ofw.c revision 1.5 1 /* $NetBSD: ofw.c,v 1.5 2002/02/21 06:33:05 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/reboot.h>
47 #include <sys/mbuf.h>
48
49 #include <uvm/uvm_extern.h>
50
51 #include <dev/cons.h>
52
53 #include <machine/bus.h>
54 #include <machine/frame.h>
55 #include <machine/bootconfig.h>
56 #include <machine/cpu.h>
57 #include <machine/intr.h>
58
59 #include <dev/ofw/openfirm.h>
60 #include <machine/ofw.h>
61
62 #include <netinet/in.h>
63
64 #if BOOT_FW_DHCP
65 #include <nfs/bootdata.h>
66 #endif
67
68 #ifdef SHARK
69 #include "machine/pio.h"
70 #include "machine/isa_machdep.h"
71 #endif
72
73 #include "pc.h"
74 #include "isadma.h"
75
76 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
77 #define IO_VIRT_SIZE 0x01000000
78
79 /*
80 * Imported variables
81 */
82 extern BootConfig bootconfig; /* temporary, I hope */
83
84 #ifdef DIAGNOSTIC
85 /* NOTE: These variables will be removed, well some of them */
86 extern u_int spl_mask;
87 extern u_int current_mask;
88 #endif
89
90 extern int ofw_handleticks;
91
92
93 /*
94 * Imported routines
95 */
96 extern void dump_spl_masks __P((void));
97 extern void dumpsys __P((void));
98 extern void dotickgrovelling __P((vm_offset_t));
99 #if defined(SHARK) && (NPC > 0)
100 extern void shark_screen_cleanup __P((int));
101 #endif
102
103 #define WriteWord(a, b) \
104 *((volatile unsigned int *)(a)) = (b)
105
106 #define ReadWord(a) \
107 (*((volatile unsigned int *)(a)))
108
109
110 /*
111 * Exported variables
112 */
113 /* These should all be in a meminfo structure. */
114 vm_offset_t physical_start;
115 vm_offset_t physical_freestart;
116 vm_offset_t physical_freeend;
117 vm_offset_t physical_end;
118 u_int free_pages;
119 int physmem;
120 pv_addr_t systempage;
121 #ifndef OFWGENCFG
122 pv_addr_t irqstack;
123 #endif
124 pv_addr_t undstack;
125 pv_addr_t abtstack;
126 pv_addr_t kernelstack;
127
128 vm_offset_t msgbufphys;
129
130 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
131 static vm_offset_t virt_freeptr;
132
133 int ofw_callbacks = 0; /* debugging counter */
134
135 /**************************************************************/
136
137
138 /*
139 * Declarations and definitions private to this module
140 *
141 */
142
143 struct mem_region {
144 vm_offset_t start;
145 vm_size_t size;
146 };
147
148 struct mem_translation {
149 vm_offset_t virt;
150 vm_size_t size;
151 vm_offset_t phys;
152 unsigned int mode;
153 };
154
155 struct isa_range {
156 vm_offset_t isa_phys_hi;
157 vm_offset_t isa_phys_lo;
158 vm_offset_t parent_phys_start;
159 vm_size_t isa_size;
160 };
161
162 struct vl_range {
163 vm_offset_t vl_phys_hi;
164 vm_offset_t vl_phys_lo;
165 vm_offset_t parent_phys_start;
166 vm_size_t vl_size;
167 };
168
169 struct vl_isa_range {
170 vm_offset_t isa_phys_hi;
171 vm_offset_t isa_phys_lo;
172 vm_offset_t parent_phys_hi;
173 vm_offset_t parent_phys_lo;
174 vm_size_t isa_size;
175 };
176
177 struct dma_range {
178 vm_offset_t start;
179 vm_size_t size;
180 };
181
182 struct ofw_cbargs {
183 char *name;
184 int nargs;
185 int nreturns;
186 int args_n_results[12];
187 };
188
189
190 /* Memory info */
191 static int nOFphysmem;
192 static struct mem_region *OFphysmem;
193 static int nOFphysavail;
194 static struct mem_region *OFphysavail;
195 static int nOFtranslations;
196 static struct mem_translation *OFtranslations;
197 static int nOFdmaranges;
198 static struct dma_range *OFdmaranges;
199
200 /* The OFW client services handle. */
201 /* Initialized by ofw_init(). */
202 static ofw_handle_t ofw_client_services_handle;
203
204
205 static void ofw_callbackhandler __P((struct ofw_cbargs *));
206 static void ofw_construct_proc0_addrspace __P((pv_addr_t *, pv_addr_t *));
207 static void ofw_getphysmeminfo __P((void));
208 static void ofw_getvirttranslations __P((void));
209 static void *ofw_malloc(vm_size_t size);
210 static void ofw_claimpages __P((vm_offset_t *, pv_addr_t *, vm_size_t));
211 static void ofw_discardmappings __P ((vm_offset_t, vm_offset_t, vm_size_t));
212 static int ofw_mem_ihandle __P((void));
213 static int ofw_mmu_ihandle __P((void));
214 static vm_offset_t ofw_claimphys __P((vm_offset_t, vm_size_t, vm_offset_t));
215 #if 0
216 static vm_offset_t ofw_releasephys __P((vm_offset_t, vm_size_t));
217 #endif
218 static vm_offset_t ofw_claimvirt __P((vm_offset_t, vm_size_t, vm_offset_t));
219 static void ofw_settranslation __P ((vm_offset_t, vm_offset_t, vm_size_t, int));
220 static void ofw_initallocator __P((void));
221 static void ofw_configisaonly __P((vm_offset_t *, vm_offset_t *));
222 static void ofw_configvl __P((int, vm_offset_t *, vm_offset_t *));
223 static vm_offset_t ofw_valloc __P((vm_offset_t, vm_offset_t));
224
225
226 /*
227 * DHCP hooks. For a first cut, we look to see if there is a DHCP
228 * packet that was saved by the firmware. If not, we proceed as before,
229 * getting hand-configured data from NVRAM. If there is one, we get the
230 * packet, and extract the data from it. For now, we hand that data up
231 * in the boot_args string as before.
232 */
233
234
235 /**************************************************************/
236
237
238 /*
239 *
240 * Support routines for xxx_machdep.c
241 *
242 * The intent is that all OFW-based configurations use the
243 * exported routines in this file to do their business. If
244 * they need to override some function they are free to do so.
245 *
246 * The exported routines are:
247 *
248 * openfirmware
249 * ofw_init
250 * ofw_boot
251 * ofw_getbootinfo
252 * ofw_configmem
253 * ofw_configisa
254 * ofw_configisadma
255 * ofw_gettranslation
256 * ofw_map
257 * ofw_getcleaninfo
258 */
259
260
261 int
262 openfirmware(args)
263 void *args;
264 {
265 int ofw_result;
266 u_int saved_irq_state;
267
268 /* OFW is not re-entrant, so we wrap a mutex around the call. */
269 saved_irq_state = disable_interrupts(I32_bit);
270 ofw_result = ofw_client_services_handle(args);
271 (void)restore_interrupts(saved_irq_state);
272
273 return(ofw_result);
274 }
275
276
277 void
278 ofw_init(ofw_handle)
279 ofw_handle_t ofw_handle;
280 {
281 ofw_client_services_handle = ofw_handle;
282
283 /* Everything we allocate in the remainder of this block is
284 * constrained to be in the "kernel-static" portion of the
285 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
286 * This is because all such objects are expected to be in
287 * that range by NetBSD, or the objects will be re-mapped
288 * after the page-table-switch to other specific locations.
