vme_machdep.c revision 1.14 1 /* $NetBSD: vme_machdep.c,v 1.14 1998/09/19 16:45:43 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/syslog.h>
48
49 #include <vm/vm.h>
50
51 #define _SPARC_BUS_DMA_PRIVATE
52 #include <machine/bus.h>
53 #include <sparc/sparc/iommuvar.h>
54 #include <machine/autoconf.h>
55 #include <machine/pmap.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmevar.h>
61
62 #include <sparc/sparc/asm.h>
63 #include <sparc/sparc/vaddrs.h>
64 #include <sparc/sparc/cpuvar.h>
65 #include <sparc/dev/vmereg.h>
66
67 struct vmebus_softc {
68 struct device sc_dev; /* base device */
69 bus_space_tag_t sc_bustag;
70 bus_dma_tag_t sc_dmatag;
71 struct vmebusreg *sc_reg; /* VME control registers */
72 struct vmebusvec *sc_vec; /* VME interrupt vector */
73 struct rom_range *sc_range; /* ROM range property */
74 int sc_nrange;
75 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
76 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
77 int (*sc_vmeintr) __P((void *));
78 struct bootpath *sc_bp;
79 };
80 struct vmebus_softc *vmebus_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 #endif
93 static int sparc_vme_error __P((void));
94
95
96 static int sparc_vme_probe __P((void *, bus_space_tag_t, vme_addr_t,
97 size_t, vme_size_t, vme_mod_t,
98 int (*) __P((void *, void *)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_mod_t,
100 bus_space_tag_t, bus_space_handle_t *));
101 static void sparc_vme_unmap __P((void *));
102 static int sparc_vme_mmap_cookie __P((void *, vme_addr_t, vme_mod_t,
103 bus_space_tag_t, bus_space_handle_t *));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t,
106 int (*) __P((void *)), void *));
107 static void sparc_vme_intr_disestablish __P((void *, void *));
108
109 static int vmebus_translate __P((struct vmebus_softc *, vme_mod_t,
110 vme_addr_t, bus_type_t *, bus_addr_t *));
111 static void sparc_vme_bus_establish __P((void *, struct device *));
112 #if defined(SUN4M)
113 static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
114 bus_size_t, bus_size_t, int));
115
116 #endif
117
118 /*
119 * DMA functions.
120 */
121 #if defined(SUN4)
122 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct proc *, int));
124 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
125 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
126 bus_addr_t, bus_size_t, int));
127
128 static int sparc_vme4_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
129 bus_size_t, bus_size_t, bus_dma_segment_t *,
130 int, int *, int));
131 static void sparc_vme4_dmamem_free __P((bus_dma_tag_t,
132 bus_dma_segment_t *, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
137 bus_size_t, bus_size_t, int, bus_dmamap_t *));
138
139 static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
140 bus_size_t, struct proc *, int));
141 static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
142 static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
143 bus_addr_t, bus_size_t, int));
144
145 static int sparc_vme4m_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
146 bus_size_t, bus_size_t, bus_dma_segment_t *,
147 int, int *, int));
148 static void sparc_vme4m_dmamem_free __P((bus_dma_tag_t,
149 bus_dma_segment_t *, int));
150 #endif
151
152 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
153 int, size_t, caddr_t *, int));
154 #if 0
155 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
156 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
157 static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
158 bus_dma_segment_t *, int, int, int, int));
159 #endif
160
161 struct cfattach vme_mainbus_ca = {
162 sizeof(struct vmebus_softc), vmematch_mainbus, vmeattach_mainbus
163 };
164
165 struct cfattach vme_iommu_ca = {
166 sizeof(struct vmebus_softc), vmematch_iommu, vmeattach_iommu
167 };
168
169 int (*vmeerr_handler) __P((void));
170
171 /* If the PROM does not provide the `ranges' property, we make up our own */
172 struct rom_range vmebus_translations[] = {
173 #define _DS (VMEMOD_D|VMEMOD_S)
174 { VMEMOD_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
175 { VMEMOD_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
176 { VMEMOD_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
177 { VMEMOD_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
178 { VMEMOD_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
179 { VMEMOD_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
180 #undef _DS
181 };
182
183 /*
184 * DMA on sun4 VME devices use the last MB of virtual space, which
185 * is mapped by hardware onto the first MB of VME space.
