vme_machdep.c revision 1.15 1 /* $NetBSD: vme_machdep.c,v 1.15 1999/01/15 00:26:24 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 #include <sys/param.h>
40 #include <sys/extent.h>
41 #include <sys/systm.h>
42 #include <sys/device.h>
43 #include <sys/malloc.h>
44
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/syslog.h>
48
49 #include <vm/vm.h>
50
51 #define _SPARC_BUS_DMA_PRIVATE
52 #include <machine/bus.h>
53 #include <sparc/sparc/iommuvar.h>
54 #include <machine/autoconf.h>
55 #include <machine/pmap.h>
56 #include <machine/oldmon.h>
57 #include <machine/cpu.h>
58 #include <machine/ctlreg.h>
59
60 #include <dev/vme/vmevar.h>
61
62 #include <sparc/sparc/asm.h>
63 #include <sparc/sparc/vaddrs.h>
64 #include <sparc/sparc/cpuvar.h>
65 #include <sparc/dev/vmereg.h>
66
67 struct vmebus_softc {
68 struct device sc_dev; /* base device */
69 bus_space_tag_t sc_bustag;
70 bus_dma_tag_t sc_dmatag;
71 struct vmebusreg *sc_reg; /* VME control registers */
72 struct vmebusvec *sc_vec; /* VME interrupt vector */
73 struct rom_range *sc_range; /* ROM range property */
74 int sc_nrange;
75 volatile u_int32_t *sc_ioctags; /* VME IO-cache tag registers */
76 volatile u_int32_t *sc_iocflush;/* VME IO-cache flush registers */
77 int (*sc_vmeintr) __P((void *));
78 struct bootpath *sc_bp;
79 };
80 struct vmebus_softc *vmebus_sc;/*XXX*/
81
82 /* autoconfiguration driver */
83 static int vmematch_iommu __P((struct device *, struct cfdata *, void *));
84 static void vmeattach_iommu __P((struct device *, struct device *, void *));
85 static int vmematch_mainbus __P((struct device *, struct cfdata *, void *));
86 static void vmeattach_mainbus __P((struct device *, struct device *, void *));
87 #if defined(SUN4)
88 int vmeintr4 __P((void *));
89 #endif
90 #if defined(SUN4M)
91 int vmeintr4m __P((void *));
92 #endif
93 static int sparc_vme_error __P((void));
94
95
96 static int sparc_vme_probe __P((void *, bus_space_tag_t, vme_addr_t,
97 size_t, vme_size_t, vme_mod_t,
98 int (*) __P((void *, void *)), void *));
99 static int sparc_vme_map __P((void *, vme_addr_t, vme_size_t, vme_mod_t,
100 bus_space_tag_t, bus_space_handle_t *));
101 static void sparc_vme_unmap __P((void *));
102 static int sparc_vme_mmap_cookie __P((void *, vme_addr_t, vme_mod_t,
103 bus_space_tag_t, bus_space_handle_t *));
104 static int sparc_vme_intr_map __P((void *, int, int, vme_intr_handle_t *));
105 static void * sparc_vme_intr_establish __P((void *, vme_intr_handle_t,
106 int (*) __P((void *)), void *));
107 static void sparc_vme_intr_disestablish __P((void *, void *));
108
109 static int vmebus_translate __P((struct vmebus_softc *, vme_mod_t,
110 vme_addr_t, bus_type_t *, bus_addr_t *));
111 static void sparc_vme_bus_establish __P((void *, struct device *));
112 #if defined(SUN4M)
113 static void sparc_vme4m_barrier __P(( bus_space_tag_t, bus_space_handle_t,
114 bus_size_t, bus_size_t, int));
115
116 #endif
117
118 /*
119 * DMA functions.