289 * In the latter case, it's simplest if our pre-switch handles
290 * on those objects are in regions that are already "well-
291 * known." (Otherwise, the cloning of the OFW-managed address-
292 * space becomes more awkward.) To minimize the number of L2
293 * page tables that we use, we are further restricting the
294 * remaining allocations in this block to the bottom quarter of
295 * the legal range. OFW will have loaded the kernel text+data+bss
296 * starting at the bottom of the range, and we will allocate
297 * objects from the top, moving downwards. The two sub-regions
298 * will collide if their total sizes hit 4MB. The current total
299 * is <1.5MB, so we aren't in any real danger yet. The variable
300 * virt-freeptr represents the next free va (moving downwards).
301 */
302 virt_freeptr = KERNEL_BASE + 0x00400000;
303 }
304
305
306 void
307 ofw_boot(howto, bootstr)
308 int howto;
309 char *bootstr;
310 {
311
312 #ifdef DIAGNOSTIC
313 printf("boot: howto=%08x curproc=%p\n", howto, curproc);
314 printf("current_mask=%08x spl_mask=%08x\n", current_mask, spl_mask);
315
316 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_imp=%08x\n",
317 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
318 irqmasks[IPL_IMP]);
319 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
320 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
321
322 dump_spl_masks();
323 #endif
324
325 /*
326 * If we are still cold then hit the air brakes
327 * and crash to earth fast
328 */
329 if (cold) {
330 doshutdownhooks();
331 printf("Halted while still in the ICE age.\n");
332 printf("The operating system has halted.\n");
333 goto ofw_exit;
334 /*NOTREACHED*/
335 }
336
337 /*
338 * If RB_NOSYNC was not specified sync the discs.
339 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
340 * It looks like syslogd is getting woken up only to find that it cannot
341 * page part of the binary in as the filesystem has been unmounted.
342 */
343 if (!(howto & RB_NOSYNC))
344 bootsync();
345
346 /* Say NO to interrupts */
347 splhigh();
348
349 /* Do a dump if requested. */
350 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
351 dumpsys();
352
353 /* Run any shutdown hooks */
354 doshutdownhooks();
355
356 /* Make sure IRQ's are disabled */
357 IRQdisable;
358
359 if (howto & RB_HALT) {
360 printf("The operating system has halted.\n");
361 goto ofw_exit;
362 }
363
364 /* Tell the user we are booting */
365 printf("rebooting...\n");
366
367 /* Jump into the OFW boot routine. */
368 {
369 static char str[256];
370 char *ap = str, *ap1 = ap;
371
372 if (bootstr && *bootstr) {
373 if (strlen(bootstr) > sizeof str - 5)
374 printf("boot string too large, ignored\n");
375 else {
376 strcpy(str, bootstr);
377 ap1 = ap = str + strlen(str);
378 *ap++ = ' ';
379 }
380 }
381 *ap++ = '-';
382 if (howto & RB_SINGLE)
383 *ap++ = 's';
384 if (howto & RB_KDB)
385 *ap++ = 'd';
386 *ap++ = 0;
387 if (ap[-2] == '-')
388 *ap1 = 0;
389 #if defined(SHARK) && (NPC > 0)
390 shark_screen_cleanup(0);
391 #endif
392 OF_boot(str);
393 /*NOTREACHED*/
394 }
395
396 ofw_exit:
397 printf("Calling OF_exit...\n");
398 #if defined(SHARK) && (NPC > 0)
399 shark_screen_cleanup(1);
400 #endif
401 OF_exit();
402 /*NOTREACHED*/
403 }
404
405
406 #if BOOT_FW_DHCP
407
408 extern char *ip2dotted __P((struct in_addr));
409
410 /*
411 * Get DHCP data from OFW
412 */
413
414 void
415 get_fw_dhcp_data(bdp)
416 struct bootdata *bdp;
417 {
418 int chosen;
419 int dhcplen;
420
421 bzero((char *)bdp, sizeof(*bdp));
422 if ((chosen = OF_finddevice("/chosen")) == -1)
423 panic("no /chosen from OFW");
424 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
425 u_char *cp;
426 int dhcp_type = 0;
427 char *ip;
428
429 /*
430 * OFW saved a DHCP (or BOOTP) packet for us.
431 */
432 if (dhcplen > sizeof(bdp->dhcp_packet))
433 panic("DHCP packet too large");
434 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
435 sizeof(bdp->dhcp_packet));
436 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
437 /*
438 * Collect the interesting data from DHCP into
439 * the bootdata structure.
440 */
441 bdp->ip_address = bdp->dhcp_packet.yiaddr;
442 ip = ip2dotted(bdp->ip_address);
443 if (bcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
444 parse_dhcp_options(&bdp->dhcp_packet,
445 bdp->dhcp_packet.options + 4,
446 &bdp->dhcp_packet.options[dhcplen
447 - DHCP_FIXED_NON_UDP], bdp, ip);
448 if (bdp->root_ip.s_addr == 0)
449 bdp->root_ip = bdp->dhcp_packet.siaddr;
450 if (bdp->swap_ip.s_addr == 0)
451 bdp->swap_ip = bdp->dhcp_packet.siaddr;
452 }
453 /*
454 * If the DHCP packet did not contain all the necessary data,
455 * look in NVRAM for the missing parts.
456 */
457 {
458 int options;
459 int proplen;
460 #define BOOTJUNKV_SIZE 256
461 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
462
463
464 if ((options = OF_finddevice("/options")) == -1)
465 panic("can't find /options");
466 if (bdp->ip_address.s_addr == 0 &&
467 (proplen = OF_getprop(options, "ipaddr",
468 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
469 bootjunkv[proplen] = '\0';
470 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
471 bdp->ip_address.s_addr = 0;
472 }
473 if (bdp->ip_mask.s_addr == 0 &&
474 (proplen = OF_getprop(options, "netmask",
475 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
476 bootjunkv[proplen] = '\0';
477 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
478 bdp->ip_mask.s_addr = 0;
479 }
480 if (bdp->hostname[0] == '\0' &&
481 (proplen = OF_getprop(options, "hostname",
482 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
483 bdp->hostname[proplen] = '\0';
484 }
485 if (bdp->root[0] == '\0' &&
486 (proplen = OF_getprop(options, "rootfs",
487 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
488 bootjunkv[proplen] = '\0';
489 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
490 }
491 if (bdp->swap[0] == '\0' &&
492 (proplen = OF_getprop(options, "swapfs",
493 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
494 bootjunkv[proplen] = '\0';
495 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
496 }
497 }
498 }
499
500 #endif /* BOOT_FW_DHCP */
501
502 void
503 ofw_getbootinfo(bp_pp, ba_pp)
504 char **bp_pp;
505 char **ba_pp;
506 {
507 int chosen;
508 int bp_len;
509 int ba_len;
510 char *bootpathv;
511 char *bootargsv;
512
513 /* Read the bootpath and bootargs out of OFW. */
514 /* XXX is bootpath still interesting? --emg */
515 if ((chosen = OF_finddevice("/chosen")) == -1)
516 panic("no /chosen from OFW");
517 bp_len = OF_getproplen(chosen, "bootpath");
518 ba_len = OF_getproplen(chosen, "bootargs");
519 if (bp_len < 0 || ba_len < 0)
520 panic("can't get boot data from OFW");
521
522 bootpathv = (char *)ofw_malloc(bp_len);
523 bootargsv = (char *)ofw_malloc(ba_len);
524
525 if (bp_len)
526 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
527 else
528 bootpathv[0] = '\0';
529
530 if (ba_len)
531 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
532 else
533 bootargsv[0] = '\0';
534
535 *bp_pp = bootpathv;
536 *ba_pp = bootargsv;
537 #ifdef DIAGNOSTIC
538 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
539 #endif
540 }
541
542 vm_offset_t
543 ofw_getcleaninfo(void)
544 {
545 int cpu;
546 vm_offset_t vclean, pclean;
547
548 if ((cpu = OF_finddevice("/cpu")) == -1)
549 panic("no /cpu from OFW");
550
551 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
552 sizeof(vclean))) != sizeof(vclean)) {
553 #ifdef DEBUG
554 printf("no OFW d-cache-flush-address property\n");
555 #endif
556 return -1;
557 }
558