186 */
187 struct extent *vme_dvmamap;
188
189 struct sparc_bus_space_tag sparc_vme_bus_tag = {
190 NULL, /* cookie */
191 NULL, /* parent bus tag */
192 NULL, /* bus_map */
193 NULL, /* bus_unmap */
194 NULL, /* bus_subregion */
195 NULL /* barrier */
196 };
197
198 struct vme_chipset_tag sparc_vme_chipset_tag = {
199 NULL,
200 sparc_vme_probe,
201 sparc_vme_map,
202 sparc_vme_unmap,
203 sparc_vme_mmap_cookie,
204 sparc_vme_intr_map,
205 sparc_vme_intr_establish,
206 sparc_vme_intr_disestablish,
207 sparc_vme_bus_establish
208 };
209
210
211 #if defined(SUN4)
212 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
213 NULL, /* cookie */
214 _bus_dmamap_create,
215 _bus_dmamap_destroy,
216 sparc_vme4_dmamap_load,
217 _bus_dmamap_load_mbuf,
218 _bus_dmamap_load_uio,
219 _bus_dmamap_load_raw,
220 sparc_vme4_dmamap_unload,
221 sparc_vme4_dmamap_sync,
222
223 sparc_vme4_dmamem_alloc,
224 sparc_vme4_dmamem_free,
225 sparc_vme_dmamem_map,
226 _bus_dmamem_unmap,
227 _bus_dmamem_mmap
228 };
229 #endif
230
231 #if defined(SUN4M)
232 struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
233 NULL, /* cookie */
234 sparc_vme4m_dmamap_create,
235 _bus_dmamap_destroy,
236 sparc_vme4m_dmamap_load,
237 _bus_dmamap_load_mbuf,
238 _bus_dmamap_load_uio,
239 _bus_dmamap_load_raw,
240 sparc_vme4m_dmamap_unload,
241 sparc_vme4m_dmamap_sync,
242
243 sparc_vme4m_dmamem_alloc,
244 sparc_vme4m_dmamem_free,
245 sparc_vme_dmamem_map,
246 _bus_dmamem_unmap,
247 _bus_dmamem_mmap
248 };
249 #endif
250
251
252 void
253 sparc_vme_bus_establish(cookie, dev)
254 void *cookie;
255 struct device *dev;
256 {
257 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
258 struct bootpath *bp = sc->sc_bp;
259 char *name;
260
261 name = dev->dv_cfdata->cf_driver->cd_name;
262 #ifdef DEBUG
263 printf("sparc_vme_bus_establish: %s%d\n", name, dev->dv_unit);
264 #endif
265 if (bp != NULL && strcmp(bp->name, name) == 0 &&
266 dev->dv_unit == bp->val[1]) {
267 bp->dev = dev;
268 #ifdef DEBUG
269 printf("sparc_vme_bus_establish: on the boot path\n");
270 #endif
271 sc->sc_bp++;
272 bootpath_store(1, sc->sc_bp);
273 }
274 }
275
276
277 int
278 vmematch_mainbus(parent, cf, aux)
279 struct device *parent;
280 struct cfdata *cf;
281 void *aux;
282 {
283
284 if (!CPU_ISSUN4)
285 return (0);
286
287 return (1);
288 }
289
290 int
291 vmematch_iommu(parent, cf, aux)
292 struct device *parent;
293 struct cfdata *cf;
294 void *aux;
295 {
296 struct mainbus_attach_args *ma = aux;
297
298 return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
299 }
300
301
302 void
303 vmeattach_mainbus(parent, self, aux)
304 struct device *parent, *self;
305 void *aux;
306 {
307 #if defined(SUN4)
308 struct mainbus_attach_args *ma = aux;
309 struct vmebus_softc *sc = (struct vmebus_softc *)self;
310 struct vme_busattach_args vba;
311
312 if (self->dv_unit > 0) {
