ofw.c revision 1.50 1 /* $NetBSD: ofw.c,v 1.50 2009/08/11 17:04:19 matt Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.50 2009/08/11 17:04:19 matt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/kernel.h>
50 #include <sys/reboot.h>
51 #include <sys/mbuf.h>
52
53 #include <uvm/uvm_extern.h>
54
55 #include <dev/cons.h>
56
57 #define _ARM32_BUS_DMA_PRIVATE
58 #include <machine/bus.h>
59 #include <machine/frame.h>
60 #include <machine/bootconfig.h>
61 #include <machine/cpu.h>
62 #include <machine/intr.h>
63 #include <machine/irqhandler.h>
64
65 #include <dev/ofw/openfirm.h>
66 #include <machine/ofw.h>
67
68 #include <netinet/in.h>
69
70 #if BOOT_FW_DHCP
71 #include <nfs/bootdata.h>
72 #endif
73
74 #ifdef SHARK
75 #include "machine/pio.h"
76 #include "machine/isa_machdep.h"
77 #endif
78
79 #include "isadma.h"
80 #include "igsfb_ofbus.h"
81 #include "vga_ofbus.h"
82
83 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
84 #define IO_VIRT_SIZE 0x01000000
85
86 #define KERNEL_IMG_PTS 2
87 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
88 #define KERNEL_OFW_PTS 4
89 #define KERNEL_IO_PTS 4
90
91 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
92 /*
93 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
94 * OFW sits at 0xf7000000
95 */
96 #define KERNEL_VM_SIZE 0x06000000
97
98 /*
99 * Imported variables
100 */
101 extern BootConfig bootconfig; /* temporary, I hope */
102
103 #ifdef DIAGNOSTIC
104 /* NOTE: These variables will be removed, well some of them */
105 extern u_int current_mask;
106 #endif
107
108 extern int ofw_handleticks;
109
110
111 /*
112 * Imported routines
113 */
114 extern void dump_spl_masks(void);
115 extern void dumpsys(void);
116 extern void dotickgrovelling(vaddr_t);
117
118 #define WriteWord(a, b) \
119 *((volatile unsigned int *)(a)) = (b)
120
121 #define ReadWord(a) \
122 (*((volatile unsigned int *)(a)))
123
124
125 /*
126 * Exported variables
127 */
128 /* These should all be in a meminfo structure. */
129 paddr_t physical_start;
130 paddr_t physical_freestart;
131 paddr_t physical_freeend;
132 paddr_t physical_end;
133 u_int free_pages;
134 #ifndef OFWGENCFG
135 pv_addr_t irqstack;
136 #endif
137 pv_addr_t undstack;
138 pv_addr_t abtstack;
139 pv_addr_t kernelstack;
140
141 paddr_t msgbufphys;
142
143 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
144 static vaddr_t virt_freeptr;
145
146 int ofw_callbacks = 0; /* debugging counter */
147
148 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
149 int console_ihandle = 0;
150 static void reset_screen(void);
151 #endif
152
153 /**************************************************************/
154
155
156 /*
157 * Declarations and definitions private to this module
158 *
159 */
160
161 struct mem_region {
162 paddr_t start;
163 psize_t size;
164 };
165
166 struct mem_translation {
167 vaddr_t virt;
168 vsize_t size;
169 paddr_t phys;
170 unsigned int mode;
171 };
172
173 struct isa_range {
174 paddr_t isa_phys_hi;
175 paddr_t isa_phys_lo;
176 paddr_t parent_phys_start;
177 psize_t isa_size;
178 };
179
180 struct vl_range {
181 paddr_t vl_phys_hi;
182 paddr_t vl_phys_lo;
183 paddr_t parent_phys_start;
184 psize_t vl_size;
185 };
186
187 struct vl_isa_range {
188 paddr_t isa_phys_hi;
189 paddr_t isa_phys_lo;
190 paddr_t parent_phys_hi;
191 paddr_t parent_phys_lo;
192 psize_t isa_size;
193 };
194
195 struct dma_range {
196 paddr_t start;
197 psize_t size;
198 };
199
200 struct ofw_cbargs {
201 char *name;
202 int nargs;
203 int nreturns;
204 int args_n_results[12];
205 };
206
207
208 /* Memory info */
209 static int nOFphysmem;
210 static struct mem_region *OFphysmem;
211 static int nOFphysavail;
212 static struct mem_region *OFphysavail;
213 static int nOFtranslations;
214 static struct mem_translation *OFtranslations;
215 static int nOFdmaranges;
216 static struct dma_range *OFdmaranges;
217
218 /* The OFW client services handle. */
219 /* Initialized by ofw_init(). */
220 static ofw_handle_t ofw_client_services_handle;
221
222
223 static void ofw_callbackhandler(void *);
224 static void ofw_construct_proc0_addrspace(void);
225 static void ofw_getphysmeminfo(void);
226 static void ofw_getvirttranslations(void);
227 static void *ofw_malloc(vsize_t size);
228 static void ofw_claimpages(vaddr_t *, pv_addr_t *, vsize_t);
229 static void ofw_discardmappings(vaddr_t, vaddr_t, vsize_t);
230 static int ofw_mem_ihandle(void);
231 static int ofw_mmu_ihandle(void);
232 static paddr_t ofw_claimphys(paddr_t, psize_t, paddr_t);
233 #if 0
234 static paddr_t ofw_releasephys(paddr_t, psize_t);
235 #endif
236 static vaddr_t ofw_claimvirt(vaddr_t, vsize_t, vaddr_t);
237 static void ofw_settranslation(vaddr_t, paddr_t, vsize_t, int);
238 static void ofw_initallocator(void);
239 static void ofw_configisaonly(paddr_t *, paddr_t *);
240 static void ofw_configvl(int, paddr_t *, paddr_t *);
241 static vaddr_t ofw_valloc(vsize_t, vaddr_t);
242
243
244 /*
245 * DHCP hooks. For a first cut, we look to see if there is a DHCP
246 * packet that was saved by the firmware. If not, we proceed as before,
247 * getting hand-configured data from NVRAM. If there is one, we get the
248 * packet, and extract the data from it. For now, we hand that data up
249 * in the boot_args string as before.
250 */
251
252
253 /**************************************************************/
254
255
256 /*
257 *
258 * Support routines for xxx_machdep.c
259 *
260 * The intent is that all OFW-based configurations use the
261 * exported routines in this file to do their business. If
262 * they need to override some function they are free to do so.
263 *
264 * The exported routines are:
265 *
266 * openfirmware
267 * ofw_init
268 * ofw_boot
269 * ofw_getbootinfo
270 * ofw_configmem
271 * ofw_configisa
272 * ofw_configisadma
273 * ofw_gettranslation
274 * ofw_map
275 * ofw_getcleaninfo
276 */
277
278
279 int
280 openfirmware(void *args)
281 {
282 int ofw_result;
283 u_int saved_irq_state;
284
285 /* OFW is not re-entrant, so we wrap a mutex around the call. */
286 saved_irq_state = disable_interrupts(I32_bit);
287 ofw_result = ofw_client_services_handle(args);
288 (void)restore_interrupts(saved_irq_state);
289
290 return(ofw_result);
291 }
292
293
294 void
295 ofw_init(ofw_handle_t ofw_handle)
296 {
297 ofw_client_services_handle = ofw_handle;
298
299 /* Everything we allocate in the remainder of this block is
300 * constrained to be in the "kernel-static" portion of the
301 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
302 * This is because all such objects are expected to be in
303 * that range by NetBSD, or the objects will be re-mapped
304 * after the page-table-switch to other specific locations.