120 */
121 #if defined(SUN4)
122 static int sparc_vme4_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
123 bus_size_t, struct proc *, int));
124 static void sparc_vme4_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
125 static void sparc_vme4_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
126 bus_addr_t, bus_size_t, int));
127
128 static int sparc_vme4_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
129 bus_size_t, bus_size_t, bus_dma_segment_t *,
130 int, int *, int));
131 static void sparc_vme4_dmamem_free __P((bus_dma_tag_t,
132 bus_dma_segment_t *, int));
133 #endif
134
135 #if defined(SUN4M)
136 static int sparc_vme4m_dmamap_create __P((bus_dma_tag_t, bus_size_t, int,
137 bus_size_t, bus_size_t, int, bus_dmamap_t *));
138
139 static int sparc_vme4m_dmamap_load __P((bus_dma_tag_t, bus_dmamap_t, void *,
140 bus_size_t, struct proc *, int));
141 static void sparc_vme4m_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t));
142 static void sparc_vme4m_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t,
143 bus_addr_t, bus_size_t, int));
144
145 static int sparc_vme4m_dmamem_alloc __P((bus_dma_tag_t, bus_size_t,
146 bus_size_t, bus_size_t, bus_dma_segment_t *,
147 int, int *, int));
148 static void sparc_vme4m_dmamem_free __P((bus_dma_tag_t,
149 bus_dma_segment_t *, int));
150 #endif
151
152 static int sparc_vme_dmamem_map __P((bus_dma_tag_t, bus_dma_segment_t *,
153 int, size_t, caddr_t *, int));
154 #if 0
155 static void sparc_vme_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t));
156 static void sparc_vme_dmamem_unmap __P((bus_dma_tag_t, caddr_t, size_t));
157 static int sparc_vme_dmamem_mmap __P((bus_dma_tag_t,
158 bus_dma_segment_t *, int, int, int, int));
159 #endif
160
161 struct cfattach vme_mainbus_ca = {
162 sizeof(struct vmebus_softc), vmematch_mainbus, vmeattach_mainbus
163 };
164
165 struct cfattach vme_iommu_ca = {
166 sizeof(struct vmebus_softc), vmematch_iommu, vmeattach_iommu
167 };
168
169 int (*vmeerr_handler) __P((void));
170
171 /* If the PROM does not provide the `ranges' property, we make up our own */
172 struct rom_range vmebus_translations[] = {
173 #define _DS (VMEMOD_D|VMEMOD_S)
174 { VMEMOD_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
175 { VMEMOD_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
176 { VMEMOD_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
177 { VMEMOD_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
178 { VMEMOD_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
179 { VMEMOD_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
180 #undef _DS
181 };
182
183 /*
184 * DMA on sun4 VME devices use the last MB of virtual space, which
185 * is mapped by hardware onto the first MB of VME space.
186 */
187 struct extent *vme_dvmamap;
188
189 struct sparc_bus_space_tag sparc_vme_bus_tag = {
190 NULL, /* cookie */
191 NULL, /* parent bus tag */
192 NULL, /* bus_map */
193 NULL, /* bus_unmap */
194 NULL, /* bus_subregion */
195 NULL /* barrier */
196 };
197
198 struct vme_chipset_tag sparc_vme_chipset_tag = {
199 NULL,
200 sparc_vme_probe,
201 sparc_vme_map,
202 sparc_vme_unmap,
203 sparc_vme_mmap_cookie,
204 sparc_vme_intr_map,
205 sparc_vme_intr_establish,
206 sparc_vme_intr_disestablish,
207 sparc_vme_bus_establish
208 };
209
210
211 #if defined(SUN4)
212 struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
213 NULL, /* cookie */
214 _bus_dmamap_create,
215 _bus_dmamap_destroy,
216 sparc_vme4_dmamap_load,
217 _bus_dmamap_load_mbuf,
218 _bus_dmamap_load_uio,
219 _bus_dmamap_load_raw,
220 sparc_vme4_dmamap_unload,
221 sparc_vme4_dmamap_sync,
222
223 sparc_vme4_dmamem_alloc,
224 sparc_vme4_dmamem_free,
225 sparc_vme_dmamem_map,
226 _bus_dmamem_unmap,
227 _bus_dmamem_mmap
228 };
229 #endif
230
231 #if defined(SUN4M)
232 struct sparc_bus_dma_tag sparc_vme4m_dma_tag = {
233 NULL, /* cookie */
234 sparc_vme4m_dmamap_create,
235 _bus_dmamap_destroy,
236 sparc_vme4m_dmamap_load,
237 _bus_dmamap_load_mbuf,
238 _bus_dmamap_load_uio,
239 _bus_dmamap_load_raw,
240 sparc_vme4m_dmamap_unload,
241 sparc_vme4m_dmamap_sync,
242
243 sparc_vme4m_dmamem_alloc,
244 sparc_vme4m_dmamem_free,
245 sparc_vme_dmamem_map,
246 _bus_dmamem_unmap,
247 _bus_dmamem_mmap
248 };
249 #endif
250
251