313 printf(" unsupported\n");
314 return;
315 }
316
317 sc->sc_bustag = ma->ma_bustag;
318 sc->sc_dmatag = ma->ma_dmatag;
319
320 if (ma->ma_bp != NULL && strcmp(ma->ma_bp->name, "vme") == 0) {
321 sc->sc_bp = ma->ma_bp + 1;
322 bootpath_store(1, sc->sc_bp);
323 }
324
325 /* VME interrupt entry point */
326 sc->sc_vmeintr = vmeintr4;
327
328 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
329 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
330
331 vba.vba_bustag = &sparc_vme_bus_tag;
332 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
333 vba.vba_dmatag = &sparc_vme4_dma_tag;
334
335 /* Fall back to our own `range' construction */
336 sc->sc_range = vmebus_translations;
337 sc->sc_nrange =
338 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
339
340 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
341 M_DEVBUF, 0, 0, EX_NOWAIT);
342 if (vme_dvmamap == NULL)
343 panic("vme: unable to allocate DVMA map");
344
345 printf("\n");
346 (void)config_search(vmesearch, self, &vba);
347
348 bootpath_store(1, NULL);
349 #endif
350 return;
351 }
352
353 /* sun4m vmebus */
354 void
355 vmeattach_iommu(parent, self, aux)
356 struct device *parent, *self;
357 void *aux;
358 {
359 #if defined(SUN4M)
360 struct vmebus_softc *sc = (struct vmebus_softc *)self;
361 struct iommu_attach_args *ia = aux;
362 struct vme_busattach_args vba;
363 bus_space_handle_t bh;
364 int node;
365 int cline;
366
367 if (self->dv_unit > 0) {
368 printf(" unsupported\n");
369 return;
370 }
371
372 sc->sc_bustag = ia->iom_bustag;
373 sc->sc_dmatag = ia->iom_dmatag;
374
375 /* VME interrupt entry point */
376 sc->sc_vmeintr = vmeintr4m;
377
378 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
379 /*XXX*/ sparc_vme4m_dma_tag._cookie = self;
380 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
381
382 vba.vba_bustag = &sparc_vme_bus_tag;
383 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
384 vba.vba_dmatag = &sparc_vme4m_dma_tag;
385
386 node = ia->iom_node;
387
388 /*
389 * Map VME control space
390 */
391 if (ia->iom_nreg < 2) {
392 printf("%s: only %d register sets\n", self->dv_xname,
393 ia->iom_nreg);
394 return;
395 }
396
397 if (bus_space_map2(ia->iom_bustag,
398 (bus_type_t)ia->iom_reg[0].ior_iospace,
399 (bus_addr_t)ia->iom_reg[0].ior_pa,
400 (bus_size_t)ia->iom_reg[0].ior_size,
401 BUS_SPACE_MAP_LINEAR,
402 0, &bh) != 0) {
403 panic("%s: can't map vmebusreg", self->dv_xname);
404 }
405 sc->sc_reg = (struct vmebusreg *)bh;
406
407 if (bus_space_map2(ia->iom_bustag,
408 (bus_type_t)ia->iom_reg[1].ior_iospace,
409 (bus_addr_t)ia->iom_reg[1].ior_pa,
410 (bus_size_t)ia->iom_reg[1].ior_size,
411 BUS_SPACE_MAP_LINEAR,
412 0, &bh) != 0) {
413 panic("%s: can't map vmebusvec", self->dv_xname);
414 }
415 sc->sc_vec = (struct vmebusvec *)bh;
416
417 /*
418 * Map VME IO cache tags and flush control.
