proc0_pagedir.pv_va;
1372
1373 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1374 for (i = 0; i < KERNEL_IMG_PTS; i++)
1375 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1376 &proc0_pt_kernel[i]);
1377 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1378 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1379 &proc0_pt_vmdata[i]);
1380 for (i = 0; i < KERNEL_OFW_PTS; i++)
1381 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1382 &proc0_pt_ofw[i]);
1383 for (i = 0; i < KERNEL_IO_PTS; i++)
1384 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1385 &proc0_pt_io[i]);
1386
1387 /*
1388 * OK, we're done allocating.
1389 * Get a dump of OFW's translations, and make the appropriate
1390 * entries in the L2 pagetables that we just allocated.
1391 */
1392
1393 ofw_getvirttranslations();
1394
1395 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1396 oft++, tp++) {
1397
1398 vaddr_t va;
1399 paddr_t pa;
1400 int npages = tp->size / PAGE_SIZE;
1401
1402 /* Size must be an integral number of pages. */
1403 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1404 panic("illegal ofw translation (size)");
1405
1406 /* Make an entry for each page in the appropriate table. */
1407 for (va = tp->virt, pa = tp->phys; npages > 0;
1408 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1409 /*
1410 * Map the top bits to the appropriate L2 pagetable.
1411 * The only allowable regions are page0, the
1412 * kernel-static area, and the ofw area.
1413 */
1414 switch (va >> (L1_S_SHIFT + 2)) {
1415 case 0:
1416 /* page0 */
1417 break;
1418
1419 #if KERNEL_IMG_PTS != 2
1420 #error "Update ofw translation range list"
1421 #endif
1422 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1423 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1424 /* kernel static area */
1425 break;
1426
1427 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1428 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1429 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1430 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1431 /* ofw area */
1432 break;
1433
1434 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1435 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1436 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1437 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1438 /* io area */
1439 break;
1440
1441 default:
1442 /* illegal */
1443 panic("illegal ofw translation (addr) %#lx",
1444 va);
1445 }
1446
1447 /* Make the entry. */
1448 pmap_map_entry(L1pagetable, va, pa,
1449 VM_PROT_READ|VM_PROT_WRITE,
1450 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1451 : PTE_NOCACHE);
1452 }
1453 }
1454
1455 /*
1456 * We don't actually want some of the mappings that we just
1457 * set up to appear in proc0's address space. In particular,
1458 * we don't want aliases to physical addresses that the kernel
1459 * has-mapped/will-map elsewhere.
1460 */
1461 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1462 msgbuf.pv_va, MSGBUFSIZE);
1463
1464 /* update the top of the kernel VM */
1465 pmap_curmaxkvaddr =
1466 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1467
1468 /*
1469 * gross hack for the sake of not thrashing the TLB and making
1470 * cache flush more efficient: blast l1 ptes for sections.
1471 */
1472 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1473 vaddr_t va = tp->virt;
1474 paddr_t pa = tp->phys;
1475
1476 if (((va | pa) & L1_S_OFFSET) == 0) {
1477 int nsections = tp->size / L1_S_SIZE;
1478
1479 while (nsections--) {
1480 /* XXXJRT prot?? */
1481 pmap_map_section(L1pagetable, va, pa,
1482 VM_PROT_READ|VM_PROT_WRITE,
1483 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1484 : PTE_NOCACHE);
1485 va += L1_S_SIZE;
1486 pa += L1_S_SIZE;
1487 }
1488 }
1489 }
1490
1491 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1492 *proc0_ttbbase = proc0_pagedir;
1493 }
1494
1495
1496 static void
1497 ofw_getphysmeminfo()
1498 {
1499 int phandle;
1500 int mem_len;
1501 int avail_len;
1502 int i;
1503
1504 if ((phandle = OF_finddevice("/memory")) == -1 ||
1505 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1506 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1507 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1508 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1509 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1510 OF_getprop(phandle, "available", OFphysavail, avail_len)
1511 != avail_len)
1512 panic("can't get physmeminfo from OFW");
1513
1514 nOFphysmem = mem_len / sizeof(struct mem_region);
1515 nOFphysavail = avail_len / sizeof(struct mem_region);
1516
1517 /*
1518 * Sort the blocks in each array into ascending address order.
1519 * Also, page-align all blocks.