252 void
253 sparc_vme_bus_establish(cookie, dev)
254 void *cookie;
255 struct device *dev;
256 {
257 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
258 struct bootpath *bp = sc->sc_bp;
259 char *name;
260
261 name = dev->dv_cfdata->cf_driver->cd_name;
262 #ifdef DEBUG
263 printf("sparc_vme_bus_establish: %s%d\n", name, dev->dv_unit);
264 #endif
265 if (bp != NULL && strcmp(bp->name, name) == 0 &&
266 dev->dv_unit == bp->val[1]) {
267 bp->dev = dev;
268 #ifdef DEBUG
269 printf("sparc_vme_bus_establish: on the boot path\n");
270 #endif
271 sc->sc_bp++;
272 bootpath_store(1, sc->sc_bp);
273 }
274 }
275
276
277 int
278 vmematch_mainbus(parent, cf, aux)
279 struct device *parent;
280 struct cfdata *cf;
281 void *aux;
282 {
283 struct mainbus_attach_args *ma = aux;
284
285 if (!CPU_ISSUN4)
286 return (0);
287
288 return (strcmp(cf->cf_driver->cd_name, ma->ma_name) == 0);
289 }
290
291 int
292 vmematch_iommu(parent, cf, aux)
293 struct device *parent;
294 struct cfdata *cf;
295 void *aux;
296 {
297 struct iommu_attach_args *ia = aux;
298
299 return (strcmp(cf->cf_driver->cd_name, ia->iom_name) == 0);
300 }
301
302
303 void
304 vmeattach_mainbus(parent, self, aux)
305 struct device *parent, *self;
306 void *aux;
307 {
308 #if defined(SUN4)
309 struct mainbus_attach_args *ma = aux;
310 struct vmebus_softc *sc = (struct vmebus_softc *)self;
311 struct vme_busattach_args vba;
312
313 if (self->dv_unit > 0) {
314 printf(" unsupported\n");
315 return;
316 }
317
318 sc->sc_bustag = ma->ma_bustag;
319 sc->sc_dmatag = ma->ma_dmatag;
320
321 if (ma->ma_bp != NULL && strcmp(ma->ma_bp->name, "vme") == 0) {
322 sc->sc_bp = ma->ma_bp + 1;
323 bootpath_store(1, sc->sc_bp);
324 }
325
326 /* VME interrupt entry point */
327 sc->sc_vmeintr = vmeintr4;
328
329 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
330 /*XXX*/ sparc_vme4_dma_tag._cookie = self;
331
332 vba.vba_bustag = &sparc_vme_bus_tag;
333 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
334 vba.vba_dmatag = &sparc_vme4_dma_tag;
335
336 /* Fall back to our own `range' construction */
337 sc->sc_range = vmebus_translations;
338 sc->sc_nrange =
339 sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
340
341 vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
342 M_DEVBUF, 0, 0, EX_NOWAIT);
343 if (vme_dvmamap == NULL)
344 panic("vme: unable to allocate DVMA map");
345
346 printf("\n");
347 (void)config_search(vmesearch, self, &vba);
348
349 bootpath_store(1, NULL);
350 #endif
351 return;
352 }
353
354 /* sun4m vmebus */
355 void
356 vmeattach_iommu(parent, self, aux)
357 struct device *parent, *self;
358 void *aux;
359 {
360 #if defined(SUN4M)
361 struct vmebus_softc *sc = (struct vmebus_softc *)self;
362 struct iommu_attach_args *ia = aux;
363 struct vme_busattach_args vba;
364 bus_space_handle_t bh;
365 int node;
366 int cline;
367
368 if (self->dv_unit > 0) {
369 printf(" unsupported\n");
370 return;
371 }
372
373 sc->sc_bustag = ia->iom_bustag;
374 sc->sc_dmatag = ia->iom_dmatag;
375
376 /* VME interrupt entry point */
377 sc->sc_vmeintr = vmeintr4m;
378
379 /*XXX*/ sparc_vme_chipset_tag.cookie = self;
380 /*XXX*/ sparc_vme4m_dma_tag._cookie = self;
381 sparc_vme_bus_tag.sparc_bus_barrier = sparc_vme4m_barrier;
382
383 vba.vba_bustag = &sparc_vme_bus_tag;
384 vba.vba_chipset_tag = &sparc_vme_chipset_tag;
385 vba.vba_dmatag = &sparc_vme4m_dma_tag;
386
387 node = ia->iom_node;
388
389 /*
390 * Map VME control space
391 */
392 if (ia->iom_nreg < 2) {
393 printf("%s: only %d register sets\n", self->dv_xname,
394 ia->iom_nreg);
395 return;
396 }
397
398 if (bus_space_map2(ia->iom_bustag,
399 (bus_type_t)ia->iom_reg[0].ior_iospace,
400 (bus_addr_t)ia->iom_reg[0].ior_pa,
401 (bus_size_t)ia->iom_reg[0].ior_size,
402 BUS_SPACE_MAP_LINEAR,
403 0, &bh) != 0) {
404 panic("%s: can't map vmebusreg", self->dv_xname);
405 }
406 sc->sc_reg = (struct vmebusreg *)bh;
407
408 if (bus_space_map2(ia->iom_bustag,
409 (bus_type_t)ia->iom_reg[1].ior_iospace,
410 (bus_addr_t)ia->iom_reg[1].ior_pa,
411 (bus_size_t)ia->iom_reg[1].ior_size,
412 BUS_SPACE_MAP_LINEAR,
413 0, &bh) != 0) {
414 panic("%s: can't map vmebusvec", self->dv_xname);
415 }
416 sc->sc_vec = (struct vmebusvec *)bh;
417
418 /*
419 * Map VME IO cache tags and flush control.