419 */
420 if (bus_space_map2(ia->iom_bustag,
421 (bus_type_t)ia->iom_reg[1].ior_iospace,
422 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
423 VME_IOC_SIZE,
424 BUS_SPACE_MAP_LINEAR,
425 0, &bh) != 0) {
426 panic("%s: can't map IOC tags", self->dv_xname);
427 }
428 sc->sc_ioctags = (u_int32_t *)bh;
429
430 if (bus_space_map2(ia->iom_bustag,
431 (bus_type_t)ia->iom_reg[1].ior_iospace,
432 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
433 VME_IOC_SIZE,
434 BUS_SPACE_MAP_LINEAR,
435 0, &bh) != 0) {
436 panic("%s: can't map IOC flush registers", self->dv_xname);
437 }
438 sc->sc_iocflush = (u_int32_t *)bh;
439
440 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
441
442 /*
443 * Get "range" property.
444 */
445 if (getprop(node, "ranges", sizeof(struct rom_range),
446 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
447 panic("%s: can't get ranges property", self->dv_xname);
448 }
449
450 vmebus_sc = sc;
451 vmeerr_handler = sparc_vme_error;
452
453 /*
454 * Invalidate all IO-cache entries.
455 */
456 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
457 sc->sc_ioctags[--cline] = 0;
458 }
459
460 /* Enable IO-cache */
461 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
462
463 printf(": version 0x%x\n",
464 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
465
466 (void)config_search(vmesearch, self, &vba);
467 #endif
468 }
469
470 int
471 sparc_vme_error()
472 {
473 struct vmebus_softc *sc = vmebus_sc;
474 u_int32_t afsr, afpa;
475 char bits[64];
476
477 afsr = sc->sc_reg->vmebus_afsr,
478 afpa = sc->sc_reg->vmebus_afar;
479 printf("VME error:\n\tAFSR %s\n",
480 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
481 printf("\taddress: 0x%x%x\n", afsr, afpa);
482 return (0);
483 }
484
485 int
486 vmebus_translate(sc, mod, addr, btp, bap)
487 struct vmebus_softc *sc;
488 vme_mod_t mod;
489 vme_addr_t addr;
490 bus_type_t *btp;
491 bus_addr_t *bap;
492 {
493 int i;
494
495 for (i = 0; i < sc->sc_nrange; i++) {
496
497 if (sc->sc_range[i].cspace != mod)
498 continue;
499
500 /* We've found the connection to the parent bus */
501 *bap = sc->sc_range[i].poffset + addr;
502 *btp = sc->sc_range[i].pspace;
503 return (0);
504 }
505 return (ENOENT);
506 }
507
508 int
509 sparc_vme_probe(cookie, tag, addr, offset, size, mod, callback, arg)
510 void *cookie;
511 bus_space_tag_t tag;
512 vme_addr_t addr;
513 size_t offset;
514 vme_size_t size;
515 int mod;
516 int (*callback) __P((void *, void *));
517 void *arg;
518 {
519 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
520 bus_type_t iospace;
521 bus_addr_t paddr;
522
523 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
524 return (0);
525
526 return (bus_space_probe(sc->sc_bustag, iospace, paddr, size, offset,
527 0, callback, arg));
528 }
529
530 int
531 sparc_vme_map(cookie, addr, size, mod, tag, hp)
532 void *cookie;
533 vme_addr_t addr;
534 vme_size_t size;
535 int mod;
536 bus_space_tag_t tag;
537 bus_space_handle_t *hp;
538 {
539 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
540 bus_type_t iospace;
541 bus_addr_t paddr;
542 int error;
543
544 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
545 if (error != 0)
546 return (error);
547
548 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
549 }
550
551 int
552 sparc_vme_mmap_cookie(cookie, addr, mod, tag, hp)
