ofw.c revision 1.61 1 /* $NetBSD: ofw.c,v 1.61 2013/08/18 07:01:45 matt Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 * Routines for interfacing between NetBSD and OFW.
38 *
39 * Parts of this could be moved to an MI file in time. -JJK
40 *
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: ofw.c,v 1.61 2013/08/18 07:01:45 matt Exp $");
45
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/kernel.h>
50 #include <sys/reboot.h>
51 #include <sys/mbuf.h>
52 #include <sys/cpu.h>
53 #include <sys/intr.h>
54
55 #include <uvm/uvm.h>
56
57 #include <dev/cons.h>
58
59 #define _ARM32_BUS_DMA_PRIVATE
60 #include <sys/bus.h>
61
62 #include <arm/locore.h>
63
64 #include <machine/bootconfig.h>
65 #include <machine/irqhandler.h>
66
67 #include <dev/ofw/openfirm.h>
68 #include <machine/ofw.h>
69
70 #include <netinet/in.h>
71
72 #if BOOT_FW_DHCP
73 #include <nfs/bootdata.h>
74 #endif
75
76 #ifdef SHARK
77 #include "machine/pio.h"
78 #include "machine/isa_machdep.h"
79 #endif
80
81 #include "isadma.h"
82 #include "igsfb_ofbus.h"
83 #include "chipsfb_ofbus.h"
84 #include "vga_ofbus.h"
85
86 #define IO_VIRT_BASE (OFW_VIRT_BASE + OFW_VIRT_SIZE)
87 #define IO_VIRT_SIZE 0x01000000
88
89 #define KERNEL_IMG_PTS 2
90 #define KERNEL_VMDATA_PTS (KERNEL_VM_SIZE >> (L1_S_SHIFT + 2))
91 #define KERNEL_OFW_PTS 4
92 #define KERNEL_IO_PTS 4
93
94 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
95 /*
96 * The range 0xf1000000 - 0xf6ffffff is available for kernel VM space
97 * OFW sits at 0xf7000000
98 */
99 #define KERNEL_VM_SIZE 0x06000000
100
101 /*
102 * Imported variables
103 */
104 extern BootConfig bootconfig; /* temporary, I hope */
105
106 #ifdef DIAGNOSTIC
107 /* NOTE: These variables will be removed, well some of them */
108 extern u_int current_mask;
109 #endif
110
111 extern int ofw_handleticks;
112
113
114 /*
115 * Imported routines
116 */
117 extern void dump_spl_masks(void);
118 extern void dumpsys(void);
119 extern void dotickgrovelling(vaddr_t);
120
121 #define WriteWord(a, b) \
122 *((volatile unsigned int *)(a)) = (b)
123
124 #define ReadWord(a) \
125 (*((volatile unsigned int *)(a)))
126
127
128 /*
129 * Exported variables
130 */
131 /* These should all be in a meminfo structure. */
132 paddr_t physical_start;
133 paddr_t physical_freestart;
134 paddr_t physical_freeend;
135 paddr_t physical_end;
136 u_int free_pages;
137
138 paddr_t msgbufphys;
139
140 /* for storage allocation, used to be local to ofw_construct_proc0_addrspace */
141 static vaddr_t virt_freeptr;
142
143 int ofw_callbacks = 0; /* debugging counter */
144
145 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
146 int console_ihandle = 0;
147 static void reset_screen(void);
148 #endif
149
150 /**************************************************************/
151
152
153 /*
154 * Declarations and definitions private to this module
155 *
156 */
157
158 struct mem_region {
159 paddr_t start;
160 psize_t size;
161 };
162
163 struct mem_translation {
164 vaddr_t virt;
165 vsize_t size;
166 paddr_t phys;
167 unsigned int mode;
168 };
169
170 struct isa_range {
171 paddr_t isa_phys_hi;
172 paddr_t isa_phys_lo;
173 paddr_t parent_phys_start;
174 psize_t isa_size;
175 };
176
177 struct vl_range {
178 paddr_t vl_phys_hi;
179 paddr_t vl_phys_lo;
180 paddr_t parent_phys_start;
181 psize_t vl_size;
182 };
183
184 struct vl_isa_range {
185 paddr_t isa_phys_hi;
186 paddr_t isa_phys_lo;
187 paddr_t parent_phys_hi;
188 paddr_t parent_phys_lo;
189 psize_t isa_size;
190 };
191
192 struct dma_range {
193 paddr_t start;
194 psize_t size;
195 };
196
197 struct ofw_cbargs {
198 char *name;
199 int nargs;
200 int nreturns;
201 int args_n_results[12];
202 };
203
204
205 /* Memory info */
206 static int nOFphysmem;
207 static struct mem_region *OFphysmem;
208 static int nOFphysavail;
209 static struct mem_region *OFphysavail;
210 static int nOFtranslations;
211 static struct mem_translation *OFtranslations;
212 static int nOFdmaranges;
213 static struct dma_range *OFdmaranges;
214
215 /* The OFW client services handle. */
216 /* Initialized by ofw_init(). */
217 static ofw_handle_t ofw_client_services_handle;
218
219
220 static void ofw_callbackhandler(void *);
221 static void ofw_construct_proc0_addrspace(void);
222 static void ofw_getphysmeminfo(void);
223 static void ofw_getvirttranslations(void);
224 static void *ofw_malloc(vsize_t size);
225 static void ofw_claimpages(vaddr_t *, pv_addr_t *, vsize_t);
226 static void ofw_discardmappings(vaddr_t, vaddr_t, vsize_t);
227 static int ofw_mem_ihandle(void);
228 static int ofw_mmu_ihandle(void);
229 static paddr_t ofw_claimphys(paddr_t, psize_t, paddr_t);
230 #if 0
231 static paddr_t ofw_releasephys(paddr_t, psize_t);
232 #endif
233 static vaddr_t ofw_claimvirt(vaddr_t, vsize_t, vaddr_t);
234 static void ofw_settranslation(vaddr_t, paddr_t, vsize_t, int);
235 static void ofw_initallocator(void);
236 static void ofw_configisaonly(paddr_t *, paddr_t *);
237 static void ofw_configvl(int, paddr_t *, paddr_t *);
238 static vaddr_t ofw_valloc(vsize_t, vaddr_t);
239
240
241 /*
242 * DHCP hooks. For a first cut, we look to see if there is a DHCP
243 * packet that was saved by the firmware. If not, we proceed as before,
244 * getting hand-configured data from NVRAM. If there is one, we get the
245 * packet, and extract the data from it. For now, we hand that data up
246 * in the boot_args string as before.
247 */
248
249
250 /**************************************************************/
251
252
253 /*
254 *
255 * Support routines for xxx_machdep.c
256 *
257 * The intent is that all OFW-based configurations use the
258 * exported routines in this file to do their business. If
259 * they need to override some function they are free to do so.
260 *
261 * The exported routines are:
262 *
263 * openfirmware
264 * ofw_init
265 * ofw_boot
266 * ofw_getbootinfo
267 * ofw_configmem
268 * ofw_configisa
269 * ofw_configisadma
270 * ofw_gettranslation
271 * ofw_map
272 * ofw_getcleaninfo
273 */
274
275
276 int
277 openfirmware(void *args)
278 {
279 int ofw_result;
280 u_int saved_irq_state;
281
282 /* OFW is not re-entrant, so we wrap a mutex around the call. */
283 saved_irq_state = disable_interrupts(I32_bit);
284 ofw_result = ofw_client_services_handle(args);
285 (void)restore_interrupts(saved_irq_state);
286
287 return(ofw_result);
288 }
289
290
291 void
292 ofw_init(ofw_handle_t ofw_handle)
293 {
294 ofw_client_services_handle = ofw_handle;
295
296 /* Everything we allocate in the remainder of this block is
297 * constrained to be in the "kernel-static" portion of the
298 * virtual address space (i.e., 0xF0000000 - 0xF1000000).
299 * This is because all such objects are expected to be in
300 * that range by NetBSD, or the objects will be re-mapped
301 * after the page-table-switch to other specific locations.
302 * In the latter case, it's simplest if our pre-switch handles
303 * on those objects are in regions that are already "well-
304 * known." (Otherwise, the cloning of the OFW-managed address-
305 * space becomes more awkward.) To minimize the number of L2
306 * page tables that we use, we are further restricting the
307 * remaining allocations in this block to the bottom quarter of
308 * the legal range. OFW will have loaded the kernel text+data+bss
309 * starting at the bottom of the range, and we will allocate
310 * objects from the top, moving downwards. The two sub-regions
311 * will collide if their total sizes hit 8MB. The current total
312 * is <1.5MB, but INSTALL kernels are > 4MB, so hence the 8MB
313 * limit. The variable virt-freeptr represents the next free va
314 * (moving downwards).