305 * In the latter case, it's simplest if our pre-switch handles
306 * on those objects are in regions that are already "well-
307 * known." (Otherwise, the cloning of the OFW-managed address-
308 * space becomes more awkward.) To minimize the number of L2
309 * page tables that we use, we are further restricting the
310 * remaining allocations in this block to the bottom quarter of
311 * the legal range. OFW will have loaded the kernel text+data+bss
312 * starting at the bottom of the range, and we will allocate
313 * objects from the top, moving downwards. The two sub-regions
314 * will collide if their total sizes hit 8MB. The current total
315 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
316 * limit. The variable virt-freeptr represents the next free va
317 * (moving downwards).
318 */
319 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
320 }
321
322
323 void
324 ofw_boot(int howto, char *bootstr)
325 {
326
327 #ifdef DIAGNOSTIC
328 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
329 printf("current_mask=%08x\n", current_mask);
330
331 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
332 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
333 irqmasks[IPL_VM]);
334 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
335 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
336
337 dump_spl_masks();
338 #endif
339
340 /*
341 * If we are still cold then hit the air brakes
342 * and crash to earth fast
343 */
344 if (cold) {
345 doshutdownhooks();
346 pmf_system_shutdown(boothowto);
347 printf("Halted while still in the ICE age.\n");
348 printf("The operating system has halted.\n");
349 goto ofw_exit;
350 /*NOTREACHED*/
351 }
352
353 /*
354 * If RB_NOSYNC was not specified sync the discs.
355 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
356 * It looks like syslogd is getting woken up only to find that it cannot
357 * page part of the binary in as the filesystem has been unmounted.
358 */
359 if (!(howto & RB_NOSYNC))
360 bootsync();
361
362 /* Say NO to interrupts */
363 splhigh();
364
365 /* Do a dump if requested. */
366 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
367 dumpsys();
368
369 /* Run any shutdown hooks */
370 doshutdownhooks();
371
372 pmf_system_shutdown(boothowto);
373
374 /* Make sure IRQ's are disabled */
375 IRQdisable;
376
377 if (howto & RB_HALT) {
378 printf("The operating system has halted.\n");
379 goto ofw_exit;
380 }
381
382 /* Tell the user we are booting */
383 printf("rebooting...\n");
384
385 /* Jump into the OFW boot routine. */
386 {
387 static char str[256];
388 char *ap = str, *ap1 = ap;
389
390 if (bootstr && *bootstr) {
391 if (strlen(bootstr) > sizeof str - 5)
392 printf("boot string too large, ignored\n");
393 else {
394 strcpy(str, bootstr);
395 ap1 = ap = str + strlen(str);
396 *ap++ = ' ';
397 }
398 }
399 *ap++ = '-';
400 if (howto & RB_SINGLE)
401 *ap++ = 's';
402 if (howto & RB_KDB)
403 *ap++ = 'd';
404 *ap++ = 0;
405 if (ap[-2] == '-')
406 *ap1 = 0;
407 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
408 reset_screen();
409 #endif
410 OF_boot(str);
411 /*NOTREACHED*/
412 }
413
414 ofw_exit:
415 printf("Calling OF_exit...\n");
416 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
417 reset_screen();
418 #endif
419 OF_exit();
420 /*NOTREACHED*/
421 }
422
423
424 #if BOOT_FW_DHCP
425
426 extern char *ip2dotted(struct in_addr);
427
428 /*
429 * Get DHCP data from OFW
430 */
431
432 void
433 get_fw_dhcp_data(struct bootdata *bdp)
434 {
435 int chosen;
436 int dhcplen;
437
438 memset((char *)bdp, 0, sizeof(*bdp));
439 if ((chosen = OF_finddevice("/chosen")) == -1)
440 panic("no /chosen from OFW");
441 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
442 u_char *cp;
443 int dhcp_type = 0;
444 char *ip;
445
446 /*
447 * OFW saved a DHCP (or BOOTP) packet for us.
448 */
449 if (dhcplen > sizeof(bdp->dhcp_packet))
450 panic("DHCP packet too large");
451 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
452 sizeof(bdp->dhcp_packet));
453 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
454 /*
455 * Collect the interesting data from DHCP into
456 * the bootdata structure.
457 */
458 bdp->ip_address = bdp->dhcp_packet.yiaddr;
459 ip = ip2dotted(bdp->ip_address);
460 if (memcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
461 parse_dhcp_options(&bdp->dhcp_packet,
462 bdp->dhcp_packet.options + 4,
463 &bdp->dhcp_packet.options[dhcplen
464 - DHCP_FIXED_NON_UDP], bdp, ip);
465 if (bdp->root_ip.s_addr == 0)
466 bdp->root_ip = bdp->dhcp_packet.siaddr;
467 if (bdp->swap_ip.s_addr == 0)
468 bdp->swap_ip = bdp->dhcp_packet.siaddr;
469 }
470 /*
471 * If the DHCP packet did not contain all the necessary data,
472 * look in NVRAM for the missing parts.
