ofw.c revision 1.57 1 /* $NetBSD: ofw.c,v 1.57 2011/11/23 23:07:30 jmcneill Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.57 2011/11/23 23:07:30 jmcneill Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/kernel.h>
50 #include <sys/reboot.h>
51 #include <sys/mbuf.h>
52
53 #include <uvm/uvm.h>
54
55 #include <dev/cons.h>
56
57 #define _ARM32_BUS_DMA_PRIVATE
58 #include <sys/bus.h>
59 #include <machine/frame.h>
60 #include <machine/bootconfig.h>
61 #include <machine/cpu.h>
62 #include <machine/intr.h>
63 #include <machine/irqhandler.h>
64
65 #include <dev/ofw/openfirm.h>
66 #include <machine/ofw.h>
67
68 #include <netinet/in.h>
69
70 #if BOOT_FW_DHCP
71 #include <nfs/bootdata.h>
72 #endif
73
74 #ifdef SHARK
75 #include "machine/pio.h"
76 #include "machine/isa_machdep.h"
77 #endif
78
79 #include "isadma.h"
80 #include "igsfb_ofbus.h"
81 #include "chipsfb_ofbus.h"
82 #include "vga_ofbus.h"
83
84 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
85 #define IO_VIRT_SIZE 0x01000000
86
87 #define KERNEL_IMG_PTS 2
88 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
89 #define KERNEL_OFW_PTS 4
90 #define KERNEL_IO_PTS 4
91
92 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
93 /*
94 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
95 * OFW sits at 0xf7000000
96 */
97 #define KERNEL_VM_SIZE 0x06000000
98
99 /*
100 * Imported variables
101 */
102 extern BootConfig bootconfig; /* temporary, I hope */
103
104 #ifdef DIAGNOSTIC
105 /* NOTE: These variables will be removed, well some of them */
106 extern u_int current_mask;
107 #endif
108
109 extern int ofw_handleticks;
110
111
112 /*
113 * Imported routines
114 */
115 extern void dump_spl_masks(void);
116 extern void dumpsys(void);
117 extern void dotickgrovelling(vaddr_t);
118
119 #define WriteWord(a, b) \
120 *((volatile unsigned int *)(a)) = (b)
121
122 #define ReadWord(a) \
123 (*((volatile unsigned int *)(a)))
124
125
126 /*
127 * Exported variables
128 */
129 /* These should all be in a meminfo structure. */
130 paddr_t physical_start;
131 paddr_t physical_freestart;
132 paddr_t physical_freeend;
133 paddr_t physical_end;
134 u_int free_pages;
135 #ifndef OFWGENCFG
136 pv_addr_t irqstack;
137 #endif
138 pv_addr_t undstack;
139 pv_addr_t abtstack;
140 pv_addr_t kernelstack;
141
142 paddr_t msgbufphys;
143
144 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
145 static vaddr_t virt_freeptr;
146
147 int ofw_callbacks = 0; /* debugging counter */
148
149 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
150 int console_ihandle = 0;
151 static void reset_screen(void);
152 #endif
153
154 /**************************************************************/
155
156
157 /*
158 * Declarations and definitions private to this module
159 *
160 */
161
162 struct mem_region {
163 paddr_t start;
164 psize_t size;
165 };
166
167 struct mem_translation {
168 vaddr_t virt;
169 vsize_t size;
170 paddr_t phys;
171 unsigned int mode;
172 };
173
174 struct isa_range {
175 paddr_t isa_phys_hi;
176 paddr_t isa_phys_lo;
177 paddr_t parent_phys_start;
178 psize_t isa_size;
179 };
180
181 struct vl_range {
182 paddr_t vl_phys_hi;
183 paddr_t vl_phys_lo;
184 paddr_t parent_phys_start;
185 psize_t vl_size;
186 };
187
188 struct vl_isa_range {
189 paddr_t isa_phys_hi;
190 paddr_t isa_phys_lo;
191 paddr_t parent_phys_hi;
192 paddr_t parent_phys_lo;
193 psize_t isa_size;
194 };
195
196 struct dma_range {
197 paddr_t start;
198 psize_t size;
199 };
200
201 struct ofw_cbargs {
202 char *name;
203 int nargs;
204 int nreturns;
205 int args_n_results[12];
206 };
207
208
209 /* Memory info */
210 static int nOFphysmem;
211 static struct mem_region *OFphysmem;
212 static int nOFphysavail;
213 static struct mem_region *OFphysavail;
214 static int nOFtranslations;
215 static struct mem_translation *OFtranslations;
216 static int nOFdmaranges;
217 static struct dma_range *OFdmaranges;
218
219 /* The OFW client services handle. */
220 /* Initialized by ofw_init(). */
221 static ofw_handle_t ofw_client_services_handle;
222
223
224 static void ofw_callbackhandler(void *);
225 static void ofw_construct_proc0_addrspace(void);
226 static void ofw_getphysmeminfo(void);
227 static void ofw_getvirttranslations(void);
228 static void *ofw_malloc(vsize_t size);
229 static void ofw_claimpages(vaddr_t *, pv_addr_t *, vsize_t);
230 static void ofw_discardmappings(vaddr_t, vaddr_t, vsize_t);
231 static int ofw_mem_ihandle(void);
232 static int ofw_mmu_ihandle(void);
233 static paddr_t ofw_claimphys(paddr_t, psize_t, paddr_t);
234 #if 0
235 static paddr_t ofw_releasephys(paddr_t, psize_t);
236 #endif
237 static vaddr_t ofw_claimvirt(vaddr_t, vsize_t, vaddr_t);
238 static void ofw_settranslation(vaddr_t, paddr_t, vsize_t, int);
239 static void ofw_initallocator(void);
240 static void ofw_configisaonly(paddr_t *, paddr_t *);
241 static void ofw_configvl(int, paddr_t *, paddr_t *);
242 static vaddr_t ofw_valloc(vsize_t, vaddr_t);
243
244
245 /*
246 * DHCP hooks. For a first cut, we look to see if there is a DHCP
247 * packet that was saved by the firmware. If not, we proceed as before,
248 * getting hand-configured data from NVRAM. If there is one, we get the
249 * packet, and extract the data from it. For now, we hand that data up
250 * in the boot_args string as before.
251 */
252
253
254 /**************************************************************/
255
256
257 /*
258 *
259 * Support routines for xxx_machdep.c
260 *
261 * The intent is that all OFW-based configurations use the
262 * exported routines in this file to do their business. If
263 * they need to override some function they are free to do so.
264 *
265 * The exported routines are:
266 *
267 * openfirmware
268 * ofw_init
269 * ofw_boot
270 * ofw_getbootinfo
271 * ofw_configmem
272 * ofw_configisa
273 * ofw_configisadma
274 * ofw_gettranslation
275 * ofw_map
276 * ofw_getcleaninfo
277 */
278
279
280 int
281 openfirmware(void *args)
282 {
283 int ofw_result;
284 u_int saved_irq_state;
285
286 /* OFW is not re-entrant, so we wrap a mutex around the call. */
287 saved_irq_state = disable_interrupts(I32_bit);
288 ofw_result = ofw_client_services_handle(args);
289 (void)restore_interrupts(saved_irq_state);
290
291 return(ofw_result);
292 }
293
294
295 void
296 ofw_init(ofw_handle_t ofw_handle)
297 {
298 ofw_client_services_handle = ofw_handle;
299
300 /* Everything we allocate in the remainder of this block is
301 * constrained to be in the "kernel-static" portion of the
302 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
303 * This is because all such objects are expected to be in
304 * that range by NetBSD, or the objects will be re-mapped
305 * after the page-table-switch to other specific locations.