315 */
316 virt_freeptr = KERNEL_BASE + (0x00400000 * KERNEL_IMG_PTS);
317 }
318
319
320 void
321 ofw_boot(int howto, char *bootstr)
322 {
323
324 #ifdef DIAGNOSTIC
325 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
326 printf("current_mask=%08x\n", current_mask);
327
328 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
329 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
330 irqmasks[IPL_VM]);
331 printf("ipl_clock=%08x ipl_none=%08x\n",
332 irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
333
334 dump_spl_masks();
335 #endif
336
337 /*
338 * If we are still cold then hit the air brakes
339 * and crash to earth fast
340 */
341 if (cold) {
342 doshutdownhooks();
343 pmf_system_shutdown(boothowto);
344 printf("Halted while still in the ICE age.\n");
345 printf("The operating system has halted.\n");
346 goto ofw_exit;
347 /*NOTREACHED*/
348 }
349
350 /*
351 * If RB_NOSYNC was not specified sync the discs.
352 * Note: Unless cold is set to 1 here, syslogd will die during the unmount.
353 * It looks like syslogd is getting woken up only to find that it cannot
354 * page part of the binary in as the filesystem has been unmounted.
355 */
356 if (!(howto & RB_NOSYNC))
357 bootsync();
358
359 /* Say NO to interrupts */
360 splhigh();
361
362 /* Do a dump if requested. */
363 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
364 dumpsys();
365
366 /* Run any shutdown hooks */
367 doshutdownhooks();
368
369 pmf_system_shutdown(boothowto);
370
371 /* Make sure IRQ's are disabled */
372 IRQdisable;
373
374 if (howto & RB_HALT) {
375 printf("The operating system has halted.\n");
376 goto ofw_exit;
377 }
378
379 /* Tell the user we are booting */
380 printf("rebooting...\n");
381
382 /* Jump into the OFW boot routine. */
383 {
384 static char str[256];
385 char *ap = str, *ap1 = ap;
386
387 if (bootstr && *bootstr) {
388 if (strlen(bootstr) > sizeof str - 5)
389 printf("boot string too large, ignored\n");
390 else {
391 strcpy(str, bootstr);
392 ap1 = ap = str + strlen(str);
393 *ap++ = ' ';
394 }
395 }
396 *ap++ = '-';
397 if (howto & RB_SINGLE)
398 *ap++ = 's';
399 if (howto & RB_KDB)
400 *ap++ = 'd';
401 *ap++ = 0;
402 if (ap[-2] == '-')
403 *ap1 = 0;
404 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
405 reset_screen();
406 #endif
407 OF_boot(str);
408 /*NOTREACHED*/
409 }
410
411 ofw_exit:
412 printf("Calling OF_exit...\n");
413 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
414 reset_screen();
415 #endif
416 OF_exit();
417 /*NOTREACHED*/
418 }
419
420
421 #if BOOT_FW_DHCP
422
423 extern char *ip2dotted(struct in_addr);
424
425 /*
426 * Get DHCP data from OFW
427 */
428
429 void
430 get_fw_dhcp_data(struct bootdata *bdp)
431 {
432 int chosen;
433 int dhcplen;
434
435 memset((char *)bdp, 0, sizeof(*bdp));
436 if ((chosen = OF_finddevice("/chosen")) == -1)
437 panic("no /chosen from OFW");
438 if ((dhcplen = OF_getproplen(chosen, "bootp-response")) > 0) {
439 u_char *cp;
440 int dhcp_type = 0;
441 char *ip;
442
443 /*
444 * OFW saved a DHCP (or BOOTP) packet for us.
445 */
446 if (dhcplen > sizeof(bdp->dhcp_packet))
447 panic("DHCP packet too large");
448 OF_getprop(chosen, "bootp-response", &bdp->dhcp_packet,
449 sizeof(bdp->dhcp_packet));
450 SANITY(bdp->dhcp_packet.op == BOOTREPLY, "bogus DHCP packet");
451 /*
452 * Collect the interesting data from DHCP into
453 * the bootdata structure.
454 */
455 bdp->ip_address = bdp->dhcp_packet.yiaddr;
456 ip = ip2dotted(bdp->ip_address);
457 if (memcmp(bdp->dhcp_packet.options, DHCP_OPTIONS_COOKIE, 4) == 0)
458 parse_dhcp_options(&bdp->dhcp_packet,
459 bdp->dhcp_packet.options + 4,
460 &bdp->dhcp_packet.options[dhcplen
461 - DHCP_FIXED_NON_UDP], bdp, ip);
462 if (bdp->root_ip.s_addr == 0)
463 bdp->root_ip = bdp->dhcp_packet.siaddr;
464 if (bdp->swap_ip.s_addr == 0)
465 bdp->swap_ip = bdp->dhcp_packet.siaddr;
466 }
467 /*
468 * If the DHCP packet did not contain all the necessary data,
469 * look in NVRAM for the missing parts.
470 */
471 {
472 int options;
473 int proplen;
474 #define BOOTJUNKV_SIZE 256
475 char bootjunkv[BOOTJUNKV_SIZE]; /* minimize stack usage */
476
477
478 if ((options = OF_finddevice("/options")) == -1)
479 panic("can't find /options");
480 if (bdp->ip_address.s_addr == 0 &&
481 (proplen = OF_getprop(options, "ipaddr",
482 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
483 bootjunkv[proplen] = '\0';
484 if (dotted2ip(bootjunkv, &bdp->ip_address.s_addr) == 0)
485 bdp->ip_address.s_addr = 0;
486 }
487 if (bdp->ip_mask.s_addr == 0 &&
488 (proplen = OF_getprop(options, "netmask",
489 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
490 bootjunkv[proplen] = '\0';
491 if (dotted2ip(bootjunkv, &bdp->ip_mask.s_addr) == 0)
492 bdp->ip_mask.s_addr = 0;
493 }
494 if (bdp->hostname[0] == '\0' &&
495 (proplen = OF_getprop(options, "hostname",
496 bdp->hostname, sizeof(bdp->hostname) - 1)) > 0) {
497 bdp->hostname[proplen] = '\0';
498 }
499 if (bdp->root[0] == '\0' &&
500 (proplen = OF_getprop(options, "rootfs",
501 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
502 bootjunkv[proplen] = '\0';
503 parse_server_path(bootjunkv, &bdp->root_ip, bdp->root);
504 }
505 if (bdp->swap[0] == '\0' &&
506 (proplen = OF_getprop(options, "swapfs",
507 bootjunkv, BOOTJUNKV_SIZE - 1)) > 0) {
508 bootjunkv[proplen] = '\0';
509 parse_server_path(bootjunkv, &bdp->swap_ip, bdp->swap);
510 }
511 }
512 }
513
514 #endif /* BOOT_FW_DHCP */
515
516 void
517 ofw_getbootinfo(char **bp_pp, char **ba_pp)
518 {
519 int chosen;
520 int bp_len;
521 int ba_len;
522 char *bootpathv;
523 char *bootargsv;
524
525 /* Read the bootpath and bootargs out of OFW. */
526 /* XXX is bootpath still interesting? --emg */
527 if ((chosen = OF_finddevice("/chosen")) == -1)
528 panic("no /chosen from OFW");
529 bp_len = OF_getproplen(chosen, "bootpath");
530 ba_len = OF_getproplen(chosen, "bootargs");
531 if (bp_len < 0 || ba_len < 0)
532 panic("can't get boot data from OFW");
533
534 bootpathv = (char *)ofw_malloc(bp_len);
535 bootargsv = (char *)ofw_malloc(ba_len);
536
537 if (bp_len)
538 OF_getprop(chosen, "bootpath", bootpathv, bp_len);
539 else
540 bootpathv[0] = '\0';
541
542 if (ba_len)
543 OF_getprop(chosen, "bootargs", bootargsv, ba_len);
544 else
545 bootargsv[0] = '\0';
546
547 *bp_pp = bootpathv;
548 *ba_pp = bootargsv;
549 #ifdef DIAGNOSTIC
550 printf("bootpath=<%s>, bootargs=<%s>\n", bootpathv, bootargsv);
551 #endif
552 }
553
554 paddr_t
555 ofw_getcleaninfo(void)
556 {
557 int cpu;
558 vaddr_t vclean;
559 paddr_t pclean;
560
561 if ((cpu = OF_finddevice("/cpu")) == -1)
562 panic("no /cpu from OFW");
563
564 if ((OF_getprop(cpu, "d-cache-flush-address", &vclean,
565 sizeof(vclean))) != sizeof(vclean)) {
566 #ifdef DEBUG
567 printf("no OFW d-cache-flush-address property\n");
568 #endif
569 return -1;
570 }
571
572 if ((pclean = ofw_gettranslation(
573 of_decode_int((unsigned char *)&vclean))) == -1)
574 panic("OFW failed to translate cache flush address");
575
576 return pclean;
577 }
578
579 void
580 ofw_configisa(paddr_t *pio, paddr_t *pmem)
581 {
582 int vl;
583
584 if ((vl = OF_finddevice("/vlbus")) == -1) /* old style OFW dev info tree */
585 ofw_configisaonly(pio, pmem);
586 else /* old style OFW dev info tree */
587 ofw_configvl(vl, pio, pmem);
588 }
589
590 static void