473 */
474 {
475 int options;
476 int proplen;
477 #define BOOTJUNKV_SIZE 256
478 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
479
480
481 if ((options = OF_finddevice("/options")) == -1)
482 panic("can't find /options");
483 if (bdp->ip_address.s_addr == 0 &&
484 (proplen = OF_getprop(options, "ipaddr",
485 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
486 bootjunkv[proplen] = '\0';
487 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
488 bdp->ip_address.s_addr = 0;
489 }
490 if (bdp->ip_mask.s_addr == 0 &&
491 (proplen = OF_getprop(options, "netmask",
492 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
493 bootjunkv[proplen] = '\0';
494 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
495 bdp->ip_mask.s_addr = 0;
496 }
497 if (bdp->hostname[0] == '\0' &&
498 (proplen = OF_getprop(options, "hostname",
499 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
500 bdp->hostname[proplen] = '\0';
501 }
502 if (bdp->root[0] == '\0' &&
503 (proplen = OF_getprop(options, "rootfs",
504 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
505 bootjunkv[proplen] = '\0';
506 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
507 }
508 if (bdp->swap[0] == '\0' &&
509 (proplen = OF_getprop(options, "swapfs",
510 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
511 bootjunkv[proplen] = '\0';
512 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
513 }
514 }
515 }
516
517 #endif /* BOOT_FW_DHCP */
518
519 void
520 ofw_getbootinfo(char **bp_pp, char **ba_pp)
521 {
522 int chosen;
523 int bp_len;
524 int ba_len;
525 char *bootpathv;
526 char *bootargsv;
527
528 /* Read the bootpath and bootargs out of OFW. */
529 /* XXX is bootpath still interesting? --emg */
530 if ((chosen = OF_finddevice("/chosen")) == -1)
531 panic("no /chosen from OFW");
532 bp_len = OF_getproplen(chosen, "bootpath");
533 ba_len = OF_getproplen(chosen, "bootargs");
534 if (bp_len < 0 || ba_len < 0)
535 panic("can't get boot data from OFW");
536
537 bootpathv = (char *)ofw_malloc(bp_len);
538 bootargsv = (char *)ofw_malloc(ba_len);
539
540 if (bp_len)
541 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
542 else
543 bootpathv[0] = '\0';
544
545 if (ba_len)
546 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
547 else
548 bootargsv[0] = '\0';
549
550 *bp_pp = bootpathv;
551 *ba_pp = bootargsv;
552 #ifdef DIAGNOSTIC
553 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
554 #endif
555 }
556
557 paddr_t
558 ofw_getcleaninfo(void)
559 {
560 int cpu;
561 vaddr_t vclean;
562 paddr_t pclean;
563
564 if ((cpu = OF_finddevice("/cpu")) == -1)
565 panic("no /cpu from OFW");
566
567 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
568 sizeof(vclean))) != sizeof(vclean)) {
569 #ifdef DEBUG
570 printf("no OFW d-cache-flush-address property\n");
571 #endif
572 return -1;
573 }
574
575 if ((pclean = ofw_gettranslation(
576 of_decode_int((unsigned char *)&vclean))) == -1)
577 panic("OFW failed to translate cache flush address");
578
579 return pclean;
580 }
581
582 void
583 ofw_configisa(paddr_t *pio, paddr_t *pmem)
584 {
585 int vl;
586
587 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
588 ofw_configisaonly(pio, pmem);
589 else /* old style OFW dev info tree */
590 ofw_configvl(vl, pio, pmem);
591 }
592
593 static void
594 ofw_configisaonly(paddr_t *pio, paddr_t *pmem)
595 {
596 int isa;
597 int rangeidx;
598 int size;
599 paddr_t hi, start;
600 struct isa_range ranges[2];
601
602 if ((isa = OF_finddevice("/isa")) == -1)
603 panic("OFW has no /isa device node");
604
605 /* expect to find two isa ranges: IO/data and memory/data */
606 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
607 != sizeof(ranges))
608 panic("unexpected size of OFW /isa ranges property: %d", size);
609
610 *pio = *pmem = -1;
611
612 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
613 hi = of_decode_int((unsigned char *)
614 &ranges[rangeidx].isa_phys_hi);
615 start = of_decode_int((unsigned char *)
616 &ranges[rangeidx].parent_phys_start);
617
618 if (hi & 1) { /* then I/O space */
619 *pio = start;
620 } else {
621 *pmem = start;
622 }
623 } /* END for */
624
625 if ((*pio == -1) || (*pmem == -1))
626 panic("bad OFW /isa ranges property");
627
628 }
629
630 static void
631 ofw_configvl(int vl, paddr_t *pio, paddr_t *pmem)
632 {
633 int isa;
634 int ir, vr;
635 int size;
636 paddr_t hi, start;
637 struct vl_isa_range isa_ranges[2];
638 struct vl_range vl_ranges[2];
639
640 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
641 panic("OFW has no /vlbus/isa device node");
642
643 /* expect to find two isa ranges: IO/data and memory/data */
644 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
645 != sizeof(isa_ranges))
646 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
647 size);
648
649 /* expect to find two vl ranges: IO/data and memory/data */
650 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
651 != sizeof(vl_ranges))
652 panic("unexpected size of OFW /vlbus ranges property: %d", size);
653
654 *pio = -1;
655 *pmem = -1;
656
657 for (ir = 0; ir < 2; ++ir) {
658 for (vr = 0; vr < 2; ++vr) {
659 if ((isa_ranges[ir].parent_phys_hi
660 == vl_ranges[vr].vl_phys_hi) &&
661 (isa_ranges[ir].parent_phys_lo
662 == vl_ranges[vr].vl_phys_lo)) {
663 hi = of_decode_int((unsigned char *)
664 &isa_ranges[ir].isa_phys_hi);
665 start = of_decode_int((unsigned char *)
666 &vl_ranges[vr].parent_phys_start);
667
668 if (hi & 1) { /* then I/O space */
669 *pio = start;
670 } else {
671 *pmem = start;
672 }
673 } /* END if */
674 } /* END for */
675 } /* END for */
676
677 if ((*pio == -1) || (*pmem == -1))
678 panic("bad OFW /isa ranges property");
679 }
680
681 #if NISADMA > 0
682 struct arm32_dma_range *shark_isa_dma_ranges;
683 int shark_isa_dma_nranges;
684 #endif
685
686 void
687 ofw_configisadma(paddr_t *pdma)
688 {
689 int root;
690 int rangeidx;
691 int size;
692 struct dma_range *dr;
693
694 if ((root = OF_finddevice("/")) == -1 ||
695 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
696 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
697 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
698 panic("bad / dma-ranges property");
699
700 nOFdmaranges = size / sizeof(struct dma_range);
701
702 #if NISADMA > 0
703 /* Allocate storage for non-OFW representation of the range. */
704 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
705 sizeof(*shark_isa_dma_ranges));
706 if (shark_isa_dma_ranges == NULL)
707 panic("unable to allocate shark_isa_dma_ranges");
708 shark_isa_dma_nranges = nOFdmaranges;
709 #endif
710
711 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
712 ++rangeidx, ++dr) {
713 dr->start = of_decode_int((unsigned char *)&dr->start);
714 dr->size = of_decode_int((unsigned char *)&dr->size);
715 #if NISADMA > 0
716 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
717 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
718 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
719 #endif
720 }
721
722 #ifdef DEBUG
723 printf("DMA ranges size = %d\n", size);
724
725 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
726 printf("%08lx %08lx\n",
727 (u_long)OFdmaranges[rangeidx].start,
728 (u_long)OFdmaranges[rangeidx].size);
729 }
730 #endif
731 }
732
733 /*
734 * Memory configuration:
735 *
736 * We start off running in the environment provided by OFW.
737 * This has the MMU turned on, the kernel code and data
738 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
739 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
740 * page0 mapped-in at 0x0.
741 *
742 * The strategy is to set-up the address space for proc0 --
743 * including the allocation of space for new page tables -- while
744 * memory is still managed by OFW. We then effectively create a
745 * copy of the address space by dumping all of OFW's translations
746 * and poking them into the new page tables. We then notify OFW
747 * that we are assuming control of memory-management by installing
748 * our callback-handler, and switch to the NetBSD-managed page
749 * tables with the setttb() call.
750 *
751 * This scheme may cause some amount of memory to be wasted within
752 * OFW as dead page tables, but it shouldn't be more than about
753 * 20-30KB. (It's also possible that OFW will re-use the space.)
754 */
755 void
756 ofw_configmem(void)
757 {
758 int i;
759
760 /* Set-up proc0 address space. */
761 ofw_construct_proc0_addrspace();
762
763 /*
764 * Get a dump of OFW's picture of physical memory.
765 * This is used below to initialize a load of variables used by pmap.
766 * We get it now rather than later because we are about to
767 * tell OFW to stop managing memory.