559 if ((pclean = ofw_gettranslation(
560 of_decode_int((unsigned char *)&vclean))) == -1)
561 panic("OFW failed to translate cache flush address");
562
563 return pclean;
564 }
565
566 void
567 ofw_configisa(pio, pmem)
568 vm_offset_t *pio;
569 vm_offset_t *pmem;
570 {
571 int vl;
572
573 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
574 ofw_configisaonly(pio, pmem);
575 else /* old style OFW dev info tree */
576 ofw_configvl(vl, pio, pmem);
577 }
578
579 static void
580 ofw_configisaonly(pio, pmem)
581 vm_offset_t *pio;
582 vm_offset_t *pmem;
583 {
584 int isa;
585 int rangeidx;
586 int size;
587 vm_offset_t hi, start;
588 struct isa_range ranges[2];
589
590 if ((isa = OF_finddevice("/isa")) == -1)
591 panic("OFW has no /isa device node");
592
593 /* expect to find two isa ranges: IO/data and memory/data */
594 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
595 != sizeof(ranges))
596 panic("unexpected size of OFW /isa ranges property: %d", size);
597
598 *pio = *pmem = -1;
599
600 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
601 hi = of_decode_int((unsigned char *)
602 &ranges[rangeidx].isa_phys_hi);
603 start = of_decode_int((unsigned char *)
604 &ranges[rangeidx].parent_phys_start);
605
606 if (hi & 1) { /* then I/O space */
607 *pio = start;
608 } else {
609 *pmem = start;
610 }
611 } /* END for */
612
613 if ((*pio == -1) || (*pmem == -1))
614 panic("bad OFW /isa ranges property");
615
616 }
617
618 static void
619 ofw_configvl(vl, pio, pmem)
620 int vl;
621 vm_offset_t *pio;
622 vm_offset_t *pmem;
623 {
624 int isa;
625 int ir, vr;
626 int size;
627 vm_offset_t hi, start;
628 struct vl_isa_range isa_ranges[2];
629 struct vl_range vl_ranges[2];
630
631 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
632 panic("OFW has no /vlbus/isa device node");
633
634 /* expect to find two isa ranges: IO/data and memory/data */
635 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
636 != sizeof(isa_ranges))
637 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
638 size);
639
640 /* expect to find two vl ranges: IO/data and memory/data */
641 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
642 != sizeof(vl_ranges))
643 panic("unexpected size of OFW /vlbus ranges property: %d", size);
644
645 *pio = -1;
646 *pmem = -1;
647
648 for (ir = 0; ir < 2; ++ir) {
649 for (vr = 0; vr < 2; ++vr) {
650 if ((isa_ranges[ir].parent_phys_hi
651 == vl_ranges[vr].vl_phys_hi) &&
652 (isa_ranges[ir].parent_phys_lo
653 == vl_ranges[vr].vl_phys_lo)) {
654 hi = of_decode_int((unsigned char *)
655 &isa_ranges[ir].isa_phys_hi);
656 start = of_decode_int((unsigned char *)
657 &vl_ranges[vr].parent_phys_start);
658
659 if (hi & 1) { /* then I/O space */
660 *pio = start;
661 } else {
662 *pmem = start;
663 }
664 } /* END if */
665 } /* END for */
666 } /* END for */
667
668 if ((*pio == -1) || (*pmem == -1))
669 panic("bad OFW /isa ranges property");
670 }
671
672 void
673 ofw_configisadma(pdma)
674 vm_offset_t *pdma;
675 {
676 int root;
677 int rangeidx;
678 int size;
679 struct dma_range *dr;
680 #if NISADMA > 0
681 extern bus_dma_segment_t *pmap_isa_dma_ranges;
682 extern int pmap_isa_dma_nranges;
683 #endif
684
685 if ((root = OF_finddevice("/")) == -1 ||
686 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
687 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
688 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
689 panic("bad / dma-ranges property");
690
691 nOFdmaranges = size / sizeof(struct dma_range);
692
693 #if NISADMA > 0
694 /* Allocate storage for non-OFW representation of the range. */
695 pmap_isa_dma_ranges = ofw_malloc(nOFdmaranges *
696 sizeof(bus_dma_segment_t));
697 if (pmap_isa_dma_ranges == NULL)
698 panic("unable to allocate pmap_isa_dma_ranges");
699 pmap_isa_dma_nranges = nOFdmaranges;
700 #endif
701
702 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
703 ++rangeidx, ++dr) {
704 dr->start = of_decode_int((unsigned char *)&dr->start);
705 dr->size = of_decode_int((unsigned char *)&dr->size);
706 #if NISADMA > 0
707 pmap_isa_dma_ranges[rangeidx].ds_addr = dr->start;
708 pmap_isa_dma_ranges[rangeidx].ds_len = dr->size;
709 #endif
710 }
711
712 #ifdef DEBUG
713 printf("dma ranges size = %d\n", size);
714
715 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
716 printf("%08lx %08lx\n",
717 (u_long)OFdmaranges[rangeidx].start,
718 (u_long)OFdmaranges[rangeidx].size);
719 }
720 #endif
721 }
722
723 /*
724 * Memory configuration:
725 *
726 * We start off running in the environment provided by OFW.
727 * This has the MMU turned on, the kernel code and data
728 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
729 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
730 * page0 mapped-in at 0x0.
731 *
732 * The strategy is to set-up the address space for proc0 --
733 * including the allocation of space for new page tables -- while
734 * memory is still managed by OFW. We then effectively create a
735 * copy of the address space by dumping all of OFW's translations
736 * and poking them into the new page tables. We then notify OFW
737 * that we are assuming control of memory-management by installing
738 * our callback-handler, and switch to the NetBSD-managed page
739 * tables with the setttb() call.
740 *
741 * This scheme may cause some amount of memory to be wasted within
742 * OFW as dead page tables, but it shouldn't be more than about
743 * 20-30KB. (It's also possible that OFW will re-use the space.)
744 */
745 void
746 ofw_configmem(void)
747 {
748 pv_addr_t proc0_ttbbase;
749 pv_addr_t proc0_ptpt;
750
751 /* Set-up proc0 address space. */
752 ofw_construct_proc0_addrspace(&proc0_ttbbase, &proc0_ptpt);
753
754 /*
755 * Get a dump of OFW's picture of physical memory.
756 * This is used below to initialize a load of variables used by pmap.
757 * We get it now rather than later because we are about to
758 * tell OFW to stop managing memory.
759 */
760 ofw_getphysmeminfo();
761
762 /* We are about to take control of memory-management from OFW.
763 * Establish callbacks for OFW to use for its future memory needs.
764 * This is required for us to keep using OFW services.
765 */
766
767 /* First initialize our callback memory allocator. */
768 ofw_initallocator();
769
770 OF_set_callback((void(*)())ofw_callbackhandler);
771
772 /* Switch to the proc0 pagetables. */
773 setttb(proc0_ttbbase.pv_pa);
774
775 /* Aaaaaaaah, running in the proc0 address space! */
776 /* I feel good... */
777
778 /* Set-up the various globals which describe physical memory for pmap. */
779 {
780 struct mem_region *mp;
781 int totalcnt;
782 int availcnt;
783 int i;
784
785 /* physmem, physical_start, physical_end */
786 physmem = 0;
787 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
788 totalcnt++, mp++) {
789 #ifdef OLDPRINTFS
790 printf("physmem: %x, %x\n", mp->start, mp->size);
791 #endif
792 physmem += btoc(mp->size);
793 }
794 physical_start = OFphysmem[0].start;
795 mp--;
796 physical_end = mp->start + mp->size;
797
798 /* free_pages, physical_freestart, physical_freeend */
799 free_pages = 0;
800 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
801 availcnt++, mp++) {
802 #ifdef OLDPRINTFS
803 printf("physavail: %x, %x\n", mp->start, mp->size);
804 #endif
805 free_pages += btoc(mp->size);
806 }
807 physical_freestart = OFphysavail[0].start;
808 mp--;
809 physical_freeend = mp->start + mp->size;
810 #ifdef OLDPRINTFS
811 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
812 physmem, free_pages);
813 #endif
814
815 /*
816 * This is a hack to work with the existing pmap code.