591 ofw_configisaonly(paddr_t *pio, paddr_t *pmem)
592 {
593 int isa;
594 int rangeidx;
595 int size;
596 paddr_t hi, start;
597 struct isa_range ranges[2];
598
599 if ((isa = OF_finddevice("/isa")) == -1)
600 panic("OFW has no /isa device node");
601
602 /* expect to find two isa ranges: IO/data and memory/data */
603 if ((size = OF_getprop(isa, "ranges", ranges, sizeof(ranges)))
604 != sizeof(ranges))
605 panic("unexpected size of OFW /isa ranges property: %d", size);
606
607 *pio = *pmem = -1;
608
609 for (rangeidx = 0; rangeidx < 2; ++rangeidx) {
610 hi = of_decode_int((unsigned char *)
611 &ranges[rangeidx].isa_phys_hi);
612 start = of_decode_int((unsigned char *)
613 &ranges[rangeidx].parent_phys_start);
614
615 if (hi & 1) { /* then I/O space */
616 *pio = start;
617 } else {
618 *pmem = start;
619 }
620 } /* END for */
621
622 if ((*pio == -1) || (*pmem == -1))
623 panic("bad OFW /isa ranges property");
624
625 }
626
627 static void
628 ofw_configvl(int vl, paddr_t *pio, paddr_t *pmem)
629 {
630 int isa;
631 int ir, vr;
632 int size;
633 paddr_t hi, start;
634 struct vl_isa_range isa_ranges[2];
635 struct vl_range vl_ranges[2];
636
637 if ((isa = OF_finddevice("/vlbus/isa")) == -1)
638 panic("OFW has no /vlbus/isa device node");
639
640 /* expect to find two isa ranges: IO/data and memory/data */
641 if ((size = OF_getprop(isa, "ranges", isa_ranges, sizeof(isa_ranges)))
642 != sizeof(isa_ranges))
643 panic("unexpected size of OFW /vlbus/isa ranges property: %d",
644 size);
645
646 /* expect to find two vl ranges: IO/data and memory/data */
647 if ((size = OF_getprop(vl, "ranges", vl_ranges, sizeof(vl_ranges)))
648 != sizeof(vl_ranges))
649 panic("unexpected size of OFW /vlbus ranges property: %d", size);
650
651 *pio = -1;
652 *pmem = -1;
653
654 for (ir = 0; ir < 2; ++ir) {
655 for (vr = 0; vr < 2; ++vr) {
656 if ((isa_ranges[ir].parent_phys_hi
657 == vl_ranges[vr].vl_phys_hi) &&
658 (isa_ranges[ir].parent_phys_lo
659 == vl_ranges[vr].vl_phys_lo)) {
660 hi = of_decode_int((unsigned char *)
661 &isa_ranges[ir].isa_phys_hi);
662 start = of_decode_int((unsigned char *)
663 &vl_ranges[vr].parent_phys_start);
664
665 if (hi & 1) { /* then I/O space */
666 *pio = start;
667 } else {
668 *pmem = start;
669 }
670 } /* END if */
671 } /* END for */
672 } /* END for */
673
674 if ((*pio == -1) || (*pmem == -1))
675 panic("bad OFW /isa ranges property");
676 }
677
678 #if NISADMA > 0
679 struct arm32_dma_range *shark_isa_dma_ranges;
680 int shark_isa_dma_nranges;
681 #endif
682
683 void
684 ofw_configisadma(paddr_t *pdma)
685 {
686 int root;
687 int rangeidx;
688 int size;
689 struct dma_range *dr;
690
691 if ((root = OF_finddevice("/")) == -1 ||
692 (size = OF_getproplen(root, "dma-ranges")) <= 0 ||
693 (OFdmaranges = (struct dma_range *)ofw_malloc(size)) == 0 ||
694 OF_getprop(root, "dma-ranges", OFdmaranges, size) != size)
695 panic("bad / dma-ranges property");
696
697 nOFdmaranges = size / sizeof(struct dma_range);
698
699 #if NISADMA > 0
700 /* Allocate storage for non-OFW representation of the range. */
701 shark_isa_dma_ranges = ofw_malloc(nOFdmaranges *
702 sizeof(*shark_isa_dma_ranges));
703 if (shark_isa_dma_ranges == NULL)
704 panic("unable to allocate shark_isa_dma_ranges");
705 shark_isa_dma_nranges = nOFdmaranges;
706 #endif
707
708 for (rangeidx = 0, dr = OFdmaranges; rangeidx < nOFdmaranges;
709 ++rangeidx, ++dr) {
710 dr->start = of_decode_int((unsigned char *)&dr->start);
711 dr->size = of_decode_int((unsigned char *)&dr->size);
712 #if NISADMA > 0
713 shark_isa_dma_ranges[rangeidx].dr_sysbase = dr->start;
714 shark_isa_dma_ranges[rangeidx].dr_busbase = dr->start;
715 shark_isa_dma_ranges[rangeidx].dr_len = dr->size;
716 #endif
717 }
718
719 #ifdef DEBUG
720 printf("DMA ranges size = %d\n", size);
721
722 for (rangeidx = 0; rangeidx < nOFdmaranges; ++rangeidx) {
723 printf("%08lx %08lx\n",
724 (u_long)OFdmaranges[rangeidx].start,
725 (u_long)OFdmaranges[rangeidx].size);
726 }
727 #endif
728 }
729
730 /*
731 * Memory configuration:
732 *
733 * We start off running in the environment provided by OFW.
734 * This has the MMU turned on, the kernel code and data
735 * mapped-in at KERNEL_BASE (0xF0000000), OFW's text and
736 * data mapped-in at OFW_VIRT_BASE (0xF7000000), and (possibly)
737 * page0 mapped-in at 0x0.
738 *
739 * The strategy is to set-up the address space for proc0 --
740 * including the allocation of space for new page tables -- while
741 * memory is still managed by OFW. We then effectively create a
742 * copy of the address space by dumping all of OFW's translations
743 * and poking them into the new page tables. We then notify OFW
744 * that we are assuming control of memory-management by installing
745 * our callback-handler, and switch to the NetBSD-managed page
746 * tables with the cpu_setttb() call.
747 *
748 * This scheme may cause some amount of memory to be wasted within
749 * OFW as dead page tables, but it shouldn't be more than about
750 * 20-30KB. (It's also possible that OFW will re-use the space.)
751 */
752 void
753 ofw_configmem(void)
754 {
755 int i;
756
757 /* Set-up proc0 address space. */
758 ofw_construct_proc0_addrspace();
759
760 /*
761 * Get a dump of OFW's picture of physical memory.
762 * This is used below to initialize a load of variables used by pmap.
763 * We get it now rather than later because we are about to
764 * tell OFW to stop managing memory.
765 */
766 ofw_getphysmeminfo();
767
768 /* We are about to take control of memory-management from OFW.
769 * Establish callbacks for OFW to use for its future memory needs.
770 * This is required for us to keep using OFW services.
771 */
772
773 /* First initialize our callback memory allocator. */
774 ofw_initallocator();
775
776 OF_set_callback(ofw_callbackhandler);
777
778 /* Switch to the proc0 pagetables. */
779 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
780 cpu_setttb(kernel_l1pt.pv_pa, true);
781 cpu_tlb_flushID();
782 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
783
784 /*
785 * Moved from cpu_startup() as data_abort_handler() references
786 * this during uvm init
787 */
788 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
789
790 /* Set-up the various globals which describe physical memory for pmap. */
791 {
792 struct mem_region *mp;
793 int totalcnt;
794 int availcnt;
795
796 /* physmem, physical_start, physical_end */
797 physmem = 0;
798 for (totalcnt = 0, mp = OFphysmem; totalcnt < nOFphysmem;
799 totalcnt++, mp++) {
800 #ifdef OLDPRINTFS
801 printf("physmem: %x, %x\n", mp->start, mp->size);
802 #endif
803 physmem += btoc(mp->size);
804 }
805 physical_start = OFphysmem[0].start;
806 mp--;
807 physical_end = mp->start + mp->size;
808
809 /* free_pages, physical_freestart, physical_freeend */
810 free_pages = 0;
811 for (availcnt = 0, mp = OFphysavail; availcnt < nOFphysavail;
812 availcnt++, mp++) {
813 #ifdef OLDPRINTFS
814 printf("physavail: %x, %x\n", mp->start, mp->size);
815 #endif
816 free_pages += btoc(mp->size);
817 }
818 physical_freestart = OFphysavail[0].start;
819 mp--;
820 physical_freeend = mp->start + mp->size;
821 #ifdef OLDPRINTFS
822 printf("pmap_bootstrap: physmem = %x, free_pages = %x\n",
823 physmem, free_pages);
824 #endif
825
826 /*
827 * This is a hack to work with the existing pmap code.