420 */
421 if (bus_space_map2(ia->iom_bustag,
422 (bus_type_t)ia->iom_reg[1].ior_iospace,
423 (bus_addr_t)ia->iom_reg[1].ior_pa + VME_IOC_TAGOFFSET,
424 VME_IOC_SIZE,
425 BUS_SPACE_MAP_LINEAR,
426 0, &bh) != 0) {
427 panic("%s: can't map IOC tags", self->dv_xname);
428 }
429 sc->sc_ioctags = (u_int32_t *)bh;
430
431 if (bus_space_map2(ia->iom_bustag,
432 (bus_type_t)ia->iom_reg[1].ior_iospace,
433 (bus_addr_t)ia->iom_reg[1].ior_pa+VME_IOC_FLUSHOFFSET,
434 VME_IOC_SIZE,
435 BUS_SPACE_MAP_LINEAR,
436 0, &bh) != 0) {
437 panic("%s: can't map IOC flush registers", self->dv_xname);
438 }
439 sc->sc_iocflush = (u_int32_t *)bh;
440
441 /*XXX*/ sparc_vme_bus_tag.cookie = sc->sc_reg;
442
443 /*
444 * Get "range" property.
445 */
446 if (getprop(node, "ranges", sizeof(struct rom_range),
447 &sc->sc_nrange, (void **)&sc->sc_range) != 0) {
448 panic("%s: can't get ranges property", self->dv_xname);
449 }
450
451 vmebus_sc = sc;
452 vmeerr_handler = sparc_vme_error;
453
454 /*
455 * Invalidate all IO-cache entries.
456 */
457 for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
458 sc->sc_ioctags[--cline] = 0;
459 }
460
461 /* Enable IO-cache */
462 sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
463
464 printf(": version 0x%x\n",
465 sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
466
467 (void)config_search(vmesearch, self, &vba);
468 #endif
469 }
470
471 int
472 sparc_vme_error()
473 {
474 struct vmebus_softc *sc = vmebus_sc;
475 u_int32_t afsr, afpa;
476 char bits[64];
477
478 afsr = sc->sc_reg->vmebus_afsr,
479 afpa = sc->sc_reg->vmebus_afar;
480 printf("VME error:\n\tAFSR %s\n",
481 bitmask_snprintf(afsr, VMEBUS_AFSR_BITS, bits, sizeof(bits)));
482 printf("\taddress: 0x%x%x\n", afsr, afpa);
483 return (0);
484 }
485
486 int
487 vmebus_translate(sc, mod, addr, btp, bap)
488 struct vmebus_softc *sc;
489 vme_mod_t mod;
490 vme_addr_t addr;
491 bus_type_t *btp;
492 bus_addr_t *bap;
493 {
494 int i;
495
496 for (i = 0; i < sc->sc_nrange; i++) {
497
498 if (sc->sc_range[i].cspace != mod)
499 continue;
500
501 /* We've found the connection to the parent bus */
502 *bap = sc->sc_range[i].poffset + addr;
503 *btp = sc->sc_range[i].pspace;
504 return (0);
505 }
506 return (ENOENT);
507 }
508
509 int
510 sparc_vme_probe(cookie, tag, addr, offset, size, mod, callback, arg)
511 void *cookie;
512 bus_space_tag_t tag;
513 vme_addr_t addr;
514 size_t offset;
515 vme_size_t size;
516 int mod;
517 int (*callback) __P((void *, void *));
518 void *arg;
519 {
520 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
521 bus_type_t iospace;
522 bus_addr_t paddr;
523
524 if (vmebus_translate(sc, mod, addr, &iospace, &paddr) != 0)
525 return (0);
526
527 return (bus_space_probe(sc->sc_bustag, iospace, paddr, size, offset,
528 0, callback, arg));
529 }
530
531 int
532 sparc_vme_map(cookie, addr, size, mod, tag, hp)
533 void *cookie;
534 vme_addr_t addr;
535 vme_size_t size;
536 int mod;
537 bus_space_tag_t tag;
538 bus_space_handle_t *hp;
539 {
540 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
541 bus_type_t iospace;
542 bus_addr_t paddr;
543 int error;
544
545 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
546 if (error != 0)
547 return (error);
548
549 return (bus_space_map2(sc->sc_bustag, iospace, paddr, size, 0, 0, hp));
550 }
551
552 int