306 * In the latter case, it's simplest if our pre-switch handles
307 * on those objects are in regions that are already "well-
308 * known." (Otherwise, the cloning of the OFW-managed address-
309 * space becomes more awkward.) To minimize the number of L2
310 * page tables that we use, we are further restricting the
311 * remaining allocations in this block to the bottom quarter of
312 * the legal range. OFW will have loaded the kernel text+data+bss
313 * starting at the bottom of the range, and we will allocate
314 * objects from the top, moving downwards. The two sub-regions
315 * will collide if their total sizes hit 8MB. The current total
316 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
317 * limit. The variable virt-freeptr represents the next free va
318 * (moving downwards).
319 */
320 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
321 }
322
323
324 void
325 ofw_boot(int howto, char *bootstr)
326 {
327
328 #ifdef DIAGNOSTIC
329 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
330 printf("current_mask=%08x\n", current_mask);
331
332 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
333 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
334 irqmasks[IPL_VM]);
335 printf("ipl_clock=%08x ipl_none=%08x\n",
336 irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
337
338 dump_spl_masks();
339 #endif
340
341 /*
342 * If we are still cold then hit the air brakes
343 * and crash to earth fast
344 */
345 if (cold) {
346 doshutdownhooks();
347 pmf_system_shutdown(boothowto);
348 printf("Halted while still in the ICE age.\n");
349 printf("The operating system has halted.\n");
350 goto ofw_exit;
351 /*NOTREACHED*/
352 }
353
354 /*
355 * If RB_NOSYNC was not specified sync the discs.
356 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
357 * It looks like syslogd is getting woken up only to find that it cannot
358 * page part of the binary in as the filesystem has been unmounted.
359 */
360 if (!(howto & RB_NOSYNC))
361 bootsync();
362
363 /* Say NO to interrupts */
364 splhigh();
365
366 /* Do a dump if requested. */
367 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
368 dumpsys();
369
370 /* Run any shutdown hooks */
371 doshutdownhooks();
372
373 pmf_system_shutdown(boothowto);
374
375 /* Make sure IRQ's are disabled */
376 IRQdisable;
377
378 if (howto & RB_HALT) {
379 printf("The operating system has halted.\n");
380 goto ofw_exit;
381 }
382
383 /* Tell the user we are booting */
384 printf("rebooting...\n");
385
386 /* Jump into the OFW boot routine. */
387 {
388 static char str[256];
389 char *ap = str, *ap1 = ap;
390
391 if (bootstr && *bootstr) {
392 if (strlen(bootstr) > sizeof str - 5)
393 printf("boot string too large, ignored\n");
394 else {
395 strcpy(str, bootstr);
396 ap1 = ap = str + strlen(str);
397 *ap++ = ' ';
398 }
399 }
400 *ap++ = '-';
401 if (howto & RB_SINGLE)
402 *ap++ = 's';
403 if (howto & RB_KDB)
404 *ap++ = 'd';
405 *ap++ = 0;
406 if (ap[-2] == '-')
407 *ap1 = 0;
408 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
409 reset_screen();
410 #endif
411 OF_boot(str);
412 /*NOTREACHED*/
413 }
414
415 ofw_exit:
416 printf("Calling OF_exit...\n");
417 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
418 reset_screen();
419 #endif
420 OF_exit();
421 /*NOTREACHED*/
422 }
423
424
425 #if BOOT_FW_DHCP
426
427 extern char *ip2dotted(struct in_addr);
428
429 /*
430 * Get DHCP data from OFW
431 */
432
433 void
434 get_fw_dhcp_data(struct bootdata *bdp)
435 {
436 int chosen;
437 int dhcplen;
438
439 memset((char *)bdp, 0, sizeof(*bdp));
440 if ((chosen = OF_finddevice("/chosen")) == -1)
441 panic("no /chosen from OFW");
442 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
443 u_char *cp;
444 int dhcp_type = 0;
445 char *ip;
446
447 /*
448 * OFW saved a DHCP (or BOOTP) packet for us.
449 */
450 if (dhcplen > sizeof(bdp->dhcp_packet))
451 panic("DHCP packet too large");
452 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
453 sizeof(bdp->dhcp_packet));
454 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
455 /*
456 * Collect the interesting data from DHCP into
457 * the bootdata structure.
458 */
459 bdp->ip_address = bdp->dhcp_packet.yiaddr;
460 ip = ip2dotted(bdp->ip_address);
461 if (memcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
462 parse_dhcp_options(&bdp->dhcp_packet,
463 bdp->dhcp_packet.options + 4,
464 &bdp->dhcp_packet.options[dhcplen
465 - DHCP_FIXED_NON_UDP], bdp, ip);
466 if (bdp->root_ip.s_addr == 0)
467 bdp->root_ip = bdp->dhcp_packet.siaddr;
468 if (bdp->swap_ip.s_addr == 0)
469 bdp->swap_ip = bdp->dhcp_packet.siaddr;
470 }
471 /*
472 * If the DHCP packet did not contain all the necessary data,
473 * look in NVRAM for the missing parts.