828 * That code depends on a RiscPC BootConfig structure
829 * containing, among other things, an array describing
830 * the regions of physical memory. So, for now, we need
831 * to stuff our OFW-derived physical memory info into a
832 * "fake" BootConfig structure.
833 *
834 * An added twist is that we initialize the BootConfig
835 * structure with our "available" physical memory regions
836 * rather than the "total" physical memory regions. Why?
837 * Because:
838 *
839 * (a) the VM code requires that the "free" pages it is
840 * initialized with have consecutive indices. This
841 * allows it to use more efficient data structures
842 * (presumably).
843 * (b) the current pmap routines which report the initial
844 * set of free page indices (pmap_next_page) and
845 * which map addresses to indices (pmap_page_index)
846 * assume that the free pages are consecutive across
847 * memory region boundaries.
848 *
849 * This means that memory which is "stolen" at startup time
850 * (say, for page descriptors) MUST come from either the
851 * bottom of the first region or the top of the last.
852 *
853 * This requirement doesn't mesh well with OFW (or at least
854 * our use of it). We can get around it for the time being
855 * by pretending that our "available" region array describes
856 * all of our physical memory. This may cause some important
857 * information to be excluded from a dump file, but so far
858 * I haven't come across any other negative effects.
859 *
860 * In the long-run we should fix the index
861 * generation/translation code in the pmap module.
862 */
863
864 if (DRAM_BLOCKS < (availcnt + 1))
865 panic("more ofw memory regions than bootconfig blocks");
866
867 for (i = 0, mp = OFphysavail; i < nOFphysavail; i++, mp++) {
868 bootconfig.dram[i].address = mp->start;
869 bootconfig.dram[i].pages = btoc(mp->size);
870 }
871 bootconfig.dramblocks = availcnt;
872 }
873
874 /* Load memory into UVM. */
875 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
876
877 /* XXX Please kill this code dead. */
878 for (i = 0; i < bootconfig.dramblocks; i++) {
879 paddr_t start = (paddr_t)bootconfig.dram[i].address;
880 paddr_t end = start + (bootconfig.dram[i].pages * PAGE_SIZE);
881 #if NISADMA > 0
882 paddr_t istart, isize;
883 #endif
884
885 if (start < physical_freestart)
886 start = physical_freestart;
887 if (end > physical_freeend)
888 end = physical_freeend;
889
890 #if 0
891 printf("%d: %lx -> %lx\n", loop, start, end - 1);
892 #endif
893
894 #if NISADMA > 0
895 if (arm32_dma_range_intersect(shark_isa_dma_ranges,
896 shark_isa_dma_nranges,
897 start, end - start,
898 &istart, &isize)) {
899 /*
900 * Place the pages that intersect with the
901 * ISA DMA range onto the ISA DMA free list.
902 */
903 #if 0
904 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
905 istart + isize - 1);
906 #endif
907 uvm_page_physload(atop(istart),
908 atop(istart + isize), atop(istart),
909 atop(istart + isize), VM_FREELIST_ISADMA);
910
911 /*
912 * Load the pieces that come before the
913 * intersection onto the default free list.
914 */
915 if (start < istart) {
916 #if 0
917 printf(" BEFORE 0x%lx -> 0x%lx\n",
918 start, istart - 1);
919 #endif
920 uvm_page_physload(atop(start),
921 atop(istart), atop(start),
922 atop(istart), VM_FREELIST_DEFAULT);
923 }
924
925 /*
926 * Load the pieces that come after the
927 * intersection onto the default free list.
928 */
929 if ((istart + isize) < end) {
930 #if 0
931 printf(" AFTER 0x%lx -> 0x%lx\n",
932 (istart + isize), end - 1);
933 #endif
934 uvm_page_physload(atop(istart + isize),
935 atop(end), atop(istart + isize),
936 atop(end), VM_FREELIST_DEFAULT);
937 }
938 } else {
939 uvm_page_physload(atop(start), atop(end),
940 atop(start), atop(end), VM_FREELIST_DEFAULT);
941 }
942 #else /* NISADMA > 0 */
943 uvm_page_physload(atop(start), atop(end),
944 atop(start), atop(end), VM_FREELIST_DEFAULT);
945 #endif /* NISADMA > 0 */
946 }
947
948 /* Initialize pmap module. */
949 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
950 }
951
952
953 /*
954 ************************************************************
955
956 Routines private to this module
957
958 ************************************************************
959 */
960
961 /* N.B. Not supposed to call printf in callback-handler! Could deadlock! */
962 static void
963 ofw_callbackhandler(void *v)
964 {
965 struct ofw_cbargs *args = v;
966 char *name = args->name;
967 int nargs = args->nargs;
968 int nreturns = args->nreturns;
969 int *args_n_results = args->args_n_results;
970
971 ofw_callbacks++;
972
973 #if defined(OFWGENCFG)
974 /* Check this first, so that we don't waste IRQ time parsing. */
975 if (strcmp(name, "tick") == 0) {
976 vaddr_t frame;
977
978 /* Check format. */
979 if (nargs != 1 || nreturns < 1) {
980 args_n_results[nargs] = -1;
981 args->nreturns = 1;
982 return;
983 }
984 args_n_results[nargs] = 0; /* properly formatted request */
985
986 /*
987 * Note that we are running in the IRQ frame, with interrupts
988 * disabled.
989 *
990 * We need to do two things here:
991 * - copy a few words out of the input frame into a global
992 * area, for later use by our real tick-handling code
993 * - patch a few words in the frame so that when OFW returns
994 * from the interrupt it will resume with our handler
995 * rather than the code that was actually interrupted.
996 * Our handler will resume when it finishes with the code
997 * that was actually interrupted.
998 *
999 * It's simplest to do this in assembler, since it requires
1000 * switching frames and grovelling about with registers.
1001 */
1002 frame = (vaddr_t)args_n_results[0];
1003 if (ofw_handleticks)
1004 dotickgrovelling(frame);
1005 args_n_results[nargs + 1] = frame;
1006 args->nreturns = 1;
1007 } else
1008 #endif
1009
1010 if (strcmp(name, "map") == 0) {
1011 vaddr_t va;
1012 paddr_t pa;
1013 vsize_t size;
1014 int mode;
1015 int ap_bits;
1016 int dom_bits;
1017 int cb_bits;
1018
1019 /* Check format. */
1020 if (nargs != 4 || nreturns < 2) {
1021 args_n_results[nargs] = -1;
1022 args->nreturns = 1;
1023 return;
1024 }
1025 args_n_results[nargs] = 0; /* properly formatted request */
1026
1027 pa = (paddr_t)args_n_results[0];
1028 va = (vaddr_t)args_n_results[1];
1029 size = (vsize_t)args_n_results[2];
1030 mode = args_n_results[3];
1031 ap_bits = (mode & 0x00000C00);
1032 dom_bits = (mode & 0x000001E0);
1033 cb_bits = (mode & 0x000000C0);
1034
1035 /* Sanity checks. */
1036 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1037 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1038 (pa & PGOFSET) != 0 || (size & PGOFSET) != 0 ||
1039 size == 0 || (dom_bits >> 5) != 0) {
1040 args_n_results[nargs + 1] = -1;
1041 args->nreturns = 1;
1042 return;
1043 }
1044
1045 /* Write-back anything stuck in the cache. */
1046 cpu_idcache_wbinv_all();
1047
1048 /* Install new mappings. */
1049 {
1050 pt_entry_t *pte = vtopte(va);
1051 int npages = size >> PGSHIFT;
1052
1053 ap_bits >>= 10;
1054 for (; npages > 0; pte++, pa += PAGE_SIZE, npages--)
1055 *pte = (pa | L2_AP(ap_bits) | L2_TYPE_S |
1056 cb_bits);
1057 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1058 }
1059
1060 /* Clean out tlb. */
1061 tlb_flush();
1062
1063 args_n_results[nargs + 1] = 0;
1064 args->nreturns = 2;
1065 } else if (strcmp(name, "unmap") == 0) {
1066 vaddr_t va;
1067 vsize_t size;
1068
1069 /* Check format. */
1070 if (nargs != 2 || nreturns < 1) {
1071 args_n_results[nargs] = -1;
1072 args->nreturns = 1;
1073 return;
1074 }
1075 args_n_results[nargs] = 0; /* properly formatted request */
1076
1077 va = (vaddr_t)args_n_results[0];
1078 size = (vsize_t)args_n_results[1];
1079
1080 /* Sanity checks. */
1081 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1082 (va + size) > (OFW_VIRT_BASE + OFW_VIRT_SIZE) ||
1083 (size & PGOFSET) != 0 || size == 0) {
1084 args_n_results[nargs + 1] = -1;
1085 args->nreturns = 1;
1086 return;
1087 }
1088
1089 /* Write-back anything stuck in the cache. */
1090 cpu_idcache_wbinv_all();
1091
1092 /* Zero the mappings. */
1093 {
1094 pt_entry_t *pte = vtopte(va);
1095 int npages = size >> PGSHIFT;
1096
1097 for (; npages > 0; pte++, npages--)
1098 *pte = 0;
1099 PTE_SYNC_RANGE(vtopte(va), size >> PGSHIFT);
1100 }
1101
1102 /* Clean out tlb. */
1103 tlb_flush();
1104
1105 args->nreturns = 1;
1106 } else if (strcmp(name, "translate") == 0) {
1107 vaddr_t va;
1108 paddr_t pa;
1109 int mode;
1110 pt_entry_t pte;
1111
1112 /* Check format. */
1113 if (nargs != 1 || nreturns < 4) {
1114 args_n_results[nargs] = -1;
1115 args->nreturns = 1;
1116 return;
1117 }
1118 args_n_results[nargs] = 0; /* properly formatted request */
1119
1120 va = (vaddr_t)args_n_results[0];
1121
1122 /* Sanity checks.