768 */
769 ofw_getphysmeminfo();
770
771 /* We are about to take control of memory-management from OFW.
772 * Establish callbacks for OFW to use for its future memory needs.
773 * This is required for us to keep using OFW services.
774 */
775
776 /* First initialize our callback memory allocator. */
777 ofw_initallocator();
778
779 OF_set_callback(ofw_callbackhandler);
780
781 /* Switch to the proc0 pagetables. */
782 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
783 setttb(kernel_l1pt.pv_pa);
784 cpu_tlb_flushID();
785 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
786
787 /*
788 * Moved from cpu_startup() as data_abort_handler() references
789 * this during uvm init
790 */
791 {
792 extern struct user *proc0paddr;
793 proc0paddr = (struct user *)kernelstack.pv_va;
794 lwp0.l_addr = proc0paddr;
795 }
796
797 /* Aaaaaaaah, running in the proc0 address space! */
798 /* I feel good... */
799
800 /* Set-up the various globals which describe physical memory for pmap. */
801 {
802 struct mem_region *mp;
803 int totalcnt;
804 int availcnt;
805
806 /* physmem, physical_start, physical_end */
807 physmem = 0;
808 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
809 totalcnt++, mp++) {
810 #ifdef OLDPRINTFS
811 printf("physmem: %x, %x\n", mp->start, mp->size);
812 #endif
813 physmem += btoc(mp->size);
814 }
815 physical_start = OFphysmem[0].start;
816 mp--;
817 physical_end = mp->start + mp->size;
818
819 /* free_pages, physical_freestart, physical_freeend */
820 free_pages = 0;
821 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
822 availcnt++, mp++) {
823 #ifdef OLDPRINTFS
824 printf("physavail: %x, %x\n", mp->start, mp->size);
825 #endif
826 free_pages += btoc(mp->size);
827 }
828 physical_freestart = OFphysavail[0].start;
829 mp--;
830 physical_freeend = mp->start + mp->size;
831 #ifdef OLDPRINTFS
832 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
833 physmem, free_pages);
834 #endif
835
836 /*
837 * This is a hack to work with the existing pmap code.
838 * That code depends on a RiscPC BootConfig structure
839 * containing, among other things, an array describing
840 * the regions of physical memory. So, for now, we need
841 * to stuff our OFW-derived physical memory info into a
842 * "fake" BootConfig structure.
843 *
844 * An added twist is that we initialize the BootConfig
845 * structure with our "available" physical memory regions
846 * rather than the "total" physical memory regions. Why?
847 * Because:
848 *
849 * (a) the VM code requires that the "free" pages it is
850 * initialized with have consecutive indices. This
851 * allows it to use more efficient data structures
852 * (presumably).
853 * (b) the current pmap routines which report the initial
854 * set of free page indices (pmap_next_page) and
855 * which map addresses to indices (pmap_page_index)
856 * assume that the free pages are consecutive across
857 * memory region boundaries.
858 *
859 * This means that memory which is "stolen" at startup time
860 * (say, for page descriptors) MUST come from either the
861 * bottom of the first region or the top of the last.
862 *
863 * This requirement doesn't mesh well with OFW (or at least
864 * our use of it). We can get around it for the time being
865 * by pretending that our "available" region array describes
866 * all of our physical memory. This may cause some important
867 * information to be excluded from a dump file, but so far
868 * I haven't come across any other negative effects.
869 *
870 * In the long-run we should fix the index
871 * generation/translation code in the pmap module.
872 */
873
874 if (DRAM_BLOCKS < (availcnt + 1))
875 panic("more ofw memory regions than bootconfig blocks");
876
877 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
878 bootconfig.dram[i].address = mp->start;
879 bootconfig.dram[i].pages = btoc(mp->size);
880 }
881 bootconfig.dramblocks = availcnt;
882 }
883
884 /* Load memory into UVM. */
885 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
886
887 /* XXX Please kill this code dead. */
888 for (i = 0; i < bootconfig.dramblocks; i++) {
889 paddr_t start = (paddr_t)bootconfig.dram[i].address;
890 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
891 #if NISADMA > 0
892 paddr_t istart, isize;
893 #endif
894
895 if (start < physical_freestart)
896 start = physical_freestart;
897 if (end > physical_freeend)
898 end = physical_freeend;
899
900 #if 0
901 printf("%d: %lx -> %lx\n", loop, start, end - 1);
902 #endif
903
904 #if NISADMA > 0
905 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
906 shark_isa_dma_nranges,
907 start, end - start,
908 &istart, &isize)) {
909 /*
910 * Place the pages that intersect with the
911 * ISA DMA range onto the ISA DMA free list.
912 */
913 #if 0
914 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
915 istart + isize - 1);
916 #endif
917 uvm_page_physload(atop(istart),
918 atop(istart + isize), atop(istart),
919 atop(istart + isize), VM_FREELIST_ISADMA);
920
921 /*
922 * Load the pieces that come before the
923 * intersection onto the default free list.
924 */
925 if (start < istart) {
926 #if 0
927 printf(" BEFORE 0x%lx -> 0x%lx\n",
928 start, istart - 1);
929 #endif
930 uvm_page_physload(atop(start),
931 atop(istart), atop(start),
932 atop(istart), VM_FREELIST_DEFAULT);
933 }
934
935 /*
936 * Load the pieces that come after the
937 * intersection onto the default free list.
938 */
939 if ((istart + isize) < end) {
940 #if 0
941 printf(" AFTER 0x%lx -> 0x%lx\n",
942 (istart + isize), end - 1);
943 #endif
944 uvm_page_physload(atop(istart + isize),
945 atop(end), atop(istart + isize),
946 atop(end), VM_FREELIST_DEFAULT);
947 }
948 } else {
949 uvm_page_physload(atop(start), atop(end),
950 atop(start), atop(end), VM_FREELIST_DEFAULT);
951 }
952 #else /* NISADMA > 0 */
953 uvm_page_physload(atop(start), atop(end),
954 atop(start), atop(end), VM_FREELIST_DEFAULT);
955 #endif /* NISADMA > 0 */
956 }
957
958 /* Initialize pmap module. */
959 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
960 }
961
962
963 /*
964 ************************************************************
965
966 Routines private to this module
967
968 ************************************************************
969 */
970
971 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
972 static void
973 ofw_callbackhandler(void *v)
974 {
975 struct ofw_cbargs *args = v;
976 char *name = args->name;
977 int nargs = args->nargs;
978 int nreturns = args->nreturns;
979 int *args_n_results = args->args_n_results;
980
981 ofw_callbacks++;
982
983 #if defined(OFWGENCFG)
984 /* Check this first, so that we don't waste IRQ time parsing. */
985 if (strcmp(name, "tick") == 0) {
986 vaddr_t frame;
987
988 /* Check format. */
989 if (nargs != 1 || nreturns < 1) {
990 args_n_results[nargs] = -1;
991 args->nreturns = 1;
992 return;
993 }
994 args_n_results[nargs] = 0; /* properly formatted request */
995
996 /*
997 * Note that we are running in the IRQ frame, with interrupts
998 * disabled.