817 * That code depends on a RiscPC BootConfig structure
818 * containing, among other things, an array describing
819 * the regions of physical memory. So, for now, we need
820 * to stuff our OFW-derived physical memory info into a
821 * "fake" BootConfig structure.
822 *
823 * An added twist is that we initialize the BootConfig
824 * structure with our "available" physical memory regions
825 * rather than the "total" physical memory regions. Why?
826 * Because:
827 *
828 * (a) the VM code requires that the "free" pages it is
829 * initialized with have consecutive indices. This
830 * allows it to use more efficient data structures
831 * (presumably).
832 * (b) the current pmap routines which report the initial
833 * set of free page indices (pmap_next_page) and
834 * which map addresses to indices (pmap_page_index)
835 * assume that the free pages are consecutive across
836 * memory region boundaries.
837 *
838 * This means that memory which is "stolen" at startup time
839 * (say, for page descriptors) MUST come from either the
840 * bottom of the first region or the top of the last.
841 *
842 * This requirement doesn't mesh well with OFW (or at least
843 * our use of it). We can get around it for the time being
844 * by pretending that our "available" region array describes
845 * all of our physical memory. This may cause some important
846 * information to be excluded from a dump file, but so far
847 * I haven't come across any other negative effects.
848 *
849 * In the long-run we should fix the index
850 * generation/translation code in the pmap module.
851 */
852
853 if (DRAM_BLOCKS < (availcnt + 1))
854 panic("more ofw memory regions than bootconfig blocks");
855
856 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
857 bootconfig.dram[i].address = mp->start;
858 bootconfig.dram[i].pages = btoc(mp->size);
859 }
860 bootconfig.dramblocks = availcnt;
861 }
862
863 /* Initialize pmap module. */
864 pmap_bootstrap((pd_entry_t *)proc0_ttbbase.pv_va, proc0_ptpt);
865 }
866
867
868 /*
869 ************************************************************
870
871 Routines private to this module
872
873 ************************************************************
874 */
875
876 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
877 static void
878 ofw_callbackhandler(args)
879 struct ofw_cbargs *args;
880 {
881 char *name = args->name;
882 int nargs = args->nargs;
883 int nreturns = args->nreturns;
884 int *args_n_results = args->args_n_results;
885
886 ofw_callbacks++;
887
888 #if defined(OFWGENCFG)
889 /* Check this first, so that we don't waste IRQ time parsing. */
890 if (strcmp(name, "tick") == 0) {
891 vm_offset_t frame;
892
893 /* Check format. */
894 if (nargs != 1 || nreturns < 1) {
895 args_n_results[nargs] = -1;
896 args->nreturns = 1;
897 return;
898 }
899 args_n_results[nargs] = 0; /* properly formatted request */
900
901 /*
902 * Note that we are running in the IRQ frame, with interrupts
903 * disabled.
904 *
905 * We need to do two things here:
906 * - copy a few words out of the input frame into a global
907 * area, for later use by our real tick-handling code
908 * - patch a few words in the frame so that when OFW returns
909 * from the interrupt it will resume with our handler
910 * rather than the code that was actually interrupted.
911 * Our handler will resume when it finishes with the code
912 * that was actually interrupted.
913 *
914 * It's simplest to do this in assembler, since it requires
915 * switching frames and grovelling about with registers.
916 */
917 frame = (vm_offset_t)args_n_results[0];
918 if (ofw_handleticks)
919 dotickgrovelling(frame);
920 args_n_results[nargs + 1] = frame;
921 args->nreturns = 1;
922 } else
923 #endif
924
925 if (strcmp(name, "map") == 0) {
926 vm_offset_t va;
927 vm_offset_t pa;
928 vm_size_t size;
929 int mode;
930 int ap_bits;
931 int dom_bits;
932 int cb_bits;
933
934 /* Check format. */
935 if (nargs != 4 || nreturns < 2) {
936 args_n_results[nargs] = -1;
937 args->nreturns = 1;
938 return;
939 }
940 args_n_results[nargs] = 0; /* properly formatted request */
941
942 pa = (vm_offset_t)args_n_results[0];
943 va = (vm_offset_t)args_n_results[1];
944 size = (vm_size_t)args_n_results[2];
945 mode = args_n_results[3];
946 ap_bits = (mode & 0x00000C00);
947 dom_bits = (mode & 0x000001E0);
948 cb_bits = (mode & 0x000000C0);
949
950 /* Sanity checks. */
951 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
952 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
953 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
954 size == 0 || (dom_bits >> 5) != 0) {
955 args_n_results[nargs + 1] = -1;
956 args->nreturns = 1;
957 return;
958 }
959
960 /* Write-back anything stuck in the cache. */
961 cpu_idcache_wbinv_all();
962
963 /* Install new mappings. */
964 {
965 pt_entry_t *pte = vtopte(va);
966 int npages = size >> PGSHIFT;
967
968 ap_bits >>= 10;
969 for (; npages > 0; pte++, pa += NBPG, npages--)
970 *pte = (pa | PT_AP(ap_bits) | L2_SPAGE | cb_bits);
971 }
972
973 /* Clean out tlb. */
974 tlb_flush();
975
976 args_n_results[nargs + 1] = 0;
977 args->nreturns = 2;
978 } else if (strcmp(name, "unmap") == 0) {
979 vm_offset_t va;
980 vm_size_t size;
981
982 /* Check format. */
983 if (nargs != 2 || nreturns < 1) {
984 args_n_results[nargs] = -1;
985 args->nreturns = 1;
986 return;
987 }
988 args_n_results[nargs] = 0; /* properly formatted request */
989
990 va = (vm_offset_t)args_n_results[0];
991 size = (vm_size_t)args_n_results[1];
992
993 /* Sanity checks. */
994 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
995 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
996 (size & PGOFSET) != 0 || size == 0) {
997 args_n_results[nargs + 1] = -1;
998 args->nreturns = 1;
999 return;
1000 }
1001
1002 /* Write-back anything stuck in the cache. */
1003 cpu_idcache_wbinv_all();
1004
1005 /* Zero the mappings. */
1006 {
1007 pt_entry_t *pte = vtopte(va);
1008 int npages = size >> PGSHIFT;
1009
1010 for (; npages > 0; pte++, npages--)
1011 *pte = 0;
1012 }
1013
1014 /* Clean out tlb. */
1015 tlb_flush();
1016
1017 args->nreturns = 1;
1018 } else if (strcmp(name, "translate") == 0) {
1019 vm_offset_t va;
1020 vm_offset_t pa;
1021 int mode;
1022 pt_entry_t pte;
1023
1024 /* Check format. */
1025 if (nargs != 1 || nreturns < 4) {
1026 args_n_results[nargs] = -1;
1027 args->nreturns = 1;
1028 return;
1029 }
1030 args_n_results[nargs] = 0; /* properly formatted request */
1031
1032 va = (vm_offset_t)args_n_results[0];
1033
1034 /* Sanity checks.