474 */
475 {
476 int options;
477 int proplen;
478 #define BOOTJUNKV_SIZE 256
479 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
480
481
482 if ((options = OF_finddevice("/options")) == -1)
483 panic("can't find /options");
484 if (bdp->ip_address.s_addr == 0 &&
485 (proplen = OF_getprop(options, "ipaddr",
486 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
487 bootjunkv[proplen] = '\0';
488 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
489 bdp->ip_address.s_addr = 0;
490 }
491 if (bdp->ip_mask.s_addr == 0 &&
492 (proplen = OF_getprop(options, "netmask",
493 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
494 bootjunkv[proplen] = '\0';
495 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
496 bdp->ip_mask.s_addr = 0;
497 }
498 if (bdp->hostname[0] == '\0' &&
499 (proplen = OF_getprop(options, "hostname",
500 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
501 bdp->hostname[proplen] = '\0';
502 }
503 if (bdp->root[0] == '\0' &&
504 (proplen = OF_getprop(options, "rootfs",
505 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
506 bootjunkv[proplen] = '\0';
507 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
508 }
509 if (bdp->swap[0] == '\0' &&
510 (proplen = OF_getprop(options, "swapfs",
511 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
512 bootjunkv[proplen] = '\0';
513 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
514 }
515 }
516 }
517
518 #endif /* BOOT_FW_DHCP */
519
520 void
521 ofw_getbootinfo(char **bp_pp, char **ba_pp)
522 {
523 int chosen;
524 int bp_len;
525 int ba_len;
526 char *bootpathv;
527 char *bootargsv;
528
529 /* Read the bootpath and bootargs out of OFW. */
530 /* XXX is bootpath still interesting? --emg */
531 if ((chosen = OF_finddevice("/chosen")) == -1)
532 panic("no /chosen from OFW");
533 bp_len = OF_getproplen(chosen, "bootpath");
534 ba_len = OF_getproplen(chosen, "bootargs");
535 if (bp_len < 0 || ba_len < 0)
536 panic("can't get boot data from OFW");
537
538 bootpathv = (char *)ofw_malloc(bp_len);
539 bootargsv = (char *)ofw_malloc(ba_len);
540
541 if (bp_len)
542 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
543 else
544 bootpathv[0] = '\0';
545
546 if (ba_len)
547 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
548 else
549 bootargsv[0] = '\0';
550
551 *bp_pp = bootpathv;
552 *ba_pp = bootargsv;
553 #ifdef DIAGNOSTIC
554 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
555 #endif
556 }
557
558 paddr_t
559 ofw_getcleaninfo(void)
560 {
561 int cpu;
562 vaddr_t vclean;
563 paddr_t pclean;
564
565 if ((cpu = OF_finddevice("/cpu")) == -1)
566 panic("no /cpu from OFW");
567
568 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
569 sizeof(vclean))) != sizeof(vclean)) {
570 #ifdef DEBUG
571 printf("no OFW d-cache-flush-address property\n");
572 #endif
573 return -1;
574 }
575
576 if ((pclean = ofw_gettranslation(
577 of_decode_int((unsigned char *)&vclean))) == -1)
578 panic("OFW failed to translate cache flush address");
579
580 return pclean;
581 }
582
583 void
584 ofw_configisa(paddr_t *pio, paddr_t *pmem)
585 {
586 int vl;
587
588 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
589 ofw_configisaonly(pio, pmem);
590 else /* old style OFW dev info tree */
591 ofw_configvl(vl, pio, pmem);
592 }
593
594 static void
595 ofw_configisaonly(paddr_t *pio, paddr_t *pmem)
596 {
597 int isa;
598 int rangeidx;
599 int size;
600 paddr_t hi, start;
601 struct isa_range ranges[2];
602
603 if ((isa = OF_finddevice("/isa")) == -1)
604 panic("OFW has no /isa device node");
605
606 /* expect to find two isa ranges: IO/data and memory/data */
607 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
608 != sizeof(ranges))
609 panic("unexpected size of OFW /isa ranges property: %d", size);
610
611 *pio = *pmem = -1;
612
613 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
614 hi = of_decode_int((unsigned char *)
615 &ranges[rangeidx].isa_phys_hi);
616 start = of_decode_int((unsigned char *)
617 &ranges[rangeidx].parent_phys_start);
618
619 if (hi & 1) { /* then I/O space */
620 *pio = start;
621 } else {
622 *pmem = start;
623 }
624 } /* END for */
625
626 if ((*pio == -1) || (*pmem == -1))
627 panic("bad OFW /isa ranges property");
628
629 }
630
631 static void
632 ofw_configvl(int vl, paddr_t *pio, paddr_t *pmem)
633 {
634 int isa;
635 int ir, vr;
636 int size;
637 paddr_t hi, start;
638 struct vl_isa_range isa_ranges[2];
639 struct vl_range vl_ranges[2];
640
641 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
642 panic("OFW has no /vlbus/isa device node");
643
644 /* expect to find two isa ranges: IO/data and memory/data */
645 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
646 != sizeof(isa_ranges))
647 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
648 size);
649
650 /* expect to find two vl ranges: IO/data and memory/data */
651 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
652 != sizeof(vl_ranges))
653 panic("unexpected size of OFW /vlbus ranges property: %d", size);
654
655 *pio = -1;
656 *pmem = -1;
657
658 for (ir = 0; ir < 2; ++ir) {
659 for (vr = 0; vr < 2; ++vr) {
660 if ((isa_ranges[ir].parent_phys_hi
661 == vl_ranges[vr].vl_phys_hi) &&
662 (isa_ranges[ir].parent_phys_lo
663 == vl_ranges[vr].vl_phys_lo)) {
664 hi = of_decode_int((unsigned char *)
665 &isa_ranges[ir].isa_phys_hi);
666 start = of_decode_int((unsigned char *)
667 &vl_ranges[vr].parent_phys_start);
668
669 if (hi & 1) { /* then I/O space */
670 *pio = start;
671 } else {
672 *pmem = start;
673 }
674 } /* END if */
675 } /* END for */
676 } /* END for */
677
678 if ((*pio == -1) || (*pmem == -1))
679 panic("bad OFW /isa ranges property");
680 }
681
682 #if NISADMA > 0
683 struct arm32_dma_range *shark_isa_dma_ranges;
684 int shark_isa_dma_nranges;
685 #endif
686
687 void
688 ofw_configisadma(paddr_t *pdma)
689 {
690 int root;
691 int rangeidx;
692 int size;
693 struct dma_range *dr;
694
695 if ((root = OF_finddevice("/")) == -1 ||
696 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
697 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
698 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
699 panic("bad / dma-ranges property");
700
701 nOFdmaranges = size / sizeof(struct dma_range);
702
703 #if NISADMA > 0
704 /* Allocate storage for non-OFW representation of the range. */
705 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
706 sizeof(*shark_isa_dma_ranges));
707 if (shark_isa_dma_ranges == NULL)
708 panic("unable to allocate shark_isa_dma_ranges");
709 shark_isa_dma_nranges = nOFdmaranges;
710 #endif
711
712 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
713 ++rangeidx, ++dr) {
714 dr->start = of_decode_int((unsigned char *)&dr->start);
715 dr->size = of_decode_int((unsigned char *)&dr->size);
716 #if NISADMA > 0
717 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
718 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
719 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
720 #endif
721 }
722
723 #ifdef DEBUG
724 printf("DMA ranges size = %d\n", size);
725
726 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
727 printf("%08lx %08lx\n",
728 (u_long)OFdmaranges[rangeidx].start,
729 (u_long)OFdmaranges[rangeidx].size);
730 }
731 #endif
732 }
733
734 /*
735 * Memory configuration:
736 *
737 * We start off running in the environment provided by OFW.
738 * This has the MMU turned on, the kernel code and data
739 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
740 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
741 * page0 mapped-in at 0x0.
742 *
743 * The strategy is to set-up the address space for proc0 --
744 * including the allocation of space for new page tables -- while
745 * memory is still managed by OFW. We then effectively create a
746 * copy of the address space by dumping all of OFW's translations
747 * and poking them into the new page tables. We then notify OFW
748 * that we are assuming control of memory-management by installing
749 * our callback-handler, and switch to the NetBSD-managed page
750 * tables with the cpu_setttb() call.
751 *
752 * This scheme may cause some amount of memory to be wasted within
753 * OFW as dead page tables, but it shouldn't be more than about
754 * 20-30KB. (It's also possible that OFW will re-use the space.)
755 */
756 void
757 ofw_configmem(void)
758 {
759 int i;
760
761 /* Set-up proc0 address space. */
762 ofw_construct_proc0_addrspace();
763
764 /*
765 * Get a dump of OFW's picture of physical memory.
