ofw.c revision 1.43 1 /* $NetBSD: ofw.c,v 1.43 2008/04/27 18:58:47 matt Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.43 2008/04/27 18:58:47 matt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/reboot.h>
50 #include <sys/mbuf.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <dev/cons.h>
55
56 #define _ARM32_BUS_DMA_PRIVATE
57 #include <machine/bus.h>
58 #include <machine/frame.h>
59 #include <machine/bootconfig.h>
60 #include <machine/cpu.h>
61 #include <machine/intr.h>
62 #include <machine/irqhandler.h>
63
64 #include <dev/ofw/openfirm.h>
65 #include <machine/ofw.h>
66
67 #include <netinet/in.h>
68
69 #if BOOT_FW_DHCP
70 #include <nfs/bootdata.h>
71 #endif
72
73 #ifdef SHARK
74 #include "machine/pio.h"
75 #include "machine/isa_machdep.h"
76 #endif
77
78 #include "isadma.h"
79 #include "igsfb_ofbus.h"
80 #include "vga_ofbus.h"
81
82 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
83 #define IO_VIRT_SIZE 0x01000000
84
85 #define KERNEL_IMG_PTS 2
86 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
87 #define KERNEL_OFW_PTS 4
88 #define KERNEL_IO_PTS 4
89
90 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
91 /*
92 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
93 * OFW sits at 0xf7000000
94 */
95 #define KERNEL_VM_SIZE 0x06000000
96
97 /*
98 * Imported variables
99 */
100 extern BootConfig bootconfig; /* temporary, I hope */
101
102 #ifdef DIAGNOSTIC
103 /* NOTE: These variables will be removed, well some of them */
104 extern u_int current_mask;
105 #endif
106
107 extern int ofw_handleticks;
108
109
110 /*
111 * Imported routines
112 */
113 extern void dump_spl_masks __P((void));
114 extern void dumpsys __P((void));
115 extern void dotickgrovelling __P((vaddr_t));
116
117 #define WriteWord(a, b) \
118 *((volatile unsigned int *)(a)) = (b)
119
120 #define ReadWord(a) \
121 (*((volatile unsigned int *)(a)))
122
123
124 /*
125 * Exported variables
126 */
127 /* These should all be in a meminfo structure. */
128 paddr_t physical_start;
129 paddr_t physical_freestart;
130 paddr_t physical_freeend;
131 paddr_t physical_end;
132 u_int free_pages;
133 int physmem;
134 #ifndef OFWGENCFG
135 pv_addr_t irqstack;
136 #endif
137 pv_addr_t undstack;
138 pv_addr_t abtstack;
139 pv_addr_t kernelstack;
140
141 paddr_t msgbufphys;
142
143 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
144 static vaddr_t virt_freeptr;
145
146 int ofw_callbacks = 0; /* debugging counter */
147
148 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
149 int console_ihandle = 0;
150 static void reset_screen(void);
151 #endif
152
153 /**************************************************************/
154
155
156 /*
157 * Declarations and definitions private to this module
158 *
159 */
160
161 struct mem_region {
162 paddr_t start;
163 psize_t size;
164 };
165
166 struct mem_translation {
167 vaddr_t virt;
168 vsize_t size;
169 paddr_t phys;
170 unsigned int mode;
171 };
172
173 struct isa_range {
174 paddr_t isa_phys_hi;
175 paddr_t isa_phys_lo;
176 paddr_t parent_phys_start;
177 psize_t isa_size;
178 };
179
180 struct vl_range {
181 paddr_t vl_phys_hi;
182 paddr_t vl_phys_lo;
183 paddr_t parent_phys_start;
184 psize_t vl_size;
185 };
186
187 struct vl_isa_range {
188 paddr_t isa_phys_hi;
189 paddr_t isa_phys_lo;
190 paddr_t parent_phys_hi;
191 paddr_t parent_phys_lo;
192 psize_t isa_size;
193 };
194
195 struct dma_range {
196 paddr_t start;
197 psize_t size;
198 };
199
200 struct ofw_cbargs {
201 char *name;
202 int nargs;
203 int nreturns;
204 int args_n_results[12];
205 };
206
207
208 /* Memory info */
209 static int nOFphysmem;
210 static struct mem_region *OFphysmem;
211 static int nOFphysavail;
212 static struct mem_region *OFphysavail;
213 static int nOFtranslations;
214 static struct mem_translation *OFtranslations;
215 static int nOFdmaranges;
216 static struct dma_range *OFdmaranges;
217
218 /* The OFW client services handle. */
219 /* Initialized by ofw_init(). */
220 static ofw_handle_t ofw_client_services_handle;
221
222
223 static void ofw_callbackhandler __P((void *));
224 static void ofw_construct_proc0_addrspace __P((void));
225 static void ofw_getphysmeminfo __P((void));
226 static void ofw_getvirttranslations __P((void));
227 static void *ofw_malloc(vsize_t size);
228 static void ofw_claimpages __P((vaddr_t *, pv_addr_t *, vsize_t));
229 static void ofw_discardmappings __P ((vaddr_t, vaddr_t, vsize_t));
230 static int ofw_mem_ihandle __P((void));
231 static int ofw_mmu_ihandle __P((void));
232 static paddr_t ofw_claimphys __P((paddr_t, psize_t, paddr_t));
233 #if 0
234 static paddr_t ofw_releasephys __P((paddr_t, psize_t));
235 #endif
236 static vaddr_t ofw_claimvirt __P((vaddr_t, vsize_t, vaddr_t));
237 static void ofw_settranslation __P ((vaddr_t, paddr_t, vsize_t, int));
238 static void ofw_initallocator __P((void));
239 static void ofw_configisaonly __P((paddr_t *, paddr_t *));
240 static void ofw_configvl __P((int, paddr_t *, paddr_t *));
241 static vaddr_t ofw_valloc __P((vsize_t, vaddr_t));
242
243
244 /*
245 * DHCP hooks. For a first cut, we look to see if there is a DHCP
246 * packet that was saved by the firmware. If not, we proceed as before,
247 * getting hand-configured data from NVRAM. If there is one, we get the
248 * packet, and extract the data from it. For now, we hand that data up
249 * in the boot_args string as before.
250 */
251
252
253 /**************************************************************/
254
255
256 /*
257 *
258 * Support routines for xxx_machdep.c
259 *
260 * The intent is that all OFW-based configurations use the
261 * exported routines in this file to do their business. If
262 * they need to override some function they are free to do so.
263 *
264 * The exported routines are:
265 *
266 * openfirmware
267 * ofw_init
268 * ofw_boot
269 * ofw_getbootinfo
270 * ofw_configmem
271 * ofw_configisa
272 * ofw_configisadma
273 * ofw_gettranslation
274 * ofw_map
275 * ofw_getcleaninfo
276 */
277
278
279 int
280 openfirmware(args)
281 void *args;
282 {
283 int ofw_result;
284 u_int saved_irq_state;
285
286 /* OFW is not re-entrant, so we wrap a mutex around the call. */
287 saved_irq_state = disable_interrupts(I32_bit);
288 ofw_result = ofw_client_services_handle(args);
289 (void)restore_interrupts(saved_irq_state);
290
291 return(ofw_result);
292 }
293
294
295 void
296 ofw_init(ofw_handle)
297 ofw_handle_t ofw_handle;
298 {
299 ofw_client_services_handle = ofw_handle;
300
301 /* Everything we allocate in the remainder of this block is
302 * constrained to be in the "kernel-static" portion of the
303 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
304 * This is because all such objects are expected to be in
305 * that range by NetBSD, or the objects will be re-mapped
306 * after the page-table-switch to other specific locations.