1123 * For now, I am only willing to translate va's in the
1124 * "ofw range." Eventually, I may be more generous. -JJK
1125 */
1126 if ((va & PGOFSET) != 0 || va < OFW_VIRT_BASE ||
1127 va >= (OFW_VIRT_BASE + OFW_VIRT_SIZE)) {
1128 args_n_results[nargs + 1] = -1;
1129 args->nreturns = 1;
1130 return;
1131 }
1132
1133 /* Lookup mapping. */
1134 pte = *vtopte(va);
1135 if (pte == 0) {
1136 /* No mapping. */
1137 args_n_results[nargs + 1] = -1;
1138 args->nreturns = 2;
1139 } else {
1140 /* Existing mapping. */
1141 pa = (pte & L2_S_FRAME) | (va & L2_S_OFFSET);
1142 mode = (pte & 0x0C00) | (0 << 5) | (pte & 0x000C); /* AP | DOM | CB */
1143
1144 args_n_results[nargs + 1] = 0;
1145 args_n_results[nargs + 2] = pa;
1146 args_n_results[nargs + 3] = mode;
1147 args->nreturns = 4;
1148 }
1149 } else if (strcmp(name, "claim-phys") == 0) {
1150 struct pglist alloclist;
1151 paddr_t low, high, align;
1152 psize_t size;
1153
1154 /*
1155 * XXX
1156 * XXX THIS IS A GROSS HACK AND NEEDS TO BE REWRITTEN. -- cgd
1157 * XXX
1158 */
1159
1160 /* Check format. */
1161 if (nargs != 4 || nreturns < 3) {
1162 args_n_results[nargs] = -1;
1163 args->nreturns = 1;
1164 return;
1165 }
1166 args_n_results[nargs] = 0; /* properly formatted request */
1167
1168 low = args_n_results[0];
1169 size = args_n_results[2];
1170 align = args_n_results[3];
1171 high = args_n_results[1] + size;
1172
1173 #if 0
1174 printf("claim-phys: low = 0x%x, size = 0x%x, align = 0x%x, high = 0x%x\n",
1175 low, size, align, high);
1176 align = size;
1177 printf("forcing align to be 0x%x\n", align);
1178 #endif
1179
1180 args_n_results[nargs + 1] =
1181 uvm_pglistalloc(size, low, high, align, 0, &alloclist, 1, 0);
1182 #if 0
1183 printf(" -> 0x%lx", args_n_results[nargs + 1]);
1184 #endif
1185 if (args_n_results[nargs + 1] != 0) {
1186 #if 0
1187 printf("(failed)\n");
1188 #endif
1189 args_n_results[nargs + 1] = -1;
1190 args->nreturns = 2;
1191 return;
1192 }
1193 args_n_results[nargs + 2] = VM_PAGE_TO_PHYS(alloclist.tqh_first);
1194 #if 0
1195 printf("(succeeded: pa = 0x%lx)\n", args_n_results[nargs + 2]);
1196 #endif
1197 args->nreturns = 3;
1198
1199 } else if (strcmp(name, "release-phys") == 0) {
1200 printf("unimplemented ofw callback - %s\n", name);
1201 args_n_results[nargs] = -1;
1202 args->nreturns = 1;
1203 } else if (strcmp(name, "claim-virt") == 0) {
1204 vaddr_t va;
1205 vsize_t size;
1206 vaddr_t align;
1207
1208 /* XXX - notyet */
1209 /* printf("unimplemented ofw callback - %s\n", name);*/
1210 args_n_results[nargs] = -1;
1211 args->nreturns = 1;
1212 return;
1213
1214 /* Check format. */
1215 if (nargs != 2 || nreturns < 3) {
1216 args_n_results[nargs] = -1;
1217 args->nreturns = 1;
1218 return;
1219 }
1220 args_n_results[nargs] = 0; /* properly formatted request */
1221
1222 /* Allocate size bytes with specified alignment. */
1223 size = (vsize_t)args_n_results[0];
1224 align = (vaddr_t)args_n_results[1];
1225 if (align % PAGE_SIZE != 0) {
1226 args_n_results[nargs + 1] = -1;
1227 args->nreturns = 2;
1228 return;
1229 }
1230
1231 if (va == 0) {
1232 /* Couldn't allocate. */
1233 args_n_results[nargs + 1] = -1;
1234 args->nreturns = 2;
1235 } else {
1236 /* Successful allocation. */
1237 args_n_results[nargs + 1] = 0;
1238 args_n_results[nargs + 2] = va;
1239 args->nreturns = 3;
1240 }
1241 } else if (strcmp(name, "release-virt") == 0) {
1242 vaddr_t va;
1243 vsize_t size;
1244
1245 /* XXX - notyet */
1246 printf("unimplemented ofw callback - %s\n", name);
1247 args_n_results[nargs] = -1;
1248 args->nreturns = 1;
1249 return;
1250
1251 /* Check format. */
1252 if (nargs != 2 || nreturns < 1) {
1253 args_n_results[nargs] = -1;
1254 args->nreturns = 1;
1255 return;
1256 }
1257 args_n_results[nargs] = 0; /* properly formatted request */
1258
1259 /* Release bytes. */
1260 va = (vaddr_t)args_n_results[0];
1261 size = (vsize_t)args_n_results[1];
1262
1263 args->nreturns = 1;
1264 } else {
1265 args_n_results[nargs] = -1;
1266 args->nreturns = 1;
1267 }
1268 }
1269
1270 static void
1271 ofw_construct_proc0_addrspace(void)
1272 {
1273 int i, oft;
1274 static pv_addr_t proc0_pt_sys;
1275 static pv_addr_t proc0_pt_kernel[KERNEL_IMG_PTS];
1276 static pv_addr_t proc0_pt_vmdata[KERNEL_VMDATA_PTS];
1277 static pv_addr_t proc0_pt_ofw[KERNEL_OFW_PTS];
1278 static pv_addr_t proc0_pt_io[KERNEL_IO_PTS];
1279 static pv_addr_t msgbuf;
1280 vaddr_t L1pagetable;
1281 struct mem_translation *tp;
1282
1283 /* Set-up the system page. */
1284 KASSERT(vector_page == 0); /* XXX for now */
1285 systempage.pv_va = ofw_claimvirt(vector_page, PAGE_SIZE, 0);
1286 if (systempage.pv_va == -1) {
1287 /* Something was already mapped to vector_page's VA. */
1288 systempage.pv_va = vector_page;
1289 systempage.pv_pa = ofw_gettranslation(vector_page);
1290 if (systempage.pv_pa == -1)
1291 panic("bogus result from gettranslation(vector_page)");
1292 } else {
1293 /* We were just allocated the page-length range at VA 0. */
1294 if (systempage.pv_va != vector_page)
1295 panic("bogus result from claimvirt(vector_page, PAGE_SIZE, 0)");
1296
1297 /* Now allocate a physical page, and establish the mapping. */
1298 systempage.pv_pa = ofw_claimphys(0, PAGE_SIZE, PAGE_SIZE);
1299 if (systempage.pv_pa == -1)
1300 panic("bogus result from claimphys(0, PAGE_SIZE, PAGE_SIZE)");
1301 ofw_settranslation(systempage.pv_va, systempage.pv_pa,
1302 PAGE_SIZE, -1); /* XXX - mode? -JJK */
1303
1304 /* Zero the memory. */
1305 memset((char *)systempage.pv_va, 0, PAGE_SIZE);
1306 }
1307
1308 /* Allocate/initialize space for the proc0, NetBSD-managed */
1309 /* page tables that we will be switching to soon. */
1310 ofw_claimpages(&virt_freeptr, &kernel_l1pt, L1_TABLE_SIZE);
1311 ofw_claimpages(&virt_freeptr, &proc0_pt_sys, L2_TABLE_SIZE);