766 * This is used below to initialize a load of variables used by pmap.
767 * We get it now rather than later because we are about to
768 * tell OFW to stop managing memory.
769 */
770 ofw_getphysmeminfo();
771
772 /* We are about to take control of memory-management from OFW.
773 * Establish callbacks for OFW to use for its future memory needs.
774 * This is required for us to keep using OFW services.
775 */
776
777 /* First initialize our callback memory allocator. */
778 ofw_initallocator();
779
780 OF_set_callback(ofw_callbackhandler);
781
782 /* Switch to the proc0 pagetables. */
783 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
784 cpu_setttb(kernel_l1pt.pv_pa);
785 cpu_tlb_flushID();
786 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
787
788 /*
789 * Moved from cpu_startup() as data_abort_handler() references
790 * this during uvm init
791 */
792 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
793
794 /* Set-up the various globals which describe physical memory for pmap. */
795 {
796 struct mem_region *mp;
797 int totalcnt;
798 int availcnt;
799
800 /* physmem, physical_start, physical_end */
801 physmem = 0;
802 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
803 totalcnt++, mp++) {
804 #ifdef OLDPRINTFS
805 printf("physmem: %x, %x\n", mp->start, mp->size);
806 #endif
807 physmem += btoc(mp->size);
808 }
809 physical_start = OFphysmem[0].start;
810 mp--;
811 physical_end = mp->start + mp->size;
812
813 /* free_pages, physical_freestart, physical_freeend */
814 free_pages = 0;
815 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
816 availcnt++, mp++) {
817 #ifdef OLDPRINTFS
818 printf("physavail: %x, %x\n", mp->start, mp->size);
819 #endif
820 free_pages += btoc(mp->size);
821 }
822 physical_freestart = OFphysavail[0].start;
823 mp--;
824 physical_freeend = mp->start + mp->size;
825 #ifdef OLDPRINTFS
826 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
827 physmem, free_pages);
828 #endif
829
830 /*
831 * This is a hack to work with the existing pmap code.
832 * That code depends on a RiscPC BootConfig structure
833 * containing, among other things, an array describing
834 * the regions of physical memory. So, for now, we need
835 * to stuff our OFW-derived physical memory info into a
836 * "fake" BootConfig structure.
837 *
838 * An added twist is that we initialize the BootConfig
839 * structure with our "available" physical memory regions
840 * rather than the "total" physical memory regions. Why?
841 * Because:
842 *
843 * (a) the VM code requires that the "free" pages it is
844 * initialized with have consecutive indices. This
845 * allows it to use more efficient data structures
846 * (presumably).
847 * (b) the current pmap routines which report the initial
848 * set of free page indices (pmap_next_page) and
849 * which map addresses to indices (pmap_page_index)
850 * assume that the free pages are consecutive across
851 * memory region boundaries.
852 *
853 * This means that memory which is "stolen" at startup time
854 * (say, for page descriptors) MUST come from either the
855 * bottom of the first region or the top of the last.
856 *
857 * This requirement doesn't mesh well with OFW (or at least
858 * our use of it). We can get around it for the time being
859 * by pretending that our "available" region array describes
860 * all of our physical memory. This may cause some important
861 * information to be excluded from a dump file, but so far
862 * I haven't come across any other negative effects.
863 *
864 * In the long-run we should fix the index
865 * generation/translation code in the pmap module.
866 */
867
868 if (DRAM_BLOCKS < (availcnt + 1))
869 panic("more ofw memory regions than bootconfig blocks");
870
871 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
872 bootconfig.dram[i].address = mp->start;
873 bootconfig.dram[i].pages = btoc(mp->size);
874 }
875 bootconfig.dramblocks = availcnt;
876 }
877
878 /* Load memory into UVM. */
879 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
880
881 /* XXX Please kill this code dead. */
882 for (i = 0; i < bootconfig.dramblocks; i++) {
883 paddr_t start = (paddr_t)bootconfig.dram[i].address;
884 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
885 #if NISADMA > 0
886 paddr_t istart, isize;
887 #endif
888
889 if (start < physical_freestart)
890 start = physical_freestart;
891 if (end > physical_freeend)
892 end = physical_freeend;
893
894 #if 0
895 printf("%d: %lx -> %lx\n", loop, start, end - 1);
896 #endif
897
898 #if NISADMA > 0
899 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
900 shark_isa_dma_nranges,
901 start, end - start,
902 &istart, &isize)) {
903 /*
904 * Place the pages that intersect with the
905 * ISA DMA range onto the ISA DMA free list.
906 */
907 #if 0
908 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
909 istart + isize - 1);
910 #endif
911 uvm_page_physload(atop(istart),
912 atop(istart + isize), atop(istart),
913 atop(istart + isize), VM_FREELIST_ISADMA);
914
915 /*
916 * Load the pieces that come before the
917 * intersection onto the default free list.
918 */
919 if (start < istart) {
920 #if 0
921 printf(" BEFORE 0x%lx -> 0x%lx\n",
922 start, istart - 1);
923 #endif
924 uvm_page_physload(atop(start),
925 atop(istart), atop(start),
926 atop(istart), VM_FREELIST_DEFAULT);
927 }
928
929 /*
930 * Load the pieces that come after the
931 * intersection onto the default free list.
932 */
933 if ((istart + isize) < end) {
934 #if 0
935 printf(" AFTER 0x%lx -> 0x%lx\n",
936 (istart + isize), end - 1);
937 #endif
938 uvm_page_physload(atop(istart + isize),
939 atop(end), atop(istart + isize),
940 atop(end), VM_FREELIST_DEFAULT);
941 }
942 } else {
943 uvm_page_physload(atop(start), atop(end),
944 atop(start), atop(end), VM_FREELIST_DEFAULT);
945 }
946 #else /* NISADMA > 0 */
947 uvm_page_physload(atop(start), atop(end),
948 atop(start), atop(end), VM_FREELIST_DEFAULT);
949 #endif /* NISADMA > 0 */
950 }
951
952 /* Initialize pmap module. */
953 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
954 }
955
956
957 /*
958 ************************************************************
959
960 Routines private to this module
961
962 ************************************************************
963 */
964
965 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
966 static void
967 ofw_callbackhandler(void *v)
968 {
969 struct ofw_cbargs *args = v;
970 char *name = args->name;
971 int nargs = args->nargs;
972 int nreturns = args->nreturns;
973 int *args_n_results = args->args_n_results;
974
975 ofw_callbacks++;
976
977 #if defined(OFWGENCFG)
978 /* Check this first, so that we don't waste IRQ time parsing. */
979 if (strcmp(name, "tick") == 0) {
980 vaddr_t frame;
981
982 /* Check format. */
983 if (nargs != 1 || nreturns < 1) {
984 args_n_results[nargs] = -1;
985 args->nreturns = 1;
986 return;
987 }
988 args_n_results[nargs] = 0; /* properly formatted request */
989
990 /*
991 * Note that we are running in the IRQ frame, with interrupts
992 * disabled.