307 * In the latter case, it's simplest if our pre-switch handles
308 * on those objects are in regions that are already "well-
309 * known." (Otherwise, the cloning of the OFW-managed address-
310 * space becomes more awkward.) To minimize the number of L2
311 * page tables that we use, we are further restricting the
312 * remaining allocations in this block to the bottom quarter of
313 * the legal range. OFW will have loaded the kernel text+data+bss
314 * starting at the bottom of the range, and we will allocate
315 * objects from the top, moving downwards. The two sub-regions
316 * will collide if their total sizes hit 8MB. The current total
317 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
318 * limit. The variable virt-freeptr represents the next free va
319 * (moving downwards).
320 */
321 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
322 }
323
324
325 void
326 ofw_boot(howto, bootstr)
327 int howto;
328 char *bootstr;
329 {
330
331 #ifdef DIAGNOSTIC
332 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
333 printf("current_mask=%08x\n", current_mask);
334
335 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
336 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
337 irqmasks[IPL_VM]);
338 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
339 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
340
341 dump_spl_masks();
342 #endif
343
344 /*
345 * If we are still cold then hit the air brakes
346 * and crash to earth fast
347 */
348 if (cold) {
349 doshutdownhooks();
350 printf("Halted while still in the ICE age.\n");
351 printf("The operating system has halted.\n");
352 goto ofw_exit;
353 /*NOTREACHED*/
354 }
355
356 /*
357 * If RB_NOSYNC was not specified sync the discs.
358 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
359 * It looks like syslogd is getting woken up only to find that it cannot
360 * page part of the binary in as the filesystem has been unmounted.
361 */
362 if (!(howto & RB_NOSYNC))
363 bootsync();
364
365 /* Say NO to interrupts */
366 splhigh();
367
368 /* Do a dump if requested. */
369 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
370 dumpsys();
371
372 /* Run any shutdown hooks */
373 doshutdownhooks();
374
375 /* Make sure IRQ's are disabled */
376 IRQdisable;
377
378 if (howto & RB_HALT) {
379 printf("The operating system has halted.\n");
380 goto ofw_exit;
381 }
382
383 /* Tell the user we are booting */
384 printf("rebooting...\n");
385
386 /* Jump into the OFW boot routine. */
387 {
388 static char str[256];
389 char *ap = str, *ap1 = ap;
390
391 if (bootstr && *bootstr) {
392 if (strlen(bootstr) > sizeof str - 5)
393 printf("boot string too large, ignored\n");
394 else {
395 strcpy(str, bootstr);
396 ap1 = ap = str + strlen(str);
397 *ap++ = ' ';
398 }
399 }
400 *ap++ = '-';
401 if (howto & RB_SINGLE)
402 *ap++ = 's';
403 if (howto & RB_KDB)
404 *ap++ = 'd';
405 *ap++ = 0;
406 if (ap[-2] == '-')
407 *ap1 = 0;
408 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
409 reset_screen();
410 #endif
411 OF_boot(str);
412 /*NOTREACHED*/
413 }
414
415 ofw_exit:
416 printf("Calling OF_exit...\n");
417 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
418 reset_screen();
419 #endif
420 OF_exit();
421 /*NOTREACHED*/
422 }
423
424
425 #if BOOT_FW_DHCP
426
427 extern char *ip2dotted __P((struct in_addr));
428
429 /*
430 * Get DHCP data from OFW
431 */
432
433 void
434 get_fw_dhcp_data(bdp)
435 struct bootdata *bdp;
436 {
437 int chosen;
438 int dhcplen;
439
440 bzero((char *)bdp, sizeof(*bdp));
441 if ((chosen = OF_finddevice("/chosen")) == -1)
442 panic("no /chosen from OFW");
443 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
444 u_char *cp;
445 int dhcp_type = 0;
446 char *ip;
447
448 /*
449 * OFW saved a DHCP (or BOOTP) packet for us.
450 */
451 if (dhcplen > sizeof(bdp->dhcp_packet))
452 panic("DHCP packet too large");
453 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
454 sizeof(bdp->dhcp_packet));
455 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
456 /*
457 * Collect the interesting data from DHCP into
458 * the bootdata structure.
459 */
460 bdp->ip_address = bdp->dhcp_packet.yiaddr;
461 ip = ip2dotted(bdp->ip_address);
462 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
463 parse_dhcp_options(&bdp->dhcp_packet,
464 bdp->dhcp_packet.options + 4,
465 &bdp->dhcp_packet.options[dhcplen
466 - DHCP_FIXED_NON_UDP], bdp, ip);
467 if (bdp->root_ip.s_addr == 0)
468 bdp->root_ip = bdp->dhcp_packet.siaddr;
469 if (bdp->swap_ip.s_addr == 0)
470 bdp->swap_ip = bdp->dhcp_packet.siaddr;
471 }
472 /*
473 * If the DHCP packet did not contain all the necessary data,
474 * look in NVRAM for the missing parts.