1035 * For now, I am only willing to translate va's in the
1036 * "ofw range." Eventually, I may be more generous. -JJK
1037 */
1038 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1039 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1040 args_n_results[nargs + 1] = -1;
1041 args->nreturns = 1;
1042 return;
1043 }
1044
1045 /* Lookup mapping. */
1046 pte = *vtopte(va);
1047 if (pte == 0) {
1048 /* No mapping. */
1049 args_n_results[nargs + 1] = -1;
1050 args->nreturns = 2;
1051 } else {
1052 /* Existing mapping. */
1053 pa = (pte & PG_FRAME) | (va & ~PG_FRAME);
1054 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1055
1056 args_n_results[nargs + 1] = 0;
1057 args_n_results[nargs + 2] = pa;
1058 args_n_results[nargs + 3] = mode;
1059 args->nreturns = 4;
1060 }
1061 } else if (strcmp(name, "claim-phys") == 0) {
1062 struct pglist alloclist = TAILQ_HEAD_INITIALIZER(alloclist);
1063 vm_offset_t low, high;
1064 vm_size_t align, size;
1065
1066 /*
1067 * XXX
1068 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1069 * XXX
1070 */
1071
1072 /* Check format. */
1073 if (nargs != 4 || nreturns < 3) {
1074 args_n_results[nargs] = -1;
1075 args->nreturns = 1;
1076 return;
1077 }
1078 args_n_results[nargs] = 0; /* properly formatted request */
1079
1080 low = args_n_results[0];
1081 size = args_n_results[2];
1082 align = args_n_results[3];
1083 high = args_n_results[1] + size;
1084
1085 #if 0
1086 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1087 low, size, align, high);
1088 align = size;
1089 printf("forcing align to be 0x%x\n", align);
1090 #endif
1091
1092 args_n_results[nargs + 1] =
1093 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1094 #if 0
1095 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1096 #endif
1097 if (args_n_results[nargs + 1] != 0) {
1098 #if 0
1099 printf("(failed)\n");
1100 #endif
1101 args_n_results[nargs + 1] = -1;
1102 args->nreturns = 2;
1103 return;
1104 }
1105 args_n_results[nargs + 2] = alloclist.tqh_first->phys_addr;
1106 #if 0
1107 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1108 #endif
1109 args->nreturns = 3;
1110
1111 } else if (strcmp(name, "release-phys") == 0) {
1112 printf("unimplemented ofw callback - %s\n", name);
1113 args_n_results[nargs] = -1;
1114 args->nreturns = 1;
1115 } else if (strcmp(name, "claim-virt") == 0) {
1116 vm_offset_t va;
1117 vm_size_t size;
1118 vm_offset_t align;
1119
1120 /* XXX - notyet */
1121 /* printf("unimplemented ofw callback - %s\n", name);*/
1122 args_n_results[nargs] = -1;
1123 args->nreturns = 1;
1124 return;
1125
1126 /* Check format. */
1127 if (nargs != 2 || nreturns < 3) {
1128 args_n_results[nargs] = -1;
1129 args->nreturns = 1;
1130 return;
1131 }
1132 args_n_results[nargs] = 0; /* properly formatted request */
1133
1134 /* Allocate size bytes with specified alignment. */
1135 size = (vm_size_t)args_n_results[0];
1136 align = (vm_offset_t)args_n_results[1];
1137 if (align % NBPG != 0) {
1138 args_n_results[nargs + 1] = -1;
1139 args->nreturns = 2;
1140 return;
1141 }
1142
1143 if (va == 0) {
1144 /* Couldn't allocate. */
1145 args_n_results[nargs + 1] = -1;
1146 args->nreturns = 2;
1147 } else {
1148 /* Successful allocation. */
1149 args_n_results[nargs + 1] = 0;
1150 args_n_results[nargs + 2] = va;
1151 args->nreturns = 3;
1152 }
1153 } else if (strcmp(name, "release-virt") == 0) {
1154 vm_offset_t va;
1155 vm_size_t size;
1156
1157 /* XXX - notyet */
1158 printf("unimplemented ofw callback - %s\n", name);
1159 args_n_results[nargs] = -1;
1160 args->nreturns = 1;
1161 return;
1162
1163 /* Check format. */
1164 if (nargs != 2 || nreturns < 1) {
1165 args_n_results[nargs] = -1;
1166 args->nreturns = 1;
1167 return;
1168 }
1169 args_n_results[nargs] = 0; /* properly formatted request */
1170
1171 /* Release bytes. */
1172 va = (vm_offset_t)args_n_results[0];
1173 size = (vm_size_t)args_n_results[1];
1174
1175 args->nreturns = 1;
1176 } else {
1177 args_n_results[nargs] = -1;
1178 args->nreturns = 1;
1179 }
1180 }
1181
1182 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (PDSHIFT + 2))
1183 #define KERNEL_OFW_PTS 4
1184 #define KERNEL_IO_PTS 4
1185
1186 static void
1187 ofw_construct_proc0_addrspace(proc0_ttbbase, proc0_ptpt)
1188 pv_addr_t *proc0_ttbbase;
1189 pv_addr_t *proc0_ptpt;
1190 {
1191 int i, oft;
1192 pv_addr_t proc0_pagedir;
1193 pv_addr_t proc0_pt_pte;
1194 pv_addr_t proc0_pt_sys;
1195 pv_addr_t proc0_pt_kernel;
1196 pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1197 pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1198 pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1199 pv_addr_t msgbuf;
1200 vm_offset_t L1pagetable;
1201 vm_offset_t L2pagetable;
1202 struct mem_translation *tp;
1203
1204 /* Set-up the system page. */
1205 systempage.pv_va = ofw_claimvirt(0, NBPG, 0);
1206 if (systempage.pv_va == -1) {
1207 /* Something was already mapped to VA 0. */
1208 systempage.pv_va = 0;
1209 systempage.pv_pa = ofw_gettranslation(0);
1210 if (systempage.pv_pa == -1)
1211 panic("bogus result from gettranslation(0)");
1212 } else {
1213 /* We were just allocated the page-length range at VA 0. */
1214 if (systempage.pv_va != 0)
1215 panic("bogus result from claimvirt(0, NBPG, 0)");
1216
1217 /* Now allocate a physical page, and establish the mapping. */
1218 systempage.pv_pa = ofw_claimphys(0, NBPG, NBPG);
1219 if (systempage.pv_pa == -1)
1220 panic("bogus result from claimphys(0, NBPG, NBPG)");
1221 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1222 NBPG, -1); /* XXX - mode? -JJK */
1223
1224 /* Zero the memory. */
1225 bzero((char *)systempage.pv_va, NBPG);
1226 }
1227
1228 /* Allocate/initialize space for the proc0, NetBSD-managed */
1229 /* page tables that we will be switching to soon. */
1230 ofw_claimpages(&virt_freeptr, &proc0_pagedir, PD_SIZE);
1231 ofw_claimpages(&virt_freeptr, &proc0_pt_pte, PT_SIZE);
1232 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, PT_SIZE);
1233 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel, PT_SIZE);
1234 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1235 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], PT_SIZE);
1236 for (i = 0; i < KERNEL_OFW_PTS; i++)
1237 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], PT_SIZE);
1238 for (i = 0; i < KERNEL_IO_PTS; i++)
1239 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], PT_SIZE);
1240
1241 /* Allocate/initialize space for stacks. */
1242 #ifndef OFWGENCFG
1243 ofw_claimpages(&virt_freeptr, &irqstack, NBPG);
1244 #endif
1245 ofw_claimpages(&virt_freeptr, &undstack, NBPG);
1246 ofw_claimpages(&virt_freeptr, &abtstack, NBPG);
1247 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * NBPG);
1248
1249 /* Allocate/initialize space for msgbuf area. */
1250 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1251 msgbufphys = msgbuf.pv_pa;
1252
1253 /*
1254 * OK, we're done allocating.