993 *
994 * We need to do two things here:
995 * - copy a few words out of the input frame into a global
996 * area, for later use by our real tick-handling code
997 * - patch a few words in the frame so that when OFW returns
998 * from the interrupt it will resume with our handler
999 * rather than the code that was actually interrupted.
1000 * Our handler will resume when it finishes with the code
1001 * that was actually interrupted.
1002 *
1003 * It's simplest to do this in assembler, since it requires
1004 * switching frames and grovelling about with registers.
1005 */
1006 frame = (vaddr_t)args_n_results[0];
1007 if (ofw_handleticks)
1008 dotickgrovelling(frame);
1009 args_n_results[nargs + 1] = frame;
1010 args->nreturns = 1;
1011 } else
1012 #endif
1013
1014 if (strcmp(name, "map") == 0) {
1015 vaddr_t va;
1016 paddr_t pa;
1017 vsize_t size;
1018 int mode;
1019 int ap_bits;
1020 int dom_bits;
1021 int cb_bits;
1022
1023 /* Check format. */
1024 if (nargs != 4 || nreturns < 2) {
1025 args_n_results[nargs] = -1;
1026 args->nreturns = 1;
1027 return;
1028 }
1029 args_n_results[nargs] = 0; /* properly formatted request */
1030
1031 pa = (paddr_t)args_n_results[0];
1032 va = (vaddr_t)args_n_results[1];
1033 size = (vsize_t)args_n_results[2];
1034 mode = args_n_results[3];
1035 ap_bits = (mode & 0x00000C00);
1036 dom_bits = (mode & 0x000001E0);
1037 cb_bits = (mode & 0x000000C0);
1038
1039 /* Sanity checks. */
1040 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1041 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1042 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1043 size == 0 || (dom_bits >> 5) != 0) {
1044 args_n_results[nargs + 1] = -1;
1045 args->nreturns = 1;
1046 return;
1047 }
1048
1049 /* Write-back anything stuck in the cache. */
1050 cpu_idcache_wbinv_all();
1051
1052 /* Install new mappings. */
1053 {
1054 pt_entry_t *pte = vtopte(va);
1055 int npages = size >> PGSHIFT;
1056
1057 ap_bits >>= 10;
1058 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1059 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1060 cb_bits);
1061 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1062 }
1063
1064 /* Clean out tlb. */
1065 tlb_flush();
1066
1067 args_n_results[nargs + 1] = 0;
1068 args->nreturns = 2;
1069 } else if (strcmp(name, "unmap") == 0) {
1070 vaddr_t va;
1071 vsize_t size;
1072
1073 /* Check format. */
1074 if (nargs != 2 || nreturns < 1) {
1075 args_n_results[nargs] = -1;
1076 args->nreturns = 1;
1077 return;
1078 }
1079 args_n_results[nargs] = 0; /* properly formatted request */
1080
1081 va = (vaddr_t)args_n_results[0];
1082 size = (vsize_t)args_n_results[1];
1083
1084 /* Sanity checks. */
1085 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1086 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1087 (size & PGOFSET) != 0 || size == 0) {
1088 args_n_results[nargs + 1] = -1;
1089 args->nreturns = 1;
1090 return;
1091 }
1092
1093 /* Write-back anything stuck in the cache. */
1094 cpu_idcache_wbinv_all();
1095
1096 /* Zero the mappings. */
1097 {
1098 pt_entry_t *pte = vtopte(va);
1099 int npages = size >> PGSHIFT;
1100
1101 for (; npages > 0; pte++, npages--)
1102 *pte = 0;
1103 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1104 }
1105
1106 /* Clean out tlb. */
1107 tlb_flush();
1108
1109 args->nreturns = 1;
1110 } else if (strcmp(name, "translate") == 0) {
1111 vaddr_t va;
1112 paddr_t pa;
1113 int mode;
1114 pt_entry_t pte;
1115
1116 /* Check format. */
1117 if (nargs != 1 || nreturns < 4) {
1118 args_n_results[nargs] = -1;
1119 args->nreturns = 1;
1120 return;
1121 }
1122 args_n_results[nargs] = 0; /* properly formatted request */
1123
1124 va = (vaddr_t)args_n_results[0];
1125
1126 /* Sanity checks.
1127 * For now, I am only willing to translate va's in the
1128 * "ofw range." Eventually, I may be more generous. -JJK
1129 */
1130 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1131 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1132 args_n_results[nargs + 1] = -1;
1133 args->nreturns = 1;
1134 return;
1135 }
1136
1137 /* Lookup mapping. */
1138 pte = *vtopte(va);
1139 if (pte == 0) {
1140 /* No mapping. */
1141 args_n_results[nargs + 1] = -1;
1142 args->nreturns = 2;
1143 } else {
1144 /* Existing mapping. */
1145 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1146 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1147
1148 args_n_results[nargs + 1] = 0;
1149 args_n_results[nargs + 2] = pa;
1150 args_n_results[nargs + 3] = mode;
1151 args->nreturns = 4;
1152 }
1153 } else if (strcmp(name, "claim-phys") == 0) {
1154 struct pglist alloclist;
1155 paddr_t low, high, align;
1156 psize_t size;
1157
1158 /*
1159 * XXX
1160 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1161 * XXX
1162 */
1163
1164 /* Check format. */
1165 if (nargs != 4 || nreturns < 3) {
1166 args_n_results[nargs] = -1;
1167 args->nreturns = 1;
1168 return;
1169 }
1170 args_n_results[nargs] = 0; /* properly formatted request */
1171
1172 low = args_n_results[0];
1173 size = args_n_results[2];
1174 align = args_n_results[3];
1175 high = args_n_results[1] + size;
1176
1177 #if 0
1178 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1179 low, size, align, high);
1180 align = size;
1181 printf("forcing align to be 0x%x\n", align);
1182 #endif
1183
1184 args_n_results[nargs + 1] =
1185 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1186 #if 0
1187 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1188 #endif
1189 if (args_n_results[nargs + 1] != 0) {
1190 #if 0
1191 printf("(failed)\n");
1192 #endif
1193 args_n_results[nargs + 1] = -1;
1194 args->nreturns = 2;
1195 return;
1196 }
1197 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1198 #if 0
1199 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1200 #endif
1201 args->nreturns = 3;
1202
1203 } else if (strcmp(name, "release-phys") == 0) {
1204 printf("unimplemented ofw callback - %s\n", name);
1205 args_n_results[nargs] = -1;
1206 args->nreturns = 1;
1207 } else if (strcmp(name, "claim-virt") == 0) {
1208 vaddr_t va;
1209 vsize_t size;
1210 vaddr_t align;
1211
1212 /* XXX - notyet */
1213 /* printf("unimplemented ofw callback - %s\n", name);*/
1214 args_n_results[nargs] = -1;
1215 args->nreturns = 1;
1216 return;
1217
1218 /* Check format. */
1219 if (nargs != 2 || nreturns < 3) {
1220 args_n_results[nargs] = -1;
1221 args->nreturns = 1;
1222 return;
1223 }
1224 args_n_results[nargs] = 0; /* properly formatted request */
1225
1226 /* Allocate size bytes with specified alignment. */
1227 size = (vsize_t)args_n_results[0];
1228 align = (vaddr_t)args_n_results[1];
1229 if (align % PAGE_SIZE != 0) {
1230 args_n_results[nargs + 1] = -1;
1231 args->nreturns = 2;
1232 return;
1233 }
1234
1235 if (va == 0) {
1236 /* Couldn't allocate. */
1237 args_n_results[nargs + 1] = -1;
1238 args->nreturns = 2;
1239 } else {
1240 /* Successful allocation. */
1241 args_n_results[nargs + 1] = 0;
1242 args_n_results[nargs + 2] = va;
1243 args->nreturns = 3;
1244 }
1245 } else if (strcmp(name, "release-virt") == 0) {
1246 vaddr_t va;
1247 vsize_t size;
1248
1249 /* XXX - notyet */
1250 printf("unimplemented ofw callback - %s\n", name);
1251 args_n_results[nargs] = -1;
1252 args->nreturns = 1;
1253 return;
1254
1255 /* Check format. */
1256 if (nargs != 2 || nreturns < 1) {
1257 args_n_results[nargs] = -1;
1258 args->nreturns = 1;
1259 return;
1260 }
1261 args_n_results[nargs] = 0; /* properly formatted request */
1262
1263 /* Release bytes. */