475 */
476 {
477 int options;
478 int proplen;
479 #define BOOTJUNKV_SIZE 256
480 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
481
482
483 if ((options = OF_finddevice("/options")) == -1)
484 panic("can't find /options");
485 if (bdp->ip_address.s_addr == 0 &&
486 (proplen = OF_getprop(options, "ipaddr",
487 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
488 bootjunkv[proplen] = '\0';
489 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
490 bdp->ip_address.s_addr = 0;
491 }
492 if (bdp->ip_mask.s_addr == 0 &&
493 (proplen = OF_getprop(options, "netmask",
494 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
495 bootjunkv[proplen] = '\0';
496 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
497 bdp->ip_mask.s_addr = 0;
498 }
499 if (bdp->hostname[0] == '\0' &&
500 (proplen = OF_getprop(options, "hostname",
501 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
502 bdp->hostname[proplen] = '\0';
503 }
504 if (bdp->root[0] == '\0' &&
505 (proplen = OF_getprop(options, "rootfs",
506 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
507 bootjunkv[proplen] = '\0';
508 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
509 }
510 if (bdp->swap[0] == '\0' &&
511 (proplen = OF_getprop(options, "swapfs",
512 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
513 bootjunkv[proplen] = '\0';
514 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
515 }
516 }
517 }
518
519 #endif /* BOOT_FW_DHCP */
520
521 void
522 ofw_getbootinfo(bp_pp, ba_pp)
523 char **bp_pp;
524 char **ba_pp;
525 {
526 int chosen;
527 int bp_len;
528 int ba_len;
529 char *bootpathv;
530 char *bootargsv;
531
532 /* Read the bootpath and bootargs out of OFW. */
533 /* XXX is bootpath still interesting? --emg */
534 if ((chosen = OF_finddevice("/chosen")) == -1)
535 panic("no /chosen from OFW");
536 bp_len = OF_getproplen(chosen, "bootpath");
537 ba_len = OF_getproplen(chosen, "bootargs");
538 if (bp_len < 0 || ba_len < 0)
539 panic("can't get boot data from OFW");
540
541 bootpathv = (char *)ofw_malloc(bp_len);
542 bootargsv = (char *)ofw_malloc(ba_len);
543
544 if (bp_len)
545 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
546 else
547 bootpathv[0] = '\0';
548
549 if (ba_len)
550 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
551 else
552 bootargsv[0] = '\0';
553
554 *bp_pp = bootpathv;
555 *ba_pp = bootargsv;
556 #ifdef DIAGNOSTIC
557 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
558 #endif
559 }
560
561 paddr_t
562 ofw_getcleaninfo(void)
563 {
564 int cpu;
565 vaddr_t vclean;
566 paddr_t pclean;
567
568 if ((cpu = OF_finddevice("/cpu")) == -1)
569 panic("no /cpu from OFW");
570
571 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
572 sizeof(vclean))) != sizeof(vclean)) {
573 #ifdef DEBUG
574 printf("no OFW d-cache-flush-address property\n");
575 #endif
576 return -1;
577 }
578
579 if ((pclean = ofw_gettranslation(
580 of_decode_int((unsigned char *)&vclean))) == -1)
581 panic("OFW failed to translate cache flush address");
582
583 return pclean;
584 }
585
586 void
587 ofw_configisa(pio, pmem)
588 paddr_t *pio;
589 paddr_t *pmem;
590 {
591 int vl;
592
593 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
594 ofw_configisaonly(pio, pmem);
595 else /* old style OFW dev info tree */
596 ofw_configvl(vl, pio, pmem);
597 }
598
599 static void
600 ofw_configisaonly(pio, pmem)
601 paddr_t *pio;
602 paddr_t *pmem;
603 {
604 int isa;
605 int rangeidx;
606 int size;
607 paddr_t hi, start;
608 struct isa_range ranges[2];
609
610 if ((isa = OF_finddevice("/isa")) == -1)
611 panic("OFW has no /isa device node");
612
613 /* expect to find two isa ranges: IO/data and memory/data */
614 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
615 != sizeof(ranges))
616 panic("unexpected size of OFW /isa ranges property: %d", size);
617
618 *pio = *pmem = -1;
619
620 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
621 hi = of_decode_int((unsigned char *)
622 &ranges[rangeidx].isa_phys_hi);
623 start = of_decode_int((unsigned char *)
624 &ranges[rangeidx].parent_phys_start);
625
626 if (hi & 1) { /* then I/O space */
627 *pio = start;
628 } else {
629 *pmem = start;
630 }
631 } /* END for */
632
633 if ((*pio == -1) || (*pmem == -1))
634 panic("bad OFW /isa ranges property");
635
636 }
637
638 static void
639 ofw_configvl(vl, pio, pmem)
640 int vl;
641 paddr_t *pio;
642 paddr_t *pmem;
643 {
644 int isa;
645 int ir, vr;
646 int size;
647 paddr_t hi, start;
648 struct vl_isa_range isa_ranges[2];
649 struct vl_range vl_ranges[2];
650
651 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
652 panic("OFW has no /vlbus/isa device node");
653
654 /* expect to find two isa ranges: IO/data and memory/data */
655 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
656 != sizeof(isa_ranges))
657 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
658 size);
659
660 /* expect to find two vl ranges: IO/data and memory/data */
661 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
662 != sizeof(vl_ranges))
663 panic("unexpected size of OFW /vlbus ranges property: %d", size);
664
665 *pio = -1;
666 *pmem = -1;
667
668 for (ir = 0; ir < 2; ++ir) {
669 for (vr = 0; vr < 2; ++vr) {
670 if ((isa_ranges[ir].parent_phys_hi
671 == vl_ranges[vr].vl_phys_hi) &&
672 (isa_ranges[ir].parent_phys_lo
673 == vl_ranges[vr].vl_phys_lo)) {
674 hi = of_decode_int((unsigned char *)
675 &isa_ranges[ir].isa_phys_hi);
676 start = of_decode_int((unsigned char *)
677 &vl_ranges[vr].parent_phys_start);
678
679 if (hi & 1) { /* then I/O space */
680 *pio = start;
681 } else {
682 *pmem = start;
683 }
684 } /* END if */
685 } /* END for */
686 } /* END for */
687
688 if ((*pio == -1) || (*pmem == -1))
689 panic("bad OFW /isa ranges property");
690 }
691
692 #if NISADMA > 0
693 struct arm32_dma_range *shark_isa_dma_ranges;
694 int shark_isa_dma_nranges;
695 #endif
696
697 void
698 ofw_configisadma(pdma)
699 paddr_t *pdma;
700 {
701 int root;
702 int rangeidx;
703 int size;
704 struct dma_range *dr;
705
706 if ((root = OF_finddevice("/")) == -1 ||
707 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
708 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
709 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
710 panic("bad / dma-ranges property");
711
712 nOFdmaranges = size / sizeof(struct dma_range);
713
714 #if NISADMA > 0
715 /* Allocate storage for non-OFW representation of the range. */
716 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
717 sizeof(*shark_isa_dma_ranges));
718 if (shark_isa_dma_ranges == NULL)
719 panic("unable to allocate shark_isa_dma_ranges");
720 shark_isa_dma_nranges = nOFdmaranges;
721 #endif
722
723 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
724 ++rangeidx, ++dr) {
725 dr->start = of_decode_int((unsigned char *)&dr->start);
726 dr->size = of_decode_int((unsigned char *)&dr->size);
727 #if NISADMA > 0
728 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
729 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
730 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
731 #endif
732 }
733
734 #ifdef DEBUG
735 printf("DMA ranges size = %d\n", size);
736
737 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
738 printf("%08lx %08lx\n",
739 (u_long)OFdmaranges[rangeidx].start,
740 (u_long)OFdmaranges[rangeidx].size);
741 }
742 #endif
743 }
744
745 /*
746 * Memory configuration:
747 *
748 * We start off running in the environment provided by OFW.
749 * This has the MMU turned on, the kernel code and data
750 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
751 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
752 * page0 mapped-in at 0x0.
753 *
754 * The strategy is to set-up the address space for proc0 --
755 * including the allocation of space for new page tables -- while
756 * memory is still managed by OFW. We then effectively create a
757 * copy of the address space by dumping all of OFW's translations
758 * and poking them into the new page tables. We then notify OFW
759 * that we are assuming control of memory-management by installing
760 * our callback-handler, and switch to the NetBSD-managed page
761 * tables with the setttb() call.
762 *
763 * This scheme may cause some amount of memory to be wasted within
764 * OFW as dead page tables, but it shouldn't be more than about
765 * 20-30KB. (It's also possible that OFW will re-use the space.)
766 */
767 void
768 ofw_configmem(void)
769 {
770 int i;
771
772 /* Set-up proc0 address space. */
773 ofw_construct_proc0_addrspace();
774
775 /*
776 * Get a dump of OFW's picture of physical memory.
777 * This is used below to initialize a load of variables used by pmap.
778 * We get it now rather than later because we are about to
779 * tell OFW to stop managing memory.