999 *
1000 * We need to do two things here:
1001 * - copy a few words out of the input frame into a global
1002 * area, for later use by our real tick-handling code
1003 * - patch a few words in the frame so that when OFW returns
1004 * from the interrupt it will resume with our handler
1005 * rather than the code that was actually interrupted.
1006 * Our handler will resume when it finishes with the code
1007 * that was actually interrupted.
1008 *
1009 * It's simplest to do this in assembler, since it requires
1010 * switching frames and grovelling about with registers.
1011 */
1012 frame = (vaddr_t)args_n_results[0];
1013 if (ofw_handleticks)
1014 dotickgrovelling(frame);
1015 args_n_results[nargs + 1] = frame;
1016 args->nreturns = 1;
1017 } else
1018 #endif
1019
1020 if (strcmp(name, "map") == 0) {
1021 vaddr_t va;
1022 paddr_t pa;
1023 vsize_t size;
1024 int mode;
1025 int ap_bits;
1026 int dom_bits;
1027 int cb_bits;
1028
1029 /* Check format. */
1030 if (nargs != 4 || nreturns < 2) {
1031 args_n_results[nargs] = -1;
1032 args->nreturns = 1;
1033 return;
1034 }
1035 args_n_results[nargs] = 0; /* properly formatted request */
1036
1037 pa = (paddr_t)args_n_results[0];
1038 va = (vaddr_t)args_n_results[1];
1039 size = (vsize_t)args_n_results[2];
1040 mode = args_n_results[3];
1041 ap_bits = (mode & 0x00000C00);
1042 dom_bits = (mode & 0x000001E0);
1043 cb_bits = (mode & 0x000000C0);
1044
1045 /* Sanity checks. */
1046 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1047 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1048 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1049 size == 0 || (dom_bits >> 5) != 0) {
1050 args_n_results[nargs + 1] = -1;
1051 args->nreturns = 1;
1052 return;
1053 }
1054
1055 /* Write-back anything stuck in the cache. */
1056 cpu_idcache_wbinv_all();
1057
1058 /* Install new mappings. */
1059 {
1060 pt_entry_t *pte = vtopte(va);
1061 int npages = size >> PGSHIFT;
1062
1063 ap_bits >>= 10;
1064 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1065 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1066 cb_bits);
1067 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1068 }
1069
1070 /* Clean out tlb. */
1071 tlb_flush();
1072
1073 args_n_results[nargs + 1] = 0;
1074 args->nreturns = 2;
1075 } else if (strcmp(name, "unmap") == 0) {
1076 vaddr_t va;
1077 vsize_t size;
1078
1079 /* Check format. */
1080 if (nargs != 2 || nreturns < 1) {
1081 args_n_results[nargs] = -1;
1082 args->nreturns = 1;
1083 return;
1084 }
1085 args_n_results[nargs] = 0; /* properly formatted request */
1086
1087 va = (vaddr_t)args_n_results[0];
1088 size = (vsize_t)args_n_results[1];
1089
1090 /* Sanity checks. */
1091 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1092 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1093 (size & PGOFSET) != 0 || size == 0) {
1094 args_n_results[nargs + 1] = -1;
1095 args->nreturns = 1;
1096 return;
1097 }
1098
1099 /* Write-back anything stuck in the cache. */
1100 cpu_idcache_wbinv_all();
1101
1102 /* Zero the mappings. */
1103 {
1104 pt_entry_t *pte = vtopte(va);
1105 int npages = size >> PGSHIFT;
1106
1107 for (; npages > 0; pte++, npages--)
1108 *pte = 0;
1109 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1110 }
1111
1112 /* Clean out tlb. */
1113 tlb_flush();
1114
1115 args->nreturns = 1;
1116 } else if (strcmp(name, "translate") == 0) {
1117 vaddr_t va;
1118 paddr_t pa;
1119 int mode;
1120 pt_entry_t pte;
1121
1122 /* Check format. */
1123 if (nargs != 1 || nreturns < 4) {
1124 args_n_results[nargs] = -1;
1125 args->nreturns = 1;
1126 return;
1127 }
1128 args_n_results[nargs] = 0; /* properly formatted request */
1129
1130 va = (vaddr_t)args_n_results[0];
1131
1132 /* Sanity checks.
1133 * For now, I am only willing to translate va's in the
1134 * "ofw range." Eventually, I may be more generous. -JJK
1135 */
1136 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1137 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1138 args_n_results[nargs + 1] = -1;
1139 args->nreturns = 1;
1140 return;
1141 }
1142
1143 /* Lookup mapping. */
1144 pte = *vtopte(va);
1145 if (pte == 0) {
1146 /* No mapping. */
1147 args_n_results[nargs + 1] = -1;
1148 args->nreturns = 2;
1149 } else {
1150 /* Existing mapping. */
1151 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1152 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1153
1154 args_n_results[nargs + 1] = 0;
1155 args_n_results[nargs + 2] = pa;
1156 args_n_results[nargs + 3] = mode;
1157 args->nreturns = 4;
1158 }
1159 } else if (strcmp(name, "claim-phys") == 0) {
1160 struct pglist alloclist;
1161 paddr_t low, high, align;
1162 psize_t size;
1163
1164 /*
1165 * XXX
1166 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1167 * XXX
1168 */
1169
1170 /* Check format. */
1171 if (nargs != 4 || nreturns < 3) {
1172 args_n_results[nargs] = -1;
1173 args->nreturns = 1;
1174 return;
1175 }
1176 args_n_results[nargs] = 0; /* properly formatted request */
1177
1178 low = args_n_results[0];
1179 size = args_n_results[2];
1180 align = args_n_results[3];
1181 high = args_n_results[1] + size;
1182
1183 #if 0
1184 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1185 low, size, align, high);
1186 align = size;
1187 printf("forcing align to be 0x%x\n", align);
1188 #endif
1189
1190 args_n_results[nargs + 1] =
1191 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1192 #if 0
1193 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1194 #endif
1195 if (args_n_results[nargs + 1] != 0) {
1196 #if 0
1197 printf("(failed)\n");
1198 #endif
1199 args_n_results[nargs + 1] = -1;
1200 args->nreturns = 2;
1201 return;
1202 }
1203 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1204 #if 0
1205 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1206 #endif
1207 args->nreturns = 3;
1208
1209 } else if (strcmp(name, "release-phys") == 0) {
1210 printf("unimplemented ofw callback - %s\n", name);
1211 args_n_results[nargs] = -1;
1212 args->nreturns = 1;
1213 } else if (strcmp(name, "claim-virt") == 0) {
1214 vaddr_t va;
1215 vsize_t size;
1216 vaddr_t align;
1217
1218 /* XXX - notyet */
1219 /* printf("unimplemented ofw callback - %s\n", name);*/
1220 args_n_results[nargs] = -1;
1221 args->nreturns = 1;
1222 return;
1223
1224 /* Check format. */
1225 if (nargs != 2 || nreturns < 3) {
1226 args_n_results[nargs] = -1;
1227 args->nreturns = 1;
1228 return;
1229 }
1230 args_n_results[nargs] = 0; /* properly formatted request */
1231
1232 /* Allocate size bytes with specified alignment. */
1233 size = (vsize_t)args_n_results[0];
1234 align = (vaddr_t)args_n_results[1];
1235 if (align % PAGE_SIZE != 0) {
1236 args_n_results[nargs + 1] = -1;
1237 args->nreturns = 2;
1238 return;
1239 }
1240
1241 if (va == 0) {
1242 /* Couldn't allocate. */
1243 args_n_results[nargs + 1] = -1;
1244 args->nreturns = 2;
1245 } else {
1246 /* Successful allocation. */
1247 args_n_results[nargs + 1] = 0;
1248 args_n_results[nargs + 2] = va;
1249 args->nreturns = 3;
1250 }
1251 } else if (strcmp(name, "release-virt") == 0) {
1252 vaddr_t va;
1253 vsize_t size;
1254
1255 /* XXX - notyet */
1256 printf("unimplemented ofw callback - %s\n", name);
1257 args_n_results[nargs] = -1;
1258 args->nreturns = 1;
1259 return;
1260
1261 /* Check format. */
1262 if (nargs != 2 || nreturns < 1) {
1263 args_n_results[nargs] = -1;
1264 args->nreturns = 1;
1265 return;
1266 }
1267 args_n_results[nargs] = 0; /* properly formatted request */
1268
1269 /* Release bytes. */