1264 va = (vaddr_t)args_n_results[0];
1265 size = (vsize_t)args_n_results[1];
1266
1267 args->nreturns = 1;
1268 } else {
1269 args_n_results[nargs] = -1;
1270 args->nreturns = 1;
1271 }
1272 }
1273
1274 static void
1275 ofw_construct_proc0_addrspace(void)
1276 {
1277 int i, oft;
1278 static pv_addr_t proc0_pt_sys;
1279 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1280 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1281 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1282 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1283 static pv_addr_t msgbuf;
1284 vaddr_t L1pagetable;
1285 struct mem_translation *tp;
1286
1287 /* Set-up the system page. */
1288 KASSERT(vector_page == 0); /* XXX for now */
1289 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1290 if (systempage.pv_va == -1) {
1291 /* Something was already mapped to vector_page's VA. */
1292 systempage.pv_va = vector_page;
1293 systempage.pv_pa = ofw_gettranslation(vector_page);
1294 if (systempage.pv_pa == -1)
1295 panic("bogus result from gettranslation(vector_page)");
1296 } else {
1297 /* We were just allocated the page-length range at VA 0. */
1298 if (systempage.pv_va != vector_page)
1299 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1300
1301 /* Now allocate a physical page, and establish the mapping. */
1302 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1303 if (systempage.pv_pa == -1)
1304 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1305 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1306 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1307
1308 /* Zero the memory. */
1309 memset((char *)systempage.pv_va, 0, PAGE_SIZE);
1310 }
1311
1312 /* Allocate/initialize space for the proc0, NetBSD-managed */
1313 /* page tables that we will be switching to soon. */
1314 ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE);
1315 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1316 for (i = 0; i < KERNEL_IMG_PTS; i++)
1317 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1318 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1319 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1320 for (i = 0; i < KERNEL_OFW_PTS; i++)
1321 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1322 for (i = 0; i < KERNEL_IO_PTS; i++)
1323 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1324
1325 /* Allocate/initialize space for stacks. */
1326 #ifndef OFWGENCFG
1327 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1328 #endif
1329 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1330 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1331 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1332
1333 /* Allocate/initialize space for msgbuf area. */
1334 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1335 msgbufphys = msgbuf.pv_pa;
1336
1337 /* Construct the proc0 L1 pagetable. */
1338 L1pagetable = kernel_l1pt.pv_va;
1339
1340 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1341 for (i = 0; i < KERNEL_IMG_PTS; i++)
1342 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1343 &proc0_pt_kernel[i]);
1344 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1345 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1346 &proc0_pt_vmdata[i]);
1347 for (i = 0; i < KERNEL_OFW_PTS; i++)
1348 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1349 &proc0_pt_ofw[i]);
1350 for (i = 0; i < KERNEL_IO_PTS; i++)
1351 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1352 &proc0_pt_io[i]);
1353
1354 /*
1355 * OK, we're done allocating.
1356 * Get a dump of OFW's translations, and make the appropriate
1357 * entries in the L2 pagetables that we just allocated.
1358 */
1359
1360 ofw_getvirttranslations();
1361
1362 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1363 oft++, tp++) {
1364
1365 vaddr_t va;
1366 paddr_t pa;
1367 int npages = tp->size / PAGE_SIZE;
1368
1369 /* Size must be an integral number of pages. */
1370 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1371 panic("illegal ofw translation (size)");
1372
1373 /* Make an entry for each page in the appropriate table. */
1374 for (va = tp->virt, pa = tp->phys; npages > 0;
1375 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1376 /*
1377 * Map the top bits to the appropriate L2 pagetable.
1378 * The only allowable regions are page0, the
1379 * kernel-static area, and the ofw area.
1380 */
1381 switch (va >> (L1_S_SHIFT + 2)) {
1382 case 0:
1383 /* page0 */
1384 break;
1385
1386 #if KERNEL_IMG_PTS != 2
1387 #error "Update ofw translation range list"
1388 #endif
1389 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1390 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1391 /* kernel static area */
1392 break;
1393
1394 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1395 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1396 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1397 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1398 /* ofw area */
1399 break;
1400
1401 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1402 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1403 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1404 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1405 /* io area */
1406 break;
1407
1408 default:
1409 /* illegal */
1410 panic("illegal ofw translation (addr) %#lx",
1411 va);
1412 }
1413
1414 /* Make the entry. */
1415 pmap_map_entry(L1pagetable, va, pa,
1416 VM_PROT_READ|VM_PROT_WRITE,
1417 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1418 : PTE_NOCACHE);
1419 }
1420 }
1421
1422 /*
1423 * We don't actually want some of the mappings that we just
1424 * set up to appear in proc0's address space. In particular,
1425 * we don't want aliases to physical addresses that the kernel
1426 * has-mapped/will-map elsewhere.
1427 */
1428 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1429 msgbuf.pv_va, MSGBUFSIZE);
1430
1431 /* update the top of the kernel VM */
1432 pmap_curmaxkvaddr =
1433 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1434
1435 /*
1436 * gross hack for the sake of not thrashing the TLB and making
1437 * cache flush more efficient: blast l1 ptes for sections.
1438 */
1439 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1440 vaddr_t va = tp->virt;
1441 paddr_t pa = tp->phys;
1442
1443 if (((va | pa) & L1_S_OFFSET) == 0) {
1444 int nsections = tp->size / L1_S_SIZE;
1445
1446 while (nsections--) {
1447 /* XXXJRT prot?? */
1448 pmap_map_section(L1pagetable, va, pa,
1449 VM_PROT_READ|VM_PROT_WRITE,
1450 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1451 : PTE_NOCACHE);
1452 va += L1_S_SIZE;
1453 pa += L1_S_SIZE;
1454 }
1455 }
1456 }
1457 }
1458
1459
1460 static void
1461 ofw_getphysmeminfo(void)
1462 {
1463 int phandle;
1464 int mem_len;
1465 int avail_len;
1466 int i;
1467
1468 if ((phandle = OF_finddevice("/memory")) == -1 ||
1469 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1470 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1471 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1472 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1473 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1474 OF_getprop(phandle, "available", OFphysavail, avail_len)
1475 != avail_len)
1476 panic("can't get physmeminfo from OFW");
1477
1478 nOFphysmem = mem_len / sizeof(struct mem_region);
1479 nOFphysavail = avail_len / sizeof(struct mem_region);
1480
1481 /*
1482 * Sort the blocks in each array into ascending address order.