780 */
781 ofw_getphysmeminfo();
782
783 /* We are about to take control of memory-management from OFW.
784 * Establish callbacks for OFW to use for its future memory needs.
785 * This is required for us to keep using OFW services.
786 */
787
788 /* First initialize our callback memory allocator. */
789 ofw_initallocator();
790
791 OF_set_callback(ofw_callbackhandler);
792
793 /* Switch to the proc0 pagetables. */
794 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
795 setttb(kernel_l1pt.pv_pa);
796 cpu_tlb_flushID();
797 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
798
799 /*
800 * Moved from cpu_startup() as data_abort_handler() references
801 * this during uvm init
802 */
803 {
804 extern struct user *proc0paddr;
805 proc0paddr = (struct user *)kernelstack.pv_va;
806 lwp0.l_addr = proc0paddr;
807 }
808
809 /* Aaaaaaaah, running in the proc0 address space! */
810 /* I feel good... */
811
812 /* Set-up the various globals which describe physical memory for pmap. */
813 {
814 struct mem_region *mp;
815 int totalcnt;
816 int availcnt;
817
818 /* physmem, physical_start, physical_end */
819 physmem = 0;
820 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
821 totalcnt++, mp++) {
822 #ifdef OLDPRINTFS
823 printf("physmem: %x, %x\n", mp->start, mp->size);
824 #endif
825 physmem += btoc(mp->size);
826 }
827 physical_start = OFphysmem[0].start;
828 mp--;
829 physical_end = mp->start + mp->size;
830
831 /* free_pages, physical_freestart, physical_freeend */
832 free_pages = 0;
833 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
834 availcnt++, mp++) {
835 #ifdef OLDPRINTFS
836 printf("physavail: %x, %x\n", mp->start, mp->size);
837 #endif
838 free_pages += btoc(mp->size);
839 }
840 physical_freestart = OFphysavail[0].start;
841 mp--;
842 physical_freeend = mp->start + mp->size;
843 #ifdef OLDPRINTFS
844 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
845 physmem, free_pages);
846 #endif
847
848 /*
849 * This is a hack to work with the existing pmap code.
850 * That code depends on a RiscPC BootConfig structure
851 * containing, among other things, an array describing
852 * the regions of physical memory. So, for now, we need
853 * to stuff our OFW-derived physical memory info into a
854 * "fake" BootConfig structure.
855 *
856 * An added twist is that we initialize the BootConfig
857 * structure with our "available" physical memory regions
858 * rather than the "total" physical memory regions. Why?
859 * Because:
860 *
861 * (a) the VM code requires that the "free" pages it is
862 * initialized with have consecutive indices. This
863 * allows it to use more efficient data structures
864 * (presumably).
865 * (b) the current pmap routines which report the initial
866 * set of free page indices (pmap_next_page) and
867 * which map addresses to indices (pmap_page_index)
868 * assume that the free pages are consecutive across
869 * memory region boundaries.
870 *
871 * This means that memory which is "stolen" at startup time
872 * (say, for page descriptors) MUST come from either the
873 * bottom of the first region or the top of the last.
874 *
875 * This requirement doesn't mesh well with OFW (or at least
876 * our use of it). We can get around it for the time being
877 * by pretending that our "available" region array describes
878 * all of our physical memory. This may cause some important
879 * information to be excluded from a dump file, but so far
880 * I haven't come across any other negative effects.
881 *
882 * In the long-run we should fix the index
883 * generation/translation code in the pmap module.
884 */
885
886 if (DRAM_BLOCKS < (availcnt + 1))
887 panic("more ofw memory regions than bootconfig blocks");
888
889 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
890 bootconfig.dram[i].address = mp->start;
891 bootconfig.dram[i].pages = btoc(mp->size);
892 }
893 bootconfig.dramblocks = availcnt;
894 }
895
896 /* Load memory into UVM. */
897 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
898
899 /* XXX Please kill this code dead. */
900 for (i = 0; i < bootconfig.dramblocks; i++) {
901 paddr_t start = (paddr_t)bootconfig.dram[i].address;
902 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
903 #if NISADMA > 0
904 paddr_t istart, isize;
905 #endif
906
907 if (start < physical_freestart)
908 start = physical_freestart;
909 if (end > physical_freeend)
910 end = physical_freeend;
911
912 #if 0
913 printf("%d: %lx -> %lx\n", loop, start, end - 1);
914 #endif
915
916 #if NISADMA > 0
917 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
918 shark_isa_dma_nranges,
919 start, end - start,
920 &istart, &isize)) {
921 /*
922 * Place the pages that intersect with the
923 * ISA DMA range onto the ISA DMA free list.
924 */
925 #if 0
926 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
927 istart + isize - 1);
928 #endif
929 uvm_page_physload(atop(istart),
930 atop(istart + isize), atop(istart),
931 atop(istart + isize), VM_FREELIST_ISADMA);
932
933 /*
934 * Load the pieces that come before the
935 * intersection onto the default free list.
936 */
937 if (start < istart) {
938 #if 0
939 printf(" BEFORE 0x%lx -> 0x%lx\n",
940 start, istart - 1);
941 #endif
942 uvm_page_physload(atop(start),
943 atop(istart), atop(start),
944 atop(istart), VM_FREELIST_DEFAULT);
945 }
946
947 /*
948 * Load the pieces that come after the
949 * intersection onto the default free list.
950 */
951 if ((istart + isize) < end) {
952 #if 0
953 printf(" AFTER 0x%lx -> 0x%lx\n",
954 (istart + isize), end - 1);
955 #endif
956 uvm_page_physload(atop(istart + isize),
957 atop(end), atop(istart + isize),
958 atop(end), VM_FREELIST_DEFAULT);
959 }
960 } else {
961 uvm_page_physload(atop(start), atop(end),
962 atop(start), atop(end), VM_FREELIST_DEFAULT);
963 }
964 #else /* NISADMA > 0 */
965 uvm_page_physload(atop(start), atop(end),
966 atop(start), atop(end), VM_FREELIST_DEFAULT);
967 #endif /* NISADMA > 0 */
968 }
969
970 /* Initialize pmap module. */
971 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
972 }
973
974
975 /*
976 ************************************************************
977
978 Routines private to this module
979
980 ************************************************************
981 */
982
983 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
984 static void
985 ofw_callbackhandler(v)
986 void *v;
987 {
988 struct ofw_cbargs *args = v;
989 char *name = args->name;
990 int nargs = args->nargs;
991 int nreturns = args->nreturns;
992 int *args_n_results = args->args_n_results;
993
994 ofw_callbacks++;
995
996 #if defined(OFWGENCFG)
997 /* Check this first, so that we don't waste IRQ time parsing. */
998 if (strcmp(name, "tick") == 0) {
999 vaddr_t frame;
1000
1001 /* Check format. */
1002 if (nargs != 1 || nreturns < 1) {
1003 args_n_results[nargs] = -1;
1004 args->nreturns = 1;
1005 return;
1006 }
1007 args_n_results[nargs] = 0; /* properly formatted request */
1008
1009 /*
1010 * Note that we are running in the IRQ frame, with interrupts
1011 * disabled.