1312 for (i = 0; i < KERNEL_IMG_PTS; i++)
1313 ofw_claimpages(&virt_freeptr, &proc0_pt_kernel[i], L2_TABLE_SIZE);
1314 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1315 ofw_claimpages(&virt_freeptr, &proc0_pt_vmdata[i], L2_TABLE_SIZE);
1316 for (i = 0; i < KERNEL_OFW_PTS; i++)
1317 ofw_claimpages(&virt_freeptr, &proc0_pt_ofw[i], L2_TABLE_SIZE);
1318 for (i = 0; i < KERNEL_IO_PTS; i++)
1319 ofw_claimpages(&virt_freeptr, &proc0_pt_io[i], L2_TABLE_SIZE);
1320
1321 /* Allocate/initialize space for stacks. */
1322 #ifndef OFWGENCFG
1323 ofw_claimpages(&virt_freeptr, &irqstack, PAGE_SIZE);
1324 #endif
1325 ofw_claimpages(&virt_freeptr, &undstack, PAGE_SIZE);
1326 ofw_claimpages(&virt_freeptr, &abtstack, PAGE_SIZE);
1327 ofw_claimpages(&virt_freeptr, &kernelstack, UPAGES * PAGE_SIZE);
1328
1329 /* Allocate/initialize space for msgbuf area. */
1330 ofw_claimpages(&virt_freeptr, &msgbuf, MSGBUFSIZE);
1331 msgbufphys = msgbuf.pv_pa;
1332
1333 /* Construct the proc0 L1 pagetable. */
1334 L1pagetable = kernel_l1pt.pv_va;
1335
1336 pmap_link_l2pt(L1pagetable, 0x0, &proc0_pt_sys);
1337 for (i = 0; i < KERNEL_IMG_PTS; i++)
1338 pmap_link_l2pt(L1pagetable, KERNEL_BASE + i * 0x00400000,
1339 &proc0_pt_kernel[i]);
1340 for (i = 0; i < KERNEL_VMDATA_PTS; i++)
1341 pmap_link_l2pt(L1pagetable, KERNEL_VM_BASE + i * 0x00400000,
1342 &proc0_pt_vmdata[i]);
1343 for (i = 0; i < KERNEL_OFW_PTS; i++)
1344 pmap_link_l2pt(L1pagetable, OFW_VIRT_BASE + i * 0x00400000,
1345 &proc0_pt_ofw[i]);
1346 for (i = 0; i < KERNEL_IO_PTS; i++)
1347 pmap_link_l2pt(L1pagetable, IO_VIRT_BASE + i * 0x00400000,
1348 &proc0_pt_io[i]);
1349
1350 /*
1351 * OK, we're done allocating.
1352 * Get a dump of OFW's translations, and make the appropriate
1353 * entries in the L2 pagetables that we just allocated.
1354 */
1355
1356 ofw_getvirttranslations();
1357
1358 for (oft = 0, tp = OFtranslations; oft < nOFtranslations;
1359 oft++, tp++) {
1360
1361 vaddr_t va;
1362 paddr_t pa;
1363 int npages = tp->size / PAGE_SIZE;
1364
1365 /* Size must be an integral number of pages. */
1366 if (npages == 0 || tp->size % PAGE_SIZE != 0)
1367 panic("illegal ofw translation (size)");
1368
1369 /* Make an entry for each page in the appropriate table. */
1370 for (va = tp->virt, pa = tp->phys; npages > 0;
1371 va += PAGE_SIZE, pa += PAGE_SIZE, npages--) {
1372 /*
1373 * Map the top bits to the appropriate L2 pagetable.
1374 * The only allowable regions are page0, the
1375 * kernel-static area, and the ofw area.
1376 */
1377 switch (va >> (L1_S_SHIFT + 2)) {
1378 case 0:
1379 /* page0 */
1380 break;
1381
1382 #if KERNEL_IMG_PTS != 2
1383 #error "Update ofw translation range list"
1384 #endif
1385 case ( KERNEL_BASE >> (L1_S_SHIFT + 2)):
1386 case ((KERNEL_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1387 /* kernel static area */
1388 break;
1389
1390 case ( OFW_VIRT_BASE >> (L1_S_SHIFT + 2)):
1391 case ((OFW_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1392 case ((OFW_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1393 case ((OFW_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1394 /* ofw area */
1395 break;
1396
1397 case ( IO_VIRT_BASE >> (L1_S_SHIFT + 2)):
1398 case ((IO_VIRT_BASE + 0x00400000) >> (L1_S_SHIFT + 2)):
1399 case ((IO_VIRT_BASE + 0x00800000) >> (L1_S_SHIFT + 2)):
1400 case ((IO_VIRT_BASE + 0x00C00000) >> (L1_S_SHIFT + 2)):
1401 /* io area */
1402 break;
1403
1404 default:
1405 /* illegal */
1406 panic("illegal ofw translation (addr) %#lx",
1407 va);
1408 }
1409
1410 /* Make the entry. */
1411 pmap_map_entry(L1pagetable, va, pa,
1412 VM_PROT_READ|VM_PROT_WRITE,
1413 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1414 : PTE_NOCACHE);
1415 }
1416 }
1417
1418 /*
1419 * We don't actually want some of the mappings that we just
1420 * set up to appear in proc0's address space. In particular,
1421 * we don't want aliases to physical addresses that the kernel
1422 * has-mapped/will-map elsewhere.
1423 */
1424 ofw_discardmappings(proc0_pt_kernel[KERNEL_IMG_PTS - 1].pv_va,
1425 msgbuf.pv_va, MSGBUFSIZE);
1426
1427 /* update the top of the kernel VM */
1428 pmap_curmaxkvaddr =
1429 KERNEL_VM_BASE + (KERNEL_VMDATA_PTS * 0x00400000);
1430
1431 /*
1432 * gross hack for the sake of not thrashing the TLB and making
1433 * cache flush more efficient: blast l1 ptes for sections.
1434 */
1435 for (oft = 0, tp = OFtranslations; oft < nOFtranslations; oft++, tp++) {
1436 vaddr_t va = tp->virt;
1437 paddr_t pa = tp->phys;
1438
1439 if (((va | pa) & L1_S_OFFSET) == 0) {
1440 int nsections = tp->size / L1_S_SIZE;
1441
1442 while (nsections--) {
1443 /* XXXJRT prot?? */
1444 pmap_map_section(L1pagetable, va, pa,
1445 VM_PROT_READ|VM_PROT_WRITE,
1446 (tp->mode & 0xC) == 0xC ? PTE_CACHE
1447 : PTE_NOCACHE);
1448 va += L1_S_SIZE;
1449 pa += L1_S_SIZE;
1450 }
1451 }
1452 }
1453 }
1454
1455
1456 static void
1457 ofw_getphysmeminfo(void)
1458 {
1459 int phandle;
1460 int mem_len;
1461 int avail_len;
1462 int i;
1463
1464 if ((phandle = OF_finddevice("/memory")) == -1 ||
1465 (mem_len = OF_getproplen(phandle, "reg")) <= 0 ||
1466 (OFphysmem = (struct mem_region *)ofw_malloc(mem_len)) == 0 ||
1467 OF_getprop(phandle, "reg", OFphysmem, mem_len) != mem_len ||
1468 (avail_len = OF_getproplen(phandle, "available")) <= 0 ||
1469 (OFphysavail = (struct mem_region *)ofw_malloc(avail_len)) == 0 ||
1470 OF_getprop(phandle, "available", OFphysavail, avail_len)
1471 != avail_len)
1472 panic("can't get physmeminfo from OFW");
1473
1474 nOFphysmem = mem_len / sizeof(struct mem_region);
1475 nOFphysavail = avail_len / sizeof(struct mem_region);
1476
1477 /*
1478 * Sort the blocks in each array into ascending address order.
1479 * Also, page-align all blocks.