1520 */
1521 for (i = 0; i < 2; i++) {
1522 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1523 struct mem_region *mp;
1524 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1525 int j;
1526
1527 #ifdef OLDPRINTFS
1528 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1529 #endif
1530
1531 /* XXX - Convert all the values to host order. -JJK */
1532 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1533 mp->start = of_decode_int((unsigned char *)&mp->start);
1534 mp->size = of_decode_int((unsigned char *)&mp->size);
1535 }
1536
1537 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1538 u_int s, sz;
1539 struct mem_region *mp1;
1540
1541 /* Page-align start of the block. */
1542 s = mp->start % PAGE_SIZE;
1543 if (s != 0) {
1544 s = (PAGE_SIZE - s);
1545
1546 if (mp->size >= s) {
1547 mp->start += s;
1548 mp->size -= s;
1549 }
1550 }
1551
1552 /* Page-align the size. */
1553 mp->size -= mp->size % PAGE_SIZE;
1554
1555 /* Handle empty block. */
1556 if (mp->size == 0) {
1557 memmove(mp, mp + 1, (cnt - (mp - tmp))
1558 * sizeof(struct mem_region));
1559 cnt--;
1560 mp--;
1561 continue;
1562 }
1563
1564 /* Bubble sort. */
1565 s = mp->start;
1566 sz = mp->size;
1567 for (mp1 = tmp; mp1 < mp; mp1++)
1568 if (s < mp1->start)
1569 break;
1570 if (mp1 < mp) {
1571 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1572 mp1->start = s;
1573 mp1->size = sz;
1574 }
1575 }
1576
1577 #ifdef OLDPRINTFS
1578 for (mp = tmp; mp->size; mp++) {
1579 printf("%x, %x\n", mp->start, mp->size);
1580 }
1581 #endif
1582 }
1583 }
1584
1585
1586 static void
1587 ofw_getvirttranslations(void)
1588 {
1589 int mmu_phandle;
1590 int mmu_ihandle;
1591 int trans_len;
1592 int over, len;
1593 int i;
1594 struct mem_translation *tp;
1595
1596 mmu_ihandle = ofw_mmu_ihandle();
1597
1598 /* overallocate to avoid increases during allocation */
1599 over = 4 * sizeof(struct mem_translation);
1600 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1601 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1602 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1603 (trans_len = OF_getprop(mmu_phandle, "translations",
1604 OFtranslations, len + over)) > (len + over))
1605 panic("can't get virttranslations from OFW");
1606
1607 /* XXX - Convert all the values to host order. -JJK */
1608 nOFtranslations = trans_len / sizeof(struct mem_translation);
1609 #ifdef OLDPRINTFS
1610 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1611 #endif
1612 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1613 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1614 tp->size = of_decode_int((unsigned char *)&tp->size);
1615 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1616 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1617 }
1618 }
1619
1620 /*
1621 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1622 */
1623 typedef struct _vfree {
1624 struct _vfree *pNext;
1625 vaddr_t start;
1626 vsize_t size;
1627 } VFREE, *PVFREE;
1628
1629 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1630
1631 static PVFREE vflist = &vfinitial;
1632
1633 static vaddr_t
1634 ofw_valloc(size, align)
1635 vsize_t size;
1636 vaddr_t align;
1637 {
1638 PVFREE *ppvf;
1639 PVFREE pNew;
1640 vaddr_t new;
1641 vaddr_t lead;
1642
1643 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1644 if (align == 0) {
1645 new = (*ppvf)->start;
1646 lead = 0;
1647 } else {
1648 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1649 lead = new - (*ppvf)->start;
1650 }
1651
1652 if (((*ppvf)->size - lead) >= size) {
1653 if (lead == 0) {
1654 /* using whole block */
1655 if (size == (*ppvf)->size) {
1656 /* splice out of list */
1657 (*ppvf) = (*ppvf)->pNext;
1658 } else { /* tail of block is free */
1659 (*ppvf)->start = new + size;
1660 (*ppvf)->size -= size;
1661 }
1662 } else {
1663 vsize_t tail = ((*ppvf)->start
1664 + (*ppvf)->size) - (new + size);
1665 /* free space at beginning */
1666 (*ppvf)->size = lead;
1667
1668 if (tail != 0) {
1669 /* free space at tail */
1670 pNew = ofw_malloc(sizeof(VFREE));
1671 pNew->pNext = (*ppvf)->pNext;
1672 (*ppvf)->pNext = pNew;
1673 pNew->start = new + size;
1674 pNew->size = tail;
1675 }
1676 }
1677 return new;
1678 } /* END if */
1679 } /* END for */
1680
1681 return -1;
1682 }
1683
1684 vaddr_t
1685 ofw_map(pa, size, cb_bits)