553 void *cookie;
554 vme_addr_t addr;
555 int mod;
556 bus_space_tag_t tag;
557 bus_space_handle_t *hp;
558 {
559 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
560 bus_type_t iospace;
561 bus_addr_t paddr;
562 int error;
563
564 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
565 if (error != 0)
566 return (error);
567
568 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
569 }
570
571 #if defined(SUN4M)
572 void
573 sparc_vme4m_barrier(t, h, offset, size, flags)
574 bus_space_tag_t t;
575 bus_space_handle_t h;
576 bus_size_t offset;
577 bus_size_t size;
578 int flags;
579 {
580 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
581
582 /* Read async fault status to flush write-buffers */
583 (*(volatile int *)&vbp->vmebus_afsr);
584 }
585 #endif
586
587
588
589 /*
590 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
591 */
592 static int vme_ipl_to_pil[] = {
593 0,
594 2,
595 3,
596 5,
597 7,
598 9,
599 11,
600 13
601 };
602
603
604 /*
605 * All VME device interrupts go through vmeintr(). This function reads
606 * the VME vector from the bus, then dispatches the device interrupt
607 * handler. All handlers for devices that map to the same Processor
608 * Interrupt Level (according to the table above) are on a linked list
609 * of `sparc_vme_intr_handle' structures. The head of which is passed
610 * down as the argument to `vmeintr(void *arg)'.
611 */
612 struct sparc_vme_intr_handle {
613 struct intrhand ih;
614 struct sparc_vme_intr_handle *next;
615 int vec; /* VME interrupt vector */
616 int pri; /* VME interrupt priority */
617 struct vmebus_softc *sc;/*XXX*/
618 };
619
620 #if defined(SUN4)
621 int
622 vmeintr4(arg)
623 void *arg;
624 {
625 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
626 int level, vec;
627 int i = 0;
628
629 level = (ihp->pri << 1) | 1;
630
631 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
632
633 if (vec == -1) {
634 printf("vme: spurious interrupt\n");
635 return 1; /* XXX - pretend we handled it, for now */
636 }
637
638 for (; ihp; ihp = ihp->next)
639 if (ihp->vec == vec && ihp->ih.ih_fun)
640 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
641 return (i);
642 }
643 #endif
644
645 #if defined(SUN4M)
646 int
647 vmeintr4m(arg)
648 void *arg;
649 {
650 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
651 int level, vec;
652 int i = 0;
653
654 level = (ihp->pri << 1) | 1;
655
656 #if 0
657 int pending;
658
659 /* Flush VME <=> Sbus write buffers */
660 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
661
662 pending = *((int*)ICR_SI_PEND);
663 if ((pending & SINTR_VME(ihp->pri)) == 0) {
664 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
665 ihp->pri, pending);
666 return (0);
667 }
668 #endif
669 #if 0
670 /* Why gives this a bus timeout sometimes? */
671 vec = ihp->sc->sc_vec->vmebusvec[level];
672 #else
673 /* so, arrange to catch the fault... */
674 {
675 extern struct user *proc0paddr;
676 extern int fkbyte __P((caddr_t, struct pcb *));
677 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
678 struct pcb *xpcb;
679 u_long saveonfault;
680 int s;
681
682 s = splhigh();
683 if (curproc == NULL)
684 xpcb = (struct pcb *)proc0paddr;
685 else
686 xpcb = &curproc->p_addr->u_pcb;
687
688 saveonfault = (u_long)xpcb->pcb_onfault;
689 vec = fkbyte(addr, xpcb);