1255 * Get a dump of OFW's translations, and make the appropriate
1256 * entries in the L2 pagetables that we just allocated.
1257 */
1258
1259 ofw_getvirttranslations();
1260
1261 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1262 oft++, tp++) {
1263
1264 vm_offset_t va, pa;
1265 int npages = tp->size / NBPG;
1266
1267 /* Size must be an integral number of pages. */
1268 if (npages == 0 || tp->size % NBPG != 0)
1269 panic("illegal ofw translation (size)");
1270
1271 /* Make an entry for each page in the appropriate table. */
1272 for (va = tp->virt, pa = tp->phys; npages > 0;
1273 va += NBPG, pa += NBPG, npages--) {
1274 vm_offset_t L2pagetable;
1275
1276 /*
1277 * Map the top bits to the appropriate L2 pagetable.
1278 * The only allowable regions are page0, the
1279 * kernel-static area, and the ofw area.
1280 */
1281 switch (va >> (PDSHIFT + 2)) {
1282 case 0:
1283 /* page0 */
1284 L2pagetable = proc0_pt_sys.pv_va;
1285 break;
1286
1287 case (KERNEL_BASE >> (PDSHIFT + 2)):
1288 /* kernel static area */
1289 L2pagetable = proc0_pt_kernel.pv_va;
1290 break;
1291
1292 case ( OFW_VIRT_BASE >> (PDSHIFT + 2)):
1293 case ((OFW_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
1294 case ((OFW_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
1295 case ((OFW_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
1296 /* ofw area */
1297 L2pagetable = proc0_pt_ofw[(va >> (PDSHIFT + 2))
1298 & 0x3].pv_va;
1299 break;
1300
1301 case ( IO_VIRT_BASE >> (PDSHIFT + 2)):
1302 case ((IO_VIRT_BASE + 0x00400000) >> (PDSHIFT + 2)):
1303 case ((IO_VIRT_BASE + 0x00800000) >> (PDSHIFT + 2)):
1304 case ((IO_VIRT_BASE + 0x00C00000) >> (PDSHIFT + 2)):
1305 /* io area */
1306 L2pagetable = proc0_pt_io[(va >> (PDSHIFT + 2))
1307 & 0x3].pv_va;
1308 break;
1309
1310 default:
1311 /* illegal */
1312 panic("illegal ofw translation (addr) %#lx", va);
1313 }
1314
1315 /* Sanity. The current entry should be null. */
1316 {
1317 pt_entry_t pte;
1318 pte = ReadWord(L2pagetable + ((va >> 10)
1319 & 0x00000FFC));
1320 if (pte != 0)
1321 panic("illegal ofw translation (%#lx, %#lx, %#lx, %x)",
1322 L2pagetable, va, pa, pte);
1323 }
1324
1325 /* Make the entry. */
1326 pmap_map_entry(L2pagetable, va, pa,
1327 VM_PROT_READ|VM_PROT_WRITE,
1328 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1329 : PTE_NOCACHE);
1330 }
1331 }
1332
1333 /*
1334 * We don't actually want some of the mappings that we just
1335 * set up to appear in proc0's address space. In particular,
1336 * we don't want aliases to physical addresses that the kernel
1337 * has-mapped/will-map elsewhere.
1338 */
1339 ofw_discardmappings(proc0_pt_kernel.pv_va,
1340 proc0_pt_sys.pv_va, PT_SIZE);
1341 ofw_discardmappings(proc0_pt_kernel.pv_va,
1342 proc0_pt_kernel.pv_va, PT_SIZE);
1343 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1344 ofw_discardmappings(proc0_pt_kernel.pv_va,
1345 proc0_pt_vmdata[i].pv_va, PT_SIZE);
1346 for (i = 0; i < KERNEL_OFW_PTS; i++)
1347 ofw_discardmappings(proc0_pt_kernel.pv_va,
1348 proc0_pt_ofw[i].pv_va, PT_SIZE);
1349 for (i = 0; i < KERNEL_IO_PTS; i++)
1350 ofw_discardmappings(proc0_pt_kernel.pv_va,
1351 proc0_pt_io[i].pv_va, PT_SIZE);
1352 ofw_discardmappings(proc0_pt_kernel.pv_va,
1353 msgbuf.pv_va, MSGBUFSIZE);
1354
1355 /*
1356 * We did not throw away the proc0_pt_pte and proc0_pagedir
1357 * mappings as well still want them. However we don't want them
1358 * cached ...
1359 * Really these should be uncached when allocated.
1360 */
1361 pmap_map_entry(proc0_pt_kernel.pv_va, proc0_pt_pte.pv_va,
1362 proc0_pt_pte.pv_pa,
1363 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1364 for (i = 0; i < (PD_SIZE / NBPG); ++i)
1365 pmap_map_entry(proc0_pt_kernel.pv_va,
1366 proc0_pagedir.pv_va + NBPG * i,
1367 proc0_pagedir.pv_pa + NBPG * i,
1368 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1369
1370 /*
1371 * Construct the proc0 L2 pagetables that map page tables.
1372 */
1373
1374 /* Map entries in the L2pagetable used to map L2PTs. */
1375 L2pagetable = proc0_pt_pte.pv_va;
1376 pmap_map_entry(L2pagetable, (0x00000000 >> (PGSHIFT-2)),
1377 proc0_pt_sys.pv_pa,
1378 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1379 pmap_map_entry(L2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
1380 proc0_pt_kernel.pv_pa,
1381 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1382 pmap_map_entry(L2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
1383 proc0_pt_pte.pv_pa,
1384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1385 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1386 pmap_map_entry(L2pagetable, ((KERNEL_VM_BASE + i * 0x00400000)
1387 >> (PGSHIFT-2)), proc0_pt_vmdata[i].pv_pa,
1388 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1389 for (i = 0; i < KERNEL_OFW_PTS; i++)
1390 pmap_map_entry(L2pagetable, ((OFW_VIRT_BASE + i * 0x00400000)
1391 >> (PGSHIFT-2)), proc0_pt_ofw[i].pv_pa,
1392 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1393 for (i = 0; i < KERNEL_IO_PTS; i++)
1394 pmap_map_entry(L2pagetable, ((IO_VIRT_BASE + i * 0x00400000)
1395 >> (PGSHIFT-2)), proc0_pt_io[i].pv_pa,
1396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
1397
1398 /* Construct the proc0 L1 pagetable. */
1399 L1pagetable = proc0_pagedir.pv_va;
1400
1401 pmap_link_l2pt(L1pagetable, 0x0, proc0_pt_sys.pv_pa);
1402 pmap_link_l2pt(L1pagetable, KERNEL_BASE, proc0_pt_kernel.pv_pa);
1403 pmap_link_l2pt(L1pagetable, PROCESS_PAGE_TBLS_BASE,
1404 proc0_pt_pte.pv_pa);
1405 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1406 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1407 proc0_pt_vmdata[i].pv_pa);
1408 for (i = 0; i < KERNEL_OFW_PTS; i++)
1409 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1410 proc0_pt_ofw[i].pv_pa);
1411 for (i = 0; i < KERNEL_IO_PTS; i++)
1412 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1413 proc0_pt_io[i].pv_pa);
1414
1415 /*
1416 * gross hack for the sake of not thrashing the TLB and making
1417 * cache flush more efficient: blast l1 ptes for sections.