1686 paddr_t pa;
1687 vsize_t size;
1688 int cb_bits;
1689 {
1690 vaddr_t va;
1691
1692 if ((va = ofw_valloc(size, size)) == -1)
1693 panic("cannot alloc virtual memory for %#lx", pa);
1694
1695 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1696
1697 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1698
1699 return va;
1700 }
1701
1702 static int
1703 ofw_mem_ihandle(void)
1704 {
1705 static int mem_ihandle = 0;
1706 int chosen;
1707
1708 if (mem_ihandle != 0)
1709 return(mem_ihandle);
1710
1711 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1712 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1713 panic("ofw_mem_ihandle");
1714
1715 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1716
1717 return(mem_ihandle);
1718 }
1719
1720
1721 static int
1722 ofw_mmu_ihandle(void)
1723 {
1724 static int mmu_ihandle = 0;
1725 int chosen;
1726
1727 if (mmu_ihandle != 0)
1728 return(mmu_ihandle);
1729
1730 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1731 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1732 panic("ofw_mmu_ihandle");
1733
1734 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1735
1736 return(mmu_ihandle);
1737 }
1738
1739
1740 /* Return -1 on failure. */
1741 static paddr_t
1742 ofw_claimphys(pa, size, align)
1743 paddr_t pa;
1744 psize_t size;
1745 paddr_t align;
1746 {
1747 int mem_ihandle = ofw_mem_ihandle();
1748
1749 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1750 if (align == 0) {
1751 /* Allocate at specified base; alignment is ignored. */
1752 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1753 } else {
1754 /* Allocate anywhere, with specified alignment. */
1755 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1756 }
1757
1758 /* printf("%x\n", pa);*/
1759 return(pa);
1760 }
1761
1762
1763 #if 0
1764 /* Return -1 on failure. */
1765 static paddr_t
1766 ofw_releasephys(pa, size)
1767 paddr_t pa;
1768 psize_t size;
1769 {
1770 int mem_ihandle = ofw_mem_ihandle();
1771
1772 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1773
1774 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1775 }
1776 #endif
1777
1778 /* Return -1 on failure. */
1779 static vaddr_t
1780 ofw_claimvirt(va, size, align)
1781 vaddr_t va;
1782 vsize_t size;
1783 vaddr_t align;
1784 {
1785 int mmu_ihandle = ofw_mmu_ihandle();
1786
1787 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1788 if (align == 0) {
1789 /* Allocate at specified base; alignment is ignored. */
1790 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1791 } else {
1792 /* Allocate anywhere, with specified alignment. */
1793 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1794 }
1795
1796 /*printf("%x\n", va);*/
1797 return(va);
1798 }
1799
1800 /* Return -1 if no mapping. */
1801 paddr_t
1802 ofw_gettranslation(va)
1803 vaddr_t va;
1804 {
1805 int mmu_ihandle = ofw_mmu_ihandle();
1806 paddr_t pa;
1807 int mode;
1808 int exists;
1809
1810 #ifdef OFW_DEBUG
1811 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1812 #endif
1813 exists = 0; /* gets set to true if translation exists */
1814 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1815 &exists) != 0)
1816 return(-1);
1817
1818 #ifdef OFW_DEBUG
1819 printf("%d %x\n", exists, (uint32_t)pa);
1820 #endif
1821 return(exists ? pa : -1);
1822 }
1823
1824
1825 static void
1826 ofw_settranslation(va, pa, size, mode)
1827 vaddr_t va;
1828 paddr_t pa;
1829 vsize_t size;
1830 int mode;
1831 {
1832 int mmu_ihandle = ofw_mmu_ihandle();
1833
1834 #ifdef OFW_DEBUG
1835 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1836 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1837 #endif
1838 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1839 panic("ofw_settranslation failed");
1840 }
1841
1842 /*
1843 * Allocation routine used before the kernel takes over memory.
1844 * Use this for efficient storage for things that aren't rounded to
1845 * page size.
1846 *
1847 * The point here is not necessarily to be very efficient (even though
1848 * that's sort of nice), but to do proper dynamic allocation to avoid
1849 * size-limitation errors.
1850 *
1851 */
1852
1853 typedef struct _leftover {
1854 struct _leftover *pNext;
1855 vsize_t size;
1856 } LEFTOVER, *PLEFTOVER;
1857
1858 /* leftover bits of pages. first word is pointer to next.