690 xpcb->pcb_onfault = (caddr_t)saveonfault;
691
692 splx(s);
693 }
694 #endif
695
696 if (vec == -1) {
697 printf("vme: spurious interrupt: ");
698 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
699 *((int*)ICR_SI_PEND),
700 ihp->sc->sc_reg->vmebus_afsr,
701 ihp->sc->sc_reg->vmebus_afar);
702 return (1); /* XXX - pretend we handled it, for now */
703 }
704
705 for (; ihp; ihp = ihp->next)
706 if (ihp->vec == vec && ihp->ih.ih_fun)
707 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
708 return (i);
709 }
710 #endif
711
712 int
713 sparc_vme_intr_map(cookie, vec, pri, ihp)
714 void *cookie;
715 int vec;
716 int pri;
717 vme_intr_handle_t *ihp;
718 {
719 struct sparc_vme_intr_handle *ih;
720
721 ih = (vme_intr_handle_t)
722 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
723 ih->pri = pri;
724 ih->vec = vec;
725 ih->sc = cookie;/*XXX*/
726 *ihp = ih;
727 return (0);
728 }
729
730 void *
731 sparc_vme_intr_establish(cookie, vih, func, arg)
732 void *cookie;
733 vme_intr_handle_t vih;
734 int (*func) __P((void *));
735 void *arg;
736 {
737 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
738 struct sparc_vme_intr_handle *svih =
739 (struct sparc_vme_intr_handle *)vih;
740 struct intrhand *ih;
741 int level;
742
743 /* Translate VME priority to processor IPL */
744 level = vme_ipl_to_pil[svih->pri];
745
746 svih->ih.ih_fun = func;
747 svih->ih.ih_arg = arg;
748 svih->next = NULL;
749
750 /* ensure the interrupt subsystem will call us at this level */
751 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
752 if (ih->ih_fun == sc->sc_vmeintr)
753 break;
754
755 if (ih == NULL) {
756 ih = (struct intrhand *)
757 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
758 if (ih == NULL)
759 panic("vme_addirq");
760 bzero(ih, sizeof *ih);
761 ih->ih_fun = sc->sc_vmeintr;
762 ih->ih_arg = vih;
763 intr_establish(level, ih);
764 } else {
765 svih->next = (vme_intr_handle_t)ih->ih_arg;
766 ih->ih_arg = vih;
767 }
768 return (NULL);
769 }
770
771 void
772 sparc_vme_unmap(cookie)
773 void * cookie;
774 {
775 /* Not implemented */
776 panic("sparc_vme_unmap");
777 }
778
779 void
780 sparc_vme_intr_disestablish(cookie, a)
781 void *cookie;
782 void *a;
783 {
784 /* Not implemented */
785 panic("sparc_vme_intr_disestablish");
786 }
787
788
789
790 /*
791 * VME DMA functions.
792 */
793
794 #if defined(SUN4)
795 int
796 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
797 bus_dma_tag_t t;
798 bus_dmamap_t map;
799 void *buf;
800 bus_size_t buflen;
801 struct proc *p;
802 int flags;
803 {
804 bus_addr_t dvmaddr;
805 bus_size_t sgsize;
806 vaddr_t vaddr;
807 pmap_t pmap;
808 int pagesz = PAGE_SIZE;
809 int error;
810
811 error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
812 map->_dm_boundary,
813 (flags & BUS_DMA_NOWAIT) == 0
814 ? EX_WAITOK
815 : EX_NOWAIT,
816 (u_long *)&dvmaddr);
817 if (error != 0)
818 return (error);
819
820 vaddr = (vaddr_t)buf;
821 map->dm_mapsize = buflen;
822 map->dm_nsegs = 1;
823 map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
824 map->dm_segs[0].ds_len = buflen;
825
826 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
827
828 for (; buflen > 0; ) {
829 paddr_t pa;
830 /*
831 * Get the physical address for this page.
832 */
833 pa = pmap_extract(pmap, vaddr);
834
835 /*
836 * Compute the segment size, and adjust counts.