1012 *
1013 * We need to do two things here:
1014 * - copy a few words out of the input frame into a global
1015 * area, for later use by our real tick-handling code
1016 * - patch a few words in the frame so that when OFW returns
1017 * from the interrupt it will resume with our handler
1018 * rather than the code that was actually interrupted.
1019 * Our handler will resume when it finishes with the code
1020 * that was actually interrupted.
1021 *
1022 * It's simplest to do this in assembler, since it requires
1023 * switching frames and grovelling about with registers.
1024 */
1025 frame = (vaddr_t)args_n_results[0];
1026 if (ofw_handleticks)
1027 dotickgrovelling(frame);
1028 args_n_results[nargs + 1] = frame;
1029 args->nreturns = 1;
1030 } else
1031 #endif
1032
1033 if (strcmp(name, "map") == 0) {
1034 vaddr_t va;
1035 paddr_t pa;
1036 vsize_t size;
1037 int mode;
1038 int ap_bits;
1039 int dom_bits;
1040 int cb_bits;
1041
1042 /* Check format. */
1043 if (nargs != 4 || nreturns < 2) {
1044 args_n_results[nargs] = -1;
1045 args->nreturns = 1;
1046 return;
1047 }
1048 args_n_results[nargs] = 0; /* properly formatted request */
1049
1050 pa = (paddr_t)args_n_results[0];
1051 va = (vaddr_t)args_n_results[1];
1052 size = (vsize_t)args_n_results[2];
1053 mode = args_n_results[3];
1054 ap_bits = (mode & 0x00000C00);
1055 dom_bits = (mode & 0x000001E0);
1056 cb_bits = (mode & 0x000000C0);
1057
1058 /* Sanity checks. */
1059 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1060 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1061 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1062 size == 0 || (dom_bits >> 5) != 0) {
1063 args_n_results[nargs + 1] = -1;
1064 args->nreturns = 1;
1065 return;
1066 }
1067
1068 /* Write-back anything stuck in the cache. */
1069 cpu_idcache_wbinv_all();
1070
1071 /* Install new mappings. */
1072 {
1073 pt_entry_t *pte = vtopte(va);
1074 int npages = size >> PGSHIFT;
1075
1076 ap_bits >>= 10;
1077 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1078 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1079 cb_bits);
1080 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1081 }
1082
1083 /* Clean out tlb. */
1084 tlb_flush();
1085
1086 args_n_results[nargs + 1] = 0;
1087 args->nreturns = 2;
1088 } else if (strcmp(name, "unmap") == 0) {
1089 vaddr_t va;
1090 vsize_t size;
1091
1092 /* Check format. */
1093 if (nargs != 2 || nreturns < 1) {
1094 args_n_results[nargs] = -1;
1095 args->nreturns = 1;
1096 return;
1097 }
1098 args_n_results[nargs] = 0; /* properly formatted request */
1099
1100 va = (vaddr_t)args_n_results[0];
1101 size = (vsize_t)args_n_results[1];
1102
1103 /* Sanity checks. */
1104 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1105 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1106 (size & PGOFSET) != 0 || size == 0) {
1107 args_n_results[nargs + 1] = -1;
1108 args->nreturns = 1;
1109 return;
1110 }
1111
1112 /* Write-back anything stuck in the cache. */
1113 cpu_idcache_wbinv_all();
1114
1115 /* Zero the mappings. */
1116 {
1117 pt_entry_t *pte = vtopte(va);
1118 int npages = size >> PGSHIFT;
1119
1120 for (; npages > 0; pte++, npages--)
1121 *pte = 0;
1122 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1123 }
1124
1125 /* Clean out tlb. */
1126 tlb_flush();
1127
1128 args->nreturns = 1;
1129 } else if (strcmp(name, "translate") == 0) {
1130 vaddr_t va;
1131 paddr_t pa;
1132 int mode;
1133 pt_entry_t pte;
1134
1135 /* Check format. */
1136 if (nargs != 1 || nreturns < 4) {
1137 args_n_results[nargs] = -1;
1138 args->nreturns = 1;
1139 return;
1140 }
1141 args_n_results[nargs] = 0; /* properly formatted request */
1142
1143 va = (vaddr_t)args_n_results[0];
1144
1145 /* Sanity checks.
1146 * For now, I am only willing to translate va's in the
1147 * "ofw range." Eventually, I may be more generous. -JJK
1148 */
1149 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1150 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1151 args_n_results[nargs + 1] = -1;
1152 args->nreturns = 1;
1153 return;
1154 }
1155
1156 /* Lookup mapping. */
1157 pte = *vtopte(va);
1158 if (pte == 0) {
1159 /* No mapping. */
1160 args_n_results[nargs + 1] = -1;
1161 args->nreturns = 2;
1162 } else {
1163 /* Existing mapping. */
1164 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1165 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1166
1167 args_n_results[nargs + 1] = 0;
1168 args_n_results[nargs + 2] = pa;
1169 args_n_results[nargs + 3] = mode;
1170 args->nreturns = 4;
1171 }
1172 } else if (strcmp(name, "claim-phys") == 0) {
1173 struct pglist alloclist;
1174 paddr_t low, high, align;
1175 psize_t size;
1176
1177 /*
1178 * XXX
1179 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1180 * XXX
1181 */
1182
1183 /* Check format. */
1184 if (nargs != 4 || nreturns < 3) {
1185 args_n_results[nargs] = -1;
1186 args->nreturns = 1;
1187 return;
1188 }
1189 args_n_results[nargs] = 0; /* properly formatted request */
1190
1191 low = args_n_results[0];
1192 size = args_n_results[2];
1193 align = args_n_results[3];
1194 high = args_n_results[1] + size;
1195
1196 #if 0
1197 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1198 low, size, align, high);
1199 align = size;
1200 printf("forcing align to be 0x%x\n", align);
1201 #endif
1202
1203 args_n_results[nargs + 1] =
1204 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1205 #if 0
1206 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1207 #endif
1208 if (args_n_results[nargs + 1] != 0) {
1209 #if 0
1210 printf("(failed)\n");
1211 #endif
1212 args_n_results[nargs + 1] = -1;
1213 args->nreturns = 2;
1214 return;
1215 }
1216 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1217 #if 0
1218 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1219 #endif
1220 args->nreturns = 3;
1221
1222 } else if (strcmp(name, "release-phys") == 0) {
1223 printf("unimplemented ofw callback - %s\n", name);
1224 args_n_results[nargs] = -1;
1225 args->nreturns = 1;
1226 } else if (strcmp(name, "claim-virt") == 0) {
1227 vaddr_t va;
1228 vsize_t size;
1229 vaddr_t align;
1230
1231 /* XXX - notyet */
1232 /* printf("unimplemented ofw callback - %s\n", name);*/
1233 args_n_results[nargs] = -1;
1234 args->nreturns = 1;
1235 return;
1236
1237 /* Check format. */
1238 if (nargs != 2 || nreturns < 3) {
1239 args_n_results[nargs] = -1;
1240 args->nreturns = 1;
1241 return;
1242 }
1243 args_n_results[nargs] = 0; /* properly formatted request */
1244
1245 /* Allocate size bytes with specified alignment. */
1246 size = (vsize_t)args_n_results[0];
1247 align = (vaddr_t)args_n_results[1];
1248 if (align % PAGE_SIZE != 0) {
1249 args_n_results[nargs + 1] = -1;
1250 args->nreturns = 2;
1251 return;
1252 }
1253
1254 if (va == 0) {
1255 /* Couldn't allocate. */
1256 args_n_results[nargs + 1] = -1;
1257 args->nreturns = 2;
1258 } else {
1259 /* Successful allocation. */
1260 args_n_results[nargs + 1] = 0;
1261 args_n_results[nargs + 2] = va;
1262 args->nreturns = 3;
1263 }
1264 } else if (strcmp(name, "release-virt") == 0) {
1265 vaddr_t va;
1266 vsize_t size;
1267
1268 /* XXX - notyet */
1269 printf("unimplemented ofw callback - %s\n", name);
1270 args_n_results[nargs] = -1;
1271 args->nreturns = 1;
1272 return;
1273
1274 /* Check format. */
1275 if (nargs != 2 || nreturns < 1) {
1276 args_n_results[nargs] = -1;
1277 args->nreturns = 1;
1278 return;
1279 }
1280 args_n_results[nargs] = 0; /* properly formatted request */
1281
1282 /* Release bytes. */