1418 */
1419 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1420 vm_offset_t va = tp->virt;
1421 vm_offset_t pa = tp->phys;
1422
1423 if (((va & (NBPD - 1)) == 0) && ((pa & (NBPD - 1)) == 0)) {
1424 int nsections = tp->size / NBPD;
1425
1426 while (nsections--) {
1427 /* XXXJRT prot?? */
1428 pmap_map_section(L1pagetable, va, pa,
1429 VM_PROT_READ|VM_PROT_WRITE,
1430 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1431 : PTE_NOCACHE);
1432 va += NBPD;
1433 pa += NBPD;
1434 }
1435 }
1436 }
1437
1438 /* OUT parameters are the new ttbbase and the pt which maps pts. */
1439 *proc0_ttbbase = proc0_pagedir;
1440 *proc0_ptpt = proc0_pt_pte;
1441 }
1442
1443
1444 static void
1445 ofw_getphysmeminfo()
1446 {
1447 int phandle;
1448 int mem_len;
1449 int avail_len;
1450 int i;
1451
1452 if ((phandle = OF_finddevice("/memory")) == -1 ||
1453 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1454 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1455 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1456 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1457 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1458 OF_getprop(phandle, "available", OFphysavail, avail_len)
1459 != avail_len)
1460 panic("can't get physmeminfo from OFW");
1461
1462 nOFphysmem = mem_len / sizeof(struct mem_region);
1463 nOFphysavail = avail_len / sizeof(struct mem_region);
1464
1465 /*
1466 * Sort the blocks in each array into ascending address order.
1467 * Also, page-align all blocks.
1468 */
1469 for (i = 0; i < 2; i++) {
1470 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1471 struct mem_region *mp;
1472 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1473 int j;
1474
1475 #ifdef OLDPRINTFS
1476 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1477 #endif
1478
1479 /* XXX - Convert all the values to host order. -JJK */
1480 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1481 mp->start = of_decode_int((unsigned char *)&mp->start);
1482 mp->size = of_decode_int((unsigned char *)&mp->size);
1483 }
1484
1485 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1486 u_int s, sz;
1487 struct mem_region *mp1;
1488
1489 /* Page-align start of the block. */
1490 s = mp->start % NBPG;
1491 if (s != 0) {
1492 s = (NBPG - s);
1493
1494 if (mp->size >= s) {
1495 mp->start += s;
1496 mp->size -= s;
1497 }
1498 }
1499
1500 /* Page-align the size. */
1501 mp->size -= mp->size % NBPG;
1502
1503 /* Handle empty block. */
1504 if (mp->size == 0) {
1505 bcopy(mp + 1, mp, (cnt - (mp - tmp))
1506 * sizeof(struct mem_region));
1507 cnt--;
1508 mp--;
1509 continue;
1510 }
1511
1512 /* Bubble sort. */
1513 s = mp->start;
1514 sz = mp->size;
1515 for (mp1 = tmp; mp1 < mp; mp1++)
1516 if (s < mp1->start)
1517 break;
1518 if (mp1 < mp) {
1519 bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
1520 mp1->start = s;
1521 mp1->size = sz;
1522 }
1523 }
1524
1525 #ifdef OLDPRINTFS
1526 for (mp = tmp; mp->size; mp++) {
1527 printf("%x, %x\n", mp->start, mp->size);
1528 }
1529 #endif
1530 }
1531 }
1532
1533
1534 static void
1535 ofw_getvirttranslations(void)
1536 {
1537 int mmu_phandle;
1538 int mmu_ihandle;
1539 int trans_len;
1540 int over, len;
1541 int i;
1542 struct mem_translation *tp;
1543
1544 mmu_ihandle = ofw_mmu_ihandle();
1545
1546 /* overallocate to avoid increases during allocation */
1547 over = 4 * sizeof(struct mem_translation);
1548 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1549 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1550 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1551 (trans_len = OF_getprop(mmu_phandle, "translations",
1552 OFtranslations, len + over)) > (len + over))
1553 panic("can't get virttranslations from OFW");
1554
1555 /* XXX - Convert all the values to host order. -JJK */
1556 nOFtranslations = trans_len / sizeof(struct mem_translation);
1557 #ifdef OLDPRINTFS
1558 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1559 #endif
1560 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1561 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1562 tp->size = of_decode_int((unsigned char *)&tp->size);
1563 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1564 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1565 }
1566 }
1567
1568 /*
1569 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1570 */
1571 typedef struct _vfree {
1572 struct _vfree *pNext;
1573 vm_offset_t start;
1574 vm_size_t size;
1575 } VFREE, *PVFREE;
1576
1577 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1578
1579 static PVFREE vflist = &vfinitial;
1580
1581 static vm_offset_t
1582 ofw_valloc(size, align)
1583 vm_offset_t size;
1584 vm_offset_t align;
1585 {
1586 PVFREE *ppvf;
1587 PVFREE pNew;
1588 vm_offset_t new;
1589 vm_offset_t lead;
1590
1591 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1592 if (align == 0) {
1593 new = (*ppvf)->start;
1594 lead = 0;
1595 } else {
1596 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1597 lead = new - (*ppvf)->start;
1598 }
1599
1600 if (((*ppvf)->size - lead) >= size) {
1601 if (lead == 0) {
1602 /* using whole block */
1603 if (size == (*ppvf)->size) {
1604 /* splice out of list */
1605 (*ppvf) = (*ppvf)->pNext;
1606 } else { /* tail of block is free */
1607 (*ppvf)->start = new + size;
1608 (*ppvf)->size -= size;
1609 }
1610 } else {
1611 vm_size_t tail = ((*ppvf)->start
1612 + (*ppvf)->size) - (new + size);
1613 /* free space at beginning */
1614 (*ppvf)->size = lead;
1615
1616 if (tail != 0) {
1617 /* free space at tail */
1618 pNew = ofw_malloc(sizeof(VFREE));
1619 pNew->pNext = (*ppvf)->pNext;
1620 (*ppvf)->pNext = pNew;
1621 pNew->start = new + size;
1622 pNew->size = tail;
1623 }
1624 }
1625 return new;
1626 } /* END if */
1627 } /* END for */
1628
1629 return -1;
1630 }
1631
1632 vm_offset_t
1633 ofw_map(pa, size, cb_bits)
1634 vm_offset_t pa;
1635 vm_size_t size;
1636 int cb_bits;
1637 {
1638 vm_offset_t va;
1639
1640 if ((va = ofw_valloc(size, size)) == -1)
1641 panic("cannot alloc virtual memory for %#lx", pa);
1642
1643 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1644
1645 ofw_settranslation(va, pa, size, PT_AP(AP_KRW) | cb_bits);
1646
1647 return va;
1648 }
1649
1650 static int
1651 ofw_mem_ihandle(void)
1652 {
1653 static int mem_ihandle = 0;
1654 int chosen;
1655
1656 if (mem_ihandle != 0)
1657 return(mem_ihandle);
1658
1659 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1660 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1661 panic("ofw_mem_ihandle");
1662
1663 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1664
1665 return(mem_ihandle);
1666 }
1667
1668
1669 static int
1670 ofw_mmu_ihandle(void)
1671 {
1672 static int mmu_ihandle = 0;
1673 int chosen;
1674
1675 if (mmu_ihandle != 0)
1676 return(mmu_ihandle);
1677
1678 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1679 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1680 panic("ofw_mmu_ihandle");
1681
1682 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1683
1684 return(mmu_ihandle);
1685 }
1686
1687
1688 /* Return -1 on failure. */
1689 static vm_offset_t
1690 ofw_claimphys(pa, size, align)
1691 vm_offset_t pa;
1692 vm_size_t size;
1693 vm_offset_t align;
1694 {
1695 int mem_ihandle = ofw_mem_ihandle();
1696
1697 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1698 if (align == 0) {
1699 /* Allocate at specified base; alignment is ignored. */
1700 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1701 } else {
1702 /* Allocate anywhere, with specified alignment. */
1703 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1704 }
1705
1706 /* printf("%x\n", pa);*/
1707 return(pa);
1708 }
1709
1710
1711 #if 0
1712 /* Return -1 on failure. */
1713 static vm_offset_t
1714 ofw_releasephys(pa, size)
1715 vm_offset_t pa;
1716 vm_size_t size;
1717 {
1718 int mem_ihandle = ofw_mem_ihandle();
1719
1720 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1721
1722 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1723 }
1724 #endif
1725
1726 /* Return -1 on failure. */
1727 static vm_offset_t
1728 ofw_claimvirt(va, size, align)
1729 vm_offset_t va;
1730 vm_size_t size;
1731 vm_offset_t align;
1732 {
1733 int mmu_ihandle = ofw_mmu_ihandle();
1734
1735 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1736 if (align == 0) {
1737 /* Allocate at specified base; alignment is ignored. */
1738 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1739 } else {
1740 /* Allocate anywhere, with specified alignment. */
1741 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1742 }
1743
1744 /*printf("%x\n", va);*/
1745 return(va);
1746 }
1747
1748
1749 /* Return -1 if no mapping. */
1750 vm_offset_t
1751 ofw_gettranslation(va)
1752 vm_offset_t va;
1753 {
1754 int mmu_ihandle = ofw_mmu_ihandle();
1755 vm_offset_t pa;
1756 int mode;
1757 int exists;
1758
1759 /*printf("ofw_gettranslation (%x) --> ", va);*/
1760 exists = 0; /* gets set to true if translation exists */
1761 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1762 &exists) != 0)
1763 return(-1);
1764
1765 /*printf("%x\n", exists ? pa : -1);*/
1766 return(exists ? pa : -1);
1767 }
1768
1769
1770 static void
1771 ofw_settranslation(va, pa, size, mode)
1772 vm_offset_t va;
1773 vm_offset_t pa;
1774 vm_size_t size;
1775 int mode;
1776 {
1777 int mmu_ihandle = ofw_mmu_ihandle();
1778
1779 /*printf("ofw_settranslation (%x, %x, %x, %x) --> void", va, pa, size, mode);*/
1780 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1781 panic("ofw_settranslation failed");
1782 }
1783
1784 /*
1785 * Allocation routine used before the kernel takes over memory.