1483 * Also, page-align all blocks.
1484 */
1485 for (i = 0; i < 2; i++) {
1486 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1487 struct mem_region *mp;
1488 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1489 int j;
1490
1491 #ifdef OLDPRINTFS
1492 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1493 #endif
1494
1495 /* XXX - Convert all the values to host order. -JJK */
1496 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1497 mp->start = of_decode_int((unsigned char *)&mp->start);
1498 mp->size = of_decode_int((unsigned char *)&mp->size);
1499 }
1500
1501 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1502 u_int s, sz;
1503 struct mem_region *mp1;
1504
1505 /* Page-align start of the block. */
1506 s = mp->start % PAGE_SIZE;
1507 if (s != 0) {
1508 s = (PAGE_SIZE - s);
1509
1510 if (mp->size >= s) {
1511 mp->start += s;
1512 mp->size -= s;
1513 }
1514 }
1515
1516 /* Page-align the size. */
1517 mp->size -= mp->size % PAGE_SIZE;
1518
1519 /* Handle empty block. */
1520 if (mp->size == 0) {
1521 memmove(mp, mp + 1, (cnt - (mp - tmp))
1522 * sizeof(struct mem_region));
1523 cnt--;
1524 mp--;
1525 continue;
1526 }
1527
1528 /* Bubble sort. */
1529 s = mp->start;
1530 sz = mp->size;
1531 for (mp1 = tmp; mp1 < mp; mp1++)
1532 if (s < mp1->start)
1533 break;
1534 if (mp1 < mp) {
1535 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1536 mp1->start = s;
1537 mp1->size = sz;
1538 }
1539 }
1540
1541 #ifdef OLDPRINTFS
1542 for (mp = tmp; mp->size; mp++) {
1543 printf("%x, %x\n", mp->start, mp->size);
1544 }
1545 #endif
1546 }
1547 }
1548
1549
1550 static void
1551 ofw_getvirttranslations(void)
1552 {
1553 int mmu_phandle;
1554 int mmu_ihandle;
1555 int trans_len;
1556 int over, len;
1557 int i;
1558 struct mem_translation *tp;
1559
1560 mmu_ihandle = ofw_mmu_ihandle();
1561
1562 /* overallocate to avoid increases during allocation */
1563 over = 4 * sizeof(struct mem_translation);
1564 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1565 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1566 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1567 (trans_len = OF_getprop(mmu_phandle, "translations",
1568 OFtranslations, len + over)) > (len + over))
1569 panic("can't get virttranslations from OFW");
1570
1571 /* XXX - Convert all the values to host order. -JJK */
1572 nOFtranslations = trans_len / sizeof(struct mem_translation);
1573 #ifdef OLDPRINTFS
1574 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1575 #endif
1576 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1577 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1578 tp->size = of_decode_int((unsigned char *)&tp->size);
1579 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1580 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1581 }
1582 }
1583
1584 /*
1585 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1586 */
1587 typedef struct _vfree {
1588 struct _vfree *pNext;
1589 vaddr_t start;
1590 vsize_t size;
1591 } VFREE, *PVFREE;
1592
1593 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1594
1595 static PVFREE vflist = &vfinitial;
1596
1597 static vaddr_t
1598 ofw_valloc(vsize_t size, vaddr_t align)
1599 {
1600 PVFREE *ppvf;
1601 PVFREE pNew;
1602 vaddr_t new;
1603 vaddr_t lead;
1604
1605 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1606 if (align == 0) {
1607 new = (*ppvf)->start;
1608 lead = 0;
1609 } else {
1610 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1611 lead = new - (*ppvf)->start;
1612 }
1613
1614 if (((*ppvf)->size - lead) >= size) {
1615 if (lead == 0) {
1616 /* using whole block */
1617 if (size == (*ppvf)->size) {
1618 /* splice out of list */
1619 (*ppvf) = (*ppvf)->pNext;
1620 } else { /* tail of block is free */
1621 (*ppvf)->start = new + size;
1622 (*ppvf)->size -= size;
1623 }
1624 } else {
1625 vsize_t tail = ((*ppvf)->start
1626 + (*ppvf)->size) - (new + size);
1627 /* free space at beginning */
1628 (*ppvf)->size = lead;
1629
1630 if (tail != 0) {
1631 /* free space at tail */
1632 pNew = ofw_malloc(sizeof(VFREE));
1633 pNew->pNext = (*ppvf)->pNext;
1634 (*ppvf)->pNext = pNew;
1635 pNew->start = new + size;
1636 pNew->size = tail;
1637 }
1638 }
1639 return new;
1640 } /* END if */
1641 } /* END for */
1642
1643 return -1;
1644 }
1645
1646 vaddr_t
1647 ofw_map(paddr_t pa, vsize_t size, int cb_bits)
1648 {
1649 vaddr_t va;
1650
1651 if ((va = ofw_valloc(size, size)) == -1)
1652 panic("cannot alloc virtual memory for %#lx", pa);
1653
1654 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1655
1656 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1657
1658 return va;
1659 }
1660
1661 static int
1662 ofw_mem_ihandle(void)
1663 {
1664 static int mem_ihandle = 0;
1665 int chosen;
1666
1667 if (mem_ihandle != 0)
1668 return(mem_ihandle);
1669
1670 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1671 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1672 panic("ofw_mem_ihandle");
1673
1674 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1675
1676 return(mem_ihandle);
1677 }
1678
1679
1680 static int
1681 ofw_mmu_ihandle(void)
1682 {
1683 static int mmu_ihandle = 0;
1684 int chosen;
1685
1686 if (mmu_ihandle != 0)
1687 return(mmu_ihandle);
1688
1689 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1690 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1691 panic("ofw_mmu_ihandle");
1692
1693 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1694
1695 return(mmu_ihandle);
1696 }
1697
1698
1699 /* Return -1 on failure. */
1700 static paddr_t
1701 ofw_claimphys(paddr_t pa, psize_t size, paddr_t align)
1702 {
1703 int mem_ihandle = ofw_mem_ihandle();
1704
1705 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1706 if (align == 0) {
1707 /* Allocate at specified base; alignment is ignored. */
1708 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1709 } else {
1710 /* Allocate anywhere, with specified alignment. */
1711 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1712 }
1713
1714 /* printf("%x\n", pa);*/
1715 return(pa);
1716 }
1717
1718
1719 #if 0
1720 /* Return -1 on failure. */
1721 static paddr_t
1722 ofw_releasephys(paddr_t pa, psize_t size)
1723 {
1724 int mem_ihandle = ofw_mem_ihandle();
1725
1726 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1727
1728 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1729 }
1730 #endif
1731
1732 /* Return -1 on failure. */
1733 static vaddr_t
1734 ofw_claimvirt(vaddr_t va, vsize_t size, vaddr_t align)
1735 {
1736 int mmu_ihandle = ofw_mmu_ihandle();
1737
1738 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1739 if (align == 0) {
1740 /* Allocate at specified base; alignment is ignored. */
1741 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1742 } else {
1743 /* Allocate anywhere, with specified alignment. */
1744 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1745 }
1746
1747 /*printf("%x\n", va);*/
1748 return(va);
1749 }
1750
1751 /* Return -1 if no mapping. */
1752 paddr_t
1753 ofw_gettranslation(vaddr_t va)
1754 {
1755 int mmu_ihandle = ofw_mmu_ihandle();
1756 paddr_t pa;
1757 int mode;
1758 int exists;
1759
1760 #ifdef OFW_DEBUG
1761 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1762 #endif
1763 exists = 0; /* gets set to true if translation exists */
1764 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1765 &exists) != 0)
1766 return(-1);
1767
1768 #ifdef OFW_DEBUG
1769 printf("%d %x\n", exists, (uint32_t)pa);
1770 #endif
1771 return(exists ? pa : -1);
1772 }
1773
1774
1775 static void
1776 ofw_settranslation(vaddr_t va, paddr_t pa, vsize_t size, int mode)
1777 {
1778 int mmu_ihandle = ofw_mmu_ihandle();
1779
1780 #ifdef OFW_DEBUG
1781 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1782 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1783 #endif
1784 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1785 panic("ofw_settranslation failed");
1786 }
1787
1788 /*
1789 * Allocation routine used before the kernel takes over memory.