1283 va = (vaddr_t)args_n_results[0];
1284 size = (vsize_t)args_n_results[1];
1285
1286 args->nreturns = 1;
1287 } else {
1288 args_n_results[nargs] = -1;
1289 args->nreturns = 1;
1290 }
1291 }
1292
1293 static void
1294 ofw_construct_proc0_addrspace(void)
1295 {
1296 int i, oft;
1297 static pv_addr_t proc0_pt_sys;
1298 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1299 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1300 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1301 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1302 static pv_addr_t msgbuf;
1303 vaddr_t L1pagetable;
1304 struct mem_translation *tp;
1305
1306 /* Set-up the system page. */
1307 KASSERT(vector_page == 0); /* XXX for now */
1308 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1309 if (systempage.pv_va == -1) {
1310 /* Something was already mapped to vector_page's VA. */
1311 systempage.pv_va = vector_page;
1312 systempage.pv_pa = ofw_gettranslation(vector_page);
1313 if (systempage.pv_pa == -1)
1314 panic("bogus result from gettranslation(vector_page)");
1315 } else {
1316 /* We were just allocated the page-length range at VA 0. */
1317 if (systempage.pv_va != vector_page)
1318 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1319
1320 /* Now allocate a physical page, and establish the mapping. */
1321 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1322 if (systempage.pv_pa == -1)
1323 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1324 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1325 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1326
1327 /* Zero the memory. */
1328 bzero((char *)systempage.pv_va, PAGE_SIZE);
1329 }
1330
1331 /* Allocate/initialize space for the proc0, NetBSD-managed */
1332 /* page tables that we will be switching to soon. */
1333 ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE);
1334 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1335 for (i = 0; i < KERNEL_IMG_PTS; i++)
1336 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1337 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1338 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1339 for (i = 0; i < KERNEL_OFW_PTS; i++)
1340 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1341 for (i = 0; i < KERNEL_IO_PTS; i++)
1342 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1343
1344 /* Allocate/initialize space for stacks. */
1345 #ifndef OFWGENCFG
1346 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1347 #endif
1348 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1349 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1350 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1351
1352 /* Allocate/initialize space for msgbuf area. */
1353 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1354 msgbufphys = msgbuf.pv_pa;
1355
1356 /* Construct the proc0 L1 pagetable. */
1357 L1pagetable = kernel_l1pt.pv_va;
1358
1359 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1360 for (i = 0; i < KERNEL_IMG_PTS; i++)
1361 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1362 &proc0_pt_kernel[i]);
1363 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1364 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1365 &proc0_pt_vmdata[i]);
1366 for (i = 0; i < KERNEL_OFW_PTS; i++)
1367 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1368 &proc0_pt_ofw[i]);
1369 for (i = 0; i < KERNEL_IO_PTS; i++)
1370 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1371 &proc0_pt_io[i]);
1372
1373 /*
1374 * OK, we're done allocating.
1375 * Get a dump of OFW's translations, and make the appropriate
1376 * entries in the L2 pagetables that we just allocated.
1377 */
1378
1379 ofw_getvirttranslations();
1380
1381 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1382 oft++, tp++) {
1383
1384 vaddr_t va;
1385 paddr_t pa;
1386 int npages = tp->size / PAGE_SIZE;
1387
1388 /* Size must be an integral number of pages. */
1389 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1390 panic("illegal ofw translation (size)");
1391
1392 /* Make an entry for each page in the appropriate table. */
1393 for (va = tp->virt, pa = tp->phys; npages > 0;
1394 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1395 /*
1396 * Map the top bits to the appropriate L2 pagetable.
1397 * The only allowable regions are page0, the
1398 * kernel-static area, and the ofw area.
1399 */
1400 switch (va >> (L1_S_SHIFT + 2)) {
1401 case 0:
1402 /* page0 */
1403 break;
1404
1405 #if KERNEL_IMG_PTS != 2
1406 #error "Update ofw translation range list"
1407 #endif
1408 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1409 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1410 /* kernel static area */
1411 break;
1412
1413 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1414 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1415 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1416 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1417 /* ofw area */
1418 break;
1419
1420 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1421 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1422 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1423 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1424 /* io area */
1425 break;
1426
1427 default:
1428 /* illegal */
1429 panic("illegal ofw translation (addr) %#lx",
1430 va);
1431 }
1432
1433 /* Make the entry. */
1434 pmap_map_entry(L1pagetable, va, pa,
1435 VM_PROT_READ|VM_PROT_WRITE,
1436 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1437 : PTE_NOCACHE);
1438 }
1439 }
1440
1441 /*
1442 * We don't actually want some of the mappings that we just
1443 * set up to appear in proc0's address space. In particular,
1444 * we don't want aliases to physical addresses that the kernel
1445 * has-mapped/will-map elsewhere.
1446 */
1447 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1448 msgbuf.pv_va, MSGBUFSIZE);
1449
1450 /* update the top of the kernel VM */
1451 pmap_curmaxkvaddr =
1452 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1453
1454 /*
1455 * gross hack for the sake of not thrashing the TLB and making
1456 * cache flush more efficient: blast l1 ptes for sections.
1457 */
1458 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1459 vaddr_t va = tp->virt;
1460 paddr_t pa = tp->phys;
1461
1462 if (((va | pa) & L1_S_OFFSET) == 0) {
1463 int nsections = tp->size / L1_S_SIZE;
1464
1465 while (nsections--) {
1466 /* XXXJRT prot?? */
1467 pmap_map_section(L1pagetable, va, pa,
1468 VM_PROT_READ|VM_PROT_WRITE,
1469 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1470 : PTE_NOCACHE);
1471 va += L1_S_SIZE;
1472 pa += L1_S_SIZE;
1473 }
1474 }
1475 }
1476 }
1477
1478
1479 static void
1480 ofw_getphysmeminfo()
1481 {
1482 int phandle;
1483 int mem_len;
1484 int avail_len;
1485 int i;
1486
1487 if ((phandle = OF_finddevice("/memory")) == -1 ||
1488 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1489 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1490 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1491 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1492 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1493 OF_getprop(phandle, "available", OFphysavail, avail_len)
1494 != avail_len)
1495 panic("can't get physmeminfo from OFW");
1496
1497 nOFphysmem = mem_len / sizeof(struct mem_region);
1498 nOFphysavail = avail_len / sizeof(struct mem_region);
1499
1500 /*
1501 * Sort the blocks in each array into ascending address order.