1270 va = (vaddr_t)args_n_results[0];
1271 size = (vsize_t)args_n_results[1];
1272
1273 args->nreturns = 1;
1274 } else {
1275 args_n_results[nargs] = -1;
1276 args->nreturns = 1;
1277 }
1278 }
1279
1280 static void
1281 ofw_construct_proc0_addrspace(void)
1282 {
1283 int i, oft;
1284 static pv_addr_t proc0_pt_sys;
1285 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1286 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1287 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1288 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1289 static pv_addr_t msgbuf;
1290 vaddr_t L1pagetable;
1291 struct mem_translation *tp;
1292
1293 /* Set-up the system page. */
1294 KASSERT(vector_page == 0); /* XXX for now */
1295 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1296 if (systempage.pv_va == -1) {
1297 /* Something was already mapped to vector_page's VA. */
1298 systempage.pv_va = vector_page;
1299 systempage.pv_pa = ofw_gettranslation(vector_page);
1300 if (systempage.pv_pa == -1)
1301 panic("bogus result from gettranslation(vector_page)");
1302 } else {
1303 /* We were just allocated the page-length range at VA 0. */
1304 if (systempage.pv_va != vector_page)
1305 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1306
1307 /* Now allocate a physical page, and establish the mapping. */
1308 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1309 if (systempage.pv_pa == -1)
1310 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1311 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1312 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1313
1314 /* Zero the memory. */
1315 memset((char *)systempage.pv_va, 0, PAGE_SIZE);
1316 }
1317
1318 /* Allocate/initialize space for the proc0, NetBSD-managed */
1319 /* page tables that we will be switching to soon. */
1320 ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE);
1321 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1322 for (i = 0; i < KERNEL_IMG_PTS; i++)
1323 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1324 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1325 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1326 for (i = 0; i < KERNEL_OFW_PTS; i++)
1327 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1328 for (i = 0; i < KERNEL_IO_PTS; i++)
1329 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1330
1331 /* Allocate/initialize space for stacks. */
1332 #ifndef OFWGENCFG
1333 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1334 #endif
1335 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1336 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1337 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1338
1339 /* Allocate/initialize space for msgbuf area. */
1340 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1341 msgbufphys = msgbuf.pv_pa;
1342
1343 /* Construct the proc0 L1 pagetable. */
1344 L1pagetable = kernel_l1pt.pv_va;
1345
1346 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1347 for (i = 0; i < KERNEL_IMG_PTS; i++)
1348 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1349 &proc0_pt_kernel[i]);
1350 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1351 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1352 &proc0_pt_vmdata[i]);
1353 for (i = 0; i < KERNEL_OFW_PTS; i++)
1354 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1355 &proc0_pt_ofw[i]);
1356 for (i = 0; i < KERNEL_IO_PTS; i++)
1357 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1358 &proc0_pt_io[i]);
1359
1360 /*
1361 * OK, we're done allocating.
1362 * Get a dump of OFW's translations, and make the appropriate
1363 * entries in the L2 pagetables that we just allocated.
1364 */
1365
1366 ofw_getvirttranslations();
1367
1368 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1369 oft++, tp++) {
1370
1371 vaddr_t va;
1372 paddr_t pa;
1373 int npages = tp->size / PAGE_SIZE;
1374
1375 /* Size must be an integral number of pages. */
1376 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1377 panic("illegal ofw translation (size)");
1378
1379 /* Make an entry for each page in the appropriate table. */
1380 for (va = tp->virt, pa = tp->phys; npages > 0;
1381 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1382 /*
1383 * Map the top bits to the appropriate L2 pagetable.
1384 * The only allowable regions are page0, the
1385 * kernel-static area, and the ofw area.
1386 */
1387 switch (va >> (L1_S_SHIFT + 2)) {
1388 case 0:
1389 /* page0 */
1390 break;
1391
1392 #if KERNEL_IMG_PTS != 2
1393 #error "Update ofw translation range list"
1394 #endif
1395 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1396 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1397 /* kernel static area */
1398 break;
1399
1400 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1401 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1402 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1403 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1404 /* ofw area */
1405 break;
1406
1407 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1408 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1409 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1410 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1411 /* io area */
1412 break;
1413
1414 default:
1415 /* illegal */
1416 panic("illegal ofw translation (addr) %#lx",
1417 va);
1418 }
1419
1420 /* Make the entry. */
1421 pmap_map_entry(L1pagetable, va, pa,
1422 VM_PROT_READ|VM_PROT_WRITE,
1423 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1424 : PTE_NOCACHE);
1425 }
1426 }
1427
1428 /*
1429 * We don't actually want some of the mappings that we just
1430 * set up to appear in proc0's address space. In particular,
1431 * we don't want aliases to physical addresses that the kernel
1432 * has-mapped/will-map elsewhere.
1433 */
1434 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1435 msgbuf.pv_va, MSGBUFSIZE);
1436
1437 /* update the top of the kernel VM */
1438 pmap_curmaxkvaddr =
1439 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1440
1441 /*
1442 * gross hack for the sake of not thrashing the TLB and making
1443 * cache flush more efficient: blast l1 ptes for sections.
1444 */
1445 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1446 vaddr_t va = tp->virt;
1447 paddr_t pa = tp->phys;
1448
1449 if (((va | pa) & L1_S_OFFSET) == 0) {
1450 int nsections = tp->size / L1_S_SIZE;
1451
1452 while (nsections--) {
1453 /* XXXJRT prot?? */
1454 pmap_map_section(L1pagetable, va, pa,
1455 VM_PROT_READ|VM_PROT_WRITE,
1456 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1457 : PTE_NOCACHE);
1458 va += L1_S_SIZE;
1459 pa += L1_S_SIZE;
1460 }
1461 }
1462 }
1463 }
1464
1465
1466 static void
1467 ofw_getphysmeminfo(void)
1468 {
1469 int phandle;
1470 int mem_len;
1471 int avail_len;
1472 int i;
1473
1474 if ((phandle = OF_finddevice("/memory")) == -1 ||
1475 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1476 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1477 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1478 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1479 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1480 OF_getprop(phandle, "available", OFphysavail, avail_len)
1481 != avail_len)
1482 panic("can't get physmeminfo from OFW");
1483
1484 nOFphysmem = mem_len / sizeof(struct mem_region);
1485 nOFphysavail = avail_len / sizeof(struct mem_region);
1486
1487 /*
1488 * Sort the blocks in each array into ascending address order.