837 */
838 sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
839 if (buflen < sgsize)
840 sgsize = buflen;
841
842 #ifdef notyet
843 if (have_iocache)
844 curaddr |= PG_IOC;
845 #endif
846 pmap_enter(pmap_kernel(), dvmaddr,
847 (pa & ~(pagesz-1)) | PMAP_NC,
848 VM_PROT_READ|VM_PROT_WRITE, 1);
849
850 dvmaddr += pagesz;
851 vaddr += sgsize;
852 buflen -= sgsize;
853 }
854
855 /* Adjust DVMA address to VME view */
856 map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
857 return (0);
858 }
859
860 void
861 sparc_vme4_dmamap_unload(t, map)
862 bus_dma_tag_t t;
863 bus_dmamap_t map;
864 {
865 bus_addr_t addr;
866 bus_size_t len;
867
868 /* Go from VME to CPU view */
869 map->dm_segs[0].ds_addr += VME4_DVMA_BASE;
870
871 addr = map->dm_segs[0].ds_addr & ~PGOFSET;
872 len = round_page(map->dm_segs[0].ds_len);
873
874 /* Remove double-mapping in DVMA space */
875 pmap_remove(pmap_kernel(), addr, addr + len);
876
877 /* Release DVMA space */
878 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
879 printf("warning: %ld of DVMA space lost\n", len);
880
881 /* Mark the mappings as invalid. */
882 map->dm_mapsize = 0;
883 map->dm_nsegs = 0;
884 }
885
886 int
887 sparc_vme4_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
888 bus_dma_tag_t t;
889 bus_size_t size, alignment, boundary;
890 bus_dma_segment_t *segs;
891 int nsegs;
892 int *rsegs;
893 int flags;
894 {
895 bus_addr_t dvmaddr;
896 struct pglist *mlist;
897 vm_page_t m;
898 paddr_t pa;
899 int error;
900
901 size = round_page(size);
902 error = _bus_dmamem_alloc_common(t, size, alignment, boundary,
903 segs, nsegs, rsegs, flags);
904 if (error != 0)
905 return (error);
906
907 if (extent_alloc(vme_dvmamap, size, alignment, boundary,
908 (flags & BUS_DMA_NOWAIT) == 0 ? EX_WAITOK : EX_NOWAIT,
909 (u_long *)&dvmaddr) != 0)
910 return (ENOMEM);
911
912 /*
913 * Compute the location, size, and number of segments actually
914 * returned by the VM code.
915 */
916 segs[0].ds_addr = dvmaddr - VME4_DVMA_BASE;
917 segs[0].ds_len = size;
918 *rsegs = 1;
919
920 /* Map memory into DVMA space */
921 mlist = segs[0]._ds_mlist;
922 for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq)) {
923 pa = VM_PAGE_TO_PHYS(m);
924
925 #ifdef notyet
926 if (have_iocache)
927 pa |= PG_IOC;
928 #endif
929 pmap_enter(pmap_kernel(), dvmaddr, pa | PMAP_NC,
930 VM_PROT_READ|VM_PROT_WRITE, 1);
931 dvmaddr += PAGE_SIZE;
932 }
933
934 return (0);
935 }
936
937 void
938 sparc_vme4_dmamem_free(t, segs, nsegs)
939 bus_dma_tag_t t;
940 bus_dma_segment_t *segs;
941 int nsegs;
942 {
943 bus_addr_t addr;
944 bus_size_t len;
945
946 addr = segs[0].ds_addr + VME4_DVMA_BASE;
947 len = round_page(segs[0].ds_len);
948
949 /* Remove DVMA kernel map */
950 pmap_remove(pmap_kernel(), addr, addr + len);
951
952 /* Release DVMA address range */
953 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
954 printf("warning: %ld of DVMA space lost\n", len);
955
956 /*
957 * Return the list of pages back to the VM system.
958 */
959 _bus_dmamem_free_common(t, segs, nsegs);
960 }
961
962 void
963 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
964 bus_dma_tag_t t;
965 bus_dmamap_t map;
966 bus_addr_t offset;
967 bus_size_t len;
968 int ops;
969 {
970
971 /*
972 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
973 * Currently the cache is flushed in bus_dma_load()...