1502 * Also, page-align all blocks.
1503 */
1504 for (i = 0; i < 2; i++) {
1505 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1506 struct mem_region *mp;
1507 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1508 int j;
1509
1510 #ifdef OLDPRINTFS
1511 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1512 #endif
1513
1514 /* XXX - Convert all the values to host order. -JJK */
1515 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1516 mp->start = of_decode_int((unsigned char *)&mp->start);
1517 mp->size = of_decode_int((unsigned char *)&mp->size);
1518 }
1519
1520 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1521 u_int s, sz;
1522 struct mem_region *mp1;
1523
1524 /* Page-align start of the block. */
1525 s = mp->start % PAGE_SIZE;
1526 if (s != 0) {
1527 s = (PAGE_SIZE - s);
1528
1529 if (mp->size >= s) {
1530 mp->start += s;
1531 mp->size -= s;
1532 }
1533 }
1534
1535 /* Page-align the size. */
1536 mp->size -= mp->size % PAGE_SIZE;
1537
1538 /* Handle empty block. */
1539 if (mp->size == 0) {
1540 memmove(mp, mp + 1, (cnt - (mp - tmp))
1541 * sizeof(struct mem_region));
1542 cnt--;
1543 mp--;
1544 continue;
1545 }
1546
1547 /* Bubble sort. */
1548 s = mp->start;
1549 sz = mp->size;
1550 for (mp1 = tmp; mp1 < mp; mp1++)
1551 if (s < mp1->start)
1552 break;
1553 if (mp1 < mp) {
1554 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1555 mp1->start = s;
1556 mp1->size = sz;
1557 }
1558 }
1559
1560 #ifdef OLDPRINTFS
1561 for (mp = tmp; mp->size; mp++) {
1562 printf("%x, %x\n", mp->start, mp->size);
1563 }
1564 #endif
1565 }
1566 }
1567
1568
1569 static void
1570 ofw_getvirttranslations(void)
1571 {
1572 int mmu_phandle;
1573 int mmu_ihandle;
1574 int trans_len;
1575 int over, len;
1576 int i;
1577 struct mem_translation *tp;
1578
1579 mmu_ihandle = ofw_mmu_ihandle();
1580
1581 /* overallocate to avoid increases during allocation */
1582 over = 4 * sizeof(struct mem_translation);
1583 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1584 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1585 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1586 (trans_len = OF_getprop(mmu_phandle, "translations",
1587 OFtranslations, len + over)) > (len + over))
1588 panic("can't get virttranslations from OFW");
1589
1590 /* XXX - Convert all the values to host order. -JJK */
1591 nOFtranslations = trans_len / sizeof(struct mem_translation);
1592 #ifdef OLDPRINTFS
1593 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1594 #endif
1595 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1596 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1597 tp->size = of_decode_int((unsigned char *)&tp->size);
1598 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1599 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1600 }
1601 }
1602
1603 /*
1604 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1605 */
1606 typedef struct _vfree {
1607 struct _vfree *pNext;
1608 vaddr_t start;
1609 vsize_t size;
1610 } VFREE, *PVFREE;
1611
1612 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1613
1614 static PVFREE vflist = &vfinitial;
1615
1616 static vaddr_t
1617 ofw_valloc(size, align)
1618 vsize_t size;
1619 vaddr_t align;
1620 {
1621 PVFREE *ppvf;
1622 PVFREE pNew;
1623 vaddr_t new;
1624 vaddr_t lead;
1625
1626 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1627 if (align == 0) {
1628 new = (*ppvf)->start;
1629 lead = 0;
1630 } else {
1631 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1632 lead = new - (*ppvf)->start;
1633 }
1634
1635 if (((*ppvf)->size - lead) >= size) {
1636 if (lead == 0) {
1637 /* using whole block */
1638 if (size == (*ppvf)->size) {
1639 /* splice out of list */
1640 (*ppvf) = (*ppvf)->pNext;
1641 } else { /* tail of block is free */
1642 (*ppvf)->start = new + size;
1643 (*ppvf)->size -= size;
1644 }
1645 } else {
1646 vsize_t tail = ((*ppvf)->start
1647 + (*ppvf)->size) - (new + size);
1648 /* free space at beginning */
1649 (*ppvf)->size = lead;
1650
1651 if (tail != 0) {
1652 /* free space at tail */
1653 pNew = ofw_malloc(sizeof(VFREE));
1654 pNew->pNext = (*ppvf)->pNext;
1655 (*ppvf)->pNext = pNew;
1656 pNew->start = new + size;
1657 pNew->size = tail;
1658 }
1659 }
1660 return new;
1661 } /* END if */
1662 } /* END for */
1663
1664 return -1;
1665 }
1666
1667 vaddr_t
1668 ofw_map(pa, size, cb_bits)
1669 paddr_t pa;
1670 vsize_t size;
1671 int cb_bits;
1672 {
1673 vaddr_t va;
1674
1675 if ((va = ofw_valloc(size, size)) == -1)
1676 panic("cannot alloc virtual memory for %#lx", pa);
1677
1678 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1679
1680 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1681
1682 return va;
1683 }
1684
1685 static int
1686 ofw_mem_ihandle(void)
1687 {
1688 static int mem_ihandle = 0;
1689 int chosen;
1690
1691 if (mem_ihandle != 0)
1692 return(mem_ihandle);
1693
1694 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1695 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1696 panic("ofw_mem_ihandle");
1697
1698 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1699
1700 return(mem_ihandle);
1701 }
1702
1703
1704 static int
1705 ofw_mmu_ihandle(void)
1706 {
1707 static int mmu_ihandle = 0;
1708 int chosen;
1709
1710 if (mmu_ihandle != 0)
1711 return(mmu_ihandle);
1712
1713 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1714 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1715 panic("ofw_mmu_ihandle");
1716
1717 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1718
1719 return(mmu_ihandle);
1720 }
1721
1722
1723 /* Return -1 on failure. */
1724 static paddr_t
1725 ofw_claimphys(pa, size, align)
1726 paddr_t pa;
1727 psize_t size;
1728 paddr_t align;
1729 {
1730 int mem_ihandle = ofw_mem_ihandle();
1731
1732 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1733 if (align == 0) {
1734 /* Allocate at specified base; alignment is ignored. */
1735 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1736 } else {
1737 /* Allocate anywhere, with specified alignment. */
1738 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1739 }
1740
1741 /* printf("%x\n", pa);*/
1742 return(pa);
1743 }
1744
1745
1746 #if 0
1747 /* Return -1 on failure. */
1748 static paddr_t
1749 ofw_releasephys(pa, size)
1750 paddr_t pa;
1751 psize_t size;
1752 {
1753 int mem_ihandle = ofw_mem_ihandle();
1754
1755 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1756
1757 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1758 }
1759 #endif
1760
1761 /* Return -1 on failure. */
1762 static vaddr_t
1763 ofw_claimvirt(va, size, align)
1764 vaddr_t va;
1765 vsize_t size;
1766 vaddr_t align;
1767 {
1768 int mmu_ihandle = ofw_mmu_ihandle();
1769
1770 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1771 if (align == 0) {
1772 /* Allocate at specified base; alignment is ignored. */
1773 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1774 } else {
1775 /* Allocate anywhere, with specified alignment. */
1776 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1777 }
1778
1779 /*printf("%x\n", va);*/
1780 return(va);
1781 }
1782
1783 /* Return -1 if no mapping. */
1784 paddr_t
1785 ofw_gettranslation(va)
1786 vaddr_t va;
1787 {
1788 int mmu_ihandle = ofw_mmu_ihandle();
1789 paddr_t pa;
1790 int mode;
1791 int exists;
1792
1793 #ifdef OFW_DEBUG
1794 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1795 #endif
1796 exists = 0; /* gets set to true if translation exists */
1797 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1798 &exists) != 0)
1799 return(-1);
1800
1801 #ifdef OFW_DEBUG
1802 printf("%d %x\n", exists, (uint32_t)pa);
1803 #endif
1804 return(exists ? pa : -1);
1805 }
1806
1807
1808 static void
1809 ofw_settranslation(va, pa, size, mode)
1810 vaddr_t va;
1811 paddr_t pa;
1812 vsize_t size;
1813 int mode;
1814 {
1815 int mmu_ihandle = ofw_mmu_ihandle();
1816
1817 #ifdef OFW_DEBUG
1818 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1819 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1820 #endif
1821 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1822 panic("ofw_settranslation failed");
1823 }
1824
1825 /*
1826 * Allocation routine used before the kernel takes over memory.