1489 * Also, page-align all blocks.
1490 */
1491 for (i = 0; i < 2; i++) {
1492 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1493 struct mem_region *mp;
1494 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1495 int j;
1496
1497 #ifdef OLDPRINTFS
1498 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1499 #endif
1500
1501 /* XXX - Convert all the values to host order. -JJK */
1502 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1503 mp->start = of_decode_int((unsigned char *)&mp->start);
1504 mp->size = of_decode_int((unsigned char *)&mp->size);
1505 }
1506
1507 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1508 u_int s, sz;
1509 struct mem_region *mp1;
1510
1511 /* Page-align start of the block. */
1512 s = mp->start % PAGE_SIZE;
1513 if (s != 0) {
1514 s = (PAGE_SIZE - s);
1515
1516 if (mp->size >= s) {
1517 mp->start += s;
1518 mp->size -= s;
1519 }
1520 }
1521
1522 /* Page-align the size. */
1523 mp->size -= mp->size % PAGE_SIZE;
1524
1525 /* Handle empty block. */
1526 if (mp->size == 0) {
1527 memmove(mp, mp + 1, (cnt - (mp - tmp))
1528 * sizeof(struct mem_region));
1529 cnt--;
1530 mp--;
1531 continue;
1532 }
1533
1534 /* Bubble sort. */
1535 s = mp->start;
1536 sz = mp->size;
1537 for (mp1 = tmp; mp1 < mp; mp1++)
1538 if (s < mp1->start)
1539 break;
1540 if (mp1 < mp) {
1541 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1542 mp1->start = s;
1543 mp1->size = sz;
1544 }
1545 }
1546
1547 #ifdef OLDPRINTFS
1548 for (mp = tmp; mp->size; mp++) {
1549 printf("%x, %x\n", mp->start, mp->size);
1550 }
1551 #endif
1552 }
1553 }
1554
1555
1556 static void
1557 ofw_getvirttranslations(void)
1558 {
1559 int mmu_phandle;
1560 int mmu_ihandle;
1561 int trans_len;
1562 int over, len;
1563 int i;
1564 struct mem_translation *tp;
1565
1566 mmu_ihandle = ofw_mmu_ihandle();
1567
1568 /* overallocate to avoid increases during allocation */
1569 over = 4 * sizeof(struct mem_translation);
1570 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1571 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1572 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1573 (trans_len = OF_getprop(mmu_phandle, "translations",
1574 OFtranslations, len + over)) > (len + over))
1575 panic("can't get virttranslations from OFW");
1576
1577 /* XXX - Convert all the values to host order. -JJK */
1578 nOFtranslations = trans_len / sizeof(struct mem_translation);
1579 #ifdef OLDPRINTFS
1580 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1581 #endif
1582 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1583 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1584 tp->size = of_decode_int((unsigned char *)&tp->size);
1585 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1586 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1587 }
1588 }
1589
1590 /*
1591 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1592 */
1593 typedef struct _vfree {
1594 struct _vfree *pNext;
1595 vaddr_t start;
1596 vsize_t size;
1597 } VFREE, *PVFREE;
1598
1599 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1600
1601 static PVFREE vflist = &vfinitial;
1602
1603 static vaddr_t
1604 ofw_valloc(vsize_t size, vaddr_t align)
1605 {
1606 PVFREE *ppvf;
1607 PVFREE pNew;
1608 vaddr_t new;
1609 vaddr_t lead;
1610
1611 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1612 if (align == 0) {
1613 new = (*ppvf)->start;
1614 lead = 0;
1615 } else {
1616 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1617 lead = new - (*ppvf)->start;
1618 }
1619
1620 if (((*ppvf)->size - lead) >= size) {
1621 if (lead == 0) {
1622 /* using whole block */
1623 if (size == (*ppvf)->size) {
1624 /* splice out of list */
1625 (*ppvf) = (*ppvf)->pNext;
1626 } else { /* tail of block is free */
1627 (*ppvf)->start = new + size;
1628 (*ppvf)->size -= size;
1629 }
1630 } else {
1631 vsize_t tail = ((*ppvf)->start
1632 + (*ppvf)->size) - (new + size);
1633 /* free space at beginning */
1634 (*ppvf)->size = lead;
1635
1636 if (tail != 0) {
1637 /* free space at tail */
1638 pNew = ofw_malloc(sizeof(VFREE));
1639 pNew->pNext = (*ppvf)->pNext;
1640 (*ppvf)->pNext = pNew;
1641 pNew->start = new + size;
1642 pNew->size = tail;
1643 }
1644 }
1645 return new;
1646 } /* END if */
1647 } /* END for */
1648
1649 return -1;
1650 }
1651
1652 vaddr_t
1653 ofw_map(paddr_t pa, vsize_t size, int cb_bits)
1654 {
1655 vaddr_t va;
1656
1657 if ((va = ofw_valloc(size, size)) == -1)
1658 panic("cannot alloc virtual memory for %#lx", pa);
1659
1660 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1661
1662 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1663
1664 return va;
1665 }
1666
1667 static int
1668 ofw_mem_ihandle(void)
1669 {
1670 static int mem_ihandle = 0;
1671 int chosen;
1672
1673 if (mem_ihandle != 0)
1674 return(mem_ihandle);
1675
1676 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1677 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1678 panic("ofw_mem_ihandle");
1679
1680 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1681
1682 return(mem_ihandle);
1683 }
1684
1685
1686 static int
1687 ofw_mmu_ihandle(void)
1688 {
1689 static int mmu_ihandle = 0;
1690 int chosen;
1691
1692 if (mmu_ihandle != 0)
1693 return(mmu_ihandle);
1694
1695 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1696 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1697 panic("ofw_mmu_ihandle");
1698
1699 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1700
1701 return(mmu_ihandle);
1702 }
1703
1704
1705 /* Return -1 on failure. */
1706 static paddr_t
1707 ofw_claimphys(paddr_t pa, psize_t size, paddr_t align)
1708 {
1709 int mem_ihandle = ofw_mem_ihandle();
1710
1711 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1712 if (align == 0) {
1713 /* Allocate at specified base; alignment is ignored. */
1714 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1715 } else {
1716 /* Allocate anywhere, with specified alignment. */
1717 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1718 }
1719
1720 /* printf("%x\n", pa);*/
1721 return(pa);
1722 }
1723
1724
1725 #if 0
1726 /* Return -1 on failure. */
1727 static paddr_t
1728 ofw_releasephys(paddr_t pa, psize_t size)
1729 {
1730 int mem_ihandle = ofw_mem_ihandle();
1731
1732 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1733
1734 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1735 }
1736 #endif
1737
1738 /* Return -1 on failure. */
1739 static vaddr_t
1740 ofw_claimvirt(vaddr_t va, vsize_t size, vaddr_t align)
1741 {
1742 int mmu_ihandle = ofw_mmu_ihandle();
1743
1744 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1745 if (align == 0) {
1746 /* Allocate at specified base; alignment is ignored. */
1747 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1748 } else {
1749 /* Allocate anywhere, with specified alignment. */
1750 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1751 }
1752
1753 /*printf("%x\n", va);*/
1754 return(va);
1755 }
1756
1757 /* Return -1 if no mapping. */
1758 paddr_t
1759 ofw_gettranslation(vaddr_t va)
1760 {
1761 int mmu_ihandle = ofw_mmu_ihandle();
1762 paddr_t pa;
1763 int mode;
1764 int exists;
1765
1766 #ifdef OFW_DEBUG
1767 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1768 #endif
1769 exists = 0; /* gets set to true if translation exists */
1770 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1771 &exists) != 0)
1772 return(-1);
1773
1774 #ifdef OFW_DEBUG
1775 printf("%d %x\n", exists, (uint32_t)pa);
1776 #endif
1777 return(exists ? pa : -1);
1778 }
1779
1780
1781 static void
1782 ofw_settranslation(vaddr_t va, paddr_t pa, vsize_t size, int mode)
1783 {
1784 int mmu_ihandle = ofw_mmu_ihandle();
1785
1786 #ifdef OFW_DEBUG
1787 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1788 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1789 #endif
1790 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1791 panic("ofw_settranslation failed");
1792 }
1793
1794 /*
1795 * Allocation routine used before the kernel takes over memory.