1790 * Use this for efficient storage for things that aren't rounded to
1791 * page size.
1792 *
1793 * The point here is not necessarily to be very efficient (even though
1794 * that's sort of nice), but to do proper dynamic allocation to avoid
1795 * size-limitation errors.
1796 *
1797 */
1798
1799 typedef struct _leftover {
1800 struct _leftover *pNext;
1801 vsize_t size;
1802 } LEFTOVER, *PLEFTOVER;
1803
1804 /* leftover bits of pages. first word is pointer to next.
1805 second word is size of leftover */
1806 static PLEFTOVER leftovers = NULL;
1807
1808 static void *
1809 ofw_malloc(vsize_t size)
1810 {
1811 PLEFTOVER *ppLeftover;
1812 PLEFTOVER pLeft;
1813 pv_addr_t new;
1814 vsize_t newSize, claim_size;
1815
1816 /* round and set minimum size */
1817 size = max(sizeof(LEFTOVER),
1818 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1819
1820 for (ppLeftover = &leftovers; *ppLeftover;
1821 ppLeftover = &((*ppLeftover)->pNext))
1822 if ((*ppLeftover)->size >= size)
1823 break;
1824
1825 if (*ppLeftover) { /* have a leftover of the right size */
1826 /* remember the leftover */
1827 new.pv_va = (vaddr_t)*ppLeftover;
1828 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1829 /* splice out of chain */
1830 *ppLeftover = (*ppLeftover)->pNext;
1831 } else {
1832 /* remember the next pointer */
1833 pLeft = (*ppLeftover)->pNext;
1834 newSize = (*ppLeftover)->size - size; /* reduce size */
1835 /* move pointer */
1836 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1837 + size);
1838 (*ppLeftover)->pNext = pLeft;
1839 (*ppLeftover)->size = newSize;
1840 }
1841 } else {
1842 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1843 ofw_claimpages(&virt_freeptr, &new, claim_size);
1844 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1845 pLeft = (PLEFTOVER)(new.pv_va + size);
1846 pLeft->pNext = leftovers;
1847 pLeft->size = claim_size - size;
1848 leftovers = pLeft;
1849 }
1850 }
1851
1852 return (void *)(new.pv_va);
1853 }
1854
1855 /*
1856 * Here is a really, really sleazy free. It's not used right now,
1857 * because it's not worth the extra complexity for just a few bytes.
1858 *
1859 */
1860 #if 0
1861 static void
1862 ofw_free(vaddr_t addr, vsize_t size)
1863 {
1864 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1865
1866 /* splice right into list without checks or compaction */
1867 pLeftover->pNext = leftovers;
1868 pLeftover->size = size;
1869 leftovers = pLeftover;
1870 }
1871 #endif
1872
1873 /*
1874 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1875 * We guarantee that the allocated memory will be
1876 * aligned to a boundary equal to the smallest power of
1877 * 2 greater than or equal to size.
1878 * free_pp is an IN/OUT parameter which points to the
1879 * last allocated virtual address in an allocate-downwards
1880 * stack. pv_p is an OUT parameter which contains the
1881 * virtual and physical base addresses of the allocated
1882 * memory.
1883 */
1884 static void
1885 ofw_claimpages(vaddr_t *free_pp, pv_addr_t *pv_p, vsize_t size)
1886 {
1887 /* round-up to page boundary */
1888 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1889 vsize_t aligned_size;
1890 vaddr_t va;
1891 paddr_t pa;
1892
1893 if (alloc_size == 0)
1894 panic("ofw_claimpages zero");
1895
1896 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1897 ;
1898
1899 /* The only way to provide the alignment guarantees is to
1900 * allocate the virtual and physical ranges separately,
1901 * then do an explicit map call.
1902 */
1903 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1904 if (ofw_claimvirt(va, alloc_size, 0) != va)
1905 panic("ofw_claimpages va alloc");
1906 pa = ofw_claimphys(0, alloc_size, aligned_size);
1907 if (pa == -1)
1908 panic("ofw_claimpages pa alloc");
1909 /* XXX - what mode? -JJK */
1910 ofw_settranslation(va, pa, alloc_size, -1);
1911
1912 /* The memory's mapped-in now, so we can zero it. */
1913 memset((char *)va, 0, alloc_size);
1914
1915 /* Set OUT parameters. */
1916 *free_pp = va;
1917 pv_p->pv_va = va;
1918 pv_p->pv_pa = pa;
1919 }
1920
1921
1922 static void
1923 ofw_discardmappings(vaddr_t L2pagetable, vaddr_t va, vsize_t size)
1924 {
1925 /* round-up to page boundary */
1926 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1927 int npages = alloc_size / PAGE_SIZE;
1928
1929 if (npages == 0)
1930 panic("ofw_discardmappings zero");
1931
1932 /* Discard each mapping. */
1933 for (; npages > 0; va += PAGE_SIZE, npages--) {
1934 /* Sanity. The current entry should be non-null. */
1935 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1936 panic("ofw_discardmappings zero entry");
1937
1938 /* Clear the entry. */
1939 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1940 }
1941 }
1942
1943
1944 static void
1945 ofw_initallocator(void)
1946 {
1947
1948 }
1949
1950 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
1951 static void
1952 reset_screen(void)
1953 {
1954
1955 if ((console_ihandle == 0) || (console_ihandle == -1))
1956 return;
1957
1958 OF_call_method("install", console_ihandle, 0, 0);
1959 }
1960 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
1961