553 sparc_vme_mmap_cookie(cookie, addr, mod, tag, hp)
554 void *cookie;
555 vme_addr_t addr;
556 int mod;
557 bus_space_tag_t tag;
558 bus_space_handle_t *hp;
559 {
560 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
561 bus_type_t iospace;
562 bus_addr_t paddr;
563 int error;
564
565 error = vmebus_translate(sc, mod, addr, &iospace, &paddr);
566 if (error != 0)
567 return (error);
568
569 return (bus_space_mmap(sc->sc_bustag, iospace, paddr, 0, hp));
570 }
571
572 #if defined(SUN4M)
573 void
574 sparc_vme4m_barrier(t, h, offset, size, flags)
575 bus_space_tag_t t;
576 bus_space_handle_t h;
577 bus_size_t offset;
578 bus_size_t size;
579 int flags;
580 {
581 struct vmebusreg *vbp = (struct vmebusreg *)t->cookie;
582
583 /* Read async fault status to flush write-buffers */
584 (*(volatile int *)&vbp->vmebus_afsr);
585 }
586 #endif
587
588
589
590 /*
591 * VME Interrupt Priority Level to sparc Processor Interrupt Level.
592 */
593 static int vme_ipl_to_pil[] = {
594 0,
595 2,
596 3,
597 5,
598 7,
599 9,
600 11,
601 13
602 };
603
604
605 /*
606 * All VME device interrupts go through vmeintr(). This function reads
607 * the VME vector from the bus, then dispatches the device interrupt
608 * handler. All handlers for devices that map to the same Processor
609 * Interrupt Level (according to the table above) are on a linked list
610 * of `sparc_vme_intr_handle' structures. The head of which is passed
611 * down as the argument to `vmeintr(void *arg)'.
612 */
613 struct sparc_vme_intr_handle {
614 struct intrhand ih;
615 struct sparc_vme_intr_handle *next;
616 int vec; /* VME interrupt vector */
617 int pri; /* VME interrupt priority */
618 struct vmebus_softc *sc;/*XXX*/
619 };
620
621 #if defined(SUN4)
622 int
623 vmeintr4(arg)
624 void *arg;
625 {
626 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
627 int level, vec;
628 int i = 0;
629
630 level = (ihp->pri << 1) | 1;
631
632 vec = ldcontrolb((caddr_t)(AC_VMEINTVEC | level));
633
634 if (vec == -1) {
635 printf("vme: spurious interrupt\n");
636 return 1; /* XXX - pretend we handled it, for now */
637 }
638
639 for (; ihp; ihp = ihp->next)
640 if (ihp->vec == vec && ihp->ih.ih_fun)
641 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
642 return (i);
643 }
644 #endif
645
646 #if defined(SUN4M)
647 int
648 vmeintr4m(arg)
649 void *arg;
650 {
651 struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
652 int level, vec;
653 int i = 0;
654
655 level = (ihp->pri << 1) | 1;
656
657 #if 0
658 int pending;
659
660 /* Flush VME <=> Sbus write buffers */
661 (*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
662
663 pending = *((int*)ICR_SI_PEND);
664 if ((pending & SINTR_VME(ihp->pri)) == 0) {
665 printf("vmeintr: non pending at pri %x(p 0x%x)\n",
666 ihp->pri, pending);
667 return (0);
668 }
669 #endif
670 #if 0
671 /* Why gives this a bus timeout sometimes? */
672 vec = ihp->sc->sc_vec->vmebusvec[level];
673 #else
674 /* so, arrange to catch the fault... */
675 {
676 extern struct user *proc0paddr;
677 extern int fkbyte __P((caddr_t, struct pcb *));
678 caddr_t addr = (caddr_t)&ihp->sc->sc_vec->vmebusvec[level];
679 struct pcb *xpcb;
680 u_long saveonfault;
681 int s;
682
683 s = splhigh();
684 if (curproc == NULL)
685 xpcb = (struct pcb *)proc0paddr;
686 else
687 xpcb = &curproc->p_addr->u_pcb;