1480 */
1481 for (i = 0; i < 2; i++) {
1482 struct mem_region *tmp = (i == 0) ? OFphysmem : OFphysavail;
1483 struct mem_region *mp;
1484 int cnt = (i == 0) ? nOFphysmem : nOFphysavail;
1485 int j;
1486
1487 #ifdef OLDPRINTFS
1488 printf("ofw_getphysmeminfo: %d blocks\n", cnt);
1489 #endif
1490
1491 /* XXX - Convert all the values to host order. -JJK */
1492 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1493 mp->start = of_decode_int((unsigned char *)&mp->start);
1494 mp->size = of_decode_int((unsigned char *)&mp->size);
1495 }
1496
1497 for (j = 0, mp = tmp; j < cnt; j++, mp++) {
1498 u_int s, sz;
1499 struct mem_region *mp1;
1500
1501 /* Page-align start of the block. */
1502 s = mp->start % PAGE_SIZE;
1503 if (s != 0) {
1504 s = (PAGE_SIZE - s);
1505
1506 if (mp->size >= s) {
1507 mp->start += s;
1508 mp->size -= s;
1509 }
1510 }
1511
1512 /* Page-align the size. */
1513 mp->size -= mp->size % PAGE_SIZE;
1514
1515 /* Handle empty block. */
1516 if (mp->size == 0) {
1517 memmove(mp, mp + 1, (cnt - (mp - tmp))
1518 * sizeof(struct mem_region));
1519 cnt--;
1520 mp--;
1521 continue;
1522 }
1523
1524 /* Bubble sort. */
1525 s = mp->start;
1526 sz = mp->size;
1527 for (mp1 = tmp; mp1 < mp; mp1++)
1528 if (s < mp1->start)
1529 break;
1530 if (mp1 < mp) {
1531 memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
1532 mp1->start = s;
1533 mp1->size = sz;
1534 }
1535 }
1536
1537 #ifdef OLDPRINTFS
1538 for (mp = tmp; mp->size; mp++) {
1539 printf("%x, %x\n", mp->start, mp->size);
1540 }
1541 #endif
1542 }
1543 }
1544
1545
1546 static void
1547 ofw_getvirttranslations(void)
1548 {
1549 int mmu_phandle;
1550 int mmu_ihandle;
1551 int trans_len;
1552 int over, len;
1553 int i;
1554 struct mem_translation *tp;
1555
1556 mmu_ihandle = ofw_mmu_ihandle();
1557
1558 /* overallocate to avoid increases during allocation */
1559 over = 4 * sizeof(struct mem_translation);
1560 if ((mmu_phandle = OF_instance_to_package(mmu_ihandle)) == -1 ||
1561 (len = OF_getproplen(mmu_phandle, "translations")) <= 0 ||
1562 (OFtranslations = ofw_malloc(len + over)) == 0 ||
1563 (trans_len = OF_getprop(mmu_phandle, "translations",
1564 OFtranslations, len + over)) > (len + over))
1565 panic("can't get virttranslations from OFW");
1566
1567 /* XXX - Convert all the values to host order. -JJK */
1568 nOFtranslations = trans_len / sizeof(struct mem_translation);
1569 #ifdef OLDPRINTFS
1570 printf("ofw_getvirtmeminfo: %d blocks\n", nOFtranslations);
1571 #endif
1572 for (i = 0, tp = OFtranslations; i < nOFtranslations; i++, tp++) {
1573 tp->virt = of_decode_int((unsigned char *)&tp->virt);
1574 tp->size = of_decode_int((unsigned char *)&tp->size);
1575 tp->phys = of_decode_int((unsigned char *)&tp->phys);
1576 tp->mode = of_decode_int((unsigned char *)&tp->mode);
1577 }
1578 }
1579
1580 /*
1581 * ofw_valloc: allocate blocks of VM for IO and other special purposes
1582 */
1583 typedef struct _vfree {
1584 struct _vfree *pNext;
1585 vaddr_t start;
1586 vsize_t size;
1587 } VFREE, *PVFREE;
1588
1589 static VFREE vfinitial = { NULL, IO_VIRT_BASE, IO_VIRT_SIZE };
1590
1591 static PVFREE vflist = &vfinitial;
1592
1593 static vaddr_t
1594 ofw_valloc(vsize_t size, vaddr_t align)
1595 {
1596 PVFREE *ppvf;
1597 PVFREE pNew;
1598 vaddr_t new;
1599 vaddr_t lead;
1600
1601 for (ppvf = &vflist; *ppvf; ppvf = &((*ppvf)->pNext)) {
1602 if (align == 0) {
1603 new = (*ppvf)->start;
1604 lead = 0;
1605 } else {
1606 new = ((*ppvf)->start + (align - 1)) & ~(align - 1);
1607 lead = new - (*ppvf)->start;
1608 }
1609
1610 if (((*ppvf)->size - lead) >= size) {
1611 if (lead == 0) {
1612 /* using whole block */
1613 if (size == (*ppvf)->size) {
1614 /* splice out of list */
1615 (*ppvf) = (*ppvf)->pNext;
1616 } else { /* tail of block is free */
1617 (*ppvf)->start = new + size;
1618 (*ppvf)->size -= size;
1619 }
1620 } else {
1621 vsize_t tail = ((*ppvf)->start
1622 + (*ppvf)->size) - (new + size);
1623 /* free space at beginning */
1624 (*ppvf)->size = lead;
1625
1626 if (tail != 0) {
1627 /* free space at tail */
1628 pNew = ofw_malloc(sizeof(VFREE));
1629 pNew->pNext = (*ppvf)->pNext;
1630 (*ppvf)->pNext = pNew;
1631 pNew->start = new + size;
1632 pNew->size = tail;
1633 }
1634 }
1635 return new;
1636 } /* END if */
1637 } /* END for */
1638
1639 return -1;
1640 }
1641
1642 vaddr_t
1643 ofw_map(paddr_t pa, vsize_t size, int cb_bits)
1644 {
1645 vaddr_t va;
1646
1647 if ((va = ofw_valloc(size, size)) == -1)
1648 panic("cannot alloc virtual memory for %#lx", pa);
1649
1650 ofw_claimvirt(va, size, 0); /* make sure OFW knows about the memory */
1651
1652 ofw_settranslation(va, pa, size, L2_AP(AP_KRW) | cb_bits);
1653
1654 return va;
1655 }
1656
1657 static int
1658 ofw_mem_ihandle(void)
1659 {
1660 static int mem_ihandle = 0;
1661 int chosen;
1662
1663 if (mem_ihandle != 0)
1664 return(mem_ihandle);
1665
1666 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1667 OF_getprop(chosen, "memory", &mem_ihandle, sizeof(int)) < 0)
1668 panic("ofw_mem_ihandle");
1669
1670 mem_ihandle = of_decode_int((unsigned char *)&mem_ihandle);
1671
1672 return(mem_ihandle);
1673 }
1674
1675
1676 static int
1677 ofw_mmu_ihandle(void)
1678 {
1679 static int mmu_ihandle = 0;
1680 int chosen;
1681
1682 if (mmu_ihandle != 0)
1683 return(mmu_ihandle);
1684
1685 if ((chosen = OF_finddevice("/chosen")) == -1 ||
1686 OF_getprop(chosen, "mmu", &mmu_ihandle, sizeof(int)) < 0)
1687 panic("ofw_mmu_ihandle");
1688
1689 mmu_ihandle = of_decode_int((unsigned char *)&mmu_ihandle);
1690
1691 return(mmu_ihandle);
1692 }
1693
1694
1695 /* Return -1 on failure. */
1696 static paddr_t
1697 ofw_claimphys(paddr_t pa, psize_t size, paddr_t align)
1698 {
1699 int mem_ihandle = ofw_mem_ihandle();
1700
1701 /* printf("ofw_claimphys (%x, %x, %x) --> ", pa, size, align);*/
1702 if (align == 0) {
1703 /* Allocate at specified base; alignment is ignored. */
1704 pa = OF_call_method_1("claim", mem_ihandle, 3, pa, size, align);
1705 } else {
1706 /* Allocate anywhere, with specified alignment. */
1707 pa = OF_call_method_1("claim", mem_ihandle, 2, size, align);
1708 }
1709
1710 /* printf("%x\n", pa);*/
1711 return(pa);
1712 }
1713
1714
1715 #if 0
1716 /* Return -1 on failure. */
1717 static paddr_t
1718 ofw_releasephys(paddr_t pa, psize_t size)
1719 {
1720 int mem_ihandle = ofw_mem_ihandle();
1721
1722 /* printf("ofw_releasephys (%x, %x)\n", pa, size);*/
1723
1724 return (OF_call_method_1("release", mem_ihandle, 2, pa, size));
1725 }
1726 #endif
1727
1728 /* Return -1 on failure. */
1729 static vaddr_t
1730 ofw_claimvirt(vaddr_t va, vsize_t size, vaddr_t align)
1731 {
1732 int mmu_ihandle = ofw_mmu_ihandle();
1733
1734 /*printf("ofw_claimvirt (%x, %x, %x) --> ", va, size, align);*/
1735 if (align == 0) {
1736 /* Allocate at specified base; alignment is ignored. */
1737 va = OF_call_method_1("claim", mmu_ihandle, 3, va, size, align);
1738 } else {
1739 /* Allocate anywhere, with specified alignment. */
1740 va = OF_call_method_1("claim", mmu_ihandle, 2, size, align);
1741 }
1742
1743 /*printf("%x\n", va);*/
1744 return(va);
1745 }
1746
1747 /* Return -1 if no mapping. */
1748 paddr_t
1749 ofw_gettranslation(vaddr_t va)
1750 {
1751 int mmu_ihandle = ofw_mmu_ihandle();
1752 paddr_t pa;
1753 int mode;
1754 int exists;
1755
1756 #ifdef OFW_DEBUG
1757 printf("ofw_gettranslation (%x) --> ", (uint32_t)va);
1758 #endif
1759 exists = 0; /* gets set to true if translation exists */
1760 if (OF_call_method("translate", mmu_ihandle, 1, 3, va, &pa, &mode,
1761 &exists) != 0)
1762 return(-1);
1763
1764 #ifdef OFW_DEBUG
1765 printf("%d %x\n", exists, (uint32_t)pa);
1766 #endif
1767 return(exists ? pa : -1);
1768 }
1769
1770
1771 static void
1772 ofw_settranslation(vaddr_t va, paddr_t pa, vsize_t size, int mode)
1773 {
1774 int mmu_ihandle = ofw_mmu_ihandle();
1775
1776 #ifdef OFW_DEBUG
1777 printf("ofw_settranslation (%x, %x, %x, %x) --> void", (uint32_t)va,
1778 (uint32_t)pa, (uint32_t)size, (uint32_t)mode);
1779 #endif
1780 if (OF_call_method("map", mmu_ihandle, 4, 0, pa, va, size, mode) != 0)
1781 panic("ofw_settranslation failed");
1782 }
1783
1784 /*
1785 * Allocation routine used before the kernel takes over memory.