1827 * Use this for efficient storage for things that aren't rounded to
1828 * page size.
1829 *
1830 * The point here is not necessarily to be very efficient (even though
1831 * that's sort of nice), but to do proper dynamic allocation to avoid
1832 * size-limitation errors.
1833 *
1834 */
1835
1836 typedef struct _leftover {
1837 struct _leftover *pNext;
1838 vsize_t size;
1839 } LEFTOVER, *PLEFTOVER;
1840
1841 /* leftover bits of pages. first word is pointer to next.
1842 second word is size of leftover */
1843 static PLEFTOVER leftovers = NULL;
1844
1845 static void *
1846 ofw_malloc(size)
1847 vsize_t size;
1848 {
1849 PLEFTOVER *ppLeftover;
1850 PLEFTOVER pLeft;
1851 pv_addr_t new;
1852 vsize_t newSize, claim_size;
1853
1854 /* round and set minimum size */
1855 size = max(sizeof(LEFTOVER),
1856 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1857
1858 for (ppLeftover = &leftovers; *ppLeftover;
1859 ppLeftover = &((*ppLeftover)->pNext))
1860 if ((*ppLeftover)->size >= size)
1861 break;
1862
1863 if (*ppLeftover) { /* have a leftover of the right size */
1864 /* remember the leftover */
1865 new.pv_va = (vaddr_t)*ppLeftover;
1866 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1867 /* splice out of chain */
1868 *ppLeftover = (*ppLeftover)->pNext;
1869 } else {
1870 /* remember the next pointer */
1871 pLeft = (*ppLeftover)->pNext;
1872 newSize = (*ppLeftover)->size - size; /* reduce size */
1873 /* move pointer */
1874 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1875 + size);
1876 (*ppLeftover)->pNext = pLeft;
1877 (*ppLeftover)->size = newSize;
1878 }
1879 } else {
1880 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1881 ofw_claimpages(&virt_freeptr, &new, claim_size);
1882 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1883 pLeft = (PLEFTOVER)(new.pv_va + size);
1884 pLeft->pNext = leftovers;
1885 pLeft->size = claim_size - size;
1886 leftovers = pLeft;
1887 }
1888 }
1889
1890 return (void *)(new.pv_va);
1891 }
1892
1893 /*
1894 * Here is a really, really sleazy free. It's not used right now,
1895 * because it's not worth the extra complexity for just a few bytes.
1896 *
1897 */
1898 #if 0
1899 static void
1900 ofw_free(addr, size)
1901 vaddr_t addr;
1902 vsize_t size;
1903 {
1904 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1905
1906 /* splice right into list without checks or compaction */
1907 pLeftover->pNext = leftovers;
1908 pLeftover->size = size;
1909 leftovers = pLeftover;
1910 }
1911 #endif
1912
1913 /*
1914 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1915 * We guarantee that the allocated memory will be
1916 * aligned to a boundary equal to the smallest power of
1917 * 2 greater than or equal to size.
1918 * free_pp is an IN/OUT parameter which points to the
1919 * last allocated virtual address in an allocate-downwards
1920 * stack. pv_p is an OUT parameter which contains the
1921 * virtual and physical base addresses of the allocated
1922 * memory.
1923 */
1924 static void
1925 ofw_claimpages(free_pp, pv_p, size)
1926 vaddr_t *free_pp;
1927 pv_addr_t *pv_p;
1928 vsize_t size;
1929 {
1930 /* round-up to page boundary */
1931 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1932 vsize_t aligned_size;
1933 vaddr_t va;
1934 paddr_t pa;
1935
1936 if (alloc_size == 0)
1937 panic("ofw_claimpages zero");
1938
1939 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1940 ;
1941
1942 /* The only way to provide the alignment guarantees is to
1943 * allocate the virtual and physical ranges separately,
1944 * then do an explicit map call.
1945 */
1946 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1947 if (ofw_claimvirt(va, alloc_size, 0) != va)
1948 panic("ofw_claimpages va alloc");
1949 pa = ofw_claimphys(0, alloc_size, aligned_size);
1950 if (pa == -1)
1951 panic("ofw_claimpages pa alloc");
1952 /* XXX - what mode? -JJK */
1953 ofw_settranslation(va, pa, alloc_size, -1);
1954
1955 /* The memory's mapped-in now, so we can zero it. */
1956 bzero((char *)va, alloc_size);
1957
1958 /* Set OUT parameters. */
1959 *free_pp = va;
1960 pv_p->pv_va = va;
1961 pv_p->pv_pa = pa;
1962 }
1963
1964
1965 static void
1966 ofw_discardmappings(L2pagetable, va, size)
1967 vaddr_t L2pagetable;
1968 vaddr_t va;
1969 vsize_t size;
1970 {
1971 /* round-up to page boundary */
1972 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1973 int npages = alloc_size / PAGE_SIZE;
1974
1975 if (npages == 0)
1976 panic("ofw_discardmappings zero");
1977
1978 /* Discard each mapping. */
1979 for (; npages > 0; va += PAGE_SIZE, npages--) {
1980 /* Sanity. The current entry should be non-null. */
1981 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1982 panic("ofw_discardmappings zero entry");
1983
1984 /* Clear the entry. */
1985 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1986 }
1987 }
1988
1989
1990 static void
1991 ofw_initallocator(void)
1992 {
1993
1994 }
1995
1996 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
1997 static void
1998 reset_screen()
1999 {
2000
2001 if ((console_ihandle == 0) || (console_ihandle == -1))
2002 return;
2003
2004 OF_call_method("install", console_ihandle, 0, 0);
2005 }
2006 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
2007