688
689 saveonfault = (u_long)xpcb->pcb_onfault;
690 vec = fkbyte(addr, xpcb);
691 xpcb->pcb_onfault = (caddr_t)saveonfault;
692
693 splx(s);
694 }
695 #endif
696
697 if (vec == -1) {
698 printf("vme: spurious interrupt: ");
699 printf("SI: 0x%x, VME AFSR: 0x%x, VME AFAR 0x%x\n",
700 *((int*)ICR_SI_PEND),
701 ihp->sc->sc_reg->vmebus_afsr,
702 ihp->sc->sc_reg->vmebus_afar);
703 return (1); /* XXX - pretend we handled it, for now */
704 }
705
706 for (; ihp; ihp = ihp->next)
707 if (ihp->vec == vec && ihp->ih.ih_fun)
708 i += (ihp->ih.ih_fun)(ihp->ih.ih_arg);
709 return (i);
710 }
711 #endif
712
713 int
714 sparc_vme_intr_map(cookie, vec, pri, ihp)
715 void *cookie;
716 int vec;
717 int pri;
718 vme_intr_handle_t *ihp;
719 {
720 struct sparc_vme_intr_handle *ih;
721
722 ih = (vme_intr_handle_t)
723 malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
724 ih->pri = pri;
725 ih->vec = vec;
726 ih->sc = cookie;/*XXX*/
727 *ihp = ih;
728 return (0);
729 }
730
731 void *
732 sparc_vme_intr_establish(cookie, vih, func, arg)
733 void *cookie;
734 vme_intr_handle_t vih;
735 int (*func) __P((void *));
736 void *arg;
737 {
738 struct vmebus_softc *sc = (struct vmebus_softc *)cookie;
739 struct sparc_vme_intr_handle *svih =
740 (struct sparc_vme_intr_handle *)vih;
741 struct intrhand *ih;
742 int level;
743
744 /* Translate VME priority to processor IPL */
745 level = vme_ipl_to_pil[svih->pri];
746
747 svih->ih.ih_fun = func;
748 svih->ih.ih_arg = arg;
749 svih->next = NULL;
750
751 /* ensure the interrupt subsystem will call us at this level */
752 for (ih = intrhand[level]; ih != NULL; ih = ih->ih_next)
753 if (ih->ih_fun == sc->sc_vmeintr)
754 break;
755
756 if (ih == NULL) {
757 ih = (struct intrhand *)
758 malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT);
759 if (ih == NULL)
760 panic("vme_addirq");
761 bzero(ih, sizeof *ih);
762 ih->ih_fun = sc->sc_vmeintr;
763 ih->ih_arg = vih;
764 intr_establish(level, ih);
765 } else {
766 svih->next = (vme_intr_handle_t)ih->ih_arg;
767 ih->ih_arg = vih;
768 }
769 return (NULL);
770 }
771
772 void
773 sparc_vme_unmap(cookie)
774 void * cookie;
775 {
776 /* Not implemented */
777 panic("sparc_vme_unmap");
778 }
779
780 void
781 sparc_vme_intr_disestablish(cookie, a)
782 void *cookie;
783 void *a;
784 {
785 /* Not implemented */
786 panic("sparc_vme_intr_disestablish");
787 }
788
789
790
791 /*
792 * VME DMA functions.
793 */
794
795 #if defined(SUN4)
796 int
797 sparc_vme4_dmamap_load(t, map, buf, buflen, p, flags)
798 bus_dma_tag_t t;
799 bus_dmamap_t map;
800 void *buf;
801 bus_size_t buflen;
802 struct proc *p;
803 int flags;
804 {
805 bus_addr_t dvmaddr;
806 bus_size_t sgsize;
807 vaddr_t vaddr;
808 pmap_t pmap;
809 int pagesz = PAGE_SIZE;
810 int error;
811
812 error = extent_alloc(vme_dvmamap, round_page(buflen), NBPG,
813 map->_dm_boundary,
814 (flags & BUS_DMA_NOWAIT) == 0
815 ? EX_WAITOK
816 : EX_NOWAIT,
817 (u_long *)&dvmaddr);
818 if (error != 0)
819 return (error);
820
821 vaddr = (vaddr_t)buf;
822 map->dm_mapsize = buflen;
823 map->dm_nsegs = 1;
824 map->dm_segs[0].ds_addr = dvmaddr + (vaddr & PGOFSET);
825 map->dm_segs[0].ds_len = buflen;
826
827 pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
828
829 for (; buflen > 0; ) {
830 paddr_t pa;
831 /*
832 * Get the physical address for this page.