1786 * Use this for efficient storage for things that aren't rounded to
1787 * page size.
1788 *
1789 * The point here is not necessarily to be very efficient (even though
1790 * that's sort of nice), but to do proper dynamic allocation to avoid
1791 * size-limitation errors.
1792 *
1793 */
1794
1795 typedef struct _leftover {
1796 struct _leftover *pNext;
1797 vsize_t size;
1798 } LEFTOVER, *PLEFTOVER;
1799
1800 /* leftover bits of pages. first word is pointer to next.
1801 second word is size of leftover */
1802 static PLEFTOVER leftovers = NULL;
1803
1804 static void *
1805 ofw_malloc(vsize_t size)
1806 {
1807 PLEFTOVER *ppLeftover;
1808 PLEFTOVER pLeft;
1809 pv_addr_t new;
1810 vsize_t newSize, claim_size;
1811
1812 /* round and set minimum size */
1813 size = max(sizeof(LEFTOVER),
1814 ((size + (sizeof(LEFTOVER) - 1)) & ~(sizeof(LEFTOVER) - 1)));
1815
1816 for (ppLeftover = &leftovers; *ppLeftover;
1817 ppLeftover = &((*ppLeftover)->pNext))
1818 if ((*ppLeftover)->size >= size)
1819 break;
1820
1821 if (*ppLeftover) { /* have a leftover of the right size */
1822 /* remember the leftover */
1823 new.pv_va = (vaddr_t)*ppLeftover;
1824 if ((*ppLeftover)->size < (size + sizeof(LEFTOVER))) {
1825 /* splice out of chain */
1826 *ppLeftover = (*ppLeftover)->pNext;
1827 } else {
1828 /* remember the next pointer */
1829 pLeft = (*ppLeftover)->pNext;
1830 newSize = (*ppLeftover)->size - size; /* reduce size */
1831 /* move pointer */
1832 *ppLeftover = (PLEFTOVER)(((vaddr_t)*ppLeftover)
1833 + size);
1834 (*ppLeftover)->pNext = pLeft;
1835 (*ppLeftover)->size = newSize;
1836 }
1837 } else {
1838 claim_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1839 ofw_claimpages(&virt_freeptr, &new, claim_size);
1840 if ((size + sizeof(LEFTOVER)) <= claim_size) {
1841 pLeft = (PLEFTOVER)(new.pv_va + size);
1842 pLeft->pNext = leftovers;
1843 pLeft->size = claim_size - size;
1844 leftovers = pLeft;
1845 }
1846 }
1847
1848 return (void *)(new.pv_va);
1849 }
1850
1851 /*
1852 * Here is a really, really sleazy free. It's not used right now,
1853 * because it's not worth the extra complexity for just a few bytes.
1854 *
1855 */
1856 #if 0
1857 static void
1858 ofw_free(vaddr_t addr, vsize_t size)
1859 {
1860 PLEFTOVER pLeftover = (PLEFTOVER)addr;
1861
1862 /* splice right into list without checks or compaction */
1863 pLeftover->pNext = leftovers;
1864 pLeftover->size = size;
1865 leftovers = pLeftover;
1866 }
1867 #endif
1868
1869 /*
1870 * Allocate and zero round(size)/PAGE_SIZE pages of memory.
1871 * We guarantee that the allocated memory will be
1872 * aligned to a boundary equal to the smallest power of
1873 * 2 greater than or equal to size.
1874 * free_pp is an IN/OUT parameter which points to the
1875 * last allocated virtual address in an allocate-downwards
1876 * stack. pv_p is an OUT parameter which contains the
1877 * virtual and physical base addresses of the allocated
1878 * memory.
1879 */
1880 static void
1881 ofw_claimpages(vaddr_t *free_pp, pv_addr_t *pv_p, vsize_t size)
1882 {
1883 /* round-up to page boundary */
1884 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1885 vsize_t aligned_size;
1886 vaddr_t va;
1887 paddr_t pa;
1888
1889 if (alloc_size == 0)
1890 panic("ofw_claimpages zero");
1891
1892 for (aligned_size = 1; aligned_size < alloc_size; aligned_size <<= 1)
1893 ;
1894
1895 /* The only way to provide the alignment guarantees is to
1896 * allocate the virtual and physical ranges separately,
1897 * then do an explicit map call.
1898 */
1899 va = (*free_pp & ~(aligned_size - 1)) - aligned_size;
1900 if (ofw_claimvirt(va, alloc_size, 0) != va)
1901 panic("ofw_claimpages va alloc");
1902 pa = ofw_claimphys(0, alloc_size, aligned_size);
1903 if (pa == -1)
1904 panic("ofw_claimpages pa alloc");
1905 /* XXX - what mode? -JJK */
1906 ofw_settranslation(va, pa, alloc_size, -1);
1907
1908 /* The memory's mapped-in now, so we can zero it. */
1909 memset((char *)va, 0, alloc_size);
1910
1911 /* Set OUT parameters. */
1912 *free_pp = va;
1913 pv_p->pv_va = va;
1914 pv_p->pv_pa = pa;
1915 }
1916
1917
1918 static void
1919 ofw_discardmappings(vaddr_t L2pagetable, vaddr_t va, vsize_t size)
1920 {
1921 /* round-up to page boundary */
1922 vsize_t alloc_size = (size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1923 int npages = alloc_size / PAGE_SIZE;
1924
1925 if (npages == 0)
1926 panic("ofw_discardmappings zero");
1927
1928 /* Discard each mapping. */
1929 for (; npages > 0; va += PAGE_SIZE, npages--) {
1930 /* Sanity. The current entry should be non-null. */
1931 if (ReadWord(L2pagetable + ((va >> 10) & 0x00000FFC)) == 0)
1932 panic("ofw_discardmappings zero entry");
1933
1934 /* Clear the entry. */
1935 WriteWord(L2pagetable + ((va >> 10) & 0x00000FFC), 0);
1936 }
1937 }
1938
1939
1940 static void
1941 ofw_initallocator(void)
1942 {
1943
1944 }
1945
1946 #if (NIGSFB_OFBUS > 0) || (NCHIPSFB_OFBUS > 0) || (NVGA_OFBUS > 0)
1947 static void
1948 reset_screen(void)
1949 {
1950
1951 if ((console_ihandle == 0) || (console_ihandle == -1))
1952 return;
1953
1954 OF_call_method("install", console_ihandle, 0, 0);
1955 }
1956 #endif /* (NIGSFB_OFBUS > 0) || (NVGA_OFBUS > 0) */
1957