1796 * Use this for efficient storage for things that aren't rounded to
1797 * page size.
1798 *
1799 * The point here is not necessarily to be very efficient (even though
1800 * that's sort of nice), but to do proper dynamic allocation to avoid
1801 * size-limitation errors.
1802 *
1803 */
1804
1805 typedef struct _leftover {
1806 struct _leftover *pNext;
1807 vsize_t size;
1808 } LEFTOVER, *PLEFTOVER;
1809
1810 /* leftover bits of pages. first word is pointer to next.
1811 second word is size of leftover */
1812 static PLEFTOVER leftovers = NULL;
1813
1814 static void *
1815 ofw_malloc(vsize_t size)
1816 {
1817 PLEFTOVER *ppLeftover;
1818 PLEFTOVER pLeft;
1819 pv_addr_t new;
1820 vsize_t newSize, claim_size;
1821
1822 /* round and set minimum size */
1823 size = max(sizeof(LEFTOVER),
1824 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1825
1826 for (ppLeftover = &leftovers; *ppLeftover;
1827 ppLeftover = &((*ppLeftover)->pNext))
1828 if ((*ppLeftover)->size >= size)
1829 break;
1830
1831 if (*ppLeftover) { /* have a leftover of the right size */
1832 /* remember the leftover */
1833 new.pv_va = (vaddr_t)*ppLeftover;
1834 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1835 /* splice out of chain */
1836 *ppLeftover = (*ppLeftover)->pNext;
1837 } else {
1838 /* remember the next pointer */
1839 pLeft = (*ppLeftover)->pNext;
1840 newSize = (*ppLeftover)->size - size; /* reduce size */
1841 /* move pointer */
1842 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1843 + size);
1844 (*ppLeftover)->pNext = pLeft;
1845 (*ppLeftover)->size = newSize;
1846 }
1847 } else {
1848 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1849 ofw_claimpages(&virt_freeptr, &new, claim_size);
1850 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1851 pLeft = (PLEFTOVER)(new.pv_va + size);
1852 pLeft->pNext = leftovers;
1853 pLeft->size = claim_size - size;
1854 leftovers = pLeft;
1855 }
1856 }
1857
1858 return (void *)(new.pv_va);
1859 }
1860
1861 /*
1862 * Here is a really, really sleazy free. It's not used right now,
1863 * because it's not worth the extra complexity for just a few bytes.
1864 *
1865 */
1866 #if 0
1867 static void
1868 ofw_free(vaddr_t addr, vsize_t size)
1869 {
1870 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1871
1872 /* splice right into list without checks or compaction */
1873 pLeftover->pNext = leftovers;
1874 pLeftover->size = size;
1875 leftovers = pLeftover;
1876 }
1877 #endif
1878
1879 /*
1880 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1881 * We guarantee that the allocated memory will be
1882 * aligned to a boundary equal to the smallest power of
1883 * 2 greater than or equal to size.
1884 * free_pp is an IN/OUT parameter which points to the
1885 * last allocated virtual address in an allocate-downwards
1886 * stack. pv_p is an OUT parameter which contains the
1887 * virtual and physical base addresses of the allocated
1888 * memory.
1889 */
1890 static void
1891 ofw_claimpages(vaddr_t *free_pp, pv_addr_t *pv_p, vsize_t size)
1892 {
1893 /* round-up to page boundary */
1894 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1895 vsize_t aligned_size;
1896 vaddr_t va;
1897 paddr_t pa;
1898
1899 if (alloc_size == 0)
1900 panic("ofw_claimpages zero");
1901
1902 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1903 ;
1904
1905 /* The only way to provide the alignment guarantees is to
1906 * allocate the virtual and physical ranges separately,
1907 * then do an explicit map call.
1908 */
1909 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1910 if (ofw_claimvirt(va, alloc_size, 0) != va)
1911 panic("ofw_claimpages va alloc");
1912 pa = ofw_claimphys(0, alloc_size, aligned_size);
1913 if (pa == -1)
1914 panic("ofw_claimpages pa alloc");
1915 /* XXX - what mode? -JJK */
1916 ofw_settranslation(va, pa, alloc_size, -1);
1917
1918 /* The memory's mapped-in now, so we can zero it. */
1919 memset((char *)va, 0, alloc_size);
1920
1921 /* Set OUT parameters. */
1922 *free_pp = va;
1923 pv_p->pv_va = va;
1924 pv_p->pv_pa = pa;
1925 }
1926
1927
1928 static void
1929 ofw_discardmappings(vaddr_t L2pagetable, vaddr_t va, vsize_t size)
1930 {
1931 /* round-up to page boundary */
1932 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1933 int npages = alloc_size / PAGE_SIZE;
1934
1935 if (npages == 0)
1936 panic("ofw_discardmappings zero");
1937
1938 /* Discard each mapping. */
1939 for (; npages > 0; va += PAGE_SIZE, npages--) {
1940 /* Sanity. The current entry should be non-null. */
1941 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1942 panic("ofw_discardmappings zero entry");
1943
1944 /* Clear the entry. */
1945 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1946 }
1947 }
1948
1949
1950 static void
1951 ofw_initallocator(void)
1952 {
1953
1954 }
1955
1956 #if (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
1957 static void
1958 reset_screen(void)
1959 {
1960
1961 if ((console_ihandle == 0) || (console_ihandle == -1))
1962 return;
1963
1964 OF_call_method("install", console_ihandle, 0, 0);
1965 }
1966 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
1967