833 */
834 pa = pmap_extract(pmap, vaddr);
835
836 /*
837 * Compute the segment size, and adjust counts.
838 */
839 sgsize = pagesz - ((u_long)vaddr & (pagesz - 1));
840 if (buflen < sgsize)
841 sgsize = buflen;
842
843 #ifdef notyet
844 if (have_iocache)
845 curaddr |= PG_IOC;
846 #endif
847 pmap_enter(pmap_kernel(), dvmaddr,
848 (pa & ~(pagesz-1)) | PMAP_NC,
849 VM_PROT_READ|VM_PROT_WRITE, 1);
850
851 dvmaddr += pagesz;
852 vaddr += sgsize;
853 buflen -= sgsize;
854 }
855
856 /* Adjust DVMA address to VME view */
857 map->dm_segs[0].ds_addr -= VME4_DVMA_BASE;
858 return (0);
859 }
860
861 void
862 sparc_vme4_dmamap_unload(t, map)
863 bus_dma_tag_t t;
864 bus_dmamap_t map;
865 {
866 bus_addr_t addr;
867 bus_size_t len;
868
869 /* Go from VME to CPU view */
870 map->dm_segs[0].ds_addr += VME4_DVMA_BASE;
871
872 addr = map->dm_segs[0].ds_addr & ~PGOFSET;
873 len = round_page(map->dm_segs[0].ds_len);
874
875 /* Remove double-mapping in DVMA space */
876 pmap_remove(pmap_kernel(), addr, addr + len);
877
878 /* Release DVMA space */
879 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
880 printf("warning: %ld of DVMA space lost\n", len);
881
882 /* Mark the mappings as invalid. */
883 map->dm_mapsize = 0;
884 map->dm_nsegs = 0;
885 }
886
887 int
888 sparc_vme4_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
889 bus_dma_tag_t t;
890 bus_size_t size, alignment, boundary;
891 bus_dma_segment_t *segs;
892 int nsegs;
893 int *rsegs;
894 int flags;
895 {
896 bus_addr_t dvmaddr;
897 struct pglist *mlist;
898 vm_page_t m;
899 paddr_t pa;
900 int error;
901
902 size = round_page(size);
903 error = _bus_dmamem_alloc_common(t, size, alignment, boundary,
904 segs, nsegs, rsegs, flags);
905 if (error != 0)
906 return (error);
907
908 if (extent_alloc(vme_dvmamap, size, alignment, boundary,
909 (flags & BUS_DMA_NOWAIT) == 0 ? EX_WAITOK : EX_NOWAIT,
910 (u_long *)&dvmaddr) != 0)
911 return (ENOMEM);
912
913 /*
914 * Compute the location, size, and number of segments actually
915 * returned by the VM code.
916 */
917 segs[0].ds_addr = dvmaddr - VME4_DVMA_BASE;
918 segs[0].ds_len = size;
919 *rsegs = 1;
920
921 /* Map memory into DVMA space */
922 mlist = segs[0]._ds_mlist;
923 for (m = TAILQ_FIRST(mlist); m != NULL; m = TAILQ_NEXT(m,pageq)) {
924 pa = VM_PAGE_TO_PHYS(m);
925
926 #ifdef notyet
927 if (have_iocache)
928 pa |= PG_IOC;
929 #endif
930 pmap_enter(pmap_kernel(), dvmaddr, pa | PMAP_NC,
931 VM_PROT_READ|VM_PROT_WRITE, 1);
932 dvmaddr += PAGE_SIZE;
933 }
934
935 return (0);
936 }
937
938 void
939 sparc_vme4_dmamem_free(t, segs, nsegs)
940 bus_dma_tag_t t;
941 bus_dma_segment_t *segs;
942 int nsegs;
943 {
944 bus_addr_t addr;
945 bus_size_t len;
946
947 addr = segs[0].ds_addr + VME4_DVMA_BASE;
948 len = round_page(segs[0].ds_len);
949
950 /* Remove DVMA kernel map */
951 pmap_remove(pmap_kernel(), addr, addr + len);
952
953 /* Release DVMA address range */
954 if (extent_free(vme_dvmamap, addr, len, EX_NOWAIT) != 0)
955 printf("warning: %ld of DVMA space lost\n", len);
956
957 /*
958 * Return the list of pages back to the VM system.
959 */
960 _bus_dmamem_free_common(t, segs, nsegs);
961 }
962
963 void
964 sparc_vme4_dmamap_sync(t, map, offset, len, ops)
965 bus_dma_tag_t t;
966 bus_dmamap_t map;
967 bus_addr_t offset;
968 bus_size_t len;
969 int ops;
970 {
971
972 /*
973 * XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
974 * Currently the cache is flushed in bus_dma_load()...