1786 * Use this for efficient storage for things that aren't rounded to
1787 * page size.
1788 *
1789 * The point here is not necessarily to be very efficient (even though
1790 * that's sort of nice), but to do proper dynamic allocation to avoid
1791 * size-limitation errors.
1792 *
1793 */
1794
1795 typedef struct _leftover {
1796 struct _leftover *pNext;
1797 vm_size_t size;
1798 } LEFTOVER, *PLEFTOVER;
1799
1800 /* leftover bits of pages. first word is pointer to next.
1801 second word is size of leftover */
1802 static PLEFTOVER leftovers = NULL;
1803
1804 static void *
1805 ofw_malloc(size)
1806 vm_size_t size;
1807 {
1808 PLEFTOVER *ppLeftover;
1809 PLEFTOVER pLeft;
1810 pv_addr_t new;
1811 vm_size_t newSize, claim_size;
1812
1813 /* round and set minimum size */
1814 size = max(sizeof(LEFTOVER),
1815 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1816
1817 for (ppLeftover = &leftovers; *ppLeftover;
1818 ppLeftover = &((*ppLeftover)->pNext))
1819 if ((*ppLeftover)->size >= size)
1820 break;
1821
1822 if (*ppLeftover) { /* have a leftover of the right size */
1823 /* remember the leftover */
1824 new.pv_va = (vm_offset_t)*ppLeftover;
1825 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1826 /* splice out of chain */
1827 *ppLeftover = (*ppLeftover)->pNext;
1828 } else {
1829 /* remember the next pointer */
1830 pLeft = (*ppLeftover)->pNext;
1831 newSize = (*ppLeftover)->size - size; /* reduce size */
1832 /* move pointer */
1833 *ppLeftover = (PLEFTOVER)(((vm_offset_t)*ppLeftover)
1834 + size);
1835 (*ppLeftover)->pNext = pLeft;
1836 (*ppLeftover)->size = newSize;
1837 }
1838 } else {
1839 claim_size = (size + NBPG - 1) & ~(NBPG - 1);
1840 ofw_claimpages(&virt_freeptr, &new, claim_size);
1841 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1842 pLeft = (PLEFTOVER)(new.pv_va + size);
1843 pLeft->pNext = leftovers;
1844 pLeft->size = claim_size - size;
1845 leftovers = pLeft;
1846 }
1847 }
1848
1849 return (void *)(new.pv_va);
1850 }
1851
1852 /*
1853 * Here is a really, really sleazy free. It's not used right now,
1854 * because it's not worth the extra complexity for just a few bytes.
1855 *
1856 */
1857 #if 0
1858 static void
1859 ofw_free(addr, size)
1860 vm_offset_t addr;
1861 vm_size_t size;
1862 {
1863 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1864
1865 /* splice right into list without checks or compaction */
1866 pLeftover->pNext = leftovers;
1867 pLeftover->size = size;
1868 leftovers = pLeftover;
1869 }
1870 #endif
1871
1872 /*
1873 * Allocate and zero round(size)/NBPG pages of memory.
1874 * We guarantee that the allocated memory will be
1875 * aligned to a boundary equal to the smallest power of
1876 * 2 greater than or equal to size.
1877 * free_pp is an IN/OUT parameter which points to the
1878 * last allocated virtual address in an allocate-downwards
1879 * stack. pv_p is an OUT parameter which contains the
1880 * virtual and physical base addresses of the allocated
1881 * memory.
1882 */
1883 static void
1884 ofw_claimpages(free_pp, pv_p, size)
1885 vm_offset_t *free_pp;
1886 pv_addr_t *pv_p;
1887 vm_size_t size;
1888 {
1889 /* round-up to page boundary */
1890 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1891 vm_size_t aligned_size;
1892 vm_offset_t va, pa;
1893
1894 if (alloc_size == 0)
1895 panic("ofw_claimpages zero");
1896
1897 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1898 ;
1899
1900 /* The only way to provide the alignment guarantees is to
1901 * allocate the virtual and physical ranges separately,
1902 * then do an explicit map call.
1903 */
1904 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1905 if (ofw_claimvirt(va, alloc_size, 0) != va)
1906 panic("ofw_claimpages va alloc");
1907 pa = ofw_claimphys(0, alloc_size, aligned_size);
1908 if (pa == -1)
1909 panic("ofw_claimpages pa alloc");
1910 /* XXX - what mode? -JJK */
1911 ofw_settranslation(va, pa, alloc_size, -1);
1912
1913 /* The memory's mapped-in now, so we can zero it. */
1914 bzero((char *)va, alloc_size);
1915
1916 /* Set OUT parameters. */
1917 *free_pp = va;
1918 pv_p->pv_va = va;
1919 pv_p->pv_pa = pa;
1920 }
1921
1922
1923 static void
1924 ofw_discardmappings(L2pagetable, va, size)
1925 vm_offset_t L2pagetable;
1926 vm_offset_t va;
1927 vm_size_t size;
1928 {
1929 /* round-up to page boundary */
1930 vm_size_t alloc_size = (size + NBPG - 1) & ~(NBPG - 1);
1931 int npages = alloc_size / NBPG;
1932
1933 if (npages == 0)
1934 panic("ofw_discardmappings zero");
1935
1936 /* Discard each mapping. */
1937 for (; npages > 0; va += NBPG, npages--) {
1938 /* Sanity. The current entry should be non-null. */
1939 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1940 panic("ofw_discardmappings zero entry");
1941
1942 /* Clear the entry. */
1943 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1944 }
1945 }
1946
1947
1948 static void
1949 ofw_initallocator(void)
1950 {
1951
1952 }
1953