974 */
975 }
976 #endif /* SUN4 */
977
978 #if defined(SUN4M)
979 static int
980 sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
981 bus_dma_tag_t t;
982 bus_size_t size;
983 int nsegments;
984 bus_size_t maxsegsz;
985 bus_size_t boundary;
986 int flags;
987 bus_dmamap_t *dmamp;
988 {
989 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
990 int error;
991
992 /* XXX - todo: allocate DVMA addresses from assigned ranges:
993 upper 8MB for A32 space; upper 1MB for A24 space */
994 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
995 boundary, flags, dmamp);
996 if (error != 0)
997 return (error);
998
999 #if 0
1000 /* VME DVMA addresses must always be 8K aligned */
1001 (*dmamp)->_dm_align = 8192;
1002 #endif
1003
1004 return (0);
1005 }
1006
1007 int
1008 sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
1009 bus_dma_tag_t t;
1010 bus_dmamap_t map;
1011 void *buf;
1012 bus_size_t buflen;
1013 struct proc *p;
1014 int flags;
1015 {
1016 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1017 volatile u_int32_t *ioctags;
1018 int error;
1019
1020 buflen = (buflen + VME_IOC_PAGESZ - 1) & ~(VME_IOC_PAGESZ - 1);
1021 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1022 if (error != 0)
1023 return (error);
1024
1025 /* allocate IO cache entries for this range */
1026 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1027 for (;buflen > 0;) {
1028 *ioctags = VME_IOC_IC | VME_IOC_W;
1029 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1030 buflen -= VME_IOC_PAGESZ;
1031 }
1032 return (0);
1033 }
1034
1035
1036 void
1037 sparc_vme4m_dmamap_unload(t, map)
1038 bus_dma_tag_t t;
1039 bus_dmamap_t map;
1040 {
1041 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1042 volatile u_int32_t *flushregs;
1043 int len;
1044
1045 /* Flush VME IO cache */
1046 len = map->dm_segs[0].ds_len;
1047 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1048 for (;len > 0;) {
1049 *flushregs = 0;
1050 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1051 len -= VME_IOC_PAGESZ;
1052 }
1053 /* Read a tag to synchronize the IOC flushes */
1054 (*sc->sc_ioctags);
1055
1056 bus_dmamap_unload(sc->sc_dmatag, map);
1057 }
1058
1059 int
1060 sparc_vme4m_dmamem_alloc(t, size, alignmnt, boundary, segs, nsegs, rsegs, flags)
1061 bus_dma_tag_t t;
1062 bus_size_t size, alignmnt, boundary;
1063 bus_dma_segment_t *segs;
1064 int nsegs;
1065 int *rsegs;
1066 int flags;
1067 {
1068 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1069 int error;
1070
1071 error = bus_dmamem_alloc(sc->sc_dmatag, size, alignmnt, boundary,
1072 segs, nsegs, rsegs, flags);
1073 if (error != 0)
1074 return (error);
1075
1076 return (0);
1077 }
1078
1079 void
1080 sparc_vme4m_dmamem_free(t, segs, nsegs)
1081 bus_dma_tag_t t;
1082 bus_dma_segment_t *segs;
1083 int nsegs;
1084 {
1085 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1086
1087 bus_dmamem_free(sc->sc_dmatag, segs, nsegs);
1088 }
1089
1090 void
1091 sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
1092 bus_dma_tag_t t;
1093 bus_dmamap_t map;
1094 bus_addr_t offset;
1095 bus_size_t len;
1096 int ops;
1097 {
1098
1099 /*
1100 * XXX Should perform cache flushes as necessary.
1101 */
1102 }
1103 #endif /* SUN4M */
1104
1105 int
1106 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1107 bus_dma_tag_t t;
1108 bus_dma_segment_t *segs;
1109 int nsegs;
1110 size_t size;
1111 caddr_t *kvap;
1112 int flags;
1113 {
1114 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1115
1116 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1117 }
1118