975 */
976 }
977 #endif /* SUN4 */
978
979 #if defined(SUN4M)
980 static int
981 sparc_vme4m_dmamap_create (t, size, nsegments, maxsegsz, boundary, flags, dmamp)
982 bus_dma_tag_t t;
983 bus_size_t size;
984 int nsegments;
985 bus_size_t maxsegsz;
986 bus_size_t boundary;
987 int flags;
988 bus_dmamap_t *dmamp;
989 {
990 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
991 int error;
992
993 /* XXX - todo: allocate DVMA addresses from assigned ranges:
994 upper 8MB for A32 space; upper 1MB for A24 space */
995 error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
996 boundary, flags, dmamp);
997 if (error != 0)
998 return (error);
999
1000 #if 0
1001 /* VME DVMA addresses must always be 8K aligned */
1002 (*dmamp)->_dm_align = 8192;
1003 #endif
1004
1005 return (0);
1006 }
1007
1008 int
1009 sparc_vme4m_dmamap_load(t, map, buf, buflen, p, flags)
1010 bus_dma_tag_t t;
1011 bus_dmamap_t map;
1012 void *buf;
1013 bus_size_t buflen;
1014 struct proc *p;
1015 int flags;
1016 {
1017 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1018 volatile u_int32_t *ioctags;
1019 int error;
1020
1021 buflen = (buflen + VME_IOC_PAGESZ - 1) & ~(VME_IOC_PAGESZ - 1);
1022 error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
1023 if (error != 0)
1024 return (error);
1025
1026 /* allocate IO cache entries for this range */
1027 ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1028 for (;buflen > 0;) {
1029 *ioctags = VME_IOC_IC | VME_IOC_W;
1030 ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
1031 buflen -= VME_IOC_PAGESZ;
1032 }
1033 return (0);
1034 }
1035
1036
1037 void
1038 sparc_vme4m_dmamap_unload(t, map)
1039 bus_dma_tag_t t;
1040 bus_dmamap_t map;
1041 {
1042 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1043 volatile u_int32_t *flushregs;
1044 int len;
1045
1046 /* Flush VME IO cache */
1047 len = map->dm_segs[0].ds_len;
1048 flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
1049 for (;len > 0;) {
1050 *flushregs = 0;
1051 flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
1052 len -= VME_IOC_PAGESZ;
1053 }
1054 /* Read a tag to synchronize the IOC flushes */
1055 (*sc->sc_ioctags);
1056
1057 bus_dmamap_unload(sc->sc_dmatag, map);
1058 }
1059
1060 int
1061 sparc_vme4m_dmamem_alloc(t, size, alignmnt, boundary, segs, nsegs, rsegs, flags)
1062 bus_dma_tag_t t;
1063 bus_size_t size, alignmnt, boundary;
1064 bus_dma_segment_t *segs;
1065 int nsegs;
1066 int *rsegs;
1067 int flags;
1068 {
1069 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1070 int error;
1071
1072 error = bus_dmamem_alloc(sc->sc_dmatag, size, alignmnt, boundary,
1073 segs, nsegs, rsegs, flags);
1074 if (error != 0)
1075 return (error);
1076
1077 return (0);
1078 }
1079
1080 void
1081 sparc_vme4m_dmamem_free(t, segs, nsegs)
1082 bus_dma_tag_t t;
1083 bus_dma_segment_t *segs;
1084 int nsegs;
1085 {
1086 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1087
1088 bus_dmamem_free(sc->sc_dmatag, segs, nsegs);
1089 }
1090
1091 void
1092 sparc_vme4m_dmamap_sync(t, map, offset, len, ops)
1093 bus_dma_tag_t t;
1094 bus_dmamap_t map;
1095 bus_addr_t offset;
1096 bus_size_t len;
1097 int ops;
1098 {
1099
1100 /*
1101 * XXX Should perform cache flushes as necessary.
1102 */
1103 }
1104 #endif /* SUN4M */
1105
1106 int
1107 sparc_vme_dmamem_map(t, segs, nsegs, size, kvap, flags)
1108 bus_dma_tag_t t;
1109 bus_dma_segment_t *segs;
1110 int nsegs;
1111 size_t size;
1112 caddr_t *kvap;
1113 int flags;
1114 {
1115 struct vmebus_softc *sc = (struct vmebus_softc *)t->_cookie;
1116
1117 return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
1118 }
1119