1859 second word is size of leftover */
1860 static PLEFTOVER leftovers = NULL;
1861
1862 static void *
1863 ofw_malloc(size)
1864 vsize_t size;
1865 {
1866 PLEFTOVER *ppLeftover;
1867 PLEFTOVER pLeft;
1868 pv_addr_t new;
1869 vsize_t newSize, claim_size;
1870
1871 /* round and set minimum size */
1872 size = max(sizeof(LEFTOVER),
1873 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1874
1875 for (ppLeftover = &leftovers; *ppLeftover;
1876 ppLeftover = &((*ppLeftover)->pNext))
1877 if ((*ppLeftover)->size >= size)
1878 break;
1879
1880 if (*ppLeftover) { /* have a leftover of the right size */
1881 /* remember the leftover */
1882 new.pv_va = (vaddr_t)*ppLeftover;
1883 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1884 /* splice out of chain */
1885 *ppLeftover = (*ppLeftover)->pNext;
1886 } else {
1887 /* remember the next pointer */
1888 pLeft = (*ppLeftover)->pNext;
1889 newSize = (*ppLeftover)->size - size; /* reduce size */
1890 /* move pointer */
1891 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1892 + size);
1893 (*ppLeftover)->pNext = pLeft;
1894 (*ppLeftover)->size = newSize;
1895 }
1896 } else {
1897 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1898 ofw_claimpages(&virt_freeptr, &new, claim_size);
1899 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1900 pLeft = (PLEFTOVER)(new.pv_va + size);
1901 pLeft->pNext = leftovers;
1902 pLeft->size = claim_size - size;
1903 leftovers = pLeft;
1904 }
1905 }
1906
1907 return (void *)(new.pv_va);
1908 }
1909
1910 /*
1911 * Here is a really, really sleazy free. It's not used right now,
1912 * because it's not worth the extra complexity for just a few bytes.
1913 *
1914 */
1915 #if 0
1916 static void
1917 ofw_free(addr, size)
1918 vaddr_t addr;
1919 vsize_t size;
1920 {
1921 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1922
1923 /* splice right into list without checks or compaction */
1924 pLeftover->pNext = leftovers;
1925 pLeftover->size = size;
1926 leftovers = pLeftover;
1927 }
1928 #endif
1929
1930 /*
1931 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1932 * We guarantee that the allocated memory will be
1933 * aligned to a boundary equal to the smallest power of
1934 * 2 greater than or equal to size.
1935 * free_pp is an IN/OUT parameter which points to the
1936 * last allocated virtual address in an allocate-downwards
1937 * stack. pv_p is an OUT parameter which contains the
1938 * virtual and physical base addresses of the allocated
1939 * memory.
1940 */
1941 static void
1942 ofw_claimpages(free_pp, pv_p, size)
1943 vaddr_t *free_pp;
1944 pv_addr_t *pv_p;
1945 vsize_t size;
1946 {
1947 /* round-up to page boundary */
1948 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1949 vsize_t aligned_size;
1950 vaddr_t va;
1951 paddr_t pa;
1952
1953 if (alloc_size == 0)
1954 panic("ofw_claimpages zero");
1955
1956 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1957 ;
1958
1959 /* The only way to provide the alignment guarantees is to
1960 * allocate the virtual and physical ranges separately,
1961 * then do an explicit map call.
1962 */
1963 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1964 if (ofw_claimvirt(va, alloc_size, 0) != va)
1965 panic("ofw_claimpages va alloc");
1966 pa = ofw_claimphys(0, alloc_size, aligned_size);
1967 if (pa == -1)
1968 panic("ofw_claimpages pa alloc");
1969 /* XXX - what mode? -JJK */
1970 ofw_settranslation(va, pa, alloc_size, -1);
1971
1972 /* The memory's mapped-in now, so we can zero it. */
1973 bzero((char *)va, alloc_size);
1974
1975 /* Set OUT parameters. */
1976 *free_pp = va;
1977 pv_p->pv_va = va;
1978 pv_p->pv_pa = pa;
1979 }
1980
1981
1982 static void
1983 ofw_discardmappings(L2pagetable, va, size)
1984 vaddr_t L2pagetable;
1985 vaddr_t va;
1986 vsize_t size;
1987 {
1988 /* round-up to page boundary */
1989 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1990 int npages = alloc_size / PAGE_SIZE;
1991
1992 if (npages == 0)
1993 panic("ofw_discardmappings zero");
1994
1995 /* Discard each mapping. */
1996 for (; npages > 0; va += PAGE_SIZE, npages--) {
1997 /* Sanity. The current entry should be non-null. */
1998 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1999 panic("ofw_discardmappings zero entry");
2000
2001 /* Clear the entry. */
2002 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
2003 }
2004 }
2005
2006
2007 static void
2008 ofw_initallocator(void)
2009 {
2010
2011 }
2012
2013 #if defined(SHARK) && (NPC > 0)
2014 /* For consistency with the conditionals used in this file. */
2015 #elif (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
2016 static void
2017 reset_screen()
2018 {
2019
2020 if ((console_ihandle == 0) || (console_ihandle == -1))
2021 return;
2022
2023 OF_call_method("install", console_ihandle, 0, 0);
2024 }
2025 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
2026